1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 hs_ep->target_frame += hs_ep->interval; 119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 120 hs_ep->frame_overrun = true; 121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 122 } else { 123 hs_ep->frame_overrun = false; 124 } 125 } 126 127 /** 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 129 * by one. 130 * @hs_ep: The endpoint. 131 * 132 * This function used in service interval based scheduling flow to calculate 133 * descriptor frame number filed value. For service interval mode frame 134 * number in descriptor should point to last (u)frame in the interval. 135 * 136 */ 137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 138 { 139 if (hs_ep->target_frame) 140 hs_ep->target_frame -= 1; 141 else 142 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 143 } 144 145 /** 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 147 * @hsotg: The device state 148 * @ints: A bitmask of the interrupts to enable 149 */ 150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 151 { 152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 153 u32 new_gsintmsk; 154 155 new_gsintmsk = gsintmsk | ints; 156 157 if (new_gsintmsk != gsintmsk) { 158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 160 } 161 } 162 163 /** 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 165 * @hsotg: The device state 166 * @ints: A bitmask of the interrupts to enable 167 */ 168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 169 { 170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 171 u32 new_gsintmsk; 172 173 new_gsintmsk = gsintmsk & ~ints; 174 175 if (new_gsintmsk != gsintmsk) 176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 177 } 178 179 /** 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 181 * @hsotg: The device state 182 * @ep: The endpoint index 183 * @dir_in: True if direction is in. 184 * @en: The enable value, true to enable 185 * 186 * Set or clear the mask for an individual endpoint's interrupt 187 * request. 188 */ 189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 190 unsigned int ep, unsigned int dir_in, 191 unsigned int en) 192 { 193 unsigned long flags; 194 u32 bit = 1 << ep; 195 u32 daint; 196 197 if (!dir_in) 198 bit <<= 16; 199 200 local_irq_save(flags); 201 daint = dwc2_readl(hsotg, DAINTMSK); 202 if (en) 203 daint |= bit; 204 else 205 daint &= ~bit; 206 dwc2_writel(hsotg, daint, DAINTMSK); 207 local_irq_restore(flags); 208 } 209 210 /** 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 212 * 213 * @hsotg: Programming view of the DWC_otg controller 214 */ 215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 216 { 217 if (hsotg->hw_params.en_multiple_tx_fifo) 218 /* In dedicated FIFO mode we need count of IN EPs */ 219 return hsotg->hw_params.num_dev_in_eps; 220 else 221 /* In shared FIFO mode we need count of Periodic IN EPs */ 222 return hsotg->hw_params.num_dev_perio_in_ep; 223 } 224 225 /** 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 227 * device mode TX FIFOs 228 * 229 * @hsotg: Programming view of the DWC_otg controller 230 */ 231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 232 { 233 int addr; 234 int tx_addr_max; 235 u32 np_tx_fifo_size; 236 237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 238 hsotg->params.g_np_tx_fifo_size); 239 240 /* Get Endpoint Info Control block size in DWORDs. */ 241 tx_addr_max = hsotg->hw_params.total_fifo_size; 242 243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 244 if (tx_addr_max <= addr) 245 return 0; 246 247 return tx_addr_max - addr; 248 } 249 250 /** 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 252 * 253 * @hsotg: Programming view of the DWC_otg controller 254 * 255 */ 256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 257 { 258 u32 gintsts2; 259 u32 gintmsk2; 260 261 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 263 264 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 265 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 266 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 267 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 268 } 269 } 270 271 /** 272 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 273 * TX FIFOs 274 * 275 * @hsotg: Programming view of the DWC_otg controller 276 */ 277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 278 { 279 int tx_fifo_count; 280 int tx_fifo_depth; 281 282 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 283 284 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 285 286 if (!tx_fifo_count) 287 return tx_fifo_depth; 288 else 289 return tx_fifo_depth / tx_fifo_count; 290 } 291 292 /** 293 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 294 * @hsotg: The device instance. 295 */ 296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 297 { 298 unsigned int ep; 299 unsigned int addr; 300 int timeout; 301 302 u32 val; 303 u32 *txfsz = hsotg->params.g_tx_fifo_size; 304 305 /* Reset fifo map if not correctly cleared during previous session */ 306 WARN_ON(hsotg->fifo_map); 307 hsotg->fifo_map = 0; 308 309 /* set RX/NPTX FIFO sizes */ 310 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 311 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 312 FIFOSIZE_STARTADDR_SHIFT) | 313 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 314 GNPTXFSIZ); 315 316 /* 317 * arange all the rest of the TX FIFOs, as some versions of this 318 * block have overlapping default addresses. This also ensures 319 * that if the settings have been changed, then they are set to 320 * known values. 321 */ 322 323 /* start at the end of the GNPTXFSIZ, rounded up */ 324 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 325 326 /* 327 * Configure fifos sizes from provided configuration and assign 328 * them to endpoints dynamically according to maxpacket size value of 329 * given endpoint. 330 */ 331 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 332 if (!txfsz[ep]) 333 continue; 334 val = addr; 335 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 336 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 337 "insufficient fifo memory"); 338 addr += txfsz[ep]; 339 340 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 341 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 342 } 343 344 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 345 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 346 GDFIFOCFG); 347 /* 348 * according to p428 of the design guide, we need to ensure that 349 * all fifos are flushed before continuing 350 */ 351 352 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 353 GRSTCTL_RXFFLSH, GRSTCTL); 354 355 /* wait until the fifos are both flushed */ 356 timeout = 100; 357 while (1) { 358 val = dwc2_readl(hsotg, GRSTCTL); 359 360 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 361 break; 362 363 if (--timeout == 0) { 364 dev_err(hsotg->dev, 365 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 366 __func__, val); 367 break; 368 } 369 370 udelay(1); 371 } 372 373 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 374 } 375 376 /** 377 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 378 * @ep: USB endpoint to allocate request for. 379 * @flags: Allocation flags 380 * 381 * Allocate a new USB request structure appropriate for the specified endpoint 382 */ 383 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 384 gfp_t flags) 385 { 386 struct dwc2_hsotg_req *req; 387 388 req = kzalloc(sizeof(*req), flags); 389 if (!req) 390 return NULL; 391 392 INIT_LIST_HEAD(&req->queue); 393 394 return &req->req; 395 } 396 397 /** 398 * is_ep_periodic - return true if the endpoint is in periodic mode. 399 * @hs_ep: The endpoint to query. 400 * 401 * Returns true if the endpoint is in periodic mode, meaning it is being 402 * used for an Interrupt or ISO transfer. 403 */ 404 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 405 { 406 return hs_ep->periodic; 407 } 408 409 /** 410 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 411 * @hsotg: The device state. 412 * @hs_ep: The endpoint for the request 413 * @hs_req: The request being processed. 414 * 415 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 416 * of a request to ensure the buffer is ready for access by the caller. 417 */ 418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 419 struct dwc2_hsotg_ep *hs_ep, 420 struct dwc2_hsotg_req *hs_req) 421 { 422 struct usb_request *req = &hs_req->req; 423 424 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 425 } 426 427 /* 428 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 429 * for Control endpoint 430 * @hsotg: The device state. 431 * 432 * This function will allocate 4 descriptor chains for EP 0: 2 for 433 * Setup stage, per one for IN and OUT data/status transactions. 434 */ 435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 436 { 437 hsotg->setup_desc[0] = 438 dmam_alloc_coherent(hsotg->dev, 439 sizeof(struct dwc2_dma_desc), 440 &hsotg->setup_desc_dma[0], 441 GFP_KERNEL); 442 if (!hsotg->setup_desc[0]) 443 goto fail; 444 445 hsotg->setup_desc[1] = 446 dmam_alloc_coherent(hsotg->dev, 447 sizeof(struct dwc2_dma_desc), 448 &hsotg->setup_desc_dma[1], 449 GFP_KERNEL); 450 if (!hsotg->setup_desc[1]) 451 goto fail; 452 453 hsotg->ctrl_in_desc = 454 dmam_alloc_coherent(hsotg->dev, 455 sizeof(struct dwc2_dma_desc), 456 &hsotg->ctrl_in_desc_dma, 457 GFP_KERNEL); 458 if (!hsotg->ctrl_in_desc) 459 goto fail; 460 461 hsotg->ctrl_out_desc = 462 dmam_alloc_coherent(hsotg->dev, 463 sizeof(struct dwc2_dma_desc), 464 &hsotg->ctrl_out_desc_dma, 465 GFP_KERNEL); 466 if (!hsotg->ctrl_out_desc) 467 goto fail; 468 469 return 0; 470 471 fail: 472 return -ENOMEM; 473 } 474 475 /** 476 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 477 * @hsotg: The controller state. 478 * @hs_ep: The endpoint we're going to write for. 479 * @hs_req: The request to write data for. 480 * 481 * This is called when the TxFIFO has some space in it to hold a new 482 * transmission and we have something to give it. The actual setup of 483 * the data size is done elsewhere, so all we have to do is to actually 484 * write the data. 485 * 486 * The return value is zero if there is more space (or nothing was done) 487 * otherwise -ENOSPC is returned if the FIFO space was used up. 488 * 489 * This routine is only needed for PIO 490 */ 491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 492 struct dwc2_hsotg_ep *hs_ep, 493 struct dwc2_hsotg_req *hs_req) 494 { 495 bool periodic = is_ep_periodic(hs_ep); 496 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 497 int buf_pos = hs_req->req.actual; 498 int to_write = hs_ep->size_loaded; 499 void *data; 500 int can_write; 501 int pkt_round; 502 int max_transfer; 503 504 to_write -= (buf_pos - hs_ep->last_load); 505 506 /* if there's nothing to write, get out early */ 507 if (to_write == 0) 508 return 0; 509 510 if (periodic && !hsotg->dedicated_fifos) { 511 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 512 int size_left; 513 int size_done; 514 515 /* 516 * work out how much data was loaded so we can calculate 517 * how much data is left in the fifo. 518 */ 519 520 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 521 522 /* 523 * if shared fifo, we cannot write anything until the 524 * previous data has been completely sent. 525 */ 526 if (hs_ep->fifo_load != 0) { 527 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 528 return -ENOSPC; 529 } 530 531 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 532 __func__, size_left, 533 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 534 535 /* how much of the data has moved */ 536 size_done = hs_ep->size_loaded - size_left; 537 538 /* how much data is left in the fifo */ 539 can_write = hs_ep->fifo_load - size_done; 540 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 541 __func__, can_write); 542 543 can_write = hs_ep->fifo_size - can_write; 544 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 545 __func__, can_write); 546 547 if (can_write <= 0) { 548 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 549 return -ENOSPC; 550 } 551 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 552 can_write = dwc2_readl(hsotg, 553 DTXFSTS(hs_ep->fifo_index)); 554 555 can_write &= 0xffff; 556 can_write *= 4; 557 } else { 558 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 559 dev_dbg(hsotg->dev, 560 "%s: no queue slots available (0x%08x)\n", 561 __func__, gnptxsts); 562 563 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 564 return -ENOSPC; 565 } 566 567 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 568 can_write *= 4; /* fifo size is in 32bit quantities. */ 569 } 570 571 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 572 573 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 574 __func__, gnptxsts, can_write, to_write, max_transfer); 575 576 /* 577 * limit to 512 bytes of data, it seems at least on the non-periodic 578 * FIFO, requests of >512 cause the endpoint to get stuck with a 579 * fragment of the end of the transfer in it. 580 */ 581 if (can_write > 512 && !periodic) 582 can_write = 512; 583 584 /* 585 * limit the write to one max-packet size worth of data, but allow 586 * the transfer to return that it did not run out of fifo space 587 * doing it. 588 */ 589 if (to_write > max_transfer) { 590 to_write = max_transfer; 591 592 /* it's needed only when we do not use dedicated fifos */ 593 if (!hsotg->dedicated_fifos) 594 dwc2_hsotg_en_gsint(hsotg, 595 periodic ? GINTSTS_PTXFEMP : 596 GINTSTS_NPTXFEMP); 597 } 598 599 /* see if we can write data */ 600 601 if (to_write > can_write) { 602 to_write = can_write; 603 pkt_round = to_write % max_transfer; 604 605 /* 606 * Round the write down to an 607 * exact number of packets. 608 * 609 * Note, we do not currently check to see if we can ever 610 * write a full packet or not to the FIFO. 611 */ 612 613 if (pkt_round) 614 to_write -= pkt_round; 615 616 /* 617 * enable correct FIFO interrupt to alert us when there 618 * is more room left. 619 */ 620 621 /* it's needed only when we do not use dedicated fifos */ 622 if (!hsotg->dedicated_fifos) 623 dwc2_hsotg_en_gsint(hsotg, 624 periodic ? GINTSTS_PTXFEMP : 625 GINTSTS_NPTXFEMP); 626 } 627 628 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 629 to_write, hs_req->req.length, can_write, buf_pos); 630 631 if (to_write <= 0) 632 return -ENOSPC; 633 634 hs_req->req.actual = buf_pos + to_write; 635 hs_ep->total_data += to_write; 636 637 if (periodic) 638 hs_ep->fifo_load += to_write; 639 640 to_write = DIV_ROUND_UP(to_write, 4); 641 data = hs_req->req.buf + buf_pos; 642 643 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 644 645 return (to_write >= can_write) ? -ENOSPC : 0; 646 } 647 648 /** 649 * get_ep_limit - get the maximum data legnth for this endpoint 650 * @hs_ep: The endpoint 651 * 652 * Return the maximum data that can be queued in one go on a given endpoint 653 * so that transfers that are too long can be split. 654 */ 655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 656 { 657 int index = hs_ep->index; 658 unsigned int maxsize; 659 unsigned int maxpkt; 660 661 if (index != 0) { 662 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 663 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 664 } else { 665 maxsize = 64 + 64; 666 if (hs_ep->dir_in) 667 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 668 else 669 maxpkt = 2; 670 } 671 672 /* we made the constant loading easier above by using +1 */ 673 maxpkt--; 674 maxsize--; 675 676 /* 677 * constrain by packet count if maxpkts*pktsize is greater 678 * than the length register size. 679 */ 680 681 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 682 maxsize = maxpkt * hs_ep->ep.maxpacket; 683 684 return maxsize; 685 } 686 687 /** 688 * dwc2_hsotg_read_frameno - read current frame number 689 * @hsotg: The device instance 690 * 691 * Return the current frame number 692 */ 693 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 694 { 695 u32 dsts; 696 697 dsts = dwc2_readl(hsotg, DSTS); 698 dsts &= DSTS_SOFFN_MASK; 699 dsts >>= DSTS_SOFFN_SHIFT; 700 701 return dsts; 702 } 703 704 /** 705 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 706 * DMA descriptor chain prepared for specific endpoint 707 * @hs_ep: The endpoint 708 * 709 * Return the maximum data that can be queued in one go on a given endpoint 710 * depending on its descriptor chain capacity so that transfers that 711 * are too long can be split. 712 */ 713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 714 { 715 int is_isoc = hs_ep->isochronous; 716 unsigned int maxsize; 717 718 if (is_isoc) 719 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 720 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 721 MAX_DMA_DESC_NUM_HS_ISOC; 722 else 723 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 724 725 return maxsize; 726 } 727 728 /* 729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 730 * @hs_ep: The endpoint 731 * @mask: RX/TX bytes mask to be defined 732 * 733 * Returns maximum data payload for one descriptor after analyzing endpoint 734 * characteristics. 735 * DMA descriptor transfer bytes limit depends on EP type: 736 * Control out - MPS, 737 * Isochronous - descriptor rx/tx bytes bitfield limit, 738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 739 * have concatenations from various descriptors within one packet. 740 * 741 * Selects corresponding mask for RX/TX bytes as well. 742 */ 743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 744 { 745 u32 mps = hs_ep->ep.maxpacket; 746 int dir_in = hs_ep->dir_in; 747 u32 desc_size = 0; 748 749 if (!hs_ep->index && !dir_in) { 750 desc_size = mps; 751 *mask = DEV_DMA_NBYTES_MASK; 752 } else if (hs_ep->isochronous) { 753 if (dir_in) { 754 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 755 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 756 } else { 757 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 758 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 759 } 760 } else { 761 desc_size = DEV_DMA_NBYTES_LIMIT; 762 *mask = DEV_DMA_NBYTES_MASK; 763 764 /* Round down desc_size to be mps multiple */ 765 desc_size -= desc_size % mps; 766 } 767 768 return desc_size; 769 } 770 771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 772 struct dwc2_dma_desc **desc, 773 dma_addr_t dma_buff, 774 unsigned int len, 775 bool true_last) 776 { 777 int dir_in = hs_ep->dir_in; 778 u32 mps = hs_ep->ep.maxpacket; 779 u32 maxsize = 0; 780 u32 offset = 0; 781 u32 mask = 0; 782 int i; 783 784 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 785 786 hs_ep->desc_count = (len / maxsize) + 787 ((len % maxsize) ? 1 : 0); 788 if (len == 0) 789 hs_ep->desc_count = 1; 790 791 for (i = 0; i < hs_ep->desc_count; ++i) { 792 (*desc)->status = 0; 793 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 794 << DEV_DMA_BUFF_STS_SHIFT); 795 796 if (len > maxsize) { 797 if (!hs_ep->index && !dir_in) 798 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 799 800 (*desc)->status |= 801 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 802 (*desc)->buf = dma_buff + offset; 803 804 len -= maxsize; 805 offset += maxsize; 806 } else { 807 if (true_last) 808 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 809 810 if (dir_in) 811 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 812 ((hs_ep->send_zlp && true_last) ? 