xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
51 {
52 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54 
55 static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
56 {
57 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  *
111  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
112  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
113  */
114 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
115 {
116 	hs_ep->target_frame += hs_ep->interval;
117 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
118 		hs_ep->frame_overrun = true;
119 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
120 	} else {
121 		hs_ep->frame_overrun = false;
122 	}
123 }
124 
125 /**
126  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
127  * @hsotg: The device state
128  * @ints: A bitmask of the interrupts to enable
129  */
130 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
131 {
132 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
133 	u32 new_gsintmsk;
134 
135 	new_gsintmsk = gsintmsk | ints;
136 
137 	if (new_gsintmsk != gsintmsk) {
138 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
139 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
140 	}
141 }
142 
143 /**
144  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
145  * @hsotg: The device state
146  * @ints: A bitmask of the interrupts to enable
147  */
148 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
149 {
150 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
151 	u32 new_gsintmsk;
152 
153 	new_gsintmsk = gsintmsk & ~ints;
154 
155 	if (new_gsintmsk != gsintmsk)
156 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
157 }
158 
159 /**
160  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
161  * @hsotg: The device state
162  * @ep: The endpoint index
163  * @dir_in: True if direction is in.
164  * @en: The enable value, true to enable
165  *
166  * Set or clear the mask for an individual endpoint's interrupt
167  * request.
168  */
169 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
170 				  unsigned int ep, unsigned int dir_in,
171 				 unsigned int en)
172 {
173 	unsigned long flags;
174 	u32 bit = 1 << ep;
175 	u32 daint;
176 
177 	if (!dir_in)
178 		bit <<= 16;
179 
180 	local_irq_save(flags);
181 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
182 	if (en)
183 		daint |= bit;
184 	else
185 		daint &= ~bit;
186 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
187 	local_irq_restore(flags);
188 }
189 
190 /**
191  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
192  *
193  * @hsotg: Programming view of the DWC_otg controller
194  */
195 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
196 {
197 	if (hsotg->hw_params.en_multiple_tx_fifo)
198 		/* In dedicated FIFO mode we need count of IN EPs */
199 		return hsotg->hw_params.num_dev_in_eps;
200 	else
201 		/* In shared FIFO mode we need count of Periodic IN EPs */
202 		return hsotg->hw_params.num_dev_perio_in_ep;
203 }
204 
205 /**
206  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
207  * device mode TX FIFOs
208  *
209  * @hsotg: Programming view of the DWC_otg controller
210  */
211 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
212 {
213 	int addr;
214 	int tx_addr_max;
215 	u32 np_tx_fifo_size;
216 
217 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
218 				hsotg->params.g_np_tx_fifo_size);
219 
220 	/* Get Endpoint Info Control block size in DWORDs. */
221 	tx_addr_max = hsotg->hw_params.total_fifo_size;
222 
223 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
224 	if (tx_addr_max <= addr)
225 		return 0;
226 
227 	return tx_addr_max - addr;
228 }
229 
230 /**
231  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
232  * TX FIFOs
233  *
234  * @hsotg: Programming view of the DWC_otg controller
235  */
236 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
237 {
238 	int tx_fifo_count;
239 	int tx_fifo_depth;
240 
241 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
242 
243 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
244 
245 	if (!tx_fifo_count)
246 		return tx_fifo_depth;
247 	else
248 		return tx_fifo_depth / tx_fifo_count;
249 }
250 
251 /**
252  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
253  * @hsotg: The device instance.
254  */
255 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
256 {
257 	unsigned int ep;
258 	unsigned int addr;
259 	int timeout;
260 
261 	u32 val;
262 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
263 
264 	/* Reset fifo map if not correctly cleared during previous session */
265 	WARN_ON(hsotg->fifo_map);
266 	hsotg->fifo_map = 0;
267 
268 	/* set RX/NPTX FIFO sizes */
269 	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
270 	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
271 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
272 		    hsotg->regs + GNPTXFSIZ);
273 
274 	/*
275 	 * arange all the rest of the TX FIFOs, as some versions of this
276 	 * block have overlapping default addresses. This also ensures
277 	 * that if the settings have been changed, then they are set to
278 	 * known values.
279 	 */
280 
281 	/* start at the end of the GNPTXFSIZ, rounded up */
282 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
283 
284 	/*
285 	 * Configure fifos sizes from provided configuration and assign
286 	 * them to endpoints dynamically according to maxpacket size value of
287 	 * given endpoint.
288 	 */
289 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
290 		if (!txfsz[ep])
291 			continue;
292 		val = addr;
293 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
294 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
295 			  "insufficient fifo memory");
296 		addr += txfsz[ep];
297 
298 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
299 		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
300 	}
301 
302 	dwc2_writel(hsotg->hw_params.total_fifo_size |
303 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
304 		    hsotg->regs + GDFIFOCFG);
305 	/*
306 	 * according to p428 of the design guide, we need to ensure that
307 	 * all fifos are flushed before continuing
308 	 */
309 
310 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
311 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
312 
313 	/* wait until the fifos are both flushed */
314 	timeout = 100;
315 	while (1) {
316 		val = dwc2_readl(hsotg->regs + GRSTCTL);
317 
318 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
319 			break;
320 
321 		if (--timeout == 0) {
322 			dev_err(hsotg->dev,
323 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
324 				__func__, val);
325 			break;
326 		}
327 
328 		udelay(1);
329 	}
330 
331 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
332 }
333 
334 /**
335  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
336  * @ep: USB endpoint to allocate request for.
337  * @flags: Allocation flags
338  *
339  * Allocate a new USB request structure appropriate for the specified endpoint
340  */
341 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
342 						       gfp_t flags)
343 {
344 	struct dwc2_hsotg_req *req;
345 
346 	req = kzalloc(sizeof(*req), flags);
347 	if (!req)
348 		return NULL;
349 
350 	INIT_LIST_HEAD(&req->queue);
351 
352 	return &req->req;
353 }
354 
355 /**
356  * is_ep_periodic - return true if the endpoint is in periodic mode.
357  * @hs_ep: The endpoint to query.
358  *
359  * Returns true if the endpoint is in periodic mode, meaning it is being
360  * used for an Interrupt or ISO transfer.
361  */
362 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
363 {
364 	return hs_ep->periodic;
365 }
366 
367 /**
368  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
369  * @hsotg: The device state.
370  * @hs_ep: The endpoint for the request
371  * @hs_req: The request being processed.
372  *
373  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
374  * of a request to ensure the buffer is ready for access by the caller.
375  */
376 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
377 				 struct dwc2_hsotg_ep *hs_ep,
378 				struct dwc2_hsotg_req *hs_req)
379 {
380 	struct usb_request *req = &hs_req->req;
381 
382 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
383 }
384 
385 /*
386  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
387  * for Control endpoint
388  * @hsotg: The device state.
389  *
390  * This function will allocate 4 descriptor chains for EP 0: 2 for
391  * Setup stage, per one for IN and OUT data/status transactions.
392  */
393 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
394 {
395 	hsotg->setup_desc[0] =
396 		dmam_alloc_coherent(hsotg->dev,
397 				    sizeof(struct dwc2_dma_desc),
398 				    &hsotg->setup_desc_dma[0],
399 				    GFP_KERNEL);
400 	if (!hsotg->setup_desc[0])
401 		goto fail;
402 
403 	hsotg->setup_desc[1] =
404 		dmam_alloc_coherent(hsotg->dev,
405 				    sizeof(struct dwc2_dma_desc),
406 				    &hsotg->setup_desc_dma[1],
407 				    GFP_KERNEL);
408 	if (!hsotg->setup_desc[1])
409 		goto fail;
410 
411 	hsotg->ctrl_in_desc =
412 		dmam_alloc_coherent(hsotg->dev,
413 				    sizeof(struct dwc2_dma_desc),
414 				    &hsotg->ctrl_in_desc_dma,
415 				    GFP_KERNEL);
416 	if (!hsotg->ctrl_in_desc)
417 		goto fail;
418 
419 	hsotg->ctrl_out_desc =
420 		dmam_alloc_coherent(hsotg->dev,
421 				    sizeof(struct dwc2_dma_desc),
422 				    &hsotg->ctrl_out_desc_dma,
423 				    GFP_KERNEL);
424 	if (!hsotg->ctrl_out_desc)
425 		goto fail;
426 
427 	return 0;
428 
429 fail:
430 	return -ENOMEM;
431 }
432 
433 /**
434  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
435  * @hsotg: The controller state.
436  * @hs_ep: The endpoint we're going to write for.
437  * @hs_req: The request to write data for.
438  *
439  * This is called when the TxFIFO has some space in it to hold a new
440  * transmission and we have something to give it. The actual setup of
441  * the data size is done elsewhere, so all we have to do is to actually
442  * write the data.
443  *
444  * The return value is zero if there is more space (or nothing was done)
445  * otherwise -ENOSPC is returned if the FIFO space was used up.
446  *
447  * This routine is only needed for PIO
448  */
449 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
450 				 struct dwc2_hsotg_ep *hs_ep,
451 				struct dwc2_hsotg_req *hs_req)
452 {
453 	bool periodic = is_ep_periodic(hs_ep);
454 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
455 	int buf_pos = hs_req->req.actual;
456 	int to_write = hs_ep->size_loaded;
457 	void *data;
458 	int can_write;
459 	int pkt_round;
460 	int max_transfer;
461 
462 	to_write -= (buf_pos - hs_ep->last_load);
463 
464 	/* if there's nothing to write, get out early */
465 	if (to_write == 0)
466 		return 0;
467 
468 	if (periodic && !hsotg->dedicated_fifos) {
469 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
470 		int size_left;
471 		int size_done;
472 
473 		/*
474 		 * work out how much data was loaded so we can calculate
475 		 * how much data is left in the fifo.
476 		 */
477 
478 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
479 
480 		/*
481 		 * if shared fifo, we cannot write anything until the
482 		 * previous data has been completely sent.
483 		 */
484 		if (hs_ep->fifo_load != 0) {
485 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
486 			return -ENOSPC;
487 		}
488 
489 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
490 			__func__, size_left,
491 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
492 
493 		/* how much of the data has moved */
494 		size_done = hs_ep->size_loaded - size_left;
495 
496 		/* how much data is left in the fifo */
497 		can_write = hs_ep->fifo_load - size_done;
498 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
499 			__func__, can_write);
500 
501 		can_write = hs_ep->fifo_size - can_write;
502 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
503 			__func__, can_write);
504 
505 		if (can_write <= 0) {
506 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
507 			return -ENOSPC;
508 		}
509 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
510 		can_write = dwc2_readl(hsotg->regs +
511 				DTXFSTS(hs_ep->fifo_index));
512 
513 		can_write &= 0xffff;
514 		can_write *= 4;
515 	} else {
516 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
517 			dev_dbg(hsotg->dev,
518 				"%s: no queue slots available (0x%08x)\n",
519 				__func__, gnptxsts);
520 
521 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
522 			return -ENOSPC;
523 		}
524 
525 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
526 		can_write *= 4;	/* fifo size is in 32bit quantities. */
527 	}
528 
529 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
530 
531 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
532 		__func__, gnptxsts, can_write, to_write, max_transfer);
533 
534 	/*
535 	 * limit to 512 bytes of data, it seems at least on the non-periodic
536 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
537 	 * fragment of the end of the transfer in it.
538 	 */
539 	if (can_write > 512 && !periodic)
540 		can_write = 512;
541 
542 	/*
543 	 * limit the write to one max-packet size worth of data, but allow
544 	 * the transfer to return that it did not run out of fifo space
545 	 * doing it.
546 	 */
547 	if (to_write > max_transfer) {
548 		to_write = max_transfer;
549 
550 		/* it's needed only when we do not use dedicated fifos */
551 		if (!hsotg->dedicated_fifos)
552 			dwc2_hsotg_en_gsint(hsotg,
553 					    periodic ? GINTSTS_PTXFEMP :
554 					   GINTSTS_NPTXFEMP);
555 	}
556 
557 	/* see if we can write data */
558 
559 	if (to_write > can_write) {
560 		to_write = can_write;
561 		pkt_round = to_write % max_transfer;
562 
563 		/*
564 		 * Round the write down to an
565 		 * exact number of packets.
566 		 *
567 		 * Note, we do not currently check to see if we can ever
568 		 * write a full packet or not to the FIFO.
569 		 */
570 
571 		if (pkt_round)
572 			to_write -= pkt_round;
573 
574 		/*
575 		 * enable correct FIFO interrupt to alert us when there
576 		 * is more room left.
577 		 */
578 
579 		/* it's needed only when we do not use dedicated fifos */
580 		if (!hsotg->dedicated_fifos)
581 			dwc2_hsotg_en_gsint(hsotg,
582 					    periodic ? GINTSTS_PTXFEMP :
583 					   GINTSTS_NPTXFEMP);
584 	}
585 
586 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
587 		to_write, hs_req->req.length, can_write, buf_pos);
588 
589 	if (to_write <= 0)
590 		return -ENOSPC;
591 
592 	hs_req->req.actual = buf_pos + to_write;
593 	hs_ep->total_data += to_write;
594 
595 	if (periodic)
596 		hs_ep->fifo_load += to_write;
597 
598 	to_write = DIV_ROUND_UP(to_write, 4);
599 	data = hs_req->req.buf + buf_pos;
600 
601 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
602 
603 	return (to_write >= can_write) ? -ENOSPC : 0;
604 }
605 
606 /**
607  * get_ep_limit - get the maximum data legnth for this endpoint
608  * @hs_ep: The endpoint
609  *
610  * Return the maximum data that can be queued in one go on a given endpoint
611  * so that transfers that are too long can be split.
612  */
613 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
614 {
615 	int index = hs_ep->index;
616 	unsigned int maxsize;
617 	unsigned int maxpkt;
618 
619 	if (index != 0) {
620 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
621 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
622 	} else {
623 		maxsize = 64 + 64;
624 		if (hs_ep->dir_in)
625 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
626 		else
627 			maxpkt = 2;
628 	}
629 
630 	/* we made the constant loading easier above by using +1 */
631 	maxpkt--;
632 	maxsize--;
633 
634 	/*
635 	 * constrain by packet count if maxpkts*pktsize is greater
636 	 * than the length register size.
637 	 */
638 
639 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
640 		maxsize = maxpkt * hs_ep->ep.maxpacket;
641 
642 	return maxsize;
643 }
644 
645 /**
646  * dwc2_hsotg_read_frameno - read current frame number
647  * @hsotg: The device instance
648  *
649  * Return the current frame number
650  */
651 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
652 {
653 	u32 dsts;
654 
655 	dsts = dwc2_readl(hsotg->regs + DSTS);
656 	dsts &= DSTS_SOFFN_MASK;
657 	dsts >>= DSTS_SOFFN_SHIFT;
658 
659 	return dsts;
660 }
661 
662 /**
663  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
664  * DMA descriptor chain prepared for specific endpoint
665  * @hs_ep: The endpoint
666  *
667  * Return the maximum data that can be queued in one go on a given endpoint
668  * depending on its descriptor chain capacity so that transfers that
669  * are too long can be split.
670  */
671 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
672 {
673 	int is_isoc = hs_ep->isochronous;
674 	unsigned int maxsize;
675 
676 	if (is_isoc)
677 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
678 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
679 	else
680 		maxsize = DEV_DMA_NBYTES_LIMIT;
681 
682 	/* Above size of one descriptor was chosen, multiple it */
683 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
684 
685 	return maxsize;
686 }
687 
688 /*
689  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
690  * @hs_ep: The endpoint
691  * @mask: RX/TX bytes mask to be defined
692  *
693  * Returns maximum data payload for one descriptor after analyzing endpoint
694  * characteristics.
695  * DMA descriptor transfer bytes limit depends on EP type:
696  * Control out - MPS,
697  * Isochronous - descriptor rx/tx bytes bitfield limit,
698  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
699  * have concatenations from various descriptors within one packet.
700  *
701  * Selects corresponding mask for RX/TX bytes as well.
702  */
703 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
704 {
705 	u32 mps = hs_ep->ep.maxpacket;
706 	int dir_in = hs_ep->dir_in;
707 	u32 desc_size = 0;
708 
709 	if (!hs_ep->index && !dir_in) {
710 		desc_size = mps;
711 		*mask = DEV_DMA_NBYTES_MASK;
712 	} else if (hs_ep->isochronous) {
713 		if (dir_in) {
714 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
715 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
716 		} else {
717 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
718 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
719 		}
720 	} else {
721 		desc_size = DEV_DMA_NBYTES_LIMIT;
722 		*mask = DEV_DMA_NBYTES_MASK;
723 
724 		/* Round down desc_size to be mps multiple */
725 		desc_size -= desc_size % mps;
726 	}
727 
728 	return desc_size;
729 }
730 
731 /*
732  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
733  * @hs_ep: The endpoint
734  * @dma_buff: DMA address to use
735  * @len: Length of the transfer
736  *
737  * This function will iterate over descriptor chain and fill its entries
738  * with corresponding information based on transfer data.
