1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 31 #include "core.h" 32 #include "hw.h" 33 34 /* conversion functions */ 35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 36 { 37 return container_of(req, struct dwc2_hsotg_req, req); 38 } 39 40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 41 { 42 return container_of(ep, struct dwc2_hsotg_ep, ep); 43 } 44 45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 46 { 47 return container_of(gadget, struct dwc2_hsotg, gadget); 48 } 49 50 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 51 { 52 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 53 } 54 55 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 56 { 57 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 58 } 59 60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 61 u32 ep_index, u32 dir_in) 62 { 63 if (dir_in) 64 return hsotg->eps_in[ep_index]; 65 else 66 return hsotg->eps_out[ep_index]; 67 } 68 69 /* forward declaration of functions */ 70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 71 72 /** 73 * using_dma - return the DMA status of the driver. 74 * @hsotg: The driver state. 75 * 76 * Return true if we're using DMA. 77 * 78 * Currently, we have the DMA support code worked into everywhere 79 * that needs it, but the AMBA DMA implementation in the hardware can 80 * only DMA from 32bit aligned addresses. This means that gadgets such 81 * as the CDC Ethernet cannot work as they often pass packets which are 82 * not 32bit aligned. 83 * 84 * Unfortunately the choice to use DMA or not is global to the controller 85 * and seems to be only settable when the controller is being put through 86 * a core reset. This means we either need to fix the gadgets to take 87 * account of DMA alignment, or add bounce buffers (yuerk). 88 * 89 * g_using_dma is set depending on dts flag. 90 */ 91 static inline bool using_dma(struct dwc2_hsotg *hsotg) 92 { 93 return hsotg->params.g_dma; 94 } 95 96 /* 97 * using_desc_dma - return the descriptor DMA status of the driver. 98 * @hsotg: The driver state. 99 * 100 * Return true if we're using descriptor DMA. 101 */ 102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 103 { 104 return hsotg->params.g_dma_desc; 105 } 106 107 /** 108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 109 * @hs_ep: The endpoint 110 * 111 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 112 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 113 */ 114 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 115 { 116 hs_ep->target_frame += hs_ep->interval; 117 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 118 hs_ep->frame_overrun = true; 119 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 120 } else { 121 hs_ep->frame_overrun = false; 122 } 123 } 124 125 /** 126 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 127 * by one. 128 * @hs_ep: The endpoint. 129 * 130 * This function used in service interval based scheduling flow to calculate 131 * descriptor frame number filed value. For service interval mode frame 132 * number in descriptor should point to last (u)frame in the interval. 133 * 134 */ 135 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 136 { 137 if (hs_ep->target_frame) 138 hs_ep->target_frame -= 1; 139 else 140 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 141 } 142 143 /** 144 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 145 * @hsotg: The device state 146 * @ints: A bitmask of the interrupts to enable 147 */ 148 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 149 { 150 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 151 u32 new_gsintmsk; 152 153 new_gsintmsk = gsintmsk | ints; 154 155 if (new_gsintmsk != gsintmsk) { 156 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 157 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 158 } 159 } 160 161 /** 162 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 163 * @hsotg: The device state 164 * @ints: A bitmask of the interrupts to enable 165 */ 166 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 167 { 168 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 169 u32 new_gsintmsk; 170 171 new_gsintmsk = gsintmsk & ~ints; 172 173 if (new_gsintmsk != gsintmsk) 174 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 175 } 176 177 /** 178 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 179 * @hsotg: The device state 180 * @ep: The endpoint index 181 * @dir_in: True if direction is in. 182 * @en: The enable value, true to enable 183 * 184 * Set or clear the mask for an individual endpoint's interrupt 185 * request. 186 */ 187 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 188 unsigned int ep, unsigned int dir_in, 189 unsigned int en) 190 { 191 unsigned long flags; 192 u32 bit = 1 << ep; 193 u32 daint; 194 195 if (!dir_in) 196 bit <<= 16; 197 198 local_irq_save(flags); 199 daint = dwc2_readl(hsotg, DAINTMSK); 200 if (en) 201 daint |= bit; 202 else 203 daint &= ~bit; 204 dwc2_writel(hsotg, daint, DAINTMSK); 205 local_irq_restore(flags); 206 } 207 208 /** 209 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 210 * 211 * @hsotg: Programming view of the DWC_otg controller 212 */ 213 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 214 { 215 if (hsotg->hw_params.en_multiple_tx_fifo) 216 /* In dedicated FIFO mode we need count of IN EPs */ 217 return hsotg->hw_params.num_dev_in_eps; 218 else 219 /* In shared FIFO mode we need count of Periodic IN EPs */ 220 return hsotg->hw_params.num_dev_perio_in_ep; 221 } 222 223 /** 224 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 225 * device mode TX FIFOs 226 * 227 * @hsotg: Programming view of the DWC_otg controller 228 */ 229 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 230 { 231 int addr; 232 int tx_addr_max; 233 u32 np_tx_fifo_size; 234 235 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 236 hsotg->params.g_np_tx_fifo_size); 237 238 /* Get Endpoint Info Control block size in DWORDs. */ 239 tx_addr_max = hsotg->hw_params.total_fifo_size; 240 241 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 242 if (tx_addr_max <= addr) 243 return 0; 244 245 return tx_addr_max - addr; 246 } 247 248 /** 249 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 250 * 251 * @hsotg: Programming view of the DWC_otg controller 252 * 253 */ 254 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 255 { 256 u32 gintsts2; 257 u32 gintmsk2; 258 259 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 260 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 261 262 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 263 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 264 dwc2_clear_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 265 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 266 } 267 } 268 269 /** 270 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 271 * TX FIFOs 272 * 273 * @hsotg: Programming view of the DWC_otg controller 274 */ 275 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 276 { 277 int tx_fifo_count; 278 int tx_fifo_depth; 279 280 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 281 282 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 283 284 if (!tx_fifo_count) 285 return tx_fifo_depth; 286 else 287 return tx_fifo_depth / tx_fifo_count; 288 } 289 290 /** 291 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 292 * @hsotg: The device instance. 293 */ 294 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 295 { 296 unsigned int ep; 297 unsigned int addr; 298 int timeout; 299 300 u32 val; 301 u32 *txfsz = hsotg->params.g_tx_fifo_size; 302 303 /* Reset fifo map if not correctly cleared during previous session */ 304 WARN_ON(hsotg->fifo_map); 305 hsotg->fifo_map = 0; 306 307 /* set RX/NPTX FIFO sizes */ 308 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 309 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 310 FIFOSIZE_STARTADDR_SHIFT) | 311 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 312 GNPTXFSIZ); 313 314 /* 315 * arange all the rest of the TX FIFOs, as some versions of this 316 * block have overlapping default addresses. This also ensures 317 * that if the settings have been changed, then they are set to 318 * known values. 319 */ 320 321 /* start at the end of the GNPTXFSIZ, rounded up */ 322 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 323 324 /* 325 * Configure fifos sizes from provided configuration and assign 326 * them to endpoints dynamically according to maxpacket size value of 327 * given endpoint. 328 */ 329 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 330 if (!txfsz[ep]) 331 continue; 332 val = addr; 333 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 334 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 335 "insufficient fifo memory"); 336 addr += txfsz[ep]; 337 338 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 339 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 340 } 341 342 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 343 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 344 GDFIFOCFG); 345 /* 346 * according to p428 of the design guide, we need to ensure that 347 * all fifos are flushed before continuing 348 */ 349 350 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 351 GRSTCTL_RXFFLSH, GRSTCTL); 352 353 /* wait until the fifos are both flushed */ 354 timeout = 100; 355 while (1) { 356 val = dwc2_readl(hsotg, GRSTCTL); 357 358 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 359 break; 360 361 if (--timeout == 0) { 362 dev_err(hsotg->dev, 363 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 364 __func__, val); 365 break; 366 } 367 368 udelay(1); 369 } 370 371 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 372 } 373 374 /** 375 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 376 * @ep: USB endpoint to allocate request for. 377 * @flags: Allocation flags 378 * 379 * Allocate a new USB request structure appropriate for the specified endpoint 380 */ 381 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 382 gfp_t flags) 383 { 384 struct dwc2_hsotg_req *req; 385 386 req = kzalloc(sizeof(*req), flags); 387 if (!req) 388 return NULL; 389 390 INIT_LIST_HEAD(&req->queue); 391 392 return &req->req; 393 } 394 395 /** 396 * is_ep_periodic - return true if the endpoint is in periodic mode. 397 * @hs_ep: The endpoint to query. 398 * 399 * Returns true if the endpoint is in periodic mode, meaning it is being 400 * used for an Interrupt or ISO transfer. 401 */ 402 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 403 { 404 return hs_ep->periodic; 405 } 406 407 /** 408 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 409 * @hsotg: The device state. 410 * @hs_ep: The endpoint for the request 411 * @hs_req: The request being processed. 412 * 413 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 414 * of a request to ensure the buffer is ready for access by the caller. 415 */ 416 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 417 struct dwc2_hsotg_ep *hs_ep, 418 struct dwc2_hsotg_req *hs_req) 419 { 420 struct usb_request *req = &hs_req->req; 421 422 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 423 } 424 425 /* 426 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 427 * for Control endpoint 428 * @hsotg: The device state. 429 * 430 * This function will allocate 4 descriptor chains for EP 0: 2 for 431 * Setup stage, per one for IN and OUT data/status transactions. 432 */ 433 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 434 { 435 hsotg->setup_desc[0] = 436 dmam_alloc_coherent(hsotg->dev, 437 sizeof(struct dwc2_dma_desc), 438 &hsotg->setup_desc_dma[0], 439 GFP_KERNEL); 440 if (!hsotg->setup_desc[0]) 441 goto fail; 442 443 hsotg->setup_desc[1] = 444 dmam_alloc_coherent(hsotg->dev, 445 sizeof(struct dwc2_dma_desc), 446 &hsotg->setup_desc_dma[1], 447 GFP_KERNEL); 448 if (!hsotg->setup_desc[1]) 449 goto fail; 450 451 hsotg->ctrl_in_desc = 452 dmam_alloc_coherent(hsotg->dev, 453 sizeof(struct dwc2_dma_desc), 454 &hsotg->ctrl_in_desc_dma, 455 GFP_KERNEL); 456 if (!hsotg->ctrl_in_desc) 457 goto fail; 458 459 hsotg->ctrl_out_desc = 460 dmam_alloc_coherent(hsotg->dev, 461 sizeof(struct dwc2_dma_desc), 462 &hsotg->ctrl_out_desc_dma, 463 GFP_KERNEL); 464 if (!hsotg->ctrl_out_desc) 465 goto fail; 466 467 return 0; 468 469 fail: 470 return -ENOMEM; 471 } 472 473 /** 474 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 475 * @hsotg: The controller state. 476 * @hs_ep: The endpoint we're going to write for. 477 * @hs_req: The request to write data for. 478 * 479 * This is called when the TxFIFO has some space in it to hold a new 480 * transmission and we have something to give it. The actual setup of 481 * the data size is done elsewhere, so all we have to do is to actually 482 * write the data. 483 * 484 * The return value is zero if there is more space (or nothing was done) 485 * otherwise -ENOSPC is returned if the FIFO space was used up. 486 * 487 * This routine is only needed for PIO 488 */ 489 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 490 struct dwc2_hsotg_ep *hs_ep, 491 struct dwc2_hsotg_req *hs_req) 492 { 493 bool periodic = is_ep_periodic(hs_ep); 494 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 495 int buf_pos = hs_req->req.actual; 496 int to_write = hs_ep->size_loaded; 497 void *data; 498 int can_write; 499 int pkt_round; 500 int max_transfer; 501 502 to_write -= (buf_pos - hs_ep->last_load); 503 504 /* if there's nothing to write, get out early */ 505 if (to_write == 0) 506 return 0; 507 508 if (periodic && !hsotg->dedicated_fifos) { 509 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 510 int size_left; 511 int size_done; 512 513 /* 514 * work out how much data was loaded so we can calculate 515 * how much data is left in the fifo. 516 */ 517 518 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 519 520 /* 521 * if shared fifo, we cannot write anything until the 522 * previous data has been completely sent. 523 */ 524 if (hs_ep->fifo_load != 0) { 525 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 526 return -ENOSPC; 527 } 528 529 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 530 __func__, size_left, 531 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 532 533 /* how much of the data has moved */ 534 size_done = hs_ep->size_loaded - size_left; 535 536 /* how much data is left in the fifo */ 537 can_write = hs_ep->fifo_load - size_done; 538 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 539 __func__, can_write); 540 541 can_write = hs_ep->fifo_size - can_write; 542 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 543 __func__, can_write); 544 545 if (can_write <= 0) { 546 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 547 return -ENOSPC; 548 } 549 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 550 can_write = dwc2_readl(hsotg, 551 DTXFSTS(hs_ep->fifo_index)); 552 553 can_write &= 0xffff; 554 can_write *= 4; 555 } else { 556 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 557 dev_dbg(hsotg->dev, 558 "%s: no queue slots available (0x%08x)\n", 559 __func__, gnptxsts); 560 561 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 562 return -ENOSPC; 563 } 564 565 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 566 can_write *= 4; /* fifo size is in 32bit quantities. */ 567 } 568 569 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 570 571 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 572 __func__, gnptxsts, can_write, to_write, max_transfer); 573 574 /* 575 * limit to 512 bytes of data, it seems at least on the non-periodic 576 * FIFO, requests of >512 cause the endpoint to get stuck with a 577 * fragment of the end of the transfer in it. 578 */ 579 if (can_write > 512 && !periodic) 580 can_write = 512; 581 582 /* 583 * limit the write to one max-packet size worth of data, but allow 584 * the transfer to return that it did not run out of fifo space 585 * doing it. 586 */ 587 if (to_write > max_transfer) { 588 to_write = max_transfer; 589 590 /* it's needed only when we do not use dedicated fifos */ 591 if (!hsotg->dedicated_fifos) 592 dwc2_hsotg_en_gsint(hsotg, 593 periodic ? GINTSTS_PTXFEMP : 594 GINTSTS_NPTXFEMP); 595 } 596 597 /* see if we can write data */ 598 599 if (to_write > can_write) { 600 to_write = can_write; 601 pkt_round = to_write % max_transfer; 602 603 /* 604 * Round the write down to an 605 * exact number of packets. 606 * 607 * Note, we do not currently check to see if we can ever 608 * write a full packet or not to the FIFO. 609 */ 610 611 if (pkt_round) 612 to_write -= pkt_round; 613 614 /* 615 * enable correct FIFO interrupt to alert us when there 616 * is more room left. 617 */ 618 619 /* it's needed only when we do not use dedicated fifos */ 620 if (!hsotg->dedicated_fifos) 621 dwc2_hsotg_en_gsint(hsotg, 622 periodic ? GINTSTS_PTXFEMP : 623 GINTSTS_NPTXFEMP); 624 } 625 626 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 627 to_write, hs_req->req.length, can_write, buf_pos); 628 629 if (to_write <= 0) 630 return -ENOSPC; 631 632 hs_req->req.actual = buf_pos + to_write; 633 hs_ep->total_data += to_write; 634 635 if (periodic) 636 hs_ep->fifo_load += to_write; 637 638 to_write = DIV_ROUND_UP(to_write, 4); 639 data = hs_req->req.buf + buf_pos; 640 641 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 642 643 return (to_write >= can_write) ? -ENOSPC : 0; 644 } 645 646 /** 647 * get_ep_limit - get the maximum data legnth for this endpoint 648 * @hs_ep: The endpoint 649 * 650 * Return the maximum data that can be queued in one go on a given endpoint 651 * so that transfers that are too long can be split. 652 */ 653 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 654 { 655 int index = hs_ep->index; 656 unsigned int maxsize; 657 unsigned int maxpkt; 658 659 if (index != 0) { 660 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 661 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 662 } else { 663 maxsize = 64 + 64; 664 if (hs_ep->dir_in) 665 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 666 else 667 maxpkt = 2; 668 } 669 670 /* we made the constant loading easier above by using +1 */ 671 maxpkt--; 672 maxsize--; 673 674 /* 675 * constrain by packet count if maxpkts*pktsize is greater 676 * than the length register size. 677 */ 678 679 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 680 maxsize = maxpkt * hs_ep->ep.maxpacket; 681 682 return maxsize; 683 } 684 685 /** 686 * dwc2_hsotg_read_frameno - read current frame number 687 * @hsotg: The device instance 688 * 689 * Return the current frame number 690 */ 691 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 692 { 693 u32 dsts; 694 695 dsts = dwc2_readl(hsotg, DSTS); 696 dsts &= DSTS_SOFFN_MASK; 697 dsts >>= DSTS_SOFFN_SHIFT; 698 699 return dsts; 700 } 701 702 /** 703 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 704 * DMA descriptor chain prepared for specific endpoint 705 * @hs_ep: The endpoint 706 * 707 * Return the maximum data that can be queued in one go on a given endpoint 708 * depending on its descriptor chain capacity so that transfers that 709 * are too long can be split. 