813 DEV_DMA_SHORT : 0); 814 815 (*desc)->status |= 816 len << DEV_DMA_NBYTES_SHIFT & mask; 817 (*desc)->buf = dma_buff + offset; 818 } 819 820 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 821 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 822 << DEV_DMA_BUFF_STS_SHIFT); 823 (*desc)++; 824 } 825 } 826 827 /* 828 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 829 * @hs_ep: The endpoint 830 * @ureq: Request to transfer 831 * @offset: offset in bytes 832 * @len: Length of the transfer 833 * 834 * This function will iterate over descriptor chain and fill its entries 835 * with corresponding information based on transfer data. 836 */ 837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 838 dma_addr_t dma_buff, 839 unsigned int len) 840 { 841 struct usb_request *ureq = NULL; 842 struct dwc2_dma_desc *desc = hs_ep->desc_list; 843 struct scatterlist *sg; 844 int i; 845 u8 desc_count = 0; 846 847 if (hs_ep->req) 848 ureq = &hs_ep->req->req; 849 850 /* non-DMA sg buffer */ 851 if (!ureq || !ureq->num_sgs) { 852 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 853 dma_buff, len, true); 854 return; 855 } 856 857 /* DMA sg buffer */ 858 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 859 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 860 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 861 sg_is_last(sg)); 862 desc_count += hs_ep->desc_count; 863 } 864 865 hs_ep->desc_count = desc_count; 866 } 867 868 /* 869 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 870 * @hs_ep: The isochronous endpoint. 871 * @dma_buff: usb requests dma buffer. 872 * @len: usb request transfer length. 873 * 874 * Fills next free descriptor with the data of the arrived usb request, 875 * frame info, sets Last and IOC bits increments next_desc. If filled 876 * descriptor is not the first one, removes L bit from the previous descriptor 877 * status. 878 */ 879 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 880 dma_addr_t dma_buff, unsigned int len) 881 { 882 struct dwc2_dma_desc *desc; 883 struct dwc2_hsotg *hsotg = hs_ep->parent; 884 u32 index; 885 u32 maxsize = 0; 886 u32 mask = 0; 887 u8 pid = 0; 888 889 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 890 891 index = hs_ep->next_desc; 892 desc = &hs_ep->desc_list[index]; 893 894 /* Check if descriptor chain full */ 895 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 896 DEV_DMA_BUFF_STS_HREADY) { 897 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 898 return 1; 899 } 900 901 /* Clear L bit of previous desc if more than one entries in the chain */ 902 if (hs_ep->next_desc) 903 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 904 905 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 906 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 907 908 desc->status = 0; 909 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 910 911 desc->buf = dma_buff; 912 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 913 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 914 915 if (hs_ep->dir_in) { 916 if (len) 917 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 918 else 919 pid = 1; 920 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 921 DEV_DMA_ISOC_PID_MASK) | 922 ((len % hs_ep->ep.maxpacket) ? 923 DEV_DMA_SHORT : 0) | 924 ((hs_ep->target_frame << 925 DEV_DMA_ISOC_FRNUM_SHIFT) & 926 DEV_DMA_ISOC_FRNUM_MASK); 927 } 928 929 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 930 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 931 932 /* Increment frame number by interval for IN */ 933 if (hs_ep->dir_in) 934 dwc2_gadget_incr_frame_num(hs_ep); 935 936 /* Update index of last configured entry in the chain */ 937 hs_ep->next_desc++; 938 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 939 hs_ep->next_desc = 0; 940 941 return 0; 942 } 943 944 /* 945 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 946 * @hs_ep: The isochronous endpoint. 947 * 948 * Prepare descriptor chain for isochronous endpoints. Afterwards 949 * write DMA address to HW and enable the endpoint. 950 */ 951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 952 { 953 struct dwc2_hsotg *hsotg = hs_ep->parent; 954 struct dwc2_hsotg_req *hs_req, *treq; 955 int index = hs_ep->index; 956 int ret; 957 int i; 958 u32 dma_reg; 959 u32 depctl; 960 u32 ctrl; 961 struct dwc2_dma_desc *desc; 962 963 if (list_empty(&hs_ep->queue)) { 964 hs_ep->target_frame = TARGET_FRAME_INITIAL; 965 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 966 return; 967 } 968 969 /* Initialize descriptor chain by Host Busy status */ 970 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 971 desc = &hs_ep->desc_list[i]; 972 desc->status = 0; 973 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 974 << DEV_DMA_BUFF_STS_SHIFT); 975 } 976 977 hs_ep->next_desc = 0; 978 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 979 dma_addr_t dma_addr = hs_req->req.dma; 980 981 if (hs_req->req.num_sgs) { 982 WARN_ON(hs_req->req.num_sgs > 1); 983 dma_addr = sg_dma_address(hs_req->req.sg); 984 } 985 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 986 hs_req->req.length); 987 if (ret) 988 break; 989 } 990 991 hs_ep->compl_desc = 0; 992 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 993 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 994 995 /* write descriptor chain address to control register */ 996 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 997 998 ctrl = dwc2_readl(hsotg, depctl); 999 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1000 dwc2_writel(hsotg, ctrl, depctl); 1001 } 1002 1003 /** 1004 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1005 * @hsotg: The controller state. 1006 * @hs_ep: The endpoint to process a request for 1007 * @hs_req: The request to start. 1008 * @continuing: True if we are doing more for the current request. 1009 * 1010 * Start the given request running by setting the endpoint registers 1011 * appropriately, and writing any data to the FIFOs. 1012 */ 1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1014 struct dwc2_hsotg_ep *hs_ep, 1015 struct dwc2_hsotg_req *hs_req, 1016 bool continuing) 1017 { 1018 struct usb_request *ureq = &hs_req->req; 1019 int index = hs_ep->index; 1020 int dir_in = hs_ep->dir_in; 1021 u32 epctrl_reg; 1022 u32 epsize_reg; 1023 u32 epsize; 1024 u32 ctrl; 1025 unsigned int length; 1026 unsigned int packets; 1027 unsigned int maxreq; 1028 unsigned int dma_reg; 1029 1030 if (index != 0) { 1031 if (hs_ep->req && !continuing) { 1032 dev_err(hsotg->dev, "%s: active request\n", __func__); 1033 WARN_ON(1); 1034 return; 1035 } else if (hs_ep->req != hs_req && continuing) { 1036 dev_err(hsotg->dev, 1037 "%s: continue different req\n", __func__); 1038 WARN_ON(1); 1039 return; 1040 } 1041 } 1042 1043 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1044 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1045 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1046 1047 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1048 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1049 hs_ep->dir_in ? "in" : "out"); 1050 1051 /* If endpoint is stalled, we will restart request later */ 1052 ctrl = dwc2_readl(hsotg, epctrl_reg); 1053 1054 if (index && ctrl & DXEPCTL_STALL) { 1055 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1056 return; 1057 } 1058 1059 length = ureq->length - ureq->actual; 1060 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1061 ureq->length, ureq->actual); 1062 1063 if (!using_desc_dma(hsotg)) 1064 maxreq = get_ep_limit(hs_ep); 1065 else 1066 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1067 1068 if (length > maxreq) { 1069 int round = maxreq % hs_ep->ep.maxpacket; 1070 1071 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1072 __func__, length, maxreq, round); 1073 1074 /* round down to multiple of packets */ 1075 if (round) 1076 maxreq -= round; 1077 1078 length = maxreq; 1079 } 1080 1081 if (length) 1082 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1083 else 1084 packets = 1; /* send one packet if length is zero. */ 1085 1086 if (dir_in && index != 0) 1087 if (hs_ep->isochronous) 1088 epsize = DXEPTSIZ_MC(packets); 1089 else 1090 epsize = DXEPTSIZ_MC(1); 1091 else 1092 epsize = 0; 1093 1094 /* 1095 * zero length packet should be programmed on its own and should not 1096 * be counted in DIEPTSIZ.PktCnt with other packets. 1097 */ 1098 if (dir_in && ureq->zero && !continuing) { 1099 /* Test if zlp is actually required. */ 1100 if ((ureq->length >= hs_ep->ep.maxpacket) && 1101 !(ureq->length % hs_ep->ep.maxpacket)) 1102 hs_ep->send_zlp = 1; 1103 } 1104 1105 epsize |= DXEPTSIZ_PKTCNT(packets); 1106 epsize |= DXEPTSIZ_XFERSIZE(length); 1107 1108 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1109 __func__, packets, length, ureq->length, epsize, epsize_reg); 1110 1111 /* store the request as the current one we're doing */ 1112 hs_ep->req = hs_req; 1113 1114 if (using_desc_dma(hsotg)) { 1115 u32 offset = 0; 1116 u32 mps = hs_ep->ep.maxpacket; 1117 1118 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1119 if (!dir_in) { 1120 if (!index) 1121 length = mps; 1122 else if (length % mps) 1123 length += (mps - (length % mps)); 1124 } 1125 1126 /* 1127 * If more data to send, adjust DMA for EP0 out data stage. 1128 * ureq->dma stays unchanged, hence increment it by already 1129 * passed passed data count before starting new transaction. 1130 */ 1131 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1132 continuing) 1133 offset = ureq->actual; 1134 1135 /* Fill DDMA chain entries */ 1136 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1137 length); 1138 1139 /* write descriptor chain address to control register */ 1140 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1141 1142 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1143 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1144 } else { 1145 /* write size / packets */ 1146 dwc2_writel(hsotg, epsize, epsize_reg); 1147 1148 if (using_dma(hsotg) && !continuing && (length != 0)) { 1149 /* 1150 * write DMA address to control register, buffer 1151 * already synced by dwc2_hsotg_ep_queue(). 1152 */ 1153 1154 dwc2_writel(hsotg, ureq->dma, dma_reg); 1155 1156 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1157 __func__, &ureq->dma, dma_reg); 1158 } 1159 } 1160 1161 if (hs_ep->isochronous && hs_ep->interval == 1) { 1162 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1163 dwc2_gadget_incr_frame_num(hs_ep); 1164 1165 if (hs_ep->target_frame & 0x1) 1166 ctrl |= DXEPCTL_SETODDFR; 1167 else 1168 ctrl |= DXEPCTL_SETEVENFR; 1169 } 1170 1171 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1172 1173 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1174 1175 /* For Setup request do not clear NAK */ 1176 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1177 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1178 1179 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1180 dwc2_writel(hsotg, ctrl, epctrl_reg); 1181 1182 /* 1183 * set these, it seems that DMA support increments past the end 1184 * of the packet buffer so we need to calculate the length from 1185 * this information. 1186 */ 1187 hs_ep->size_loaded = length; 1188 hs_ep->last_load = ureq->actual; 1189 1190 if (dir_in && !using_dma(hsotg)) { 1191 /* set these anyway, we may need them for non-periodic in */ 1192 hs_ep->fifo_load = 0; 1193 1194 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1195 } 1196 1197 /* 1198 * Note, trying to clear the NAK here causes problems with transmit 1199 * on the S3C6400 ending up with the TXFIFO becoming full. 1200 */ 1201 1202 /* check ep is enabled */ 1203 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1204 dev_dbg(hsotg->dev, 1205 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1206 index, dwc2_readl(hsotg, epctrl_reg)); 1207 1208 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1209 __func__, dwc2_readl(hsotg, epctrl_reg)); 1210 1211 /* enable ep interrupts */ 1212 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1213 } 1214 1215 /** 1216 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1217 * @hsotg: The device state. 1218 * @hs_ep: The endpoint the request is on. 1219 * @req: The request being processed. 1220 * 1221 * We've been asked to queue a request, so ensure that the memory buffer 1222 * is correctly setup for DMA. If we've been passed an extant DMA address 1223 * then ensure the buffer has been synced to memory. If our buffer has no 1224 * DMA memory, then we map the memory and mark our request to allow us to 1225 * cleanup on completion. 1226 */ 1227 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1228 struct dwc2_hsotg_ep *hs_ep, 1229 struct usb_request *req) 1230 { 1231 int ret; 1232 1233 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1234 if (ret) 1235 goto dma_error; 1236 1237 return 0; 1238 1239 dma_error: 1240 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1241 __func__, req->buf, req->length); 1242 1243 return -EIO; 1244 } 1245 1246 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1247 struct dwc2_hsotg_ep *hs_ep, 1248 struct dwc2_hsotg_req *hs_req) 1249 { 1250 void *req_buf = hs_req->req.buf; 1251 1252 /* If dma is not being used or buffer is aligned */ 1253 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1254 return 0; 1255 1256 WARN_ON(hs_req->saved_req_buf); 1257 1258 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1259 hs_ep->ep.name, req_buf, hs_req->req.length); 1260 1261 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1262 if (!hs_req->req.buf) { 1263 hs_req->req.buf = req_buf; 1264 dev_err(hsotg->dev, 1265 "%s: unable to allocate memory for bounce buffer\n", 1266 __func__); 1267 return -ENOMEM; 1268 } 1269 1270 /* Save actual buffer */ 1271 hs_req->saved_req_buf = req_buf; 1272 1273 if (hs_ep->dir_in) 1274 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1275 return 0; 1276 } 1277 1278 static void 1279 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1280 struct dwc2_hsotg_ep *hs_ep, 1281 struct dwc2_hsotg_req *hs_req) 1282 { 1283 /* If dma is not being used or buffer was aligned */ 1284 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1285 return; 1286 1287 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1288 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1289 1290 /* Copy data from bounce buffer on successful out transfer */ 1291 if (!hs_ep->dir_in && !hs_req->req.status) 1292 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1293 hs_req->req.actual); 1294 1295 /* Free bounce buffer */ 1296 kfree(hs_req->req.buf); 1297 1298 hs_req->req.buf = hs_req->saved_req_buf; 1299 hs_req->saved_req_buf = NULL; 1300 } 1301 1302 /** 1303 * dwc2_gadget_target_frame_elapsed - Checks target frame 1304 * @hs_ep: The driver endpoint to check 1305 * 1306 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1307 * corresponding transfer. 1308 */ 1309 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1310 { 1311 struct dwc2_hsotg *hsotg = hs_ep->parent; 1312 u32 target_frame = hs_ep->target_frame; 1313 u32 current_frame = hsotg->frame_number; 1314 bool frame_overrun = hs_ep->frame_overrun; 1315 1316 if (!frame_overrun && current_frame >= target_frame) 1317 return true; 1318 1319 if (frame_overrun && current_frame >= target_frame && 1320 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1321 return true; 1322 1323 return false; 1324 } 1325 1326 /* 1327 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1328 * @hsotg: The driver state 1329 * @hs_ep: the ep descriptor chain is for 1330 * 1331 * Called to update EP0 structure's pointers depend on stage of 1332 * control transfer. 1333 */ 1334 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1335 struct dwc2_hsotg_ep *hs_ep) 1336 { 1337 switch (hsotg->ep0_state) { 1338 case DWC2_EP0_SETUP: 1339 case DWC2_EP0_STATUS_OUT: 1340 hs_ep->desc_list = hsotg->setup_desc[0]; 1341 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1342 break; 1343 case DWC2_EP0_DATA_IN: 1344 case DWC2_EP0_STATUS_IN: 1345 hs_ep->desc_list = hsotg->ctrl_in_desc; 1346 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1347 break; 1348 case DWC2_EP0_DATA_OUT: 1349 hs_ep->desc_list = hsotg->ctrl_out_desc; 1350 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1351 break; 1352 default: 1353 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1354 hsotg->ep0_state); 1355 return -EINVAL; 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1362 gfp_t gfp_flags) 1363 { 1364 struct dwc2_hsotg_req *hs_req = our_req(req); 1365 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1366 struct dwc2_hsotg *hs = hs_ep->parent; 1367 bool first; 1368 int ret; 1369 u32 maxsize = 0; 1370 u32 mask = 0; 1371 1372 1373 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1374 ep->name, req, req->length, req->buf, req->no_interrupt, 1375 req->zero, req->short_not_ok); 1376 1377 /* Prevent new request submission when controller is suspended */ 1378 if (hs->lx_state != DWC2_L0) { 1379 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1380 __func__); 1381 return -EAGAIN; 1382 } 1383 1384 /* initialise status of the request */ 1385 INIT_LIST_HEAD(&hs_req->queue); 1386 req->actual = 0; 1387 req->status = -EINPROGRESS; 1388 1389 /* Don't queue ISOC request if length greater than mps*mc */ 1390 if (hs_ep->isochronous && 1391 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1392 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1393 return -EINVAL; 1394 } 1395 1396 /* In DDMA mode for ISOC's don't queue request if length greater 1397 * than descriptor limits. 1398 */ 1399 if (using_desc_dma(hs) && hs_ep->isochronous) { 1400 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1401 if (hs_ep->dir_in && req->length > maxsize) { 1402 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1403 req->length, maxsize); 1404 return -EINVAL; 1405 } 1406 1407 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1408 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1409 req->length, hs_ep->ep.maxpacket); 1410 return -EINVAL; 1411 } 1412 } 1413 1414 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1415 if (ret) 1416 return ret; 1417 1418 /* if we're using DMA, sync the buffers as necessary */ 1419 if (using_dma(hs)) { 1420 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1421 if (ret) 1422 return ret; 1423 } 1424 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1425 if (using_desc_dma(hs) && !hs_ep->index) { 1426 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1427 if (ret) 1428 return ret; 1429 } 1430 1431 first = list_empty(&hs_ep->queue); 1432 list_add_tail(&hs_req->queue, &hs_ep->queue); 1433 1434 /* 1435 * Handle DDMA isochronous transfers separately - just add new entry 1436 * to the descriptor chain. 1437 * Transfer will be started once SW gets either one of NAK or 1438 * OutTknEpDis interrupts. 