xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision b1a3e75e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 	gintsts2 &= gintmsk2;
264 
265 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
266 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
267 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
268 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
269 	}
270 }
271 
272 /**
273  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
274  * TX FIFOs
275  *
276  * @hsotg: Programming view of the DWC_otg controller
277  */
278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
279 {
280 	int tx_fifo_count;
281 	int tx_fifo_depth;
282 
283 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
284 
285 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
286 
287 	if (!tx_fifo_count)
288 		return tx_fifo_depth;
289 	else
290 		return tx_fifo_depth / tx_fifo_count;
291 }
292 
293 /**
294  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
295  * @hsotg: The device instance.
296  */
297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
298 {
299 	unsigned int ep;
300 	unsigned int addr;
301 	int timeout;
302 
303 	u32 val;
304 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
305 
306 	/* Reset fifo map if not correctly cleared during previous session */
307 	WARN_ON(hsotg->fifo_map);
308 	hsotg->fifo_map = 0;
309 
310 	/* set RX/NPTX FIFO sizes */
311 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
312 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
313 		    FIFOSIZE_STARTADDR_SHIFT) |
314 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
315 		    GNPTXFSIZ);
316 
317 	/*
318 	 * arange all the rest of the TX FIFOs, as some versions of this
319 	 * block have overlapping default addresses. This also ensures
320 	 * that if the settings have been changed, then they are set to
321 	 * known values.
322 	 */
323 
324 	/* start at the end of the GNPTXFSIZ, rounded up */
325 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
326 
327 	/*
328 	 * Configure fifos sizes from provided configuration and assign
329 	 * them to endpoints dynamically according to maxpacket size value of
330 	 * given endpoint.
331 	 */
332 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
333 		if (!txfsz[ep])
334 			continue;
335 		val = addr;
336 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
337 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
338 			  "insufficient fifo memory");
339 		addr += txfsz[ep];
340 
341 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
342 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
343 	}
344 
345 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
346 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
347 		    GDFIFOCFG);
348 	/*
349 	 * according to p428 of the design guide, we need to ensure that
350 	 * all fifos are flushed before continuing
351 	 */
352 
353 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
354 	       GRSTCTL_RXFFLSH, GRSTCTL);
355 
356 	/* wait until the fifos are both flushed */
357 	timeout = 100;
358 	while (1) {
359 		val = dwc2_readl(hsotg, GRSTCTL);
360 
361 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
362 			break;
363 
364 		if (--timeout == 0) {
365 			dev_err(hsotg->dev,
366 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
367 				__func__, val);
368 			break;
369 		}
370 
371 		udelay(1);
372 	}
373 
374 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 }
376 
377 /**
378  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
379  * @ep: USB endpoint to allocate request for.
380  * @flags: Allocation flags
381  *
382  * Allocate a new USB request structure appropriate for the specified endpoint
383  */
384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
385 						       gfp_t flags)
386 {
387 	struct dwc2_hsotg_req *req;
388 
389 	req = kzalloc(sizeof(*req), flags);
390 	if (!req)
391 		return NULL;
392 
393 	INIT_LIST_HEAD(&req->queue);
394 
395 	return &req->req;
396 }
397 
398 /**
399  * is_ep_periodic - return true if the endpoint is in periodic mode.
400  * @hs_ep: The endpoint to query.
401  *
402  * Returns true if the endpoint is in periodic mode, meaning it is being
403  * used for an Interrupt or ISO transfer.
404  */
405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
406 {
407 	return hs_ep->periodic;
408 }
409 
410 /**
411  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
412  * @hsotg: The device state.
413  * @hs_ep: The endpoint for the request
414  * @hs_req: The request being processed.
415  *
416  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
417  * of a request to ensure the buffer is ready for access by the caller.
418  */
419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
420 				 struct dwc2_hsotg_ep *hs_ep,
421 				struct dwc2_hsotg_req *hs_req)
422 {
423 	struct usb_request *req = &hs_req->req;
424 
425 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
426 }
427 
428 /*
429  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
430  * for Control endpoint
431  * @hsotg: The device state.
432  *
433  * This function will allocate 4 descriptor chains for EP 0: 2 for
434  * Setup stage, per one for IN and OUT data/status transactions.
435  */
436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
437 {
438 	hsotg->setup_desc[0] =
439 		dmam_alloc_coherent(hsotg->dev,
440 				    sizeof(struct dwc2_dma_desc),
441 				    &hsotg->setup_desc_dma[0],
442 				    GFP_KERNEL);
443 	if (!hsotg->setup_desc[0])
444 		goto fail;
445 
446 	hsotg->setup_desc[1] =
447 		dmam_alloc_coherent(hsotg->dev,
448 				    sizeof(struct dwc2_dma_desc),
449 				    &hsotg->setup_desc_dma[1],
450 				    GFP_KERNEL);
451 	if (!hsotg->setup_desc[1])
452 		goto fail;
453 
454 	hsotg->ctrl_in_desc =
455 		dmam_alloc_coherent(hsotg->dev,
456 				    sizeof(struct dwc2_dma_desc),
457 				    &hsotg->ctrl_in_desc_dma,
458 				    GFP_KERNEL);
459 	if (!hsotg->ctrl_in_desc)
460 		goto fail;
461 
462 	hsotg->ctrl_out_desc =
463 		dmam_alloc_coherent(hsotg->dev,
464 				    sizeof(struct dwc2_dma_desc),
465 				    &hsotg->ctrl_out_desc_dma,
466 				    GFP_KERNEL);
467 	if (!hsotg->ctrl_out_desc)
468 		goto fail;
469 
470 	return 0;
471 
472 fail:
473 	return -ENOMEM;
474 }
475 
476 /**
477  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
478  * @hsotg: The controller state.
479  * @hs_ep: The endpoint we're going to write for.
480  * @hs_req: The request to write data for.
481  *
482  * This is called when the TxFIFO has some space in it to hold a new
483  * transmission and we have something to give it. The actual setup of
484  * the data size is done elsewhere, so all we have to do is to actually
485  * write the data.
486  *
487  * The return value is zero if there is more space (or nothing was done)
488  * otherwise -ENOSPC is returned if the FIFO space was used up.
489  *
490  * This routine is only needed for PIO
491  */
492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
493 				 struct dwc2_hsotg_ep *hs_ep,
494 				struct dwc2_hsotg_req *hs_req)
495 {
496 	bool periodic = is_ep_periodic(hs_ep);
497 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
498 	int buf_pos = hs_req->req.actual;
499 	int to_write = hs_ep->size_loaded;
500 	void *data;
501 	int can_write;
502 	int pkt_round;
503 	int max_transfer;
504 
505 	to_write -= (buf_pos - hs_ep->last_load);
506 
507 	/* if there's nothing to write, get out early */
508 	if (to_write == 0)
509 		return 0;
510 
511 	if (periodic && !hsotg->dedicated_fifos) {
512 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
513 		int size_left;
514 		int size_done;
515 
516 		/*
517 		 * work out how much data was loaded so we can calculate
518 		 * how much data is left in the fifo.
519 		 */
520 
521 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
522 
523 		/*
524 		 * if shared fifo, we cannot write anything until the
525 		 * previous data has been completely sent.
526 		 */
527 		if (hs_ep->fifo_load != 0) {
528 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
529 			return -ENOSPC;
530 		}
531 
532 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
533 			__func__, size_left,
534 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
535 
536 		/* how much of the data has moved */
537 		size_done = hs_ep->size_loaded - size_left;
538 
539 		/* how much data is left in the fifo */
540 		can_write = hs_ep->fifo_load - size_done;
541 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
542 			__func__, can_write);
543 
544 		can_write = hs_ep->fifo_size - can_write;
545 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
546 			__func__, can_write);
547 
548 		if (can_write <= 0) {
549 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
550 			return -ENOSPC;
551 		}
552 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
553 		can_write = dwc2_readl(hsotg,
554 				       DTXFSTS(hs_ep->fifo_index));
555 
556 		can_write &= 0xffff;
557 		can_write *= 4;
558 	} else {
559 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
560 			dev_dbg(hsotg->dev,
561 				"%s: no queue slots available (0x%08x)\n",
562 				__func__, gnptxsts);
563 
564 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
565 			return -ENOSPC;
566 		}
567 
568 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
569 		can_write *= 4;	/* fifo size is in 32bit quantities. */
570 	}
571 
572 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
573 
574 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
575 		__func__, gnptxsts, can_write, to_write, max_transfer);
576 
577 	/*
578 	 * limit to 512 bytes of data, it seems at least on the non-periodic
579 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
580 	 * fragment of the end of the transfer in it.
581 	 */
582 	if (can_write > 512 && !periodic)
583 		can_write = 512;
584 
585 	/*
586 	 * limit the write to one max-packet size worth of data, but allow
587 	 * the transfer to return that it did not run out of fifo space
588 	 * doing it.
589 	 */
590 	if (to_write > max_transfer) {
591 		to_write = max_transfer;
592 
593 		/* it's needed only when we do not use dedicated fifos */
594 		if (!hsotg->dedicated_fifos)
595 			dwc2_hsotg_en_gsint(hsotg,
596 					    periodic ? GINTSTS_PTXFEMP :
597 					   GINTSTS_NPTXFEMP);
598 	}
599 
600 	/* see if we can write data */
601 
602 	if (to_write > can_write) {
603 		to_write = can_write;
604 		pkt_round = to_write % max_transfer;
605 
606 		/*
607 		 * Round the write down to an
608 		 * exact number of packets.
609 		 *
610 		 * Note, we do not currently check to see if we can ever
611 		 * write a full packet or not to the FIFO.
612 		 */
613 
614 		if (pkt_round)
615 			to_write -= pkt_round;
616 
617 		/*
618 		 * enable correct FIFO interrupt to alert us when there
619 		 * is more room left.
620 		 */
621 
622 		/* it's needed only when we do not use dedicated fifos */
623 		if (!hsotg->dedicated_fifos)
624 			dwc2_hsotg_en_gsint(hsotg,
625 					    periodic ? GINTSTS_PTXFEMP :
626 					   GINTSTS_NPTXFEMP);
627 	}
628 
629 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
630 		to_write, hs_req->req.length, can_write, buf_pos);
631 
632 	if (to_write <= 0)
633 		return -ENOSPC;
634 
635 	hs_req->req.actual = buf_pos + to_write;
636 	hs_ep->total_data += to_write;
637 
638 	if (periodic)
639 		hs_ep->fifo_load += to_write;
640 
641 	to_write = DIV_ROUND_UP(to_write, 4);
642 	data = hs_req->req.buf + buf_pos;
643 
644 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
645 
646 	return (to_write >= can_write) ? -ENOSPC : 0;
647 }
648 
649 /**
650  * get_ep_limit - get the maximum data legnth for this endpoint
651  * @hs_ep: The endpoint
652  *
653  * Return the maximum data that can be queued in one go on a given endpoint
654  * so that transfers that are too long can be split.
655  */
656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
657 {
658 	int index = hs_ep->index;
659 	unsigned int maxsize;
660 	unsigned int maxpkt;
661 
662 	if (index != 0) {
663 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
664 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
665 	} else {
666 		maxsize = 64 + 64;
667 		if (hs_ep->dir_in)
668 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
669 		else
670 			maxpkt = 2;
671 	}
672 
673 	/* we made the constant loading easier above by using +1 */
674 	maxpkt--;
675 	maxsize--;
676 
677 	/*
678 	 * constrain by packet count if maxpkts*pktsize is greater
679 	 * than the length register size.
680 	 */
681 
682 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
683 		maxsize = maxpkt * hs_ep->ep.maxpacket;
684 
685 	return maxsize;
686 }
687 
688 /**
689  * dwc2_hsotg_read_frameno - read current frame number
690  * @hsotg: The device instance
691  *
692  * Return the current frame number
693  */
694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
695 {
696 	u32 dsts;
697 
698 	dsts = dwc2_readl(hsotg, DSTS);
699 	dsts &= DSTS_SOFFN_MASK;
700 	dsts >>= DSTS_SOFFN_SHIFT;
701 
702 	return dsts;
703 }
704 
705 /**
706  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
707  * DMA descriptor chain prepared for specific endpoint
708  * @hs_ep: The endpoint
709  *
710  * Return the maximum data that can be queued in one go on a given endpoint
711  * depending on its descriptor chain capacity so that transfers that
712  * are too long can be split.
713  */
714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
715 {
716 	int is_isoc = hs_ep->isochronous;
717 	unsigned int maxsize;
718 
719 	if (is_isoc)
720 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
721 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
722 					   MAX_DMA_DESC_NUM_HS_ISOC;
723 	else
724 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
725 
726 	return maxsize;
727 }
728 
729 /*
730  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
731  * @hs_ep: The endpoint
732  * @mask: RX/TX bytes mask to be defined
733  *
734  * Returns maximum data payload for one descriptor after analyzing endpoint
735  * characteristics.
736  * DMA descriptor transfer bytes limit depends on EP type:
737  * Control out - MPS,
738  * Isochronous - descriptor rx/tx bytes bitfield limit,
739  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
740  * have concatenations from various descriptors within one packet.
741  *
742  * Selects corresponding mask for RX/TX bytes as well.
743  */
744 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
745 {
746 	u32 mps = hs_ep->ep.maxpacket;
747 	int dir_in = hs_ep->dir_in;
748 	u32 desc_size = 0;
749 
750 	if (!hs_ep->index && !dir_in) {
751 		desc_size = mps;
752 		*mask = DEV_DMA_NBYTES_MASK;
753 	} else if (hs_ep->isochronous) {
754 		if (dir_in) {
755 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
756 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
757 		} else {
758 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
759 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
760 		}
761 	} else {
762 		desc_size = DEV_DMA_NBYTES_LIMIT;
763 		*mask = DEV_DMA_NBYTES_MASK;
764 
765 		/* Round down desc_size to be mps multiple */
766 		desc_size -= desc_size % mps;
767 	}
768 
769 	return desc_size;
770 }
771 
772 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
773 						 struct dwc2_dma_desc **desc,
774 						 dma_addr_t dma_buff,
775 						 unsigned int len,
776 						 bool true_last)
777 {
778 	int dir_in = hs_ep->dir_in;
779 	u32 mps = hs_ep->ep.maxpacket;
780 	u32 maxsize = 0;
781 	u32 offset = 0;
782 	u32 mask = 0;
783 	int i;
784 
785 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
786 
787 	hs_ep->desc_count = (len / maxsize) +
788 				((len % maxsize) ? 1 : 0);
789 	if (len == 0)
790 		hs_ep->desc_count = 1;
791 
792 	for (i = 0; i < hs_ep->desc_count; ++i) {
793 		(*desc)->status = 0;
794 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
795 				 << DEV_DMA_BUFF_STS_SHIFT);
796 
797 		if (len > maxsize) {
798 			if (!hs_ep->index && !dir_in)
799 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
800 
801 			(*desc)->status |=
802 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
803 			(*desc)->buf = dma_buff + offset;
804 
805 			len -= maxsize;
806 			offset += maxsize;
807 		} else {
808 			if (true_last)
809 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
810 
811 			if (dir_in)
812 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
813 					((hs_ep->send_zlp && true_last) ?
814 					DEV_DMA_SHORT : 0);
815 
816 			(*desc)->status |=
817 				len << DEV_DMA_NBYTES_SHIFT & mask;
818 			(*desc)->buf = dma_buff + offset;
819 		}
820 
821 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
822 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
823 				 << DEV_DMA_BUFF_STS_SHIFT);
824 		(*desc)++;
825 	}
826 }
827 
828 /*
829  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
830  * @hs_ep: The endpoint
831  * @ureq: Request to transfer
832  * @offset: offset in bytes
833  * @len: Length of the transfer
834  *
835  * This function will iterate over descriptor chain and fill its entries
836  * with corresponding information based on transfer data.
837  */
838 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
839 						 dma_addr_t dma_buff,
840 						 unsigned int len)
841 {
842 	struct usb_request *ureq = NULL;
843 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
844 	struct scatterlist *sg;
845 	int i;
846 	u8 desc_count = 0;
847 
848 	if (hs_ep->req)
849 		ureq = &hs_ep->req->req;
850 
851 	/* non-DMA sg buffer */
852 	if (!ureq || !ureq->num_sgs) {
853 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
854 			dma_buff, len, true);
855 		return;
856 	}
857 
858 	/* DMA sg buffer */
859 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
860 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
861 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
862 			sg_is_last(sg));
863 		desc_count += hs_ep->desc_count;
864 	}
865 
866 	hs_ep->desc_count = desc_count;
867 }
868 
869 /*
870  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
871  * @hs_ep: The isochronous endpoint.
872  * @dma_buff: usb requests dma buffer.
873  * @len: usb request transfer length.
874  *
875  * Fills next free descriptor with the data of the arrived usb request,
876  * frame info, sets Last and IOC bits increments next_desc. If filled
877  * descriptor is not the first one, removes L bit from the previous descriptor
878  * status.
879  */
880 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
881 				      dma_addr_t dma_buff, unsigned int len)
882 {
883 	struct dwc2_dma_desc *desc;
884 	struct dwc2_hsotg *hsotg = hs_ep->parent;
885 	u32 index;
886 	u32 mask = 0;
887 	u8 pid = 0;
888 
889 	dwc2_gadget_get_desc_params(hs_ep, &mask);
890 
891 	index = hs_ep->next_desc;
892 	desc = &hs_ep->desc_list[index];
893 
894 	/* Check if descriptor chain full */
895 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
896 	    DEV_DMA_BUFF_STS_HREADY) {
897 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
898 		return 1;
899 	}
900 
901 	/* Clear L bit of previous desc if more than one entries in the chain */
902 	if (hs_ep->next_desc)
903 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
904 
905 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
906 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
907 
908 	desc->status = 0;
909 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
910 
911 	desc->buf = dma_buff;
912 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
913 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
914 
915 	if (hs_ep->dir_in) {
916 		if (len)
917 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
918 		else
919 			pid = 1;
920 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
921 				 DEV_DMA_ISOC_PID_MASK) |
922 				((len % hs_ep->ep.maxpacket) ?
