xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision af958a38)
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/of_platform.h>
31 #include <linux/phy/phy.h>
32 
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37 
38 #include "core.h"
39 
40 /* conversion functions */
41 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
42 {
43 	return container_of(req, struct s3c_hsotg_req, req);
44 }
45 
46 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
47 {
48 	return container_of(ep, struct s3c_hsotg_ep, ep);
49 }
50 
51 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
52 {
53 	return container_of(gadget, struct s3c_hsotg, gadget);
54 }
55 
56 static inline void __orr32(void __iomem *ptr, u32 val)
57 {
58 	writel(readl(ptr) | val, ptr);
59 }
60 
61 static inline void __bic32(void __iomem *ptr, u32 val)
62 {
63 	writel(readl(ptr) & ~val, ptr);
64 }
65 
66 /* forward decleration of functions */
67 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
68 
69 /**
70  * using_dma - return the DMA status of the driver.
71  * @hsotg: The driver state.
72  *
73  * Return true if we're using DMA.
74  *
75  * Currently, we have the DMA support code worked into everywhere
76  * that needs it, but the AMBA DMA implementation in the hardware can
77  * only DMA from 32bit aligned addresses. This means that gadgets such
78  * as the CDC Ethernet cannot work as they often pass packets which are
79  * not 32bit aligned.
80  *
81  * Unfortunately the choice to use DMA or not is global to the controller
82  * and seems to be only settable when the controller is being put through
83  * a core reset. This means we either need to fix the gadgets to take
84  * account of DMA alignment, or add bounce buffers (yuerk).
85  *
86  * Until this issue is sorted out, we always return 'false'.
87  */
88 static inline bool using_dma(struct s3c_hsotg *hsotg)
89 {
90 	return false;	/* support is not complete */
91 }
92 
93 /**
94  * s3c_hsotg_en_gsint - enable one or more of the general interrupt
95  * @hsotg: The device state
96  * @ints: A bitmask of the interrupts to enable
97  */
98 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
99 {
100 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
101 	u32 new_gsintmsk;
102 
103 	new_gsintmsk = gsintmsk | ints;
104 
105 	if (new_gsintmsk != gsintmsk) {
106 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
107 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
108 	}
109 }
110 
111 /**
112  * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
113  * @hsotg: The device state
114  * @ints: A bitmask of the interrupts to enable
115  */
116 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
117 {
118 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
119 	u32 new_gsintmsk;
120 
121 	new_gsintmsk = gsintmsk & ~ints;
122 
123 	if (new_gsintmsk != gsintmsk)
124 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
125 }
126 
127 /**
128  * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
129  * @hsotg: The device state
130  * @ep: The endpoint index
131  * @dir_in: True if direction is in.
132  * @en: The enable value, true to enable
133  *
134  * Set or clear the mask for an individual endpoint's interrupt
135  * request.
136  */
137 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
138 				 unsigned int ep, unsigned int dir_in,
139 				 unsigned int en)
140 {
141 	unsigned long flags;
142 	u32 bit = 1 << ep;
143 	u32 daint;
144 
145 	if (!dir_in)
146 		bit <<= 16;
147 
148 	local_irq_save(flags);
149 	daint = readl(hsotg->regs + DAINTMSK);
150 	if (en)
151 		daint |= bit;
152 	else
153 		daint &= ~bit;
154 	writel(daint, hsotg->regs + DAINTMSK);
155 	local_irq_restore(flags);
156 }
157 
158 /**
159  * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
160  * @hsotg: The device instance.
161  */
162 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
163 {
164 	unsigned int ep;
165 	unsigned int addr;
166 	unsigned int size;
167 	int timeout;
168 	u32 val;
169 
170 	/* set FIFO sizes to 2048/1024 */
171 
172 	writel(2048, hsotg->regs + GRXFSIZ);
173 	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
174 		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
175 
176 	/*
177 	 * arange all the rest of the TX FIFOs, as some versions of this
178 	 * block have overlapping default addresses. This also ensures
179 	 * that if the settings have been changed, then they are set to
180 	 * known values.