739  */
740 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
741 						 dma_addr_t dma_buff,
742 						 unsigned int len)
743 {
744 	struct dwc2_hsotg *hsotg = hs_ep->parent;
745 	int dir_in = hs_ep->dir_in;
746 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
747 	u32 mps = hs_ep->ep.maxpacket;
748 	u32 maxsize = 0;
749 	u32 offset = 0;
750 	u32 mask = 0;
751 	int i;
752 
753 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
754 
755 	hs_ep->desc_count = (len / maxsize) +
756 				((len % maxsize) ? 1 : 0);
757 	if (len == 0)
758 		hs_ep->desc_count = 1;
759 
760 	for (i = 0; i < hs_ep->desc_count; ++i) {
761 		desc->status = 0;
762 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
763 				 << DEV_DMA_BUFF_STS_SHIFT);
764 
765 		if (len > maxsize) {
766 			if (!hs_ep->index && !dir_in)
767 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
768 
769 			desc->status |= (maxsize <<
770 						DEV_DMA_NBYTES_SHIFT & mask);
771 			desc->buf = dma_buff + offset;
772 
773 			len -= maxsize;
774 			offset += maxsize;
775 		} else {
776 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
777 
778 			if (dir_in)
779 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
780 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
781 			if (len > maxsize)
782 				dev_err(hsotg->dev, "wrong len %d\n", len);
783 
784 			desc->status |=
785 				len << DEV_DMA_NBYTES_SHIFT & mask;
786 			desc->buf = dma_buff + offset;
787 		}
788 
789 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
790 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
791 				 << DEV_DMA_BUFF_STS_SHIFT);
792 		desc++;
793 	}
794 }
795 
796 /*
797  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
798  * @hs_ep: The isochronous endpoint.
799  * @dma_buff: usb requests dma buffer.
800  * @len: usb request transfer length.
801  *
802  * Fills next free descriptor with the data of the arrived usb request,
803  * frame info, sets Last and IOC bits increments next_desc. If filled
804  * descriptor is not the first one, removes L bit from the previous descriptor
805  * status.
806  */
807 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
808 				      dma_addr_t dma_buff, unsigned int len)
809 {
810 	struct dwc2_dma_desc *desc;
811 	struct dwc2_hsotg *hsotg = hs_ep->parent;
812 	u32 index;
813 	u32 maxsize = 0;
814 	u32 mask = 0;
815 	u8 pid = 0;
816 
817 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
818 
819 	index = hs_ep->next_desc;
820 	desc = &hs_ep->desc_list[index];
821 
822 	/* Check if descriptor chain full */
823 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
824 	    DEV_DMA_BUFF_STS_HREADY) {
825 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
826 		return 1;
827 	}
828 
829 	/* Clear L bit of previous desc if more than one entries in the chain */
830 	if (hs_ep->next_desc)
831 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
832 
833 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
834 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
835 
836 	desc->status = 0;
837 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
838 
839 	desc->buf = dma_buff;
840 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
841 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
842 
843 	if (hs_ep->dir_in) {
844 		if (len)
845 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
846 		else
847 			pid = 1;
848 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
849 				 DEV_DMA_ISOC_PID_MASK) |
850 				((len % hs_ep->ep.maxpacket) ?
851 				 DEV_DMA_SHORT : 0) |
852 				((hs_ep->target_frame <<
853 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
854 				 DEV_DMA_ISOC_FRNUM_MASK);
855 	}
856 
857 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
858 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
859 
860 	/* Increment frame number by interval for IN */
861 	if (hs_ep->dir_in)
862 		dwc2_gadget_incr_frame_num(hs_ep);
863 
864 	/* Update index of last configured entry in the chain */
865 	hs_ep->next_desc++;
866 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC)
867 		hs_ep->next_desc = 0;
868 
869 	return 0;
870 }
871 
872 /*
873  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
874  * @hs_ep: The isochronous endpoint.
875  *
876  * Prepare descriptor chain for isochronous endpoints. Afterwards
877  * write DMA address to HW and enable the endpoint.
878  */
879 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
880 {
881 	struct dwc2_hsotg *hsotg = hs_ep->parent;
882 	struct dwc2_hsotg_req *hs_req, *treq;
883 	int index = hs_ep->index;
884 	int ret;
885 	int i;
886 	u32 dma_reg;
887 	u32 depctl;
888 	u32 ctrl;
889 	struct dwc2_dma_desc *desc;
890 
891 	if (list_empty(&hs_ep->queue)) {
892 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
893 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
894 		return;
895 	}
896 
897 	/* Initialize descriptor chain by Host Busy status */
898 	for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) {
899 		desc = &hs_ep->desc_list[i];
900 		desc->status = 0;
901 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
902 				    << DEV_DMA_BUFF_STS_SHIFT);
903 	}
904 
905 	hs_ep->next_desc = 0;
906 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
907 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
908 						 hs_req->req.length);
909 		if (ret)
910 			break;
911 	}
912 
913 	hs_ep->compl_desc = 0;
914 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
915 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
916 
917 	/* write descriptor chain address to control register */
918 	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
919 
920 	ctrl = dwc2_readl(hsotg->regs + depctl);
921 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
922 	dwc2_writel(ctrl, hsotg->regs + depctl);
923 }
924 
925 /**
926  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
927  * @hsotg: The controller state.
928  * @hs_ep: The endpoint to process a request for
929  * @hs_req: The request to start.
930  * @continuing: True if we are doing more for the current request.
931  *
932  * Start the given request running by setting the endpoint registers
933  * appropriately, and writing any data to the FIFOs.
934  */
935 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
936 				 struct dwc2_hsotg_ep *hs_ep,
937 				struct dwc2_hsotg_req *hs_req,
938 				bool continuing)
939 {
940 	struct usb_request *ureq = &hs_req->req;
941 	int index = hs_ep->index;
942 	int dir_in = hs_ep->dir_in;
943 	u32 epctrl_reg;
944 	u32 epsize_reg;
945 	u32 epsize;
946 	u32 ctrl;
947 	unsigned int length;
948 	unsigned int packets;
949 	unsigned int maxreq;
950 	unsigned int dma_reg;
951 
952 	if (index != 0) {
953 		if (hs_ep->req && !continuing) {
954 			dev_err(hsotg->dev, "%s: active request\n", __func__);
955 			WARN_ON(1);
956 			return;
957 		} else if (hs_ep->req != hs_req && continuing) {
958 			dev_err(hsotg->dev,
959 				"%s: continue different req\n", __func__);
960 			WARN_ON(1);
961 			return;
962 		}
963 	}
964 
965 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
966 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
967 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
968 
969 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
970 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
971 		hs_ep->dir_in ? "in" : "out");
972 
973 	/* If endpoint is stalled, we will restart request later */
974 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
975 
976 	if (index && ctrl & DXEPCTL_STALL) {
977 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
978 		return;
979 	}
980 
981 	length = ureq->length - ureq->actual;
982 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
983 		ureq->length, ureq->actual);
984 
985 	if (!using_desc_dma(hsotg))
986 		maxreq = get_ep_limit(hs_ep);
987 	else
988 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
989 
990 	if (length > maxreq) {
991 		int round = maxreq % hs_ep->ep.maxpacket;
992 
993 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
994 			__func__, length, maxreq, round);
995 
996 		/* round down to multiple of packets */
997 		if (round)
998 			maxreq -= round;
999 
1000 		length = maxreq;
1001 	}
1002 
1003 	if (length)
1004 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1005 	else
1006 		packets = 1;	/* send one packet if length is zero. */
1007 
1008 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1009 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1010 		return;
1011 	}
1012 
1013 	if (dir_in && index != 0)
1014 		if (hs_ep->isochronous)
1015 			epsize = DXEPTSIZ_MC(packets);
1016 		else
1017 			epsize = DXEPTSIZ_MC(1);
1018 	else
1019 		epsize = 0;
1020 
1021 	/*
1022 	 * zero length packet should be programmed on its own and should not
1023 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1024 	 */
1025 	if (dir_in && ureq->zero && !continuing) {
1026 		/* Test if zlp is actually required. */
1027 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1028 		    !(ureq->length % hs_ep->ep.maxpacket))
1029 			hs_ep->send_zlp = 1;
1030 	}
1031 
1032 	epsize |= DXEPTSIZ_PKTCNT(packets);
1033 	epsize |= DXEPTSIZ_XFERSIZE(length);
1034 
1035 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1036 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1037 
1038 	/* store the request as the current one we're doing */
1039 	hs_ep->req = hs_req;
1040 
1041 	if (using_desc_dma(hsotg)) {
1042 		u32 offset = 0;
1043 		u32 mps = hs_ep->ep.maxpacket;
1044 
1045 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1046 		if (!dir_in) {
1047 			if (!index)
1048 				length = mps;
1049 			else if (length % mps)
1050 				length += (mps - (length % mps));
1051 		}
1052 
1053 		/*
1054 		 * If more data to send, adjust DMA for EP0 out data stage.
1055 		 * ureq->dma stays unchanged, hence increment it by already
1056 		 * passed passed data count before starting new transaction.
1057 		 */
1058 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1059 		    continuing)
1060 			offset = ureq->actual;
1061 
1062 		/* Fill DDMA chain entries */
1063 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1064 						     length);
1065 
1066 		/* write descriptor chain address to control register */
1067 		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1068 
1069 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1070 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1071 	} else {
1072 		/* write size / packets */
1073 		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1074 
1075 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1076 			/*
1077 			 * write DMA address to control register, buffer
1078 			 * already synced by dwc2_hsotg_ep_queue().
1079 			 */
1080 
1081 			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1082 
1083 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1084 				__func__, &ureq->dma, dma_reg);
1085 		}
1086 	}
1087 
1088 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1089 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1090 		dwc2_gadget_incr_frame_num(hs_ep);
1091 
1092 		if (hs_ep->target_frame & 0x1)
1093 			ctrl |= DXEPCTL_SETODDFR;
1094 		else
1095 			ctrl |= DXEPCTL_SETEVENFR;
1096 	}
1097 
1098 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1099 
1100 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1101 
1102 	/* For Setup request do not clear NAK */
1103 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1104 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1105 
1106 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1107 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1108 
1109 	/*
1110 	 * set these, it seems that DMA support increments past the end
1111 	 * of the packet buffer so we need to calculate the length from
1112 	 * this information.
1113 	 */
1114 	hs_ep->size_loaded = length;
1115 	hs_ep->last_load = ureq->actual;
1116 
1117 	if (dir_in && !using_dma(hsotg)) {
1118 		/* set these anyway, we may need them for non-periodic in */
1119 		hs_ep->fifo_load = 0;
1120 
1121 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1122 	}
1123 
1124 	/*
1125 	 * Note, trying to clear the NAK here causes problems with transmit
1126 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1127 	 */
1128 
1129 	/* check ep is enabled */
1130 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1131 		dev_dbg(hsotg->dev,
1132 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1133 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1134 
1135 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1136 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1137 
1138 	/* enable ep interrupts */
1139 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1140 }
1141 
1142 /**
1143  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1144  * @hsotg: The device state.
1145  * @hs_ep: The endpoint the request is on.
1146  * @req: The request being processed.
1147  *
1148  * We've been asked to queue a request, so ensure that the memory buffer
1149  * is correctly setup for DMA. If we've been passed an extant DMA address
1150  * then ensure the buffer has been synced to memory. If our buffer has no
1151  * DMA memory, then we map the memory and mark our request to allow us to
1152  * cleanup on completion.
1153  */
1154 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1155 			      struct dwc2_hsotg_ep *hs_ep,
1156 			     struct usb_request *req)
1157 {
1158 	int ret;
1159 
1160 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1161 	if (ret)
1162 		goto dma_error;
1163 
1164 	return 0;
1165 
1166 dma_error:
1167 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1168 		__func__, req->buf, req->length);
1169 
1170 	return -EIO;
1171 }
1172 
1173 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1174 						 struct dwc2_hsotg_ep *hs_ep,
1175 						 struct dwc2_hsotg_req *hs_req)
1176 {
1177 	void *req_buf = hs_req->req.buf;
1178 
1179 	/* If dma is not being used or buffer is aligned */
1180 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1181 		return 0;
1182 
1183 	WARN_ON(hs_req->saved_req_buf);
1184 
1185 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1186 		hs_ep->ep.name, req_buf, hs_req->req.length);
1187 
1188 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1189 	if (!hs_req->req.buf) {
1190 		hs_req->req.buf = req_buf;
1191 		dev_err(hsotg->dev,
1192 			"%s: unable to allocate memory for bounce buffer\n",
1193 			__func__);
1194 		return -ENOMEM;
1195 	}
1196 
1197 	/* Save actual buffer */
1198 	hs_req->saved_req_buf = req_buf;
1199 
1200 	if (hs_ep->dir_in)
1201 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1202 	return 0;
1203 }
1204 
1205 static void
1206 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1207 					 struct dwc2_hsotg_ep *hs_ep,
1208 					 struct dwc2_hsotg_req *hs_req)
1209 {
1210 	/* If dma is not being used or buffer was aligned */
1211 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1212 		return;
1213 
1214 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1215 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1216 
1217 	/* Copy data from bounce buffer on successful out transfer */
1218 	if (!hs_ep->dir_in && !hs_req->req.status)
1219 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1220 		       hs_req->req.actual);
1221 
1222 	/* Free bounce buffer */
1223 	kfree(hs_req->req.buf);
1224 
1225 	hs_req->req.buf = hs_req->saved_req_buf;
1226 	hs_req->saved_req_buf = NULL;
1227 }
1228 
1229 /**
1230  * dwc2_gadget_target_frame_elapsed - Checks target frame
1231  * @hs_ep: The driver endpoint to check
1232  *
1233  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1234  * corresponding transfer.
1235  */
1236 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1237 {
1238 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1239 	u32 target_frame = hs_ep->target_frame;
1240 	u32 current_frame = hsotg->frame_number;
1241 	bool frame_overrun = hs_ep->frame_overrun;
1242 
1243 	if (!frame_overrun && current_frame >= target_frame)
1244 		return true;
1245 
1246 	if (frame_overrun && current_frame >= target_frame &&
1247 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1248 		return true;
1249 
1250 	return false;
1251 }
1252 
1253 /*
1254  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1255  * @hsotg: The driver state
1256  * @hs_ep: the ep descriptor chain is for
1257  *
1258  * Called to update EP0 structure's pointers depend on stage of
1259  * control transfer.
1260  */
1261 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1262 					  struct dwc2_hsotg_ep *hs_ep)
1263 {
1264 	switch (hsotg->ep0_state) {
1265 	case DWC2_EP0_SETUP:
1266 	case DWC2_EP0_STATUS_OUT:
1267 		hs_ep->desc_list = hsotg->setup_desc[0];
1268 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1269 		break;
1270 	case DWC2_EP0_DATA_IN:
1271 	case DWC2_EP0_STATUS_IN:
1272 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1273 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1274 		break;
1275 	case DWC2_EP0_DATA_OUT:
1276 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1277 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1278 		break;
1279 	default:
1280 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1281 			hsotg->ep0_state);
1282 		return -EINVAL;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1289 			       gfp_t gfp_flags)
1290 {
1291 	struct dwc2_hsotg_req *hs_req = our_req(req);
1292 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1293 	struct dwc2_hsotg *hs = hs_ep->parent;
1294 	bool first;
1295 	int ret;
1296 	u32 maxsize = 0;
1297 	u32 mask = 0;
1298 
1299 
1300 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1301 		ep->name, req, req->length, req->buf, req->no_interrupt,
1302 		req->zero, req->short_not_ok);
1303 
1304 	/* Prevent new request submission when controller is suspended */
1305 	if (hs->lx_state != DWC2_L0) {
1306 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1307 			__func__);
1308 		return -EAGAIN;
1309 	}
1310 
1311 	/* initialise status of the request */
1312 	INIT_LIST_HEAD(&hs_req->queue);
1313 	req->actual = 0;
1314 	req->status = -EINPROGRESS;
1315 
1316 	/* In DDMA mode for ISOC's don't queue request if length greater
1317 	 * than descriptor limits.
1318 	 */
1319 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1320 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1321 		if (hs_ep->dir_in && req->length > maxsize) {
1322 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1323 				req->length, maxsize);
1324 			return -EINVAL;
1325 		}
1326 
1327 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1328 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1329 				req->length, hs_ep->ep.maxpacket);
1330 			return -EINVAL;
1331 		}
1332 	}
1333 
1334 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1335 	if (ret)
1336 		return ret;
1337 
1338 	/* if we're using DMA, sync the buffers as necessary */
1339 	if (using_dma(hs)) {
1340 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1341 		if (ret)
1342 			return ret;
1343 	}
1344 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1345 	if (using_desc_dma(hs) && !hs_ep->index) {
1346 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1347 		if (ret)
1348 			return ret;
1349 	}
1350 
1351 	first = list_empty(&hs_ep->queue);
1352 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1353 
1354 	/*
1355 	 * Handle DDMA isochronous transfers separately - just add new entry
1356 	 * to the descriptor chain.
1357 	 * Transfer will be started once SW gets either one of NAK or
1358 	 * OutTknEpDis interrupts.
1359 	 */
1360 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1361 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1362 			dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1363 						   hs_req->req.length);
1364 		}
1365 		return 0;
1366 	}
1367 
1368 	if (first) {
1369 		if (!hs_ep->isochronous) {
1370 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1371 			return 0;
1372 		}
1373 
1374 		/* Update current frame number value. */
1375 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1376 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1377 			dwc2_gadget_incr_frame_num(hs_ep);
1378 			/* Update current frame number value once more as it
1379 			 * changes here.