710 */ 711 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 712 { 713 int is_isoc = hs_ep->isochronous; 714 unsigned int maxsize; 715 716 if (is_isoc) 717 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 718 DEV_DMA_ISOC_RX_NBYTES_LIMIT; 719 else 720 maxsize = DEV_DMA_NBYTES_LIMIT; 721 722 /* Above size of one descriptor was chosen, multiple it */ 723 maxsize *= MAX_DMA_DESC_NUM_GENERIC; 724 725 return maxsize; 726 } 727 728 /* 729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 730 * @hs_ep: The endpoint 731 * @mask: RX/TX bytes mask to be defined 732 * 733 * Returns maximum data payload for one descriptor after analyzing endpoint 734 * characteristics. 735 * DMA descriptor transfer bytes limit depends on EP type: 736 * Control out - MPS, 737 * Isochronous - descriptor rx/tx bytes bitfield limit, 738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 739 * have concatenations from various descriptors within one packet. 740 * 741 * Selects corresponding mask for RX/TX bytes as well. 742 */ 743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 744 { 745 u32 mps = hs_ep->ep.maxpacket; 746 int dir_in = hs_ep->dir_in; 747 u32 desc_size = 0; 748 749 if (!hs_ep->index && !dir_in) { 750 desc_size = mps; 751 *mask = DEV_DMA_NBYTES_MASK; 752 } else if (hs_ep->isochronous) { 753 if (dir_in) { 754 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 755 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 756 } else { 757 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 758 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 759 } 760 } else { 761 desc_size = DEV_DMA_NBYTES_LIMIT; 762 *mask = DEV_DMA_NBYTES_MASK; 763 764 /* Round down desc_size to be mps multiple */ 765 desc_size -= desc_size % mps; 766 } 767 768 return desc_size; 769 } 770 771 /* 772 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 773 * @hs_ep: The endpoint 774 * @dma_buff: DMA address to use 775 * @len: Length of the transfer 776 * 777 * This function will iterate over descriptor chain and fill its entries 778 * with corresponding information based on transfer data. 779 */ 780 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 781 dma_addr_t dma_buff, 782 unsigned int len) 783 { 784 struct dwc2_hsotg *hsotg = hs_ep->parent; 785 int dir_in = hs_ep->dir_in; 786 struct dwc2_dma_desc *desc = hs_ep->desc_list; 787 u32 mps = hs_ep->ep.maxpacket; 788 u32 maxsize = 0; 789 u32 offset = 0; 790 u32 mask = 0; 791 int i; 792 793 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 794 795 hs_ep->desc_count = (len / maxsize) + 796 ((len % maxsize) ? 1 : 0); 797 if (len == 0) 798 hs_ep->desc_count = 1; 799 800 for (i = 0; i < hs_ep->desc_count; ++i) { 801 desc->status = 0; 802 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 803 << DEV_DMA_BUFF_STS_SHIFT); 804 805 if (len > maxsize) { 806 if (!hs_ep->index && !dir_in) 807 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 808 809 desc->status |= (maxsize << 810 DEV_DMA_NBYTES_SHIFT & mask); 811 desc->buf = dma_buff + offset; 812 813 len -= maxsize; 814 offset += maxsize; 815 } else { 816 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 817 818 if (dir_in) 819 desc->status |= (len % mps) ? DEV_DMA_SHORT : 820 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0); 821 if (len > maxsize) 822 dev_err(hsotg->dev, "wrong len %d\n", len); 823 824 desc->status |= 825 len << DEV_DMA_NBYTES_SHIFT & mask; 826 desc->buf = dma_buff + offset; 827 } 828 829 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 830 desc->status |= (DEV_DMA_BUFF_STS_HREADY 831 << DEV_DMA_BUFF_STS_SHIFT); 832 desc++; 833 } 834 } 835 836 /* 837 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 838 * @hs_ep: The isochronous endpoint. 839 * @dma_buff: usb requests dma buffer. 840 * @len: usb request transfer length. 841 * 842 * Fills next free descriptor with the data of the arrived usb request, 843 * frame info, sets Last and IOC bits increments next_desc. If filled 844 * descriptor is not the first one, removes L bit from the previous descriptor 845 * status. 846 */ 847 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 848 dma_addr_t dma_buff, unsigned int len) 849 { 850 struct dwc2_dma_desc *desc; 851 struct dwc2_hsotg *hsotg = hs_ep->parent; 852 u32 index; 853 u32 maxsize = 0; 854 u32 mask = 0; 855 u8 pid = 0; 856 857 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 858 859 index = hs_ep->next_desc; 860 desc = &hs_ep->desc_list[index]; 861 862 /* Check if descriptor chain full */ 863 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 864 DEV_DMA_BUFF_STS_HREADY) { 865 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 866 return 1; 867 } 868 869 /* Clear L bit of previous desc if more than one entries in the chain */ 870 if (hs_ep->next_desc) 871 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 872 873 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 874 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 875 876 desc->status = 0; 877 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 878 879 desc->buf = dma_buff; 880 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 881 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 882 883 if (hs_ep->dir_in) { 884 if (len) 885 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 886 else 887 pid = 1; 888 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 889 DEV_DMA_ISOC_PID_MASK) | 890 ((len % hs_ep->ep.maxpacket) ? 891 DEV_DMA_SHORT : 0) | 892 ((hs_ep->target_frame << 893 DEV_DMA_ISOC_FRNUM_SHIFT) & 894 DEV_DMA_ISOC_FRNUM_MASK); 895 } 896 897 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 898 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 899 900 /* Increment frame number by interval for IN */ 901 if (hs_ep->dir_in) 902 dwc2_gadget_incr_frame_num(hs_ep); 903 904 /* Update index of last configured entry in the chain */ 905 hs_ep->next_desc++; 906 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC) 907 hs_ep->next_desc = 0; 908 909 return 0; 910 } 911 912 /* 913 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 914 * @hs_ep: The isochronous endpoint. 915 * 916 * Prepare descriptor chain for isochronous endpoints. Afterwards 917 * write DMA address to HW and enable the endpoint. 918 */ 919 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 920 { 921 struct dwc2_hsotg *hsotg = hs_ep->parent; 922 struct dwc2_hsotg_req *hs_req, *treq; 923 int index = hs_ep->index; 924 int ret; 925 int i; 926 u32 dma_reg; 927 u32 depctl; 928 u32 ctrl; 929 struct dwc2_dma_desc *desc; 930 931 if (list_empty(&hs_ep->queue)) { 932 hs_ep->target_frame = TARGET_FRAME_INITIAL; 933 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 934 return; 935 } 936 937 /* Initialize descriptor chain by Host Busy status */ 938 for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) { 939 desc = &hs_ep->desc_list[i]; 940 desc->status = 0; 941 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 942 << DEV_DMA_BUFF_STS_SHIFT); 943 } 944 945 hs_ep->next_desc = 0; 946 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 947 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 948 hs_req->req.length); 949 if (ret) 950 break; 951 } 952 953 hs_ep->compl_desc = 0; 954 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 955 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 956 957 /* write descriptor chain address to control register */ 958 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 959 960 ctrl = dwc2_readl(hsotg, depctl); 961 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 962 dwc2_writel(hsotg, ctrl, depctl); 963 } 964 965 /** 966 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 967 * @hsotg: The controller state. 968 * @hs_ep: The endpoint to process a request for 969 * @hs_req: The request to start. 970 * @continuing: True if we are doing more for the current request. 971 * 972 * Start the given request running by setting the endpoint registers 973 * appropriately, and writing any data to the FIFOs. 974 */ 975 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 976 struct dwc2_hsotg_ep *hs_ep, 977 struct dwc2_hsotg_req *hs_req, 978 bool continuing) 979 { 980 struct usb_request *ureq = &hs_req->req; 981 int index = hs_ep->index; 982 int dir_in = hs_ep->dir_in; 983 u32 epctrl_reg; 984 u32 epsize_reg; 985 u32 epsize; 986 u32 ctrl; 987 unsigned int length; 988 unsigned int packets; 989 unsigned int maxreq; 990 unsigned int dma_reg; 991 992 if (index != 0) { 993 if (hs_ep->req && !continuing) { 994 dev_err(hsotg->dev, "%s: active request\n", __func__); 995 WARN_ON(1); 996 return; 997 } else if (hs_ep->req != hs_req && continuing) { 998 dev_err(hsotg->dev, 999 "%s: continue different req\n", __func__); 1000 WARN_ON(1); 1001 return; 1002 } 1003 } 1004 1005 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1006 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1007 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1008 1009 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1010 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1011 hs_ep->dir_in ? "in" : "out"); 1012 1013 /* If endpoint is stalled, we will restart request later */ 1014 ctrl = dwc2_readl(hsotg, epctrl_reg); 1015 1016 if (index && ctrl & DXEPCTL_STALL) { 1017 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1018 return; 1019 } 1020 1021 length = ureq->length - ureq->actual; 1022 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1023 ureq->length, ureq->actual); 1024 1025 if (!using_desc_dma(hsotg)) 1026 maxreq = get_ep_limit(hs_ep); 1027 else 1028 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1029 1030 if (length > maxreq) { 1031 int round = maxreq % hs_ep->ep.maxpacket; 1032 1033 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1034 __func__, length, maxreq, round); 1035 1036 /* round down to multiple of packets */ 1037 if (round) 1038 maxreq -= round; 1039 1040 length = maxreq; 1041 } 1042 1043 if (length) 1044 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1045 else 1046 packets = 1; /* send one packet if length is zero. */ 1047 1048 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1049 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 1050 return; 1051 } 1052 1053 if (dir_in && index != 0) 1054 if (hs_ep->isochronous) 1055 epsize = DXEPTSIZ_MC(packets); 1056 else 1057 epsize = DXEPTSIZ_MC(1); 1058 else 1059 epsize = 0; 1060 1061 /* 1062 * zero length packet should be programmed on its own and should not 1063 * be counted in DIEPTSIZ.PktCnt with other packets. 1064 */ 1065 if (dir_in && ureq->zero && !continuing) { 1066 /* Test if zlp is actually required. */ 1067 if ((ureq->length >= hs_ep->ep.maxpacket) && 1068 !(ureq->length % hs_ep->ep.maxpacket)) 1069 hs_ep->send_zlp = 1; 1070 } 1071 1072 epsize |= DXEPTSIZ_PKTCNT(packets); 1073 epsize |= DXEPTSIZ_XFERSIZE(length); 1074 1075 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1076 __func__, packets, length, ureq->length, epsize, epsize_reg); 1077 1078 /* store the request as the current one we're doing */ 1079 hs_ep->req = hs_req; 1080 1081 if (using_desc_dma(hsotg)) { 1082 u32 offset = 0; 1083 u32 mps = hs_ep->ep.maxpacket; 1084 1085 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1086 if (!dir_in) { 1087 if (!index) 1088 length = mps; 1089 else if (length % mps) 1090 length += (mps - (length % mps)); 1091 } 1092 1093 /* 1094 * If more data to send, adjust DMA for EP0 out data stage. 1095 * ureq->dma stays unchanged, hence increment it by already 1096 * passed passed data count before starting new transaction. 1097 */ 1098 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1099 continuing) 1100 offset = ureq->actual; 1101 1102 /* Fill DDMA chain entries */ 1103 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1104 length); 1105 1106 /* write descriptor chain address to control register */ 1107 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1108 1109 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1110 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1111 } else { 1112 /* write size / packets */ 1113 dwc2_writel(hsotg, epsize, epsize_reg); 1114 1115 if (using_dma(hsotg) && !continuing && (length != 0)) { 1116 /* 1117 * write DMA address to control register, buffer 1118 * already synced by dwc2_hsotg_ep_queue(). 1119 */ 1120 1121 dwc2_writel(hsotg, ureq->dma, dma_reg); 1122 1123 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1124 __func__, &ureq->dma, dma_reg); 1125 } 1126 } 1127 1128 if (hs_ep->isochronous && hs_ep->interval == 1) { 1129 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1130 dwc2_gadget_incr_frame_num(hs_ep); 1131 1132 if (hs_ep->target_frame & 0x1) 1133 ctrl |= DXEPCTL_SETODDFR; 1134 else 1135 ctrl |= DXEPCTL_SETEVENFR; 1136 } 1137 1138 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1139 1140 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1141 1142 /* For Setup request do not clear NAK */ 1143 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1144 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1145 1146 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1147 dwc2_writel(hsotg, ctrl, epctrl_reg); 1148 1149 /* 1150 * set these, it seems that DMA support increments past the end 1151 * of the packet buffer so we need to calculate the length from 1152 * this information. 1153 */ 1154 hs_ep->size_loaded = length; 1155 hs_ep->last_load = ureq->actual; 1156 1157 if (dir_in && !using_dma(hsotg)) { 1158 /* set these anyway, we may need them for non-periodic in */ 1159 hs_ep->fifo_load = 0; 1160 1161 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1162 } 1163 1164 /* 1165 * Note, trying to clear the NAK here causes problems with transmit 1166 * on the S3C6400 ending up with the TXFIFO becoming full. 1167 */ 1168 1169 /* check ep is enabled */ 1170 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1171 dev_dbg(hsotg->dev, 1172 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1173 index, dwc2_readl(hsotg, epctrl_reg)); 1174 1175 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1176 __func__, dwc2_readl(hsotg, epctrl_reg)); 1177 1178 /* enable ep interrupts */ 1179 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1180 } 1181 1182 /** 1183 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1184 * @hsotg: The device state. 1185 * @hs_ep: The endpoint the request is on. 1186 * @req: The request being processed. 1187 * 1188 * We've been asked to queue a request, so ensure that the memory buffer 1189 * is correctly setup for DMA. If we've been passed an extant DMA address 1190 * then ensure the buffer has been synced to memory. If our buffer has no 1191 * DMA memory, then we map the memory and mark our request to allow us to 1192 * cleanup on completion. 1193 */ 1194 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1195 struct dwc2_hsotg_ep *hs_ep, 1196 struct usb_request *req) 1197 { 1198 int ret; 1199 1200 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1201 if (ret) 1202 goto dma_error; 1203 1204 return 0; 1205 1206 dma_error: 1207 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1208 __func__, req->buf, req->length); 1209 1210 return -EIO; 1211 } 1212 1213 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1214 struct dwc2_hsotg_ep *hs_ep, 1215 struct dwc2_hsotg_req *hs_req) 1216 { 1217 void *req_buf = hs_req->req.buf; 1218 1219 /* If dma is not being used or buffer is aligned */ 1220 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1221 return 0; 1222 1223 WARN_ON(hs_req->saved_req_buf); 1224 1225 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1226 hs_ep->ep.name, req_buf, hs_req->req.length); 1227 1228 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1229 if (!hs_req->req.buf) { 1230 hs_req->req.buf = req_buf; 1231 dev_err(hsotg->dev, 1232 "%s: unable to allocate memory for bounce buffer\n", 1233 __func__); 1234 return -ENOMEM; 1235 } 1236 1237 /* Save actual buffer */ 1238 hs_req->saved_req_buf = req_buf; 1239 1240 if (hs_ep->dir_in) 1241 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1242 return 0; 1243 } 1244 1245 static void 1246 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1247 struct dwc2_hsotg_ep *hs_ep, 1248 struct dwc2_hsotg_req *hs_req) 1249 { 1250 /* If dma is not being used or buffer was aligned */ 1251 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1252 return; 1253 1254 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1255 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1256 1257 /* Copy data from bounce buffer on successful out transfer */ 1258 if (!hs_ep->dir_in && !hs_req->req.status) 1259 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1260 hs_req->req.actual); 1261 1262 /* Free bounce buffer */ 1263 kfree(hs_req->req.buf); 1264 1265 hs_req->req.buf = hs_req->saved_req_buf; 1266 hs_req->saved_req_buf = NULL; 1267 } 1268 1269 /** 1270 * dwc2_gadget_target_frame_elapsed - Checks target frame 1271 * @hs_ep: The driver endpoint to check 1272 * 1273 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1274 * corresponding transfer. 1275 */ 1276 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1277 { 1278 struct dwc2_hsotg *hsotg = hs_ep->parent; 1279 u32 target_frame = hs_ep->target_frame; 1280 u32 current_frame = hsotg->frame_number; 1281 bool frame_overrun = hs_ep->frame_overrun; 1282 1283 if (!frame_overrun && current_frame >= target_frame) 1284 return true; 1285 1286 if (frame_overrun && current_frame >= target_frame && 1287 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1288 return true; 1289 1290 return false; 1291 } 1292 1293 /* 1294 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1295 * @hsotg: The driver state 1296 * @hs_ep: the ep descriptor chain is for 1297 * 1298 * Called to update EP0 structure's pointers depend on stage of 1299 * control transfer. 1300 */ 1301 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1302 struct dwc2_hsotg_ep *hs_ep) 1303 { 1304 switch (hsotg->ep0_state) { 1305 case DWC2_EP0_SETUP: 1306 case DWC2_EP0_STATUS_OUT: 1307 hs_ep->desc_list = hsotg->setup_desc[0]; 1308 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1309 break; 1310 case DWC2_EP0_DATA_IN: 1311 case DWC2_EP0_STATUS_IN: 1312 hs_ep->desc_list = hsotg->ctrl_in_desc; 1313 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1314 break; 1315 case DWC2_EP0_DATA_OUT: 1316 hs_ep->desc_list = hsotg->ctrl_out_desc; 1317 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1318 break; 1319 default: 1320 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1321 hsotg->ep0_state); 1322 return -EINVAL; 1323 } 1324 1325 return 0; 1326 } 1327 1328 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1329 gfp_t gfp_flags) 1330 { 1331 struct dwc2_hsotg_req *hs_req = our_req(req); 1332 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1333 struct dwc2_hsotg *hs = hs_ep->parent; 1334 bool first; 1335 int ret; 1336 u32 maxsize = 0; 1337 u32 mask = 0; 1338 1339 1340 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1341 ep->name, req, req->length, req->buf, req->no_interrupt, 1342 req->zero, req->short_not_ok); 1343 1344 /* Prevent new request submission when controller is suspended */ 1345 if (hs->lx_state != DWC2_L0) { 1346 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1347 __func__); 1348 return -EAGAIN; 1349 } 1350 1351 /* initialise status of the request */ 1352 INIT_LIST_HEAD(&hs_req->queue); 1353 req->actual = 0; 1354 req->status = -EINPROGRESS; 1355 1356 /* In DDMA mode for ISOC's don't queue request if length greater 1357 * than descriptor limits. 