923 				 DEV_DMA_SHORT : 0) |
924 				((hs_ep->target_frame <<
925 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
926 				 DEV_DMA_ISOC_FRNUM_MASK);
927 	}
928 
929 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
930 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
931 
932 	/* Increment frame number by interval for IN */
933 	if (hs_ep->dir_in)
934 		dwc2_gadget_incr_frame_num(hs_ep);
935 
936 	/* Update index of last configured entry in the chain */
937 	hs_ep->next_desc++;
938 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
939 		hs_ep->next_desc = 0;
940 
941 	return 0;
942 }
943 
944 /*
945  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
946  * @hs_ep: The isochronous endpoint.
947  *
948  * Prepare descriptor chain for isochronous endpoints. Afterwards
949  * write DMA address to HW and enable the endpoint.
950  */
951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
952 {
953 	struct dwc2_hsotg *hsotg = hs_ep->parent;
954 	struct dwc2_hsotg_req *hs_req, *treq;
955 	int index = hs_ep->index;
956 	int ret;
957 	int i;
958 	u32 dma_reg;
959 	u32 depctl;
960 	u32 ctrl;
961 	struct dwc2_dma_desc *desc;
962 
963 	if (list_empty(&hs_ep->queue)) {
964 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
965 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
966 		return;
967 	}
968 
969 	/* Initialize descriptor chain by Host Busy status */
970 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
971 		desc = &hs_ep->desc_list[i];
972 		desc->status = 0;
973 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
974 				    << DEV_DMA_BUFF_STS_SHIFT);
975 	}
976 
977 	hs_ep->next_desc = 0;
978 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
979 		dma_addr_t dma_addr = hs_req->req.dma;
980 
981 		if (hs_req->req.num_sgs) {
982 			WARN_ON(hs_req->req.num_sgs > 1);
983 			dma_addr = sg_dma_address(hs_req->req.sg);
984 		}
985 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
986 						 hs_req->req.length);
987 		if (ret)
988 			break;
989 	}
990 
991 	hs_ep->compl_desc = 0;
992 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
993 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
994 
995 	/* write descriptor chain address to control register */
996 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
997 
998 	ctrl = dwc2_readl(hsotg, depctl);
999 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1000 	dwc2_writel(hsotg, ctrl, depctl);
1001 }
1002 
1003 /**
1004  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1005  * @hsotg: The controller state.
1006  * @hs_ep: The endpoint to process a request for
1007  * @hs_req: The request to start.
1008  * @continuing: True if we are doing more for the current request.
1009  *
1010  * Start the given request running by setting the endpoint registers
1011  * appropriately, and writing any data to the FIFOs.
1012  */
1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1014 				 struct dwc2_hsotg_ep *hs_ep,
1015 				struct dwc2_hsotg_req *hs_req,
1016 				bool continuing)
1017 {
1018 	struct usb_request *ureq = &hs_req->req;
1019 	int index = hs_ep->index;
1020 	int dir_in = hs_ep->dir_in;
1021 	u32 epctrl_reg;
1022 	u32 epsize_reg;
1023 	u32 epsize;
1024 	u32 ctrl;
1025 	unsigned int length;
1026 	unsigned int packets;
1027 	unsigned int maxreq;
1028 	unsigned int dma_reg;
1029 
1030 	if (index != 0) {
1031 		if (hs_ep->req && !continuing) {
1032 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1033 			WARN_ON(1);
1034 			return;
1035 		} else if (hs_ep->req != hs_req && continuing) {
1036 			dev_err(hsotg->dev,
1037 				"%s: continue different req\n", __func__);
1038 			WARN_ON(1);
1039 			return;
1040 		}
1041 	}
1042 
1043 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1044 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1045 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1046 
1047 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1048 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1049 		hs_ep->dir_in ? "in" : "out");
1050 
1051 	/* If endpoint is stalled, we will restart request later */
1052 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1053 
1054 	if (index && ctrl & DXEPCTL_STALL) {
1055 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1056 		return;
1057 	}
1058 
1059 	length = ureq->length - ureq->actual;
1060 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1061 		ureq->length, ureq->actual);
1062 
1063 	if (!using_desc_dma(hsotg))
1064 		maxreq = get_ep_limit(hs_ep);
1065 	else
1066 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1067 
1068 	if (length > maxreq) {
1069 		int round = maxreq % hs_ep->ep.maxpacket;
1070 
1071 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1072 			__func__, length, maxreq, round);
1073 
1074 		/* round down to multiple of packets */
1075 		if (round)
1076 			maxreq -= round;
1077 
1078 		length = maxreq;
1079 	}
1080 
1081 	if (length)
1082 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1083 	else
1084 		packets = 1;	/* send one packet if length is zero. */
1085 
1086 	if (dir_in && index != 0)
1087 		if (hs_ep->isochronous)
1088 			epsize = DXEPTSIZ_MC(packets);
1089 		else
1090 			epsize = DXEPTSIZ_MC(1);
1091 	else
1092 		epsize = 0;
1093 
1094 	/*
1095 	 * zero length packet should be programmed on its own and should not
1096 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1097 	 */
1098 	if (dir_in && ureq->zero && !continuing) {
1099 		/* Test if zlp is actually required. */
1100 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1101 		    !(ureq->length % hs_ep->ep.maxpacket))
1102 			hs_ep->send_zlp = 1;
1103 	}
1104 
1105 	epsize |= DXEPTSIZ_PKTCNT(packets);
1106 	epsize |= DXEPTSIZ_XFERSIZE(length);
1107 
1108 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1109 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1110 
1111 	/* store the request as the current one we're doing */
1112 	hs_ep->req = hs_req;
1113 
1114 	if (using_desc_dma(hsotg)) {
1115 		u32 offset = 0;
1116 		u32 mps = hs_ep->ep.maxpacket;
1117 
1118 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1119 		if (!dir_in) {
1120 			if (!index)
1121 				length = mps;
1122 			else if (length % mps)
1123 				length += (mps - (length % mps));
1124 		}
1125 
1126 		/*
1127 		 * If more data to send, adjust DMA for EP0 out data stage.
1128 		 * ureq->dma stays unchanged, hence increment it by already
1129 		 * passed passed data count before starting new transaction.
1130 		 */
1131 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1132 		    continuing)
1133 			offset = ureq->actual;
1134 
1135 		/* Fill DDMA chain entries */
1136 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1137 						     length);
1138 
1139 		/* write descriptor chain address to control register */
1140 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1141 
1142 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1143 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1144 	} else {
1145 		/* write size / packets */
1146 		dwc2_writel(hsotg, epsize, epsize_reg);
1147 
1148 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1149 			/*
1150 			 * write DMA address to control register, buffer
1151 			 * already synced by dwc2_hsotg_ep_queue().
1152 			 */
1153 
1154 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1155 
1156 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1157 				__func__, &ureq->dma, dma_reg);
1158 		}
1159 	}
1160 
1161 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1162 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1163 		dwc2_gadget_incr_frame_num(hs_ep);
1164 
1165 		if (hs_ep->target_frame & 0x1)
1166 			ctrl |= DXEPCTL_SETODDFR;
1167 		else
1168 			ctrl |= DXEPCTL_SETEVENFR;
1169 	}
1170 
1171 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1172 
1173 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1174 
1175 	/* For Setup request do not clear NAK */
1176 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1177 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1178 
1179 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1180 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1181 
1182 	/*
1183 	 * set these, it seems that DMA support increments past the end
1184 	 * of the packet buffer so we need to calculate the length from
1185 	 * this information.
1186 	 */
1187 	hs_ep->size_loaded = length;
1188 	hs_ep->last_load = ureq->actual;
1189 
1190 	if (dir_in && !using_dma(hsotg)) {
1191 		/* set these anyway, we may need them for non-periodic in */
1192 		hs_ep->fifo_load = 0;
1193 
1194 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1195 	}
1196 
1197 	/*
1198 	 * Note, trying to clear the NAK here causes problems with transmit
1199 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1200 	 */
1201 
1202 	/* check ep is enabled */
1203 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1204 		dev_dbg(hsotg->dev,
1205 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1206 			 index, dwc2_readl(hsotg, epctrl_reg));
1207 
1208 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1209 		__func__, dwc2_readl(hsotg, epctrl_reg));
1210 
1211 	/* enable ep interrupts */
1212 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1213 }
1214 
1215 /**
1216  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1217  * @hsotg: The device state.
1218  * @hs_ep: The endpoint the request is on.
1219  * @req: The request being processed.
1220  *
1221  * We've been asked to queue a request, so ensure that the memory buffer
1222  * is correctly setup for DMA. If we've been passed an extant DMA address
1223  * then ensure the buffer has been synced to memory. If our buffer has no
1224  * DMA memory, then we map the memory and mark our request to allow us to
1225  * cleanup on completion.
1226  */
1227 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1228 			      struct dwc2_hsotg_ep *hs_ep,
1229 			     struct usb_request *req)
1230 {
1231 	int ret;
1232 
1233 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1234 	if (ret)
1235 		goto dma_error;
1236 
1237 	return 0;
1238 
1239 dma_error:
1240 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1241 		__func__, req->buf, req->length);
1242 
1243 	return -EIO;
1244 }
1245 
1246 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1247 						 struct dwc2_hsotg_ep *hs_ep,
1248 						 struct dwc2_hsotg_req *hs_req)
1249 {
1250 	void *req_buf = hs_req->req.buf;
1251 
1252 	/* If dma is not being used or buffer is aligned */
1253 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1254 		return 0;
1255 
1256 	WARN_ON(hs_req->saved_req_buf);
1257 
1258 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1259 		hs_ep->ep.name, req_buf, hs_req->req.length);
1260 
1261 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1262 	if (!hs_req->req.buf) {
1263 		hs_req->req.buf = req_buf;
1264 		dev_err(hsotg->dev,
1265 			"%s: unable to allocate memory for bounce buffer\n",
1266 			__func__);
1267 		return -ENOMEM;
1268 	}
1269 
1270 	/* Save actual buffer */
1271 	hs_req->saved_req_buf = req_buf;
1272 
1273 	if (hs_ep->dir_in)
1274 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1275 	return 0;
1276 }
1277 
1278 static void
1279 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1280 					 struct dwc2_hsotg_ep *hs_ep,
1281 					 struct dwc2_hsotg_req *hs_req)
1282 {
1283 	/* If dma is not being used or buffer was aligned */
1284 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1285 		return;
1286 
1287 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1288 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1289 
1290 	/* Copy data from bounce buffer on successful out transfer */
1291 	if (!hs_ep->dir_in && !hs_req->req.status)
1292 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1293 		       hs_req->req.actual);
1294 
1295 	/* Free bounce buffer */
1296 	kfree(hs_req->req.buf);
1297 
1298 	hs_req->req.buf = hs_req->saved_req_buf;
1299 	hs_req->saved_req_buf = NULL;
1300 }
1301 
1302 /**
1303  * dwc2_gadget_target_frame_elapsed - Checks target frame
1304  * @hs_ep: The driver endpoint to check
1305  *
1306  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1307  * corresponding transfer.
1308  */
1309 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1310 {
1311 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1312 	u32 target_frame = hs_ep->target_frame;
1313 	u32 current_frame = hsotg->frame_number;
1314 	bool frame_overrun = hs_ep->frame_overrun;
1315 
1316 	if (!frame_overrun && current_frame >= target_frame)
1317 		return true;
1318 
1319 	if (frame_overrun && current_frame >= target_frame &&
1320 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1321 		return true;
1322 
1323 	return false;
1324 }
1325 
1326 /*
1327  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1328  * @hsotg: The driver state
1329  * @hs_ep: the ep descriptor chain is for
1330  *
1331  * Called to update EP0 structure's pointers depend on stage of
1332  * control transfer.
1333  */
1334 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1335 					  struct dwc2_hsotg_ep *hs_ep)
1336 {
1337 	switch (hsotg->ep0_state) {
1338 	case DWC2_EP0_SETUP:
1339 	case DWC2_EP0_STATUS_OUT:
1340 		hs_ep->desc_list = hsotg->setup_desc[0];
1341 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1342 		break;
1343 	case DWC2_EP0_DATA_IN:
1344 	case DWC2_EP0_STATUS_IN:
1345 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1346 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1347 		break;
1348 	case DWC2_EP0_DATA_OUT:
1349 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1350 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1351 		break;
1352 	default:
1353 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1354 			hsotg->ep0_state);
1355 		return -EINVAL;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1362 			       gfp_t gfp_flags)
1363 {
1364 	struct dwc2_hsotg_req *hs_req = our_req(req);
1365 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366 	struct dwc2_hsotg *hs = hs_ep->parent;
1367 	bool first;
1368 	int ret;
1369 	u32 maxsize = 0;
1370 	u32 mask = 0;
1371 
1372 
1373 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1374 		ep->name, req, req->length, req->buf, req->no_interrupt,
1375 		req->zero, req->short_not_ok);
1376 
1377 	/* Prevent new request submission when controller is suspended */
1378 	if (hs->lx_state != DWC2_L0) {
1379 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1380 			__func__);
1381 		return -EAGAIN;
1382 	}
1383 
1384 	/* initialise status of the request */
1385 	INIT_LIST_HEAD(&hs_req->queue);
1386 	req->actual = 0;
1387 	req->status = -EINPROGRESS;
1388 
1389 	/* Don't queue ISOC request if length greater than mps*mc */
1390 	if (hs_ep->isochronous &&
1391 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1392 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1393 		return -EINVAL;
1394 	}
1395 
1396 	/* In DDMA mode for ISOC's don't queue request if length greater
1397 	 * than descriptor limits.
1398 	 */
1399 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1400 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1401 		if (hs_ep->dir_in && req->length > maxsize) {
1402 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1403 				req->length, maxsize);
1404 			return -EINVAL;
1405 		}
1406 
1407 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1408 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1409 				req->length, hs_ep->ep.maxpacket);
1410 			return -EINVAL;
1411 		}
1412 	}
1413 
1414 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1415 	if (ret)
1416 		return ret;
1417 
1418 	/* if we're using DMA, sync the buffers as necessary */
1419 	if (using_dma(hs)) {
1420 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1421 		if (ret)
1422 			return ret;
1423 	}
1424 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1425 	if (using_desc_dma(hs) && !hs_ep->index) {
1426 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1427 		if (ret)
1428 			return ret;
1429 	}
1430 
1431 	first = list_empty(&hs_ep->queue);
1432 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1433 
1434 	/*
1435 	 * Handle DDMA isochronous transfers separately - just add new entry
1436 	 * to the descriptor chain.
1437 	 * Transfer will be started once SW gets either one of NAK or
1438 	 * OutTknEpDis interrupts.
1439 	 */
1440 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1441 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1442 			dma_addr_t dma_addr = hs_req->req.dma;
1443 
1444 			if (hs_req->req.num_sgs) {
1445 				WARN_ON(hs_req->req.num_sgs > 1);
1446 				dma_addr = sg_dma_address(hs_req->req.sg);
1447 			}
1448 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1449 						   hs_req->req.length);
1450 		}
1451 		return 0;
1452 	}
1453 
1454 	/* Change EP direction if status phase request is after data out */
1455 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1456 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1457 		hs_ep->dir_in = 1;
1458 
1459 	if (first) {
1460 		if (!hs_ep->isochronous) {
1461 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1462 			return 0;
1463 		}
1464 
1465 		/* Update current frame number value. */
1466 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1467 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1468 			dwc2_gadget_incr_frame_num(hs_ep);
1469 			/* Update current frame number value once more as it
1470 			 * changes here.
1471 			 */
1472 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1473 		}
1474 
1475 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1476 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1477 	}
1478 	return 0;
1479 }
1480 
1481 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1482 				    gfp_t gfp_flags)
1483 {
1484 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1485 	struct dwc2_hsotg *hs = hs_ep->parent;
1486 	unsigned long flags = 0;
1487 	int ret = 0;
1488 
1489 	spin_lock_irqsave(&hs->lock, flags);
1490 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1491 	spin_unlock_irqrestore(&hs->lock, flags);
1492 
1493 	return ret;
1494 }
1495 
1496 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1497 				       struct usb_request *req)
1498 {
1499 	struct dwc2_hsotg_req *hs_req = our_req(req);
1500 
1501 	kfree(hs_req);
1502 }
1503 
1504 /**
1505  * dwc2_hsotg_complete_oursetup - setup completion callback
1506  * @ep: The endpoint the request was on.
1507  * @req: The request completed.
1508  *
1509  * Called on completion of any requests the driver itself
1510  * submitted that need cleaning up.
1511  */
1512 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1513 					 struct usb_request *req)
1514 {
1515 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1516 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1517 
1518 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1519 
1520 	dwc2_hsotg_ep_free_request(ep, req);
1521 }
1522 
1523 /**
1524  * ep_from_windex - convert control wIndex value to endpoint
1525  * @hsotg: The driver state.
1526  * @windex: The control request wIndex field (in host order).
1527  *
1528  * Convert the given wIndex into a pointer to an driver endpoint
1529  * structure, or return NULL if it is not a valid endpoint.