1380 			 */
1381 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1382 		}
1383 
1384 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1385 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1386 	}
1387 	return 0;
1388 }
1389 
1390 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1391 				    gfp_t gfp_flags)
1392 {
1393 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1394 	struct dwc2_hsotg *hs = hs_ep->parent;
1395 	unsigned long flags = 0;
1396 	int ret = 0;
1397 
1398 	spin_lock_irqsave(&hs->lock, flags);
1399 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1400 	spin_unlock_irqrestore(&hs->lock, flags);
1401 
1402 	return ret;
1403 }
1404 
1405 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1406 				       struct usb_request *req)
1407 {
1408 	struct dwc2_hsotg_req *hs_req = our_req(req);
1409 
1410 	kfree(hs_req);
1411 }
1412 
1413 /**
1414  * dwc2_hsotg_complete_oursetup - setup completion callback
1415  * @ep: The endpoint the request was on.
1416  * @req: The request completed.
1417  *
1418  * Called on completion of any requests the driver itself
1419  * submitted that need cleaning up.
1420  */
1421 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1422 					 struct usb_request *req)
1423 {
1424 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1425 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1426 
1427 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1428 
1429 	dwc2_hsotg_ep_free_request(ep, req);
1430 }
1431 
1432 /**
1433  * ep_from_windex - convert control wIndex value to endpoint
1434  * @hsotg: The driver state.
1435  * @windex: The control request wIndex field (in host order).
1436  *
1437  * Convert the given wIndex into a pointer to an driver endpoint
1438  * structure, or return NULL if it is not a valid endpoint.
1439  */
1440 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1441 					    u32 windex)
1442 {
1443 	struct dwc2_hsotg_ep *ep;
1444 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1445 	int idx = windex & 0x7F;
1446 
1447 	if (windex >= 0x100)
1448 		return NULL;
1449 
1450 	if (idx > hsotg->num_of_eps)
1451 		return NULL;
1452 
1453 	ep = index_to_ep(hsotg, idx, dir);
1454 
1455 	if (idx && ep->dir_in != dir)
1456 		return NULL;
1457 
1458 	return ep;
1459 }
1460 
1461 /**
1462  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1463  * @hsotg: The driver state.
1464  * @testmode: requested usb test mode
1465  * Enable usb Test Mode requested by the Host.
1466  */
1467 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1468 {
1469 	int dctl = dwc2_readl(hsotg->regs + DCTL);
1470 
1471 	dctl &= ~DCTL_TSTCTL_MASK;
1472 	switch (testmode) {
1473 	case TEST_J:
1474 	case TEST_K:
1475 	case TEST_SE0_NAK:
1476 	case TEST_PACKET:
1477 	case TEST_FORCE_EN:
1478 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1479 		break;
1480 	default:
1481 		return -EINVAL;
1482 	}
1483 	dwc2_writel(dctl, hsotg->regs + DCTL);
1484 	return 0;
1485 }
1486 
1487 /**
1488  * dwc2_hsotg_send_reply - send reply to control request
1489  * @hsotg: The device state
1490  * @ep: Endpoint 0
1491  * @buff: Buffer for request
1492  * @length: Length of reply.
1493  *
1494  * Create a request and queue it on the given endpoint. This is useful as
1495  * an internal method of sending replies to certain control requests, etc.
1496  */
1497 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1498 				 struct dwc2_hsotg_ep *ep,
1499 				void *buff,
1500 				int length)
1501 {
1502 	struct usb_request *req;
1503 	int ret;
1504 
1505 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1506 
1507 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1508 	hsotg->ep0_reply = req;
1509 	if (!req) {
1510 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1511 		return -ENOMEM;
1512 	}
1513 
1514 	req->buf = hsotg->ep0_buff;
1515 	req->length = length;
1516 	/*
1517 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1518 	 * STATUS stage.
1519 	 */
1520 	req->zero = 0;
1521 	req->complete = dwc2_hsotg_complete_oursetup;
1522 
1523 	if (length)
1524 		memcpy(req->buf, buff, length);
1525 
1526 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1527 	if (ret) {
1528 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1529 		return ret;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  * dwc2_hsotg_process_req_status - process request GET_STATUS
1537  * @hsotg: The device state
1538  * @ctrl: USB control request
1539  */
1540 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1541 					 struct usb_ctrlrequest *ctrl)
1542 {
1543 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1544 	struct dwc2_hsotg_ep *ep;
1545 	__le16 reply;
1546 	int ret;
1547 
1548 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1549 
1550 	if (!ep0->dir_in) {
1551 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1552 		return -EINVAL;
1553 	}
1554 
1555 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1556 	case USB_RECIP_DEVICE:
1557 		/*
1558 		 * bit 0 => self powered
1559 		 * bit 1 => remote wakeup
1560 		 */
1561 		reply = cpu_to_le16(0);
1562 		break;
1563 
1564 	case USB_RECIP_INTERFACE:
1565 		/* currently, the data result should be zero */
1566 		reply = cpu_to_le16(0);
1567 		break;
1568 
1569 	case USB_RECIP_ENDPOINT:
1570 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1571 		if (!ep)
1572 			return -ENOENT;
1573 
1574 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1575 		break;
1576 
1577 	default:
1578 		return 0;
1579 	}
1580 
1581 	if (le16_to_cpu(ctrl->wLength) != 2)
1582 		return -EINVAL;
1583 
1584 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1585 	if (ret) {
1586 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1587 		return ret;
1588 	}
1589 
1590 	return 1;
1591 }
1592 
1593 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1594 
1595 /**
1596  * get_ep_head - return the first request on the endpoint
1597  * @hs_ep: The controller endpoint to get
1598  *
1599  * Get the first request on the endpoint.
1600  */
1601 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1602 {
1603 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1604 					queue);
1605 }
1606 
1607 /**
1608  * dwc2_gadget_start_next_request - Starts next request from ep queue
1609  * @hs_ep: Endpoint structure
1610  *
1611  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1612  * in its handler. Hence we need to unmask it here to be able to do
1613  * resynchronization.
1614  */
1615 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1616 {
1617 	u32 mask;
1618 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1619 	int dir_in = hs_ep->dir_in;
1620 	struct dwc2_hsotg_req *hs_req;
1621 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1622 
1623 	if (!list_empty(&hs_ep->queue)) {
1624 		hs_req = get_ep_head(hs_ep);
1625 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1626 		return;
1627 	}
1628 	if (!hs_ep->isochronous)
1629 		return;
1630 
1631 	if (dir_in) {
1632 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1633 			__func__);
1634 	} else {
1635 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1636 			__func__);
1637 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1638 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1639 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1640 	}
1641 }
1642 
1643 /**
1644  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1645  * @hsotg: The device state
1646  * @ctrl: USB control request
1647  */
1648 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1649 					  struct usb_ctrlrequest *ctrl)
1650 {
1651 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1652 	struct dwc2_hsotg_req *hs_req;
1653 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1654 	struct dwc2_hsotg_ep *ep;
1655 	int ret;
1656 	bool halted;
1657 	u32 recip;
1658 	u32 wValue;
1659 	u32 wIndex;
1660 
1661 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1662 		__func__, set ? "SET" : "CLEAR");
1663 
1664 	wValue = le16_to_cpu(ctrl->wValue);
1665 	wIndex = le16_to_cpu(ctrl->wIndex);
1666 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1667 
1668 	switch (recip) {
1669 	case USB_RECIP_DEVICE:
1670 		switch (wValue) {
1671 		case USB_DEVICE_REMOTE_WAKEUP:
1672 			hsotg->remote_wakeup_allowed = 1;
1673 			break;
1674 
1675 		case USB_DEVICE_TEST_MODE:
1676 			if ((wIndex & 0xff) != 0)
1677 				return -EINVAL;
1678 			if (!set)
1679 				return -EINVAL;
1680 
1681 			hsotg->test_mode = wIndex >> 8;
1682 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1683 			if (ret) {
1684 				dev_err(hsotg->dev,
1685 					"%s: failed to send reply\n", __func__);
1686 				return ret;
1687 			}
1688 			break;
1689 		default:
1690 			return -ENOENT;
1691 		}
1692 		break;
1693 
1694 	case USB_RECIP_ENDPOINT:
1695 		ep = ep_from_windex(hsotg, wIndex);
1696 		if (!ep) {
1697 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1698 				__func__, wIndex);
1699 			return -ENOENT;
1700 		}
1701 
1702 		switch (wValue) {
1703 		case USB_ENDPOINT_HALT:
1704 			halted = ep->halted;
1705 
1706 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1707 
1708 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1709 			if (ret) {
1710 				dev_err(hsotg->dev,
1711 					"%s: failed to send reply\n", __func__);
1712 				return ret;
1713 			}
1714 
1715 			/*
1716 			 * we have to complete all requests for ep if it was
1717 			 * halted, and the halt was cleared by CLEAR_FEATURE
1718 			 */
1719 
1720 			if (!set && halted) {
1721 				/*
1722 				 * If we have request in progress,
1723 				 * then complete it
1724 				 */
1725 				if (ep->req) {
1726 					hs_req = ep->req;
1727 					ep->req = NULL;
1728 					list_del_init(&hs_req->queue);
1729 					if (hs_req->req.complete) {
1730 						spin_unlock(&hsotg->lock);
1731 						usb_gadget_giveback_request(
1732 							&ep->ep, &hs_req->req);
1733 						spin_lock(&hsotg->lock);
1734 					}
1735 				}
1736 
1737 				/* If we have pending request, then start it */
1738 				if (!ep->req)
1739 					dwc2_gadget_start_next_request(ep);
1740 			}
1741 
1742 			break;
1743 
1744 		default:
1745 			return -ENOENT;
1746 		}
1747 		break;
1748 	default:
1749 		return -ENOENT;
1750 	}
1751 	return 1;
1752 }
1753 
1754 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1755 
1756 /**
1757  * dwc2_hsotg_stall_ep0 - stall ep0
1758  * @hsotg: The device state
1759  *
1760  * Set stall for ep0 as response for setup request.
1761  */
1762 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1763 {
1764 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1765 	u32 reg;
1766 	u32 ctrl;
1767 
1768 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1769 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1770 
1771 	/*
1772 	 * DxEPCTL_Stall will be cleared by EP once it has
1773 	 * taken effect, so no need to clear later.
1774 	 */
1775 
1776 	ctrl = dwc2_readl(hsotg->regs + reg);
1777 	ctrl |= DXEPCTL_STALL;
1778 	ctrl |= DXEPCTL_CNAK;
1779 	dwc2_writel(ctrl, hsotg->regs + reg);
1780 
1781 	dev_dbg(hsotg->dev,
1782 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1783 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1784 
1785 	 /*
1786 	  * complete won't be called, so we enqueue
1787 	  * setup request here
1788 	  */
1789 	 dwc2_hsotg_enqueue_setup(hsotg);
1790 }
1791 
1792 /**
1793  * dwc2_hsotg_process_control - process a control request
1794  * @hsotg: The device state
1795  * @ctrl: The control request received
1796  *
1797  * The controller has received the SETUP phase of a control request, and
1798  * needs to work out what to do next (and whether to pass it on to the
1799  * gadget driver).
1800  */
1801 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1802 				       struct usb_ctrlrequest *ctrl)
1803 {
1804 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1805 	int ret = 0;
1806 	u32 dcfg;
1807 
1808 	dev_dbg(hsotg->dev,
1809 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1810 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1811 		ctrl->wIndex, ctrl->wLength);
1812 
1813 	if (ctrl->wLength == 0) {
1814 		ep0->dir_in = 1;
1815 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1816 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1817 		ep0->dir_in = 1;
1818 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1819 	} else {
1820 		ep0->dir_in = 0;
1821 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1822 	}
1823 
1824 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1825 		switch (ctrl->bRequest) {
1826 		case USB_REQ_SET_ADDRESS:
1827 			hsotg->connected = 1;
1828 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1829 			dcfg &= ~DCFG_DEVADDR_MASK;
1830 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1831 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1832 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1833 
1834 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1835 
1836 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1837 			return;
1838 
1839 		case USB_REQ_GET_STATUS:
1840 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1841 			break;
1842 
1843 		case USB_REQ_CLEAR_FEATURE:
1844 		case USB_REQ_SET_FEATURE:
1845 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1846 			break;
1847 		}
1848 	}
1849 
1850 	/* as a fallback, try delivering it to the driver to deal with */
1851 
1852 	if (ret == 0 && hsotg->driver) {
1853 		spin_unlock(&hsotg->lock);
1854 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1855 		spin_lock(&hsotg->lock);
1856 		if (ret < 0)
1857 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1858 	}
1859 
1860 	/*
1861 	 * the request is either unhandlable, or is not formatted correctly
1862 	 * so respond with a STALL for the status stage to indicate failure.
1863 	 */
1864 
1865 	if (ret < 0)
1866 		dwc2_hsotg_stall_ep0(hsotg);
1867 }
1868 
1869 /**
1870  * dwc2_hsotg_complete_setup - completion of a setup transfer
1871  * @ep: The endpoint the request was on.
1872  * @req: The request completed.
1873  *
1874  * Called on completion of any requests the driver itself submitted for
1875  * EP0 setup packets
1876  */
1877 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1878 				      struct usb_request *req)
1879 {
1880 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1881 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1882 
1883 	if (req->status < 0) {
1884 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1885 		return;
1886 	}
1887 
1888 	spin_lock(&hsotg->lock);
1889 	if (req->actual == 0)
1890 		dwc2_hsotg_enqueue_setup(hsotg);
1891 	else
1892 		dwc2_hsotg_process_control(hsotg, req->buf);
1893 	spin_unlock(&hsotg->lock);
1894 }
1895 
1896 /**
1897  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1898  * @hsotg: The device state.
1899  *
1900  * Enqueue a request on EP0 if necessary to received any SETUP packets
1901  * received from the host.
1902  */
1903 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1904 {
1905 	struct usb_request *req = hsotg->ctrl_req;
1906 	struct dwc2_hsotg_req *hs_req = our_req(req);
1907 	int ret;
1908 
1909 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1910 
1911 	req->zero = 0;
1912 	req->length = 8;
1913 	req->buf = hsotg->ctrl_buff;
1914 	req->complete = dwc2_hsotg_complete_setup;
1915 
1916 	if (!list_empty(&hs_req->queue)) {
1917 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1918 		return;
1919 	}
1920 
1921 	hsotg->eps_out[0]->dir_in = 0;
1922 	hsotg->eps_out[0]->send_zlp = 0;
1923 	hsotg->ep0_state = DWC2_EP0_SETUP;
1924 
1925 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1926 	if (ret < 0) {
1927 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1928 		/*
1929 		 * Don't think there's much we can do other than watch the
1930 		 * driver fail.
1931 		 */
1932 	}
1933 }
1934 
1935 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1936 				   struct dwc2_hsotg_ep *hs_ep)
1937 {
1938 	u32 ctrl;
1939 	u8 index = hs_ep->index;
1940 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1941 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1942 
1943 	if (hs_ep->dir_in)
1944 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1945 			index);
1946 	else
1947 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1948 			index);
1949 	if (using_desc_dma(hsotg)) {
1950 		/* Not specific buffer needed for ep0 ZLP */
1951 		dma_addr_t dma = hs_ep->desc_list_dma;
1952 
1953 		if (!index)
1954 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1955 
1956 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1957 	} else {
1958 		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1959 			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1960 			    epsiz_reg);
1961 	}
1962 
1963 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1964 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1965 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1966 	ctrl |= DXEPCTL_USBACTEP;
1967 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1968 }
1969 
1970 /**
1971  * dwc2_hsotg_complete_request - complete a request given to us
1972  * @hsotg: The device state.
1973  * @hs_ep: The endpoint the request was on.
1974  * @hs_req: The request to complete.
1975  * @result: The result code (0 => Ok, otherwise errno)
1976  *
1977  * The given request has finished, so call the necessary completion
1978  * if it has one and then look to see if we can start a new request
1979  * on the endpoint.
1980  *
1981  * Note, expects the ep to already be locked as appropriate.
1982  */
1983 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1984 					struct dwc2_hsotg_ep *hs_ep,
1985 				       struct dwc2_hsotg_req *hs_req,
1986 				       int result)
1987 {
1988 	if (!hs_req) {
1989 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1990 		return;
1991 	}
1992 
1993 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1994 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1995 
1996 	/*
1997 	 * only replace the status if we've not already set an error
1998 	 * from a previous transaction
1999 	 */
2000 
2001 	if (hs_req->req.status == -EINPROGRESS)
2002 		hs_req->req.status = result;
2003 
2004 	if (using_dma(hsotg))
2005 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2006 
2007 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2008 
2009 	hs_ep->req = NULL;
2010 	list_del_init(&hs_req->queue);
2011 
2012 	/*
2013 	 * call the complete request with the locks off, just in case the
2014 	 * request tries to queue more work for this endpoint.
2015 	 */
2016 
2017 	if (hs_req->req.complete) {
2018 		spin_unlock(&hsotg->lock);
2019 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2020 		spin_lock(&hsotg->lock);
2021 	}
2022 
2023 	/* In DDMA don't need to proceed to starting of next ISOC request */
2024 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2025 		return;
2026 
2027 	/*
2028 	 * Look to see if there is anything else to do. Note, the completion
2029 	 * of the previous request may have caused a new request to be started
2030 	 * so be careful when doing this.