1358 */ 1359 if (using_desc_dma(hs) && hs_ep->isochronous) { 1360 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1361 if (hs_ep->dir_in && req->length > maxsize) { 1362 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1363 req->length, maxsize); 1364 return -EINVAL; 1365 } 1366 1367 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1368 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1369 req->length, hs_ep->ep.maxpacket); 1370 return -EINVAL; 1371 } 1372 } 1373 1374 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1375 if (ret) 1376 return ret; 1377 1378 /* if we're using DMA, sync the buffers as necessary */ 1379 if (using_dma(hs)) { 1380 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1381 if (ret) 1382 return ret; 1383 } 1384 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1385 if (using_desc_dma(hs) && !hs_ep->index) { 1386 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1387 if (ret) 1388 return ret; 1389 } 1390 1391 first = list_empty(&hs_ep->queue); 1392 list_add_tail(&hs_req->queue, &hs_ep->queue); 1393 1394 /* 1395 * Handle DDMA isochronous transfers separately - just add new entry 1396 * to the descriptor chain. 1397 * Transfer will be started once SW gets either one of NAK or 1398 * OutTknEpDis interrupts. 1399 */ 1400 if (using_desc_dma(hs) && hs_ep->isochronous) { 1401 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1402 dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 1403 hs_req->req.length); 1404 } 1405 return 0; 1406 } 1407 1408 if (first) { 1409 if (!hs_ep->isochronous) { 1410 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1411 return 0; 1412 } 1413 1414 /* Update current frame number value. */ 1415 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1416 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1417 dwc2_gadget_incr_frame_num(hs_ep); 1418 /* Update current frame number value once more as it 1419 * changes here. 1420 */ 1421 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1422 } 1423 1424 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1425 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1426 } 1427 return 0; 1428 } 1429 1430 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1431 gfp_t gfp_flags) 1432 { 1433 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1434 struct dwc2_hsotg *hs = hs_ep->parent; 1435 unsigned long flags = 0; 1436 int ret = 0; 1437 1438 spin_lock_irqsave(&hs->lock, flags); 1439 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1440 spin_unlock_irqrestore(&hs->lock, flags); 1441 1442 return ret; 1443 } 1444 1445 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1446 struct usb_request *req) 1447 { 1448 struct dwc2_hsotg_req *hs_req = our_req(req); 1449 1450 kfree(hs_req); 1451 } 1452 1453 /** 1454 * dwc2_hsotg_complete_oursetup - setup completion callback 1455 * @ep: The endpoint the request was on. 1456 * @req: The request completed. 1457 * 1458 * Called on completion of any requests the driver itself 1459 * submitted that need cleaning up. 1460 */ 1461 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1462 struct usb_request *req) 1463 { 1464 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1465 struct dwc2_hsotg *hsotg = hs_ep->parent; 1466 1467 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1468 1469 dwc2_hsotg_ep_free_request(ep, req); 1470 } 1471 1472 /** 1473 * ep_from_windex - convert control wIndex value to endpoint 1474 * @hsotg: The driver state. 1475 * @windex: The control request wIndex field (in host order). 1476 * 1477 * Convert the given wIndex into a pointer to an driver endpoint 1478 * structure, or return NULL if it is not a valid endpoint. 1479 */ 1480 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1481 u32 windex) 1482 { 1483 struct dwc2_hsotg_ep *ep; 1484 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1485 int idx = windex & 0x7F; 1486 1487 if (windex >= 0x100) 1488 return NULL; 1489 1490 if (idx > hsotg->num_of_eps) 1491 return NULL; 1492 1493 ep = index_to_ep(hsotg, idx, dir); 1494 1495 if (idx && ep->dir_in != dir) 1496 return NULL; 1497 1498 return ep; 1499 } 1500 1501 /** 1502 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1503 * @hsotg: The driver state. 1504 * @testmode: requested usb test mode 1505 * Enable usb Test Mode requested by the Host. 1506 */ 1507 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1508 { 1509 int dctl = dwc2_readl(hsotg, DCTL); 1510 1511 dctl &= ~DCTL_TSTCTL_MASK; 1512 switch (testmode) { 1513 case TEST_J: 1514 case TEST_K: 1515 case TEST_SE0_NAK: 1516 case TEST_PACKET: 1517 case TEST_FORCE_EN: 1518 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1519 break; 1520 default: 1521 return -EINVAL; 1522 } 1523 dwc2_writel(hsotg, dctl, DCTL); 1524 return 0; 1525 } 1526 1527 /** 1528 * dwc2_hsotg_send_reply - send reply to control request 1529 * @hsotg: The device state 1530 * @ep: Endpoint 0 1531 * @buff: Buffer for request 1532 * @length: Length of reply. 1533 * 1534 * Create a request and queue it on the given endpoint. This is useful as 1535 * an internal method of sending replies to certain control requests, etc. 1536 */ 1537 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1538 struct dwc2_hsotg_ep *ep, 1539 void *buff, 1540 int length) 1541 { 1542 struct usb_request *req; 1543 int ret; 1544 1545 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1546 1547 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1548 hsotg->ep0_reply = req; 1549 if (!req) { 1550 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1551 return -ENOMEM; 1552 } 1553 1554 req->buf = hsotg->ep0_buff; 1555 req->length = length; 1556 /* 1557 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1558 * STATUS stage. 1559 */ 1560 req->zero = 0; 1561 req->complete = dwc2_hsotg_complete_oursetup; 1562 1563 if (length) 1564 memcpy(req->buf, buff, length); 1565 1566 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1567 if (ret) { 1568 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1569 return ret; 1570 } 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * dwc2_hsotg_process_req_status - process request GET_STATUS 1577 * @hsotg: The device state 1578 * @ctrl: USB control request 1579 */ 1580 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1581 struct usb_ctrlrequest *ctrl) 1582 { 1583 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1584 struct dwc2_hsotg_ep *ep; 1585 __le16 reply; 1586 int ret; 1587 1588 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1589 1590 if (!ep0->dir_in) { 1591 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1592 return -EINVAL; 1593 } 1594 1595 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1596 case USB_RECIP_DEVICE: 1597 /* 1598 * bit 0 => self powered 1599 * bit 1 => remote wakeup 1600 */ 1601 reply = cpu_to_le16(0); 1602 break; 1603 1604 case USB_RECIP_INTERFACE: 1605 /* currently, the data result should be zero */ 1606 reply = cpu_to_le16(0); 1607 break; 1608 1609 case USB_RECIP_ENDPOINT: 1610 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1611 if (!ep) 1612 return -ENOENT; 1613 1614 reply = cpu_to_le16(ep->halted ? 1 : 0); 1615 break; 1616 1617 default: 1618 return 0; 1619 } 1620 1621 if (le16_to_cpu(ctrl->wLength) != 2) 1622 return -EINVAL; 1623 1624 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1625 if (ret) { 1626 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1627 return ret; 1628 } 1629 1630 return 1; 1631 } 1632 1633 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1634 1635 /** 1636 * get_ep_head - return the first request on the endpoint 1637 * @hs_ep: The controller endpoint to get 1638 * 1639 * Get the first request on the endpoint. 1640 */ 1641 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1642 { 1643 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1644 queue); 1645 } 1646 1647 /** 1648 * dwc2_gadget_start_next_request - Starts next request from ep queue 1649 * @hs_ep: Endpoint structure 1650 * 1651 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1652 * in its handler. Hence we need to unmask it here to be able to do 1653 * resynchronization. 1654 */ 1655 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1656 { 1657 u32 mask; 1658 struct dwc2_hsotg *hsotg = hs_ep->parent; 1659 int dir_in = hs_ep->dir_in; 1660 struct dwc2_hsotg_req *hs_req; 1661 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1662 1663 if (!list_empty(&hs_ep->queue)) { 1664 hs_req = get_ep_head(hs_ep); 1665 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1666 return; 1667 } 1668 if (!hs_ep->isochronous) 1669 return; 1670 1671 if (dir_in) { 1672 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1673 __func__); 1674 } else { 1675 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1676 __func__); 1677 mask = dwc2_readl(hsotg, epmsk_reg); 1678 mask |= DOEPMSK_OUTTKNEPDISMSK; 1679 dwc2_writel(hsotg, mask, epmsk_reg); 1680 } 1681 } 1682 1683 /** 1684 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1685 * @hsotg: The device state 1686 * @ctrl: USB control request 1687 */ 1688 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1689 struct usb_ctrlrequest *ctrl) 1690 { 1691 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1692 struct dwc2_hsotg_req *hs_req; 1693 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1694 struct dwc2_hsotg_ep *ep; 1695 int ret; 1696 bool halted; 1697 u32 recip; 1698 u32 wValue; 1699 u32 wIndex; 1700 1701 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1702 __func__, set ? "SET" : "CLEAR"); 1703 1704 wValue = le16_to_cpu(ctrl->wValue); 1705 wIndex = le16_to_cpu(ctrl->wIndex); 1706 recip = ctrl->bRequestType & USB_RECIP_MASK; 1707 1708 switch (recip) { 1709 case USB_RECIP_DEVICE: 1710 switch (wValue) { 1711 case USB_DEVICE_REMOTE_WAKEUP: 1712 hsotg->remote_wakeup_allowed = 1; 1713 break; 1714 1715 case USB_DEVICE_TEST_MODE: 1716 if ((wIndex & 0xff) != 0) 1717 return -EINVAL; 1718 if (!set) 1719 return -EINVAL; 1720 1721 hsotg->test_mode = wIndex >> 8; 1722 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1723 if (ret) { 1724 dev_err(hsotg->dev, 1725 "%s: failed to send reply\n", __func__); 1726 return ret; 1727 } 1728 break; 1729 default: 1730 return -ENOENT; 1731 } 1732 break; 1733 1734 case USB_RECIP_ENDPOINT: 1735 ep = ep_from_windex(hsotg, wIndex); 1736 if (!ep) { 1737 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1738 __func__, wIndex); 1739 return -ENOENT; 1740 } 1741 1742 switch (wValue) { 1743 case USB_ENDPOINT_HALT: 1744 halted = ep->halted; 1745 1746 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1747 1748 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1749 if (ret) { 1750 dev_err(hsotg->dev, 1751 "%s: failed to send reply\n", __func__); 1752 return ret; 1753 } 1754 1755 /* 1756 * we have to complete all requests for ep if it was 1757 * halted, and the halt was cleared by CLEAR_FEATURE 1758 */ 1759 1760 if (!set && halted) { 1761 /* 1762 * If we have request in progress, 1763 * then complete it 1764 */ 1765 if (ep->req) { 1766 hs_req = ep->req; 1767 ep->req = NULL; 1768 list_del_init(&hs_req->queue); 1769 if (hs_req->req.complete) { 1770 spin_unlock(&hsotg->lock); 1771 usb_gadget_giveback_request( 1772 &ep->ep, &hs_req->req); 1773 spin_lock(&hsotg->lock); 1774 } 1775 } 1776 1777 /* If we have pending request, then start it */ 1778 if (!ep->req) 1779 dwc2_gadget_start_next_request(ep); 1780 } 1781 1782 break; 1783 1784 default: 1785 return -ENOENT; 1786 } 1787 break; 1788 default: 1789 return -ENOENT; 1790 } 1791 return 1; 1792 } 1793 1794 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1795 1796 /** 1797 * dwc2_hsotg_stall_ep0 - stall ep0 1798 * @hsotg: The device state 1799 * 1800 * Set stall for ep0 as response for setup request. 1801 */ 1802 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1803 { 1804 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1805 u32 reg; 1806 u32 ctrl; 1807 1808 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1809 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1810 1811 /* 1812 * DxEPCTL_Stall will be cleared by EP once it has 1813 * taken effect, so no need to clear later. 1814 */ 1815 1816 ctrl = dwc2_readl(hsotg, reg); 1817 ctrl |= DXEPCTL_STALL; 1818 ctrl |= DXEPCTL_CNAK; 1819 dwc2_writel(hsotg, ctrl, reg); 1820 1821 dev_dbg(hsotg->dev, 1822 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1823 ctrl, reg, dwc2_readl(hsotg, reg)); 1824 1825 /* 1826 * complete won't be called, so we enqueue 1827 * setup request here 1828 */ 1829 dwc2_hsotg_enqueue_setup(hsotg); 1830 } 1831 1832 /** 1833 * dwc2_hsotg_process_control - process a control request 1834 * @hsotg: The device state 1835 * @ctrl: The control request received 1836 * 1837 * The controller has received the SETUP phase of a control request, and 1838 * needs to work out what to do next (and whether to pass it on to the 1839 * gadget driver). 1840 */ 1841 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1842 struct usb_ctrlrequest *ctrl) 1843 { 1844 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1845 int ret = 0; 1846 u32 dcfg; 1847 1848 dev_dbg(hsotg->dev, 1849 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1850 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1851 ctrl->wIndex, ctrl->wLength); 1852 1853 if (ctrl->wLength == 0) { 1854 ep0->dir_in = 1; 1855 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1856 } else if (ctrl->bRequestType & USB_DIR_IN) { 1857 ep0->dir_in = 1; 1858 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1859 } else { 1860 ep0->dir_in = 0; 1861 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1862 } 1863 1864 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1865 switch (ctrl->bRequest) { 1866 case USB_REQ_SET_ADDRESS: 1867 hsotg->connected = 1; 1868 dcfg = dwc2_readl(hsotg, DCFG); 1869 dcfg &= ~DCFG_DEVADDR_MASK; 1870 dcfg |= (le16_to_cpu(ctrl->wValue) << 1871 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1872 dwc2_writel(hsotg, dcfg, DCFG); 1873 1874 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1875 1876 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1877 return; 1878 1879 case USB_REQ_GET_STATUS: 1880 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1881 break; 1882 1883 case USB_REQ_CLEAR_FEATURE: 1884 case USB_REQ_SET_FEATURE: 1885 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1886 break; 1887 } 1888 } 1889 1890 /* as a fallback, try delivering it to the driver to deal with */ 1891 1892 if (ret == 0 && hsotg->driver) { 1893 spin_unlock(&hsotg->lock); 1894 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1895 spin_lock(&hsotg->lock); 1896 if (ret < 0) 1897 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1898 } 1899 1900 /* 1901 * the request is either unhandlable, or is not formatted correctly 1902 * so respond with a STALL for the status stage to indicate failure. 1903 */ 1904 1905 if (ret < 0) 1906 dwc2_hsotg_stall_ep0(hsotg); 1907 } 1908 1909 /** 1910 * dwc2_hsotg_complete_setup - completion of a setup transfer 1911 * @ep: The endpoint the request was on. 1912 * @req: The request completed. 1913 * 1914 * Called on completion of any requests the driver itself submitted for 1915 * EP0 setup packets 1916 */ 1917 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1918 struct usb_request *req) 1919 { 1920 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1921 struct dwc2_hsotg *hsotg = hs_ep->parent; 1922 1923 if (req->status < 0) { 1924 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1925 return; 1926 } 1927 1928 spin_lock(&hsotg->lock); 1929 if (req->actual == 0) 1930 dwc2_hsotg_enqueue_setup(hsotg); 1931 else 1932 dwc2_hsotg_process_control(hsotg, req->buf); 1933 spin_unlock(&hsotg->lock); 1934 } 1935 1936 /** 1937 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1938 * @hsotg: The device state. 1939 * 1940 * Enqueue a request on EP0 if necessary to received any SETUP packets 1941 * received from the host. 1942 */ 1943 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1944 { 1945 struct usb_request *req = hsotg->ctrl_req; 1946 struct dwc2_hsotg_req *hs_req = our_req(req); 1947 int ret; 1948 1949 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1950 1951 req->zero = 0; 1952 req->length = 8; 1953 req->buf = hsotg->ctrl_buff; 1954 req->complete = dwc2_hsotg_complete_setup; 1955 1956 if (!list_empty(&hs_req->queue)) { 1957 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1958 return; 1959 } 1960 1961 hsotg->eps_out[0]->dir_in = 0; 1962 hsotg->eps_out[0]->send_zlp = 0; 1963 hsotg->ep0_state = DWC2_EP0_SETUP; 1964 1965 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 1966 if (ret < 0) { 1967 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1968 /* 1969 * Don't think there's much we can do other than watch the 1970 * driver fail. 1971 */ 1972 } 1973 } 1974 1975 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 1976 struct dwc2_hsotg_ep *hs_ep) 1977 { 1978 u32 ctrl; 1979 u8 index = hs_ep->index; 1980 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1981 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1982 1983 if (hs_ep->dir_in) 1984 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 1985 index); 1986 else 1987 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 1988 index); 1989 if (using_desc_dma(hsotg)) { 1990 /* Not specific buffer needed for ep0 ZLP */ 1991 dma_addr_t dma = hs_ep->desc_list_dma; 1992 1993 if (!index) 1994 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 1995 1996 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 1997 } else { 1998 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1999 DXEPTSIZ_XFERSIZE(0), 2000 epsiz_reg); 2001 } 2002 2003 ctrl = dwc2_readl(hsotg, epctl_reg); 2004 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2005 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2006 ctrl |= DXEPCTL_USBACTEP; 2007 dwc2_writel(hsotg, ctrl, epctl_reg); 2008 } 2009 2010 /** 2011 * dwc2_hsotg_complete_request - complete a request given to us 2012 * @hsotg: The device state. 2013 * @hs_ep: The endpoint the request was on. 2014 * @hs_req: The request to complete. 2015 * @result: The result code (0 => Ok, otherwise errno) 2016 * 2017 * The given request has finished, so call the necessary completion 2018 * if it has one and then look to see if we can start a new request 2019 * on the endpoint. 2020 * 2021 * Note, expects the ep to already be locked as appropriate. 2022 */ 2023 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2024 struct dwc2_hsotg_ep *hs_ep, 2025 struct dwc2_hsotg_req *hs_req, 2026 int result) 2027 { 2028 if (!hs_req) { 2029 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2030 return; 2031 } 2032 2033 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2034 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2035 2036 /* 2037 * only replace the status if we've not already set an error 2038 * from a previous transaction 2039 */ 2040 2041 if (hs_req->req.status == -EINPROGRESS) 2042 hs_req->req.status = result; 2043 2044 if (using_dma(hsotg)) 2045 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2046 2047 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2048 2049 hs_ep->req = NULL; 2050 list_del_init(&hs_req->queue); 2051 2052 /* 2053 * call the complete request with the locks off, just in case the 2054 * request tries to queue more work for this endpoint. 