181 	 */
182 
183 	/* start at the end of the GNPTXFSIZ, rounded up */
184 	addr = 2048 + 1024;
185 	size = 768;
186 
187 	/*
188 	 * currently we allocate TX FIFOs for all possible endpoints,
189 	 * and assume that they are all the same size.
190 	 */
191 
192 	for (ep = 1; ep <= 15; ep++) {
193 		val = addr;
194 		val |= size << FIFOSIZE_DEPTH_SHIFT;
195 		addr += size;
196 
197 		writel(val, hsotg->regs + DPTXFSIZN(ep));
198 	}
199 
200 	/*
201 	 * according to p428 of the design guide, we need to ensure that
202 	 * all fifos are flushed before continuing
203 	 */
204 
205 	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
206 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
207 
208 	/* wait until the fifos are both flushed */
209 	timeout = 100;
210 	while (1) {
211 		val = readl(hsotg->regs + GRSTCTL);
212 
213 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
214 			break;
215 
216 		if (--timeout == 0) {
217 			dev_err(hsotg->dev,
218 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
219 				__func__, val);
220 		}
221 
222 		udelay(1);
223 	}
224 
225 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
226 }
227 
228 /**
229  * @ep: USB endpoint to allocate request for.
230  * @flags: Allocation flags
231  *
232  * Allocate a new USB request structure appropriate for the specified endpoint
233  */
234 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
235 						      gfp_t flags)
236 {
237 	struct s3c_hsotg_req *req;
238 
239 	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
240 	if (!req)
241 		return NULL;
242 
243 	INIT_LIST_HEAD(&req->queue);
244 
245 	return &req->req;
246 }
247 
248 /**
249  * is_ep_periodic - return true if the endpoint is in periodic mode.
250  * @hs_ep: The endpoint to query.
251  *
252  * Returns true if the endpoint is in periodic mode, meaning it is being
253  * used for an Interrupt or ISO transfer.
254  */
255 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
256 {
257 	return hs_ep->periodic;
258 }
259 
260 /**
261  * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
262  * @hsotg: The device state.
263  * @hs_ep: The endpoint for the request
264  * @hs_req: The request being processed.
265  *
266  * This is the reverse of s3c_hsotg_map_dma(), called for the completion
267  * of a request to ensure the buffer is ready for access by the caller.
268  */
269 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
270 				struct s3c_hsotg_ep *hs_ep,
271 				struct s3c_hsotg_req *hs_req)
272 {
273 	struct usb_request *req = &hs_req->req;
274 
275 	/* ignore this if we're not moving any data */
276 	if (hs_req->req.length == 0)
277 		return;
278 
279 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
280 }
281 
282 /**
283  * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
284  * @hsotg: The controller state.
285  * @hs_ep: The endpoint we're going to write for.
286  * @hs_req: The request to write data for.
287  *
288  * This is called when the TxFIFO has some space in it to hold a new
289  * transmission and we have something to give it. The actual setup of
290  * the data size is done elsewhere, so all we have to do is to actually
291  * write the data.
292  *
293  * The return value is zero if there is more space (or nothing was done)
294  * otherwise -ENOSPC is returned if the FIFO space was used up.
295  *
296  * This routine is only needed for PIO
297  */
298 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
299 				struct s3c_hsotg_ep *hs_ep,
300 				struct s3c_hsotg_req *hs_req)
301 {
302 	bool periodic = is_ep_periodic(hs_ep);
303 	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
304 	int buf_pos = hs_req->req.actual;
305 	int to_write = hs_ep->size_loaded;
306 	void *data;
307 	int can_write;
308 	int pkt_round;
309 	int max_transfer;
310 
311 	to_write -= (buf_pos - hs_ep->last_load);
312 
313 	/* if there's nothing to write, get out early */
314 	if (to_write == 0)
315 		return 0;
316 
317 	if (periodic && !hsotg->dedicated_fifos) {
318 		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
319 		int size_left;
320 		int size_done;
321 
322 		/*
323 		 * work out how much data was loaded so we can calculate
324 		 * how much data is left in the fifo.