1439 */ 1440 if (using_desc_dma(hs) && hs_ep->isochronous) { 1441 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1442 dma_addr_t dma_addr = hs_req->req.dma; 1443 1444 if (hs_req->req.num_sgs) { 1445 WARN_ON(hs_req->req.num_sgs > 1); 1446 dma_addr = sg_dma_address(hs_req->req.sg); 1447 } 1448 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1449 hs_req->req.length); 1450 } 1451 return 0; 1452 } 1453 1454 /* Change EP direction if status phase request is after data out */ 1455 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1456 hs->ep0_state == DWC2_EP0_DATA_OUT) 1457 hs_ep->dir_in = 1; 1458 1459 if (first) { 1460 if (!hs_ep->isochronous) { 1461 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1462 return 0; 1463 } 1464 1465 /* Update current frame number value. */ 1466 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1467 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1468 dwc2_gadget_incr_frame_num(hs_ep); 1469 /* Update current frame number value once more as it 1470 * changes here. 1471 */ 1472 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1473 } 1474 1475 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1476 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1477 } 1478 return 0; 1479 } 1480 1481 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1482 gfp_t gfp_flags) 1483 { 1484 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1485 struct dwc2_hsotg *hs = hs_ep->parent; 1486 unsigned long flags = 0; 1487 int ret = 0; 1488 1489 spin_lock_irqsave(&hs->lock, flags); 1490 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1491 spin_unlock_irqrestore(&hs->lock, flags); 1492 1493 return ret; 1494 } 1495 1496 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1497 struct usb_request *req) 1498 { 1499 struct dwc2_hsotg_req *hs_req = our_req(req); 1500 1501 kfree(hs_req); 1502 } 1503 1504 /** 1505 * dwc2_hsotg_complete_oursetup - setup completion callback 1506 * @ep: The endpoint the request was on. 1507 * @req: The request completed. 1508 * 1509 * Called on completion of any requests the driver itself 1510 * submitted that need cleaning up. 1511 */ 1512 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1513 struct usb_request *req) 1514 { 1515 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1516 struct dwc2_hsotg *hsotg = hs_ep->parent; 1517 1518 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1519 1520 dwc2_hsotg_ep_free_request(ep, req); 1521 } 1522 1523 /** 1524 * ep_from_windex - convert control wIndex value to endpoint 1525 * @hsotg: The driver state. 1526 * @windex: The control request wIndex field (in host order). 1527 * 1528 * Convert the given wIndex into a pointer to an driver endpoint 1529 * structure, or return NULL if it is not a valid endpoint. 1530 */ 1531 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1532 u32 windex) 1533 { 1534 struct dwc2_hsotg_ep *ep; 1535 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1536 int idx = windex & 0x7F; 1537 1538 if (windex >= 0x100) 1539 return NULL; 1540 1541 if (idx > hsotg->num_of_eps) 1542 return NULL; 1543 1544 ep = index_to_ep(hsotg, idx, dir); 1545 1546 if (idx && ep->dir_in != dir) 1547 return NULL; 1548 1549 return ep; 1550 } 1551 1552 /** 1553 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1554 * @hsotg: The driver state. 1555 * @testmode: requested usb test mode 1556 * Enable usb Test Mode requested by the Host. 1557 */ 1558 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1559 { 1560 int dctl = dwc2_readl(hsotg, DCTL); 1561 1562 dctl &= ~DCTL_TSTCTL_MASK; 1563 switch (testmode) { 1564 case TEST_J: 1565 case TEST_K: 1566 case TEST_SE0_NAK: 1567 case TEST_PACKET: 1568 case TEST_FORCE_EN: 1569 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1570 break; 1571 default: 1572 return -EINVAL; 1573 } 1574 dwc2_writel(hsotg, dctl, DCTL); 1575 return 0; 1576 } 1577 1578 /** 1579 * dwc2_hsotg_send_reply - send reply to control request 1580 * @hsotg: The device state 1581 * @ep: Endpoint 0 1582 * @buff: Buffer for request 1583 * @length: Length of reply. 1584 * 1585 * Create a request and queue it on the given endpoint. This is useful as 1586 * an internal method of sending replies to certain control requests, etc. 1587 */ 1588 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1589 struct dwc2_hsotg_ep *ep, 1590 void *buff, 1591 int length) 1592 { 1593 struct usb_request *req; 1594 int ret; 1595 1596 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1597 1598 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1599 hsotg->ep0_reply = req; 1600 if (!req) { 1601 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1602 return -ENOMEM; 1603 } 1604 1605 req->buf = hsotg->ep0_buff; 1606 req->length = length; 1607 /* 1608 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1609 * STATUS stage. 1610 */ 1611 req->zero = 0; 1612 req->complete = dwc2_hsotg_complete_oursetup; 1613 1614 if (length) 1615 memcpy(req->buf, buff, length); 1616 1617 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1618 if (ret) { 1619 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1620 return ret; 1621 } 1622 1623 return 0; 1624 } 1625 1626 /** 1627 * dwc2_hsotg_process_req_status - process request GET_STATUS 1628 * @hsotg: The device state 1629 * @ctrl: USB control request 1630 */ 1631 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1632 struct usb_ctrlrequest *ctrl) 1633 { 1634 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1635 struct dwc2_hsotg_ep *ep; 1636 __le16 reply; 1637 u16 status; 1638 int ret; 1639 1640 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1641 1642 if (!ep0->dir_in) { 1643 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1644 return -EINVAL; 1645 } 1646 1647 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1648 case USB_RECIP_DEVICE: 1649 status = hsotg->gadget.is_selfpowered << 1650 USB_DEVICE_SELF_POWERED; 1651 status |= hsotg->remote_wakeup_allowed << 1652 USB_DEVICE_REMOTE_WAKEUP; 1653 reply = cpu_to_le16(status); 1654 break; 1655 1656 case USB_RECIP_INTERFACE: 1657 /* currently, the data result should be zero */ 1658 reply = cpu_to_le16(0); 1659 break; 1660 1661 case USB_RECIP_ENDPOINT: 1662 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1663 if (!ep) 1664 return -ENOENT; 1665 1666 reply = cpu_to_le16(ep->halted ? 1 : 0); 1667 break; 1668 1669 default: 1670 return 0; 1671 } 1672 1673 if (le16_to_cpu(ctrl->wLength) != 2) 1674 return -EINVAL; 1675 1676 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1677 if (ret) { 1678 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1679 return ret; 1680 } 1681 1682 return 1; 1683 } 1684 1685 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1686 1687 /** 1688 * get_ep_head - return the first request on the endpoint 1689 * @hs_ep: The controller endpoint to get 1690 * 1691 * Get the first request on the endpoint. 1692 */ 1693 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1694 { 1695 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1696 queue); 1697 } 1698 1699 /** 1700 * dwc2_gadget_start_next_request - Starts next request from ep queue 1701 * @hs_ep: Endpoint structure 1702 * 1703 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1704 * in its handler. Hence we need to unmask it here to be able to do 1705 * resynchronization. 1706 */ 1707 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1708 { 1709 u32 mask; 1710 struct dwc2_hsotg *hsotg = hs_ep->parent; 1711 int dir_in = hs_ep->dir_in; 1712 struct dwc2_hsotg_req *hs_req; 1713 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1714 1715 if (!list_empty(&hs_ep->queue)) { 1716 hs_req = get_ep_head(hs_ep); 1717 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1718 return; 1719 } 1720 if (!hs_ep->isochronous) 1721 return; 1722 1723 if (dir_in) { 1724 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1725 __func__); 1726 } else { 1727 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1728 __func__); 1729 mask = dwc2_readl(hsotg, epmsk_reg); 1730 mask |= DOEPMSK_OUTTKNEPDISMSK; 1731 dwc2_writel(hsotg, mask, epmsk_reg); 1732 } 1733 } 1734 1735 /** 1736 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1737 * @hsotg: The device state 1738 * @ctrl: USB control request 1739 */ 1740 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1741 struct usb_ctrlrequest *ctrl) 1742 { 1743 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1744 struct dwc2_hsotg_req *hs_req; 1745 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1746 struct dwc2_hsotg_ep *ep; 1747 int ret; 1748 bool halted; 1749 u32 recip; 1750 u32 wValue; 1751 u32 wIndex; 1752 1753 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1754 __func__, set ? "SET" : "CLEAR"); 1755 1756 wValue = le16_to_cpu(ctrl->wValue); 1757 wIndex = le16_to_cpu(ctrl->wIndex); 1758 recip = ctrl->bRequestType & USB_RECIP_MASK; 1759 1760 switch (recip) { 1761 case USB_RECIP_DEVICE: 1762 switch (wValue) { 1763 case USB_DEVICE_REMOTE_WAKEUP: 1764 if (set) 1765 hsotg->remote_wakeup_allowed = 1; 1766 else 1767 hsotg->remote_wakeup_allowed = 0; 1768 break; 1769 1770 case USB_DEVICE_TEST_MODE: 1771 if ((wIndex & 0xff) != 0) 1772 return -EINVAL; 1773 if (!set) 1774 return -EINVAL; 1775 1776 hsotg->test_mode = wIndex >> 8; 1777 break; 1778 default: 1779 return -ENOENT; 1780 } 1781 1782 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1783 if (ret) { 1784 dev_err(hsotg->dev, 1785 "%s: failed to send reply\n", __func__); 1786 return ret; 1787 } 1788 break; 1789 1790 case USB_RECIP_ENDPOINT: 1791 ep = ep_from_windex(hsotg, wIndex); 1792 if (!ep) { 1793 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1794 __func__, wIndex); 1795 return -ENOENT; 1796 } 1797 1798 switch (wValue) { 1799 case USB_ENDPOINT_HALT: 1800 halted = ep->halted; 1801 1802 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1803 1804 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1805 if (ret) { 1806 dev_err(hsotg->dev, 1807 "%s: failed to send reply\n", __func__); 1808 return ret; 1809 } 1810 1811 /* 1812 * we have to complete all requests for ep if it was 1813 * halted, and the halt was cleared by CLEAR_FEATURE 1814 */ 1815 1816 if (!set && halted) { 1817 /* 1818 * If we have request in progress, 1819 * then complete it 1820 */ 1821 if (ep->req) { 1822 hs_req = ep->req; 1823 ep->req = NULL; 1824 list_del_init(&hs_req->queue); 1825 if (hs_req->req.complete) { 1826 spin_unlock(&hsotg->lock); 1827 usb_gadget_giveback_request( 1828 &ep->ep, &hs_req->req); 1829 spin_lock(&hsotg->lock); 1830 } 1831 } 1832 1833 /* If we have pending request, then start it */ 1834 if (!ep->req) 1835 dwc2_gadget_start_next_request(ep); 1836 } 1837 1838 break; 1839 1840 default: 1841 return -ENOENT; 1842 } 1843 break; 1844 default: 1845 return -ENOENT; 1846 } 1847 return 1; 1848 } 1849 1850 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1851 1852 /** 1853 * dwc2_hsotg_stall_ep0 - stall ep0 1854 * @hsotg: The device state 1855 * 1856 * Set stall for ep0 as response for setup request. 1857 */ 1858 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1859 { 1860 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1861 u32 reg; 1862 u32 ctrl; 1863 1864 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1865 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1866 1867 /* 1868 * DxEPCTL_Stall will be cleared by EP once it has 1869 * taken effect, so no need to clear later. 1870 */ 1871 1872 ctrl = dwc2_readl(hsotg, reg); 1873 ctrl |= DXEPCTL_STALL; 1874 ctrl |= DXEPCTL_CNAK; 1875 dwc2_writel(hsotg, ctrl, reg); 1876 1877 dev_dbg(hsotg->dev, 1878 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1879 ctrl, reg, dwc2_readl(hsotg, reg)); 1880 1881 /* 1882 * complete won't be called, so we enqueue 1883 * setup request here 1884 */ 1885 dwc2_hsotg_enqueue_setup(hsotg); 1886 } 1887 1888 /** 1889 * dwc2_hsotg_process_control - process a control request 1890 * @hsotg: The device state 1891 * @ctrl: The control request received 1892 * 1893 * The controller has received the SETUP phase of a control request, and 1894 * needs to work out what to do next (and whether to pass it on to the 1895 * gadget driver). 1896 */ 1897 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1898 struct usb_ctrlrequest *ctrl) 1899 { 1900 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1901 int ret = 0; 1902 u32 dcfg; 1903 1904 dev_dbg(hsotg->dev, 1905 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1906 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1907 ctrl->wIndex, ctrl->wLength); 1908 1909 if (ctrl->wLength == 0) { 1910 ep0->dir_in = 1; 1911 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1912 } else if (ctrl->bRequestType & USB_DIR_IN) { 1913 ep0->dir_in = 1; 1914 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1915 } else { 1916 ep0->dir_in = 0; 1917 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1918 } 1919 1920 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1921 switch (ctrl->bRequest) { 1922 case USB_REQ_SET_ADDRESS: 1923 hsotg->connected = 1; 1924 dcfg = dwc2_readl(hsotg, DCFG); 1925 dcfg &= ~DCFG_DEVADDR_MASK; 1926 dcfg |= (le16_to_cpu(ctrl->wValue) << 1927 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1928 dwc2_writel(hsotg, dcfg, DCFG); 1929 1930 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1931 1932 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1933 return; 1934 1935 case USB_REQ_GET_STATUS: 1936 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1937 break; 1938 1939 case USB_REQ_CLEAR_FEATURE: 1940 case USB_REQ_SET_FEATURE: 1941 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1942 break; 1943 } 1944 } 1945 1946 /* as a fallback, try delivering it to the driver to deal with */ 1947 1948 if (ret == 0 && hsotg->driver) { 1949 spin_unlock(&hsotg->lock); 1950 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1951 spin_lock(&hsotg->lock); 1952 if (ret < 0) 1953 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1954 } 1955 1956 hsotg->delayed_status = false; 1957 if (ret == USB_GADGET_DELAYED_STATUS) 1958 hsotg->delayed_status = true; 1959 1960 /* 1961 * the request is either unhandlable, or is not formatted correctly 1962 * so respond with a STALL for the status stage to indicate failure. 1963 */ 1964 1965 if (ret < 0) 1966 dwc2_hsotg_stall_ep0(hsotg); 1967 } 1968 1969 /** 1970 * dwc2_hsotg_complete_setup - completion of a setup transfer 1971 * @ep: The endpoint the request was on. 1972 * @req: The request completed. 1973 * 1974 * Called on completion of any requests the driver itself submitted for 1975 * EP0 setup packets 1976 */ 1977 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1978 struct usb_request *req) 1979 { 1980 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1981 struct dwc2_hsotg *hsotg = hs_ep->parent; 1982 1983 if (req->status < 0) { 1984 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1985 return; 1986 } 1987 1988 spin_lock(&hsotg->lock); 1989 if (req->actual == 0) 1990 dwc2_hsotg_enqueue_setup(hsotg); 1991 else 1992 dwc2_hsotg_process_control(hsotg, req->buf); 1993 spin_unlock(&hsotg->lock); 1994 } 1995 1996 /** 1997 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1998 * @hsotg: The device state. 1999 * 2000 * Enqueue a request on EP0 if necessary to received any SETUP packets 2001 * received from the host. 2002 */ 2003 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2004 { 2005 struct usb_request *req = hsotg->ctrl_req; 2006 struct dwc2_hsotg_req *hs_req = our_req(req); 2007 int ret; 2008 2009 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2010 2011 req->zero = 0; 2012 req->length = 8; 2013 req->buf = hsotg->ctrl_buff; 2014 req->complete = dwc2_hsotg_complete_setup; 2015 2016 if (!list_empty(&hs_req->queue)) { 2017 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2018 return; 2019 } 2020 2021 hsotg->eps_out[0]->dir_in = 0; 2022 hsotg->eps_out[0]->send_zlp = 0; 2023 hsotg->ep0_state = DWC2_EP0_SETUP; 2024 2025 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2026 if (ret < 0) { 2027 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2028 /* 2029 * Don't think there's much we can do other than watch the 2030 * driver fail. 2031 */ 2032 } 2033 } 2034 2035 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2036 struct dwc2_hsotg_ep *hs_ep) 2037 { 2038 u32 ctrl; 2039 u8 index = hs_ep->index; 2040 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2041 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2042 2043 if (hs_ep->dir_in) 2044 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2045 index); 2046 else 2047 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2048 index); 2049 if (using_desc_dma(hsotg)) { 2050 /* Not specific buffer needed for ep0 ZLP */ 2051 dma_addr_t dma = hs_ep->desc_list_dma; 2052 2053 if (!index) 2054 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2055 2056 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2057 } else { 2058 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2059 DXEPTSIZ_XFERSIZE(0), 2060 epsiz_reg); 2061 } 2062 2063 ctrl = dwc2_readl(hsotg, epctl_reg); 2064 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2065 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2066 ctrl |= DXEPCTL_USBACTEP; 2067 dwc2_writel(hsotg, ctrl, epctl_reg); 2068 } 2069 2070 /** 2071 * dwc2_hsotg_complete_request - complete a request given to us 2072 * @hsotg: The device state. 2073 * @hs_ep: The endpoint the request was on. 2074 * @hs_req: The request to complete. 2075 * @result: The result code (0 => Ok, otherwise errno) 2076 * 2077 * The given request has finished, so call the necessary completion 2078 * if it has one and then look to see if we can start a new request 2079 * on the endpoint. 2080 * 2081 * Note, expects the ep to already be locked as appropriate. 2082 */ 2083 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2084 struct dwc2_hsotg_ep *hs_ep, 2085 struct dwc2_hsotg_req *hs_req, 2086 int result) 2087 { 2088 if (!hs_req) { 2089 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2090 return; 2091 } 2092 2093 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2094 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2095 2096 /* 2097 * only replace the status if we've not already set an error 2098 * from a previous transaction 2099 */ 2100 2101 if (hs_req->req.status == -EINPROGRESS) 2102 hs_req->req.status = result; 2103 2104 if (using_dma(hsotg)) 2105 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2106 2107 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2108 2109 hs_ep->req = NULL; 2110 list_del_init(&hs_req->queue); 2111 2112 /* 2113 * call the complete request with the locks off, just in case the 2114 * request tries to queue more work for this endpoint. 2115 */ 2116 2117 if (hs_req->req.complete) { 2118 spin_unlock(&hsotg->lock); 2119 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2120 spin_lock(&hsotg->lock); 2121 } 2122 2123 /* In DDMA don't need to proceed to starting of next ISOC request */ 2124 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2125 return; 2126 2127 /* 2128 * Look to see if there is anything else to do. Note, the completion 2129 * of the previous request may have caused a new request to be started 2130 * so be careful when doing this. 2131 */ 2132 2133 if (!hs_ep->req && result >= 0) 2134 dwc2_gadget_start_next_request(hs_ep); 2135 } 2136 2137 /* 2138 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2139 * @hs_ep: The endpoint the request was on. 2140 * 2141 * Get first request from the ep queue, determine descriptor on which complete 2142 * happened. SW discovers which descriptor currently in use by HW, adjusts 2143 * dma_address and calculates index of completed descriptor based on the value 2144 * of DEPDMA register. Update actual length of request, giveback to gadget. 