2055 */ 2056 2057 if (hs_req->req.complete) { 2058 spin_unlock(&hsotg->lock); 2059 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2060 spin_lock(&hsotg->lock); 2061 } 2062 2063 /* In DDMA don't need to proceed to starting of next ISOC request */ 2064 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2065 return; 2066 2067 /* 2068 * Look to see if there is anything else to do. Note, the completion 2069 * of the previous request may have caused a new request to be started 2070 * so be careful when doing this. 2071 */ 2072 2073 if (!hs_ep->req && result >= 0) 2074 dwc2_gadget_start_next_request(hs_ep); 2075 } 2076 2077 /* 2078 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2079 * @hs_ep: The endpoint the request was on. 2080 * 2081 * Get first request from the ep queue, determine descriptor on which complete 2082 * happened. SW discovers which descriptor currently in use by HW, adjusts 2083 * dma_address and calculates index of completed descriptor based on the value 2084 * of DEPDMA register. Update actual length of request, giveback to gadget. 2085 */ 2086 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2087 { 2088 struct dwc2_hsotg *hsotg = hs_ep->parent; 2089 struct dwc2_hsotg_req *hs_req; 2090 struct usb_request *ureq; 2091 u32 desc_sts; 2092 u32 mask; 2093 2094 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2095 2096 /* Process only descriptors with buffer status set to DMA done */ 2097 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2098 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2099 2100 hs_req = get_ep_head(hs_ep); 2101 if (!hs_req) { 2102 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2103 return; 2104 } 2105 ureq = &hs_req->req; 2106 2107 /* Check completion status */ 2108 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2109 DEV_DMA_STS_SUCC) { 2110 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2111 DEV_DMA_ISOC_RX_NBYTES_MASK; 2112 ureq->actual = ureq->length - ((desc_sts & mask) >> 2113 DEV_DMA_ISOC_NBYTES_SHIFT); 2114 2115 /* Adjust actual len for ISOC Out if len is 2116 * not align of 4 2117 */ 2118 if (!hs_ep->dir_in && ureq->length & 0x3) 2119 ureq->actual += 4 - (ureq->length & 0x3); 2120 } 2121 2122 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2123 2124 hs_ep->compl_desc++; 2125 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1)) 2126 hs_ep->compl_desc = 0; 2127 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2128 } 2129 } 2130 2131 /* 2132 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2133 * @hs_ep: The isochronous endpoint. 2134 * 2135 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2136 * interrupt. Reset target frame and next_desc to allow to start 2137 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2138 * interrupt for OUT direction. 2139 */ 2140 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2141 { 2142 struct dwc2_hsotg *hsotg = hs_ep->parent; 2143 2144 if (!hs_ep->dir_in) 2145 dwc2_flush_rx_fifo(hsotg); 2146 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2147 2148 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2149 hs_ep->next_desc = 0; 2150 hs_ep->compl_desc = 0; 2151 } 2152 2153 /** 2154 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2155 * @hsotg: The device state. 2156 * @ep_idx: The endpoint index for the data 2157 * @size: The size of data in the fifo, in bytes 2158 * 2159 * The FIFO status shows there is data to read from the FIFO for a given 2160 * endpoint, so sort out whether we need to read the data into a request 2161 * that has been made for that endpoint. 2162 */ 2163 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2164 { 2165 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2166 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2167 int to_read; 2168 int max_req; 2169 int read_ptr; 2170 2171 if (!hs_req) { 2172 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2173 int ptr; 2174 2175 dev_dbg(hsotg->dev, 2176 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2177 __func__, size, ep_idx, epctl); 2178 2179 /* dump the data from the FIFO, we've nothing we can do */ 2180 for (ptr = 0; ptr < size; ptr += 4) 2181 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2182 2183 return; 2184 } 2185 2186 to_read = size; 2187 read_ptr = hs_req->req.actual; 2188 max_req = hs_req->req.length - read_ptr; 2189 2190 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2191 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2192 2193 if (to_read > max_req) { 2194 /* 2195 * more data appeared than we where willing 2196 * to deal with in this request. 2197 */ 2198 2199 /* currently we don't deal this */ 2200 WARN_ON_ONCE(1); 2201 } 2202 2203 hs_ep->total_data += to_read; 2204 hs_req->req.actual += to_read; 2205 to_read = DIV_ROUND_UP(to_read, 4); 2206 2207 /* 2208 * note, we might over-write the buffer end by 3 bytes depending on 2209 * alignment of the data. 2210 */ 2211 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2212 hs_req->req.buf + read_ptr, to_read); 2213 } 2214 2215 /** 2216 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2217 * @hsotg: The device instance 2218 * @dir_in: If IN zlp 2219 * 2220 * Generate a zero-length IN packet request for terminating a SETUP 2221 * transaction. 2222 * 2223 * Note, since we don't write any data to the TxFIFO, then it is 2224 * currently believed that we do not need to wait for any space in 2225 * the TxFIFO. 2226 */ 2227 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2228 { 2229 /* eps_out[0] is used in both directions */ 2230 hsotg->eps_out[0]->dir_in = dir_in; 2231 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2232 2233 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2234 } 2235 2236 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2237 u32 epctl_reg) 2238 { 2239 u32 ctrl; 2240 2241 ctrl = dwc2_readl(hsotg, epctl_reg); 2242 if (ctrl & DXEPCTL_EOFRNUM) 2243 ctrl |= DXEPCTL_SETEVENFR; 2244 else 2245 ctrl |= DXEPCTL_SETODDFR; 2246 dwc2_writel(hsotg, ctrl, epctl_reg); 2247 } 2248 2249 /* 2250 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2251 * @hs_ep - The endpoint on which transfer went 2252 * 2253 * Iterate over endpoints descriptor chain and get info on bytes remained 2254 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2255 */ 2256 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2257 { 2258 struct dwc2_hsotg *hsotg = hs_ep->parent; 2259 unsigned int bytes_rem = 0; 2260 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2261 int i; 2262 u32 status; 2263 2264 if (!desc) 2265 return -EINVAL; 2266 2267 for (i = 0; i < hs_ep->desc_count; ++i) { 2268 status = desc->status; 2269 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2270 2271 if (status & DEV_DMA_STS_MASK) 2272 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2273 i, status & DEV_DMA_STS_MASK); 2274 } 2275 2276 return bytes_rem; 2277 } 2278 2279 /** 2280 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2281 * @hsotg: The device instance 2282 * @epnum: The endpoint received from 2283 * 2284 * The RXFIFO has delivered an OutDone event, which means that the data 2285 * transfer for an OUT endpoint has been completed, either by a short 2286 * packet or by the finish of a transfer. 2287 */ 2288 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2289 { 2290 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2291 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2292 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2293 struct usb_request *req = &hs_req->req; 2294 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2295 int result = 0; 2296 2297 if (!hs_req) { 2298 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2299 return; 2300 } 2301 2302 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2303 dev_dbg(hsotg->dev, "zlp packet received\n"); 2304 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2305 dwc2_hsotg_enqueue_setup(hsotg); 2306 return; 2307 } 2308 2309 if (using_desc_dma(hsotg)) 2310 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2311 2312 if (using_dma(hsotg)) { 2313 unsigned int size_done; 2314 2315 /* 2316 * Calculate the size of the transfer by checking how much 2317 * is left in the endpoint size register and then working it 2318 * out from the amount we loaded for the transfer. 2319 * 2320 * We need to do this as DMA pointers are always 32bit aligned 2321 * so may overshoot/undershoot the transfer. 2322 */ 2323 2324 size_done = hs_ep->size_loaded - size_left; 2325 size_done += hs_ep->last_load; 2326 2327 req->actual = size_done; 2328 } 2329 2330 /* if there is more request to do, schedule new transfer */ 2331 if (req->actual < req->length && size_left == 0) { 2332 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2333 return; 2334 } 2335 2336 if (req->actual < req->length && req->short_not_ok) { 2337 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2338 __func__, req->actual, req->length); 2339 2340 /* 2341 * todo - what should we return here? there's no one else 2342 * even bothering to check the status. 2343 */ 2344 } 2345 2346 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2347 if (!using_desc_dma(hsotg) && epnum == 0 && 2348 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2349 /* Move to STATUS IN */ 2350 dwc2_hsotg_ep0_zlp(hsotg, true); 2351 return; 2352 } 2353 2354 /* 2355 * Slave mode OUT transfers do not go through XferComplete so 2356 * adjust the ISOC parity here. 2357 */ 2358 if (!using_dma(hsotg)) { 2359 if (hs_ep->isochronous && hs_ep->interval == 1) 2360 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2361 else if (hs_ep->isochronous && hs_ep->interval > 1) 2362 dwc2_gadget_incr_frame_num(hs_ep); 2363 } 2364 2365 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2366 } 2367 2368 /** 2369 * dwc2_hsotg_handle_rx - RX FIFO has data 2370 * @hsotg: The device instance 2371 * 2372 * The IRQ handler has detected that the RX FIFO has some data in it 2373 * that requires processing, so find out what is in there and do the 2374 * appropriate read. 2375 * 2376 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2377 * chunks, so if you have x packets received on an endpoint you'll get x 2378 * FIFO events delivered, each with a packet's worth of data in it. 2379 * 2380 * When using DMA, we should not be processing events from the RXFIFO 2381 * as the actual data should be sent to the memory directly and we turn 2382 * on the completion interrupts to get notifications of transfer completion. 2383 */ 2384 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2385 { 2386 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2387 u32 epnum, status, size; 2388 2389 WARN_ON(using_dma(hsotg)); 2390 2391 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2392 status = grxstsr & GRXSTS_PKTSTS_MASK; 2393 2394 size = grxstsr & GRXSTS_BYTECNT_MASK; 2395 size >>= GRXSTS_BYTECNT_SHIFT; 2396 2397 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2398 __func__, grxstsr, size, epnum); 2399 2400 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2401 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2402 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2403 break; 2404 2405 case GRXSTS_PKTSTS_OUTDONE: 2406 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2407 dwc2_hsotg_read_frameno(hsotg)); 2408 2409 if (!using_dma(hsotg)) 2410 dwc2_hsotg_handle_outdone(hsotg, epnum); 2411 break; 2412 2413 case GRXSTS_PKTSTS_SETUPDONE: 2414 dev_dbg(hsotg->dev, 2415 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2416 dwc2_hsotg_read_frameno(hsotg), 2417 dwc2_readl(hsotg, DOEPCTL(0))); 2418 /* 2419 * Call dwc2_hsotg_handle_outdone here if it was not called from 2420 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2421 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2422 */ 2423 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2424 dwc2_hsotg_handle_outdone(hsotg, epnum); 2425 break; 2426 2427 case GRXSTS_PKTSTS_OUTRX: 2428 dwc2_hsotg_rx_data(hsotg, epnum, size); 2429 break; 2430 2431 case GRXSTS_PKTSTS_SETUPRX: 2432 dev_dbg(hsotg->dev, 2433 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2434 dwc2_hsotg_read_frameno(hsotg), 2435 dwc2_readl(hsotg, DOEPCTL(0))); 2436 2437 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2438 2439 dwc2_hsotg_rx_data(hsotg, epnum, size); 2440 break; 2441 2442 default: 2443 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2444 __func__, grxstsr); 2445 2446 dwc2_hsotg_dump(hsotg); 2447 break; 2448 } 2449 } 2450 2451 /** 2452 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2453 * @mps: The maximum packet size in bytes. 2454 */ 2455 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2456 { 2457 switch (mps) { 2458 case 64: 2459 return D0EPCTL_MPS_64; 2460 case 32: 2461 return D0EPCTL_MPS_32; 2462 case 16: 2463 return D0EPCTL_MPS_16; 2464 case 8: 2465 return D0EPCTL_MPS_8; 2466 } 2467 2468 /* bad max packet size, warn and return invalid result */ 2469 WARN_ON(1); 2470 return (u32)-1; 2471 } 2472 2473 /** 2474 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2475 * @hsotg: The driver state. 2476 * @ep: The index number of the endpoint 2477 * @mps: The maximum packet size in bytes 2478 * @mc: The multicount value 2479 * @dir_in: True if direction is in. 2480 * 2481 * Configure the maximum packet size for the given endpoint, updating 2482 * the hardware control registers to reflect this. 2483 */ 2484 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2485 unsigned int ep, unsigned int mps, 2486 unsigned int mc, unsigned int dir_in) 2487 { 2488 struct dwc2_hsotg_ep *hs_ep; 2489 u32 reg; 2490 2491 hs_ep = index_to_ep(hsotg, ep, dir_in); 2492 if (!hs_ep) 2493 return; 2494 2495 if (ep == 0) { 2496 u32 mps_bytes = mps; 2497 2498 /* EP0 is a special case */ 2499 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2500 if (mps > 3) 2501 goto bad_mps; 2502 hs_ep->ep.maxpacket = mps_bytes; 2503 hs_ep->mc = 1; 2504 } else { 2505 if (mps > 1024) 2506 goto bad_mps; 2507 hs_ep->mc = mc; 2508 if (mc > 3) 2509 goto bad_mps; 2510 hs_ep->ep.maxpacket = mps; 2511 } 2512 2513 if (dir_in) { 2514 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2515 reg &= ~DXEPCTL_MPS_MASK; 2516 reg |= mps; 2517 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2518 } else { 2519 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2520 reg &= ~DXEPCTL_MPS_MASK; 2521 reg |= mps; 2522 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2523 } 2524 2525 return; 2526 2527 bad_mps: 2528 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2529 } 2530 2531 /** 2532 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2533 * @hsotg: The driver state 2534 * @idx: The index for the endpoint (0..15) 2535 */ 2536 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2537 { 2538 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2539 GRSTCTL); 2540 2541 /* wait until the fifo is flushed */ 2542 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2543 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2544 __func__); 2545 } 2546 2547 /** 2548 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2549 * @hsotg: The driver state 2550 * @hs_ep: The driver endpoint to check. 2551 * 2552 * Check to see if there is a request that has data to send, and if so 2553 * make an attempt to write data into the FIFO. 2554 */ 2555 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2556 struct dwc2_hsotg_ep *hs_ep) 2557 { 2558 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2559 2560 if (!hs_ep->dir_in || !hs_req) { 2561 /** 2562 * if request is not enqueued, we disable interrupts 2563 * for endpoints, excepting ep0 2564 */ 2565 if (hs_ep->index != 0) 2566 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2567 hs_ep->dir_in, 0); 2568 return 0; 2569 } 2570 2571 if (hs_req->req.actual < hs_req->req.length) { 2572 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2573 hs_ep->index); 2574 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2575 } 2576 2577 return 0; 2578 } 2579 2580 /** 2581 * dwc2_hsotg_complete_in - complete IN transfer 2582 * @hsotg: The device state. 2583 * @hs_ep: The endpoint that has just completed. 2584 * 2585 * An IN transfer has been completed, update the transfer's state and then 2586 * call the relevant completion routines. 2587 */ 2588 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2589 struct dwc2_hsotg_ep *hs_ep) 2590 { 2591 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2592 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2593 int size_left, size_done; 2594 2595 if (!hs_req) { 2596 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2597 return; 2598 } 2599 2600 /* Finish ZLP handling for IN EP0 transactions */ 2601 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2602 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2603 2604 /* 2605 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2606 * changed to IN. Change back to complete OUT transfer request 2607 */ 2608 hs_ep->dir_in = 0; 2609 2610 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2611 if (hsotg->test_mode) { 2612 int ret; 2613 2614 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2615 if (ret < 0) { 2616 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2617 hsotg->test_mode); 2618 dwc2_hsotg_stall_ep0(hsotg); 2619 return; 2620 } 2621 } 2622 dwc2_hsotg_enqueue_setup(hsotg); 2623 return; 2624 } 2625 2626 /* 2627 * Calculate the size of the transfer by checking how much is left 2628 * in the endpoint size register and then working it out from 2629 * the amount we loaded for the transfer. 2630 * 2631 * We do this even for DMA, as the transfer may have incremented 2632 * past the end of the buffer (DMA transfers are always 32bit 2633 * aligned). 2634 */ 2635 if (using_desc_dma(hsotg)) { 2636 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2637 if (size_left < 0) 2638 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2639 size_left); 2640 } else { 2641 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2642 } 2643 2644 size_done = hs_ep->size_loaded - size_left; 2645 size_done += hs_ep->last_load; 2646 2647 if (hs_req->req.actual != size_done) 2648 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2649 __func__, hs_req->req.actual, size_done); 2650 2651 hs_req->req.actual = size_done; 2652 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2653 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2654 2655 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2656 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2657 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2658 return; 2659 } 2660 2661 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2662 if (hs_ep->send_zlp) { 2663 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2664 hs_ep->send_zlp = 0; 2665 /* transfer will be completed on next complete interrupt */ 2666 return; 2667 } 2668 2669 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2670 /* Move to STATUS OUT */ 2671 dwc2_hsotg_ep0_zlp(hsotg, false); 2672 return; 2673 } 2674 2675 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2676 } 2677 2678 /** 2679 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2680 * @hsotg: The device state. 