1530  */
1531 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1532 					    u32 windex)
1533 {
1534 	struct dwc2_hsotg_ep *ep;
1535 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1536 	int idx = windex & 0x7F;
1537 
1538 	if (windex >= 0x100)
1539 		return NULL;
1540 
1541 	if (idx > hsotg->num_of_eps)
1542 		return NULL;
1543 
1544 	ep = index_to_ep(hsotg, idx, dir);
1545 
1546 	if (idx && ep->dir_in != dir)
1547 		return NULL;
1548 
1549 	return ep;
1550 }
1551 
1552 /**
1553  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1554  * @hsotg: The driver state.
1555  * @testmode: requested usb test mode
1556  * Enable usb Test Mode requested by the Host.
1557  */
1558 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1559 {
1560 	int dctl = dwc2_readl(hsotg, DCTL);
1561 
1562 	dctl &= ~DCTL_TSTCTL_MASK;
1563 	switch (testmode) {
1564 	case USB_TEST_J:
1565 	case USB_TEST_K:
1566 	case USB_TEST_SE0_NAK:
1567 	case USB_TEST_PACKET:
1568 	case USB_TEST_FORCE_ENABLE:
1569 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1570 		break;
1571 	default:
1572 		return -EINVAL;
1573 	}
1574 	dwc2_writel(hsotg, dctl, DCTL);
1575 	return 0;
1576 }
1577 
1578 /**
1579  * dwc2_hsotg_send_reply - send reply to control request
1580  * @hsotg: The device state
1581  * @ep: Endpoint 0
1582  * @buff: Buffer for request
1583  * @length: Length of reply.
1584  *
1585  * Create a request and queue it on the given endpoint. This is useful as
1586  * an internal method of sending replies to certain control requests, etc.
1587  */
1588 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1589 				 struct dwc2_hsotg_ep *ep,
1590 				void *buff,
1591 				int length)
1592 {
1593 	struct usb_request *req;
1594 	int ret;
1595 
1596 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1597 
1598 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1599 	hsotg->ep0_reply = req;
1600 	if (!req) {
1601 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1602 		return -ENOMEM;
1603 	}
1604 
1605 	req->buf = hsotg->ep0_buff;
1606 	req->length = length;
1607 	/*
1608 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1609 	 * STATUS stage.
1610 	 */
1611 	req->zero = 0;
1612 	req->complete = dwc2_hsotg_complete_oursetup;
1613 
1614 	if (length)
1615 		memcpy(req->buf, buff, length);
1616 
1617 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1618 	if (ret) {
1619 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1620 		return ret;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 /**
1627  * dwc2_hsotg_process_req_status - process request GET_STATUS
1628  * @hsotg: The device state
1629  * @ctrl: USB control request
1630  */
1631 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1632 					 struct usb_ctrlrequest *ctrl)
1633 {
1634 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1635 	struct dwc2_hsotg_ep *ep;
1636 	__le16 reply;
1637 	u16 status;
1638 	int ret;
1639 
1640 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1641 
1642 	if (!ep0->dir_in) {
1643 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1644 		return -EINVAL;
1645 	}
1646 
1647 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1648 	case USB_RECIP_DEVICE:
1649 		status = hsotg->gadget.is_selfpowered <<
1650 			 USB_DEVICE_SELF_POWERED;
1651 		status |= hsotg->remote_wakeup_allowed <<
1652 			  USB_DEVICE_REMOTE_WAKEUP;
1653 		reply = cpu_to_le16(status);
1654 		break;
1655 
1656 	case USB_RECIP_INTERFACE:
1657 		/* currently, the data result should be zero */
1658 		reply = cpu_to_le16(0);
1659 		break;
1660 
1661 	case USB_RECIP_ENDPOINT:
1662 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1663 		if (!ep)
1664 			return -ENOENT;
1665 
1666 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1667 		break;
1668 
1669 	default:
1670 		return 0;
1671 	}
1672 
1673 	if (le16_to_cpu(ctrl->wLength) != 2)
1674 		return -EINVAL;
1675 
1676 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1677 	if (ret) {
1678 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1679 		return ret;
1680 	}
1681 
1682 	return 1;
1683 }
1684 
1685 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1686 
1687 /**
1688  * get_ep_head - return the first request on the endpoint
1689  * @hs_ep: The controller endpoint to get
1690  *
1691  * Get the first request on the endpoint.
1692  */
1693 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1694 {
1695 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1696 					queue);
1697 }
1698 
1699 /**
1700  * dwc2_gadget_start_next_request - Starts next request from ep queue
1701  * @hs_ep: Endpoint structure
1702  *
1703  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1704  * in its handler. Hence we need to unmask it here to be able to do
1705  * resynchronization.
1706  */
1707 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1708 {
1709 	u32 mask;
1710 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1711 	int dir_in = hs_ep->dir_in;
1712 	struct dwc2_hsotg_req *hs_req;
1713 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1714 
1715 	if (!list_empty(&hs_ep->queue)) {
1716 		hs_req = get_ep_head(hs_ep);
1717 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1718 		return;
1719 	}
1720 	if (!hs_ep->isochronous)
1721 		return;
1722 
1723 	if (dir_in) {
1724 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1725 			__func__);
1726 	} else {
1727 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1728 			__func__);
1729 		mask = dwc2_readl(hsotg, epmsk_reg);
1730 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1731 		dwc2_writel(hsotg, mask, epmsk_reg);
1732 	}
1733 }
1734 
1735 /**
1736  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1737  * @hsotg: The device state
1738  * @ctrl: USB control request
1739  */
1740 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1741 					  struct usb_ctrlrequest *ctrl)
1742 {
1743 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1744 	struct dwc2_hsotg_req *hs_req;
1745 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1746 	struct dwc2_hsotg_ep *ep;
1747 	int ret;
1748 	bool halted;
1749 	u32 recip;
1750 	u32 wValue;
1751 	u32 wIndex;
1752 
1753 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1754 		__func__, set ? "SET" : "CLEAR");
1755 
1756 	wValue = le16_to_cpu(ctrl->wValue);
1757 	wIndex = le16_to_cpu(ctrl->wIndex);
1758 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1759 
1760 	switch (recip) {
1761 	case USB_RECIP_DEVICE:
1762 		switch (wValue) {
1763 		case USB_DEVICE_REMOTE_WAKEUP:
1764 			if (set)
1765 				hsotg->remote_wakeup_allowed = 1;
1766 			else
1767 				hsotg->remote_wakeup_allowed = 0;
1768 			break;
1769 
1770 		case USB_DEVICE_TEST_MODE:
1771 			if ((wIndex & 0xff) != 0)
1772 				return -EINVAL;
1773 			if (!set)
1774 				return -EINVAL;
1775 
1776 			hsotg->test_mode = wIndex >> 8;
1777 			break;
1778 		default:
1779 			return -ENOENT;
1780 		}
1781 
1782 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1783 		if (ret) {
1784 			dev_err(hsotg->dev,
1785 				"%s: failed to send reply\n", __func__);
1786 			return ret;
1787 		}
1788 		break;
1789 
1790 	case USB_RECIP_ENDPOINT:
1791 		ep = ep_from_windex(hsotg, wIndex);
1792 		if (!ep) {
1793 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1794 				__func__, wIndex);
1795 			return -ENOENT;
1796 		}
1797 
1798 		switch (wValue) {
1799 		case USB_ENDPOINT_HALT:
1800 			halted = ep->halted;
1801 
1802 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1803 
1804 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1805 			if (ret) {
1806 				dev_err(hsotg->dev,
1807 					"%s: failed to send reply\n", __func__);
1808 				return ret;
1809 			}
1810 
1811 			/*
1812 			 * we have to complete all requests for ep if it was
1813 			 * halted, and the halt was cleared by CLEAR_FEATURE
1814 			 */
1815 
1816 			if (!set && halted) {
1817 				/*
1818 				 * If we have request in progress,
1819 				 * then complete it
1820 				 */
1821 				if (ep->req) {
1822 					hs_req = ep->req;
1823 					ep->req = NULL;
1824 					list_del_init(&hs_req->queue);
1825 					if (hs_req->req.complete) {
1826 						spin_unlock(&hsotg->lock);
1827 						usb_gadget_giveback_request(
1828 							&ep->ep, &hs_req->req);
1829 						spin_lock(&hsotg->lock);
1830 					}
1831 				}
1832 
1833 				/* If we have pending request, then start it */
1834 				if (!ep->req)
1835 					dwc2_gadget_start_next_request(ep);
1836 			}
1837 
1838 			break;
1839 
1840 		default:
1841 			return -ENOENT;
1842 		}
1843 		break;
1844 	default:
1845 		return -ENOENT;
1846 	}
1847 	return 1;
1848 }
1849 
1850 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1851 
1852 /**
1853  * dwc2_hsotg_stall_ep0 - stall ep0
1854  * @hsotg: The device state
1855  *
1856  * Set stall for ep0 as response for setup request.
1857  */
1858 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1859 {
1860 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1861 	u32 reg;
1862 	u32 ctrl;
1863 
1864 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1865 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1866 
1867 	/*
1868 	 * DxEPCTL_Stall will be cleared by EP once it has
1869 	 * taken effect, so no need to clear later.
1870 	 */
1871 
1872 	ctrl = dwc2_readl(hsotg, reg);
1873 	ctrl |= DXEPCTL_STALL;
1874 	ctrl |= DXEPCTL_CNAK;
1875 	dwc2_writel(hsotg, ctrl, reg);
1876 
1877 	dev_dbg(hsotg->dev,
1878 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1879 		ctrl, reg, dwc2_readl(hsotg, reg));
1880 
1881 	 /*
1882 	  * complete won't be called, so we enqueue
1883 	  * setup request here
1884 	  */
1885 	 dwc2_hsotg_enqueue_setup(hsotg);
1886 }
1887 
1888 /**
1889  * dwc2_hsotg_process_control - process a control request
1890  * @hsotg: The device state
1891  * @ctrl: The control request received
1892  *
1893  * The controller has received the SETUP phase of a control request, and
1894  * needs to work out what to do next (and whether to pass it on to the
1895  * gadget driver).
1896  */
1897 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1898 				       struct usb_ctrlrequest *ctrl)
1899 {
1900 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1901 	int ret = 0;
1902 	u32 dcfg;
1903 
1904 	dev_dbg(hsotg->dev,
1905 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1906 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1907 		ctrl->wIndex, ctrl->wLength);
1908 
1909 	if (ctrl->wLength == 0) {
1910 		ep0->dir_in = 1;
1911 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1912 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1913 		ep0->dir_in = 1;
1914 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1915 	} else {
1916 		ep0->dir_in = 0;
1917 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1918 	}
1919 
1920 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1921 		switch (ctrl->bRequest) {
1922 		case USB_REQ_SET_ADDRESS:
1923 			hsotg->connected = 1;
1924 			dcfg = dwc2_readl(hsotg, DCFG);
1925 			dcfg &= ~DCFG_DEVADDR_MASK;
1926 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1927 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1928 			dwc2_writel(hsotg, dcfg, DCFG);
1929 
1930 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1931 
1932 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1933 			return;
1934 
1935 		case USB_REQ_GET_STATUS:
1936 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1937 			break;
1938 
1939 		case USB_REQ_CLEAR_FEATURE:
1940 		case USB_REQ_SET_FEATURE:
1941 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1942 			break;
1943 		}
1944 	}
1945 
1946 	/* as a fallback, try delivering it to the driver to deal with */
1947 
1948 	if (ret == 0 && hsotg->driver) {
1949 		spin_unlock(&hsotg->lock);
1950 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1951 		spin_lock(&hsotg->lock);
1952 		if (ret < 0)
1953 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1954 	}
1955 
1956 	hsotg->delayed_status = false;
1957 	if (ret == USB_GADGET_DELAYED_STATUS)
1958 		hsotg->delayed_status = true;
1959 
1960 	/*
1961 	 * the request is either unhandlable, or is not formatted correctly
1962 	 * so respond with a STALL for the status stage to indicate failure.
1963 	 */
1964 
1965 	if (ret < 0)
1966 		dwc2_hsotg_stall_ep0(hsotg);
1967 }
1968 
1969 /**
1970  * dwc2_hsotg_complete_setup - completion of a setup transfer
1971  * @ep: The endpoint the request was on.
1972  * @req: The request completed.
1973  *
1974  * Called on completion of any requests the driver itself submitted for
1975  * EP0 setup packets
1976  */
1977 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1978 				      struct usb_request *req)
1979 {
1980 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1981 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1982 
1983 	if (req->status < 0) {
1984 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1985 		return;
1986 	}
1987 
1988 	spin_lock(&hsotg->lock);
1989 	if (req->actual == 0)
1990 		dwc2_hsotg_enqueue_setup(hsotg);
1991 	else
1992 		dwc2_hsotg_process_control(hsotg, req->buf);
1993 	spin_unlock(&hsotg->lock);
1994 }
1995 
1996 /**
1997  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1998  * @hsotg: The device state.
1999  *
2000  * Enqueue a request on EP0 if necessary to received any SETUP packets
2001  * received from the host.
2002  */
2003 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2004 {
2005 	struct usb_request *req = hsotg->ctrl_req;
2006 	struct dwc2_hsotg_req *hs_req = our_req(req);
2007 	int ret;
2008 
2009 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2010 
2011 	req->zero = 0;
2012 	req->length = 8;
2013 	req->buf = hsotg->ctrl_buff;
2014 	req->complete = dwc2_hsotg_complete_setup;
2015 
2016 	if (!list_empty(&hs_req->queue)) {
2017 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2018 		return;
2019 	}
2020 
2021 	hsotg->eps_out[0]->dir_in = 0;
2022 	hsotg->eps_out[0]->send_zlp = 0;
2023 	hsotg->ep0_state = DWC2_EP0_SETUP;
2024 
2025 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2026 	if (ret < 0) {
2027 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2028 		/*
2029 		 * Don't think there's much we can do other than watch the
2030 		 * driver fail.
2031 		 */
2032 	}
2033 }
2034 
2035 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2036 				   struct dwc2_hsotg_ep *hs_ep)
2037 {
2038 	u32 ctrl;
2039 	u8 index = hs_ep->index;
2040 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2041 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2042 
2043 	if (hs_ep->dir_in)
2044 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2045 			index);
2046 	else
2047 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2048 			index);
2049 	if (using_desc_dma(hsotg)) {
2050 		/* Not specific buffer needed for ep0 ZLP */
2051 		dma_addr_t dma = hs_ep->desc_list_dma;
2052 
2053 		if (!index)
2054 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2055 
2056 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2057 	} else {
2058 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2059 			    DXEPTSIZ_XFERSIZE(0),
2060 			    epsiz_reg);
2061 	}
2062 
2063 	ctrl = dwc2_readl(hsotg, epctl_reg);
2064 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2065 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2066 	ctrl |= DXEPCTL_USBACTEP;
2067 	dwc2_writel(hsotg, ctrl, epctl_reg);
2068 }
2069 
2070 /**
2071  * dwc2_hsotg_complete_request - complete a request given to us
2072  * @hsotg: The device state.
2073  * @hs_ep: The endpoint the request was on.
2074  * @hs_req: The request to complete.
2075  * @result: The result code (0 => Ok, otherwise errno)
2076  *
2077  * The given request has finished, so call the necessary completion
2078  * if it has one and then look to see if we can start a new request
2079  * on the endpoint.
2080  *
2081  * Note, expects the ep to already be locked as appropriate.
2082  */
2083 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2084 					struct dwc2_hsotg_ep *hs_ep,
2085 				       struct dwc2_hsotg_req *hs_req,
2086 				       int result)
2087 {
2088 	if (!hs_req) {
2089 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2090 		return;
2091 	}
2092 
2093 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2094 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2095 
2096 	/*
2097 	 * only replace the status if we've not already set an error
2098 	 * from a previous transaction
2099 	 */
2100 
2101 	if (hs_req->req.status == -EINPROGRESS)
2102 		hs_req->req.status = result;
2103 
2104 	if (using_dma(hsotg))
2105 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2106 
2107 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2108 
2109 	hs_ep->req = NULL;
2110 	list_del_init(&hs_req->queue);
2111 
2112 	/*
2113 	 * call the complete request with the locks off, just in case the
2114 	 * request tries to queue more work for this endpoint.
2115 	 */
2116 
2117 	if (hs_req->req.complete) {
2118 		spin_unlock(&hsotg->lock);
2119 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2120 		spin_lock(&hsotg->lock);
2121 	}
2122 
2123 	/* In DDMA don't need to proceed to starting of next ISOC request */
2124 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2125 		return;
2126 
2127 	/*
2128 	 * Look to see if there is anything else to do. Note, the completion
2129 	 * of the previous request may have caused a new request to be started
2130 	 * so be careful when doing this.
2131 	 */
2132 
2133 	if (!hs_ep->req && result >= 0)
2134 		dwc2_gadget_start_next_request(hs_ep);
2135 }
2136 
2137 /*
2138  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2139  * @hs_ep: The endpoint the request was on.
2140  *
2141  * Get first request from the ep queue, determine descriptor on which complete
2142  * happened. SW discovers which descriptor currently in use by HW, adjusts
2143  * dma_address and calculates index of completed descriptor based on the value
2144  * of DEPDMA register. Update actual length of request, giveback to gadget.