2145 */ 2146 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2147 { 2148 struct dwc2_hsotg *hsotg = hs_ep->parent; 2149 struct dwc2_hsotg_req *hs_req; 2150 struct usb_request *ureq; 2151 u32 desc_sts; 2152 u32 mask; 2153 2154 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2155 2156 /* Process only descriptors with buffer status set to DMA done */ 2157 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2158 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2159 2160 hs_req = get_ep_head(hs_ep); 2161 if (!hs_req) { 2162 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2163 return; 2164 } 2165 ureq = &hs_req->req; 2166 2167 /* Check completion status */ 2168 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2169 DEV_DMA_STS_SUCC) { 2170 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2171 DEV_DMA_ISOC_RX_NBYTES_MASK; 2172 ureq->actual = ureq->length - ((desc_sts & mask) >> 2173 DEV_DMA_ISOC_NBYTES_SHIFT); 2174 2175 /* Adjust actual len for ISOC Out if len is 2176 * not align of 4 2177 */ 2178 if (!hs_ep->dir_in && ureq->length & 0x3) 2179 ureq->actual += 4 - (ureq->length & 0x3); 2180 2181 /* Set actual frame number for completed transfers */ 2182 ureq->frame_number = 2183 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2184 DEV_DMA_ISOC_FRNUM_SHIFT; 2185 } 2186 2187 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2188 2189 hs_ep->compl_desc++; 2190 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2191 hs_ep->compl_desc = 0; 2192 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2193 } 2194 } 2195 2196 /* 2197 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2198 * @hs_ep: The isochronous endpoint. 2199 * 2200 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2201 * interrupt. Reset target frame and next_desc to allow to start 2202 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2203 * interrupt for OUT direction. 2204 */ 2205 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2206 { 2207 struct dwc2_hsotg *hsotg = hs_ep->parent; 2208 2209 if (!hs_ep->dir_in) 2210 dwc2_flush_rx_fifo(hsotg); 2211 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2212 2213 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2214 hs_ep->next_desc = 0; 2215 hs_ep->compl_desc = 0; 2216 } 2217 2218 /** 2219 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2220 * @hsotg: The device state. 2221 * @ep_idx: The endpoint index for the data 2222 * @size: The size of data in the fifo, in bytes 2223 * 2224 * The FIFO status shows there is data to read from the FIFO for a given 2225 * endpoint, so sort out whether we need to read the data into a request 2226 * that has been made for that endpoint. 2227 */ 2228 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2229 { 2230 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2231 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2232 int to_read; 2233 int max_req; 2234 int read_ptr; 2235 2236 if (!hs_req) { 2237 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2238 int ptr; 2239 2240 dev_dbg(hsotg->dev, 2241 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2242 __func__, size, ep_idx, epctl); 2243 2244 /* dump the data from the FIFO, we've nothing we can do */ 2245 for (ptr = 0; ptr < size; ptr += 4) 2246 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2247 2248 return; 2249 } 2250 2251 to_read = size; 2252 read_ptr = hs_req->req.actual; 2253 max_req = hs_req->req.length - read_ptr; 2254 2255 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2256 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2257 2258 if (to_read > max_req) { 2259 /* 2260 * more data appeared than we where willing 2261 * to deal with in this request. 2262 */ 2263 2264 /* currently we don't deal this */ 2265 WARN_ON_ONCE(1); 2266 } 2267 2268 hs_ep->total_data += to_read; 2269 hs_req->req.actual += to_read; 2270 to_read = DIV_ROUND_UP(to_read, 4); 2271 2272 /* 2273 * note, we might over-write the buffer end by 3 bytes depending on 2274 * alignment of the data. 2275 */ 2276 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2277 hs_req->req.buf + read_ptr, to_read); 2278 } 2279 2280 /** 2281 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2282 * @hsotg: The device instance 2283 * @dir_in: If IN zlp 2284 * 2285 * Generate a zero-length IN packet request for terminating a SETUP 2286 * transaction. 2287 * 2288 * Note, since we don't write any data to the TxFIFO, then it is 2289 * currently believed that we do not need to wait for any space in 2290 * the TxFIFO. 2291 */ 2292 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2293 { 2294 /* eps_out[0] is used in both directions */ 2295 hsotg->eps_out[0]->dir_in = dir_in; 2296 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2297 2298 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2299 } 2300 2301 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2302 u32 epctl_reg) 2303 { 2304 u32 ctrl; 2305 2306 ctrl = dwc2_readl(hsotg, epctl_reg); 2307 if (ctrl & DXEPCTL_EOFRNUM) 2308 ctrl |= DXEPCTL_SETEVENFR; 2309 else 2310 ctrl |= DXEPCTL_SETODDFR; 2311 dwc2_writel(hsotg, ctrl, epctl_reg); 2312 } 2313 2314 /* 2315 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2316 * @hs_ep - The endpoint on which transfer went 2317 * 2318 * Iterate over endpoints descriptor chain and get info on bytes remained 2319 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2320 */ 2321 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2322 { 2323 struct dwc2_hsotg *hsotg = hs_ep->parent; 2324 unsigned int bytes_rem = 0; 2325 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2326 int i; 2327 u32 status; 2328 2329 if (!desc) 2330 return -EINVAL; 2331 2332 for (i = 0; i < hs_ep->desc_count; ++i) { 2333 status = desc->status; 2334 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2335 2336 if (status & DEV_DMA_STS_MASK) 2337 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2338 i, status & DEV_DMA_STS_MASK); 2339 desc++; 2340 } 2341 2342 return bytes_rem; 2343 } 2344 2345 /** 2346 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2347 * @hsotg: The device instance 2348 * @epnum: The endpoint received from 2349 * 2350 * The RXFIFO has delivered an OutDone event, which means that the data 2351 * transfer for an OUT endpoint has been completed, either by a short 2352 * packet or by the finish of a transfer. 2353 */ 2354 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2355 { 2356 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2357 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2358 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2359 struct usb_request *req = &hs_req->req; 2360 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2361 int result = 0; 2362 2363 if (!hs_req) { 2364 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2365 return; 2366 } 2367 2368 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2369 dev_dbg(hsotg->dev, "zlp packet received\n"); 2370 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2371 dwc2_hsotg_enqueue_setup(hsotg); 2372 return; 2373 } 2374 2375 if (using_desc_dma(hsotg)) 2376 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2377 2378 if (using_dma(hsotg)) { 2379 unsigned int size_done; 2380 2381 /* 2382 * Calculate the size of the transfer by checking how much 2383 * is left in the endpoint size register and then working it 2384 * out from the amount we loaded for the transfer. 2385 * 2386 * We need to do this as DMA pointers are always 32bit aligned 2387 * so may overshoot/undershoot the transfer. 2388 */ 2389 2390 size_done = hs_ep->size_loaded - size_left; 2391 size_done += hs_ep->last_load; 2392 2393 req->actual = size_done; 2394 } 2395 2396 /* if there is more request to do, schedule new transfer */ 2397 if (req->actual < req->length && size_left == 0) { 2398 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2399 return; 2400 } 2401 2402 if (req->actual < req->length && req->short_not_ok) { 2403 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2404 __func__, req->actual, req->length); 2405 2406 /* 2407 * todo - what should we return here? there's no one else 2408 * even bothering to check the status. 2409 */ 2410 } 2411 2412 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2413 if (!using_desc_dma(hsotg) && epnum == 0 && 2414 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2415 /* Move to STATUS IN */ 2416 if (!hsotg->delayed_status) 2417 dwc2_hsotg_ep0_zlp(hsotg, true); 2418 } 2419 2420 /* 2421 * Slave mode OUT transfers do not go through XferComplete so 2422 * adjust the ISOC parity here. 2423 */ 2424 if (!using_dma(hsotg)) { 2425 if (hs_ep->isochronous && hs_ep->interval == 1) 2426 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2427 else if (hs_ep->isochronous && hs_ep->interval > 1) 2428 dwc2_gadget_incr_frame_num(hs_ep); 2429 } 2430 2431 /* Set actual frame number for completed transfers */ 2432 if (!using_desc_dma(hsotg) && hs_ep->isochronous) 2433 req->frame_number = hsotg->frame_number; 2434 2435 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2436 } 2437 2438 /** 2439 * dwc2_hsotg_handle_rx - RX FIFO has data 2440 * @hsotg: The device instance 2441 * 2442 * The IRQ handler has detected that the RX FIFO has some data in it 2443 * that requires processing, so find out what is in there and do the 2444 * appropriate read. 2445 * 2446 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2447 * chunks, so if you have x packets received on an endpoint you'll get x 2448 * FIFO events delivered, each with a packet's worth of data in it. 2449 * 2450 * When using DMA, we should not be processing events from the RXFIFO 2451 * as the actual data should be sent to the memory directly and we turn 2452 * on the completion interrupts to get notifications of transfer completion. 2453 */ 2454 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2455 { 2456 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2457 u32 epnum, status, size; 2458 2459 WARN_ON(using_dma(hsotg)); 2460 2461 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2462 status = grxstsr & GRXSTS_PKTSTS_MASK; 2463 2464 size = grxstsr & GRXSTS_BYTECNT_MASK; 2465 size >>= GRXSTS_BYTECNT_SHIFT; 2466 2467 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2468 __func__, grxstsr, size, epnum); 2469 2470 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2471 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2472 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2473 break; 2474 2475 case GRXSTS_PKTSTS_OUTDONE: 2476 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2477 dwc2_hsotg_read_frameno(hsotg)); 2478 2479 if (!using_dma(hsotg)) 2480 dwc2_hsotg_handle_outdone(hsotg, epnum); 2481 break; 2482 2483 case GRXSTS_PKTSTS_SETUPDONE: 2484 dev_dbg(hsotg->dev, 2485 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2486 dwc2_hsotg_read_frameno(hsotg), 2487 dwc2_readl(hsotg, DOEPCTL(0))); 2488 /* 2489 * Call dwc2_hsotg_handle_outdone here if it was not called from 2490 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2491 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2492 */ 2493 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2494 dwc2_hsotg_handle_outdone(hsotg, epnum); 2495 break; 2496 2497 case GRXSTS_PKTSTS_OUTRX: 2498 dwc2_hsotg_rx_data(hsotg, epnum, size); 2499 break; 2500 2501 case GRXSTS_PKTSTS_SETUPRX: 2502 dev_dbg(hsotg->dev, 2503 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2504 dwc2_hsotg_read_frameno(hsotg), 2505 dwc2_readl(hsotg, DOEPCTL(0))); 2506 2507 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2508 2509 dwc2_hsotg_rx_data(hsotg, epnum, size); 2510 break; 2511 2512 default: 2513 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2514 __func__, grxstsr); 2515 2516 dwc2_hsotg_dump(hsotg); 2517 break; 2518 } 2519 } 2520 2521 /** 2522 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2523 * @mps: The maximum packet size in bytes. 2524 */ 2525 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2526 { 2527 switch (mps) { 2528 case 64: 2529 return D0EPCTL_MPS_64; 2530 case 32: 2531 return D0EPCTL_MPS_32; 2532 case 16: 2533 return D0EPCTL_MPS_16; 2534 case 8: 2535 return D0EPCTL_MPS_8; 2536 } 2537 2538 /* bad max packet size, warn and return invalid result */ 2539 WARN_ON(1); 2540 return (u32)-1; 2541 } 2542 2543 /** 2544 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2545 * @hsotg: The driver state. 2546 * @ep: The index number of the endpoint 2547 * @mps: The maximum packet size in bytes 2548 * @mc: The multicount value 2549 * @dir_in: True if direction is in. 2550 * 2551 * Configure the maximum packet size for the given endpoint, updating 2552 * the hardware control registers to reflect this. 2553 */ 2554 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2555 unsigned int ep, unsigned int mps, 2556 unsigned int mc, unsigned int dir_in) 2557 { 2558 struct dwc2_hsotg_ep *hs_ep; 2559 u32 reg; 2560 2561 hs_ep = index_to_ep(hsotg, ep, dir_in); 2562 if (!hs_ep) 2563 return; 2564 2565 if (ep == 0) { 2566 u32 mps_bytes = mps; 2567 2568 /* EP0 is a special case */ 2569 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2570 if (mps > 3) 2571 goto bad_mps; 2572 hs_ep->ep.maxpacket = mps_bytes; 2573 hs_ep->mc = 1; 2574 } else { 2575 if (mps > 1024) 2576 goto bad_mps; 2577 hs_ep->mc = mc; 2578 if (mc > 3) 2579 goto bad_mps; 2580 hs_ep->ep.maxpacket = mps; 2581 } 2582 2583 if (dir_in) { 2584 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2585 reg &= ~DXEPCTL_MPS_MASK; 2586 reg |= mps; 2587 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2588 } else { 2589 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2590 reg &= ~DXEPCTL_MPS_MASK; 2591 reg |= mps; 2592 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2593 } 2594 2595 return; 2596 2597 bad_mps: 2598 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2599 } 2600 2601 /** 2602 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2603 * @hsotg: The driver state 2604 * @idx: The index for the endpoint (0..15) 2605 */ 2606 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2607 { 2608 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2609 GRSTCTL); 2610 2611 /* wait until the fifo is flushed */ 2612 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2613 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2614 __func__); 2615 } 2616 2617 /** 2618 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2619 * @hsotg: The driver state 2620 * @hs_ep: The driver endpoint to check. 2621 * 2622 * Check to see if there is a request that has data to send, and if so 2623 * make an attempt to write data into the FIFO. 2624 */ 2625 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2626 struct dwc2_hsotg_ep *hs_ep) 2627 { 2628 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2629 2630 if (!hs_ep->dir_in || !hs_req) { 2631 /** 2632 * if request is not enqueued, we disable interrupts 2633 * for endpoints, excepting ep0 2634 */ 2635 if (hs_ep->index != 0) 2636 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2637 hs_ep->dir_in, 0); 2638 return 0; 2639 } 2640 2641 if (hs_req->req.actual < hs_req->req.length) { 2642 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2643 hs_ep->index); 2644 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2645 } 2646 2647 return 0; 2648 } 2649 2650 /** 2651 * dwc2_hsotg_complete_in - complete IN transfer 2652 * @hsotg: The device state. 2653 * @hs_ep: The endpoint that has just completed. 2654 * 2655 * An IN transfer has been completed, update the transfer's state and then 2656 * call the relevant completion routines. 2657 */ 2658 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2659 struct dwc2_hsotg_ep *hs_ep) 2660 { 2661 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2662 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2663 int size_left, size_done; 2664 2665 if (!hs_req) { 2666 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2667 return; 2668 } 2669 2670 /* Finish ZLP handling for IN EP0 transactions */ 2671 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2672 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2673 2674 /* 2675 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2676 * changed to IN. Change back to complete OUT transfer request 2677 */ 2678 hs_ep->dir_in = 0; 2679 2680 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2681 if (hsotg->test_mode) { 2682 int ret; 2683 2684 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2685 if (ret < 0) { 2686 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2687 hsotg->test_mode); 2688 dwc2_hsotg_stall_ep0(hsotg); 2689 return; 2690 } 2691 } 2692 dwc2_hsotg_enqueue_setup(hsotg); 2693 return; 2694 } 2695 2696 /* 2697 * Calculate the size of the transfer by checking how much is left 2698 * in the endpoint size register and then working it out from 2699 * the amount we loaded for the transfer. 2700 * 2701 * We do this even for DMA, as the transfer may have incremented 2702 * past the end of the buffer (DMA transfers are always 32bit 2703 * aligned). 2704 */ 2705 if (using_desc_dma(hsotg)) { 2706 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2707 if (size_left < 0) 2708 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2709 size_left); 2710 } else { 2711 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2712 } 2713 2714 size_done = hs_ep->size_loaded - size_left; 2715 size_done += hs_ep->last_load; 2716 2717 if (hs_req->req.actual != size_done) 2718 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2719 __func__, hs_req->req.actual, size_done); 2720 2721 hs_req->req.actual = size_done; 2722 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2723 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2724 2725 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2726 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2727 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2728 return; 2729 } 2730 2731 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2732 if (hs_ep->send_zlp) { 2733 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2734 hs_ep->send_zlp = 0; 2735 /* transfer will be completed on next complete interrupt */ 2736 return; 2737 } 2738 2739 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2740 /* Move to STATUS OUT */ 2741 dwc2_hsotg_ep0_zlp(hsotg, false); 2742 return; 2743 } 2744 2745 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2746 } 2747 2748 /** 2749 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2750 * @hsotg: The device state. 2751 * @idx: Index of ep. 2752 * @dir_in: Endpoint direction 1-in 0-out. 2753 * 2754 * Reads for endpoint with given index and direction, by masking 2755 * epint_reg with coresponding mask. 2756 */ 2757 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2758 unsigned int idx, int dir_in) 2759 { 2760 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2761 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2762 u32 ints; 2763 u32 mask; 2764 u32 diepempmsk; 2765 2766 mask = dwc2_readl(hsotg, epmsk_reg); 2767 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2768 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2769 mask |= DXEPINT_SETUP_RCVD; 2770 2771 ints = dwc2_readl(hsotg, epint_reg); 2772 ints &= mask; 2773 return ints; 2774 } 2775 2776 /** 2777 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2778 * @hs_ep: The endpoint on which interrupt is asserted. 