2681 * @idx: Index of ep. 2682 * @dir_in: Endpoint direction 1-in 0-out. 2683 * 2684 * Reads for endpoint with given index and direction, by masking 2685 * epint_reg with coresponding mask. 2686 */ 2687 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2688 unsigned int idx, int dir_in) 2689 { 2690 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2691 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2692 u32 ints; 2693 u32 mask; 2694 u32 diepempmsk; 2695 2696 mask = dwc2_readl(hsotg, epmsk_reg); 2697 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2698 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2699 mask |= DXEPINT_SETUP_RCVD; 2700 2701 ints = dwc2_readl(hsotg, epint_reg); 2702 ints &= mask; 2703 return ints; 2704 } 2705 2706 /** 2707 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2708 * @hs_ep: The endpoint on which interrupt is asserted. 2709 * 2710 * This interrupt indicates that the endpoint has been disabled per the 2711 * application's request. 2712 * 2713 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2714 * in case of ISOC completes current request. 2715 * 2716 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2717 * request starts it. 2718 */ 2719 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2720 { 2721 struct dwc2_hsotg *hsotg = hs_ep->parent; 2722 struct dwc2_hsotg_req *hs_req; 2723 unsigned char idx = hs_ep->index; 2724 int dir_in = hs_ep->dir_in; 2725 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2726 int dctl = dwc2_readl(hsotg, DCTL); 2727 2728 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2729 2730 if (dir_in) { 2731 int epctl = dwc2_readl(hsotg, epctl_reg); 2732 2733 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2734 2735 if (hs_ep->isochronous) { 2736 dwc2_hsotg_complete_in(hsotg, hs_ep); 2737 return; 2738 } 2739 2740 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2741 int dctl = dwc2_readl(hsotg, DCTL); 2742 2743 dctl |= DCTL_CGNPINNAK; 2744 dwc2_writel(hsotg, dctl, DCTL); 2745 } 2746 return; 2747 } 2748 2749 if (dctl & DCTL_GOUTNAKSTS) { 2750 dctl |= DCTL_CGOUTNAK; 2751 dwc2_writel(hsotg, dctl, DCTL); 2752 } 2753 2754 if (!hs_ep->isochronous) 2755 return; 2756 2757 if (list_empty(&hs_ep->queue)) { 2758 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2759 __func__, hs_ep); 2760 return; 2761 } 2762 2763 do { 2764 hs_req = get_ep_head(hs_ep); 2765 if (hs_req) 2766 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2767 -ENODATA); 2768 dwc2_gadget_incr_frame_num(hs_ep); 2769 /* Update current frame number value. */ 2770 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2771 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2772 2773 dwc2_gadget_start_next_request(hs_ep); 2774 } 2775 2776 /** 2777 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2778 * @ep: The endpoint on which interrupt is asserted. 2779 * 2780 * This is starting point for ISOC-OUT transfer, synchronization done with 2781 * first out token received from host while corresponding EP is disabled. 2782 * 2783 * Device does not know initial frame in which out token will come. For this 2784 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2785 * getting this interrupt SW starts calculation for next transfer frame. 2786 */ 2787 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2788 { 2789 struct dwc2_hsotg *hsotg = ep->parent; 2790 int dir_in = ep->dir_in; 2791 u32 doepmsk; 2792 2793 if (dir_in || !ep->isochronous) 2794 return; 2795 2796 if (using_desc_dma(hsotg)) { 2797 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2798 /* Start first ISO Out */ 2799 ep->target_frame = hsotg->frame_number; 2800 dwc2_gadget_start_isoc_ddma(ep); 2801 } 2802 return; 2803 } 2804 2805 if (ep->interval > 1 && 2806 ep->target_frame == TARGET_FRAME_INITIAL) { 2807 u32 ctrl; 2808 2809 ep->target_frame = hsotg->frame_number; 2810 dwc2_gadget_incr_frame_num(ep); 2811 2812 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2813 if (ep->target_frame & 0x1) 2814 ctrl |= DXEPCTL_SETODDFR; 2815 else 2816 ctrl |= DXEPCTL_SETEVENFR; 2817 2818 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2819 } 2820 2821 dwc2_gadget_start_next_request(ep); 2822 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2823 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2824 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2825 } 2826 2827 /** 2828 * dwc2_gadget_handle_nak - handle NAK interrupt 2829 * @hs_ep: The endpoint on which interrupt is asserted. 2830 * 2831 * This is starting point for ISOC-IN transfer, synchronization done with 2832 * first IN token received from host while corresponding EP is disabled. 2833 * 2834 * Device does not know when first one token will arrive from host. On first 2835 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2836 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2837 * sent in response to that as there was no data in FIFO. SW is basing on this 2838 * interrupt to obtain frame in which token has come and then based on the 2839 * interval calculates next frame for transfer. 2840 */ 2841 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2842 { 2843 struct dwc2_hsotg *hsotg = hs_ep->parent; 2844 int dir_in = hs_ep->dir_in; 2845 2846 if (!dir_in || !hs_ep->isochronous) 2847 return; 2848 2849 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2850 2851 if (using_desc_dma(hsotg)) { 2852 hs_ep->target_frame = hsotg->frame_number; 2853 dwc2_gadget_incr_frame_num(hs_ep); 2854 2855 /* In service interval mode target_frame must 2856 * be set to last (u)frame of the service interval. 2857 */ 2858 if (hsotg->params.service_interval) { 2859 /* Set target_frame to the first (u)frame of 2860 * the service interval 2861 */ 2862 hs_ep->target_frame &= ~hs_ep->interval + 1; 2863 2864 /* Set target_frame to the last (u)frame of 2865 * the service interval 2866 */ 2867 dwc2_gadget_incr_frame_num(hs_ep); 2868 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2869 } 2870 2871 dwc2_gadget_start_isoc_ddma(hs_ep); 2872 return; 2873 } 2874 2875 hs_ep->target_frame = hsotg->frame_number; 2876 if (hs_ep->interval > 1) { 2877 u32 ctrl = dwc2_readl(hsotg, 2878 DIEPCTL(hs_ep->index)); 2879 if (hs_ep->target_frame & 0x1) 2880 ctrl |= DXEPCTL_SETODDFR; 2881 else 2882 ctrl |= DXEPCTL_SETEVENFR; 2883 2884 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2885 } 2886 2887 dwc2_hsotg_complete_request(hsotg, hs_ep, 2888 get_ep_head(hs_ep), 0); 2889 } 2890 2891 if (!using_desc_dma(hsotg)) 2892 dwc2_gadget_incr_frame_num(hs_ep); 2893 } 2894 2895 /** 2896 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2897 * @hsotg: The driver state 2898 * @idx: The index for the endpoint (0..15) 2899 * @dir_in: Set if this is an IN endpoint 2900 * 2901 * Process and clear any interrupt pending for an individual endpoint 2902 */ 2903 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2904 int dir_in) 2905 { 2906 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2907 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2908 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2909 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2910 u32 ints; 2911 u32 ctrl; 2912 2913 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2914 ctrl = dwc2_readl(hsotg, epctl_reg); 2915 2916 /* Clear endpoint interrupts */ 2917 dwc2_writel(hsotg, ints, epint_reg); 2918 2919 if (!hs_ep) { 2920 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2921 __func__, idx, dir_in ? "in" : "out"); 2922 return; 2923 } 2924 2925 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2926 __func__, idx, dir_in ? "in" : "out", ints); 2927 2928 /* Don't process XferCompl interrupt if it is a setup packet */ 2929 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2930 ints &= ~DXEPINT_XFERCOMPL; 2931 2932 /* 2933 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 2934 * stage and xfercomplete was generated without SETUP phase done 2935 * interrupt. SW should parse received setup packet only after host's 2936 * exit from setup phase of control transfer. 2937 */ 2938 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 2939 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 2940 ints &= ~DXEPINT_XFERCOMPL; 2941 2942 if (ints & DXEPINT_XFERCOMPL) { 2943 dev_dbg(hsotg->dev, 2944 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 2945 __func__, dwc2_readl(hsotg, epctl_reg), 2946 dwc2_readl(hsotg, epsiz_reg)); 2947 2948 /* In DDMA handle isochronous requests separately */ 2949 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 2950 /* XferCompl set along with BNA */ 2951 if (!(ints & DXEPINT_BNAINTR)) 2952 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 2953 } else if (dir_in) { 2954 /* 2955 * We get OutDone from the FIFO, so we only 2956 * need to look at completing IN requests here 2957 * if operating slave mode 2958 */ 2959 if (hs_ep->isochronous && hs_ep->interval > 1) 2960 dwc2_gadget_incr_frame_num(hs_ep); 2961 2962 dwc2_hsotg_complete_in(hsotg, hs_ep); 2963 if (ints & DXEPINT_NAKINTRPT) 2964 ints &= ~DXEPINT_NAKINTRPT; 2965 2966 if (idx == 0 && !hs_ep->req) 2967 dwc2_hsotg_enqueue_setup(hsotg); 2968 } else if (using_dma(hsotg)) { 2969 /* 2970 * We're using DMA, we need to fire an OutDone here 2971 * as we ignore the RXFIFO. 2972 */ 2973 if (hs_ep->isochronous && hs_ep->interval > 1) 2974 dwc2_gadget_incr_frame_num(hs_ep); 2975 2976 dwc2_hsotg_handle_outdone(hsotg, idx); 2977 } 2978 } 2979 2980 if (ints & DXEPINT_EPDISBLD) 2981 dwc2_gadget_handle_ep_disabled(hs_ep); 2982 2983 if (ints & DXEPINT_OUTTKNEPDIS) 2984 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 2985 2986 if (ints & DXEPINT_NAKINTRPT) 2987 dwc2_gadget_handle_nak(hs_ep); 2988 2989 if (ints & DXEPINT_AHBERR) 2990 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 2991 2992 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 2993 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 2994 2995 if (using_dma(hsotg) && idx == 0) { 2996 /* 2997 * this is the notification we've received a 2998 * setup packet. In non-DMA mode we'd get this 2999 * from the RXFIFO, instead we need to process 3000 * the setup here. 3001 */ 3002 3003 if (dir_in) 3004 WARN_ON_ONCE(1); 3005 else 3006 dwc2_hsotg_handle_outdone(hsotg, 0); 3007 } 3008 } 3009 3010 if (ints & DXEPINT_STSPHSERCVD) { 3011 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3012 3013 /* Safety check EP0 state when STSPHSERCVD asserted */ 3014 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3015 /* Move to STATUS IN for DDMA */ 3016 if (using_desc_dma(hsotg)) 3017 dwc2_hsotg_ep0_zlp(hsotg, true); 3018 } 3019 3020 } 3021 3022 if (ints & DXEPINT_BACK2BACKSETUP) 3023 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3024 3025 if (ints & DXEPINT_BNAINTR) { 3026 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3027 if (hs_ep->isochronous) 3028 dwc2_gadget_handle_isoc_bna(hs_ep); 3029 } 3030 3031 if (dir_in && !hs_ep->isochronous) { 3032 /* not sure if this is important, but we'll clear it anyway */ 3033 if (ints & DXEPINT_INTKNTXFEMP) { 3034 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3035 __func__, idx); 3036 } 3037 3038 /* this probably means something bad is happening */ 3039 if (ints & DXEPINT_INTKNEPMIS) { 3040 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3041 __func__, idx); 3042 } 3043 3044 /* FIFO has space or is empty (see GAHBCFG) */ 3045 if (hsotg->dedicated_fifos && 3046 ints & DXEPINT_TXFEMP) { 3047 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3048 __func__, idx); 3049 if (!using_dma(hsotg)) 3050 dwc2_hsotg_trytx(hsotg, hs_ep); 3051 } 3052 } 3053 } 3054 3055 /** 3056 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3057 * @hsotg: The device state. 3058 * 3059 * Handle updating the device settings after the enumeration phase has 3060 * been completed. 3061 */ 3062 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3063 { 3064 u32 dsts = dwc2_readl(hsotg, DSTS); 3065 int ep0_mps = 0, ep_mps = 8; 3066 3067 /* 3068 * This should signal the finish of the enumeration phase 3069 * of the USB handshaking, so we should now know what rate 3070 * we connected at. 3071 */ 3072 3073 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3074 3075 /* 3076 * note, since we're limited by the size of transfer on EP0, and 3077 * it seems IN transfers must be a even number of packets we do 3078 * not advertise a 64byte MPS on EP0. 3079 */ 3080 3081 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3082 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3083 case DSTS_ENUMSPD_FS: 3084 case DSTS_ENUMSPD_FS48: 3085 hsotg->gadget.speed = USB_SPEED_FULL; 3086 ep0_mps = EP0_MPS_LIMIT; 3087 ep_mps = 1023; 3088 break; 3089 3090 case DSTS_ENUMSPD_HS: 3091 hsotg->gadget.speed = USB_SPEED_HIGH; 3092 ep0_mps = EP0_MPS_LIMIT; 3093 ep_mps = 1024; 3094 break; 3095 3096 case DSTS_ENUMSPD_LS: 3097 hsotg->gadget.speed = USB_SPEED_LOW; 3098 ep0_mps = 8; 3099 ep_mps = 8; 3100 /* 3101 * note, we don't actually support LS in this driver at the 3102 * moment, and the documentation seems to imply that it isn't 3103 * supported by the PHYs on some of the devices. 3104 */ 3105 break; 3106 } 3107 dev_info(hsotg->dev, "new device is %s\n", 3108 usb_speed_string(hsotg->gadget.speed)); 3109 3110 /* 3111 * we should now know the maximum packet size for an 3112 * endpoint, so set the endpoints to a default value. 3113 */ 3114 3115 if (ep0_mps) { 3116 int i; 3117 /* Initialize ep0 for both in and out directions */ 3118 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3119 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3120 for (i = 1; i < hsotg->num_of_eps; i++) { 3121 if (hsotg->eps_in[i]) 3122 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3123 0, 1); 3124 if (hsotg->eps_out[i]) 3125 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3126 0, 0); 3127 } 3128 } 3129 3130 /* ensure after enumeration our EP0 is active */ 3131 3132 dwc2_hsotg_enqueue_setup(hsotg); 3133 3134 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3135 dwc2_readl(hsotg, DIEPCTL0), 3136 dwc2_readl(hsotg, DOEPCTL0)); 3137 } 3138 3139 /** 3140 * kill_all_requests - remove all requests from the endpoint's queue 3141 * @hsotg: The device state. 3142 * @ep: The endpoint the requests may be on. 3143 * @result: The result code to use. 3144 * 3145 * Go through the requests on the given endpoint and mark them 3146 * completed with the given result code. 3147 */ 3148 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3149 struct dwc2_hsotg_ep *ep, 3150 int result) 3151 { 3152 struct dwc2_hsotg_req *req, *treq; 3153 unsigned int size; 3154 3155 ep->req = NULL; 3156 3157 list_for_each_entry_safe(req, treq, &ep->queue, queue) 3158 dwc2_hsotg_complete_request(hsotg, ep, req, 3159 result); 3160 3161 if (!hsotg->dedicated_fifos) 3162 return; 3163 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3164 if (size < ep->fifo_size) 3165 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3166 } 3167 3168 /** 3169 * dwc2_hsotg_disconnect - disconnect service 3170 * @hsotg: The device state. 3171 * 3172 * The device has been disconnected. Remove all current 3173 * transactions and signal the gadget driver that this 3174 * has happened. 3175 */ 3176 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3177 { 3178 unsigned int ep; 3179 3180 if (!hsotg->connected) 3181 return; 3182 3183 hsotg->connected = 0; 3184 hsotg->test_mode = 0; 3185 3186 /* all endpoints should be shutdown */ 3187 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3188 if (hsotg->eps_in[ep]) 3189 kill_all_requests(hsotg, hsotg->eps_in[ep], 3190 -ESHUTDOWN); 3191 if (hsotg->eps_out[ep]) 3192 kill_all_requests(hsotg, hsotg->eps_out[ep], 3193 -ESHUTDOWN); 3194 } 3195 3196 call_gadget(hsotg, disconnect); 3197 hsotg->lx_state = DWC2_L3; 3198 3199 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3200 } 3201 3202 /** 3203 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3204 * @hsotg: The device state: 3205 * @periodic: True if this is a periodic FIFO interrupt 3206 */ 3207 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3208 { 3209 struct dwc2_hsotg_ep *ep; 3210 int epno, ret; 3211 3212 /* look through for any more data to transmit */ 3213 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3214 ep = index_to_ep(hsotg, epno, 1); 3215 3216 if (!ep) 3217 continue; 3218 3219 if (!ep->dir_in) 3220 continue; 3221 3222 if ((periodic && !ep->periodic) || 3223 (!periodic && ep->periodic)) 3224 continue; 3225 3226 ret = dwc2_hsotg_trytx(hsotg, ep); 3227 if (ret < 0) 3228 break; 3229 } 3230 } 3231 3232 /* IRQ flags which will trigger a retry around the IRQ loop */ 3233 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3234 GINTSTS_PTXFEMP | \ 3235 GINTSTS_RXFLVL) 3236 3237 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3238 /** 3239 * dwc2_hsotg_core_init - issue softreset to the core 3240 * @hsotg: The device state 3241 * @is_usb_reset: Usb resetting flag 3242 * 3243 * Issue a soft reset to the core, and await the core finishing it. 3244 */ 3245 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3246 bool is_usb_reset) 3247 { 3248 u32 intmsk; 3249 u32 val; 3250 u32 usbcfg; 3251 u32 dcfg = 0; 3252 int ep; 3253 3254 /* Kill any ep0 requests as controller will be reinitialized */ 3255 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3256 3257 if (!is_usb_reset) { 3258 if (dwc2_core_reset(hsotg, true)) 3259 return; 3260 } else { 3261 /* all endpoints should be shutdown */ 3262 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3263 if (hsotg->eps_in[ep]) 3264 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3265 if (hsotg->eps_out[ep]) 3266 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3267 } 3268 } 3269 3270 /* 3271 * we must now enable ep0 ready for host detection and then 3272 * set configuration. 3273 */ 3274 3275 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3276 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3277 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 3278 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 3279 3280 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS && 3281 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 3282 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) { 3283 /* FS/LS Dedicated Transceiver Interface */ 3284 usbcfg |= GUSBCFG_PHYSEL; 3285 } else { 3286 /* set the PLL on, remove the HNP/SRP and set the PHY */ 3287 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 3288 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 3289 (val << GUSBCFG_USBTRDTIM_SHIFT); 3290 } 3291 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3292 3293 dwc2_hsotg_init_fifo(hsotg); 3294 3295 if (!is_usb_reset) 3296 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3297 3298 dcfg |= DCFG_EPMISCNT(1); 3299 3300 switch (hsotg->params.speed) { 3301 case DWC2_SPEED_PARAM_LOW: 3302 dcfg |= DCFG_DEVSPD_LS; 3303 break; 3304 case DWC2_SPEED_PARAM_FULL: 3305 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3306 dcfg |= DCFG_DEVSPD_FS48; 3307 else 3308 dcfg |= DCFG_DEVSPD_FS; 3309 break; 3310 default: 3311 dcfg |= DCFG_DEVSPD_HS; 3312 } 3313 3314 if (hsotg->params.ipg_isoc_en) 3315 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3316 3317 dwc2_writel(hsotg, dcfg, DCFG); 3318 3319 /* Clear any pending OTG interrupts */ 3320 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3321 3322 /* Clear any pending interrupts */ 3323 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3324 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3325 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3326 GINTSTS_USBRST | GINTSTS_RESETDET | 3327 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3328 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3329 GINTSTS_LPMTRANRCVD; 3330 3331 if (!using_desc_dma(hsotg)) 3332 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3333 3334 if (!hsotg->params.external_id_pin_ctl) 3335 intmsk |= GINTSTS_CONIDSTSCHNG; 3336 3337 dwc2_writel(hsotg, intmsk, GINTMSK); 3338 3339 if (using_dma(hsotg)) { 3340 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3341 hsotg->params.ahbcfg, 3342 GAHBCFG); 3343 3344 /* Set DDMA mode support in the core if needed */ 3345 if (using_desc_dma(hsotg)) 3346 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3347 3348 } else { 3349 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3350 (GAHBCFG_NP_TXF_EMP_LVL | 3351 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3352 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3353 } 3354 3355 /* 3356 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3357 * when we have no data to transfer. Otherwise we get being flooded by 3358 * interrupts. 