2031 	 */
2032 
2033 	if (!hs_ep->req && result >= 0)
2034 		dwc2_gadget_start_next_request(hs_ep);
2035 }
2036 
2037 /*
2038  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2039  * @hs_ep: The endpoint the request was on.
2040  *
2041  * Get first request from the ep queue, determine descriptor on which complete
2042  * happened. SW discovers which descriptor currently in use by HW, adjusts
2043  * dma_address and calculates index of completed descriptor based on the value
2044  * of DEPDMA register. Update actual length of request, giveback to gadget.
2045  */
2046 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2047 {
2048 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2049 	struct dwc2_hsotg_req *hs_req;
2050 	struct usb_request *ureq;
2051 	u32 desc_sts;
2052 	u32 mask;
2053 
2054 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2055 
2056 	/* Process only descriptors with buffer status set to DMA done */
2057 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2058 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2059 
2060 		hs_req = get_ep_head(hs_ep);
2061 		if (!hs_req) {
2062 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2063 			return;
2064 		}
2065 		ureq = &hs_req->req;
2066 
2067 		/* Check completion status */
2068 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2069 			DEV_DMA_STS_SUCC) {
2070 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2071 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2072 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2073 				DEV_DMA_ISOC_NBYTES_SHIFT);
2074 
2075 			/* Adjust actual len for ISOC Out if len is
2076 			 * not align of 4
2077 			 */
2078 			if (!hs_ep->dir_in && ureq->length & 0x3)
2079 				ureq->actual += 4 - (ureq->length & 0x3);
2080 		}
2081 
2082 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2083 
2084 		hs_ep->compl_desc++;
2085 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1))
2086 			hs_ep->compl_desc = 0;
2087 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2088 	}
2089 }
2090 
2091 /*
2092  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2093  * @hs_ep: The isochronous endpoint.
2094  *
2095  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2096  * interrupt. Reset target frame and next_desc to allow to start
2097  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2098  * interrupt for OUT direction.
2099  */
2100 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2101 {
2102 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2103 
2104 	if (!hs_ep->dir_in)
2105 		dwc2_flush_rx_fifo(hsotg);
2106 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2107 
2108 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2109 	hs_ep->next_desc = 0;
2110 	hs_ep->compl_desc = 0;
2111 }
2112 
2113 /**
2114  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2115  * @hsotg: The device state.
2116  * @ep_idx: The endpoint index for the data
2117  * @size: The size of data in the fifo, in bytes
2118  *
2119  * The FIFO status shows there is data to read from the FIFO for a given
2120  * endpoint, so sort out whether we need to read the data into a request
2121  * that has been made for that endpoint.
2122  */
2123 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2124 {
2125 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2126 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2127 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2128 	int to_read;
2129 	int max_req;
2130 	int read_ptr;
2131 
2132 	if (!hs_req) {
2133 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2134 		int ptr;
2135 
2136 		dev_dbg(hsotg->dev,
2137 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2138 			 __func__, size, ep_idx, epctl);
2139 
2140 		/* dump the data from the FIFO, we've nothing we can do */
2141 		for (ptr = 0; ptr < size; ptr += 4)
2142 			(void)dwc2_readl(fifo);
2143 
2144 		return;
2145 	}
2146 
2147 	to_read = size;
2148 	read_ptr = hs_req->req.actual;
2149 	max_req = hs_req->req.length - read_ptr;
2150 
2151 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2152 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2153 
2154 	if (to_read > max_req) {
2155 		/*
2156 		 * more data appeared than we where willing
2157 		 * to deal with in this request.
2158 		 */
2159 
2160 		/* currently we don't deal this */
2161 		WARN_ON_ONCE(1);
2162 	}
2163 
2164 	hs_ep->total_data += to_read;
2165 	hs_req->req.actual += to_read;
2166 	to_read = DIV_ROUND_UP(to_read, 4);
2167 
2168 	/*
2169 	 * note, we might over-write the buffer end by 3 bytes depending on
2170 	 * alignment of the data.
2171 	 */
2172 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2173 }
2174 
2175 /**
2176  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2177  * @hsotg: The device instance
2178  * @dir_in: If IN zlp
2179  *
2180  * Generate a zero-length IN packet request for terminating a SETUP
2181  * transaction.
2182  *
2183  * Note, since we don't write any data to the TxFIFO, then it is
2184  * currently believed that we do not need to wait for any space in
2185  * the TxFIFO.
2186  */
2187 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2188 {
2189 	/* eps_out[0] is used in both directions */
2190 	hsotg->eps_out[0]->dir_in = dir_in;
2191 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2192 
2193 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2194 }
2195 
2196 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2197 					    u32 epctl_reg)
2198 {
2199 	u32 ctrl;
2200 
2201 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2202 	if (ctrl & DXEPCTL_EOFRNUM)
2203 		ctrl |= DXEPCTL_SETEVENFR;
2204 	else
2205 		ctrl |= DXEPCTL_SETODDFR;
2206 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2207 }
2208 
2209 /*
2210  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2211  * @hs_ep - The endpoint on which transfer went
2212  *
2213  * Iterate over endpoints descriptor chain and get info on bytes remained
2214  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2215  */
2216 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2217 {
2218 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2219 	unsigned int bytes_rem = 0;
2220 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2221 	int i;
2222 	u32 status;
2223 
2224 	if (!desc)
2225 		return -EINVAL;
2226 
2227 	for (i = 0; i < hs_ep->desc_count; ++i) {
2228 		status = desc->status;
2229 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2230 
2231 		if (status & DEV_DMA_STS_MASK)
2232 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2233 				i, status & DEV_DMA_STS_MASK);
2234 	}
2235 
2236 	return bytes_rem;
2237 }
2238 
2239 /**
2240  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2241  * @hsotg: The device instance
2242  * @epnum: The endpoint received from
2243  *
2244  * The RXFIFO has delivered an OutDone event, which means that the data
2245  * transfer for an OUT endpoint has been completed, either by a short
2246  * packet or by the finish of a transfer.
2247  */
2248 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2249 {
2250 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2251 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2252 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2253 	struct usb_request *req = &hs_req->req;
2254 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2255 	int result = 0;
2256 
2257 	if (!hs_req) {
2258 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2259 		return;
2260 	}
2261 
2262 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2263 		dev_dbg(hsotg->dev, "zlp packet received\n");
2264 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2265 		dwc2_hsotg_enqueue_setup(hsotg);
2266 		return;
2267 	}
2268 
2269 	if (using_desc_dma(hsotg))
2270 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2271 
2272 	if (using_dma(hsotg)) {
2273 		unsigned int size_done;
2274 
2275 		/*
2276 		 * Calculate the size of the transfer by checking how much
2277 		 * is left in the endpoint size register and then working it
2278 		 * out from the amount we loaded for the transfer.
2279 		 *
2280 		 * We need to do this as DMA pointers are always 32bit aligned
2281 		 * so may overshoot/undershoot the transfer.
2282 		 */
2283 
2284 		size_done = hs_ep->size_loaded - size_left;
2285 		size_done += hs_ep->last_load;
2286 
2287 		req->actual = size_done;
2288 	}
2289 
2290 	/* if there is more request to do, schedule new transfer */
2291 	if (req->actual < req->length && size_left == 0) {
2292 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2293 		return;
2294 	}
2295 
2296 	if (req->actual < req->length && req->short_not_ok) {
2297 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2298 			__func__, req->actual, req->length);
2299 
2300 		/*
2301 		 * todo - what should we return here? there's no one else
2302 		 * even bothering to check the status.
2303 		 */
2304 	}
2305 
2306 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2307 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2308 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2309 		/* Move to STATUS IN */
2310 		dwc2_hsotg_ep0_zlp(hsotg, true);
2311 		return;
2312 	}
2313 
2314 	/*
2315 	 * Slave mode OUT transfers do not go through XferComplete so
2316 	 * adjust the ISOC parity here.
2317 	 */
2318 	if (!using_dma(hsotg)) {
2319 		if (hs_ep->isochronous && hs_ep->interval == 1)
2320 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2321 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2322 			dwc2_gadget_incr_frame_num(hs_ep);
2323 	}
2324 
2325 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2326 }
2327 
2328 /**
2329  * dwc2_hsotg_handle_rx - RX FIFO has data
2330  * @hsotg: The device instance
2331  *
2332  * The IRQ handler has detected that the RX FIFO has some data in it
2333  * that requires processing, so find out what is in there and do the
2334  * appropriate read.
2335  *
2336  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2337  * chunks, so if you have x packets received on an endpoint you'll get x
2338  * FIFO events delivered, each with a packet's worth of data in it.
2339  *
2340  * When using DMA, we should not be processing events from the RXFIFO
2341  * as the actual data should be sent to the memory directly and we turn
2342  * on the completion interrupts to get notifications of transfer completion.
2343  */
2344 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2345 {
2346 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2347 	u32 epnum, status, size;
2348 
2349 	WARN_ON(using_dma(hsotg));
2350 
2351 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2352 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2353 
2354 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2355 	size >>= GRXSTS_BYTECNT_SHIFT;
2356 
2357 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2358 		__func__, grxstsr, size, epnum);
2359 
2360 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2361 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2362 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2363 		break;
2364 
2365 	case GRXSTS_PKTSTS_OUTDONE:
2366 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2367 			dwc2_hsotg_read_frameno(hsotg));
2368 
2369 		if (!using_dma(hsotg))
2370 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2371 		break;
2372 
2373 	case GRXSTS_PKTSTS_SETUPDONE:
2374 		dev_dbg(hsotg->dev,
2375 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2376 			dwc2_hsotg_read_frameno(hsotg),
2377 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2378 		/*
2379 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2380 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2381 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2382 		 */
2383 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2384 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2385 		break;
2386 
2387 	case GRXSTS_PKTSTS_OUTRX:
2388 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2389 		break;
2390 
2391 	case GRXSTS_PKTSTS_SETUPRX:
2392 		dev_dbg(hsotg->dev,
2393 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2394 			dwc2_hsotg_read_frameno(hsotg),
2395 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2396 
2397 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2398 
2399 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2400 		break;
2401 
2402 	default:
2403 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2404 			 __func__, grxstsr);
2405 
2406 		dwc2_hsotg_dump(hsotg);
2407 		break;
2408 	}
2409 }
2410 
2411 /**
2412  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2413  * @mps: The maximum packet size in bytes.
2414  */
2415 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2416 {
2417 	switch (mps) {
2418 	case 64:
2419 		return D0EPCTL_MPS_64;
2420 	case 32:
2421 		return D0EPCTL_MPS_32;
2422 	case 16:
2423 		return D0EPCTL_MPS_16;
2424 	case 8:
2425 		return D0EPCTL_MPS_8;
2426 	}
2427 
2428 	/* bad max packet size, warn and return invalid result */
2429 	WARN_ON(1);
2430 	return (u32)-1;
2431 }
2432 
2433 /**
2434  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2435  * @hsotg: The driver state.
2436  * @ep: The index number of the endpoint
2437  * @mps: The maximum packet size in bytes
2438  * @mc: The multicount value
2439  * @dir_in: True if direction is in.
2440  *
2441  * Configure the maximum packet size for the given endpoint, updating
2442  * the hardware control registers to reflect this.
2443  */
2444 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2445 					unsigned int ep, unsigned int mps,
2446 					unsigned int mc, unsigned int dir_in)
2447 {
2448 	struct dwc2_hsotg_ep *hs_ep;
2449 	void __iomem *regs = hsotg->regs;
2450 	u32 reg;
2451 
2452 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2453 	if (!hs_ep)
2454 		return;
2455 
2456 	if (ep == 0) {
2457 		u32 mps_bytes = mps;
2458 
2459 		/* EP0 is a special case */
2460 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2461 		if (mps > 3)
2462 			goto bad_mps;
2463 		hs_ep->ep.maxpacket = mps_bytes;
2464 		hs_ep->mc = 1;
2465 	} else {
2466 		if (mps > 1024)
2467 			goto bad_mps;
2468 		hs_ep->mc = mc;
2469 		if (mc > 3)
2470 			goto bad_mps;
2471 		hs_ep->ep.maxpacket = mps;
2472 	}
2473 
2474 	if (dir_in) {
2475 		reg = dwc2_readl(regs + DIEPCTL(ep));
2476 		reg &= ~DXEPCTL_MPS_MASK;
2477 		reg |= mps;
2478 		dwc2_writel(reg, regs + DIEPCTL(ep));
2479 	} else {
2480 		reg = dwc2_readl(regs + DOEPCTL(ep));
2481 		reg &= ~DXEPCTL_MPS_MASK;
2482 		reg |= mps;
2483 		dwc2_writel(reg, regs + DOEPCTL(ep));
2484 	}
2485 
2486 	return;
2487 
2488 bad_mps:
2489 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2490 }
2491 
2492 /**
2493  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2494  * @hsotg: The driver state
2495  * @idx: The index for the endpoint (0..15)
2496  */
2497 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2498 {
2499 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2500 		    hsotg->regs + GRSTCTL);
2501 
2502 	/* wait until the fifo is flushed */
2503 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2504 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2505 			 __func__);
2506 }
2507 
2508 /**
2509  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2510  * @hsotg: The driver state
2511  * @hs_ep: The driver endpoint to check.
2512  *
2513  * Check to see if there is a request that has data to send, and if so
2514  * make an attempt to write data into the FIFO.
2515  */
2516 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2517 			    struct dwc2_hsotg_ep *hs_ep)
2518 {
2519 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2520 
2521 	if (!hs_ep->dir_in || !hs_req) {
2522 		/**
2523 		 * if request is not enqueued, we disable interrupts
2524 		 * for endpoints, excepting ep0
2525 		 */
2526 		if (hs_ep->index != 0)
2527 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2528 					      hs_ep->dir_in, 0);
2529 		return 0;
2530 	}
2531 
2532 	if (hs_req->req.actual < hs_req->req.length) {
2533 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2534 			hs_ep->index);
2535 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 /**
2542  * dwc2_hsotg_complete_in - complete IN transfer
2543  * @hsotg: The device state.
2544  * @hs_ep: The endpoint that has just completed.
2545  *
2546  * An IN transfer has been completed, update the transfer's state and then
2547  * call the relevant completion routines.
2548  */
2549 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2550 				   struct dwc2_hsotg_ep *hs_ep)
2551 {
2552 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2553 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2554 	int size_left, size_done;
2555 
2556 	if (!hs_req) {
2557 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2558 		return;
2559 	}
2560 
2561 	/* Finish ZLP handling for IN EP0 transactions */
2562 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2563 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2564 
2565 		/*
2566 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2567 		 * changed to IN. Change back to complete OUT transfer request
2568 		 */
2569 		hs_ep->dir_in = 0;
2570 
2571 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2572 		if (hsotg->test_mode) {
2573 			int ret;
2574 
2575 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2576 			if (ret < 0) {
2577 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2578 					hsotg->test_mode);
2579 				dwc2_hsotg_stall_ep0(hsotg);
2580 				return;
2581 			}
2582 		}
2583 		dwc2_hsotg_enqueue_setup(hsotg);
2584 		return;
2585 	}
2586 
2587 	/*
2588 	 * Calculate the size of the transfer by checking how much is left
2589 	 * in the endpoint size register and then working it out from
2590 	 * the amount we loaded for the transfer.
2591 	 *
2592 	 * We do this even for DMA, as the transfer may have incremented
2593 	 * past the end of the buffer (DMA transfers are always 32bit
2594 	 * aligned).
2595 	 */
2596 	if (using_desc_dma(hsotg)) {
2597 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2598 		if (size_left < 0)
2599 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2600 				size_left);
2601 	} else {
2602 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2603 	}
2604 
2605 	size_done = hs_ep->size_loaded - size_left;
2606 	size_done += hs_ep->last_load;
2607 
2608 	if (hs_req->req.actual != size_done)
2609 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2610 			__func__, hs_req->req.actual, size_done);
2611 
2612 	hs_req->req.actual = size_done;
2613 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2614 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2615 
2616 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2617 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2618 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2619 		return;
2620 	}
2621 
2622 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2623 	if (hs_ep->send_zlp) {
2624 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2625 		hs_ep->send_zlp = 0;
2626 		/* transfer will be completed on next complete interrupt */
2627 		return;
2628 	}
2629 
2630 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2631 		/* Move to STATUS OUT */
2632 		dwc2_hsotg_ep0_zlp(hsotg, false);
2633 		return;
2634 	}
2635 
2636 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2637 }
2638 
2639 /**
2640  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2641  * @hsotg: The device state.
2642  * @idx: Index of ep.
2643  * @dir_in: Endpoint direction 1-in 0-out.
2644  *
2645  * Reads for endpoint with given index and direction, by masking
2646  * epint_reg with coresponding mask.
2647  */
2648 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2649 					  unsigned int idx, int dir_in)
2650 {
2651 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2652 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2653 	u32 ints;
2654 	u32 mask;
2655 	u32 diepempmsk;
2656 
2657 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2658 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2659 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2660 	mask |= DXEPINT_SETUP_RCVD;
2661 
2662 	ints = dwc2_readl(hsotg->regs + epint_reg);
2663 	ints &= mask;
2664 	return ints;
2665 }
2666 
2667 /**
2668  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2669  * @hs_ep: The endpoint on which interrupt is asserted.