2779 * 2780 * This interrupt indicates that the endpoint has been disabled per the 2781 * application's request. 2782 * 2783 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2784 * in case of ISOC completes current request. 2785 * 2786 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2787 * request starts it. 2788 */ 2789 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2790 { 2791 struct dwc2_hsotg *hsotg = hs_ep->parent; 2792 struct dwc2_hsotg_req *hs_req; 2793 unsigned char idx = hs_ep->index; 2794 int dir_in = hs_ep->dir_in; 2795 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2796 int dctl = dwc2_readl(hsotg, DCTL); 2797 2798 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2799 2800 if (dir_in) { 2801 int epctl = dwc2_readl(hsotg, epctl_reg); 2802 2803 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2804 2805 if (hs_ep->isochronous) { 2806 dwc2_hsotg_complete_in(hsotg, hs_ep); 2807 return; 2808 } 2809 2810 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2811 int dctl = dwc2_readl(hsotg, DCTL); 2812 2813 dctl |= DCTL_CGNPINNAK; 2814 dwc2_writel(hsotg, dctl, DCTL); 2815 } 2816 return; 2817 } 2818 2819 if (dctl & DCTL_GOUTNAKSTS) { 2820 dctl |= DCTL_CGOUTNAK; 2821 dwc2_writel(hsotg, dctl, DCTL); 2822 } 2823 2824 if (!hs_ep->isochronous) 2825 return; 2826 2827 if (list_empty(&hs_ep->queue)) { 2828 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2829 __func__, hs_ep); 2830 return; 2831 } 2832 2833 do { 2834 hs_req = get_ep_head(hs_ep); 2835 if (hs_req) 2836 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2837 -ENODATA); 2838 dwc2_gadget_incr_frame_num(hs_ep); 2839 /* Update current frame number value. */ 2840 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2841 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2842 2843 dwc2_gadget_start_next_request(hs_ep); 2844 } 2845 2846 /** 2847 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2848 * @ep: The endpoint on which interrupt is asserted. 2849 * 2850 * This is starting point for ISOC-OUT transfer, synchronization done with 2851 * first out token received from host while corresponding EP is disabled. 2852 * 2853 * Device does not know initial frame in which out token will come. For this 2854 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2855 * getting this interrupt SW starts calculation for next transfer frame. 2856 */ 2857 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2858 { 2859 struct dwc2_hsotg *hsotg = ep->parent; 2860 int dir_in = ep->dir_in; 2861 u32 doepmsk; 2862 2863 if (dir_in || !ep->isochronous) 2864 return; 2865 2866 if (using_desc_dma(hsotg)) { 2867 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2868 /* Start first ISO Out */ 2869 ep->target_frame = hsotg->frame_number; 2870 dwc2_gadget_start_isoc_ddma(ep); 2871 } 2872 return; 2873 } 2874 2875 if (ep->interval > 1 && 2876 ep->target_frame == TARGET_FRAME_INITIAL) { 2877 u32 ctrl; 2878 2879 ep->target_frame = hsotg->frame_number; 2880 dwc2_gadget_incr_frame_num(ep); 2881 2882 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2883 if (ep->target_frame & 0x1) 2884 ctrl |= DXEPCTL_SETODDFR; 2885 else 2886 ctrl |= DXEPCTL_SETEVENFR; 2887 2888 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2889 } 2890 2891 dwc2_gadget_start_next_request(ep); 2892 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2893 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2894 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2895 } 2896 2897 /** 2898 * dwc2_gadget_handle_nak - handle NAK interrupt 2899 * @hs_ep: The endpoint on which interrupt is asserted. 2900 * 2901 * This is starting point for ISOC-IN transfer, synchronization done with 2902 * first IN token received from host while corresponding EP is disabled. 2903 * 2904 * Device does not know when first one token will arrive from host. On first 2905 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2906 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2907 * sent in response to that as there was no data in FIFO. SW is basing on this 2908 * interrupt to obtain frame in which token has come and then based on the 2909 * interval calculates next frame for transfer. 2910 */ 2911 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2912 { 2913 struct dwc2_hsotg *hsotg = hs_ep->parent; 2914 int dir_in = hs_ep->dir_in; 2915 2916 if (!dir_in || !hs_ep->isochronous) 2917 return; 2918 2919 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2920 2921 if (using_desc_dma(hsotg)) { 2922 hs_ep->target_frame = hsotg->frame_number; 2923 dwc2_gadget_incr_frame_num(hs_ep); 2924 2925 /* In service interval mode target_frame must 2926 * be set to last (u)frame of the service interval. 2927 */ 2928 if (hsotg->params.service_interval) { 2929 /* Set target_frame to the first (u)frame of 2930 * the service interval 2931 */ 2932 hs_ep->target_frame &= ~hs_ep->interval + 1; 2933 2934 /* Set target_frame to the last (u)frame of 2935 * the service interval 2936 */ 2937 dwc2_gadget_incr_frame_num(hs_ep); 2938 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2939 } 2940 2941 dwc2_gadget_start_isoc_ddma(hs_ep); 2942 return; 2943 } 2944 2945 hs_ep->target_frame = hsotg->frame_number; 2946 if (hs_ep->interval > 1) { 2947 u32 ctrl = dwc2_readl(hsotg, 2948 DIEPCTL(hs_ep->index)); 2949 if (hs_ep->target_frame & 0x1) 2950 ctrl |= DXEPCTL_SETODDFR; 2951 else 2952 ctrl |= DXEPCTL_SETEVENFR; 2953 2954 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2955 } 2956 2957 dwc2_hsotg_complete_request(hsotg, hs_ep, 2958 get_ep_head(hs_ep), 0); 2959 } 2960 2961 if (!using_desc_dma(hsotg)) 2962 dwc2_gadget_incr_frame_num(hs_ep); 2963 } 2964 2965 /** 2966 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2967 * @hsotg: The driver state 2968 * @idx: The index for the endpoint (0..15) 2969 * @dir_in: Set if this is an IN endpoint 2970 * 2971 * Process and clear any interrupt pending for an individual endpoint 2972 */ 2973 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2974 int dir_in) 2975 { 2976 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2977 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2978 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2979 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2980 u32 ints; 2981 u32 ctrl; 2982 2983 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2984 ctrl = dwc2_readl(hsotg, epctl_reg); 2985 2986 /* Clear endpoint interrupts */ 2987 dwc2_writel(hsotg, ints, epint_reg); 2988 2989 if (!hs_ep) { 2990 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2991 __func__, idx, dir_in ? "in" : "out"); 2992 return; 2993 } 2994 2995 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2996 __func__, idx, dir_in ? "in" : "out", ints); 2997 2998 /* Don't process XferCompl interrupt if it is a setup packet */ 2999 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3000 ints &= ~DXEPINT_XFERCOMPL; 3001 3002 /* 3003 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3004 * stage and xfercomplete was generated without SETUP phase done 3005 * interrupt. SW should parse received setup packet only after host's 3006 * exit from setup phase of control transfer. 3007 */ 3008 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3009 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3010 ints &= ~DXEPINT_XFERCOMPL; 3011 3012 if (ints & DXEPINT_XFERCOMPL) { 3013 dev_dbg(hsotg->dev, 3014 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3015 __func__, dwc2_readl(hsotg, epctl_reg), 3016 dwc2_readl(hsotg, epsiz_reg)); 3017 3018 /* In DDMA handle isochronous requests separately */ 3019 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3020 /* XferCompl set along with BNA */ 3021 if (!(ints & DXEPINT_BNAINTR)) 3022 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3023 } else if (dir_in) { 3024 /* 3025 * We get OutDone from the FIFO, so we only 3026 * need to look at completing IN requests here 3027 * if operating slave mode 3028 */ 3029 if (hs_ep->isochronous && hs_ep->interval > 1) 3030 dwc2_gadget_incr_frame_num(hs_ep); 3031 3032 dwc2_hsotg_complete_in(hsotg, hs_ep); 3033 if (ints & DXEPINT_NAKINTRPT) 3034 ints &= ~DXEPINT_NAKINTRPT; 3035 3036 if (idx == 0 && !hs_ep->req) 3037 dwc2_hsotg_enqueue_setup(hsotg); 3038 } else if (using_dma(hsotg)) { 3039 /* 3040 * We're using DMA, we need to fire an OutDone here 3041 * as we ignore the RXFIFO. 3042 */ 3043 if (hs_ep->isochronous && hs_ep->interval > 1) 3044 dwc2_gadget_incr_frame_num(hs_ep); 3045 3046 dwc2_hsotg_handle_outdone(hsotg, idx); 3047 } 3048 } 3049 3050 if (ints & DXEPINT_EPDISBLD) 3051 dwc2_gadget_handle_ep_disabled(hs_ep); 3052 3053 if (ints & DXEPINT_OUTTKNEPDIS) 3054 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3055 3056 if (ints & DXEPINT_NAKINTRPT) 3057 dwc2_gadget_handle_nak(hs_ep); 3058 3059 if (ints & DXEPINT_AHBERR) 3060 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3061 3062 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3063 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3064 3065 if (using_dma(hsotg) && idx == 0) { 3066 /* 3067 * this is the notification we've received a 3068 * setup packet. In non-DMA mode we'd get this 3069 * from the RXFIFO, instead we need to process 3070 * the setup here. 3071 */ 3072 3073 if (dir_in) 3074 WARN_ON_ONCE(1); 3075 else 3076 dwc2_hsotg_handle_outdone(hsotg, 0); 3077 } 3078 } 3079 3080 if (ints & DXEPINT_STSPHSERCVD) { 3081 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3082 3083 /* Safety check EP0 state when STSPHSERCVD asserted */ 3084 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3085 /* Move to STATUS IN for DDMA */ 3086 if (using_desc_dma(hsotg)) { 3087 if (!hsotg->delayed_status) 3088 dwc2_hsotg_ep0_zlp(hsotg, true); 3089 else 3090 /* In case of 3 stage Control Write with delayed 3091 * status, when Status IN transfer started 3092 * before STSPHSERCVD asserted, NAKSTS bit not 3093 * cleared by CNAK in dwc2_hsotg_start_req() 3094 * function. Clear now NAKSTS to allow complete 3095 * transfer. 3096 */ 3097 dwc2_set_bit(hsotg, DIEPCTL(0), 3098 DXEPCTL_CNAK); 3099 } 3100 } 3101 3102 } 3103 3104 if (ints & DXEPINT_BACK2BACKSETUP) 3105 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3106 3107 if (ints & DXEPINT_BNAINTR) { 3108 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3109 if (hs_ep->isochronous) 3110 dwc2_gadget_handle_isoc_bna(hs_ep); 3111 } 3112 3113 if (dir_in && !hs_ep->isochronous) { 3114 /* not sure if this is important, but we'll clear it anyway */ 3115 if (ints & DXEPINT_INTKNTXFEMP) { 3116 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3117 __func__, idx); 3118 } 3119 3120 /* this probably means something bad is happening */ 3121 if (ints & DXEPINT_INTKNEPMIS) { 3122 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3123 __func__, idx); 3124 } 3125 3126 /* FIFO has space or is empty (see GAHBCFG) */ 3127 if (hsotg->dedicated_fifos && 3128 ints & DXEPINT_TXFEMP) { 3129 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3130 __func__, idx); 3131 if (!using_dma(hsotg)) 3132 dwc2_hsotg_trytx(hsotg, hs_ep); 3133 } 3134 } 3135 } 3136 3137 /** 3138 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3139 * @hsotg: The device state. 3140 * 3141 * Handle updating the device settings after the enumeration phase has 3142 * been completed. 3143 */ 3144 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3145 { 3146 u32 dsts = dwc2_readl(hsotg, DSTS); 3147 int ep0_mps = 0, ep_mps = 8; 3148 3149 /* 3150 * This should signal the finish of the enumeration phase 3151 * of the USB handshaking, so we should now know what rate 3152 * we connected at. 3153 */ 3154 3155 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3156 3157 /* 3158 * note, since we're limited by the size of transfer on EP0, and 3159 * it seems IN transfers must be a even number of packets we do 3160 * not advertise a 64byte MPS on EP0. 3161 */ 3162 3163 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3164 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3165 case DSTS_ENUMSPD_FS: 3166 case DSTS_ENUMSPD_FS48: 3167 hsotg->gadget.speed = USB_SPEED_FULL; 3168 ep0_mps = EP0_MPS_LIMIT; 3169 ep_mps = 1023; 3170 break; 3171 3172 case DSTS_ENUMSPD_HS: 3173 hsotg->gadget.speed = USB_SPEED_HIGH; 3174 ep0_mps = EP0_MPS_LIMIT; 3175 ep_mps = 1024; 3176 break; 3177 3178 case DSTS_ENUMSPD_LS: 3179 hsotg->gadget.speed = USB_SPEED_LOW; 3180 ep0_mps = 8; 3181 ep_mps = 8; 3182 /* 3183 * note, we don't actually support LS in this driver at the 3184 * moment, and the documentation seems to imply that it isn't 3185 * supported by the PHYs on some of the devices. 3186 */ 3187 break; 3188 } 3189 dev_info(hsotg->dev, "new device is %s\n", 3190 usb_speed_string(hsotg->gadget.speed)); 3191 3192 /* 3193 * we should now know the maximum packet size for an 3194 * endpoint, so set the endpoints to a default value. 3195 */ 3196 3197 if (ep0_mps) { 3198 int i; 3199 /* Initialize ep0 for both in and out directions */ 3200 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3201 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3202 for (i = 1; i < hsotg->num_of_eps; i++) { 3203 if (hsotg->eps_in[i]) 3204 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3205 0, 1); 3206 if (hsotg->eps_out[i]) 3207 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3208 0, 0); 3209 } 3210 } 3211 3212 /* ensure after enumeration our EP0 is active */ 3213 3214 dwc2_hsotg_enqueue_setup(hsotg); 3215 3216 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3217 dwc2_readl(hsotg, DIEPCTL0), 3218 dwc2_readl(hsotg, DOEPCTL0)); 3219 } 3220 3221 /** 3222 * kill_all_requests - remove all requests from the endpoint's queue 3223 * @hsotg: The device state. 3224 * @ep: The endpoint the requests may be on. 3225 * @result: The result code to use. 3226 * 3227 * Go through the requests on the given endpoint and mark them 3228 * completed with the given result code. 3229 */ 3230 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3231 struct dwc2_hsotg_ep *ep, 3232 int result) 3233 { 3234 unsigned int size; 3235 3236 ep->req = NULL; 3237 3238 while (!list_empty(&ep->queue)) { 3239 struct dwc2_hsotg_req *req = get_ep_head(ep); 3240 3241 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3242 } 3243 3244 if (!hsotg->dedicated_fifos) 3245 return; 3246 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3247 if (size < ep->fifo_size) 3248 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3249 } 3250 3251 /** 3252 * dwc2_hsotg_disconnect - disconnect service 3253 * @hsotg: The device state. 3254 * 3255 * The device has been disconnected. Remove all current 3256 * transactions and signal the gadget driver that this 3257 * has happened. 3258 */ 3259 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3260 { 3261 unsigned int ep; 3262 3263 if (!hsotg->connected) 3264 return; 3265 3266 hsotg->connected = 0; 3267 hsotg->test_mode = 0; 3268 3269 /* all endpoints should be shutdown */ 3270 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3271 if (hsotg->eps_in[ep]) 3272 kill_all_requests(hsotg, hsotg->eps_in[ep], 3273 -ESHUTDOWN); 3274 if (hsotg->eps_out[ep]) 3275 kill_all_requests(hsotg, hsotg->eps_out[ep], 3276 -ESHUTDOWN); 3277 } 3278 3279 call_gadget(hsotg, disconnect); 3280 hsotg->lx_state = DWC2_L3; 3281 3282 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3283 } 3284 3285 /** 3286 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3287 * @hsotg: The device state: 3288 * @periodic: True if this is a periodic FIFO interrupt 3289 */ 3290 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3291 { 3292 struct dwc2_hsotg_ep *ep; 3293 int epno, ret; 3294 3295 /* look through for any more data to transmit */ 3296 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3297 ep = index_to_ep(hsotg, epno, 1); 3298 3299 if (!ep) 3300 continue; 3301 3302 if (!ep->dir_in) 3303 continue; 3304 3305 if ((periodic && !ep->periodic) || 3306 (!periodic && ep->periodic)) 3307 continue; 3308 3309 ret = dwc2_hsotg_trytx(hsotg, ep); 3310 if (ret < 0) 3311 break; 3312 } 3313 } 3314 3315 /* IRQ flags which will trigger a retry around the IRQ loop */ 3316 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3317 GINTSTS_PTXFEMP | \ 3318 GINTSTS_RXFLVL) 3319 3320 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3321 /** 3322 * dwc2_hsotg_core_init - issue softreset to the core 3323 * @hsotg: The device state 3324 * @is_usb_reset: Usb resetting flag 3325 * 3326 * Issue a soft reset to the core, and await the core finishing it. 3327 */ 3328 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3329 bool is_usb_reset) 3330 { 3331 u32 intmsk; 3332 u32 val; 3333 u32 usbcfg; 3334 u32 dcfg = 0; 3335 int ep; 3336 3337 /* Kill any ep0 requests as controller will be reinitialized */ 3338 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3339 3340 if (!is_usb_reset) { 3341 if (dwc2_core_reset(hsotg, true)) 3342 return; 3343 } else { 3344 /* all endpoints should be shutdown */ 3345 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3346 if (hsotg->eps_in[ep]) 3347 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3348 if (hsotg->eps_out[ep]) 3349 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3350 } 3351 } 3352 3353 /* 3354 * we must now enable ep0 ready for host detection and then 3355 * set configuration. 3356 */ 3357 3358 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3359 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3360 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3361 usbcfg |= GUSBCFG_TOUTCAL(7); 3362 3363 /* remove the HNP/SRP and set the PHY */ 3364 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3365 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3366 3367 dwc2_phy_init(hsotg, true); 3368 3369 dwc2_hsotg_init_fifo(hsotg); 3370 3371 if (!is_usb_reset) 3372 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3373 3374 dcfg |= DCFG_EPMISCNT(1); 3375 3376 switch (hsotg->params.speed) { 3377 case DWC2_SPEED_PARAM_LOW: 3378 dcfg |= DCFG_DEVSPD_LS; 3379 break; 3380 case DWC2_SPEED_PARAM_FULL: 3381 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3382 dcfg |= DCFG_DEVSPD_FS48; 3383 else 3384 dcfg |= DCFG_DEVSPD_FS; 3385 break; 3386 default: 3387 dcfg |= DCFG_DEVSPD_HS; 3388 } 3389 3390 if (hsotg->params.ipg_isoc_en) 3391 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3392 3393 dwc2_writel(hsotg, dcfg, DCFG); 3394 3395 /* Clear any pending OTG interrupts */ 3396 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3397 3398 /* Clear any pending interrupts */ 3399 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3400 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3401 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3402 GINTSTS_USBRST | GINTSTS_RESETDET | 3403 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3404 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3405 GINTSTS_LPMTRANRCVD; 3406 3407 if (!using_desc_dma(hsotg)) 3408 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3409 3410 if (!hsotg->params.external_id_pin_ctl) 3411 intmsk |= GINTSTS_CONIDSTSCHNG; 3412 3413 dwc2_writel(hsotg, intmsk, GINTMSK); 3414 3415 if (using_dma(hsotg)) { 3416 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3417 hsotg->params.ahbcfg, 3418 GAHBCFG); 3419 3420 /* Set DDMA mode support in the core if needed */ 3421 if (using_desc_dma(hsotg)) 3422 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3423 3424 } else { 3425 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3426 (GAHBCFG_NP_TXF_EMP_LVL | 3427 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3428 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3429 } 3430 3431 /* 3432 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3433 * when we have no data to transfer. Otherwise we get being flooded by 3434 * interrupts. 