325 		 */
326 
327 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
328 
329 		/*
330 		 * if shared fifo, we cannot write anything until the
331 		 * previous data has been completely sent.
332 		 */
333 		if (hs_ep->fifo_load != 0) {
334 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
335 			return -ENOSPC;
336 		}
337 
338 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
339 			__func__, size_left,
340 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
341 
342 		/* how much of the data has moved */
343 		size_done = hs_ep->size_loaded - size_left;
344 
345 		/* how much data is left in the fifo */
346 		can_write = hs_ep->fifo_load - size_done;
347 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
348 			__func__, can_write);
349 
350 		can_write = hs_ep->fifo_size - can_write;
351 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
352 			__func__, can_write);
353 
354 		if (can_write <= 0) {
355 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
356 			return -ENOSPC;
357 		}
358 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
359 		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
360 
361 		can_write &= 0xffff;
362 		can_write *= 4;
363 	} else {
364 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
365 			dev_dbg(hsotg->dev,
366 				"%s: no queue slots available (0x%08x)\n",
367 				__func__, gnptxsts);
368 
369 			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
370 			return -ENOSPC;
371 		}
372 
373 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
374 		can_write *= 4;	/* fifo size is in 32bit quantities. */
375 	}
376 
377 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
378 
379 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
380 		 __func__, gnptxsts, can_write, to_write, max_transfer);
381 
382 	/*
383 	 * limit to 512 bytes of data, it seems at least on the non-periodic
384 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
385 	 * fragment of the end of the transfer in it.
386 	 */
387 	if (can_write > 512 && !periodic)
388 		can_write = 512;
389 
390 	/*
391 	 * limit the write to one max-packet size worth of data, but allow
392 	 * the transfer to return that it did not run out of fifo space
393 	 * doing it.
394 	 */
395 	if (to_write > max_transfer) {
396 		to_write = max_transfer;
397 
398 		/* it's needed only when we do not use dedicated fifos */
399 		if (!hsotg->dedicated_fifos)
400 			s3c_hsotg_en_gsint(hsotg,
401 					   periodic ? GINTSTS_PTXFEMP :
402 					   GINTSTS_NPTXFEMP);
403 	}
404 
405 	/* see if we can write data */
406 
407 	if (to_write > can_write) {
408 		to_write = can_write;
409 		pkt_round = to_write % max_transfer;
410 
411 		/*
412 		 * Round the write down to an
413 		 * exact number of packets.
414 		 *
415 		 * Note, we do not currently check to see if we can ever
416 		 * write a full packet or not to the FIFO.
417 		 */
418 
419 		if (pkt_round)
420 			to_write -= pkt_round;
421 
422 		/*
423 		 * enable correct FIFO interrupt to alert us when there
424 		 * is more room left.
425 		 */
426 
427 		/* it's needed only when we do not use dedicated fifos */
428 		if (!hsotg->dedicated_fifos)
429 			s3c_hsotg_en_gsint(hsotg,
430 					   periodic ? GINTSTS_PTXFEMP :
431 					   GINTSTS_NPTXFEMP);
432 	}
433 
434 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
435 		 to_write, hs_req->req.length, can_write, buf_pos);
436 
437 	if (to_write <= 0)
438 		return -ENOSPC;
439 
440 	hs_req->req.actual = buf_pos + to_write;
441 	hs_ep->total_data += to_write;
442 
443 	if (periodic)
444 		hs_ep->fifo_load += to_write;
445 
446 	to_write = DIV_ROUND_UP(to_write, 4);
447 	data = hs_req->req.buf + buf_pos;
448 
449 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
450 
451 	return (to_write >= can_write) ? -ENOSPC : 0;
452 }
453 
454 /**
455  * get_ep_limit - get the maximum data legnth for this endpoint
456  * @hs_ep: The endpoint
457  *
458  * Return the maximum data that can be queued in one go on a given endpoint
459  * so that transfers that are too long can be split.