2670  *
2671  * This interrupt indicates that the endpoint has been disabled per the
2672  * application's request.
2673  *
2674  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2675  * in case of ISOC completes current request.
2676  *
2677  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2678  * request starts it.
2679  */
2680 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2681 {
2682 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2683 	struct dwc2_hsotg_req *hs_req;
2684 	unsigned char idx = hs_ep->index;
2685 	int dir_in = hs_ep->dir_in;
2686 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2687 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2688 
2689 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2690 
2691 	if (dir_in) {
2692 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2693 
2694 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2695 
2696 		if (hs_ep->isochronous) {
2697 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2698 			return;
2699 		}
2700 
2701 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2702 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2703 
2704 			dctl |= DCTL_CGNPINNAK;
2705 			dwc2_writel(dctl, hsotg->regs + DCTL);
2706 		}
2707 		return;
2708 	}
2709 
2710 	if (dctl & DCTL_GOUTNAKSTS) {
2711 		dctl |= DCTL_CGOUTNAK;
2712 		dwc2_writel(dctl, hsotg->regs + DCTL);
2713 	}
2714 
2715 	if (!hs_ep->isochronous)
2716 		return;
2717 
2718 	if (list_empty(&hs_ep->queue)) {
2719 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2720 			__func__, hs_ep);
2721 		return;
2722 	}
2723 
2724 	do {
2725 		hs_req = get_ep_head(hs_ep);
2726 		if (hs_req)
2727 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2728 						    -ENODATA);
2729 		dwc2_gadget_incr_frame_num(hs_ep);
2730 		/* Update current frame number value. */
2731 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2732 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2733 
2734 	dwc2_gadget_start_next_request(hs_ep);
2735 }
2736 
2737 /**
2738  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2739  * @ep: The endpoint on which interrupt is asserted.
2740  *
2741  * This is starting point for ISOC-OUT transfer, synchronization done with
2742  * first out token received from host while corresponding EP is disabled.
2743  *
2744  * Device does not know initial frame in which out token will come. For this
2745  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2746  * getting this interrupt SW starts calculation for next transfer frame.
2747  */
2748 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2749 {
2750 	struct dwc2_hsotg *hsotg = ep->parent;
2751 	int dir_in = ep->dir_in;
2752 	u32 doepmsk;
2753 	u32 tmp;
2754 
2755 	if (dir_in || !ep->isochronous)
2756 		return;
2757 
2758 	/*
2759 	 * Store frame in which irq was asserted here, as
2760 	 * it can change while completing request below.
2761 	 */
2762 	tmp = dwc2_hsotg_read_frameno(hsotg);
2763 
2764 	if (using_desc_dma(hsotg)) {
2765 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2766 			/* Start first ISO Out */
2767 			ep->target_frame = tmp;
2768 			dwc2_gadget_start_isoc_ddma(ep);
2769 		}
2770 		return;
2771 	}
2772 
2773 	if (ep->interval > 1 &&
2774 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2775 		u32 dsts;
2776 		u32 ctrl;
2777 
2778 		dsts = dwc2_readl(hsotg->regs + DSTS);
2779 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2780 		dwc2_gadget_incr_frame_num(ep);
2781 
2782 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2783 		if (ep->target_frame & 0x1)
2784 			ctrl |= DXEPCTL_SETODDFR;
2785 		else
2786 			ctrl |= DXEPCTL_SETEVENFR;
2787 
2788 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2789 	}
2790 
2791 	dwc2_gadget_start_next_request(ep);
2792 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2793 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2794 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2795 }
2796 
2797 /**
2798  * dwc2_gadget_handle_nak - handle NAK interrupt
2799  * @hs_ep: The endpoint on which interrupt is asserted.
2800  *
2801  * This is starting point for ISOC-IN transfer, synchronization done with
2802  * first IN token received from host while corresponding EP is disabled.
2803  *
2804  * Device does not know when first one token will arrive from host. On first
2805  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2806  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2807  * sent in response to that as there was no data in FIFO. SW is basing on this
2808  * interrupt to obtain frame in which token has come and then based on the
2809  * interval calculates next frame for transfer.
2810  */
2811 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2812 {
2813 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2814 	int dir_in = hs_ep->dir_in;
2815 	u32 tmp;
2816 
2817 	if (!dir_in || !hs_ep->isochronous)
2818 		return;
2819 
2820 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2821 
2822 		tmp = dwc2_hsotg_read_frameno(hsotg);
2823 		if (using_desc_dma(hsotg)) {
2824 			hs_ep->target_frame = tmp;
2825 			dwc2_gadget_incr_frame_num(hs_ep);
2826 			dwc2_gadget_start_isoc_ddma(hs_ep);
2827 			return;
2828 		}
2829 
2830 		hs_ep->target_frame = tmp;
2831 		if (hs_ep->interval > 1) {
2832 			u32 ctrl = dwc2_readl(hsotg->regs +
2833 					      DIEPCTL(hs_ep->index));
2834 			if (hs_ep->target_frame & 0x1)
2835 				ctrl |= DXEPCTL_SETODDFR;
2836 			else
2837 				ctrl |= DXEPCTL_SETEVENFR;
2838 
2839 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2840 		}
2841 
2842 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2843 					    get_ep_head(hs_ep), 0);
2844 	}
2845 
2846 	if (!using_desc_dma(hsotg))
2847 		dwc2_gadget_incr_frame_num(hs_ep);
2848 }
2849 
2850 /**
2851  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2852  * @hsotg: The driver state
2853  * @idx: The index for the endpoint (0..15)
2854  * @dir_in: Set if this is an IN endpoint
2855  *
2856  * Process and clear any interrupt pending for an individual endpoint
2857  */
2858 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2859 			     int dir_in)
2860 {
2861 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2862 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2863 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2864 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2865 	u32 ints;
2866 	u32 ctrl;
2867 
2868 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2869 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2870 
2871 	/* Clear endpoint interrupts */
2872 	dwc2_writel(ints, hsotg->regs + epint_reg);
2873 
2874 	if (!hs_ep) {
2875 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2876 			__func__, idx, dir_in ? "in" : "out");
2877 		return;
2878 	}
2879 
2880 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2881 		__func__, idx, dir_in ? "in" : "out", ints);
2882 
2883 	/* Don't process XferCompl interrupt if it is a setup packet */
2884 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2885 		ints &= ~DXEPINT_XFERCOMPL;
2886 
2887 	/*
2888 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2889 	 * stage and xfercomplete was generated without SETUP phase done
2890 	 * interrupt. SW should parse received setup packet only after host's
2891 	 * exit from setup phase of control transfer.
2892 	 */
2893 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2894 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2895 		ints &= ~DXEPINT_XFERCOMPL;
2896 
2897 	if (ints & DXEPINT_XFERCOMPL) {
2898 		dev_dbg(hsotg->dev,
2899 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2900 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2901 			dwc2_readl(hsotg->regs + epsiz_reg));
2902 
2903 		/* In DDMA handle isochronous requests separately */
2904 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2905 			/* XferCompl set along with BNA */
2906 			if (!(ints & DXEPINT_BNAINTR))
2907 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2908 		} else if (dir_in) {
2909 			/*
2910 			 * We get OutDone from the FIFO, so we only
2911 			 * need to look at completing IN requests here
2912 			 * if operating slave mode
2913 			 */
2914 			if (hs_ep->isochronous && hs_ep->interval > 1)
2915 				dwc2_gadget_incr_frame_num(hs_ep);
2916 
2917 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2918 			if (ints & DXEPINT_NAKINTRPT)
2919 				ints &= ~DXEPINT_NAKINTRPT;
2920 
2921 			if (idx == 0 && !hs_ep->req)
2922 				dwc2_hsotg_enqueue_setup(hsotg);
2923 		} else if (using_dma(hsotg)) {
2924 			/*
2925 			 * We're using DMA, we need to fire an OutDone here
2926 			 * as we ignore the RXFIFO.
2927 			 */
2928 			if (hs_ep->isochronous && hs_ep->interval > 1)
2929 				dwc2_gadget_incr_frame_num(hs_ep);
2930 
2931 			dwc2_hsotg_handle_outdone(hsotg, idx);
2932 		}
2933 	}
2934 
2935 	if (ints & DXEPINT_EPDISBLD)
2936 		dwc2_gadget_handle_ep_disabled(hs_ep);
2937 
2938 	if (ints & DXEPINT_OUTTKNEPDIS)
2939 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2940 
2941 	if (ints & DXEPINT_NAKINTRPT)
2942 		dwc2_gadget_handle_nak(hs_ep);
2943 
2944 	if (ints & DXEPINT_AHBERR)
2945 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2946 
2947 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2948 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2949 
2950 		if (using_dma(hsotg) && idx == 0) {
2951 			/*
2952 			 * this is the notification we've received a
2953 			 * setup packet. In non-DMA mode we'd get this
2954 			 * from the RXFIFO, instead we need to process
2955 			 * the setup here.
2956 			 */
2957 
2958 			if (dir_in)
2959 				WARN_ON_ONCE(1);
2960 			else
2961 				dwc2_hsotg_handle_outdone(hsotg, 0);
2962 		}
2963 	}
2964 
2965 	if (ints & DXEPINT_STSPHSERCVD) {
2966 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2967 
2968 		/* Safety check EP0 state when STSPHSERCVD asserted */
2969 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2970 			/* Move to STATUS IN for DDMA */
2971 			if (using_desc_dma(hsotg))
2972 				dwc2_hsotg_ep0_zlp(hsotg, true);
2973 		}
2974 
2975 	}
2976 
2977 	if (ints & DXEPINT_BACK2BACKSETUP)
2978 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2979 
2980 	if (ints & DXEPINT_BNAINTR) {
2981 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2982 		if (hs_ep->isochronous)
2983 			dwc2_gadget_handle_isoc_bna(hs_ep);
2984 	}
2985 
2986 	if (dir_in && !hs_ep->isochronous) {
2987 		/* not sure if this is important, but we'll clear it anyway */
2988 		if (ints & DXEPINT_INTKNTXFEMP) {
2989 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2990 				__func__, idx);
2991 		}
2992 
2993 		/* this probably means something bad is happening */
2994 		if (ints & DXEPINT_INTKNEPMIS) {
2995 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2996 				 __func__, idx);
2997 		}
2998 
2999 		/* FIFO has space or is empty (see GAHBCFG) */
3000 		if (hsotg->dedicated_fifos &&
3001 		    ints & DXEPINT_TXFEMP) {
3002 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3003 				__func__, idx);
3004 			if (!using_dma(hsotg))
3005 				dwc2_hsotg_trytx(hsotg, hs_ep);
3006 		}
3007 	}
3008 }
3009 
3010 /**
3011  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3012  * @hsotg: The device state.
3013  *
3014  * Handle updating the device settings after the enumeration phase has
3015  * been completed.
3016  */
3017 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3018 {
3019 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3020 	int ep0_mps = 0, ep_mps = 8;
3021 
3022 	/*
3023 	 * This should signal the finish of the enumeration phase
3024 	 * of the USB handshaking, so we should now know what rate
3025 	 * we connected at.
3026 	 */
3027 
3028 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3029 
3030 	/*
3031 	 * note, since we're limited by the size of transfer on EP0, and
3032 	 * it seems IN transfers must be a even number of packets we do
3033 	 * not advertise a 64byte MPS on EP0.
3034 	 */
3035 
3036 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3037 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3038 	case DSTS_ENUMSPD_FS:
3039 	case DSTS_ENUMSPD_FS48:
3040 		hsotg->gadget.speed = USB_SPEED_FULL;
3041 		ep0_mps = EP0_MPS_LIMIT;
3042 		ep_mps = 1023;
3043 		break;
3044 
3045 	case DSTS_ENUMSPD_HS:
3046 		hsotg->gadget.speed = USB_SPEED_HIGH;
3047 		ep0_mps = EP0_MPS_LIMIT;
3048 		ep_mps = 1024;
3049 		break;
3050 
3051 	case DSTS_ENUMSPD_LS:
3052 		hsotg->gadget.speed = USB_SPEED_LOW;
3053 		ep0_mps = 8;
3054 		ep_mps = 8;
3055 		/*
3056 		 * note, we don't actually support LS in this driver at the
3057 		 * moment, and the documentation seems to imply that it isn't
3058 		 * supported by the PHYs on some of the devices.
3059 		 */
3060 		break;
3061 	}
3062 	dev_info(hsotg->dev, "new device is %s\n",
3063 		 usb_speed_string(hsotg->gadget.speed));
3064 
3065 	/*
3066 	 * we should now know the maximum packet size for an
3067 	 * endpoint, so set the endpoints to a default value.
3068 	 */
3069 
3070 	if (ep0_mps) {
3071 		int i;
3072 		/* Initialize ep0 for both in and out directions */
3073 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3074 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3075 		for (i = 1; i < hsotg->num_of_eps; i++) {
3076 			if (hsotg->eps_in[i])
3077 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3078 							    0, 1);
3079 			if (hsotg->eps_out[i])
3080 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3081 							    0, 0);
3082 		}
3083 	}
3084 
3085 	/* ensure after enumeration our EP0 is active */
3086 
3087 	dwc2_hsotg_enqueue_setup(hsotg);
3088 
3089 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3090 		dwc2_readl(hsotg->regs + DIEPCTL0),
3091 		dwc2_readl(hsotg->regs + DOEPCTL0));
3092 }
3093 
3094 /**
3095  * kill_all_requests - remove all requests from the endpoint's queue
3096  * @hsotg: The device state.
3097  * @ep: The endpoint the requests may be on.
3098  * @result: The result code to use.
3099  *
3100  * Go through the requests on the given endpoint and mark them
3101  * completed with the given result code.
3102  */
3103 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3104 			      struct dwc2_hsotg_ep *ep,
3105 			      int result)
3106 {
3107 	struct dwc2_hsotg_req *req, *treq;
3108 	unsigned int size;
3109 
3110 	ep->req = NULL;
3111 
3112 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3113 		dwc2_hsotg_complete_request(hsotg, ep, req,
3114 					    result);
3115 
3116 	if (!hsotg->dedicated_fifos)
3117 		return;
3118 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3119 	if (size < ep->fifo_size)
3120 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3121 }
3122 
3123 /**
3124  * dwc2_hsotg_disconnect - disconnect service
3125  * @hsotg: The device state.
3126  *
3127  * The device has been disconnected. Remove all current
3128  * transactions and signal the gadget driver that this
3129  * has happened.
3130  */
3131 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3132 {
3133 	unsigned int ep;
3134 
3135 	if (!hsotg->connected)
3136 		return;
3137 
3138 	hsotg->connected = 0;
3139 	hsotg->test_mode = 0;
3140 
3141 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3142 		if (hsotg->eps_in[ep])
3143 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3144 					  -ESHUTDOWN);
3145 		if (hsotg->eps_out[ep])
3146 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3147 					  -ESHUTDOWN);
3148 	}
3149 
3150 	call_gadget(hsotg, disconnect);
3151 	hsotg->lx_state = DWC2_L3;
3152 
3153 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3154 }
3155 
3156 /**
3157  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3158  * @hsotg: The device state:
3159  * @periodic: True if this is a periodic FIFO interrupt
3160  */
3161 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3162 {
3163 	struct dwc2_hsotg_ep *ep;
3164 	int epno, ret;
3165 
3166 	/* look through for any more data to transmit */
3167 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3168 		ep = index_to_ep(hsotg, epno, 1);
3169 
3170 		if (!ep)
3171 			continue;
3172 
3173 		if (!ep->dir_in)
3174 			continue;
3175 
3176 		if ((periodic && !ep->periodic) ||
3177 		    (!periodic && ep->periodic))
3178 			continue;
3179 
3180 		ret = dwc2_hsotg_trytx(hsotg, ep);
3181 		if (ret < 0)
3182 			break;
3183 	}
3184 }
3185 
3186 /* IRQ flags which will trigger a retry around the IRQ loop */
3187 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3188 			GINTSTS_PTXFEMP |  \
3189 			GINTSTS_RXFLVL)
3190 
3191 /**
3192  * dwc2_hsotg_core_init - issue softreset to the core
3193  * @hsotg: The device state
3194  * @is_usb_reset: Usb resetting flag
3195  *
3196  * Issue a soft reset to the core, and await the core finishing it.
3197  */
3198 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3199 				       bool is_usb_reset)
3200 {
3201 	u32 intmsk;
3202 	u32 val;
3203 	u32 usbcfg;
3204 	u32 dcfg = 0;
3205 
3206 	/* Kill any ep0 requests as controller will be reinitialized */
3207 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3208 
3209 	if (!is_usb_reset)
3210 		if (dwc2_core_reset(hsotg, true))
3211 			return;
3212 
3213 	/*
3214 	 * we must now enable ep0 ready for host detection and then
3215 	 * set configuration.