2145  */
2146 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2147 {
2148 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2149 	struct dwc2_hsotg_req *hs_req;
2150 	struct usb_request *ureq;
2151 	u32 desc_sts;
2152 	u32 mask;
2153 
2154 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2155 
2156 	/* Process only descriptors with buffer status set to DMA done */
2157 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2158 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2159 
2160 		hs_req = get_ep_head(hs_ep);
2161 		if (!hs_req) {
2162 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2163 			return;
2164 		}
2165 		ureq = &hs_req->req;
2166 
2167 		/* Check completion status */
2168 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2169 			DEV_DMA_STS_SUCC) {
2170 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2171 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2172 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2173 				DEV_DMA_ISOC_NBYTES_SHIFT);
2174 
2175 			/* Adjust actual len for ISOC Out if len is
2176 			 * not align of 4
2177 			 */
2178 			if (!hs_ep->dir_in && ureq->length & 0x3)
2179 				ureq->actual += 4 - (ureq->length & 0x3);
2180 
2181 			/* Set actual frame number for completed transfers */
2182 			ureq->frame_number =
2183 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2184 				DEV_DMA_ISOC_FRNUM_SHIFT;
2185 		}
2186 
2187 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2188 
2189 		hs_ep->compl_desc++;
2190 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2191 			hs_ep->compl_desc = 0;
2192 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2193 	}
2194 }
2195 
2196 /*
2197  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2198  * @hs_ep: The isochronous endpoint.
2199  *
2200  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2201  * interrupt. Reset target frame and next_desc to allow to start
2202  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2203  * interrupt for OUT direction.
2204  */
2205 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2206 {
2207 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2208 
2209 	if (!hs_ep->dir_in)
2210 		dwc2_flush_rx_fifo(hsotg);
2211 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2212 
2213 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2214 	hs_ep->next_desc = 0;
2215 	hs_ep->compl_desc = 0;
2216 }
2217 
2218 /**
2219  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2220  * @hsotg: The device state.
2221  * @ep_idx: The endpoint index for the data
2222  * @size: The size of data in the fifo, in bytes
2223  *
2224  * The FIFO status shows there is data to read from the FIFO for a given
2225  * endpoint, so sort out whether we need to read the data into a request
2226  * that has been made for that endpoint.
2227  */
2228 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2229 {
2230 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2231 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2232 	int to_read;
2233 	int max_req;
2234 	int read_ptr;
2235 
2236 	if (!hs_req) {
2237 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2238 		int ptr;
2239 
2240 		dev_dbg(hsotg->dev,
2241 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2242 			 __func__, size, ep_idx, epctl);
2243 
2244 		/* dump the data from the FIFO, we've nothing we can do */
2245 		for (ptr = 0; ptr < size; ptr += 4)
2246 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2247 
2248 		return;
2249 	}
2250 
2251 	to_read = size;
2252 	read_ptr = hs_req->req.actual;
2253 	max_req = hs_req->req.length - read_ptr;
2254 
2255 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2256 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2257 
2258 	if (to_read > max_req) {
2259 		/*
2260 		 * more data appeared than we where willing
2261 		 * to deal with in this request.
2262 		 */
2263 
2264 		/* currently we don't deal this */
2265 		WARN_ON_ONCE(1);
2266 	}
2267 
2268 	hs_ep->total_data += to_read;
2269 	hs_req->req.actual += to_read;
2270 	to_read = DIV_ROUND_UP(to_read, 4);
2271 
2272 	/*
2273 	 * note, we might over-write the buffer end by 3 bytes depending on
2274 	 * alignment of the data.
2275 	 */
2276 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2277 		       hs_req->req.buf + read_ptr, to_read);
2278 }
2279 
2280 /**
2281  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2282  * @hsotg: The device instance
2283  * @dir_in: If IN zlp
2284  *
2285  * Generate a zero-length IN packet request for terminating a SETUP
2286  * transaction.
2287  *
2288  * Note, since we don't write any data to the TxFIFO, then it is
2289  * currently believed that we do not need to wait for any space in
2290  * the TxFIFO.
2291  */
2292 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2293 {
2294 	/* eps_out[0] is used in both directions */
2295 	hsotg->eps_out[0]->dir_in = dir_in;
2296 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2297 
2298 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2299 }
2300 
2301 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2302 					    u32 epctl_reg)
2303 {
2304 	u32 ctrl;
2305 
2306 	ctrl = dwc2_readl(hsotg, epctl_reg);
2307 	if (ctrl & DXEPCTL_EOFRNUM)
2308 		ctrl |= DXEPCTL_SETEVENFR;
2309 	else
2310 		ctrl |= DXEPCTL_SETODDFR;
2311 	dwc2_writel(hsotg, ctrl, epctl_reg);
2312 }
2313 
2314 /*
2315  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2316  * @hs_ep - The endpoint on which transfer went
2317  *
2318  * Iterate over endpoints descriptor chain and get info on bytes remained
2319  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2320  */
2321 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2322 {
2323 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2324 	unsigned int bytes_rem = 0;
2325 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2326 	int i;
2327 	u32 status;
2328 
2329 	if (!desc)
2330 		return -EINVAL;
2331 
2332 	for (i = 0; i < hs_ep->desc_count; ++i) {
2333 		status = desc->status;
2334 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2335 
2336 		if (status & DEV_DMA_STS_MASK)
2337 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2338 				i, status & DEV_DMA_STS_MASK);
2339 		desc++;
2340 	}
2341 
2342 	return bytes_rem;
2343 }
2344 
2345 /**
2346  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2347  * @hsotg: The device instance
2348  * @epnum: The endpoint received from
2349  *
2350  * The RXFIFO has delivered an OutDone event, which means that the data
2351  * transfer for an OUT endpoint has been completed, either by a short
2352  * packet or by the finish of a transfer.
2353  */
2354 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2355 {
2356 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2357 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2358 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2359 	struct usb_request *req = &hs_req->req;
2360 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2361 	int result = 0;
2362 
2363 	if (!hs_req) {
2364 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2365 		return;
2366 	}
2367 
2368 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2369 		dev_dbg(hsotg->dev, "zlp packet received\n");
2370 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2371 		dwc2_hsotg_enqueue_setup(hsotg);
2372 		return;
2373 	}
2374 
2375 	if (using_desc_dma(hsotg))
2376 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2377 
2378 	if (using_dma(hsotg)) {
2379 		unsigned int size_done;
2380 
2381 		/*
2382 		 * Calculate the size of the transfer by checking how much
2383 		 * is left in the endpoint size register and then working it
2384 		 * out from the amount we loaded for the transfer.
2385 		 *
2386 		 * We need to do this as DMA pointers are always 32bit aligned
2387 		 * so may overshoot/undershoot the transfer.
2388 		 */
2389 
2390 		size_done = hs_ep->size_loaded - size_left;
2391 		size_done += hs_ep->last_load;
2392 
2393 		req->actual = size_done;
2394 	}
2395 
2396 	/* if there is more request to do, schedule new transfer */
2397 	if (req->actual < req->length && size_left == 0) {
2398 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2399 		return;
2400 	}
2401 
2402 	if (req->actual < req->length && req->short_not_ok) {
2403 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2404 			__func__, req->actual, req->length);
2405 
2406 		/*
2407 		 * todo - what should we return here? there's no one else
2408 		 * even bothering to check the status.
2409 		 */
2410 	}
2411 
2412 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2413 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2414 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2415 		/* Move to STATUS IN */
2416 		if (!hsotg->delayed_status)
2417 			dwc2_hsotg_ep0_zlp(hsotg, true);
2418 	}
2419 
2420 	/*
2421 	 * Slave mode OUT transfers do not go through XferComplete so
2422 	 * adjust the ISOC parity here.
2423 	 */
2424 	if (!using_dma(hsotg)) {
2425 		if (hs_ep->isochronous && hs_ep->interval == 1)
2426 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2427 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2428 			dwc2_gadget_incr_frame_num(hs_ep);
2429 	}
2430 
2431 	/* Set actual frame number for completed transfers */
2432 	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2433 		req->frame_number = hsotg->frame_number;
2434 
2435 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2436 }
2437 
2438 /**
2439  * dwc2_hsotg_handle_rx - RX FIFO has data
2440  * @hsotg: The device instance
2441  *
2442  * The IRQ handler has detected that the RX FIFO has some data in it
2443  * that requires processing, so find out what is in there and do the
2444  * appropriate read.
2445  *
2446  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2447  * chunks, so if you have x packets received on an endpoint you'll get x
2448  * FIFO events delivered, each with a packet's worth of data in it.
2449  *
2450  * When using DMA, we should not be processing events from the RXFIFO
2451  * as the actual data should be sent to the memory directly and we turn
2452  * on the completion interrupts to get notifications of transfer completion.
2453  */
2454 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2455 {
2456 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2457 	u32 epnum, status, size;
2458 
2459 	WARN_ON(using_dma(hsotg));
2460 
2461 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2462 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2463 
2464 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2465 	size >>= GRXSTS_BYTECNT_SHIFT;
2466 
2467 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2468 		__func__, grxstsr, size, epnum);
2469 
2470 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2471 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2472 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2473 		break;
2474 
2475 	case GRXSTS_PKTSTS_OUTDONE:
2476 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2477 			dwc2_hsotg_read_frameno(hsotg));
2478 
2479 		if (!using_dma(hsotg))
2480 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2481 		break;
2482 
2483 	case GRXSTS_PKTSTS_SETUPDONE:
2484 		dev_dbg(hsotg->dev,
2485 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2486 			dwc2_hsotg_read_frameno(hsotg),
2487 			dwc2_readl(hsotg, DOEPCTL(0)));
2488 		/*
2489 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2490 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2491 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2492 		 */
2493 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2494 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2495 		break;
2496 
2497 	case GRXSTS_PKTSTS_OUTRX:
2498 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2499 		break;
2500 
2501 	case GRXSTS_PKTSTS_SETUPRX:
2502 		dev_dbg(hsotg->dev,
2503 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2504 			dwc2_hsotg_read_frameno(hsotg),
2505 			dwc2_readl(hsotg, DOEPCTL(0)));
2506 
2507 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2508 
2509 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2510 		break;
2511 
2512 	default:
2513 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2514 			 __func__, grxstsr);
2515 
2516 		dwc2_hsotg_dump(hsotg);
2517 		break;
2518 	}
2519 }
2520 
2521 /**
2522  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2523  * @mps: The maximum packet size in bytes.
2524  */
2525 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2526 {
2527 	switch (mps) {
2528 	case 64:
2529 		return D0EPCTL_MPS_64;
2530 	case 32:
2531 		return D0EPCTL_MPS_32;
2532 	case 16:
2533 		return D0EPCTL_MPS_16;
2534 	case 8:
2535 		return D0EPCTL_MPS_8;
2536 	}
2537 
2538 	/* bad max packet size, warn and return invalid result */
2539 	WARN_ON(1);
2540 	return (u32)-1;
2541 }
2542 
2543 /**
2544  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2545  * @hsotg: The driver state.
2546  * @ep: The index number of the endpoint
2547  * @mps: The maximum packet size in bytes
2548  * @mc: The multicount value
2549  * @dir_in: True if direction is in.
2550  *
2551  * Configure the maximum packet size for the given endpoint, updating
2552  * the hardware control registers to reflect this.
2553  */
2554 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2555 					unsigned int ep, unsigned int mps,
2556 					unsigned int mc, unsigned int dir_in)
2557 {
2558 	struct dwc2_hsotg_ep *hs_ep;
2559 	u32 reg;
2560 
2561 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2562 	if (!hs_ep)
2563 		return;
2564 
2565 	if (ep == 0) {
2566 		u32 mps_bytes = mps;
2567 
2568 		/* EP0 is a special case */
2569 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2570 		if (mps > 3)
2571 			goto bad_mps;
2572 		hs_ep->ep.maxpacket = mps_bytes;
2573 		hs_ep->mc = 1;
2574 	} else {
2575 		if (mps > 1024)
2576 			goto bad_mps;
2577 		hs_ep->mc = mc;
2578 		if (mc > 3)
2579 			goto bad_mps;
2580 		hs_ep->ep.maxpacket = mps;
2581 	}
2582 
2583 	if (dir_in) {
2584 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2585 		reg &= ~DXEPCTL_MPS_MASK;
2586 		reg |= mps;
2587 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2588 	} else {
2589 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2590 		reg &= ~DXEPCTL_MPS_MASK;
2591 		reg |= mps;
2592 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2593 	}
2594 
2595 	return;
2596 
2597 bad_mps:
2598 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2599 }
2600 
2601 /**
2602  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2603  * @hsotg: The driver state
2604  * @idx: The index for the endpoint (0..15)
2605  */
2606 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2607 {
2608 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2609 		    GRSTCTL);
2610 
2611 	/* wait until the fifo is flushed */
2612 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2613 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2614 			 __func__);
2615 }
2616 
2617 /**
2618  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2619  * @hsotg: The driver state
2620  * @hs_ep: The driver endpoint to check.
2621  *
2622  * Check to see if there is a request that has data to send, and if so
2623  * make an attempt to write data into the FIFO.
2624  */
2625 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2626 			    struct dwc2_hsotg_ep *hs_ep)
2627 {
2628 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2629 
2630 	if (!hs_ep->dir_in || !hs_req) {
2631 		/**
2632 		 * if request is not enqueued, we disable interrupts
2633 		 * for endpoints, excepting ep0
2634 		 */
2635 		if (hs_ep->index != 0)
2636 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2637 					      hs_ep->dir_in, 0);
2638 		return 0;
2639 	}
2640 
2641 	if (hs_req->req.actual < hs_req->req.length) {
2642 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2643 			hs_ep->index);
2644 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 /**
2651  * dwc2_hsotg_complete_in - complete IN transfer
2652  * @hsotg: The device state.
2653  * @hs_ep: The endpoint that has just completed.
2654  *
2655  * An IN transfer has been completed, update the transfer's state and then
2656  * call the relevant completion routines.
2657  */
2658 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2659 				   struct dwc2_hsotg_ep *hs_ep)
2660 {
2661 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2662 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2663 	int size_left, size_done;
2664 
2665 	if (!hs_req) {
2666 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2667 		return;
2668 	}
2669 
2670 	/* Finish ZLP handling for IN EP0 transactions */
2671 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2672 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2673 
2674 		/*
2675 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2676 		 * changed to IN. Change back to complete OUT transfer request
2677 		 */
2678 		hs_ep->dir_in = 0;
2679 
2680 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2681 		if (hsotg->test_mode) {
2682 			int ret;
2683 
2684 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2685 			if (ret < 0) {
2686 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2687 					hsotg->test_mode);
2688 				dwc2_hsotg_stall_ep0(hsotg);
2689 				return;
2690 			}
2691 		}
2692 		dwc2_hsotg_enqueue_setup(hsotg);
2693 		return;
2694 	}
2695 
2696 	/*
2697 	 * Calculate the size of the transfer by checking how much is left
2698 	 * in the endpoint size register and then working it out from
2699 	 * the amount we loaded for the transfer.
2700 	 *
2701 	 * We do this even for DMA, as the transfer may have incremented
2702 	 * past the end of the buffer (DMA transfers are always 32bit
2703 	 * aligned).
2704 	 */
2705 	if (using_desc_dma(hsotg)) {
2706 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2707 		if (size_left < 0)
2708 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2709 				size_left);
2710 	} else {
2711 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2712 	}
2713 
2714 	size_done = hs_ep->size_loaded - size_left;
2715 	size_done += hs_ep->last_load;
2716 
2717 	if (hs_req->req.actual != size_done)
2718 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2719 			__func__, hs_req->req.actual, size_done);
2720 
2721 	hs_req->req.actual = size_done;
2722 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2723 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2724 
2725 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2726 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2727 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2728 		return;
2729 	}
2730 
2731 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2732 	if (hs_ep->send_zlp) {
2733 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2734 		hs_ep->send_zlp = 0;
2735 		/* transfer will be completed on next complete interrupt */
2736 		return;
2737 	}
2738 
2739 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2740 		/* Move to STATUS OUT */
2741 		dwc2_hsotg_ep0_zlp(hsotg, false);
2742 		return;
2743 	}
2744 
2745 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2746 }
2747 
2748 /**
2749  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2750  * @hsotg: The device state.
2751  * @idx: Index of ep.
2752  * @dir_in: Endpoint direction 1-in 0-out.
2753  *
2754  * Reads for endpoint with given index and direction, by masking
2755  * epint_reg with coresponding mask.
2756  */
2757 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2758 					  unsigned int idx, int dir_in)
2759 {
2760 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2761 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2762 	u32 ints;
2763 	u32 mask;
2764 	u32 diepempmsk;
2765 
2766 	mask = dwc2_readl(hsotg, epmsk_reg);
2767 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2768 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2769 	mask |= DXEPINT_SETUP_RCVD;
2770 
2771 	ints = dwc2_readl(hsotg, epint_reg);
2772 	ints &= mask;
2773 	return ints;
2774 }
2775 
2776 /**
2777  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2778  * @hs_ep: The endpoint on which interrupt is asserted.
2779  *
2780  * This interrupt indicates that the endpoint has been disabled per the
2781  * application's request.
2782  *
2783  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2784  * in case of ISOC completes current request.
2785  *
2786  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2787  * request starts it.
2788  */
2789 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2790 {
2791 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2792 	struct dwc2_hsotg_req *hs_req;
2793 	unsigned char idx = hs_ep->index;
2794 	int dir_in = hs_ep->dir_in;
2795 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2796 	int dctl = dwc2_readl(hsotg, DCTL);
2797 
2798 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2799 
2800 	if (dir_in) {
2801 		int epctl = dwc2_readl(hsotg, epctl_reg);
2802 
2803 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2804 
2805 		if (hs_ep->isochronous) {
2806 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2807 			return;
2808 		}
2809 
2810 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2811 			int dctl = dwc2_readl(hsotg, DCTL);
2812 
2813 			dctl |= DCTL_CGNPINNAK;
2814 			dwc2_writel(hsotg, dctl, DCTL);
2815 		}
2816 		return;
2817 	}
2818 
2819 	if (dctl & DCTL_GOUTNAKSTS) {
2820 		dctl |= DCTL_CGOUTNAK;
2821 		dwc2_writel(hsotg, dctl, DCTL);
2822 	}
2823 
2824 	if (!hs_ep->isochronous)
2825 		return;
2826 
2827 	if (list_empty(&hs_ep->queue)) {
2828 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2829 			__func__, hs_ep);
2830 		return;
2831 	}
2832 
2833 	do {
2834 		hs_req = get_ep_head(hs_ep);
2835 		if (hs_req)
2836 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2837 						    -ENODATA);
2838 		dwc2_gadget_incr_frame_num(hs_ep);
2839 		/* Update current frame number value. */
2840 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2841 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2842 
2843 	dwc2_gadget_start_next_request(hs_ep);
2844 }
2845 
2846 /**
2847  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2848  * @ep: The endpoint on which interrupt is asserted.