3359 */ 3360 3361 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3362 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3363 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3364 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3365 DIEPMSK); 3366 3367 /* 3368 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3369 * DMA mode we may need this and StsPhseRcvd. 3370 */ 3371 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3372 DOEPMSK_STSPHSERCVDMSK) : 0) | 3373 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3374 DOEPMSK_SETUPMSK, 3375 DOEPMSK); 3376 3377 /* Enable BNA interrupt for DDMA */ 3378 if (using_desc_dma(hsotg)) { 3379 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3380 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3381 } 3382 3383 /* Enable Service Interval mode if supported */ 3384 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3385 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3386 3387 dwc2_writel(hsotg, 0, DAINTMSK); 3388 3389 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3390 dwc2_readl(hsotg, DIEPCTL0), 3391 dwc2_readl(hsotg, DOEPCTL0)); 3392 3393 /* enable in and out endpoint interrupts */ 3394 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3395 3396 /* 3397 * Enable the RXFIFO when in slave mode, as this is how we collect 3398 * the data. In DMA mode, we get events from the FIFO but also 3399 * things we cannot process, so do not use it. 3400 */ 3401 if (!using_dma(hsotg)) 3402 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3403 3404 /* Enable interrupts for EP0 in and out */ 3405 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3406 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3407 3408 if (!is_usb_reset) { 3409 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3410 udelay(10); /* see openiboot */ 3411 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3412 } 3413 3414 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3415 3416 /* 3417 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3418 * writing to the EPCTL register.. 3419 */ 3420 3421 /* set to read 1 8byte packet */ 3422 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3423 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3424 3425 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3426 DXEPCTL_CNAK | DXEPCTL_EPENA | 3427 DXEPCTL_USBACTEP, 3428 DOEPCTL0); 3429 3430 /* enable, but don't activate EP0in */ 3431 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3432 DXEPCTL_USBACTEP, DIEPCTL0); 3433 3434 /* clear global NAKs */ 3435 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3436 if (!is_usb_reset) 3437 val |= DCTL_SFTDISCON; 3438 dwc2_set_bit(hsotg, DCTL, val); 3439 3440 /* configure the core to support LPM */ 3441 dwc2_gadget_init_lpm(hsotg); 3442 3443 /* program GREFCLK register if needed */ 3444 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3445 dwc2_gadget_program_ref_clk(hsotg); 3446 3447 /* must be at-least 3ms to allow bus to see disconnect */ 3448 mdelay(3); 3449 3450 hsotg->lx_state = DWC2_L0; 3451 3452 dwc2_hsotg_enqueue_setup(hsotg); 3453 3454 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3455 dwc2_readl(hsotg, DIEPCTL0), 3456 dwc2_readl(hsotg, DOEPCTL0)); 3457 } 3458 3459 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3460 { 3461 /* set the soft-disconnect bit */ 3462 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3463 } 3464 3465 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3466 { 3467 /* remove the soft-disconnect and let's go */ 3468 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3469 } 3470 3471 /** 3472 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3473 * @hsotg: The device state: 3474 * 3475 * This interrupt indicates one of the following conditions occurred while 3476 * transmitting an ISOC transaction. 3477 * - Corrupted IN Token for ISOC EP. 3478 * - Packet not complete in FIFO. 3479 * 3480 * The following actions will be taken: 3481 * - Determine the EP 3482 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3483 */ 3484 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3485 { 3486 struct dwc2_hsotg_ep *hs_ep; 3487 u32 epctrl; 3488 u32 daintmsk; 3489 u32 idx; 3490 3491 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3492 3493 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3494 3495 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3496 hs_ep = hsotg->eps_in[idx]; 3497 /* Proceed only unmasked ISOC EPs */ 3498 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3499 continue; 3500 3501 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3502 if ((epctrl & DXEPCTL_EPENA) && 3503 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3504 epctrl |= DXEPCTL_SNAK; 3505 epctrl |= DXEPCTL_EPDIS; 3506 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3507 } 3508 } 3509 3510 /* Clear interrupt */ 3511 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3512 } 3513 3514 /** 3515 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3516 * @hsotg: The device state: 3517 * 3518 * This interrupt indicates one of the following conditions occurred while 3519 * transmitting an ISOC transaction. 3520 * - Corrupted OUT Token for ISOC EP. 3521 * - Packet not complete in FIFO. 3522 * 3523 * The following actions will be taken: 3524 * - Determine the EP 3525 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3526 */ 3527 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3528 { 3529 u32 gintsts; 3530 u32 gintmsk; 3531 u32 daintmsk; 3532 u32 epctrl; 3533 struct dwc2_hsotg_ep *hs_ep; 3534 int idx; 3535 3536 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3537 3538 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3539 daintmsk >>= DAINT_OUTEP_SHIFT; 3540 3541 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3542 hs_ep = hsotg->eps_out[idx]; 3543 /* Proceed only unmasked ISOC EPs */ 3544 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3545 continue; 3546 3547 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3548 if ((epctrl & DXEPCTL_EPENA) && 3549 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3550 /* Unmask GOUTNAKEFF interrupt */ 3551 gintmsk = dwc2_readl(hsotg, GINTMSK); 3552 gintmsk |= GINTSTS_GOUTNAKEFF; 3553 dwc2_writel(hsotg, gintmsk, GINTMSK); 3554 3555 gintsts = dwc2_readl(hsotg, GINTSTS); 3556 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3557 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3558 break; 3559 } 3560 } 3561 } 3562 3563 /* Clear interrupt */ 3564 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3565 } 3566 3567 /** 3568 * dwc2_hsotg_irq - handle device interrupt 3569 * @irq: The IRQ number triggered 3570 * @pw: The pw value when registered the handler. 3571 */ 3572 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3573 { 3574 struct dwc2_hsotg *hsotg = pw; 3575 int retry_count = 8; 3576 u32 gintsts; 3577 u32 gintmsk; 3578 3579 if (!dwc2_is_device_mode(hsotg)) 3580 return IRQ_NONE; 3581 3582 spin_lock(&hsotg->lock); 3583 irq_retry: 3584 gintsts = dwc2_readl(hsotg, GINTSTS); 3585 gintmsk = dwc2_readl(hsotg, GINTMSK); 3586 3587 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3588 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3589 3590 gintsts &= gintmsk; 3591 3592 if (gintsts & GINTSTS_RESETDET) { 3593 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3594 3595 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3596 3597 /* This event must be used only if controller is suspended */ 3598 if (hsotg->lx_state == DWC2_L2) { 3599 dwc2_exit_partial_power_down(hsotg, true); 3600 hsotg->lx_state = DWC2_L0; 3601 } 3602 } 3603 3604 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3605 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3606 u32 connected = hsotg->connected; 3607 3608 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3609 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3610 dwc2_readl(hsotg, GNPTXSTS)); 3611 3612 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3613 3614 /* Report disconnection if it is not already done. */ 3615 dwc2_hsotg_disconnect(hsotg); 3616 3617 /* Reset device address to zero */ 3618 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3619 3620 if (usb_status & GOTGCTL_BSESVLD && connected) 3621 dwc2_hsotg_core_init_disconnected(hsotg, true); 3622 } 3623 3624 if (gintsts & GINTSTS_ENUMDONE) { 3625 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3626 3627 dwc2_hsotg_irq_enumdone(hsotg); 3628 } 3629 3630 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3631 u32 daint = dwc2_readl(hsotg, DAINT); 3632 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3633 u32 daint_out, daint_in; 3634 int ep; 3635 3636 daint &= daintmsk; 3637 daint_out = daint >> DAINT_OUTEP_SHIFT; 3638 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3639 3640 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3641 3642 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3643 ep++, daint_out >>= 1) { 3644 if (daint_out & 1) 3645 dwc2_hsotg_epint(hsotg, ep, 0); 3646 } 3647 3648 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3649 ep++, daint_in >>= 1) { 3650 if (daint_in & 1) 3651 dwc2_hsotg_epint(hsotg, ep, 1); 3652 } 3653 } 3654 3655 /* check both FIFOs */ 3656 3657 if (gintsts & GINTSTS_NPTXFEMP) { 3658 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3659 3660 /* 3661 * Disable the interrupt to stop it happening again 3662 * unless one of these endpoint routines decides that 3663 * it needs re-enabling 3664 */ 3665 3666 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3667 dwc2_hsotg_irq_fifoempty(hsotg, false); 3668 } 3669 3670 if (gintsts & GINTSTS_PTXFEMP) { 3671 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3672 3673 /* See note in GINTSTS_NPTxFEmp */ 3674 3675 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3676 dwc2_hsotg_irq_fifoempty(hsotg, true); 3677 } 3678 3679 if (gintsts & GINTSTS_RXFLVL) { 3680 /* 3681 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3682 * we need to retry dwc2_hsotg_handle_rx if this is still 3683 * set. 3684 */ 3685 3686 dwc2_hsotg_handle_rx(hsotg); 3687 } 3688 3689 if (gintsts & GINTSTS_ERLYSUSP) { 3690 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3691 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3692 } 3693 3694 /* 3695 * these next two seem to crop-up occasionally causing the core 3696 * to shutdown the USB transfer, so try clearing them and logging 3697 * the occurrence. 3698 */ 3699 3700 if (gintsts & GINTSTS_GOUTNAKEFF) { 3701 u8 idx; 3702 u32 epctrl; 3703 u32 gintmsk; 3704 u32 daintmsk; 3705 struct dwc2_hsotg_ep *hs_ep; 3706 3707 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3708 daintmsk >>= DAINT_OUTEP_SHIFT; 3709 /* Mask this interrupt */ 3710 gintmsk = dwc2_readl(hsotg, GINTMSK); 3711 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3712 dwc2_writel(hsotg, gintmsk, GINTMSK); 3713 3714 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3715 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3716 hs_ep = hsotg->eps_out[idx]; 3717 /* Proceed only unmasked ISOC EPs */ 3718 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3719 continue; 3720 3721 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3722 3723 if (epctrl & DXEPCTL_EPENA) { 3724 epctrl |= DXEPCTL_SNAK; 3725 epctrl |= DXEPCTL_EPDIS; 3726 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3727 } 3728 } 3729 3730 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3731 } 3732 3733 if (gintsts & GINTSTS_GINNAKEFF) { 3734 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3735 3736 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3737 3738 dwc2_hsotg_dump(hsotg); 3739 } 3740 3741 if (gintsts & GINTSTS_INCOMPL_SOIN) 3742 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3743 3744 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3745 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3746 3747 /* 3748 * if we've had fifo events, we should try and go around the 3749 * loop again to see if there's any point in returning yet. 3750 */ 3751 3752 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3753 goto irq_retry; 3754 3755 /* Check WKUP_ALERT interrupt*/ 3756 if (hsotg->params.service_interval) 3757 dwc2_gadget_wkup_alert_handler(hsotg); 3758 3759 spin_unlock(&hsotg->lock); 3760 3761 return IRQ_HANDLED; 3762 } 3763 3764 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3765 struct dwc2_hsotg_ep *hs_ep) 3766 { 3767 u32 epctrl_reg; 3768 u32 epint_reg; 3769 3770 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3771 DOEPCTL(hs_ep->index); 3772 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3773 DOEPINT(hs_ep->index); 3774 3775 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3776 hs_ep->name); 3777 3778 if (hs_ep->dir_in) { 3779 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3780 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3781 /* Wait for Nak effect */ 3782 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3783 DXEPINT_INEPNAKEFF, 100)) 3784 dev_warn(hsotg->dev, 3785 "%s: timeout DIEPINT.NAKEFF\n", 3786 __func__); 3787 } else { 3788 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3789 /* Wait for Nak effect */ 3790 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3791 GINTSTS_GINNAKEFF, 100)) 3792 dev_warn(hsotg->dev, 3793 "%s: timeout GINTSTS.GINNAKEFF\n", 3794 __func__); 3795 } 3796 } else { 3797 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3798 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3799 3800 /* Wait for global nak to take effect */ 3801 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3802 GINTSTS_GOUTNAKEFF, 100)) 3803 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3804 __func__); 3805 } 3806 3807 /* Disable ep */ 3808 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3809 3810 /* Wait for ep to be disabled */ 3811 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3812 dev_warn(hsotg->dev, 3813 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3814 3815 /* Clear EPDISBLD interrupt */ 3816 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3817 3818 if (hs_ep->dir_in) { 3819 unsigned short fifo_index; 3820 3821 if (hsotg->dedicated_fifos || hs_ep->periodic) 3822 fifo_index = hs_ep->fifo_index; 3823 else 3824 fifo_index = 0; 3825 3826 /* Flush TX FIFO */ 3827 dwc2_flush_tx_fifo(hsotg, fifo_index); 3828 3829 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3830 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3831 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3832 3833 } else { 3834 /* Remove global NAKs */ 3835 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3836 } 3837 } 3838 3839 /** 3840 * dwc2_hsotg_ep_enable - enable the given endpoint 3841 * @ep: The USB endpint to configure 3842 * @desc: The USB endpoint descriptor to configure with. 3843 * 3844 * This is called from the USB gadget code's usb_ep_enable(). 3845 */ 3846 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3847 const struct usb_endpoint_descriptor *desc) 3848 { 3849 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3850 struct dwc2_hsotg *hsotg = hs_ep->parent; 3851 unsigned long flags; 3852 unsigned int index = hs_ep->index; 3853 u32 epctrl_reg; 3854 u32 epctrl; 3855 u32 mps; 3856 u32 mc; 3857 u32 mask; 3858 unsigned int dir_in; 3859 unsigned int i, val, size; 3860 int ret = 0; 3861 unsigned char ep_type; 3862 3863 dev_dbg(hsotg->dev, 3864 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3865 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3866 desc->wMaxPacketSize, desc->bInterval); 3867 3868 /* not to be called for EP0 */ 3869 if (index == 0) { 3870 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3871 return -EINVAL; 3872 } 3873 3874 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3875 if (dir_in != hs_ep->dir_in) { 3876 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3877 return -EINVAL; 3878 } 3879 3880 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 3881 mps = usb_endpoint_maxp(desc); 3882 mc = usb_endpoint_maxp_mult(desc); 3883 3884 /* ISOC IN in DDMA supported bInterval up to 10 */ 3885 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3886 dir_in && desc->bInterval > 10) { 3887 dev_err(hsotg->dev, 3888 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 3889 return -EINVAL; 3890 } 3891 3892 /* High bandwidth ISOC OUT in DDMA not supported */ 3893 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3894 !dir_in && mc > 1) { 3895 dev_err(hsotg->dev, 3896 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 3897 return -EINVAL; 3898 } 3899 3900 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3901 3902 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3903 epctrl = dwc2_readl(hsotg, epctrl_reg); 3904 3905 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3906 __func__, epctrl, epctrl_reg); 3907 3908 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 3909 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 3910 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 3911 MAX_DMA_DESC_NUM_GENERIC * 3912 sizeof(struct dwc2_dma_desc), 3913 &hs_ep->desc_list_dma, GFP_ATOMIC); 3914 if (!hs_ep->desc_list) { 3915 ret = -ENOMEM; 3916 goto error2; 3917 } 3918 } 3919 3920 spin_lock_irqsave(&hsotg->lock, flags); 3921 3922 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 3923 epctrl |= DXEPCTL_MPS(mps); 3924 3925 /* 3926 * mark the endpoint as active, otherwise the core may ignore 3927 * transactions entirely for this endpoint 3928 */ 3929 epctrl |= DXEPCTL_USBACTEP; 3930 3931 /* update the endpoint state */ 3932 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 3933 3934 /* default, set to non-periodic */ 3935 hs_ep->isochronous = 0; 3936 hs_ep->periodic = 0; 3937 hs_ep->halted = 0; 3938 hs_ep->interval = desc->bInterval; 3939 3940 switch (ep_type) { 3941 case USB_ENDPOINT_XFER_ISOC: 3942 epctrl |= DXEPCTL_EPTYPE_ISO; 3943 epctrl |= DXEPCTL_SETEVENFR; 3944 hs_ep->isochronous = 1; 3945 hs_ep->interval = 1 << (desc->bInterval - 1); 3946 hs_ep->target_frame = TARGET_FRAME_INITIAL; 3947 hs_ep->next_desc = 0; 3948 hs_ep->compl_desc = 0; 3949 if (dir_in) { 3950 hs_ep->periodic = 1; 3951 mask = dwc2_readl(hsotg, DIEPMSK); 3952 mask |= DIEPMSK_NAKMSK; 3953 dwc2_writel(hsotg, mask, DIEPMSK); 3954 } else { 3955 mask = dwc2_readl(hsotg, DOEPMSK); 3956 mask |= DOEPMSK_OUTTKNEPDISMSK; 3957 dwc2_writel(hsotg, mask, DOEPMSK); 3958 } 3959 break; 3960 3961 case USB_ENDPOINT_XFER_BULK: 3962 epctrl |= DXEPCTL_EPTYPE_BULK; 3963 break; 3964 3965 case USB_ENDPOINT_XFER_INT: 3966 if (dir_in) 3967 hs_ep->periodic = 1; 3968 3969 if (hsotg->gadget.speed == USB_SPEED_HIGH) 3970 hs_ep->interval = 1 << (desc->bInterval - 1); 3971 3972 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 3973 break; 3974 3975 case USB_ENDPOINT_XFER_CONTROL: 3976 epctrl |= DXEPCTL_EPTYPE_CONTROL; 3977 break; 3978 } 3979 3980 /* 3981 * if the hardware has dedicated fifos, we must give each IN EP 3982 * a unique tx-fifo even if it is non-periodic. 