3216 	 */
3217 
3218 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3219 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3220 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3221 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3222 
3223 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3224 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3225 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3226 		/* FS/LS Dedicated Transceiver Interface */
3227 		usbcfg |= GUSBCFG_PHYSEL;
3228 	} else {
3229 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3230 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3231 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3232 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3233 	}
3234 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3235 
3236 	dwc2_hsotg_init_fifo(hsotg);
3237 
3238 	if (!is_usb_reset)
3239 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3240 
3241 	dcfg |= DCFG_EPMISCNT(1);
3242 
3243 	switch (hsotg->params.speed) {
3244 	case DWC2_SPEED_PARAM_LOW:
3245 		dcfg |= DCFG_DEVSPD_LS;
3246 		break;
3247 	case DWC2_SPEED_PARAM_FULL:
3248 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3249 			dcfg |= DCFG_DEVSPD_FS48;
3250 		else
3251 			dcfg |= DCFG_DEVSPD_FS;
3252 		break;
3253 	default:
3254 		dcfg |= DCFG_DEVSPD_HS;
3255 	}
3256 
3257 	if (hsotg->params.ipg_isoc_en)
3258 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3259 
3260 	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3261 
3262 	/* Clear any pending OTG interrupts */
3263 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3264 
3265 	/* Clear any pending interrupts */
3266 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3267 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3268 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3269 		GINTSTS_USBRST | GINTSTS_RESETDET |
3270 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3271 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3272 		GINTSTS_LPMTRANRCVD;
3273 
3274 	if (!using_desc_dma(hsotg))
3275 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3276 
3277 	if (!hsotg->params.external_id_pin_ctl)
3278 		intmsk |= GINTSTS_CONIDSTSCHNG;
3279 
3280 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3281 
3282 	if (using_dma(hsotg)) {
3283 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3284 			    hsotg->params.ahbcfg,
3285 			    hsotg->regs + GAHBCFG);
3286 
3287 		/* Set DDMA mode support in the core if needed */
3288 		if (using_desc_dma(hsotg))
3289 			dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3290 
3291 	} else {
3292 		dwc2_writel(((hsotg->dedicated_fifos) ?
3293 						(GAHBCFG_NP_TXF_EMP_LVL |
3294 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3295 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3296 	}
3297 
3298 	/*
3299 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3300 	 * when we have no data to transfer. Otherwise we get being flooded by
3301 	 * interrupts.
3302 	 */
3303 
3304 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3305 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3306 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3307 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3308 		hsotg->regs + DIEPMSK);
3309 
3310 	/*
3311 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3312 	 * DMA mode we may need this and StsPhseRcvd.
3313 	 */
3314 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3315 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3316 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3317 		DOEPMSK_SETUPMSK,
3318 		hsotg->regs + DOEPMSK);
3319 
3320 	/* Enable BNA interrupt for DDMA */
3321 	if (using_desc_dma(hsotg)) {
3322 		dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3323 		dwc2_set_bit(hsotg->regs + DIEPMSK, DIEPMSK_BNAININTRMSK);
3324 	}
3325 
3326 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3327 
3328 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3329 		dwc2_readl(hsotg->regs + DIEPCTL0),
3330 		dwc2_readl(hsotg->regs + DOEPCTL0));
3331 
3332 	/* enable in and out endpoint interrupts */
3333 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3334 
3335 	/*
3336 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3337 	 * the data. In DMA mode, we get events from the FIFO but also
3338 	 * things we cannot process, so do not use it.
3339 	 */
3340 	if (!using_dma(hsotg))
3341 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3342 
3343 	/* Enable interrupts for EP0 in and out */
3344 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3345 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3346 
3347 	if (!is_usb_reset) {
3348 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3349 		udelay(10);  /* see openiboot */
3350 		dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3351 	}
3352 
3353 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3354 
3355 	/*
3356 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3357 	 * writing to the EPCTL register..
3358 	 */
3359 
3360 	/* set to read 1 8byte packet */
3361 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3362 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3363 
3364 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3365 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3366 	       DXEPCTL_USBACTEP,
3367 	       hsotg->regs + DOEPCTL0);
3368 
3369 	/* enable, but don't activate EP0in */
3370 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3371 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3372 
3373 	/* clear global NAKs */
3374 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3375 	if (!is_usb_reset)
3376 		val |= DCTL_SFTDISCON;
3377 	dwc2_set_bit(hsotg->regs + DCTL, val);
3378 
3379 	/* configure the core to support LPM */
3380 	dwc2_gadget_init_lpm(hsotg);
3381 
3382 	/* must be at-least 3ms to allow bus to see disconnect */
3383 	mdelay(3);
3384 
3385 	hsotg->lx_state = DWC2_L0;
3386 
3387 	dwc2_hsotg_enqueue_setup(hsotg);
3388 
3389 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3390 		dwc2_readl(hsotg->regs + DIEPCTL0),
3391 		dwc2_readl(hsotg->regs + DOEPCTL0));
3392 }
3393 
3394 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3395 {
3396 	/* set the soft-disconnect bit */
3397 	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3398 }
3399 
3400 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3401 {
3402 	/* remove the soft-disconnect and let's go */
3403 	dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3404 }
3405 
3406 /**
3407  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3408  * @hsotg: The device state:
3409  *
3410  * This interrupt indicates one of the following conditions occurred while
3411  * transmitting an ISOC transaction.
3412  * - Corrupted IN Token for ISOC EP.
3413  * - Packet not complete in FIFO.
3414  *
3415  * The following actions will be taken:
3416  * - Determine the EP
3417  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3418  */
3419 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3420 {
3421 	struct dwc2_hsotg_ep *hs_ep;
3422 	u32 epctrl;
3423 	u32 daintmsk;
3424 	u32 idx;
3425 
3426 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3427 
3428 	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3429 
3430 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3431 		hs_ep = hsotg->eps_in[idx];
3432 		/* Proceed only unmasked ISOC EPs */
3433 		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3434 			continue;
3435 
3436 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3437 		if ((epctrl & DXEPCTL_EPENA) &&
3438 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3439 			epctrl |= DXEPCTL_SNAK;
3440 			epctrl |= DXEPCTL_EPDIS;
3441 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3442 		}
3443 	}
3444 
3445 	/* Clear interrupt */
3446 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3447 }
3448 
3449 /**
3450  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3451  * @hsotg: The device state:
3452  *
3453  * This interrupt indicates one of the following conditions occurred while
3454  * transmitting an ISOC transaction.
3455  * - Corrupted OUT Token for ISOC EP.
3456  * - Packet not complete in FIFO.
3457  *
3458  * The following actions will be taken:
3459  * - Determine the EP
3460  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3461  */
3462 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3463 {
3464 	u32 gintsts;
3465 	u32 gintmsk;
3466 	u32 daintmsk;
3467 	u32 epctrl;
3468 	struct dwc2_hsotg_ep *hs_ep;
3469 	int idx;
3470 
3471 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3472 
3473 	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3474 	daintmsk >>= DAINT_OUTEP_SHIFT;
3475 
3476 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3477 		hs_ep = hsotg->eps_out[idx];
3478 		/* Proceed only unmasked ISOC EPs */
3479 		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3480 			continue;
3481 
3482 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3483 		if ((epctrl & DXEPCTL_EPENA) &&
3484 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3485 			/* Unmask GOUTNAKEFF interrupt */
3486 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3487 			gintmsk |= GINTSTS_GOUTNAKEFF;
3488 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3489 
3490 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3491 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3492 				dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3493 				break;
3494 			}
3495 		}
3496 	}
3497 
3498 	/* Clear interrupt */
3499 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3500 }
3501 
3502 /**
3503  * dwc2_hsotg_irq - handle device interrupt
3504  * @irq: The IRQ number triggered
3505  * @pw: The pw value when registered the handler.
3506  */
3507 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3508 {
3509 	struct dwc2_hsotg *hsotg = pw;
3510 	int retry_count = 8;
3511 	u32 gintsts;
3512 	u32 gintmsk;
3513 
3514 	if (!dwc2_is_device_mode(hsotg))
3515 		return IRQ_NONE;
3516 
3517 	spin_lock(&hsotg->lock);
3518 irq_retry:
3519 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3520 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3521 
3522 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3523 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3524 
3525 	gintsts &= gintmsk;
3526 
3527 	if (gintsts & GINTSTS_RESETDET) {
3528 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3529 
3530 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3531 
3532 		/* This event must be used only if controller is suspended */
3533 		if (hsotg->lx_state == DWC2_L2) {
3534 			dwc2_exit_partial_power_down(hsotg, true);
3535 			hsotg->lx_state = DWC2_L0;
3536 		}
3537 	}
3538 
3539 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3540 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3541 		u32 connected = hsotg->connected;
3542 
3543 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3544 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3545 			dwc2_readl(hsotg->regs + GNPTXSTS));
3546 
3547 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3548 
3549 		/* Report disconnection if it is not already done. */
3550 		dwc2_hsotg_disconnect(hsotg);
3551 
3552 		/* Reset device address to zero */
3553 		dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3554 
3555 		if (usb_status & GOTGCTL_BSESVLD && connected)
3556 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3557 	}
3558 
3559 	if (gintsts & GINTSTS_ENUMDONE) {
3560 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3561 
3562 		dwc2_hsotg_irq_enumdone(hsotg);
3563 	}
3564 
3565 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3566 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3567 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3568 		u32 daint_out, daint_in;
3569 		int ep;
3570 
3571 		daint &= daintmsk;
3572 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3573 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3574 
3575 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3576 
3577 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3578 						ep++, daint_out >>= 1) {
3579 			if (daint_out & 1)
3580 				dwc2_hsotg_epint(hsotg, ep, 0);
3581 		}
3582 
3583 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3584 						ep++, daint_in >>= 1) {
3585 			if (daint_in & 1)
3586 				dwc2_hsotg_epint(hsotg, ep, 1);
3587 		}
3588 	}
3589 
3590 	/* check both FIFOs */
3591 
3592 	if (gintsts & GINTSTS_NPTXFEMP) {
3593 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3594 
3595 		/*
3596 		 * Disable the interrupt to stop it happening again
3597 		 * unless one of these endpoint routines decides that
3598 		 * it needs re-enabling
3599 		 */
3600 
3601 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3602 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3603 	}
3604 
3605 	if (gintsts & GINTSTS_PTXFEMP) {
3606 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3607 
3608 		/* See note in GINTSTS_NPTxFEmp */
3609 
3610 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3611 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3612 	}
3613 
3614 	if (gintsts & GINTSTS_RXFLVL) {
3615 		/*
3616 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3617 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3618 		 * set.
3619 		 */
3620 
3621 		dwc2_hsotg_handle_rx(hsotg);
3622 	}
3623 
3624 	if (gintsts & GINTSTS_ERLYSUSP) {
3625 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3626 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3627 	}
3628 
3629 	/*
3630 	 * these next two seem to crop-up occasionally causing the core
3631 	 * to shutdown the USB transfer, so try clearing them and logging
3632 	 * the occurrence.
3633 	 */
3634 
3635 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3636 		u8 idx;
3637 		u32 epctrl;
3638 		u32 gintmsk;
3639 		u32 daintmsk;
3640 		struct dwc2_hsotg_ep *hs_ep;
3641 
3642 		daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3643 		daintmsk >>= DAINT_OUTEP_SHIFT;
3644 		/* Mask this interrupt */
3645 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3646 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3647 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3648 
3649 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3650 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3651 			hs_ep = hsotg->eps_out[idx];
3652 			/* Proceed only unmasked ISOC EPs */
3653 			if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3654 				continue;
3655 
3656 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3657 
3658 			if (epctrl & DXEPCTL_EPENA) {
3659 				epctrl |= DXEPCTL_SNAK;
3660 				epctrl |= DXEPCTL_EPDIS;
3661 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3662 			}
3663 		}
3664 
3665 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3666 	}
3667 
3668 	if (gintsts & GINTSTS_GINNAKEFF) {
3669 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3670 
3671 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3672 
3673 		dwc2_hsotg_dump(hsotg);
3674 	}
3675 
3676 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3677 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3678 
3679 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3680 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3681 
3682 	/*
3683 	 * if we've had fifo events, we should try and go around the
3684 	 * loop again to see if there's any point in returning yet.
3685 	 */
3686 
3687 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3688 		goto irq_retry;
3689 
3690 	spin_unlock(&hsotg->lock);
3691 
3692 	return IRQ_HANDLED;
3693 }
3694 
3695 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3696 				   struct dwc2_hsotg_ep *hs_ep)
3697 {
3698 	u32 epctrl_reg;
3699 	u32 epint_reg;
3700 
3701 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3702 		DOEPCTL(hs_ep->index);
3703 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3704 		DOEPINT(hs_ep->index);
3705 
3706 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3707 		hs_ep->name);
3708 
3709 	if (hs_ep->dir_in) {
3710 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3711 			dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3712 			/* Wait for Nak effect */
3713 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3714 						    DXEPINT_INEPNAKEFF, 100))
3715 				dev_warn(hsotg->dev,
3716 					 "%s: timeout DIEPINT.NAKEFF\n",
3717 					 __func__);
3718 		} else {
3719 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3720 			/* Wait for Nak effect */
3721 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3722 						    GINTSTS_GINNAKEFF, 100))
3723 				dev_warn(hsotg->dev,
3724 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3725 					 __func__);
3726 		}
3727 	} else {
3728 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3729 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3730 
3731 		/* Wait for global nak to take effect */
3732 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3733 					    GINTSTS_GOUTNAKEFF, 100))
3734 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3735 				 __func__);
3736 	}
3737 
3738 	/* Disable ep */
3739 	dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3740 
3741 	/* Wait for ep to be disabled */
3742 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3743 		dev_warn(hsotg->dev,
3744 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3745 
3746 	/* Clear EPDISBLD interrupt */
3747 	dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3748 
3749 	if (hs_ep->dir_in) {
3750 		unsigned short fifo_index;
3751 
3752 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3753 			fifo_index = hs_ep->fifo_index;
3754 		else
3755 			fifo_index = 0;
3756 
3757 		/* Flush TX FIFO */
3758 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3759 
3760 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3761 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3762 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3763 
3764 	} else {
3765 		/* Remove global NAKs */
3766 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3767 	}
3768 }
3769 
3770 /**
3771  * dwc2_hsotg_ep_enable - enable the given endpoint
3772  * @ep: The USB endpint to configure
3773  * @desc: The USB endpoint descriptor to configure with.
3774  *
3775  * This is called from the USB gadget code's usb_ep_enable().
3776  */
3777 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3778 				const struct usb_endpoint_descriptor *desc)
3779 {
3780 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3781 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3782 	unsigned long flags;
3783 	unsigned int index = hs_ep->index;
3784 	u32 epctrl_reg;
3785 	u32 epctrl;
3786 	u32 mps;
3787 	u32 mc;
3788 	u32 mask;
3789 	unsigned int dir_in;
3790 	unsigned int i, val, size;
3791 	int ret = 0;
3792 	unsigned char ep_type;
3793 
3794 	dev_dbg(hsotg->dev,
3795 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3796 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3797 		desc->wMaxPacketSize, desc->bInterval);
3798 
3799 	/* not to be called for EP0 */
3800 	if (index == 0) {
3801 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3802 		return -EINVAL;
3803 	}
3804 
3805 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3806 	if (dir_in != hs_ep->dir_in) {
3807 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3808 		return -EINVAL;
3809 	}
3810 
3811 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3812 	mps = usb_endpoint_maxp(desc);
3813 	mc = usb_endpoint_maxp_mult(desc);
3814 
3815 	/* ISOC IN in DDMA supported bInterval up to 10 */
3816 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3817 	    dir_in && desc->bInterval > 10) {
3818 		dev_err(hsotg->dev,
3819 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3820 		return -EINVAL;
3821 	}
3822 
3823 	/* High bandwidth ISOC OUT in DDMA not supported */
3824 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3825 	    !dir_in && mc > 1) {
3826 		dev_err(hsotg->dev,
3827 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3828 		return -EINVAL;
3829 	}
3830 
3831 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3832 
3833 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3834 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3835 
3836 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3837 		__func__, epctrl, epctrl_reg);
3838 
3839 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3840 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3841 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3842 			MAX_DMA_DESC_NUM_GENERIC *
3843 			sizeof(struct dwc2_dma_desc),
3844 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3845 		if (!hs_ep->desc_list) {
3846 			ret = -ENOMEM;
3847 			goto error2;
3848 		}
3849 	}
3850 
3851 	spin_lock_irqsave(&hsotg->lock, flags);
3852 
3853 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3854 	epctrl |= DXEPCTL_MPS(mps);
3855 
3856 	/*
3857 	 * mark the endpoint as active, otherwise the core may ignore
3858 	 * transactions entirely for this endpoint
3859 	 */
3860 	epctrl |= DXEPCTL_USBACTEP;
3861 
3862 	/* update the endpoint state */
3863 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3864 
3865 	/* default, set to non-periodic */
3866 	hs_ep->isochronous = 0;
3867 	hs_ep->periodic = 0;
3868 	hs_ep->halted = 0;
3869 	hs_ep->interval = desc->bInterval;
3870 
3871 	switch (ep_type) {
3872 	case USB_ENDPOINT_XFER_ISOC:
3873 		epctrl |= DXEPCTL_EPTYPE_ISO;
3874 		epctrl |= DXEPCTL_SETEVENFR;
3875 		hs_ep->isochronous = 1;
3876 		hs_ep->interval = 1 << (desc->bInterval - 1);
3877 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3878 		hs_ep->next_desc = 0;
3879 		hs_ep->compl_desc = 0;
3880 		if (dir_in) {
3881 			hs_ep->periodic = 1;
3882 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3883 			mask |= DIEPMSK_NAKMSK;
3884 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3885 		} else {
3886 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3887 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3888 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3889 		}
3890 		break;
3891 
3892 	case USB_ENDPOINT_XFER_BULK:
3893 		epctrl |= DXEPCTL_EPTYPE_BULK;
3894 		break;
3895 
3896 	case USB_ENDPOINT_XFER_INT:
3897 		if (dir_in)
3898 			hs_ep->periodic = 1;
3899 
3900 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3901 			hs_ep->interval = 1 << (desc->bInterval - 1);
3902 
3903 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3904 		break;
3905 
3906 	case USB_ENDPOINT_XFER_CONTROL:
3907 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3908 		break;
3909 	}
3910 
3911 	/*
3912 	 * if the hardware has dedicated fifos, we must give each IN EP
3913 	 * a unique tx-fifo even if it is non-periodic.