2849  *
2850  * This is starting point for ISOC-OUT transfer, synchronization done with
2851  * first out token received from host while corresponding EP is disabled.
2852  *
2853  * Device does not know initial frame in which out token will come. For this
2854  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2855  * getting this interrupt SW starts calculation for next transfer frame.
2856  */
2857 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2858 {
2859 	struct dwc2_hsotg *hsotg = ep->parent;
2860 	int dir_in = ep->dir_in;
2861 	u32 doepmsk;
2862 
2863 	if (dir_in || !ep->isochronous)
2864 		return;
2865 
2866 	if (using_desc_dma(hsotg)) {
2867 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2868 			/* Start first ISO Out */
2869 			ep->target_frame = hsotg->frame_number;
2870 			dwc2_gadget_start_isoc_ddma(ep);
2871 		}
2872 		return;
2873 	}
2874 
2875 	if (ep->interval > 1 &&
2876 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2877 		u32 ctrl;
2878 
2879 		ep->target_frame = hsotg->frame_number;
2880 		dwc2_gadget_incr_frame_num(ep);
2881 
2882 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2883 		if (ep->target_frame & 0x1)
2884 			ctrl |= DXEPCTL_SETODDFR;
2885 		else
2886 			ctrl |= DXEPCTL_SETEVENFR;
2887 
2888 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2889 	}
2890 
2891 	dwc2_gadget_start_next_request(ep);
2892 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2893 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2894 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2895 }
2896 
2897 /**
2898  * dwc2_gadget_handle_nak - handle NAK interrupt
2899  * @hs_ep: The endpoint on which interrupt is asserted.
2900  *
2901  * This is starting point for ISOC-IN transfer, synchronization done with
2902  * first IN token received from host while corresponding EP is disabled.
2903  *
2904  * Device does not know when first one token will arrive from host. On first
2905  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2906  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2907  * sent in response to that as there was no data in FIFO. SW is basing on this
2908  * interrupt to obtain frame in which token has come and then based on the
2909  * interval calculates next frame for transfer.
2910  */
2911 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2912 {
2913 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2914 	int dir_in = hs_ep->dir_in;
2915 
2916 	if (!dir_in || !hs_ep->isochronous)
2917 		return;
2918 
2919 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2920 
2921 		if (using_desc_dma(hsotg)) {
2922 			hs_ep->target_frame = hsotg->frame_number;
2923 			dwc2_gadget_incr_frame_num(hs_ep);
2924 
2925 			/* In service interval mode target_frame must
2926 			 * be set to last (u)frame of the service interval.
2927 			 */
2928 			if (hsotg->params.service_interval) {
2929 				/* Set target_frame to the first (u)frame of
2930 				 * the service interval
2931 				 */
2932 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2933 
2934 				/* Set target_frame to the last (u)frame of
2935 				 * the service interval
2936 				 */
2937 				dwc2_gadget_incr_frame_num(hs_ep);
2938 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2939 			}
2940 
2941 			dwc2_gadget_start_isoc_ddma(hs_ep);
2942 			return;
2943 		}
2944 
2945 		hs_ep->target_frame = hsotg->frame_number;
2946 		if (hs_ep->interval > 1) {
2947 			u32 ctrl = dwc2_readl(hsotg,
2948 					      DIEPCTL(hs_ep->index));
2949 			if (hs_ep->target_frame & 0x1)
2950 				ctrl |= DXEPCTL_SETODDFR;
2951 			else
2952 				ctrl |= DXEPCTL_SETEVENFR;
2953 
2954 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2955 		}
2956 
2957 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2958 					    get_ep_head(hs_ep), 0);
2959 	}
2960 
2961 	if (!using_desc_dma(hsotg))
2962 		dwc2_gadget_incr_frame_num(hs_ep);
2963 }
2964 
2965 /**
2966  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2967  * @hsotg: The driver state
2968  * @idx: The index for the endpoint (0..15)
2969  * @dir_in: Set if this is an IN endpoint
2970  *
2971  * Process and clear any interrupt pending for an individual endpoint
2972  */
2973 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2974 			     int dir_in)
2975 {
2976 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2977 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2978 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2979 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2980 	u32 ints;
2981 
2982 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2983 
2984 	/* Clear endpoint interrupts */
2985 	dwc2_writel(hsotg, ints, epint_reg);
2986 
2987 	if (!hs_ep) {
2988 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2989 			__func__, idx, dir_in ? "in" : "out");
2990 		return;
2991 	}
2992 
2993 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2994 		__func__, idx, dir_in ? "in" : "out", ints);
2995 
2996 	/* Don't process XferCompl interrupt if it is a setup packet */
2997 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2998 		ints &= ~DXEPINT_XFERCOMPL;
2999 
3000 	/*
3001 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3002 	 * stage and xfercomplete was generated without SETUP phase done
3003 	 * interrupt. SW should parse received setup packet only after host's
3004 	 * exit from setup phase of control transfer.
3005 	 */
3006 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3007 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3008 		ints &= ~DXEPINT_XFERCOMPL;
3009 
3010 	if (ints & DXEPINT_XFERCOMPL) {
3011 		dev_dbg(hsotg->dev,
3012 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3013 			__func__, dwc2_readl(hsotg, epctl_reg),
3014 			dwc2_readl(hsotg, epsiz_reg));
3015 
3016 		/* In DDMA handle isochronous requests separately */
3017 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3018 			/* XferCompl set along with BNA */
3019 			if (!(ints & DXEPINT_BNAINTR))
3020 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3021 		} else if (dir_in) {
3022 			/*
3023 			 * We get OutDone from the FIFO, so we only
3024 			 * need to look at completing IN requests here
3025 			 * if operating slave mode
3026 			 */
3027 			if (hs_ep->isochronous && hs_ep->interval > 1)
3028 				dwc2_gadget_incr_frame_num(hs_ep);
3029 
3030 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3031 			if (ints & DXEPINT_NAKINTRPT)
3032 				ints &= ~DXEPINT_NAKINTRPT;
3033 
3034 			if (idx == 0 && !hs_ep->req)
3035 				dwc2_hsotg_enqueue_setup(hsotg);
3036 		} else if (using_dma(hsotg)) {
3037 			/*
3038 			 * We're using DMA, we need to fire an OutDone here
3039 			 * as we ignore the RXFIFO.
3040 			 */
3041 			if (hs_ep->isochronous && hs_ep->interval > 1)
3042 				dwc2_gadget_incr_frame_num(hs_ep);
3043 
3044 			dwc2_hsotg_handle_outdone(hsotg, idx);
3045 		}
3046 	}
3047 
3048 	if (ints & DXEPINT_EPDISBLD)
3049 		dwc2_gadget_handle_ep_disabled(hs_ep);
3050 
3051 	if (ints & DXEPINT_OUTTKNEPDIS)
3052 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3053 
3054 	if (ints & DXEPINT_NAKINTRPT)
3055 		dwc2_gadget_handle_nak(hs_ep);
3056 
3057 	if (ints & DXEPINT_AHBERR)
3058 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3059 
3060 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3061 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3062 
3063 		if (using_dma(hsotg) && idx == 0) {
3064 			/*
3065 			 * this is the notification we've received a
3066 			 * setup packet. In non-DMA mode we'd get this
3067 			 * from the RXFIFO, instead we need to process
3068 			 * the setup here.
3069 			 */
3070 
3071 			if (dir_in)
3072 				WARN_ON_ONCE(1);
3073 			else
3074 				dwc2_hsotg_handle_outdone(hsotg, 0);
3075 		}
3076 	}
3077 
3078 	if (ints & DXEPINT_STSPHSERCVD) {
3079 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3080 
3081 		/* Safety check EP0 state when STSPHSERCVD asserted */
3082 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3083 			/* Move to STATUS IN for DDMA */
3084 			if (using_desc_dma(hsotg)) {
3085 				if (!hsotg->delayed_status)
3086 					dwc2_hsotg_ep0_zlp(hsotg, true);
3087 				else
3088 				/* In case of 3 stage Control Write with delayed
3089 				 * status, when Status IN transfer started
3090 				 * before STSPHSERCVD asserted, NAKSTS bit not
3091 				 * cleared by CNAK in dwc2_hsotg_start_req()
3092 				 * function. Clear now NAKSTS to allow complete
3093 				 * transfer.
3094 				 */
3095 					dwc2_set_bit(hsotg, DIEPCTL(0),
3096 						     DXEPCTL_CNAK);
3097 			}
3098 		}
3099 
3100 	}
3101 
3102 	if (ints & DXEPINT_BACK2BACKSETUP)
3103 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3104 
3105 	if (ints & DXEPINT_BNAINTR) {
3106 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3107 		if (hs_ep->isochronous)
3108 			dwc2_gadget_handle_isoc_bna(hs_ep);
3109 	}
3110 
3111 	if (dir_in && !hs_ep->isochronous) {
3112 		/* not sure if this is important, but we'll clear it anyway */
3113 		if (ints & DXEPINT_INTKNTXFEMP) {
3114 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3115 				__func__, idx);
3116 		}
3117 
3118 		/* this probably means something bad is happening */
3119 		if (ints & DXEPINT_INTKNEPMIS) {
3120 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3121 				 __func__, idx);
3122 		}
3123 
3124 		/* FIFO has space or is empty (see GAHBCFG) */
3125 		if (hsotg->dedicated_fifos &&
3126 		    ints & DXEPINT_TXFEMP) {
3127 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3128 				__func__, idx);
3129 			if (!using_dma(hsotg))
3130 				dwc2_hsotg_trytx(hsotg, hs_ep);
3131 		}
3132 	}
3133 }
3134 
3135 /**
3136  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3137  * @hsotg: The device state.
3138  *
3139  * Handle updating the device settings after the enumeration phase has
3140  * been completed.
3141  */
3142 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3143 {
3144 	u32 dsts = dwc2_readl(hsotg, DSTS);
3145 	int ep0_mps = 0, ep_mps = 8;
3146 
3147 	/*
3148 	 * This should signal the finish of the enumeration phase
3149 	 * of the USB handshaking, so we should now know what rate
3150 	 * we connected at.
3151 	 */
3152 
3153 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3154 
3155 	/*
3156 	 * note, since we're limited by the size of transfer on EP0, and
3157 	 * it seems IN transfers must be a even number of packets we do
3158 	 * not advertise a 64byte MPS on EP0.
3159 	 */
3160 
3161 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3162 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3163 	case DSTS_ENUMSPD_FS:
3164 	case DSTS_ENUMSPD_FS48:
3165 		hsotg->gadget.speed = USB_SPEED_FULL;
3166 		ep0_mps = EP0_MPS_LIMIT;
3167 		ep_mps = 1023;
3168 		break;
3169 
3170 	case DSTS_ENUMSPD_HS:
3171 		hsotg->gadget.speed = USB_SPEED_HIGH;
3172 		ep0_mps = EP0_MPS_LIMIT;
3173 		ep_mps = 1024;
3174 		break;
3175 
3176 	case DSTS_ENUMSPD_LS:
3177 		hsotg->gadget.speed = USB_SPEED_LOW;
3178 		ep0_mps = 8;
3179 		ep_mps = 8;
3180 		/*
3181 		 * note, we don't actually support LS in this driver at the
3182 		 * moment, and the documentation seems to imply that it isn't
3183 		 * supported by the PHYs on some of the devices.
3184 		 */
3185 		break;
3186 	}
3187 	dev_info(hsotg->dev, "new device is %s\n",
3188 		 usb_speed_string(hsotg->gadget.speed));
3189 
3190 	/*
3191 	 * we should now know the maximum packet size for an
3192 	 * endpoint, so set the endpoints to a default value.
3193 	 */
3194 
3195 	if (ep0_mps) {
3196 		int i;
3197 		/* Initialize ep0 for both in and out directions */
3198 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3199 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3200 		for (i = 1; i < hsotg->num_of_eps; i++) {
3201 			if (hsotg->eps_in[i])
3202 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3203 							    0, 1);
3204 			if (hsotg->eps_out[i])
3205 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3206 							    0, 0);
3207 		}
3208 	}
3209 
3210 	/* ensure after enumeration our EP0 is active */
3211 
3212 	dwc2_hsotg_enqueue_setup(hsotg);
3213 
3214 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3215 		dwc2_readl(hsotg, DIEPCTL0),
3216 		dwc2_readl(hsotg, DOEPCTL0));
3217 }
3218 
3219 /**
3220  * kill_all_requests - remove all requests from the endpoint's queue
3221  * @hsotg: The device state.
3222  * @ep: The endpoint the requests may be on.
3223  * @result: The result code to use.
3224  *
3225  * Go through the requests on the given endpoint and mark them
3226  * completed with the given result code.
3227  */
3228 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3229 			      struct dwc2_hsotg_ep *ep,
3230 			      int result)
3231 {
3232 	unsigned int size;
3233 
3234 	ep->req = NULL;
3235 
3236 	while (!list_empty(&ep->queue)) {
3237 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3238 
3239 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3240 	}
3241 
3242 	if (!hsotg->dedicated_fifos)
3243 		return;
3244 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3245 	if (size < ep->fifo_size)
3246 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3247 }
3248 
3249 /**
3250  * dwc2_hsotg_disconnect - disconnect service
3251  * @hsotg: The device state.
3252  *
3253  * The device has been disconnected. Remove all current
3254  * transactions and signal the gadget driver that this
3255  * has happened.
3256  */
3257 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3258 {
3259 	unsigned int ep;
3260 
3261 	if (!hsotg->connected)
3262 		return;
3263 
3264 	hsotg->connected = 0;
3265 	hsotg->test_mode = 0;
3266 
3267 	/* all endpoints should be shutdown */
3268 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3269 		if (hsotg->eps_in[ep])
3270 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3271 					  -ESHUTDOWN);
3272 		if (hsotg->eps_out[ep])
3273 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3274 					  -ESHUTDOWN);
3275 	}
3276 
3277 	call_gadget(hsotg, disconnect);
3278 	hsotg->lx_state = DWC2_L3;
3279 
3280 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3281 }
3282 
3283 /**
3284  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3285  * @hsotg: The device state:
3286  * @periodic: True if this is a periodic FIFO interrupt
3287  */
3288 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3289 {
3290 	struct dwc2_hsotg_ep *ep;
3291 	int epno, ret;
3292 
3293 	/* look through for any more data to transmit */
3294 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3295 		ep = index_to_ep(hsotg, epno, 1);
3296 
3297 		if (!ep)
3298 			continue;
3299 
3300 		if (!ep->dir_in)
3301 			continue;
3302 
3303 		if ((periodic && !ep->periodic) ||
3304 		    (!periodic && ep->periodic))
3305 			continue;
3306 
3307 		ret = dwc2_hsotg_trytx(hsotg, ep);
3308 		if (ret < 0)
3309 			break;
3310 	}
3311 }
3312 
3313 /* IRQ flags which will trigger a retry around the IRQ loop */
3314 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3315 			GINTSTS_PTXFEMP |  \
3316 			GINTSTS_RXFLVL)
3317 
3318 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3319 /**
3320  * dwc2_hsotg_core_init - issue softreset to the core
3321  * @hsotg: The device state
3322  * @is_usb_reset: Usb resetting flag
3323  *
3324  * Issue a soft reset to the core, and await the core finishing it.
3325  */
3326 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3327 				       bool is_usb_reset)
3328 {
3329 	u32 intmsk;
3330 	u32 val;
3331 	u32 usbcfg;
3332 	u32 dcfg = 0;
3333 	int ep;
3334 
3335 	/* Kill any ep0 requests as controller will be reinitialized */
3336 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3337 
3338 	if (!is_usb_reset) {
3339 		if (dwc2_core_reset(hsotg, true))
3340 			return;
3341 	} else {
3342 		/* all endpoints should be shutdown */
3343 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3344 			if (hsotg->eps_in[ep])
3345 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3346 			if (hsotg->eps_out[ep])
3347 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3348 		}
3349 	}
3350 
3351 	/*
3352 	 * we must now enable ep0 ready for host detection and then
3353 	 * set configuration.