3983 */ 3984 if (dir_in && hsotg->dedicated_fifos) { 3985 u32 fifo_index = 0; 3986 u32 fifo_size = UINT_MAX; 3987 3988 size = hs_ep->ep.maxpacket * hs_ep->mc; 3989 for (i = 1; i < hsotg->num_of_eps; ++i) { 3990 if (hsotg->fifo_map & (1 << i)) 3991 continue; 3992 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 3993 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 3994 if (val < size) 3995 continue; 3996 /* Search for smallest acceptable fifo */ 3997 if (val < fifo_size) { 3998 fifo_size = val; 3999 fifo_index = i; 4000 } 4001 } 4002 if (!fifo_index) { 4003 dev_err(hsotg->dev, 4004 "%s: No suitable fifo found\n", __func__); 4005 ret = -ENOMEM; 4006 goto error1; 4007 } 4008 hsotg->fifo_map |= 1 << fifo_index; 4009 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4010 hs_ep->fifo_index = fifo_index; 4011 hs_ep->fifo_size = fifo_size; 4012 } 4013 4014 /* for non control endpoints, set PID to D0 */ 4015 if (index && !hs_ep->isochronous) 4016 epctrl |= DXEPCTL_SETD0PID; 4017 4018 /* WA for Full speed ISOC IN in DDMA mode. 4019 * By Clear NAK status of EP, core will send ZLP 4020 * to IN token and assert NAK interrupt relying 4021 * on TxFIFO status only 4022 */ 4023 4024 if (hsotg->gadget.speed == USB_SPEED_FULL && 4025 hs_ep->isochronous && dir_in) { 4026 /* The WA applies only to core versions from 2.72a 4027 * to 4.00a (including both). Also for FS_IOT_1.00a 4028 * and HS_IOT_1.00a. 4029 */ 4030 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4031 4032 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4033 gsnpsid <= DWC2_CORE_REV_4_00a) || 4034 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4035 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4036 epctrl |= DXEPCTL_CNAK; 4037 } 4038 4039 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4040 __func__, epctrl); 4041 4042 dwc2_writel(hsotg, epctrl, epctrl_reg); 4043 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4044 __func__, dwc2_readl(hsotg, epctrl_reg)); 4045 4046 /* enable the endpoint interrupt */ 4047 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4048 4049 error1: 4050 spin_unlock_irqrestore(&hsotg->lock, flags); 4051 4052 error2: 4053 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4054 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC * 4055 sizeof(struct dwc2_dma_desc), 4056 hs_ep->desc_list, hs_ep->desc_list_dma); 4057 hs_ep->desc_list = NULL; 4058 } 4059 4060 return ret; 4061 } 4062 4063 /** 4064 * dwc2_hsotg_ep_disable - disable given endpoint 4065 * @ep: The endpoint to disable. 4066 */ 4067 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4068 { 4069 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4070 struct dwc2_hsotg *hsotg = hs_ep->parent; 4071 int dir_in = hs_ep->dir_in; 4072 int index = hs_ep->index; 4073 u32 epctrl_reg; 4074 u32 ctrl; 4075 4076 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4077 4078 if (ep == &hsotg->eps_out[0]->ep) { 4079 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4080 return -EINVAL; 4081 } 4082 4083 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4084 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4085 return -EINVAL; 4086 } 4087 4088 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4089 4090 ctrl = dwc2_readl(hsotg, epctrl_reg); 4091 4092 if (ctrl & DXEPCTL_EPENA) 4093 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4094 4095 ctrl &= ~DXEPCTL_EPENA; 4096 ctrl &= ~DXEPCTL_USBACTEP; 4097 ctrl |= DXEPCTL_SNAK; 4098 4099 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4100 dwc2_writel(hsotg, ctrl, epctrl_reg); 4101 4102 /* disable endpoint interrupts */ 4103 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4104 4105 /* terminate all requests with shutdown */ 4106 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4107 4108 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4109 hs_ep->fifo_index = 0; 4110 hs_ep->fifo_size = 0; 4111 4112 return 0; 4113 } 4114 4115 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4116 { 4117 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4118 struct dwc2_hsotg *hsotg = hs_ep->parent; 4119 unsigned long flags; 4120 int ret; 4121 4122 spin_lock_irqsave(&hsotg->lock, flags); 4123 ret = dwc2_hsotg_ep_disable(ep); 4124 spin_unlock_irqrestore(&hsotg->lock, flags); 4125 return ret; 4126 } 4127 4128 /** 4129 * on_list - check request is on the given endpoint 4130 * @ep: The endpoint to check. 4131 * @test: The request to test if it is on the endpoint. 4132 */ 4133 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4134 { 4135 struct dwc2_hsotg_req *req, *treq; 4136 4137 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4138 if (req == test) 4139 return true; 4140 } 4141 4142 return false; 4143 } 4144 4145 /** 4146 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4147 * @ep: The endpoint to dequeue. 4148 * @req: The request to be removed from a queue. 4149 */ 4150 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4151 { 4152 struct dwc2_hsotg_req *hs_req = our_req(req); 4153 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4154 struct dwc2_hsotg *hs = hs_ep->parent; 4155 unsigned long flags; 4156 4157 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4158 4159 spin_lock_irqsave(&hs->lock, flags); 4160 4161 if (!on_list(hs_ep, hs_req)) { 4162 spin_unlock_irqrestore(&hs->lock, flags); 4163 return -EINVAL; 4164 } 4165 4166 /* Dequeue already started request */ 4167 if (req == &hs_ep->req->req) 4168 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4169 4170 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4171 spin_unlock_irqrestore(&hs->lock, flags); 4172 4173 return 0; 4174 } 4175 4176 /** 4177 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4178 * @ep: The endpoint to set halt. 4179 * @value: Set or unset the halt. 4180 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4181 * the endpoint is busy processing requests. 4182 * 4183 * We need to stall the endpoint immediately if request comes from set_feature 4184 * protocol command handler. 4185 */ 4186 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4187 { 4188 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4189 struct dwc2_hsotg *hs = hs_ep->parent; 4190 int index = hs_ep->index; 4191 u32 epreg; 4192 u32 epctl; 4193 u32 xfertype; 4194 4195 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4196 4197 if (index == 0) { 4198 if (value) 4199 dwc2_hsotg_stall_ep0(hs); 4200 else 4201 dev_warn(hs->dev, 4202 "%s: can't clear halt on ep0\n", __func__); 4203 return 0; 4204 } 4205 4206 if (hs_ep->isochronous) { 4207 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4208 return -EINVAL; 4209 } 4210 4211 if (!now && value && !list_empty(&hs_ep->queue)) { 4212 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4213 ep->name); 4214 return -EAGAIN; 4215 } 4216 4217 if (hs_ep->dir_in) { 4218 epreg = DIEPCTL(index); 4219 epctl = dwc2_readl(hs, epreg); 4220 4221 if (value) { 4222 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4223 if (epctl & DXEPCTL_EPENA) 4224 epctl |= DXEPCTL_EPDIS; 4225 } else { 4226 epctl &= ~DXEPCTL_STALL; 4227 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4228 if (xfertype == DXEPCTL_EPTYPE_BULK || 4229 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4230 epctl |= DXEPCTL_SETD0PID; 4231 } 4232 dwc2_writel(hs, epctl, epreg); 4233 } else { 4234 epreg = DOEPCTL(index); 4235 epctl = dwc2_readl(hs, epreg); 4236 4237 if (value) { 4238 epctl |= DXEPCTL_STALL; 4239 } else { 4240 epctl &= ~DXEPCTL_STALL; 4241 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4242 if (xfertype == DXEPCTL_EPTYPE_BULK || 4243 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4244 epctl |= DXEPCTL_SETD0PID; 4245 } 4246 dwc2_writel(hs, epctl, epreg); 4247 } 4248 4249 hs_ep->halted = value; 4250 4251 return 0; 4252 } 4253 4254 /** 4255 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4256 * @ep: The endpoint to set halt. 4257 * @value: Set or unset the halt. 4258 */ 4259 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4260 { 4261 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4262 struct dwc2_hsotg *hs = hs_ep->parent; 4263 unsigned long flags = 0; 4264 int ret = 0; 4265 4266 spin_lock_irqsave(&hs->lock, flags); 4267 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4268 spin_unlock_irqrestore(&hs->lock, flags); 4269 4270 return ret; 4271 } 4272 4273 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4274 .enable = dwc2_hsotg_ep_enable, 4275 .disable = dwc2_hsotg_ep_disable_lock, 4276 .alloc_request = dwc2_hsotg_ep_alloc_request, 4277 .free_request = dwc2_hsotg_ep_free_request, 4278 .queue = dwc2_hsotg_ep_queue_lock, 4279 .dequeue = dwc2_hsotg_ep_dequeue, 4280 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4281 /* note, don't believe we have any call for the fifo routines */ 4282 }; 4283 4284 /** 4285 * dwc2_hsotg_init - initialize the usb core 4286 * @hsotg: The driver state 4287 */ 4288 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4289 { 4290 u32 trdtim; 4291 u32 usbcfg; 4292 /* unmask subset of endpoint interrupts */ 4293 4294 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4295 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4296 DIEPMSK); 4297 4298 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4299 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4300 DOEPMSK); 4301 4302 dwc2_writel(hsotg, 0, DAINTMSK); 4303 4304 /* Be in disconnected state until gadget is registered */ 4305 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4306 4307 /* setup fifos */ 4308 4309 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4310 dwc2_readl(hsotg, GRXFSIZ), 4311 dwc2_readl(hsotg, GNPTXFSIZ)); 4312 4313 dwc2_hsotg_init_fifo(hsotg); 4314 4315 /* keep other bits untouched (so e.g. forced modes are not lost) */ 4316 usbcfg = dwc2_readl(hsotg, GUSBCFG); 4317 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 4318 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 4319 4320 /* set the PLL on, remove the HNP/SRP and set the PHY */ 4321 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 4322 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 4323 (trdtim << GUSBCFG_USBTRDTIM_SHIFT); 4324 dwc2_writel(hsotg, usbcfg, GUSBCFG); 4325 4326 if (using_dma(hsotg)) 4327 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4328 } 4329 4330 /** 4331 * dwc2_hsotg_udc_start - prepare the udc for work 4332 * @gadget: The usb gadget state 4333 * @driver: The usb gadget driver 4334 * 4335 * Perform initialization to prepare udc device and driver 4336 * to work. 4337 */ 4338 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4339 struct usb_gadget_driver *driver) 4340 { 4341 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4342 unsigned long flags; 4343 int ret; 4344 4345 if (!hsotg) { 4346 pr_err("%s: called with no device\n", __func__); 4347 return -ENODEV; 4348 } 4349 4350 if (!driver) { 4351 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4352 return -EINVAL; 4353 } 4354 4355 if (driver->max_speed < USB_SPEED_FULL) 4356 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4357 4358 if (!driver->setup) { 4359 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4360 return -EINVAL; 4361 } 4362 4363 WARN_ON(hsotg->driver); 4364 4365 driver->driver.bus = NULL; 4366 hsotg->driver = driver; 4367 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4368 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4369 4370 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4371 ret = dwc2_lowlevel_hw_enable(hsotg); 4372 if (ret) 4373 goto err; 4374 } 4375 4376 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4377 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4378 4379 spin_lock_irqsave(&hsotg->lock, flags); 4380 if (dwc2_hw_is_device(hsotg)) { 4381 dwc2_hsotg_init(hsotg); 4382 dwc2_hsotg_core_init_disconnected(hsotg, false); 4383 } 4384 4385 hsotg->enabled = 0; 4386 spin_unlock_irqrestore(&hsotg->lock, flags); 4387 4388 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4389 4390 return 0; 4391 4392 err: 4393 hsotg->driver = NULL; 4394 return ret; 4395 } 4396 4397 /** 4398 * dwc2_hsotg_udc_stop - stop the udc 4399 * @gadget: The usb gadget state 4400 * 4401 * Stop udc hw block and stay tunned for future transmissions 4402 */ 4403 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4404 { 4405 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4406 unsigned long flags = 0; 4407 int ep; 4408 4409 if (!hsotg) 4410 return -ENODEV; 4411 4412 /* all endpoints should be shutdown */ 4413 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4414 if (hsotg->eps_in[ep]) 4415 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4416 if (hsotg->eps_out[ep]) 4417 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4418 } 4419 4420 spin_lock_irqsave(&hsotg->lock, flags); 4421 4422 hsotg->driver = NULL; 4423 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4424 hsotg->enabled = 0; 4425 4426 spin_unlock_irqrestore(&hsotg->lock, flags); 4427 4428 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4429 otg_set_peripheral(hsotg->uphy->otg, NULL); 4430 4431 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4432 dwc2_lowlevel_hw_disable(hsotg); 4433 4434 return 0; 4435 } 4436 4437 /** 4438 * dwc2_hsotg_gadget_getframe - read the frame number 4439 * @gadget: The usb gadget state 4440 * 4441 * Read the {micro} frame number 4442 */ 4443 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4444 { 4445 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4446 } 4447 4448 /** 4449 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4450 * @gadget: The usb gadget state 4451 * @is_on: Current state of the USB PHY 4452 * 4453 * Connect/Disconnect the USB PHY pullup 4454 */ 4455 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4456 { 4457 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4458 unsigned long flags = 0; 4459 4460 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4461 hsotg->op_state); 4462 4463 /* Don't modify pullup state while in host mode */ 4464 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4465 hsotg->enabled = is_on; 4466 return 0; 4467 } 4468 4469 spin_lock_irqsave(&hsotg->lock, flags); 4470 if (is_on) { 4471 hsotg->enabled = 1; 4472 dwc2_hsotg_core_init_disconnected(hsotg, false); 4473 /* Enable ACG feature in device mode,if supported */ 4474 dwc2_enable_acg(hsotg); 4475 dwc2_hsotg_core_connect(hsotg); 4476 } else { 4477 dwc2_hsotg_core_disconnect(hsotg); 4478 dwc2_hsotg_disconnect(hsotg); 4479 hsotg->enabled = 0; 4480 } 4481 4482 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4483 spin_unlock_irqrestore(&hsotg->lock, flags); 4484 4485 return 0; 4486 } 4487 4488 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4489 { 4490 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4491 unsigned long flags; 4492 4493 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4494 spin_lock_irqsave(&hsotg->lock, flags); 4495 4496 /* 4497 * If controller is hibernated, it must exit from power_down 4498 * before being initialized / de-initialized 4499 */ 4500 if (hsotg->lx_state == DWC2_L2) 4501 dwc2_exit_partial_power_down(hsotg, false); 4502 4503 if (is_active) { 4504 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4505 4506 dwc2_hsotg_core_init_disconnected(hsotg, false); 4507 if (hsotg->enabled) { 4508 /* Enable ACG feature in device mode,if supported */ 4509 dwc2_enable_acg(hsotg); 4510 dwc2_hsotg_core_connect(hsotg); 4511 } 4512 } else { 4513 dwc2_hsotg_core_disconnect(hsotg); 4514 dwc2_hsotg_disconnect(hsotg); 4515 } 4516 4517 spin_unlock_irqrestore(&hsotg->lock, flags); 4518 return 0; 4519 } 4520 4521 /** 4522 * dwc2_hsotg_vbus_draw - report bMaxPower field 4523 * @gadget: The usb gadget state 4524 * @mA: Amount of current 4525 * 4526 * Report how much power the device may consume to the phy. 4527 */ 4528 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4529 { 4530 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4531 4532 if (IS_ERR_OR_NULL(hsotg->uphy)) 4533 return -ENOTSUPP; 4534 return usb_phy_set_power(hsotg->uphy, mA); 4535 } 4536 4537 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4538 .get_frame = dwc2_hsotg_gadget_getframe, 4539 .udc_start = dwc2_hsotg_udc_start, 4540 .udc_stop = dwc2_hsotg_udc_stop, 4541 .pullup = dwc2_hsotg_pullup, 4542 .vbus_session = dwc2_hsotg_vbus_session, 4543 .vbus_draw = dwc2_hsotg_vbus_draw, 4544 }; 4545 4546 /** 4547 * dwc2_hsotg_initep - initialise a single endpoint 4548 * @hsotg: The device state. 4549 * @hs_ep: The endpoint to be initialised. 4550 * @epnum: The endpoint number 4551 * @dir_in: True if direction is in. 4552 * 4553 * Initialise the given endpoint (as part of the probe and device state 4554 * creation) to give to the gadget driver. Setup the endpoint name, any 4555 * direction information and other state that may be required. 4556 */ 4557 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4558 struct dwc2_hsotg_ep *hs_ep, 4559 int epnum, 4560 bool dir_in) 4561 { 4562 char *dir; 4563 4564 if (epnum == 0) 4565 dir = ""; 4566 else if (dir_in) 4567 dir = "in"; 4568 else 4569 dir = "out"; 4570 4571 hs_ep->dir_in = dir_in; 4572 hs_ep->index = epnum; 4573 4574 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4575 4576 INIT_LIST_HEAD(&hs_ep->queue); 4577 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4578 4579 /* add to the list of endpoints known by the gadget driver */ 4580 if (epnum) 4581 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4582 4583 hs_ep->parent = hsotg; 4584 hs_ep->ep.name = hs_ep->name; 4585 4586 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4587 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4588 else 4589 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4590 epnum ? 1024 : EP0_MPS_LIMIT); 4591 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4592 4593 if (epnum == 0) { 4594 hs_ep->ep.caps.type_control = true; 4595 } else { 4596 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4597 hs_ep->ep.caps.type_iso = true; 4598 hs_ep->ep.caps.type_bulk = true; 4599 } 4600 hs_ep->ep.caps.type_int = true; 4601 } 4602 4603 if (dir_in) 4604 hs_ep->ep.caps.dir_in = true; 4605 else 4606 hs_ep->ep.caps.dir_out = true; 4607 4608 /* 4609 * if we're using dma, we need to set the next-endpoint pointer 4610 * to be something valid. 