3914 	 */
3915 	if (dir_in && hsotg->dedicated_fifos) {
3916 		u32 fifo_index = 0;
3917 		u32 fifo_size = UINT_MAX;
3918 
3919 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3920 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3921 			if (hsotg->fifo_map & (1 << i))
3922 				continue;
3923 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3924 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3925 			if (val < size)
3926 				continue;
3927 			/* Search for smallest acceptable fifo */
3928 			if (val < fifo_size) {
3929 				fifo_size = val;
3930 				fifo_index = i;
3931 			}
3932 		}
3933 		if (!fifo_index) {
3934 			dev_err(hsotg->dev,
3935 				"%s: No suitable fifo found\n", __func__);
3936 			ret = -ENOMEM;
3937 			goto error1;
3938 		}
3939 		hsotg->fifo_map |= 1 << fifo_index;
3940 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3941 		hs_ep->fifo_index = fifo_index;
3942 		hs_ep->fifo_size = fifo_size;
3943 	}
3944 
3945 	/* for non control endpoints, set PID to D0 */
3946 	if (index && !hs_ep->isochronous)
3947 		epctrl |= DXEPCTL_SETD0PID;
3948 
3949 	/* WA for Full speed ISOC IN in DDMA mode.
3950 	 * By Clear NAK status of EP, core will send ZLP
3951 	 * to IN token and assert NAK interrupt relying
3952 	 * on TxFIFO status only
3953 	 */
3954 
3955 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
3956 	    hs_ep->isochronous && dir_in) {
3957 		/* The WA applies only to core versions from 2.72a
3958 		 * to 4.00a (including both). Also for FS_IOT_1.00a
3959 		 * and HS_IOT_1.00a.
3960 		 */
3961 		u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID);
3962 
3963 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
3964 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
3965 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
3966 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
3967 			epctrl |= DXEPCTL_CNAK;
3968 	}
3969 
3970 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3971 		__func__, epctrl);
3972 
3973 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3974 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3975 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3976 
3977 	/* enable the endpoint interrupt */
3978 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3979 
3980 error1:
3981 	spin_unlock_irqrestore(&hsotg->lock, flags);
3982 
3983 error2:
3984 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3985 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3986 			sizeof(struct dwc2_dma_desc),
3987 			hs_ep->desc_list, hs_ep->desc_list_dma);
3988 		hs_ep->desc_list = NULL;
3989 	}
3990 
3991 	return ret;
3992 }
3993 
3994 /**
3995  * dwc2_hsotg_ep_disable - disable given endpoint
3996  * @ep: The endpoint to disable.
3997  */
3998 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3999 {
4000 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4001 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4002 	int dir_in = hs_ep->dir_in;
4003 	int index = hs_ep->index;
4004 	unsigned long flags;
4005 	u32 epctrl_reg;
4006 	u32 ctrl;
4007 
4008 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4009 
4010 	if (ep == &hsotg->eps_out[0]->ep) {
4011 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4012 		return -EINVAL;
4013 	}
4014 
4015 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4016 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4017 		return -EINVAL;
4018 	}
4019 
4020 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4021 
4022 	spin_lock_irqsave(&hsotg->lock, flags);
4023 
4024 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4025 
4026 	if (ctrl & DXEPCTL_EPENA)
4027 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4028 
4029 	ctrl &= ~DXEPCTL_EPENA;
4030 	ctrl &= ~DXEPCTL_USBACTEP;
4031 	ctrl |= DXEPCTL_SNAK;
4032 
4033 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4034 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4035 
4036 	/* disable endpoint interrupts */
4037 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4038 
4039 	/* terminate all requests with shutdown */
4040 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4041 
4042 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4043 	hs_ep->fifo_index = 0;
4044 	hs_ep->fifo_size = 0;
4045 
4046 	spin_unlock_irqrestore(&hsotg->lock, flags);
4047 	return 0;
4048 }
4049 
4050 /**
4051  * on_list - check request is on the given endpoint
4052  * @ep: The endpoint to check.
4053  * @test: The request to test if it is on the endpoint.
4054  */
4055 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4056 {
4057 	struct dwc2_hsotg_req *req, *treq;
4058 
4059 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4060 		if (req == test)
4061 			return true;
4062 	}
4063 
4064 	return false;
4065 }
4066 
4067 /**
4068  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4069  * @ep: The endpoint to dequeue.
4070  * @req: The request to be removed from a queue.
4071  */
4072 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4073 {
4074 	struct dwc2_hsotg_req *hs_req = our_req(req);
4075 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4076 	struct dwc2_hsotg *hs = hs_ep->parent;
4077 	unsigned long flags;
4078 
4079 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4080 
4081 	spin_lock_irqsave(&hs->lock, flags);
4082 
4083 	if (!on_list(hs_ep, hs_req)) {
4084 		spin_unlock_irqrestore(&hs->lock, flags);
4085 		return -EINVAL;
4086 	}
4087 
4088 	/* Dequeue already started request */
4089 	if (req == &hs_ep->req->req)
4090 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4091 
4092 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4093 	spin_unlock_irqrestore(&hs->lock, flags);
4094 
4095 	return 0;
4096 }
4097 
4098 /**
4099  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4100  * @ep: The endpoint to set halt.
4101  * @value: Set or unset the halt.
4102  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4103  *       the endpoint is busy processing requests.
4104  *
4105  * We need to stall the endpoint immediately if request comes from set_feature
4106  * protocol command handler.
4107  */
4108 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4109 {
4110 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4111 	struct dwc2_hsotg *hs = hs_ep->parent;
4112 	int index = hs_ep->index;
4113 	u32 epreg;
4114 	u32 epctl;
4115 	u32 xfertype;
4116 
4117 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4118 
4119 	if (index == 0) {
4120 		if (value)
4121 			dwc2_hsotg_stall_ep0(hs);
4122 		else
4123 			dev_warn(hs->dev,
4124 				 "%s: can't clear halt on ep0\n", __func__);
4125 		return 0;
4126 	}
4127 
4128 	if (hs_ep->isochronous) {
4129 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4130 		return -EINVAL;
4131 	}
4132 
4133 	if (!now && value && !list_empty(&hs_ep->queue)) {
4134 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4135 			ep->name);
4136 		return -EAGAIN;
4137 	}
4138 
4139 	if (hs_ep->dir_in) {
4140 		epreg = DIEPCTL(index);
4141 		epctl = dwc2_readl(hs->regs + epreg);
4142 
4143 		if (value) {
4144 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4145 			if (epctl & DXEPCTL_EPENA)
4146 				epctl |= DXEPCTL_EPDIS;
4147 		} else {
4148 			epctl &= ~DXEPCTL_STALL;
4149 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4150 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4151 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4152 				epctl |= DXEPCTL_SETD0PID;
4153 		}
4154 		dwc2_writel(epctl, hs->regs + epreg);
4155 	} else {
4156 		epreg = DOEPCTL(index);
4157 		epctl = dwc2_readl(hs->regs + epreg);
4158 
4159 		if (value) {
4160 			epctl |= DXEPCTL_STALL;
4161 		} else {
4162 			epctl &= ~DXEPCTL_STALL;
4163 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4164 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4165 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4166 				epctl |= DXEPCTL_SETD0PID;
4167 		}
4168 		dwc2_writel(epctl, hs->regs + epreg);
4169 	}
4170 
4171 	hs_ep->halted = value;
4172 
4173 	return 0;
4174 }
4175 
4176 /**
4177  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4178  * @ep: The endpoint to set halt.
4179  * @value: Set or unset the halt.
4180  */
4181 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4182 {
4183 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4184 	struct dwc2_hsotg *hs = hs_ep->parent;
4185 	unsigned long flags = 0;
4186 	int ret = 0;
4187 
4188 	spin_lock_irqsave(&hs->lock, flags);
4189 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4190 	spin_unlock_irqrestore(&hs->lock, flags);
4191 
4192 	return ret;
4193 }
4194 
4195 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4196 	.enable		= dwc2_hsotg_ep_enable,
4197 	.disable	= dwc2_hsotg_ep_disable,
4198 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4199 	.free_request	= dwc2_hsotg_ep_free_request,
4200 	.queue		= dwc2_hsotg_ep_queue_lock,
4201 	.dequeue	= dwc2_hsotg_ep_dequeue,
4202 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4203 	/* note, don't believe we have any call for the fifo routines */
4204 };
4205 
4206 /**
4207  * dwc2_hsotg_init - initialize the usb core
4208  * @hsotg: The driver state
4209  */
4210 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4211 {
4212 	u32 trdtim;
4213 	u32 usbcfg;
4214 	/* unmask subset of endpoint interrupts */
4215 
4216 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4217 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4218 		    hsotg->regs + DIEPMSK);
4219 
4220 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4221 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4222 		    hsotg->regs + DOEPMSK);
4223 
4224 	dwc2_writel(0, hsotg->regs + DAINTMSK);
4225 
4226 	/* Be in disconnected state until gadget is registered */
4227 	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4228 
4229 	/* setup fifos */
4230 
4231 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4232 		dwc2_readl(hsotg->regs + GRXFSIZ),
4233 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4234 
4235 	dwc2_hsotg_init_fifo(hsotg);
4236 
4237 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4238 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4239 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4240 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4241 
4242 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4243 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4244 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4245 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4246 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4247 
4248 	if (using_dma(hsotg))
4249 		dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4250 }
4251 
4252 /**
4253  * dwc2_hsotg_udc_start - prepare the udc for work
4254  * @gadget: The usb gadget state
4255  * @driver: The usb gadget driver
4256  *
4257  * Perform initialization to prepare udc device and driver
4258  * to work.
4259  */
4260 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4261 				struct usb_gadget_driver *driver)
4262 {
4263 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4264 	unsigned long flags;
4265 	int ret;
4266 
4267 	if (!hsotg) {
4268 		pr_err("%s: called with no device\n", __func__);
4269 		return -ENODEV;
4270 	}
4271 
4272 	if (!driver) {
4273 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4274 		return -EINVAL;
4275 	}
4276 
4277 	if (driver->max_speed < USB_SPEED_FULL)
4278 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4279 
4280 	if (!driver->setup) {
4281 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4282 		return -EINVAL;
4283 	}
4284 
4285 	WARN_ON(hsotg->driver);
4286 
4287 	driver->driver.bus = NULL;
4288 	hsotg->driver = driver;
4289 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4290 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4291 
4292 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4293 		ret = dwc2_lowlevel_hw_enable(hsotg);
4294 		if (ret)
4295 			goto err;
4296 	}
4297 
4298 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4299 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4300 
4301 	spin_lock_irqsave(&hsotg->lock, flags);
4302 	if (dwc2_hw_is_device(hsotg)) {
4303 		dwc2_hsotg_init(hsotg);
4304 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4305 	}
4306 
4307 	hsotg->enabled = 0;
4308 	spin_unlock_irqrestore(&hsotg->lock, flags);
4309 
4310 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4311 
4312 	return 0;
4313 
4314 err:
4315 	hsotg->driver = NULL;
4316 	return ret;
4317 }
4318 
4319 /**
4320  * dwc2_hsotg_udc_stop - stop the udc
4321  * @gadget: The usb gadget state
4322  *
4323  * Stop udc hw block and stay tunned for future transmissions
4324  */
4325 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4326 {
4327 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4328 	unsigned long flags = 0;
4329 	int ep;
4330 
4331 	if (!hsotg)
4332 		return -ENODEV;
4333 
4334 	/* all endpoints should be shutdown */
4335 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4336 		if (hsotg->eps_in[ep])
4337 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4338 		if (hsotg->eps_out[ep])
4339 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4340 	}
4341 
4342 	spin_lock_irqsave(&hsotg->lock, flags);
4343 
4344 	hsotg->driver = NULL;
4345 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4346 	hsotg->enabled = 0;
4347 
4348 	spin_unlock_irqrestore(&hsotg->lock, flags);
4349 
4350 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4351 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4352 
4353 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4354 		dwc2_lowlevel_hw_disable(hsotg);
4355 
4356 	return 0;
4357 }
4358 
4359 /**
4360  * dwc2_hsotg_gadget_getframe - read the frame number
4361  * @gadget: The usb gadget state
4362  *
4363  * Read the {micro} frame number
4364  */
4365 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4366 {
4367 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4368 }
4369 
4370 /**
4371  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4372  * @gadget: The usb gadget state
4373  * @is_on: Current state of the USB PHY
4374  *
4375  * Connect/Disconnect the USB PHY pullup
4376  */
4377 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4378 {
4379 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4380 	unsigned long flags = 0;
4381 
4382 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4383 		hsotg->op_state);
4384 
4385 	/* Don't modify pullup state while in host mode */
4386 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4387 		hsotg->enabled = is_on;
4388 		return 0;
4389 	}
4390 
4391 	spin_lock_irqsave(&hsotg->lock, flags);
4392 	if (is_on) {
4393 		hsotg->enabled = 1;
4394 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4395 		/* Enable ACG feature in device mode,if supported */
4396 		dwc2_enable_acg(hsotg);
4397 		dwc2_hsotg_core_connect(hsotg);
4398 	} else {
4399 		dwc2_hsotg_core_disconnect(hsotg);
4400 		dwc2_hsotg_disconnect(hsotg);
4401 		hsotg->enabled = 0;
4402 	}
4403 
4404 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4405 	spin_unlock_irqrestore(&hsotg->lock, flags);
4406 
4407 	return 0;
4408 }
4409 
4410 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4411 {
4412 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4413 	unsigned long flags;
4414 
4415 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4416 	spin_lock_irqsave(&hsotg->lock, flags);
4417 
4418 	/*
4419 	 * If controller is hibernated, it must exit from power_down
4420 	 * before being initialized / de-initialized
4421 	 */
4422 	if (hsotg->lx_state == DWC2_L2)
4423 		dwc2_exit_partial_power_down(hsotg, false);
4424 
4425 	if (is_active) {
4426 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4427 
4428 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4429 		if (hsotg->enabled) {
4430 			/* Enable ACG feature in device mode,if supported */
4431 			dwc2_enable_acg(hsotg);
4432 			dwc2_hsotg_core_connect(hsotg);
4433 		}
4434 	} else {
4435 		dwc2_hsotg_core_disconnect(hsotg);
4436 		dwc2_hsotg_disconnect(hsotg);
4437 	}
4438 
4439 	spin_unlock_irqrestore(&hsotg->lock, flags);
4440 	return 0;
4441 }
4442 
4443 /**
4444  * dwc2_hsotg_vbus_draw - report bMaxPower field
4445  * @gadget: The usb gadget state
4446  * @mA: Amount of current
4447  *
4448  * Report how much power the device may consume to the phy.
4449  */
4450 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4451 {
4452 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4453 
4454 	if (IS_ERR_OR_NULL(hsotg->uphy))
4455 		return -ENOTSUPP;
4456 	return usb_phy_set_power(hsotg->uphy, mA);
4457 }
4458 
4459 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4460 	.get_frame	= dwc2_hsotg_gadget_getframe,
4461 	.udc_start		= dwc2_hsotg_udc_start,
4462 	.udc_stop		= dwc2_hsotg_udc_stop,
4463 	.pullup                 = dwc2_hsotg_pullup,
4464 	.vbus_session		= dwc2_hsotg_vbus_session,
4465 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4466 };
4467 
4468 /**
4469  * dwc2_hsotg_initep - initialise a single endpoint
4470  * @hsotg: The device state.
4471  * @hs_ep: The endpoint to be initialised.
4472  * @epnum: The endpoint number
4473  * @dir_in: True if direction is in.
4474  *
4475  * Initialise the given endpoint (as part of the probe and device state
4476  * creation) to give to the gadget driver. Setup the endpoint name, any
4477  * direction information and other state that may be required.