3354 	 */
3355 
3356 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3357 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3358 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3359 	usbcfg |= GUSBCFG_TOUTCAL(7);
3360 
3361 	/* remove the HNP/SRP and set the PHY */
3362 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3363         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3364 
3365 	dwc2_phy_init(hsotg, true);
3366 
3367 	dwc2_hsotg_init_fifo(hsotg);
3368 
3369 	if (!is_usb_reset)
3370 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3371 
3372 	dcfg |= DCFG_EPMISCNT(1);
3373 
3374 	switch (hsotg->params.speed) {
3375 	case DWC2_SPEED_PARAM_LOW:
3376 		dcfg |= DCFG_DEVSPD_LS;
3377 		break;
3378 	case DWC2_SPEED_PARAM_FULL:
3379 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3380 			dcfg |= DCFG_DEVSPD_FS48;
3381 		else
3382 			dcfg |= DCFG_DEVSPD_FS;
3383 		break;
3384 	default:
3385 		dcfg |= DCFG_DEVSPD_HS;
3386 	}
3387 
3388 	if (hsotg->params.ipg_isoc_en)
3389 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3390 
3391 	dwc2_writel(hsotg, dcfg,  DCFG);
3392 
3393 	/* Clear any pending OTG interrupts */
3394 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3395 
3396 	/* Clear any pending interrupts */
3397 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3398 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3399 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3400 		GINTSTS_USBRST | GINTSTS_RESETDET |
3401 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3402 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3403 		GINTSTS_LPMTRANRCVD;
3404 
3405 	if (!using_desc_dma(hsotg))
3406 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3407 
3408 	if (!hsotg->params.external_id_pin_ctl)
3409 		intmsk |= GINTSTS_CONIDSTSCHNG;
3410 
3411 	dwc2_writel(hsotg, intmsk, GINTMSK);
3412 
3413 	if (using_dma(hsotg)) {
3414 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3415 			    hsotg->params.ahbcfg,
3416 			    GAHBCFG);
3417 
3418 		/* Set DDMA mode support in the core if needed */
3419 		if (using_desc_dma(hsotg))
3420 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3421 
3422 	} else {
3423 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3424 						(GAHBCFG_NP_TXF_EMP_LVL |
3425 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3426 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3427 	}
3428 
3429 	/*
3430 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3431 	 * when we have no data to transfer. Otherwise we get being flooded by
3432 	 * interrupts.
3433 	 */
3434 
3435 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3436 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3437 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3438 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3439 		DIEPMSK);
3440 
3441 	/*
3442 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3443 	 * DMA mode we may need this and StsPhseRcvd.
3444 	 */
3445 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3446 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3447 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3448 		DOEPMSK_SETUPMSK,
3449 		DOEPMSK);
3450 
3451 	/* Enable BNA interrupt for DDMA */
3452 	if (using_desc_dma(hsotg)) {
3453 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3454 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3455 	}
3456 
3457 	/* Enable Service Interval mode if supported */
3458 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3459 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3460 
3461 	dwc2_writel(hsotg, 0, DAINTMSK);
3462 
3463 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3464 		dwc2_readl(hsotg, DIEPCTL0),
3465 		dwc2_readl(hsotg, DOEPCTL0));
3466 
3467 	/* enable in and out endpoint interrupts */
3468 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3469 
3470 	/*
3471 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3472 	 * the data. In DMA mode, we get events from the FIFO but also
3473 	 * things we cannot process, so do not use it.
3474 	 */
3475 	if (!using_dma(hsotg))
3476 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3477 
3478 	/* Enable interrupts for EP0 in and out */
3479 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3480 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3481 
3482 	if (!is_usb_reset) {
3483 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3484 		udelay(10);  /* see openiboot */
3485 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3486 	}
3487 
3488 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3489 
3490 	/*
3491 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3492 	 * writing to the EPCTL register..
3493 	 */
3494 
3495 	/* set to read 1 8byte packet */
3496 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3497 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3498 
3499 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3500 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3501 	       DXEPCTL_USBACTEP,
3502 	       DOEPCTL0);
3503 
3504 	/* enable, but don't activate EP0in */
3505 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3506 	       DXEPCTL_USBACTEP, DIEPCTL0);
3507 
3508 	/* clear global NAKs */
3509 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3510 	if (!is_usb_reset)
3511 		val |= DCTL_SFTDISCON;
3512 	dwc2_set_bit(hsotg, DCTL, val);
3513 
3514 	/* configure the core to support LPM */
3515 	dwc2_gadget_init_lpm(hsotg);
3516 
3517 	/* program GREFCLK register if needed */
3518 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3519 		dwc2_gadget_program_ref_clk(hsotg);
3520 
3521 	/* must be at-least 3ms to allow bus to see disconnect */
3522 	mdelay(3);
3523 
3524 	hsotg->lx_state = DWC2_L0;
3525 
3526 	dwc2_hsotg_enqueue_setup(hsotg);
3527 
3528 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3529 		dwc2_readl(hsotg, DIEPCTL0),
3530 		dwc2_readl(hsotg, DOEPCTL0));
3531 }
3532 
3533 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3534 {
3535 	/* set the soft-disconnect bit */
3536 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3537 }
3538 
3539 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3540 {
3541 	/* remove the soft-disconnect and let's go */
3542 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3543 }
3544 
3545 /**
3546  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3547  * @hsotg: The device state:
3548  *
3549  * This interrupt indicates one of the following conditions occurred while
3550  * transmitting an ISOC transaction.
3551  * - Corrupted IN Token for ISOC EP.
3552  * - Packet not complete in FIFO.
3553  *
3554  * The following actions will be taken:
3555  * - Determine the EP
3556  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3557  */
3558 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3559 {
3560 	struct dwc2_hsotg_ep *hs_ep;
3561 	u32 epctrl;
3562 	u32 daintmsk;
3563 	u32 idx;
3564 
3565 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3566 
3567 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3568 
3569 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3570 		hs_ep = hsotg->eps_in[idx];
3571 		/* Proceed only unmasked ISOC EPs */
3572 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3573 			continue;
3574 
3575 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3576 		if ((epctrl & DXEPCTL_EPENA) &&
3577 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3578 			epctrl |= DXEPCTL_SNAK;
3579 			epctrl |= DXEPCTL_EPDIS;
3580 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3581 		}
3582 	}
3583 
3584 	/* Clear interrupt */
3585 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3586 }
3587 
3588 /**
3589  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3590  * @hsotg: The device state:
3591  *
3592  * This interrupt indicates one of the following conditions occurred while
3593  * transmitting an ISOC transaction.
3594  * - Corrupted OUT Token for ISOC EP.
3595  * - Packet not complete in FIFO.
3596  *
3597  * The following actions will be taken:
3598  * - Determine the EP
3599  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3600  */
3601 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3602 {
3603 	u32 gintsts;
3604 	u32 gintmsk;
3605 	u32 daintmsk;
3606 	u32 epctrl;
3607 	struct dwc2_hsotg_ep *hs_ep;
3608 	int idx;
3609 
3610 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3611 
3612 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3613 	daintmsk >>= DAINT_OUTEP_SHIFT;
3614 
3615 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3616 		hs_ep = hsotg->eps_out[idx];
3617 		/* Proceed only unmasked ISOC EPs */
3618 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3619 			continue;
3620 
3621 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3622 		if ((epctrl & DXEPCTL_EPENA) &&
3623 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3624 			/* Unmask GOUTNAKEFF interrupt */
3625 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3626 			gintmsk |= GINTSTS_GOUTNAKEFF;
3627 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3628 
3629 			gintsts = dwc2_readl(hsotg, GINTSTS);
3630 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3631 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3632 				break;
3633 			}
3634 		}
3635 	}
3636 
3637 	/* Clear interrupt */
3638 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3639 }
3640 
3641 /**
3642  * dwc2_hsotg_irq - handle device interrupt
3643  * @irq: The IRQ number triggered
3644  * @pw: The pw value when registered the handler.
3645  */
3646 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3647 {
3648 	struct dwc2_hsotg *hsotg = pw;
3649 	int retry_count = 8;
3650 	u32 gintsts;
3651 	u32 gintmsk;
3652 
3653 	if (!dwc2_is_device_mode(hsotg))
3654 		return IRQ_NONE;
3655 
3656 	spin_lock(&hsotg->lock);
3657 irq_retry:
3658 	gintsts = dwc2_readl(hsotg, GINTSTS);
3659 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3660 
3661 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3662 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3663 
3664 	gintsts &= gintmsk;
3665 
3666 	if (gintsts & GINTSTS_RESETDET) {
3667 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3668 
3669 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3670 
3671 		/* This event must be used only if controller is suspended */
3672 		if (hsotg->lx_state == DWC2_L2) {
3673 			dwc2_exit_partial_power_down(hsotg, true);
3674 			hsotg->lx_state = DWC2_L0;
3675 		}
3676 	}
3677 
3678 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3679 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3680 		u32 connected = hsotg->connected;
3681 
3682 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3683 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3684 			dwc2_readl(hsotg, GNPTXSTS));
3685 
3686 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3687 
3688 		/* Report disconnection if it is not already done. */
3689 		dwc2_hsotg_disconnect(hsotg);
3690 
3691 		/* Reset device address to zero */
3692 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3693 
3694 		if (usb_status & GOTGCTL_BSESVLD && connected)
3695 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3696 	}
3697 
3698 	if (gintsts & GINTSTS_ENUMDONE) {
3699 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3700 
3701 		dwc2_hsotg_irq_enumdone(hsotg);
3702 	}
3703 
3704 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3705 		u32 daint = dwc2_readl(hsotg, DAINT);
3706 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3707 		u32 daint_out, daint_in;
3708 		int ep;
3709 
3710 		daint &= daintmsk;
3711 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3712 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3713 
3714 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3715 
3716 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3717 						ep++, daint_out >>= 1) {
3718 			if (daint_out & 1)
3719 				dwc2_hsotg_epint(hsotg, ep, 0);
3720 		}
3721 
3722 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3723 						ep++, daint_in >>= 1) {
3724 			if (daint_in & 1)
3725 				dwc2_hsotg_epint(hsotg, ep, 1);
3726 		}
3727 	}
3728 
3729 	/* check both FIFOs */
3730 
3731 	if (gintsts & GINTSTS_NPTXFEMP) {
3732 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3733 
3734 		/*
3735 		 * Disable the interrupt to stop it happening again
3736 		 * unless one of these endpoint routines decides that
3737 		 * it needs re-enabling
3738 		 */
3739 
3740 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3741 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3742 	}
3743 
3744 	if (gintsts & GINTSTS_PTXFEMP) {
3745 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3746 
3747 		/* See note in GINTSTS_NPTxFEmp */
3748 
3749 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3750 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3751 	}
3752 
3753 	if (gintsts & GINTSTS_RXFLVL) {
3754 		/*
3755 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3756 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3757 		 * set.
3758 		 */
3759 
3760 		dwc2_hsotg_handle_rx(hsotg);
3761 	}
3762 
3763 	if (gintsts & GINTSTS_ERLYSUSP) {
3764 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3765 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3766 	}
3767 
3768 	/*
3769 	 * these next two seem to crop-up occasionally causing the core
3770 	 * to shutdown the USB transfer, so try clearing them and logging
3771 	 * the occurrence.
3772 	 */
3773 
3774 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3775 		u8 idx;
3776 		u32 epctrl;
3777 		u32 gintmsk;
3778 		u32 daintmsk;
3779 		struct dwc2_hsotg_ep *hs_ep;
3780 
3781 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3782 		daintmsk >>= DAINT_OUTEP_SHIFT;
3783 		/* Mask this interrupt */
3784 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3785 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3786 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3787 
3788 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3789 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3790 			hs_ep = hsotg->eps_out[idx];
3791 			/* Proceed only unmasked ISOC EPs */
3792 			if (BIT(idx) & ~daintmsk)
3793 				continue;
3794 
3795 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3796 
3797 			//ISOC Ep's only
3798 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3799 				epctrl |= DXEPCTL_SNAK;
3800 				epctrl |= DXEPCTL_EPDIS;
3801 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3802 				continue;
3803 			}
3804 
3805 			//Non-ISOC EP's
3806 			if (hs_ep->halted) {
3807 				if (!(epctrl & DXEPCTL_EPENA))
3808 					epctrl |= DXEPCTL_EPENA;
3809 				epctrl |= DXEPCTL_EPDIS;
3810 				epctrl |= DXEPCTL_STALL;
3811 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3812 			}
3813 		}
3814 
3815 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3816 	}
3817 
3818 	if (gintsts & GINTSTS_GINNAKEFF) {
3819 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3820 
3821 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3822 
3823 		dwc2_hsotg_dump(hsotg);
3824 	}
3825 
3826 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3827 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3828 
3829 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3830 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3831 
3832 	/*
3833 	 * if we've had fifo events, we should try and go around the
3834 	 * loop again to see if there's any point in returning yet.
3835 	 */
3836 
3837 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3838 		goto irq_retry;
3839 
3840 	/* Check WKUP_ALERT interrupt*/
3841 	if (hsotg->params.service_interval)
3842 		dwc2_gadget_wkup_alert_handler(hsotg);
3843 
3844 	spin_unlock(&hsotg->lock);
3845 
3846 	return IRQ_HANDLED;
3847 }
3848 
3849 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3850 				   struct dwc2_hsotg_ep *hs_ep)
3851 {
3852 	u32 epctrl_reg;
3853 	u32 epint_reg;
3854 
3855 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3856 		DOEPCTL(hs_ep->index);
3857 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3858 		DOEPINT(hs_ep->index);
3859 
3860 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3861 		hs_ep->name);
3862 
3863 	if (hs_ep->dir_in) {
3864 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3865 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3866 			/* Wait for Nak effect */
3867 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3868 						    DXEPINT_INEPNAKEFF, 100))
3869 				dev_warn(hsotg->dev,
3870 					 "%s: timeout DIEPINT.NAKEFF\n",
3871 					 __func__);
3872 		} else {
3873 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3874 			/* Wait for Nak effect */
3875 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3876 						    GINTSTS_GINNAKEFF, 100))
3877 				dev_warn(hsotg->dev,
3878 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3879 					 __func__);
3880 		}
3881 	} else {
3882 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3883 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3884 
3885 		/* Wait for global nak to take effect */
3886 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3887 					    GINTSTS_GOUTNAKEFF, 100))
3888 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3889 				 __func__);
3890 	}
3891 
3892 	/* Disable ep */
3893 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3894 
3895 	/* Wait for ep to be disabled */
3896 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3897 		dev_warn(hsotg->dev,
3898 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3899 
3900 	/* Clear EPDISBLD interrupt */
3901 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3902 
3903 	if (hs_ep->dir_in) {
3904 		unsigned short fifo_index;
3905 
3906 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3907 			fifo_index = hs_ep->fifo_index;
3908 		else
3909 			fifo_index = 0;
3910 
3911 		/* Flush TX FIFO */
3912 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3913 
3914 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3915 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3916 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3917 
3918 	} else {
3919 		/* Remove global NAKs */
3920 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3921 	}
3922 }
3923 
3924 /**
3925  * dwc2_hsotg_ep_enable - enable the given endpoint
3926  * @ep: The USB endpint to configure
3927  * @desc: The USB endpoint descriptor to configure with.
3928  *
3929  * This is called from the USB gadget code's usb_ep_enable().
3930  */
3931 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3932 				const struct usb_endpoint_descriptor *desc)
3933 {
3934 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3935 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3936 	unsigned long flags;
3937 	unsigned int index = hs_ep->index;
3938 	u32 epctrl_reg;
3939 	u32 epctrl;
3940 	u32 mps;
3941 	u32 mc;
3942 	u32 mask;
3943 	unsigned int dir_in;
3944 	unsigned int i, val, size;
3945 	int ret = 0;
3946 	unsigned char ep_type;
3947 	int desc_num;
3948 
3949 	dev_dbg(hsotg->dev,
3950 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3951 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3952 		desc->wMaxPacketSize, desc->bInterval);
3953 
3954 	/* not to be called for EP0 */
3955 	if (index == 0) {
3956 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3957 		return -EINVAL;
3958 	}
3959 
3960 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3961 	if (dir_in != hs_ep->dir_in) {
3962 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3963 		return -EINVAL;
3964 	}
3965 
3966 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3967 	mps = usb_endpoint_maxp(desc);
3968 	mc = usb_endpoint_maxp_mult(desc);
3969 
3970 	/* ISOC IN in DDMA supported bInterval up to 10 */
3971 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3972 	    dir_in && desc->bInterval > 10) {
3973 		dev_err(hsotg->dev,
3974 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3975 		return -EINVAL;
3976 	}
3977 
3978 	/* High bandwidth ISOC OUT in DDMA not supported */
3979 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3980 	    !dir_in && mc > 1) {
3981 		dev_err(hsotg->dev,
3982 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3983 		return -EINVAL;
3984 	}
3985 
3986 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3987 
3988 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3989 	epctrl = dwc2_readl(hsotg, epctrl_reg);
3990 
3991 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3992 		__func__, epctrl, epctrl_reg);
3993 
3994 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
3995 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
3996 	else
3997 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
3998 
3999 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4000 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4001 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4002 			desc_num * sizeof(struct dwc2_dma_desc),
4003 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4004 		if (!hs_ep->desc_list) {
4005 			ret = -ENOMEM;
4006 			goto error2;
4007 		}
4008 	}
4009 
4010 	spin_lock_irqsave(&hsotg->lock, flags);
4011 
4012 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4013 	epctrl |= DXEPCTL_MPS(mps);
4014 
4015 	/*
4016 	 * mark the endpoint as active, otherwise the core may ignore
4017 	 * transactions entirely for this endpoint
4018 	 */
4019 	epctrl |= DXEPCTL_USBACTEP;
4020 
4021 	/* update the endpoint state */
4022 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4023 
4024 	/* default, set to non-periodic */
4025 	hs_ep->isochronous = 0;
4026 	hs_ep->periodic = 0;
4027 	hs_ep->halted = 0;
4028 	hs_ep->interval = desc->bInterval;
4029 
4030 	switch (ep_type) {
4031 	case USB_ENDPOINT_XFER_ISOC:
4032 		epctrl |= DXEPCTL_EPTYPE_ISO;
4033 		epctrl |= DXEPCTL_SETEVENFR;
4034 		hs_ep->isochronous = 1;
4035 		hs_ep->interval = 1 << (desc->bInterval - 1);
4036 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4037 		hs_ep->next_desc = 0;
4038 		hs_ep->compl_desc = 0;
4039 		if (dir_in) {
4040 			hs_ep->periodic = 1;
4041 			mask = dwc2_readl(hsotg, DIEPMSK);
4042 			mask |= DIEPMSK_NAKMSK;
4043 			dwc2_writel(hsotg, mask, DIEPMSK);
4044 		} else {
4045 			mask = dwc2_readl(hsotg, DOEPMSK);
4046 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4047 			dwc2_writel(hsotg, mask, DOEPMSK);
4048 		}
4049 		break;
4050 
4051 	case USB_ENDPOINT_XFER_BULK:
4052 		epctrl |= DXEPCTL_EPTYPE_BULK;
4053 		break;
4054 
4055 	case USB_ENDPOINT_XFER_INT:
4056 		if (dir_in)
4057 			hs_ep->periodic = 1;
4058 
4059 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4060 			hs_ep->interval = 1 << (desc->bInterval - 1);
4061 
4062 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4063 		break;
4064 
4065 	case USB_ENDPOINT_XFER_CONTROL:
4066 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4067 		break;
4068 	}
4069 
4070 	/*
4071 	 * if the hardware has dedicated fifos, we must give each IN EP
4072 	 * a unique tx-fifo even if it is non-periodic.