3435 */ 3436 3437 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3438 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3439 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3440 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3441 DIEPMSK); 3442 3443 /* 3444 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3445 * DMA mode we may need this and StsPhseRcvd. 3446 */ 3447 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3448 DOEPMSK_STSPHSERCVDMSK) : 0) | 3449 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3450 DOEPMSK_SETUPMSK, 3451 DOEPMSK); 3452 3453 /* Enable BNA interrupt for DDMA */ 3454 if (using_desc_dma(hsotg)) { 3455 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3456 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3457 } 3458 3459 /* Enable Service Interval mode if supported */ 3460 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3461 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3462 3463 dwc2_writel(hsotg, 0, DAINTMSK); 3464 3465 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3466 dwc2_readl(hsotg, DIEPCTL0), 3467 dwc2_readl(hsotg, DOEPCTL0)); 3468 3469 /* enable in and out endpoint interrupts */ 3470 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3471 3472 /* 3473 * Enable the RXFIFO when in slave mode, as this is how we collect 3474 * the data. In DMA mode, we get events from the FIFO but also 3475 * things we cannot process, so do not use it. 3476 */ 3477 if (!using_dma(hsotg)) 3478 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3479 3480 /* Enable interrupts for EP0 in and out */ 3481 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3482 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3483 3484 if (!is_usb_reset) { 3485 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3486 udelay(10); /* see openiboot */ 3487 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3488 } 3489 3490 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3491 3492 /* 3493 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3494 * writing to the EPCTL register.. 3495 */ 3496 3497 /* set to read 1 8byte packet */ 3498 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3499 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3500 3501 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3502 DXEPCTL_CNAK | DXEPCTL_EPENA | 3503 DXEPCTL_USBACTEP, 3504 DOEPCTL0); 3505 3506 /* enable, but don't activate EP0in */ 3507 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3508 DXEPCTL_USBACTEP, DIEPCTL0); 3509 3510 /* clear global NAKs */ 3511 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3512 if (!is_usb_reset) 3513 val |= DCTL_SFTDISCON; 3514 dwc2_set_bit(hsotg, DCTL, val); 3515 3516 /* configure the core to support LPM */ 3517 dwc2_gadget_init_lpm(hsotg); 3518 3519 /* program GREFCLK register if needed */ 3520 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3521 dwc2_gadget_program_ref_clk(hsotg); 3522 3523 /* must be at-least 3ms to allow bus to see disconnect */ 3524 mdelay(3); 3525 3526 hsotg->lx_state = DWC2_L0; 3527 3528 dwc2_hsotg_enqueue_setup(hsotg); 3529 3530 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3531 dwc2_readl(hsotg, DIEPCTL0), 3532 dwc2_readl(hsotg, DOEPCTL0)); 3533 } 3534 3535 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3536 { 3537 /* set the soft-disconnect bit */ 3538 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3539 } 3540 3541 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3542 { 3543 /* remove the soft-disconnect and let's go */ 3544 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3545 } 3546 3547 /** 3548 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3549 * @hsotg: The device state: 3550 * 3551 * This interrupt indicates one of the following conditions occurred while 3552 * transmitting an ISOC transaction. 3553 * - Corrupted IN Token for ISOC EP. 3554 * - Packet not complete in FIFO. 3555 * 3556 * The following actions will be taken: 3557 * - Determine the EP 3558 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3559 */ 3560 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3561 { 3562 struct dwc2_hsotg_ep *hs_ep; 3563 u32 epctrl; 3564 u32 daintmsk; 3565 u32 idx; 3566 3567 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3568 3569 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3570 3571 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3572 hs_ep = hsotg->eps_in[idx]; 3573 /* Proceed only unmasked ISOC EPs */ 3574 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3575 continue; 3576 3577 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3578 if ((epctrl & DXEPCTL_EPENA) && 3579 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3580 epctrl |= DXEPCTL_SNAK; 3581 epctrl |= DXEPCTL_EPDIS; 3582 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3583 } 3584 } 3585 3586 /* Clear interrupt */ 3587 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3588 } 3589 3590 /** 3591 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3592 * @hsotg: The device state: 3593 * 3594 * This interrupt indicates one of the following conditions occurred while 3595 * transmitting an ISOC transaction. 3596 * - Corrupted OUT Token for ISOC EP. 3597 * - Packet not complete in FIFO. 3598 * 3599 * The following actions will be taken: 3600 * - Determine the EP 3601 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3602 */ 3603 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3604 { 3605 u32 gintsts; 3606 u32 gintmsk; 3607 u32 daintmsk; 3608 u32 epctrl; 3609 struct dwc2_hsotg_ep *hs_ep; 3610 int idx; 3611 3612 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3613 3614 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3615 daintmsk >>= DAINT_OUTEP_SHIFT; 3616 3617 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3618 hs_ep = hsotg->eps_out[idx]; 3619 /* Proceed only unmasked ISOC EPs */ 3620 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3621 continue; 3622 3623 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3624 if ((epctrl & DXEPCTL_EPENA) && 3625 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3626 /* Unmask GOUTNAKEFF interrupt */ 3627 gintmsk = dwc2_readl(hsotg, GINTMSK); 3628 gintmsk |= GINTSTS_GOUTNAKEFF; 3629 dwc2_writel(hsotg, gintmsk, GINTMSK); 3630 3631 gintsts = dwc2_readl(hsotg, GINTSTS); 3632 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3633 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3634 break; 3635 } 3636 } 3637 } 3638 3639 /* Clear interrupt */ 3640 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3641 } 3642 3643 /** 3644 * dwc2_hsotg_irq - handle device interrupt 3645 * @irq: The IRQ number triggered 3646 * @pw: The pw value when registered the handler. 3647 */ 3648 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3649 { 3650 struct dwc2_hsotg *hsotg = pw; 3651 int retry_count = 8; 3652 u32 gintsts; 3653 u32 gintmsk; 3654 3655 if (!dwc2_is_device_mode(hsotg)) 3656 return IRQ_NONE; 3657 3658 spin_lock(&hsotg->lock); 3659 irq_retry: 3660 gintsts = dwc2_readl(hsotg, GINTSTS); 3661 gintmsk = dwc2_readl(hsotg, GINTMSK); 3662 3663 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3664 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3665 3666 gintsts &= gintmsk; 3667 3668 if (gintsts & GINTSTS_RESETDET) { 3669 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3670 3671 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3672 3673 /* This event must be used only if controller is suspended */ 3674 if (hsotg->lx_state == DWC2_L2) { 3675 dwc2_exit_partial_power_down(hsotg, true); 3676 hsotg->lx_state = DWC2_L0; 3677 } 3678 } 3679 3680 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3681 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3682 u32 connected = hsotg->connected; 3683 3684 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3685 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3686 dwc2_readl(hsotg, GNPTXSTS)); 3687 3688 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3689 3690 /* Report disconnection if it is not already done. */ 3691 dwc2_hsotg_disconnect(hsotg); 3692 3693 /* Reset device address to zero */ 3694 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3695 3696 if (usb_status & GOTGCTL_BSESVLD && connected) 3697 dwc2_hsotg_core_init_disconnected(hsotg, true); 3698 } 3699 3700 if (gintsts & GINTSTS_ENUMDONE) { 3701 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3702 3703 dwc2_hsotg_irq_enumdone(hsotg); 3704 } 3705 3706 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3707 u32 daint = dwc2_readl(hsotg, DAINT); 3708 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3709 u32 daint_out, daint_in; 3710 int ep; 3711 3712 daint &= daintmsk; 3713 daint_out = daint >> DAINT_OUTEP_SHIFT; 3714 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3715 3716 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3717 3718 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3719 ep++, daint_out >>= 1) { 3720 if (daint_out & 1) 3721 dwc2_hsotg_epint(hsotg, ep, 0); 3722 } 3723 3724 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3725 ep++, daint_in >>= 1) { 3726 if (daint_in & 1) 3727 dwc2_hsotg_epint(hsotg, ep, 1); 3728 } 3729 } 3730 3731 /* check both FIFOs */ 3732 3733 if (gintsts & GINTSTS_NPTXFEMP) { 3734 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3735 3736 /* 3737 * Disable the interrupt to stop it happening again 3738 * unless one of these endpoint routines decides that 3739 * it needs re-enabling 3740 */ 3741 3742 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3743 dwc2_hsotg_irq_fifoempty(hsotg, false); 3744 } 3745 3746 if (gintsts & GINTSTS_PTXFEMP) { 3747 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3748 3749 /* See note in GINTSTS_NPTxFEmp */ 3750 3751 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3752 dwc2_hsotg_irq_fifoempty(hsotg, true); 3753 } 3754 3755 if (gintsts & GINTSTS_RXFLVL) { 3756 /* 3757 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3758 * we need to retry dwc2_hsotg_handle_rx if this is still 3759 * set. 3760 */ 3761 3762 dwc2_hsotg_handle_rx(hsotg); 3763 } 3764 3765 if (gintsts & GINTSTS_ERLYSUSP) { 3766 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3767 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3768 } 3769 3770 /* 3771 * these next two seem to crop-up occasionally causing the core 3772 * to shutdown the USB transfer, so try clearing them and logging 3773 * the occurrence. 3774 */ 3775 3776 if (gintsts & GINTSTS_GOUTNAKEFF) { 3777 u8 idx; 3778 u32 epctrl; 3779 u32 gintmsk; 3780 u32 daintmsk; 3781 struct dwc2_hsotg_ep *hs_ep; 3782 3783 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3784 daintmsk >>= DAINT_OUTEP_SHIFT; 3785 /* Mask this interrupt */ 3786 gintmsk = dwc2_readl(hsotg, GINTMSK); 3787 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3788 dwc2_writel(hsotg, gintmsk, GINTMSK); 3789 3790 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3791 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3792 hs_ep = hsotg->eps_out[idx]; 3793 /* Proceed only unmasked ISOC EPs */ 3794 if (BIT(idx) & ~daintmsk) 3795 continue; 3796 3797 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3798 3799 //ISOC Ep's only 3800 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3801 epctrl |= DXEPCTL_SNAK; 3802 epctrl |= DXEPCTL_EPDIS; 3803 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3804 continue; 3805 } 3806 3807 //Non-ISOC EP's 3808 if (hs_ep->halted) { 3809 if (!(epctrl & DXEPCTL_EPENA)) 3810 epctrl |= DXEPCTL_EPENA; 3811 epctrl |= DXEPCTL_EPDIS; 3812 epctrl |= DXEPCTL_STALL; 3813 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3814 } 3815 } 3816 3817 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3818 } 3819 3820 if (gintsts & GINTSTS_GINNAKEFF) { 3821 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3822 3823 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3824 3825 dwc2_hsotg_dump(hsotg); 3826 } 3827 3828 if (gintsts & GINTSTS_INCOMPL_SOIN) 3829 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3830 3831 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3832 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3833 3834 /* 3835 * if we've had fifo events, we should try and go around the 3836 * loop again to see if there's any point in returning yet. 3837 */ 3838 3839 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3840 goto irq_retry; 3841 3842 /* Check WKUP_ALERT interrupt*/ 3843 if (hsotg->params.service_interval) 3844 dwc2_gadget_wkup_alert_handler(hsotg); 3845 3846 spin_unlock(&hsotg->lock); 3847 3848 return IRQ_HANDLED; 3849 } 3850 3851 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3852 struct dwc2_hsotg_ep *hs_ep) 3853 { 3854 u32 epctrl_reg; 3855 u32 epint_reg; 3856 3857 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3858 DOEPCTL(hs_ep->index); 3859 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3860 DOEPINT(hs_ep->index); 3861 3862 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3863 hs_ep->name); 3864 3865 if (hs_ep->dir_in) { 3866 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3867 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3868 /* Wait for Nak effect */ 3869 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3870 DXEPINT_INEPNAKEFF, 100)) 3871 dev_warn(hsotg->dev, 3872 "%s: timeout DIEPINT.NAKEFF\n", 3873 __func__); 3874 } else { 3875 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3876 /* Wait for Nak effect */ 3877 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3878 GINTSTS_GINNAKEFF, 100)) 3879 dev_warn(hsotg->dev, 3880 "%s: timeout GINTSTS.GINNAKEFF\n", 3881 __func__); 3882 } 3883 } else { 3884 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3885 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3886 3887 /* Wait for global nak to take effect */ 3888 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3889 GINTSTS_GOUTNAKEFF, 100)) 3890 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3891 __func__); 3892 } 3893 3894 /* Disable ep */ 3895 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3896 3897 /* Wait for ep to be disabled */ 3898 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3899 dev_warn(hsotg->dev, 3900 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3901 3902 /* Clear EPDISBLD interrupt */ 3903 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3904 3905 if (hs_ep->dir_in) { 3906 unsigned short fifo_index; 3907 3908 if (hsotg->dedicated_fifos || hs_ep->periodic) 3909 fifo_index = hs_ep->fifo_index; 3910 else 3911 fifo_index = 0; 3912 3913 /* Flush TX FIFO */ 3914 dwc2_flush_tx_fifo(hsotg, fifo_index); 3915 3916 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3917 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3918 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3919 3920 } else { 3921 /* Remove global NAKs */ 3922 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3923 } 3924 } 3925 3926 /** 3927 * dwc2_hsotg_ep_enable - enable the given endpoint 3928 * @ep: The USB endpint to configure 3929 * @desc: The USB endpoint descriptor to configure with. 3930 * 3931 * This is called from the USB gadget code's usb_ep_enable(). 3932 */ 3933 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3934 const struct usb_endpoint_descriptor *desc) 3935 { 3936 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3937 struct dwc2_hsotg *hsotg = hs_ep->parent; 3938 unsigned long flags; 3939 unsigned int index = hs_ep->index; 3940 u32 epctrl_reg; 3941 u32 epctrl; 3942 u32 mps; 3943 u32 mc; 3944 u32 mask; 3945 unsigned int dir_in; 3946 unsigned int i, val, size; 3947 int ret = 0; 3948 unsigned char ep_type; 3949 int desc_num; 3950 3951 dev_dbg(hsotg->dev, 3952 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3953 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3954 desc->wMaxPacketSize, desc->bInterval); 3955 3956 /* not to be called for EP0 */ 3957 if (index == 0) { 3958 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3959 return -EINVAL; 3960 } 3961 3962 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3963 if (dir_in != hs_ep->dir_in) { 3964 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3965 return -EINVAL; 3966 } 3967 3968 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 3969 mps = usb_endpoint_maxp(desc); 3970 mc = usb_endpoint_maxp_mult(desc); 3971 3972 /* ISOC IN in DDMA supported bInterval up to 10 */ 3973 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3974 dir_in && desc->bInterval > 10) { 3975 dev_err(hsotg->dev, 3976 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 3977 return -EINVAL; 3978 } 3979 3980 /* High bandwidth ISOC OUT in DDMA not supported */ 3981 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3982 !dir_in && mc > 1) { 3983 dev_err(hsotg->dev, 3984 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 3985 return -EINVAL; 3986 } 3987 3988 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3989 3990 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3991 epctrl = dwc2_readl(hsotg, epctrl_reg); 3992 3993 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3994 __func__, epctrl, epctrl_reg); 3995 3996 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 3997 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 3998 else 3999 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4000 4001 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4002 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4003 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4004 desc_num * sizeof(struct dwc2_dma_desc), 4005 &hs_ep->desc_list_dma, GFP_ATOMIC); 4006 if (!hs_ep->desc_list) { 4007 ret = -ENOMEM; 4008 goto error2; 4009 } 4010 } 4011 4012 spin_lock_irqsave(&hsotg->lock, flags); 4013 4014 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4015 epctrl |= DXEPCTL_MPS(mps); 4016 4017 /* 4018 * mark the endpoint as active, otherwise the core may ignore 4019 * transactions entirely for this endpoint 4020 */ 4021 epctrl |= DXEPCTL_USBACTEP; 4022 4023 /* update the endpoint state */ 4024 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4025 4026 /* default, set to non-periodic */ 4027 hs_ep->isochronous = 0; 4028 hs_ep->periodic = 0; 4029 hs_ep->halted = 0; 4030 hs_ep->interval = desc->bInterval; 4031 4032 switch (ep_type) { 4033 case USB_ENDPOINT_XFER_ISOC: 4034 epctrl |= DXEPCTL_EPTYPE_ISO; 4035 epctrl |= DXEPCTL_SETEVENFR; 4036 hs_ep->isochronous = 1; 4037 hs_ep->interval = 1 << (desc->bInterval - 1); 4038 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4039 hs_ep->next_desc = 0; 4040 hs_ep->compl_desc = 0; 4041 if (dir_in) { 4042 hs_ep->periodic = 1; 4043 mask = dwc2_readl(hsotg, DIEPMSK); 4044 mask |= DIEPMSK_NAKMSK; 4045 dwc2_writel(hsotg, mask, DIEPMSK); 4046 } else { 4047 mask = dwc2_readl(hsotg, DOEPMSK); 4048 mask |= DOEPMSK_OUTTKNEPDISMSK; 4049 dwc2_writel(hsotg, mask, DOEPMSK); 4050 } 4051 break; 4052 4053 case USB_ENDPOINT_XFER_BULK: 4054 epctrl |= DXEPCTL_EPTYPE_BULK; 4055 break; 4056 4057 case USB_ENDPOINT_XFER_INT: 4058 if (dir_in) 4059 hs_ep->periodic = 1; 4060 4061 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4062 hs_ep->interval = 1 << (desc->bInterval - 1); 4063 4064 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4065 break; 4066 4067 case USB_ENDPOINT_XFER_CONTROL: 4068 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4069 break; 4070 } 4071 4072 /* 4073 * if the hardware has dedicated fifos, we must give each IN EP 4074 * a unique tx-fifo even if it is non-periodic. 