4478  */
4479 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4480 			      struct dwc2_hsotg_ep *hs_ep,
4481 				       int epnum,
4482 				       bool dir_in)
4483 {
4484 	char *dir;
4485 
4486 	if (epnum == 0)
4487 		dir = "";
4488 	else if (dir_in)
4489 		dir = "in";
4490 	else
4491 		dir = "out";
4492 
4493 	hs_ep->dir_in = dir_in;
4494 	hs_ep->index = epnum;
4495 
4496 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4497 
4498 	INIT_LIST_HEAD(&hs_ep->queue);
4499 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4500 
4501 	/* add to the list of endpoints known by the gadget driver */
4502 	if (epnum)
4503 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4504 
4505 	hs_ep->parent = hsotg;
4506 	hs_ep->ep.name = hs_ep->name;
4507 
4508 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4509 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4510 	else
4511 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4512 					   epnum ? 1024 : EP0_MPS_LIMIT);
4513 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4514 
4515 	if (epnum == 0) {
4516 		hs_ep->ep.caps.type_control = true;
4517 	} else {
4518 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4519 			hs_ep->ep.caps.type_iso = true;
4520 			hs_ep->ep.caps.type_bulk = true;
4521 		}
4522 		hs_ep->ep.caps.type_int = true;
4523 	}
4524 
4525 	if (dir_in)
4526 		hs_ep->ep.caps.dir_in = true;
4527 	else
4528 		hs_ep->ep.caps.dir_out = true;
4529 
4530 	/*
4531 	 * if we're using dma, we need to set the next-endpoint pointer
4532 	 * to be something valid.
4533 	 */
4534 
4535 	if (using_dma(hsotg)) {
4536 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4537 
4538 		if (dir_in)
4539 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4540 		else
4541 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4542 	}
4543 }
4544 
4545 /**
4546  * dwc2_hsotg_hw_cfg - read HW configuration registers
4547  * @hsotg: Programming view of the DWC_otg controller
4548  *
4549  * Read the USB core HW configuration registers
4550  */
4551 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4552 {
4553 	u32 cfg;
4554 	u32 ep_type;
4555 	u32 i;
4556 
4557 	/* check hardware configuration */
4558 
4559 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4560 
4561 	/* Add ep0 */
4562 	hsotg->num_of_eps++;
4563 
4564 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4565 					sizeof(struct dwc2_hsotg_ep),
4566 					GFP_KERNEL);
4567 	if (!hsotg->eps_in[0])
4568 		return -ENOMEM;
4569 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4570 	hsotg->eps_out[0] = hsotg->eps_in[0];
4571 
4572 	cfg = hsotg->hw_params.dev_ep_dirs;
4573 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4574 		ep_type = cfg & 3;
4575 		/* Direction in or both */
4576 		if (!(ep_type & 2)) {
4577 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4578 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4579 			if (!hsotg->eps_in[i])
4580 				return -ENOMEM;
4581 		}
4582 		/* Direction out or both */
4583 		if (!(ep_type & 1)) {
4584 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4585 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4586 			if (!hsotg->eps_out[i])
4587 				return -ENOMEM;
4588 		}
4589 	}
4590 
4591 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4592 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4593 
4594 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4595 		 hsotg->num_of_eps,
4596 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4597 		 hsotg->fifo_mem);
4598 	return 0;
4599 }
4600 
4601 /**
4602  * dwc2_hsotg_dump - dump state of the udc
4603  * @hsotg: Programming view of the DWC_otg controller
4604  *
4605  */
4606 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4607 {
4608 #ifdef DEBUG
4609 	struct device *dev = hsotg->dev;
4610 	void __iomem *regs = hsotg->regs;
4611 	u32 val;
4612 	int idx;
4613 
4614 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4615 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4616 		 dwc2_readl(regs + DIEPMSK));
4617 
4618 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4619 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4620 
4621 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4622 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4623 
4624 	/* show periodic fifo settings */
4625 
4626 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4627 		val = dwc2_readl(regs + DPTXFSIZN(idx));
4628 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4629 			 val >> FIFOSIZE_DEPTH_SHIFT,
4630 			 val & FIFOSIZE_STARTADDR_MASK);
4631 	}
4632 
4633 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4634 		dev_info(dev,
4635 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4636 			 dwc2_readl(regs + DIEPCTL(idx)),
4637 			 dwc2_readl(regs + DIEPTSIZ(idx)),
4638 			 dwc2_readl(regs + DIEPDMA(idx)));
4639 
4640 		val = dwc2_readl(regs + DOEPCTL(idx));
4641 		dev_info(dev,
4642 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4643 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4644 			 dwc2_readl(regs + DOEPTSIZ(idx)),
4645 			 dwc2_readl(regs + DOEPDMA(idx)));
4646 	}
4647 
4648 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4649 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4650 #endif
4651 }
4652 
4653 /**
4654  * dwc2_gadget_init - init function for gadget
4655  * @hsotg: Programming view of the DWC_otg controller
4656  *
4657  */
4658 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4659 {
4660 	struct device *dev = hsotg->dev;
4661 	int epnum;
4662 	int ret;
4663 
4664 	/* Dump fifo information */
4665 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4666 		hsotg->params.g_np_tx_fifo_size);
4667 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4668 
4669 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4670 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4671 	hsotg->gadget.name = dev_name(dev);
4672 	hsotg->remote_wakeup_allowed = 0;
4673 
4674 	if (hsotg->params.lpm)
4675 		hsotg->gadget.lpm_capable = true;
4676 
4677 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4678 		hsotg->gadget.is_otg = 1;
4679 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4680 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4681 
4682 	ret = dwc2_hsotg_hw_cfg(hsotg);
4683 	if (ret) {
4684 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4685 		return ret;
4686 	}
4687 
4688 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4689 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4690 	if (!hsotg->ctrl_buff)
4691 		return -ENOMEM;
4692 
4693 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4694 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4695 	if (!hsotg->ep0_buff)
4696 		return -ENOMEM;
4697 
4698 	if (using_desc_dma(hsotg)) {
4699 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4700 		if (ret < 0)
4701 			return ret;
4702 	}
4703 
4704 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4705 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4706 	if (ret < 0) {
4707 		dev_err(dev, "cannot claim IRQ for gadget\n");
4708 		return ret;
4709 	}
4710 
4711 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4712 
4713 	if (hsotg->num_of_eps == 0) {
4714 		dev_err(dev, "wrong number of EPs (zero)\n");
4715 		return -EINVAL;
4716 	}
4717 
4718 	/* setup endpoint information */
4719 
4720 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4721 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4722 
4723 	/* allocate EP0 request */
4724 
4725 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4726 						     GFP_KERNEL);
4727 	if (!hsotg->ctrl_req) {
4728 		dev_err(dev, "failed to allocate ctrl req\n");
4729 		return -ENOMEM;
4730 	}
4731 
4732 	/* initialise the endpoints now the core has been initialised */
4733 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4734 		if (hsotg->eps_in[epnum])
4735 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4736 					  epnum, 1);
4737 		if (hsotg->eps_out[epnum])
4738 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4739 					  epnum, 0);
4740 	}
4741 
4742 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4743 	if (ret) {
4744 		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4745 					   hsotg->ctrl_req);
4746 		return ret;
4747 	}
4748 	dwc2_hsotg_dump(hsotg);
4749 
4750 	return 0;
4751 }
4752 
4753 /**
4754  * dwc2_hsotg_remove - remove function for hsotg driver
4755  * @hsotg: Programming view of the DWC_otg controller
4756  *
4757  */
4758 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4759 {
4760 	usb_del_gadget_udc(&hsotg->gadget);
4761 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4762 
4763 	return 0;
4764 }
4765 
4766 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4767 {
4768 	unsigned long flags;
4769 
4770 	if (hsotg->lx_state != DWC2_L0)
4771 		return 0;
4772 
4773 	if (hsotg->driver) {
4774 		int ep;
4775 
4776 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4777 			 hsotg->driver->driver.name);
4778 
4779 		spin_lock_irqsave(&hsotg->lock, flags);
4780 		if (hsotg->enabled)
4781 			dwc2_hsotg_core_disconnect(hsotg);
4782 		dwc2_hsotg_disconnect(hsotg);
4783 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4784 		spin_unlock_irqrestore(&hsotg->lock, flags);
4785 
4786 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4787 			if (hsotg->eps_in[ep])
4788 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4789 			if (hsotg->eps_out[ep])
4790 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4791 		}
4792 	}
4793 
4794 	return 0;
4795 }
4796 
4797 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4798 {
4799 	unsigned long flags;
4800 
4801 	if (hsotg->lx_state == DWC2_L2)
4802 		return 0;
4803 
4804 	if (hsotg->driver) {
4805 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4806 			 hsotg->driver->driver.name);
4807 
4808 		spin_lock_irqsave(&hsotg->lock, flags);
4809 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4810 		if (hsotg->enabled) {
4811 			/* Enable ACG feature in device mode,if supported */
4812 			dwc2_enable_acg(hsotg);
4813 			dwc2_hsotg_core_connect(hsotg);
4814 		}
4815 		spin_unlock_irqrestore(&hsotg->lock, flags);
4816 	}
4817 
4818 	return 0;
4819 }
4820 
4821 /**
4822  * dwc2_backup_device_registers() - Backup controller device registers.
4823  * When suspending usb bus, registers needs to be backuped
4824  * if controller power is disabled once suspended.
4825  *
4826  * @hsotg: Programming view of the DWC_otg controller
4827  */
4828 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4829 {
4830 	struct dwc2_dregs_backup *dr;
4831 	int i;
4832 
4833 	dev_dbg(hsotg->dev, "%s\n", __func__);
4834 
4835 	/* Backup dev regs */
4836 	dr = &hsotg->dr_backup;
4837 
4838 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4839 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4840 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4841 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4842 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4843 
4844 	for (i = 0; i < hsotg->num_of_eps; i++) {
4845 		/* Backup IN EPs */
4846 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4847 
4848 		/* Ensure DATA PID is correctly configured */
4849 		if (dr->diepctl[i] & DXEPCTL_DPID)
4850 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4851 		else
4852 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4853 
4854 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4855 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4856 
4857 		/* Backup OUT EPs */
4858 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4859 
4860 		/* Ensure DATA PID is correctly configured */
4861 		if (dr->doepctl[i] & DXEPCTL_DPID)
4862 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4863 		else
4864 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4865 
4866 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4867 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4868 		dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
4869 	}
4870 	dr->valid = true;
4871 	return 0;
4872 }
4873 
4874 /**
4875  * dwc2_restore_device_registers() - Restore controller device registers.
4876  * When resuming usb bus, device registers needs to be restored
4877  * if controller power were disabled.
4878  *
4879  * @hsotg: Programming view of the DWC_otg controller
4880  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
4881  *
4882  * Return: 0 if successful, negative error code otherwise
4883  */
4884 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4885 {
4886 	struct dwc2_dregs_backup *dr;
4887 	int i;
4888 
4889 	dev_dbg(hsotg->dev, "%s\n", __func__);
4890 
4891 	/* Restore dev regs */
4892 	dr = &hsotg->dr_backup;
4893 	if (!dr->valid) {
4894 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4895 			__func__);
4896 		return -EINVAL;
4897 	}
4898 	dr->valid = false;
4899 
4900 	if (!remote_wakeup)
4901 		dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4902 
4903 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4904 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4905 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4906 
4907 	for (i = 0; i < hsotg->num_of_eps; i++) {
4908 		/* Restore IN EPs */
4909 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4910 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4911 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4912 		/** WA for enabled EPx's IN in DDMA mode. On entering to
4913 		 * hibernation wrong value read and saved from DIEPDMAx,
4914 		 * as result BNA interrupt asserted on hibernation exit
4915 		 * by restoring from saved area.
4916 		 */
4917 		if (hsotg->params.g_dma_desc &&
4918 		    (dr->diepctl[i] & DXEPCTL_EPENA))
4919 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4920 		dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
4921 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4922 		/* Restore OUT EPs */
4923 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4924 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
4925 		 * hibernation wrong value read and saved from DOEPDMAx,
4926 		 * as result BNA interrupt asserted on hibernation exit
4927 		 * by restoring from saved area.
4928 		 */
4929 		if (hsotg->params.g_dma_desc &&
4930 		    (dr->doepctl[i] & DXEPCTL_EPENA))
4931 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4932 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4933 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4934 	}
4935 
4936 	return 0;
4937 }
4938 
4939 /**
4940  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
4941  *
4942  * @hsotg: Programming view of DWC_otg controller
4943  *
4944  */
4945 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
4946 {
4947 	u32 val;
4948 
4949 	if (!hsotg->params.lpm)
4950 		return;
4951 
4952 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
4953 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
4954 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
4955 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
4956 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
4957 	dwc2_writel(val, hsotg->regs + GLPMCFG);
4958 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs
4959 		+ GLPMCFG));
4960 }
4961 
4962 /**
4963  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
4964  *
4965  * @hsotg: Programming view of the DWC_otg controller
4966  *
4967  * Return non-zero if failed to enter to hibernation.
4968  */
4969 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
4970 {
4971 	u32 gpwrdn;
4972 	int ret = 0;
4973 
4974 	/* Change to L2(suspend) state */
4975 	hsotg->lx_state = DWC2_L2;
4976 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
4977 	ret = dwc2_backup_global_registers(hsotg);
4978 	if (ret) {
4979 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
4980 			__func__);
4981 		return ret;
4982 	}
4983 	ret = dwc2_backup_device_registers(hsotg);
4984 	if (ret) {
4985 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
4986 			__func__);
4987 		return ret;
4988 	}
4989 
4990 	gpwrdn = GPWRDN_PWRDNRSTN;
4991 	gpwrdn |= GPWRDN_PMUACTV;
4992 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4993 	udelay(10);
4994 
4995 	/* Set flag to indicate that we are in hibernation */
4996 	hsotg->hibernated = 1;
4997 
4998 	/* Enable interrupts from wake up logic */
4999 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5000 	gpwrdn |= GPWRDN_PMUINTSEL;
5001 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5002 	udelay(10);
5003 
5004 	/* Unmask device mode interrupts in GPWRDN */
5005 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5006 	gpwrdn |= GPWRDN_RST_DET_MSK;
5007 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5008 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5009 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5010 	udelay(10);
5011 
5012 	/* Enable Power Down Clamp */
5013 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5014 	gpwrdn |= GPWRDN_PWRDNCLMP;
5015 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5016 	udelay(10);
5017 
5018 	/* Switch off VDD */
5019 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5020 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5021 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5022 	udelay(10);
5023 
5024 	/* Save gpwrdn register for further usage if stschng interrupt */
5025 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5026 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5027 
5028 	return ret;
5029 }
5030 
5031 /**
5032  * dwc2_gadget_exit_hibernation()
5033  * This function is for exiting from Device mode hibernation by host initiated
5034  * resume/reset and device initiated remote-wakeup.
5035  *
5036  * @hsotg: Programming view of the DWC_otg controller
5037  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5038  * @reset: indicates whether resume is initiated by Reset.
5039  *
5040  * Return non-zero if failed to exit from hibernation.
5041  */
5042 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5043 				 int rem_wakeup, int reset)
5044 {
5045 	u32 pcgcctl;
5046 	u32 gpwrdn;
5047 	u32 dctl;
5048 	int ret = 0;
5049 	struct dwc2_gregs_backup *gr;
5050 	struct dwc2_dregs_backup *dr;
5051 
5052 	gr = &hsotg->gr_backup;
5053 	dr = &hsotg->dr_backup;
5054 
5055 	if (!hsotg->hibernated) {
5056 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5057 		return 1;
5058 	}
5059 	dev_dbg(hsotg->dev,
5060 		"%s: called with rem_wakeup = %d reset = %d\n",
5061 		__func__, rem_wakeup, reset);
5062 
5063 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5064 
5065 	if (!reset) {
5066 		/* Clear all pending interupts */
5067 		dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5068 	}
5069 
5070 	/* De-assert Restore */
5071 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5072 	gpwrdn &= ~GPWRDN_RESTORE;
5073 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5074 	udelay(10);
5075 
5076 	if (!rem_wakeup) {
5077 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5078 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5079 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5080 	}
5081 
5082 	/* Restore GUSBCFG, DCFG and DCTL */
5083 	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5084 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
5085 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
5086 
5087 	/* De-assert Wakeup Logic */
5088 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5089 	gpwrdn &= ~GPWRDN_PMUACTV;
5090 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5091 
5092 	if (rem_wakeup) {
5093 		udelay(10);
5094 		/* Start Remote Wakeup Signaling */
5095 		dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL);
5096 	} else {
5097 		udelay(50);
5098 		/* Set Device programming done bit */
5099 		dctl = dwc2_readl(hsotg->regs + DCTL);
5100 		dctl |= DCTL_PWRONPRGDONE;
5101 		dwc2_writel(dctl, hsotg->regs + DCTL);
5102 	}
5103 	/* Wait for interrupts which must be cleared */
5104 	mdelay(2);
5105 	/* Clear all pending interupts */
5106 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5107 
5108 	/* Restore global registers */
5109 	ret = dwc2_restore_global_registers(hsotg);
5110 	if (ret) {
5111 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5112 			__func__);
5113 		return ret;
5114 	}
5115 
5116 	/* Restore device registers */
5117 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5118 	if (ret) {
5119 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5120 			__func__);
5121 		return ret;
5122 	}
5123 
5124 	if (rem_wakeup) {
5125 		mdelay(10);
5126 		dctl = dwc2_readl(hsotg->regs + DCTL);
5127 		dctl &= ~DCTL_RMTWKUPSIG;
5128 		dwc2_writel(dctl, hsotg->regs + DCTL);
5129 	}
5130 
5131 	hsotg->hibernated = 0;
5132 	hsotg->lx_state = DWC2_L0;
5133 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5134 
5135 	return ret;
5136 }
5137