460  */
461 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
462 {
463 	int index = hs_ep->index;
464 	unsigned maxsize;
465 	unsigned maxpkt;
466 
467 	if (index != 0) {
468 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
469 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
470 	} else {
471 		maxsize = 64+64;
472 		if (hs_ep->dir_in)
473 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
474 		else
475 			maxpkt = 2;
476 	}
477 
478 	/* we made the constant loading easier above by using +1 */
479 	maxpkt--;
480 	maxsize--;
481 
482 	/*
483 	 * constrain by packet count if maxpkts*pktsize is greater
484 	 * than the length register size.
485 	 */
486 
487 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
488 		maxsize = maxpkt * hs_ep->ep.maxpacket;
489 
490 	return maxsize;
491 }
492 
493 /**
494  * s3c_hsotg_start_req - start a USB request from an endpoint's queue
495  * @hsotg: The controller state.
496  * @hs_ep: The endpoint to process a request for
497  * @hs_req: The request to start.
498  * @continuing: True if we are doing more for the current request.
499  *
500  * Start the given request running by setting the endpoint registers
501  * appropriately, and writing any data to the FIFOs.
502  */
503 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
504 				struct s3c_hsotg_ep *hs_ep,
505 				struct s3c_hsotg_req *hs_req,
506 				bool continuing)
507 {
508 	struct usb_request *ureq = &hs_req->req;
509 	int index = hs_ep->index;
510 	int dir_in = hs_ep->dir_in;
511 	u32 epctrl_reg;
512 	u32 epsize_reg;
513 	u32 epsize;
514 	u32 ctrl;
515 	unsigned length;
516 	unsigned packets;
517 	unsigned maxreq;
518 
519 	if (index != 0) {
520 		if (hs_ep->req && !continuing) {
521 			dev_err(hsotg->dev, "%s: active request\n", __func__);
522 			WARN_ON(1);
523 			return;
524 		} else if (hs_ep->req != hs_req && continuing) {
525 			dev_err(hsotg->dev,
526 				"%s: continue different req\n", __func__);
527 			WARN_ON(1);
528 			return;
529 		}
530 	}
531 
532 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
533 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
534 
535 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
536 		__func__, readl(hsotg->regs + epctrl_reg), index,
537 		hs_ep->dir_in ? "in" : "out");
538 
539 	/* If endpoint is stalled, we will restart request later */
540 	ctrl = readl(hsotg->regs + epctrl_reg);
541 
542 	if (ctrl & DXEPCTL_STALL) {
543 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
544 		return;
545 	}
546 
547 	length = ureq->length - ureq->actual;
548 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
549 		ureq->length, ureq->actual);
550 	if (0)
551 		dev_dbg(hsotg->dev,
552 			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
553 			ureq->buf, length, &ureq->dma,
554 			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
555 
556 	maxreq = get_ep_limit(hs_ep);
557 	if (length > maxreq) {
558 		int round = maxreq % hs_ep->ep.maxpacket;
559 
560 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
561 			__func__, length, maxreq, round);
562 
563 		/* round down to multiple of packets */
564 		if (round)
565 			maxreq -= round;
566 
567 		length = maxreq;
568 	}
569 
570 	if (length)
571 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
572 	else
573 		packets = 1;	/* send one packet if length is zero. */
574 
575 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
576 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
577 		return;
578 	}
579 
580 	if (dir_in && index != 0)
581 		if (hs_ep->isochronous)
582 			epsize = DXEPTSIZ_MC(packets);
583 		else
584 			epsize = DXEPTSIZ_MC(1);
585 	else
586 		epsize = 0;
587 
588 	if (index != 0 && ureq->zero) {
589 		/*
590 		 * test for the packets being exactly right for the
591 		 * transfer
592 		 */
593 
594 		if (length == (packets * hs_ep->ep.maxpacket))
595 			packets++;
596 	}
597 
598 	epsize |= DXEPTSIZ_PKTCNT(packets);
599 	epsize |= DXEPTSIZ_XFERSIZE(length);
600 
601 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
602 		__func__, packets, length, ureq->length, epsize, epsize_reg);
603 
604 	/* store the request as the current one we're doing */
605 	hs_ep->req = hs_req;
606 
607 	/* write size / packets */
608 	writel(epsize, hsotg->regs + epsize_reg);
609 
610 	if (using_dma(hsotg) && !continuing) {
611 		unsigned int dma_reg;
612 
613 		/*
614 		 * write DMA address to control register, buffer already
615 		 * synced by s3c_hsotg_ep_queue().