4075 */ 4076 if (dir_in && hsotg->dedicated_fifos) { 4077 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4078 u32 fifo_index = 0; 4079 u32 fifo_size = UINT_MAX; 4080 4081 size = hs_ep->ep.maxpacket * hs_ep->mc; 4082 for (i = 1; i <= fifo_count; ++i) { 4083 if (hsotg->fifo_map & (1 << i)) 4084 continue; 4085 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4086 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4087 if (val < size) 4088 continue; 4089 /* Search for smallest acceptable fifo */ 4090 if (val < fifo_size) { 4091 fifo_size = val; 4092 fifo_index = i; 4093 } 4094 } 4095 if (!fifo_index) { 4096 dev_err(hsotg->dev, 4097 "%s: No suitable fifo found\n", __func__); 4098 ret = -ENOMEM; 4099 goto error1; 4100 } 4101 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4102 hsotg->fifo_map |= 1 << fifo_index; 4103 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4104 hs_ep->fifo_index = fifo_index; 4105 hs_ep->fifo_size = fifo_size; 4106 } 4107 4108 /* for non control endpoints, set PID to D0 */ 4109 if (index && !hs_ep->isochronous) 4110 epctrl |= DXEPCTL_SETD0PID; 4111 4112 /* WA for Full speed ISOC IN in DDMA mode. 4113 * By Clear NAK status of EP, core will send ZLP 4114 * to IN token and assert NAK interrupt relying 4115 * on TxFIFO status only 4116 */ 4117 4118 if (hsotg->gadget.speed == USB_SPEED_FULL && 4119 hs_ep->isochronous && dir_in) { 4120 /* The WA applies only to core versions from 2.72a 4121 * to 4.00a (including both). Also for FS_IOT_1.00a 4122 * and HS_IOT_1.00a. 4123 */ 4124 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4125 4126 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4127 gsnpsid <= DWC2_CORE_REV_4_00a) || 4128 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4129 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4130 epctrl |= DXEPCTL_CNAK; 4131 } 4132 4133 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4134 __func__, epctrl); 4135 4136 dwc2_writel(hsotg, epctrl, epctrl_reg); 4137 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4138 __func__, dwc2_readl(hsotg, epctrl_reg)); 4139 4140 /* enable the endpoint interrupt */ 4141 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4142 4143 error1: 4144 spin_unlock_irqrestore(&hsotg->lock, flags); 4145 4146 error2: 4147 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4148 dmam_free_coherent(hsotg->dev, desc_num * 4149 sizeof(struct dwc2_dma_desc), 4150 hs_ep->desc_list, hs_ep->desc_list_dma); 4151 hs_ep->desc_list = NULL; 4152 } 4153 4154 return ret; 4155 } 4156 4157 /** 4158 * dwc2_hsotg_ep_disable - disable given endpoint 4159 * @ep: The endpoint to disable. 4160 */ 4161 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4162 { 4163 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4164 struct dwc2_hsotg *hsotg = hs_ep->parent; 4165 int dir_in = hs_ep->dir_in; 4166 int index = hs_ep->index; 4167 u32 epctrl_reg; 4168 u32 ctrl; 4169 4170 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4171 4172 if (ep == &hsotg->eps_out[0]->ep) { 4173 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4174 return -EINVAL; 4175 } 4176 4177 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4178 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4179 return -EINVAL; 4180 } 4181 4182 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4183 4184 ctrl = dwc2_readl(hsotg, epctrl_reg); 4185 4186 if (ctrl & DXEPCTL_EPENA) 4187 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4188 4189 ctrl &= ~DXEPCTL_EPENA; 4190 ctrl &= ~DXEPCTL_USBACTEP; 4191 ctrl |= DXEPCTL_SNAK; 4192 4193 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4194 dwc2_writel(hsotg, ctrl, epctrl_reg); 4195 4196 /* disable endpoint interrupts */ 4197 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4198 4199 /* terminate all requests with shutdown */ 4200 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4201 4202 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4203 hs_ep->fifo_index = 0; 4204 hs_ep->fifo_size = 0; 4205 4206 return 0; 4207 } 4208 4209 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4210 { 4211 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4212 struct dwc2_hsotg *hsotg = hs_ep->parent; 4213 unsigned long flags; 4214 int ret; 4215 4216 spin_lock_irqsave(&hsotg->lock, flags); 4217 ret = dwc2_hsotg_ep_disable(ep); 4218 spin_unlock_irqrestore(&hsotg->lock, flags); 4219 return ret; 4220 } 4221 4222 /** 4223 * on_list - check request is on the given endpoint 4224 * @ep: The endpoint to check. 4225 * @test: The request to test if it is on the endpoint. 4226 */ 4227 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4228 { 4229 struct dwc2_hsotg_req *req, *treq; 4230 4231 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4232 if (req == test) 4233 return true; 4234 } 4235 4236 return false; 4237 } 4238 4239 /** 4240 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4241 * @ep: The endpoint to dequeue. 4242 * @req: The request to be removed from a queue. 4243 */ 4244 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4245 { 4246 struct dwc2_hsotg_req *hs_req = our_req(req); 4247 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4248 struct dwc2_hsotg *hs = hs_ep->parent; 4249 unsigned long flags; 4250 4251 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4252 4253 spin_lock_irqsave(&hs->lock, flags); 4254 4255 if (!on_list(hs_ep, hs_req)) { 4256 spin_unlock_irqrestore(&hs->lock, flags); 4257 return -EINVAL; 4258 } 4259 4260 /* Dequeue already started request */ 4261 if (req == &hs_ep->req->req) 4262 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4263 4264 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4265 spin_unlock_irqrestore(&hs->lock, flags); 4266 4267 return 0; 4268 } 4269 4270 /** 4271 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4272 * @ep: The endpoint to set halt. 4273 * @value: Set or unset the halt. 4274 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4275 * the endpoint is busy processing requests. 4276 * 4277 * We need to stall the endpoint immediately if request comes from set_feature 4278 * protocol command handler. 4279 */ 4280 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4281 { 4282 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4283 struct dwc2_hsotg *hs = hs_ep->parent; 4284 int index = hs_ep->index; 4285 u32 epreg; 4286 u32 epctl; 4287 u32 xfertype; 4288 4289 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4290 4291 if (index == 0) { 4292 if (value) 4293 dwc2_hsotg_stall_ep0(hs); 4294 else 4295 dev_warn(hs->dev, 4296 "%s: can't clear halt on ep0\n", __func__); 4297 return 0; 4298 } 4299 4300 if (hs_ep->isochronous) { 4301 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4302 return -EINVAL; 4303 } 4304 4305 if (!now && value && !list_empty(&hs_ep->queue)) { 4306 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4307 ep->name); 4308 return -EAGAIN; 4309 } 4310 4311 if (hs_ep->dir_in) { 4312 epreg = DIEPCTL(index); 4313 epctl = dwc2_readl(hs, epreg); 4314 4315 if (value) { 4316 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4317 if (epctl & DXEPCTL_EPENA) 4318 epctl |= DXEPCTL_EPDIS; 4319 } else { 4320 epctl &= ~DXEPCTL_STALL; 4321 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4322 if (xfertype == DXEPCTL_EPTYPE_BULK || 4323 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4324 epctl |= DXEPCTL_SETD0PID; 4325 } 4326 dwc2_writel(hs, epctl, epreg); 4327 } else { 4328 epreg = DOEPCTL(index); 4329 epctl = dwc2_readl(hs, epreg); 4330 4331 if (value) { 4332 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4333 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4334 // STALL bit will be set in GOUTNAKEFF interrupt handler 4335 } else { 4336 epctl &= ~DXEPCTL_STALL; 4337 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4338 if (xfertype == DXEPCTL_EPTYPE_BULK || 4339 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4340 epctl |= DXEPCTL_SETD0PID; 4341 dwc2_writel(hs, epctl, epreg); 4342 } 4343 } 4344 4345 hs_ep->halted = value; 4346 return 0; 4347 } 4348 4349 /** 4350 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4351 * @ep: The endpoint to set halt. 4352 * @value: Set or unset the halt. 4353 */ 4354 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4355 { 4356 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4357 struct dwc2_hsotg *hs = hs_ep->parent; 4358 unsigned long flags = 0; 4359 int ret = 0; 4360 4361 spin_lock_irqsave(&hs->lock, flags); 4362 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4363 spin_unlock_irqrestore(&hs->lock, flags); 4364 4365 return ret; 4366 } 4367 4368 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4369 .enable = dwc2_hsotg_ep_enable, 4370 .disable = dwc2_hsotg_ep_disable_lock, 4371 .alloc_request = dwc2_hsotg_ep_alloc_request, 4372 .free_request = dwc2_hsotg_ep_free_request, 4373 .queue = dwc2_hsotg_ep_queue_lock, 4374 .dequeue = dwc2_hsotg_ep_dequeue, 4375 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4376 /* note, don't believe we have any call for the fifo routines */ 4377 }; 4378 4379 /** 4380 * dwc2_hsotg_init - initialize the usb core 4381 * @hsotg: The driver state 4382 */ 4383 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4384 { 4385 /* unmask subset of endpoint interrupts */ 4386 4387 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4388 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4389 DIEPMSK); 4390 4391 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4392 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4393 DOEPMSK); 4394 4395 dwc2_writel(hsotg, 0, DAINTMSK); 4396 4397 /* Be in disconnected state until gadget is registered */ 4398 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4399 4400 /* setup fifos */ 4401 4402 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4403 dwc2_readl(hsotg, GRXFSIZ), 4404 dwc2_readl(hsotg, GNPTXFSIZ)); 4405 4406 dwc2_hsotg_init_fifo(hsotg); 4407 4408 if (using_dma(hsotg)) 4409 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4410 } 4411 4412 /** 4413 * dwc2_hsotg_udc_start - prepare the udc for work 4414 * @gadget: The usb gadget state 4415 * @driver: The usb gadget driver 4416 * 4417 * Perform initialization to prepare udc device and driver 4418 * to work. 4419 */ 4420 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4421 struct usb_gadget_driver *driver) 4422 { 4423 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4424 unsigned long flags; 4425 int ret; 4426 4427 if (!hsotg) { 4428 pr_err("%s: called with no device\n", __func__); 4429 return -ENODEV; 4430 } 4431 4432 if (!driver) { 4433 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4434 return -EINVAL; 4435 } 4436 4437 if (driver->max_speed < USB_SPEED_FULL) 4438 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4439 4440 if (!driver->setup) { 4441 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4442 return -EINVAL; 4443 } 4444 4445 WARN_ON(hsotg->driver); 4446 4447 driver->driver.bus = NULL; 4448 hsotg->driver = driver; 4449 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4450 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4451 4452 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4453 ret = dwc2_lowlevel_hw_enable(hsotg); 4454 if (ret) 4455 goto err; 4456 } 4457 4458 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4459 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4460 4461 spin_lock_irqsave(&hsotg->lock, flags); 4462 if (dwc2_hw_is_device(hsotg)) { 4463 dwc2_hsotg_init(hsotg); 4464 dwc2_hsotg_core_init_disconnected(hsotg, false); 4465 } 4466 4467 hsotg->enabled = 0; 4468 spin_unlock_irqrestore(&hsotg->lock, flags); 4469 4470 gadget->sg_supported = using_desc_dma(hsotg); 4471 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4472 4473 return 0; 4474 4475 err: 4476 hsotg->driver = NULL; 4477 return ret; 4478 } 4479 4480 /** 4481 * dwc2_hsotg_udc_stop - stop the udc 4482 * @gadget: The usb gadget state 4483 * 4484 * Stop udc hw block and stay tunned for future transmissions 4485 */ 4486 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4487 { 4488 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4489 unsigned long flags = 0; 4490 int ep; 4491 4492 if (!hsotg) 4493 return -ENODEV; 4494 4495 /* all endpoints should be shutdown */ 4496 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4497 if (hsotg->eps_in[ep]) 4498 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4499 if (hsotg->eps_out[ep]) 4500 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4501 } 4502 4503 spin_lock_irqsave(&hsotg->lock, flags); 4504 4505 hsotg->driver = NULL; 4506 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4507 hsotg->enabled = 0; 4508 4509 spin_unlock_irqrestore(&hsotg->lock, flags); 4510 4511 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4512 otg_set_peripheral(hsotg->uphy->otg, NULL); 4513 4514 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4515 dwc2_lowlevel_hw_disable(hsotg); 4516 4517 return 0; 4518 } 4519 4520 /** 4521 * dwc2_hsotg_gadget_getframe - read the frame number 4522 * @gadget: The usb gadget state 4523 * 4524 * Read the {micro} frame number 4525 */ 4526 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4527 { 4528 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4529 } 4530 4531 /** 4532 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4533 * @gadget: The usb gadget state 4534 * @is_selfpowered: Whether the device is self-powered 4535 * 4536 * Set if the device is self or bus powered. 4537 */ 4538 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4539 int is_selfpowered) 4540 { 4541 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4542 unsigned long flags; 4543 4544 spin_lock_irqsave(&hsotg->lock, flags); 4545 gadget->is_selfpowered = !!is_selfpowered; 4546 spin_unlock_irqrestore(&hsotg->lock, flags); 4547 4548 return 0; 4549 } 4550 4551 /** 4552 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4553 * @gadget: The usb gadget state 4554 * @is_on: Current state of the USB PHY 4555 * 4556 * Connect/Disconnect the USB PHY pullup 4557 */ 4558 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4559 { 4560 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4561 unsigned long flags = 0; 4562 4563 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4564 hsotg->op_state); 4565 4566 /* Don't modify pullup state while in host mode */ 4567 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4568 hsotg->enabled = is_on; 4569 return 0; 4570 } 4571 4572 spin_lock_irqsave(&hsotg->lock, flags); 4573 if (is_on) { 4574 hsotg->enabled = 1; 4575 dwc2_hsotg_core_init_disconnected(hsotg, false); 4576 /* Enable ACG feature in device mode,if supported */ 4577 dwc2_enable_acg(hsotg); 4578 dwc2_hsotg_core_connect(hsotg); 4579 } else { 4580 dwc2_hsotg_core_disconnect(hsotg); 4581 dwc2_hsotg_disconnect(hsotg); 4582 hsotg->enabled = 0; 4583 } 4584 4585 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4586 spin_unlock_irqrestore(&hsotg->lock, flags); 4587 4588 return 0; 4589 } 4590 4591 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4592 { 4593 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4594 unsigned long flags; 4595 4596 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4597 spin_lock_irqsave(&hsotg->lock, flags); 4598 4599 /* 4600 * If controller is hibernated, it must exit from power_down 4601 * before being initialized / de-initialized 4602 */ 4603 if (hsotg->lx_state == DWC2_L2) 4604 dwc2_exit_partial_power_down(hsotg, false); 4605 4606 if (is_active) { 4607 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4608 4609 dwc2_hsotg_core_init_disconnected(hsotg, false); 4610 if (hsotg->enabled) { 4611 /* Enable ACG feature in device mode,if supported */ 4612 dwc2_enable_acg(hsotg); 4613 dwc2_hsotg_core_connect(hsotg); 4614 } 4615 } else { 4616 dwc2_hsotg_core_disconnect(hsotg); 4617 dwc2_hsotg_disconnect(hsotg); 4618 } 4619 4620 spin_unlock_irqrestore(&hsotg->lock, flags); 4621 return 0; 4622 } 4623 4624 /** 4625 * dwc2_hsotg_vbus_draw - report bMaxPower field 4626 * @gadget: The usb gadget state 4627 * @mA: Amount of current 4628 * 4629 * Report how much power the device may consume to the phy. 4630 */ 4631 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4632 { 4633 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4634 4635 if (IS_ERR_OR_NULL(hsotg->uphy)) 4636 return -ENOTSUPP; 4637 return usb_phy_set_power(hsotg->uphy, mA); 4638 } 4639 4640 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4641 .get_frame = dwc2_hsotg_gadget_getframe, 4642 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4643 .udc_start = dwc2_hsotg_udc_start, 4644 .udc_stop = dwc2_hsotg_udc_stop, 4645 .pullup = dwc2_hsotg_pullup, 4646 .vbus_session = dwc2_hsotg_vbus_session, 4647 .vbus_draw = dwc2_hsotg_vbus_draw, 4648 }; 4649 4650 /** 4651 * dwc2_hsotg_initep - initialise a single endpoint 4652 * @hsotg: The device state. 4653 * @hs_ep: The endpoint to be initialised. 4654 * @epnum: The endpoint number 4655 * @dir_in: True if direction is in. 4656 * 4657 * Initialise the given endpoint (as part of the probe and device state 4658 * creation) to give to the gadget driver. Setup the endpoint name, any 4659 * direction information and other state that may be required. 4660 */ 4661 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4662 struct dwc2_hsotg_ep *hs_ep, 4663 int epnum, 4664 bool dir_in) 4665 { 4666 char *dir; 4667 4668 if (epnum == 0) 4669 dir = ""; 4670 else if (dir_in) 4671 dir = "in"; 4672 else 4673 dir = "out"; 4674 4675 hs_ep->dir_in = dir_in; 4676 hs_ep->index = epnum; 4677 4678 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4679 4680 INIT_LIST_HEAD(&hs_ep->queue); 4681 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4682 4683 /* add to the list of endpoints known by the gadget driver */ 4684 if (epnum) 4685 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4686 4687 hs_ep->parent = hsotg; 4688 hs_ep->ep.name = hs_ep->name; 4689 4690 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4691 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4692 else 4693 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4694 epnum ? 1024 : EP0_MPS_LIMIT); 4695 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4696 4697 if (epnum == 0) { 4698 hs_ep->ep.caps.type_control = true; 4699 } else { 4700 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4701 hs_ep->ep.caps.type_iso = true; 4702 hs_ep->ep.caps.type_bulk = true; 4703 } 4704 hs_ep->ep.caps.type_int = true; 4705 } 4706 4707 if (dir_in) 4708 hs_ep->ep.caps.dir_in = true; 4709 else 4710 hs_ep->ep.caps.dir_out = true; 4711 4712 /* 4713 * if we're using dma, we need to set the next-endpoint pointer 4714 * to be something valid. 