4611 */ 4612 4613 if (using_dma(hsotg)) { 4614 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4615 4616 if (dir_in) 4617 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4618 else 4619 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4620 } 4621 } 4622 4623 /** 4624 * dwc2_hsotg_hw_cfg - read HW configuration registers 4625 * @hsotg: Programming view of the DWC_otg controller 4626 * 4627 * Read the USB core HW configuration registers 4628 */ 4629 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4630 { 4631 u32 cfg; 4632 u32 ep_type; 4633 u32 i; 4634 4635 /* check hardware configuration */ 4636 4637 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4638 4639 /* Add ep0 */ 4640 hsotg->num_of_eps++; 4641 4642 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4643 sizeof(struct dwc2_hsotg_ep), 4644 GFP_KERNEL); 4645 if (!hsotg->eps_in[0]) 4646 return -ENOMEM; 4647 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4648 hsotg->eps_out[0] = hsotg->eps_in[0]; 4649 4650 cfg = hsotg->hw_params.dev_ep_dirs; 4651 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4652 ep_type = cfg & 3; 4653 /* Direction in or both */ 4654 if (!(ep_type & 2)) { 4655 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4656 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4657 if (!hsotg->eps_in[i]) 4658 return -ENOMEM; 4659 } 4660 /* Direction out or both */ 4661 if (!(ep_type & 1)) { 4662 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4663 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4664 if (!hsotg->eps_out[i]) 4665 return -ENOMEM; 4666 } 4667 } 4668 4669 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4670 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4671 4672 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4673 hsotg->num_of_eps, 4674 hsotg->dedicated_fifos ? "dedicated" : "shared", 4675 hsotg->fifo_mem); 4676 return 0; 4677 } 4678 4679 /** 4680 * dwc2_hsotg_dump - dump state of the udc 4681 * @hsotg: Programming view of the DWC_otg controller 4682 * 4683 */ 4684 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4685 { 4686 #ifdef DEBUG 4687 struct device *dev = hsotg->dev; 4688 u32 val; 4689 int idx; 4690 4691 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4692 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4693 dwc2_readl(hsotg, DIEPMSK)); 4694 4695 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4696 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4697 4698 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4699 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4700 4701 /* show periodic fifo settings */ 4702 4703 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4704 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4705 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4706 val >> FIFOSIZE_DEPTH_SHIFT, 4707 val & FIFOSIZE_STARTADDR_MASK); 4708 } 4709 4710 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4711 dev_info(dev, 4712 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4713 dwc2_readl(hsotg, DIEPCTL(idx)), 4714 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4715 dwc2_readl(hsotg, DIEPDMA(idx))); 4716 4717 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4718 dev_info(dev, 4719 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4720 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4721 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4722 dwc2_readl(hsotg, DOEPDMA(idx))); 4723 } 4724 4725 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4726 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4727 #endif 4728 } 4729 4730 /** 4731 * dwc2_gadget_init - init function for gadget 4732 * @hsotg: Programming view of the DWC_otg controller 4733 * 4734 */ 4735 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4736 { 4737 struct device *dev = hsotg->dev; 4738 int epnum; 4739 int ret; 4740 4741 /* Dump fifo information */ 4742 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4743 hsotg->params.g_np_tx_fifo_size); 4744 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4745 4746 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4747 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4748 hsotg->gadget.name = dev_name(dev); 4749 hsotg->remote_wakeup_allowed = 0; 4750 4751 if (hsotg->params.lpm) 4752 hsotg->gadget.lpm_capable = true; 4753 4754 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4755 hsotg->gadget.is_otg = 1; 4756 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4757 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4758 4759 ret = dwc2_hsotg_hw_cfg(hsotg); 4760 if (ret) { 4761 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4762 return ret; 4763 } 4764 4765 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4766 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4767 if (!hsotg->ctrl_buff) 4768 return -ENOMEM; 4769 4770 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4771 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4772 if (!hsotg->ep0_buff) 4773 return -ENOMEM; 4774 4775 if (using_desc_dma(hsotg)) { 4776 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4777 if (ret < 0) 4778 return ret; 4779 } 4780 4781 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4782 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4783 if (ret < 0) { 4784 dev_err(dev, "cannot claim IRQ for gadget\n"); 4785 return ret; 4786 } 4787 4788 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4789 4790 if (hsotg->num_of_eps == 0) { 4791 dev_err(dev, "wrong number of EPs (zero)\n"); 4792 return -EINVAL; 4793 } 4794 4795 /* setup endpoint information */ 4796 4797 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4798 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4799 4800 /* allocate EP0 request */ 4801 4802 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4803 GFP_KERNEL); 4804 if (!hsotg->ctrl_req) { 4805 dev_err(dev, "failed to allocate ctrl req\n"); 4806 return -ENOMEM; 4807 } 4808 4809 /* initialise the endpoints now the core has been initialised */ 4810 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4811 if (hsotg->eps_in[epnum]) 4812 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4813 epnum, 1); 4814 if (hsotg->eps_out[epnum]) 4815 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4816 epnum, 0); 4817 } 4818 4819 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4820 if (ret) { 4821 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, 4822 hsotg->ctrl_req); 4823 return ret; 4824 } 4825 dwc2_hsotg_dump(hsotg); 4826 4827 return 0; 4828 } 4829 4830 /** 4831 * dwc2_hsotg_remove - remove function for hsotg driver 4832 * @hsotg: Programming view of the DWC_otg controller 4833 * 4834 */ 4835 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4836 { 4837 usb_del_gadget_udc(&hsotg->gadget); 4838 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4839 4840 return 0; 4841 } 4842 4843 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4844 { 4845 unsigned long flags; 4846 4847 if (hsotg->lx_state != DWC2_L0) 4848 return 0; 4849 4850 if (hsotg->driver) { 4851 int ep; 4852 4853 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4854 hsotg->driver->driver.name); 4855 4856 spin_lock_irqsave(&hsotg->lock, flags); 4857 if (hsotg->enabled) 4858 dwc2_hsotg_core_disconnect(hsotg); 4859 dwc2_hsotg_disconnect(hsotg); 4860 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4861 spin_unlock_irqrestore(&hsotg->lock, flags); 4862 4863 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4864 if (hsotg->eps_in[ep]) 4865 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4866 if (hsotg->eps_out[ep]) 4867 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4868 } 4869 } 4870 4871 return 0; 4872 } 4873 4874 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4875 { 4876 unsigned long flags; 4877 4878 if (hsotg->lx_state == DWC2_L2) 4879 return 0; 4880 4881 if (hsotg->driver) { 4882 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4883 hsotg->driver->driver.name); 4884 4885 spin_lock_irqsave(&hsotg->lock, flags); 4886 dwc2_hsotg_core_init_disconnected(hsotg, false); 4887 if (hsotg->enabled) { 4888 /* Enable ACG feature in device mode,if supported */ 4889 dwc2_enable_acg(hsotg); 4890 dwc2_hsotg_core_connect(hsotg); 4891 } 4892 spin_unlock_irqrestore(&hsotg->lock, flags); 4893 } 4894 4895 return 0; 4896 } 4897 4898 /** 4899 * dwc2_backup_device_registers() - Backup controller device registers. 4900 * When suspending usb bus, registers needs to be backuped 4901 * if controller power is disabled once suspended. 4902 * 4903 * @hsotg: Programming view of the DWC_otg controller 4904 */ 4905 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4906 { 4907 struct dwc2_dregs_backup *dr; 4908 int i; 4909 4910 dev_dbg(hsotg->dev, "%s\n", __func__); 4911 4912 /* Backup dev regs */ 4913 dr = &hsotg->dr_backup; 4914 4915 dr->dcfg = dwc2_readl(hsotg, DCFG); 4916 dr->dctl = dwc2_readl(hsotg, DCTL); 4917 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 4918 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 4919 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 4920 4921 for (i = 0; i < hsotg->num_of_eps; i++) { 4922 /* Backup IN EPs */ 4923 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 4924 4925 /* Ensure DATA PID is correctly configured */ 4926 if (dr->diepctl[i] & DXEPCTL_DPID) 4927 dr->diepctl[i] |= DXEPCTL_SETD1PID; 4928 else 4929 dr->diepctl[i] |= DXEPCTL_SETD0PID; 4930 4931 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 4932 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 4933 4934 /* Backup OUT EPs */ 4935 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 4936 4937 /* Ensure DATA PID is correctly configured */ 4938 if (dr->doepctl[i] & DXEPCTL_DPID) 4939 dr->doepctl[i] |= DXEPCTL_SETD1PID; 4940 else 4941 dr->doepctl[i] |= DXEPCTL_SETD0PID; 4942 4943 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 4944 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 4945 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 4946 } 4947 dr->valid = true; 4948 return 0; 4949 } 4950 4951 /** 4952 * dwc2_restore_device_registers() - Restore controller device registers. 4953 * When resuming usb bus, device registers needs to be restored 4954 * if controller power were disabled. 4955 * 4956 * @hsotg: Programming view of the DWC_otg controller 4957 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 4958 * 4959 * Return: 0 if successful, negative error code otherwise 4960 */ 4961 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 4962 { 4963 struct dwc2_dregs_backup *dr; 4964 int i; 4965 4966 dev_dbg(hsotg->dev, "%s\n", __func__); 4967 4968 /* Restore dev regs */ 4969 dr = &hsotg->dr_backup; 4970 if (!dr->valid) { 4971 dev_err(hsotg->dev, "%s: no device registers to restore\n", 4972 __func__); 4973 return -EINVAL; 4974 } 4975 dr->valid = false; 4976 4977 if (!remote_wakeup) 4978 dwc2_writel(hsotg, dr->dctl, DCTL); 4979 4980 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 4981 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 4982 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 4983 4984 for (i = 0; i < hsotg->num_of_eps; i++) { 4985 /* Restore IN EPs */ 4986 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 4987 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 4988 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 4989 /** WA for enabled EPx's IN in DDMA mode. On entering to 4990 * hibernation wrong value read and saved from DIEPDMAx, 4991 * as result BNA interrupt asserted on hibernation exit 4992 * by restoring from saved area. 4993 */ 4994 if (hsotg->params.g_dma_desc && 4995 (dr->diepctl[i] & DXEPCTL_EPENA)) 4996 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 4997 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 4998 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 4999 /* Restore OUT EPs */ 5000 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5001 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5002 * hibernation wrong value read and saved from DOEPDMAx, 5003 * as result BNA interrupt asserted on hibernation exit 5004 * by restoring from saved area. 5005 */ 5006 if (hsotg->params.g_dma_desc && 5007 (dr->doepctl[i] & DXEPCTL_EPENA)) 5008 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5009 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5010 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5011 } 5012 5013 return 0; 5014 } 5015 5016 /** 5017 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5018 * 5019 * @hsotg: Programming view of DWC_otg controller 5020 * 5021 */ 5022 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5023 { 5024 u32 val; 5025 5026 if (!hsotg->params.lpm) 5027 return; 5028 5029 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5030 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5031 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5032 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5033 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5034 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5035 dwc2_writel(hsotg, val, GLPMCFG); 5036 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5037 5038 /* Unmask WKUP_ALERT Interrupt */ 5039 if (hsotg->params.service_interval) 5040 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5041 } 5042 5043 /** 5044 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5045 * 5046 * @hsotg: Programming view of DWC_otg controller 5047 * 5048 */ 5049 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5050 { 5051 u32 val = 0; 5052 5053 val |= GREFCLK_REF_CLK_MODE; 5054 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5055 val |= hsotg->params.sof_cnt_wkup_alert << 5056 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5057 5058 dwc2_writel(hsotg, val, GREFCLK); 5059 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5060 } 5061 5062 /** 5063 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5064 * 5065 * @hsotg: Programming view of the DWC_otg controller 5066 * 5067 * Return non-zero if failed to enter to hibernation. 5068 */ 5069 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5070 { 5071 u32 gpwrdn; 5072 int ret = 0; 5073 5074 /* Change to L2(suspend) state */ 5075 hsotg->lx_state = DWC2_L2; 5076 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5077 ret = dwc2_backup_global_registers(hsotg); 5078 if (ret) { 5079 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5080 __func__); 5081 return ret; 5082 } 5083 ret = dwc2_backup_device_registers(hsotg); 5084 if (ret) { 5085 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5086 __func__); 5087 return ret; 5088 } 5089 5090 gpwrdn = GPWRDN_PWRDNRSTN; 5091 gpwrdn |= GPWRDN_PMUACTV; 5092 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5093 udelay(10); 5094 5095 /* Set flag to indicate that we are in hibernation */ 5096 hsotg->hibernated = 1; 5097 5098 /* Enable interrupts from wake up logic */ 5099 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5100 gpwrdn |= GPWRDN_PMUINTSEL; 5101 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5102 udelay(10); 5103 5104 /* Unmask device mode interrupts in GPWRDN */ 5105 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5106 gpwrdn |= GPWRDN_RST_DET_MSK; 5107 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5108 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5109 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5110 udelay(10); 5111 5112 /* Enable Power Down Clamp */ 5113 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5114 gpwrdn |= GPWRDN_PWRDNCLMP; 5115 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5116 udelay(10); 5117 5118 /* Switch off VDD */ 5119 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5120 gpwrdn |= GPWRDN_PWRDNSWTCH; 5121 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5122 udelay(10); 5123 5124 /* Save gpwrdn register for further usage if stschng interrupt */ 5125 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5126 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5127 5128 return ret; 5129 } 5130 5131 /** 5132 * dwc2_gadget_exit_hibernation() 5133 * This function is for exiting from Device mode hibernation by host initiated 5134 * resume/reset and device initiated remote-wakeup. 5135 * 5136 * @hsotg: Programming view of the DWC_otg controller 5137 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5138 * @reset: indicates whether resume is initiated by Reset. 5139 * 5140 * Return non-zero if failed to exit from hibernation. 5141 */ 5142 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5143 int rem_wakeup, int reset) 5144 { 5145 u32 pcgcctl; 5146 u32 gpwrdn; 5147 u32 dctl; 5148 int ret = 0; 5149 struct dwc2_gregs_backup *gr; 5150 struct dwc2_dregs_backup *dr; 5151 5152 gr = &hsotg->gr_backup; 5153 dr = &hsotg->dr_backup; 5154 5155 if (!hsotg->hibernated) { 5156 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5157 return 1; 5158 } 5159 dev_dbg(hsotg->dev, 5160 "%s: called with rem_wakeup = %d reset = %d\n", 5161 __func__, rem_wakeup, reset); 5162 5163 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5164 5165 if (!reset) { 5166 /* Clear all pending interupts */ 5167 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5168 } 5169 5170 /* De-assert Restore */ 5171 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5172 gpwrdn &= ~GPWRDN_RESTORE; 5173 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5174 udelay(10); 5175 5176 if (!rem_wakeup) { 5177 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5178 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5179 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5180 } 5181 5182 /* Restore GUSBCFG, DCFG and DCTL */ 5183 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5184 dwc2_writel(hsotg, dr->dcfg, DCFG); 5185 dwc2_writel(hsotg, dr->dctl, DCTL); 5186 5187 /* De-assert Wakeup Logic */ 5188 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5189 gpwrdn &= ~GPWRDN_PMUACTV; 5190 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5191 5192 if (rem_wakeup) { 5193 udelay(10); 5194 /* Start Remote Wakeup Signaling */ 5195 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5196 } else { 5197 udelay(50); 5198 /* Set Device programming done bit */ 5199 dctl = dwc2_readl(hsotg, DCTL); 5200 dctl |= DCTL_PWRONPRGDONE; 5201 dwc2_writel(hsotg, dctl, DCTL); 5202 } 5203 /* Wait for interrupts which must be cleared */ 5204 mdelay(2); 5205 /* Clear all pending interupts */ 5206 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5207 5208 /* Restore global registers */ 5209 ret = dwc2_restore_global_registers(hsotg); 5210 if (ret) { 5211 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5212 __func__); 5213 return ret; 5214 } 5215 5216 /* Restore device registers */ 5217 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5218 if (ret) { 5219 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5220 __func__); 5221 return ret; 5222 } 5223 5224 if (rem_wakeup) { 5225 mdelay(10); 5226 dctl = dwc2_readl(hsotg, DCTL); 5227 dctl &= ~DCTL_RMTWKUPSIG; 5228 dwc2_writel(hsotg, dctl, DCTL); 5229 } 5230 5231 hsotg->hibernated = 0; 5232 hsotg->lx_state = DWC2_L0; 5233 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5234 5235 return ret; 5236 } 5237