4073 	 */
4074 	if (dir_in && hsotg->dedicated_fifos) {
4075 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4076 		u32 fifo_index = 0;
4077 		u32 fifo_size = UINT_MAX;
4078 
4079 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4080 		for (i = 1; i <= fifo_count; ++i) {
4081 			if (hsotg->fifo_map & (1 << i))
4082 				continue;
4083 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4084 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4085 			if (val < size)
4086 				continue;
4087 			/* Search for smallest acceptable fifo */
4088 			if (val < fifo_size) {
4089 				fifo_size = val;
4090 				fifo_index = i;
4091 			}
4092 		}
4093 		if (!fifo_index) {
4094 			dev_err(hsotg->dev,
4095 				"%s: No suitable fifo found\n", __func__);
4096 			ret = -ENOMEM;
4097 			goto error1;
4098 		}
4099 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4100 		hsotg->fifo_map |= 1 << fifo_index;
4101 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4102 		hs_ep->fifo_index = fifo_index;
4103 		hs_ep->fifo_size = fifo_size;
4104 	}
4105 
4106 	/* for non control endpoints, set PID to D0 */
4107 	if (index && !hs_ep->isochronous)
4108 		epctrl |= DXEPCTL_SETD0PID;
4109 
4110 	/* WA for Full speed ISOC IN in DDMA mode.
4111 	 * By Clear NAK status of EP, core will send ZLP
4112 	 * to IN token and assert NAK interrupt relying
4113 	 * on TxFIFO status only
4114 	 */
4115 
4116 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4117 	    hs_ep->isochronous && dir_in) {
4118 		/* The WA applies only to core versions from 2.72a
4119 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4120 		 * and HS_IOT_1.00a.
4121 		 */
4122 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4123 
4124 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4125 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4126 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4127 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4128 			epctrl |= DXEPCTL_CNAK;
4129 	}
4130 
4131 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4132 		__func__, epctrl);
4133 
4134 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4135 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4136 		__func__, dwc2_readl(hsotg, epctrl_reg));
4137 
4138 	/* enable the endpoint interrupt */
4139 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4140 
4141 error1:
4142 	spin_unlock_irqrestore(&hsotg->lock, flags);
4143 
4144 error2:
4145 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4146 		dmam_free_coherent(hsotg->dev, desc_num *
4147 			sizeof(struct dwc2_dma_desc),
4148 			hs_ep->desc_list, hs_ep->desc_list_dma);
4149 		hs_ep->desc_list = NULL;
4150 	}
4151 
4152 	return ret;
4153 }
4154 
4155 /**
4156  * dwc2_hsotg_ep_disable - disable given endpoint
4157  * @ep: The endpoint to disable.
4158  */
4159 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4160 {
4161 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4162 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4163 	int dir_in = hs_ep->dir_in;
4164 	int index = hs_ep->index;
4165 	u32 epctrl_reg;
4166 	u32 ctrl;
4167 
4168 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4169 
4170 	if (ep == &hsotg->eps_out[0]->ep) {
4171 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4172 		return -EINVAL;
4173 	}
4174 
4175 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4176 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4177 		return -EINVAL;
4178 	}
4179 
4180 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4181 
4182 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4183 
4184 	if (ctrl & DXEPCTL_EPENA)
4185 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4186 
4187 	ctrl &= ~DXEPCTL_EPENA;
4188 	ctrl &= ~DXEPCTL_USBACTEP;
4189 	ctrl |= DXEPCTL_SNAK;
4190 
4191 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4192 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4193 
4194 	/* disable endpoint interrupts */
4195 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4196 
4197 	/* terminate all requests with shutdown */
4198 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4199 
4200 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4201 	hs_ep->fifo_index = 0;
4202 	hs_ep->fifo_size = 0;
4203 
4204 	return 0;
4205 }
4206 
4207 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4208 {
4209 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4210 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4211 	unsigned long flags;
4212 	int ret;
4213 
4214 	spin_lock_irqsave(&hsotg->lock, flags);
4215 	ret = dwc2_hsotg_ep_disable(ep);
4216 	spin_unlock_irqrestore(&hsotg->lock, flags);
4217 	return ret;
4218 }
4219 
4220 /**
4221  * on_list - check request is on the given endpoint
4222  * @ep: The endpoint to check.
4223  * @test: The request to test if it is on the endpoint.
4224  */
4225 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4226 {
4227 	struct dwc2_hsotg_req *req, *treq;
4228 
4229 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4230 		if (req == test)
4231 			return true;
4232 	}
4233 
4234 	return false;
4235 }
4236 
4237 /**
4238  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4239  * @ep: The endpoint to dequeue.
4240  * @req: The request to be removed from a queue.
4241  */
4242 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4243 {
4244 	struct dwc2_hsotg_req *hs_req = our_req(req);
4245 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4246 	struct dwc2_hsotg *hs = hs_ep->parent;
4247 	unsigned long flags;
4248 
4249 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4250 
4251 	spin_lock_irqsave(&hs->lock, flags);
4252 
4253 	if (!on_list(hs_ep, hs_req)) {
4254 		spin_unlock_irqrestore(&hs->lock, flags);
4255 		return -EINVAL;
4256 	}
4257 
4258 	/* Dequeue already started request */
4259 	if (req == &hs_ep->req->req)
4260 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4261 
4262 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4263 	spin_unlock_irqrestore(&hs->lock, flags);
4264 
4265 	return 0;
4266 }
4267 
4268 /**
4269  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4270  * @ep: The endpoint to set halt.
4271  * @value: Set or unset the halt.
4272  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4273  *       the endpoint is busy processing requests.
4274  *
4275  * We need to stall the endpoint immediately if request comes from set_feature
4276  * protocol command handler.
4277  */
4278 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4279 {
4280 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4281 	struct dwc2_hsotg *hs = hs_ep->parent;
4282 	int index = hs_ep->index;
4283 	u32 epreg;
4284 	u32 epctl;
4285 	u32 xfertype;
4286 
4287 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4288 
4289 	if (index == 0) {
4290 		if (value)
4291 			dwc2_hsotg_stall_ep0(hs);
4292 		else
4293 			dev_warn(hs->dev,
4294 				 "%s: can't clear halt on ep0\n", __func__);
4295 		return 0;
4296 	}
4297 
4298 	if (hs_ep->isochronous) {
4299 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4300 		return -EINVAL;
4301 	}
4302 
4303 	if (!now && value && !list_empty(&hs_ep->queue)) {
4304 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4305 			ep->name);
4306 		return -EAGAIN;
4307 	}
4308 
4309 	if (hs_ep->dir_in) {
4310 		epreg = DIEPCTL(index);
4311 		epctl = dwc2_readl(hs, epreg);
4312 
4313 		if (value) {
4314 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4315 			if (epctl & DXEPCTL_EPENA)
4316 				epctl |= DXEPCTL_EPDIS;
4317 		} else {
4318 			epctl &= ~DXEPCTL_STALL;
4319 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4320 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4321 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4322 				epctl |= DXEPCTL_SETD0PID;
4323 		}
4324 		dwc2_writel(hs, epctl, epreg);
4325 	} else {
4326 		epreg = DOEPCTL(index);
4327 		epctl = dwc2_readl(hs, epreg);
4328 
4329 		if (value) {
4330 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4331 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4332 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4333 		} else {
4334 			epctl &= ~DXEPCTL_STALL;
4335 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4336 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4337 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4338 				epctl |= DXEPCTL_SETD0PID;
4339 			dwc2_writel(hs, epctl, epreg);
4340 		}
4341 	}
4342 
4343 	hs_ep->halted = value;
4344 	return 0;
4345 }
4346 
4347 /**
4348  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4349  * @ep: The endpoint to set halt.
4350  * @value: Set or unset the halt.
4351  */
4352 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4353 {
4354 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4355 	struct dwc2_hsotg *hs = hs_ep->parent;
4356 	unsigned long flags = 0;
4357 	int ret = 0;
4358 
4359 	spin_lock_irqsave(&hs->lock, flags);
4360 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4361 	spin_unlock_irqrestore(&hs->lock, flags);
4362 
4363 	return ret;
4364 }
4365 
4366 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4367 	.enable		= dwc2_hsotg_ep_enable,
4368 	.disable	= dwc2_hsotg_ep_disable_lock,
4369 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4370 	.free_request	= dwc2_hsotg_ep_free_request,
4371 	.queue		= dwc2_hsotg_ep_queue_lock,
4372 	.dequeue	= dwc2_hsotg_ep_dequeue,
4373 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4374 	/* note, don't believe we have any call for the fifo routines */
4375 };
4376 
4377 /**
4378  * dwc2_hsotg_init - initialize the usb core
4379  * @hsotg: The driver state
4380  */
4381 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4382 {
4383 	/* unmask subset of endpoint interrupts */
4384 
4385 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4386 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4387 		    DIEPMSK);
4388 
4389 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4390 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4391 		    DOEPMSK);
4392 
4393 	dwc2_writel(hsotg, 0, DAINTMSK);
4394 
4395 	/* Be in disconnected state until gadget is registered */
4396 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4397 
4398 	/* setup fifos */
4399 
4400 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4401 		dwc2_readl(hsotg, GRXFSIZ),
4402 		dwc2_readl(hsotg, GNPTXFSIZ));
4403 
4404 	dwc2_hsotg_init_fifo(hsotg);
4405 
4406 	if (using_dma(hsotg))
4407 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4408 }
4409 
4410 /**
4411  * dwc2_hsotg_udc_start - prepare the udc for work
4412  * @gadget: The usb gadget state
4413  * @driver: The usb gadget driver
4414  *
4415  * Perform initialization to prepare udc device and driver
4416  * to work.
4417  */
4418 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4419 				struct usb_gadget_driver *driver)
4420 {
4421 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4422 	unsigned long flags;
4423 	int ret;
4424 
4425 	if (!hsotg) {
4426 		pr_err("%s: called with no device\n", __func__);
4427 		return -ENODEV;
4428 	}
4429 
4430 	if (!driver) {
4431 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4432 		return -EINVAL;
4433 	}
4434 
4435 	if (driver->max_speed < USB_SPEED_FULL)
4436 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4437 
4438 	if (!driver->setup) {
4439 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4440 		return -EINVAL;
4441 	}
4442 
4443 	WARN_ON(hsotg->driver);
4444 
4445 	driver->driver.bus = NULL;
4446 	hsotg->driver = driver;
4447 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4448 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4449 
4450 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4451 		ret = dwc2_lowlevel_hw_enable(hsotg);
4452 		if (ret)
4453 			goto err;
4454 	}
4455 
4456 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4457 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4458 
4459 	spin_lock_irqsave(&hsotg->lock, flags);
4460 	if (dwc2_hw_is_device(hsotg)) {
4461 		dwc2_hsotg_init(hsotg);
4462 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4463 	}
4464 
4465 	hsotg->enabled = 0;
4466 	spin_unlock_irqrestore(&hsotg->lock, flags);
4467 
4468 	gadget->sg_supported = using_desc_dma(hsotg);
4469 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4470 
4471 	return 0;
4472 
4473 err:
4474 	hsotg->driver = NULL;
4475 	return ret;
4476 }
4477 
4478 /**
4479  * dwc2_hsotg_udc_stop - stop the udc
4480  * @gadget: The usb gadget state
4481  *
4482  * Stop udc hw block and stay tunned for future transmissions
4483  */
4484 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4485 {
4486 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4487 	unsigned long flags = 0;
4488 	int ep;
4489 
4490 	if (!hsotg)
4491 		return -ENODEV;
4492 
4493 	/* all endpoints should be shutdown */
4494 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4495 		if (hsotg->eps_in[ep])
4496 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4497 		if (hsotg->eps_out[ep])
4498 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4499 	}
4500 
4501 	spin_lock_irqsave(&hsotg->lock, flags);
4502 
4503 	hsotg->driver = NULL;
4504 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4505 	hsotg->enabled = 0;
4506 
4507 	spin_unlock_irqrestore(&hsotg->lock, flags);
4508 
4509 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4510 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4511 
4512 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4513 		dwc2_lowlevel_hw_disable(hsotg);
4514 
4515 	return 0;
4516 }
4517 
4518 /**
4519  * dwc2_hsotg_gadget_getframe - read the frame number
4520  * @gadget: The usb gadget state
4521  *
4522  * Read the {micro} frame number
4523  */
4524 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4525 {
4526 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4527 }
4528 
4529 /**
4530  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4531  * @gadget: The usb gadget state
4532  * @is_selfpowered: Whether the device is self-powered
4533  *
4534  * Set if the device is self or bus powered.
4535  */
4536 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4537 				      int is_selfpowered)
4538 {
4539 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4540 	unsigned long flags;
4541 
4542 	spin_lock_irqsave(&hsotg->lock, flags);
4543 	gadget->is_selfpowered = !!is_selfpowered;
4544 	spin_unlock_irqrestore(&hsotg->lock, flags);
4545 
4546 	return 0;
4547 }
4548 
4549 /**
4550  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4551  * @gadget: The usb gadget state
4552  * @is_on: Current state of the USB PHY
4553  *
4554  * Connect/Disconnect the USB PHY pullup
4555  */
4556 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4557 {
4558 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4559 	unsigned long flags = 0;
4560 
4561 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4562 		hsotg->op_state);
4563 
4564 	/* Don't modify pullup state while in host mode */
4565 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4566 		hsotg->enabled = is_on;
4567 		return 0;
4568 	}
4569 
4570 	spin_lock_irqsave(&hsotg->lock, flags);
4571 	if (is_on) {
4572 		hsotg->enabled = 1;
4573 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4574 		/* Enable ACG feature in device mode,if supported */
4575 		dwc2_enable_acg(hsotg);
4576 		dwc2_hsotg_core_connect(hsotg);
4577 	} else {
4578 		dwc2_hsotg_core_disconnect(hsotg);
4579 		dwc2_hsotg_disconnect(hsotg);
4580 		hsotg->enabled = 0;
4581 	}
4582 
4583 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4584 	spin_unlock_irqrestore(&hsotg->lock, flags);
4585 
4586 	return 0;
4587 }
4588 
4589 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4590 {
4591 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4592 	unsigned long flags;
4593 
4594 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4595 	spin_lock_irqsave(&hsotg->lock, flags);
4596 
4597 	/*
4598 	 * If controller is hibernated, it must exit from power_down
4599 	 * before being initialized / de-initialized
4600 	 */
4601 	if (hsotg->lx_state == DWC2_L2)
4602 		dwc2_exit_partial_power_down(hsotg, false);
4603 
4604 	if (is_active) {
4605 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4606 
4607 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4608 		if (hsotg->enabled) {
4609 			/* Enable ACG feature in device mode,if supported */
4610 			dwc2_enable_acg(hsotg);
4611 			dwc2_hsotg_core_connect(hsotg);
4612 		}
4613 	} else {
4614 		dwc2_hsotg_core_disconnect(hsotg);
4615 		dwc2_hsotg_disconnect(hsotg);
4616 	}
4617 
4618 	spin_unlock_irqrestore(&hsotg->lock, flags);
4619 	return 0;
4620 }
4621 
4622 /**
4623  * dwc2_hsotg_vbus_draw - report bMaxPower field
4624  * @gadget: The usb gadget state
4625  * @mA: Amount of current
4626  *
4627  * Report how much power the device may consume to the phy.
4628  */
4629 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4630 {
4631 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4632 
4633 	if (IS_ERR_OR_NULL(hsotg->uphy))
4634 		return -ENOTSUPP;
4635 	return usb_phy_set_power(hsotg->uphy, mA);
4636 }
4637 
4638 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4639 	.get_frame	= dwc2_hsotg_gadget_getframe,
4640 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4641 	.udc_start		= dwc2_hsotg_udc_start,
4642 	.udc_stop		= dwc2_hsotg_udc_stop,
4643 	.pullup                 = dwc2_hsotg_pullup,
4644 	.vbus_session		= dwc2_hsotg_vbus_session,
4645 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4646 };
4647 
4648 /**
4649  * dwc2_hsotg_initep - initialise a single endpoint
4650  * @hsotg: The device state.
4651  * @hs_ep: The endpoint to be initialised.
4652  * @epnum: The endpoint number
4653  * @dir_in: True if direction is in.
4654  *
4655  * Initialise the given endpoint (as part of the probe and device state
4656  * creation) to give to the gadget driver. Setup the endpoint name, any
4657  * direction information and other state that may be required.