4715 */ 4716 4717 if (using_dma(hsotg)) { 4718 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4719 4720 if (dir_in) 4721 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4722 else 4723 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4724 } 4725 } 4726 4727 /** 4728 * dwc2_hsotg_hw_cfg - read HW configuration registers 4729 * @hsotg: Programming view of the DWC_otg controller 4730 * 4731 * Read the USB core HW configuration registers 4732 */ 4733 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4734 { 4735 u32 cfg; 4736 u32 ep_type; 4737 u32 i; 4738 4739 /* check hardware configuration */ 4740 4741 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4742 4743 /* Add ep0 */ 4744 hsotg->num_of_eps++; 4745 4746 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4747 sizeof(struct dwc2_hsotg_ep), 4748 GFP_KERNEL); 4749 if (!hsotg->eps_in[0]) 4750 return -ENOMEM; 4751 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4752 hsotg->eps_out[0] = hsotg->eps_in[0]; 4753 4754 cfg = hsotg->hw_params.dev_ep_dirs; 4755 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4756 ep_type = cfg & 3; 4757 /* Direction in or both */ 4758 if (!(ep_type & 2)) { 4759 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4760 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4761 if (!hsotg->eps_in[i]) 4762 return -ENOMEM; 4763 } 4764 /* Direction out or both */ 4765 if (!(ep_type & 1)) { 4766 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4767 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4768 if (!hsotg->eps_out[i]) 4769 return -ENOMEM; 4770 } 4771 } 4772 4773 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4774 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4775 4776 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4777 hsotg->num_of_eps, 4778 hsotg->dedicated_fifos ? "dedicated" : "shared", 4779 hsotg->fifo_mem); 4780 return 0; 4781 } 4782 4783 /** 4784 * dwc2_hsotg_dump - dump state of the udc 4785 * @hsotg: Programming view of the DWC_otg controller 4786 * 4787 */ 4788 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4789 { 4790 #ifdef DEBUG 4791 struct device *dev = hsotg->dev; 4792 u32 val; 4793 int idx; 4794 4795 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4796 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4797 dwc2_readl(hsotg, DIEPMSK)); 4798 4799 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4800 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4801 4802 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4803 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4804 4805 /* show periodic fifo settings */ 4806 4807 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4808 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4809 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4810 val >> FIFOSIZE_DEPTH_SHIFT, 4811 val & FIFOSIZE_STARTADDR_MASK); 4812 } 4813 4814 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4815 dev_info(dev, 4816 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4817 dwc2_readl(hsotg, DIEPCTL(idx)), 4818 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4819 dwc2_readl(hsotg, DIEPDMA(idx))); 4820 4821 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4822 dev_info(dev, 4823 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4824 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4825 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4826 dwc2_readl(hsotg, DOEPDMA(idx))); 4827 } 4828 4829 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4830 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4831 #endif 4832 } 4833 4834 /** 4835 * dwc2_gadget_init - init function for gadget 4836 * @hsotg: Programming view of the DWC_otg controller 4837 * 4838 */ 4839 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4840 { 4841 struct device *dev = hsotg->dev; 4842 int epnum; 4843 int ret; 4844 4845 /* Dump fifo information */ 4846 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4847 hsotg->params.g_np_tx_fifo_size); 4848 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4849 4850 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4851 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4852 hsotg->gadget.name = dev_name(dev); 4853 hsotg->remote_wakeup_allowed = 0; 4854 4855 if (hsotg->params.lpm) 4856 hsotg->gadget.lpm_capable = true; 4857 4858 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4859 hsotg->gadget.is_otg = 1; 4860 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4861 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4862 4863 ret = dwc2_hsotg_hw_cfg(hsotg); 4864 if (ret) { 4865 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4866 return ret; 4867 } 4868 4869 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4870 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4871 if (!hsotg->ctrl_buff) 4872 return -ENOMEM; 4873 4874 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4875 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4876 if (!hsotg->ep0_buff) 4877 return -ENOMEM; 4878 4879 if (using_desc_dma(hsotg)) { 4880 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4881 if (ret < 0) 4882 return ret; 4883 } 4884 4885 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4886 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4887 if (ret < 0) { 4888 dev_err(dev, "cannot claim IRQ for gadget\n"); 4889 return ret; 4890 } 4891 4892 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4893 4894 if (hsotg->num_of_eps == 0) { 4895 dev_err(dev, "wrong number of EPs (zero)\n"); 4896 return -EINVAL; 4897 } 4898 4899 /* setup endpoint information */ 4900 4901 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4902 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4903 4904 /* allocate EP0 request */ 4905 4906 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4907 GFP_KERNEL); 4908 if (!hsotg->ctrl_req) { 4909 dev_err(dev, "failed to allocate ctrl req\n"); 4910 return -ENOMEM; 4911 } 4912 4913 /* initialise the endpoints now the core has been initialised */ 4914 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4915 if (hsotg->eps_in[epnum]) 4916 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4917 epnum, 1); 4918 if (hsotg->eps_out[epnum]) 4919 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4920 epnum, 0); 4921 } 4922 4923 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4924 if (ret) { 4925 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, 4926 hsotg->ctrl_req); 4927 return ret; 4928 } 4929 dwc2_hsotg_dump(hsotg); 4930 4931 return 0; 4932 } 4933 4934 /** 4935 * dwc2_hsotg_remove - remove function for hsotg driver 4936 * @hsotg: Programming view of the DWC_otg controller 4937 * 4938 */ 4939 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4940 { 4941 usb_del_gadget_udc(&hsotg->gadget); 4942 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4943 4944 return 0; 4945 } 4946 4947 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4948 { 4949 unsigned long flags; 4950 4951 if (hsotg->lx_state != DWC2_L0) 4952 return 0; 4953 4954 if (hsotg->driver) { 4955 int ep; 4956 4957 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4958 hsotg->driver->driver.name); 4959 4960 spin_lock_irqsave(&hsotg->lock, flags); 4961 if (hsotg->enabled) 4962 dwc2_hsotg_core_disconnect(hsotg); 4963 dwc2_hsotg_disconnect(hsotg); 4964 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4965 spin_unlock_irqrestore(&hsotg->lock, flags); 4966 4967 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4968 if (hsotg->eps_in[ep]) 4969 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4970 if (hsotg->eps_out[ep]) 4971 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4972 } 4973 } 4974 4975 return 0; 4976 } 4977 4978 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4979 { 4980 unsigned long flags; 4981 4982 if (hsotg->lx_state == DWC2_L2) 4983 return 0; 4984 4985 if (hsotg->driver) { 4986 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4987 hsotg->driver->driver.name); 4988 4989 spin_lock_irqsave(&hsotg->lock, flags); 4990 dwc2_hsotg_core_init_disconnected(hsotg, false); 4991 if (hsotg->enabled) { 4992 /* Enable ACG feature in device mode,if supported */ 4993 dwc2_enable_acg(hsotg); 4994 dwc2_hsotg_core_connect(hsotg); 4995 } 4996 spin_unlock_irqrestore(&hsotg->lock, flags); 4997 } 4998 4999 return 0; 5000 } 5001 5002 /** 5003 * dwc2_backup_device_registers() - Backup controller device registers. 5004 * When suspending usb bus, registers needs to be backuped 5005 * if controller power is disabled once suspended. 5006 * 5007 * @hsotg: Programming view of the DWC_otg controller 5008 */ 5009 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5010 { 5011 struct dwc2_dregs_backup *dr; 5012 int i; 5013 5014 dev_dbg(hsotg->dev, "%s\n", __func__); 5015 5016 /* Backup dev regs */ 5017 dr = &hsotg->dr_backup; 5018 5019 dr->dcfg = dwc2_readl(hsotg, DCFG); 5020 dr->dctl = dwc2_readl(hsotg, DCTL); 5021 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5022 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5023 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5024 5025 for (i = 0; i < hsotg->num_of_eps; i++) { 5026 /* Backup IN EPs */ 5027 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5028 5029 /* Ensure DATA PID is correctly configured */ 5030 if (dr->diepctl[i] & DXEPCTL_DPID) 5031 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5032 else 5033 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5034 5035 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5036 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5037 5038 /* Backup OUT EPs */ 5039 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5040 5041 /* Ensure DATA PID is correctly configured */ 5042 if (dr->doepctl[i] & DXEPCTL_DPID) 5043 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5044 else 5045 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5046 5047 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5048 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5049 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5050 } 5051 dr->valid = true; 5052 return 0; 5053 } 5054 5055 /** 5056 * dwc2_restore_device_registers() - Restore controller device registers. 5057 * When resuming usb bus, device registers needs to be restored 5058 * if controller power were disabled. 5059 * 5060 * @hsotg: Programming view of the DWC_otg controller 5061 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5062 * 5063 * Return: 0 if successful, negative error code otherwise 5064 */ 5065 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5066 { 5067 struct dwc2_dregs_backup *dr; 5068 int i; 5069 5070 dev_dbg(hsotg->dev, "%s\n", __func__); 5071 5072 /* Restore dev regs */ 5073 dr = &hsotg->dr_backup; 5074 if (!dr->valid) { 5075 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5076 __func__); 5077 return -EINVAL; 5078 } 5079 dr->valid = false; 5080 5081 if (!remote_wakeup) 5082 dwc2_writel(hsotg, dr->dctl, DCTL); 5083 5084 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5085 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5086 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5087 5088 for (i = 0; i < hsotg->num_of_eps; i++) { 5089 /* Restore IN EPs */ 5090 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5091 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5092 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5093 /** WA for enabled EPx's IN in DDMA mode. On entering to 5094 * hibernation wrong value read and saved from DIEPDMAx, 5095 * as result BNA interrupt asserted on hibernation exit 5096 * by restoring from saved area. 5097 */ 5098 if (hsotg->params.g_dma_desc && 5099 (dr->diepctl[i] & DXEPCTL_EPENA)) 5100 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5101 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5102 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5103 /* Restore OUT EPs */ 5104 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5105 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5106 * hibernation wrong value read and saved from DOEPDMAx, 5107 * as result BNA interrupt asserted on hibernation exit 5108 * by restoring from saved area. 5109 */ 5110 if (hsotg->params.g_dma_desc && 5111 (dr->doepctl[i] & DXEPCTL_EPENA)) 5112 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5113 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5114 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5115 } 5116 5117 return 0; 5118 } 5119 5120 /** 5121 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5122 * 5123 * @hsotg: Programming view of DWC_otg controller 5124 * 5125 */ 5126 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5127 { 5128 u32 val; 5129 5130 if (!hsotg->params.lpm) 5131 return; 5132 5133 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5134 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5135 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5136 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5137 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5138 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5139 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5140 dwc2_writel(hsotg, val, GLPMCFG); 5141 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5142 5143 /* Unmask WKUP_ALERT Interrupt */ 5144 if (hsotg->params.service_interval) 5145 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5146 } 5147 5148 /** 5149 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5150 * 5151 * @hsotg: Programming view of DWC_otg controller 5152 * 5153 */ 5154 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5155 { 5156 u32 val = 0; 5157 5158 val |= GREFCLK_REF_CLK_MODE; 5159 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5160 val |= hsotg->params.sof_cnt_wkup_alert << 5161 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5162 5163 dwc2_writel(hsotg, val, GREFCLK); 5164 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5165 } 5166 5167 /** 5168 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5169 * 5170 * @hsotg: Programming view of the DWC_otg controller 5171 * 5172 * Return non-zero if failed to enter to hibernation. 5173 */ 5174 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5175 { 5176 u32 gpwrdn; 5177 int ret = 0; 5178 5179 /* Change to L2(suspend) state */ 5180 hsotg->lx_state = DWC2_L2; 5181 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5182 ret = dwc2_backup_global_registers(hsotg); 5183 if (ret) { 5184 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5185 __func__); 5186 return ret; 5187 } 5188 ret = dwc2_backup_device_registers(hsotg); 5189 if (ret) { 5190 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5191 __func__); 5192 return ret; 5193 } 5194 5195 gpwrdn = GPWRDN_PWRDNRSTN; 5196 gpwrdn |= GPWRDN_PMUACTV; 5197 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5198 udelay(10); 5199 5200 /* Set flag to indicate that we are in hibernation */ 5201 hsotg->hibernated = 1; 5202 5203 /* Enable interrupts from wake up logic */ 5204 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5205 gpwrdn |= GPWRDN_PMUINTSEL; 5206 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5207 udelay(10); 5208 5209 /* Unmask device mode interrupts in GPWRDN */ 5210 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5211 gpwrdn |= GPWRDN_RST_DET_MSK; 5212 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5213 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5214 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5215 udelay(10); 5216 5217 /* Enable Power Down Clamp */ 5218 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5219 gpwrdn |= GPWRDN_PWRDNCLMP; 5220 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5221 udelay(10); 5222 5223 /* Switch off VDD */ 5224 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5225 gpwrdn |= GPWRDN_PWRDNSWTCH; 5226 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5227 udelay(10); 5228 5229 /* Save gpwrdn register for further usage if stschng interrupt */ 5230 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5231 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5232 5233 return ret; 5234 } 5235 5236 /** 5237 * dwc2_gadget_exit_hibernation() 5238 * This function is for exiting from Device mode hibernation by host initiated 5239 * resume/reset and device initiated remote-wakeup. 5240 * 5241 * @hsotg: Programming view of the DWC_otg controller 5242 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5243 * @reset: indicates whether resume is initiated by Reset. 5244 * 5245 * Return non-zero if failed to exit from hibernation. 5246 */ 5247 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5248 int rem_wakeup, int reset) 5249 { 5250 u32 pcgcctl; 5251 u32 gpwrdn; 5252 u32 dctl; 5253 int ret = 0; 5254 struct dwc2_gregs_backup *gr; 5255 struct dwc2_dregs_backup *dr; 5256 5257 gr = &hsotg->gr_backup; 5258 dr = &hsotg->dr_backup; 5259 5260 if (!hsotg->hibernated) { 5261 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5262 return 1; 5263 } 5264 dev_dbg(hsotg->dev, 5265 "%s: called with rem_wakeup = %d reset = %d\n", 5266 __func__, rem_wakeup, reset); 5267 5268 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5269 5270 if (!reset) { 5271 /* Clear all pending interupts */ 5272 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5273 } 5274 5275 /* De-assert Restore */ 5276 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5277 gpwrdn &= ~GPWRDN_RESTORE; 5278 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5279 udelay(10); 5280 5281 if (!rem_wakeup) { 5282 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5283 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5284 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5285 } 5286 5287 /* Restore GUSBCFG, DCFG and DCTL */ 5288 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5289 dwc2_writel(hsotg, dr->dcfg, DCFG); 5290 dwc2_writel(hsotg, dr->dctl, DCTL); 5291 5292 /* De-assert Wakeup Logic */ 5293 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5294 gpwrdn &= ~GPWRDN_PMUACTV; 5295 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5296 5297 if (rem_wakeup) { 5298 udelay(10); 5299 /* Start Remote Wakeup Signaling */ 5300 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5301 } else { 5302 udelay(50); 5303 /* Set Device programming done bit */ 5304 dctl = dwc2_readl(hsotg, DCTL); 5305 dctl |= DCTL_PWRONPRGDONE; 5306 dwc2_writel(hsotg, dctl, DCTL); 5307 } 5308 /* Wait for interrupts which must be cleared */ 5309 mdelay(2); 5310 /* Clear all pending interupts */ 5311 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5312 5313 /* Restore global registers */ 5314 ret = dwc2_restore_global_registers(hsotg); 5315 if (ret) { 5316 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5317 __func__); 5318 return ret; 5319 } 5320 5321 /* Restore device registers */ 5322 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5323 if (ret) { 5324 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5325 __func__); 5326 return ret; 5327 } 5328 5329 if (rem_wakeup) { 5330 mdelay(10); 5331 dctl = dwc2_readl(hsotg, DCTL); 5332 dctl &= ~DCTL_RMTWKUPSIG; 5333 dwc2_writel(hsotg, dctl, DCTL); 5334 } 5335 5336 hsotg->hibernated = 0; 5337 hsotg->lx_state = DWC2_L0; 5338 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5339 5340 return ret; 5341 } 5342