616 		 */
617 
618 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
619 		writel(ureq->dma, hsotg->regs + dma_reg);
620 
621 		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
622 			__func__, &ureq->dma, dma_reg);
623 	}
624 
625 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
626 	ctrl |= DXEPCTL_USBACTEP;
627 
628 	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
629 
630 	/* For Setup request do not clear NAK */
631 	if (hsotg->setup && index == 0)
632 		hsotg->setup = 0;
633 	else
634 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
635 
636 
637 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
638 	writel(ctrl, hsotg->regs + epctrl_reg);
639 
640 	/*
641 	 * set these, it seems that DMA support increments past the end
642 	 * of the packet buffer so we need to calculate the length from
643 	 * this information.
644 	 */
645 	hs_ep->size_loaded = length;
646 	hs_ep->last_load = ureq->actual;
647 
648 	if (dir_in && !using_dma(hsotg)) {
649 		/* set these anyway, we may need them for non-periodic in */
650 		hs_ep->fifo_load = 0;
651 
652 		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
653 	}
654 
655 	/*
656 	 * clear the INTknTXFEmpMsk when we start request, more as a aide
657 	 * to debugging to see what is going on.
658 	 */
659 	if (dir_in)
660 		writel(DIEPMSK_INTKNTXFEMPMSK,
661 		       hsotg->regs + DIEPINT(index));
662 
663 	/*
664 	 * Note, trying to clear the NAK here causes problems with transmit
665 	 * on the S3C6400 ending up with the TXFIFO becoming full.
666 	 */
667 
668 	/* check ep is enabled */
669 	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
670 		dev_warn(hsotg->dev,
671 			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
672 			 index, readl(hsotg->regs + epctrl_reg));
673 
674 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
675 		__func__, readl(hsotg->regs + epctrl_reg));
676 
677 	/* enable ep interrupts */
678 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
679 }
680 
681 /**
682  * s3c_hsotg_map_dma - map the DMA memory being used for the request
683  * @hsotg: The device state.
684  * @hs_ep: The endpoint the request is on.
685  * @req: The request being processed.
686  *
687  * We've been asked to queue a request, so ensure that the memory buffer
688  * is correctly setup for DMA. If we've been passed an extant DMA address
689  * then ensure the buffer has been synced to memory. If our buffer has no
690  * DMA memory, then we map the memory and mark our request to allow us to
691  * cleanup on completion.