4658  */
4659 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4660 			      struct dwc2_hsotg_ep *hs_ep,
4661 				       int epnum,
4662 				       bool dir_in)
4663 {
4664 	char *dir;
4665 
4666 	if (epnum == 0)
4667 		dir = "";
4668 	else if (dir_in)
4669 		dir = "in";
4670 	else
4671 		dir = "out";
4672 
4673 	hs_ep->dir_in = dir_in;
4674 	hs_ep->index = epnum;
4675 
4676 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4677 
4678 	INIT_LIST_HEAD(&hs_ep->queue);
4679 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4680 
4681 	/* add to the list of endpoints known by the gadget driver */
4682 	if (epnum)
4683 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4684 
4685 	hs_ep->parent = hsotg;
4686 	hs_ep->ep.name = hs_ep->name;
4687 
4688 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4689 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4690 	else
4691 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4692 					   epnum ? 1024 : EP0_MPS_LIMIT);
4693 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4694 
4695 	if (epnum == 0) {
4696 		hs_ep->ep.caps.type_control = true;
4697 	} else {
4698 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4699 			hs_ep->ep.caps.type_iso = true;
4700 			hs_ep->ep.caps.type_bulk = true;
4701 		}
4702 		hs_ep->ep.caps.type_int = true;
4703 	}
4704 
4705 	if (dir_in)
4706 		hs_ep->ep.caps.dir_in = true;
4707 	else
4708 		hs_ep->ep.caps.dir_out = true;
4709 
4710 	/*
4711 	 * if we're using dma, we need to set the next-endpoint pointer
4712 	 * to be something valid.
4713 	 */
4714 
4715 	if (using_dma(hsotg)) {
4716 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4717 
4718 		if (dir_in)
4719 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4720 		else
4721 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4722 	}
4723 }
4724 
4725 /**
4726  * dwc2_hsotg_hw_cfg - read HW configuration registers
4727  * @hsotg: Programming view of the DWC_otg controller
4728  *
4729  * Read the USB core HW configuration registers
4730  */
4731 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4732 {
4733 	u32 cfg;
4734 	u32 ep_type;
4735 	u32 i;
4736 
4737 	/* check hardware configuration */
4738 
4739 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4740 
4741 	/* Add ep0 */
4742 	hsotg->num_of_eps++;
4743 
4744 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4745 					sizeof(struct dwc2_hsotg_ep),
4746 					GFP_KERNEL);
4747 	if (!hsotg->eps_in[0])
4748 		return -ENOMEM;
4749 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4750 	hsotg->eps_out[0] = hsotg->eps_in[0];
4751 
4752 	cfg = hsotg->hw_params.dev_ep_dirs;
4753 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4754 		ep_type = cfg & 3;
4755 		/* Direction in or both */
4756 		if (!(ep_type & 2)) {
4757 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4758 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4759 			if (!hsotg->eps_in[i])
4760 				return -ENOMEM;
4761 		}
4762 		/* Direction out or both */
4763 		if (!(ep_type & 1)) {
4764 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4765 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4766 			if (!hsotg->eps_out[i])
4767 				return -ENOMEM;
4768 		}
4769 	}
4770 
4771 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4772 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4773 
4774 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4775 		 hsotg->num_of_eps,
4776 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4777 		 hsotg->fifo_mem);
4778 	return 0;
4779 }
4780 
4781 /**
4782  * dwc2_hsotg_dump - dump state of the udc
4783  * @hsotg: Programming view of the DWC_otg controller
4784  *
4785  */
4786 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4787 {
4788 #ifdef DEBUG
4789 	struct device *dev = hsotg->dev;
4790 	u32 val;
4791 	int idx;
4792 
4793 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4794 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4795 		 dwc2_readl(hsotg, DIEPMSK));
4796 
4797 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4798 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4799 
4800 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4801 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4802 
4803 	/* show periodic fifo settings */
4804 
4805 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4806 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4807 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4808 			 val >> FIFOSIZE_DEPTH_SHIFT,
4809 			 val & FIFOSIZE_STARTADDR_MASK);
4810 	}
4811 
4812 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4813 		dev_info(dev,
4814 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4815 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4816 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4817 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4818 
4819 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4820 		dev_info(dev,
4821 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4822 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4823 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4824 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4825 	}
4826 
4827 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4828 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4829 #endif
4830 }
4831 
4832 /**
4833  * dwc2_gadget_init - init function for gadget
4834  * @hsotg: Programming view of the DWC_otg controller
4835  *
4836  */
4837 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4838 {
4839 	struct device *dev = hsotg->dev;
4840 	int epnum;
4841 	int ret;
4842 
4843 	/* Dump fifo information */
4844 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4845 		hsotg->params.g_np_tx_fifo_size);
4846 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4847 
4848 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4849 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4850 	hsotg->gadget.name = dev_name(dev);
4851 	hsotg->remote_wakeup_allowed = 0;
4852 
4853 	if (hsotg->params.lpm)
4854 		hsotg->gadget.lpm_capable = true;
4855 
4856 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4857 		hsotg->gadget.is_otg = 1;
4858 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4859 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4860 
4861 	ret = dwc2_hsotg_hw_cfg(hsotg);
4862 	if (ret) {
4863 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4864 		return ret;
4865 	}
4866 
4867 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4868 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4869 	if (!hsotg->ctrl_buff)
4870 		return -ENOMEM;
4871 
4872 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4873 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4874 	if (!hsotg->ep0_buff)
4875 		return -ENOMEM;
4876 
4877 	if (using_desc_dma(hsotg)) {
4878 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4879 		if (ret < 0)
4880 			return ret;
4881 	}
4882 
4883 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4884 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4885 	if (ret < 0) {
4886 		dev_err(dev, "cannot claim IRQ for gadget\n");
4887 		return ret;
4888 	}
4889 
4890 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4891 
4892 	if (hsotg->num_of_eps == 0) {
4893 		dev_err(dev, "wrong number of EPs (zero)\n");
4894 		return -EINVAL;
4895 	}
4896 
4897 	/* setup endpoint information */
4898 
4899 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4900 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4901 
4902 	/* allocate EP0 request */
4903 
4904 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4905 						     GFP_KERNEL);
4906 	if (!hsotg->ctrl_req) {
4907 		dev_err(dev, "failed to allocate ctrl req\n");
4908 		return -ENOMEM;
4909 	}
4910 
4911 	/* initialise the endpoints now the core has been initialised */
4912 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4913 		if (hsotg->eps_in[epnum])
4914 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4915 					  epnum, 1);
4916 		if (hsotg->eps_out[epnum])
4917 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4918 					  epnum, 0);
4919 	}
4920 
4921 	dwc2_hsotg_dump(hsotg);
4922 
4923 	return 0;
4924 }
4925 
4926 /**
4927  * dwc2_hsotg_remove - remove function for hsotg driver
4928  * @hsotg: Programming view of the DWC_otg controller
4929  *
4930  */
4931 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4932 {
4933 	usb_del_gadget_udc(&hsotg->gadget);
4934 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4935 
4936 	return 0;
4937 }
4938 
4939 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4940 {
4941 	unsigned long flags;
4942 
4943 	if (hsotg->lx_state != DWC2_L0)
4944 		return 0;
4945 
4946 	if (hsotg->driver) {
4947 		int ep;
4948 
4949 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4950 			 hsotg->driver->driver.name);
4951 
4952 		spin_lock_irqsave(&hsotg->lock, flags);
4953 		if (hsotg->enabled)
4954 			dwc2_hsotg_core_disconnect(hsotg);
4955 		dwc2_hsotg_disconnect(hsotg);
4956 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4957 		spin_unlock_irqrestore(&hsotg->lock, flags);
4958 
4959 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4960 			if (hsotg->eps_in[ep])
4961 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4962 			if (hsotg->eps_out[ep])
4963 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4964 		}
4965 	}
4966 
4967 	return 0;
4968 }
4969 
4970 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4971 {
4972 	unsigned long flags;
4973 
4974 	if (hsotg->lx_state == DWC2_L2)
4975 		return 0;
4976 
4977 	if (hsotg->driver) {
4978 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4979 			 hsotg->driver->driver.name);
4980 
4981 		spin_lock_irqsave(&hsotg->lock, flags);
4982 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4983 		if (hsotg->enabled) {
4984 			/* Enable ACG feature in device mode,if supported */
4985 			dwc2_enable_acg(hsotg);
4986 			dwc2_hsotg_core_connect(hsotg);
4987 		}
4988 		spin_unlock_irqrestore(&hsotg->lock, flags);
4989 	}
4990 
4991 	return 0;
4992 }
4993 
4994 /**
4995  * dwc2_backup_device_registers() - Backup controller device registers.
4996  * When suspending usb bus, registers needs to be backuped
4997  * if controller power is disabled once suspended.
4998  *
4999  * @hsotg: Programming view of the DWC_otg controller
5000  */
5001 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5002 {
5003 	struct dwc2_dregs_backup *dr;
5004 	int i;
5005 
5006 	dev_dbg(hsotg->dev, "%s\n", __func__);
5007 
5008 	/* Backup dev regs */
5009 	dr = &hsotg->dr_backup;
5010 
5011 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5012 	dr->dctl = dwc2_readl(hsotg, DCTL);
5013 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5014 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5015 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5016 
5017 	for (i = 0; i < hsotg->num_of_eps; i++) {
5018 		/* Backup IN EPs */
5019 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5020 
5021 		/* Ensure DATA PID is correctly configured */
5022 		if (dr->diepctl[i] & DXEPCTL_DPID)
5023 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5024 		else
5025 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5026 
5027 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5028 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5029 
5030 		/* Backup OUT EPs */
5031 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5032 
5033 		/* Ensure DATA PID is correctly configured */
5034 		if (dr->doepctl[i] & DXEPCTL_DPID)
5035 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5036 		else
5037 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5038 
5039 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5040 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5041 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5042 	}
5043 	dr->valid = true;
5044 	return 0;
5045 }
5046 
5047 /**
5048  * dwc2_restore_device_registers() - Restore controller device registers.
5049  * When resuming usb bus, device registers needs to be restored
5050  * if controller power were disabled.
5051  *
5052  * @hsotg: Programming view of the DWC_otg controller
5053  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5054  *
5055  * Return: 0 if successful, negative error code otherwise
5056  */
5057 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5058 {
5059 	struct dwc2_dregs_backup *dr;
5060 	int i;
5061 
5062 	dev_dbg(hsotg->dev, "%s\n", __func__);
5063 
5064 	/* Restore dev regs */
5065 	dr = &hsotg->dr_backup;
5066 	if (!dr->valid) {
5067 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5068 			__func__);
5069 		return -EINVAL;
5070 	}
5071 	dr->valid = false;
5072 
5073 	if (!remote_wakeup)
5074 		dwc2_writel(hsotg, dr->dctl, DCTL);
5075 
5076 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5077 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5078 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5079 
5080 	for (i = 0; i < hsotg->num_of_eps; i++) {
5081 		/* Restore IN EPs */
5082 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5083 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5084 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5085 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5086 		 * hibernation wrong value read and saved from DIEPDMAx,
5087 		 * as result BNA interrupt asserted on hibernation exit
5088 		 * by restoring from saved area.
5089 		 */
5090 		if (hsotg->params.g_dma_desc &&
5091 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5092 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5093 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5094 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5095 		/* Restore OUT EPs */
5096 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5097 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5098 		 * hibernation wrong value read and saved from DOEPDMAx,
5099 		 * as result BNA interrupt asserted on hibernation exit
5100 		 * by restoring from saved area.
5101 		 */
5102 		if (hsotg->params.g_dma_desc &&
5103 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5104 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5105 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5106 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5107 	}
5108 
5109 	return 0;
5110 }
5111 
5112 /**
5113  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5114  *
5115  * @hsotg: Programming view of DWC_otg controller
5116  *
5117  */
5118 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5119 {
5120 	u32 val;
5121 
5122 	if (!hsotg->params.lpm)
5123 		return;
5124 
5125 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5126 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5127 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5128 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5129 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5130 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5131 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5132 	dwc2_writel(hsotg, val, GLPMCFG);
5133 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5134 
5135 	/* Unmask WKUP_ALERT Interrupt */
5136 	if (hsotg->params.service_interval)
5137 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5138 }
5139 
5140 /**
5141  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5142  *
5143  * @hsotg: Programming view of DWC_otg controller
5144  *
5145  */
5146 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5147 {
5148 	u32 val = 0;
5149 
5150 	val |= GREFCLK_REF_CLK_MODE;
5151 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5152 	val |= hsotg->params.sof_cnt_wkup_alert <<
5153 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5154 
5155 	dwc2_writel(hsotg, val, GREFCLK);
5156 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5157 }
5158 
5159 /**
5160  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5161  *
5162  * @hsotg: Programming view of the DWC_otg controller
5163  *
5164  * Return non-zero if failed to enter to hibernation.
5165  */
5166 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5167 {
5168 	u32 gpwrdn;
5169 	int ret = 0;
5170 
5171 	/* Change to L2(suspend) state */
5172 	hsotg->lx_state = DWC2_L2;
5173 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5174 	ret = dwc2_backup_global_registers(hsotg);
5175 	if (ret) {
5176 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5177 			__func__);
5178 		return ret;
5179 	}
5180 	ret = dwc2_backup_device_registers(hsotg);
5181 	if (ret) {
5182 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5183 			__func__);
5184 		return ret;
5185 	}
5186 
5187 	gpwrdn = GPWRDN_PWRDNRSTN;
5188 	gpwrdn |= GPWRDN_PMUACTV;
5189 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5190 	udelay(10);
5191 
5192 	/* Set flag to indicate that we are in hibernation */
5193 	hsotg->hibernated = 1;
5194 
5195 	/* Enable interrupts from wake up logic */
5196 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5197 	gpwrdn |= GPWRDN_PMUINTSEL;
5198 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5199 	udelay(10);
5200 
5201 	/* Unmask device mode interrupts in GPWRDN */
5202 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5203 	gpwrdn |= GPWRDN_RST_DET_MSK;
5204 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5205 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5206 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5207 	udelay(10);
5208 
5209 	/* Enable Power Down Clamp */
5210 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5211 	gpwrdn |= GPWRDN_PWRDNCLMP;
5212 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5213 	udelay(10);
5214 
5215 	/* Switch off VDD */
5216 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5217 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5218 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5219 	udelay(10);
5220 
5221 	/* Save gpwrdn register for further usage if stschng interrupt */
5222 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5223 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5224 
5225 	return ret;
5226 }
5227 
5228 /**
5229  * dwc2_gadget_exit_hibernation()
5230  * This function is for exiting from Device mode hibernation by host initiated
5231  * resume/reset and device initiated remote-wakeup.
5232  *
5233  * @hsotg: Programming view of the DWC_otg controller
5234  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5235  * @reset: indicates whether resume is initiated by Reset.
5236  *
5237  * Return non-zero if failed to exit from hibernation.
5238  */
5239 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5240 				 int rem_wakeup, int reset)
5241 {
5242 	u32 pcgcctl;
5243 	u32 gpwrdn;
5244 	u32 dctl;
5245 	int ret = 0;
5246 	struct dwc2_gregs_backup *gr;
5247 	struct dwc2_dregs_backup *dr;
5248 
5249 	gr = &hsotg->gr_backup;
5250 	dr = &hsotg->dr_backup;
5251 
5252 	if (!hsotg->hibernated) {
5253 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5254 		return 1;
5255 	}
5256 	dev_dbg(hsotg->dev,
5257 		"%s: called with rem_wakeup = %d reset = %d\n",
5258 		__func__, rem_wakeup, reset);
5259 
5260 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5261 
5262 	if (!reset) {
5263 		/* Clear all pending interupts */
5264 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5265 	}
5266 
5267 	/* De-assert Restore */
5268 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5269 	gpwrdn &= ~GPWRDN_RESTORE;
5270 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5271 	udelay(10);
5272 
5273 	if (!rem_wakeup) {
5274 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5275 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5276 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5277 	}
5278 
5279 	/* Restore GUSBCFG, DCFG and DCTL */
5280 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5281 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5282 	dwc2_writel(hsotg, dr->dctl, DCTL);
5283 
5284 	/* De-assert Wakeup Logic */
5285 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5286 	gpwrdn &= ~GPWRDN_PMUACTV;
5287 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5288 
5289 	if (rem_wakeup) {
5290 		udelay(10);
5291 		/* Start Remote Wakeup Signaling */
5292 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5293 	} else {
5294 		udelay(50);
5295 		/* Set Device programming done bit */
5296 		dctl = dwc2_readl(hsotg, DCTL);
5297 		dctl |= DCTL_PWRONPRGDONE;
5298 		dwc2_writel(hsotg, dctl, DCTL);
5299 	}
5300 	/* Wait for interrupts which must be cleared */
5301 	mdelay(2);
5302 	/* Clear all pending interupts */
5303 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5304 
5305 	/* Restore global registers */
5306 	ret = dwc2_restore_global_registers(hsotg);
5307 	if (ret) {
5308 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5309 			__func__);
5310 		return ret;
5311 	}
5312 
5313 	/* Restore device registers */
5314 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5315 	if (ret) {
5316 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5317 			__func__);
5318 		return ret;
5319 	}
5320 
5321 	if (rem_wakeup) {
5322 		mdelay(10);
5323 		dctl = dwc2_readl(hsotg, DCTL);
5324 		dctl &= ~DCTL_RMTWKUPSIG;
5325 		dwc2_writel(hsotg, dctl, DCTL);
5326 	}
5327 
5328 	hsotg->hibernated = 0;
5329 	hsotg->lx_state = DWC2_L0;
5330 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5331 
5332 	return ret;
5333 }
5334