692  */
693 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
694 			     struct s3c_hsotg_ep *hs_ep,
695 			     struct usb_request *req)
696 {
697 	struct s3c_hsotg_req *hs_req = our_req(req);
698 	int ret;
699 
700 	/* if the length is zero, ignore the DMA data */
701 	if (hs_req->req.length == 0)
702 		return 0;
703 
704 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
705 	if (ret)
706 		goto dma_error;
707 
708 	return 0;
709 
710 dma_error:
711 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
712 		__func__, req->buf, req->length);
713 
714 	return -EIO;
715 }
716 
717 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
718 			      gfp_t gfp_flags)
719 {
720 	struct s3c_hsotg_req *hs_req = our_req(req);
721 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
722 	struct s3c_hsotg *hs = hs_ep->parent;
723 	bool first;
724 
725 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
726 		ep->name, req, req->length, req->buf, req->no_interrupt,
727 		req->zero, req->short_not_ok);
728 
729 	/* initialise status of the request */
730 	INIT_LIST_HEAD(&hs_req->queue);
731 	req->actual = 0;
732 	req->status = -EINPROGRESS;
733 
734 	/* if we're using DMA, sync the buffers as necessary */
735 	if (using_dma(hs)) {
736 		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
737 		if (ret)
738 			return ret;
739 	}
740 
741 	first = list_empty(&hs_ep->queue);
742 	list_add_tail(&hs_req->queue, &hs_ep->queue);
743 
744 	if (first)
745 		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
746 
747 	return 0;
748 }
749 
750 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
751 			      gfp_t gfp_flags)
752 {
753 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
754 	struct s3c_hsotg *hs = hs_ep->parent;
755 	unsigned long flags = 0;
756 	int ret = 0;
757 
758 	spin_lock_irqsave(&hs->lock, flags);
759 	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
760 	spin_unlock_irqrestore(&hs->lock, flags);
761 
762 	return ret;
763 }
764 
765 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
766 				      struct usb_request *req)
767 {
768 	struct s3c_hsotg_req *hs_req = our_req(req);
769 
770 	kfree(hs_req);
771 }
772 
773 /**
774  * s3c_hsotg_complete_oursetup - setup completion callback
775  * @ep: The endpoint the request was on.
776  * @req: The request completed.
777  *
778  * Called on completion of any requests the driver itself
779  * submitted that need cleaning up.
780  */
781 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
782 					struct usb_request *req)
783 {
784 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
785 	struct s3c_hsotg *hsotg = hs_ep->parent;
786 
787 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
788 
789 	s3c_hsotg_ep_free_request(ep, req);
790 }
791 
792 /**
793  * ep_from_windex - convert control wIndex value to endpoint
794  * @hsotg: The driver state.
795  * @windex: The control request wIndex field (in host order).
796  *
797  * Convert the given wIndex into a pointer to an driver endpoint
798  * structure, or return NULL if it is not a valid endpoint.
799  */
800 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
801 					   u32 windex)
802 {
803 	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
804 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
805 	int idx = windex & 0x7F;
806 
807 	if (windex >= 0x100)
808 		return NULL;
809 
810 	if (idx > hsotg->num_of_eps)
811 		return NULL;
812 
813 	if (idx && ep->dir_in != dir)
814 		return NULL;
815 
816 	return ep;
817 }
818 
819 /**
820  * s3c_hsotg_send_reply - send reply to control request
821  * @hsotg: The device state
822  * @ep: Endpoint 0
823  * @buff: Buffer for request
824  * @length: Length of reply.
825  *
826  * Create a request and queue it on the given endpoint. This is useful as
827  * an internal method of sending replies to certain control requests, etc.
828  */
829 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
830 				struct s3c_hsotg_ep *ep,
831 				void *buff,
832 				int length)
833 {
834 	struct usb_request *req;
835 	int ret;
836 
837 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
838 
839 	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
840 	hsotg->ep0_reply = req;
841 	if (!req) {
842 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
843 		return -ENOMEM;
844 	}
845 
846 	req->buf = hsotg->ep0_buff;
847 	req->length = length;
848 	req->zero = 1; /* always do zero-length final transfer */
849 	req->complete = s3c_hsotg_complete_oursetup;
850 
851 	if (length)
852 		memcpy(req->buf, buff, length);
853 	else
854 		ep->sent_zlp = 1;
855 
856 	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
857 	if (ret) {
858 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
859 		return ret;
860 	}
861 
862 	return 0;
863 }
864 
865 /**
866  * s3c_hsotg_process_req_status - process request GET_STATUS
867  * @hsotg: The device state
868  * @ctrl: USB control request
869  */
870 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
871 					struct usb_ctrlrequest *ctrl)
872 {
873 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
874 	struct s3c_hsotg_ep *ep;
875 	__le16 reply;
876 	int ret;
877 
878 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
879 
880 	if (!ep0->dir_in) {
881 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
882 		return -EINVAL;
883 	}
884 
885 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
886 	case USB_RECIP_DEVICE:
887 		reply = cpu_to_le16(0); /* bit 0 => self powered,
888 					 * bit 1 => remote wakeup */
889 		break;
890 
891 	case USB_RECIP_INTERFACE:
892 		/* currently, the data result should be zero */
893 		reply = cpu_to_le16(0);
894 		break;
895 
896 	case USB_RECIP_ENDPOINT:
897 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
898 		if (!ep)
899 			return -ENOENT;
900 
901 		reply = cpu_to_le16(ep->halted ? 1 : 0);
902 		break;
903 
904 	default:
905 		return 0;
906 	}
907 
908 	if (le16_to_cpu(ctrl->wLength) != 2)
909 		return -EINVAL;
910 
911 	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
912 	if (ret) {
913 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
914 		return ret;
915 	}
916 
917 	return 1;
918 }
919 
920 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
921 
922 /**
923  * get_ep_head - return the first request on the endpoint
924  * @hs_ep: The controller endpoint to get
925  *
926  * Get the first request on the endpoint.
927  */
928 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
929 {
930 	if (list_empty(&hs_ep->queue))
931 		return NULL;
932 
933 	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
934 }
935 
936 /**
937  * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
938  * @hsotg: The device state
939  * @ctrl: USB control request
940  */
941 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
942 					 struct usb_ctrlrequest *ctrl)
943 {
944 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
945 	struct s3c_hsotg_req *hs_req;
946 	bool restart;
947 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
948 	struct s3c_hsotg_ep *ep;
949 	int ret;
950 	bool halted;
951 
952 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
953 		__func__, set ? "SET" : "CLEAR");
954 
955 	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
956 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
957 		if (!ep) {
958 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
959 				__func__, le16_to_cpu(ctrl->wIndex));
960 			return -ENOENT;
961 		}
962 
963 		switch (le16_to_cpu(ctrl->wValue)) {
964 		case USB_ENDPOINT_HALT:
965 			halted = ep->halted;
966 
967 			s3c_hsotg_ep_sethalt(&ep->ep, set);
968 
969 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
970 			if (ret) {
971 				dev_err(hsotg->dev,
972 					"%s: failed to send reply\n", __func__);
973 				return ret;
974 			}
975 
976 			/*
977 			 * we have to complete all requests for ep if it was
978 			 * halted, and the halt was cleared by CLEAR_FEATURE
979 			 */
980 
981 			if (!set && halted) {
982 				/*
983 				 * If we have request in progress,
984 				 * then complete it
985 				 */
986 				if (ep->req) {
987 					hs_req = ep->req;
988 					ep->req = NULL;
989 					list_del_init(&hs_req->queue);
990 					hs_req->req.complete(&ep->ep,
991 							     &hs_req->req);
992 				}
993 
994 				/* If we have pending request, then start it */
995 				restart = !list_empty(&ep->queue);
996 				if (restart) {
997 					hs_req = get_ep_head(ep);
998 					s3c_hsotg_start_req(hsotg, ep,
999 							    hs_req, false);
1000 				}
1001 			}
1002 
1003 			break;
1004 
1005 		default:
1006 			return -ENOENT;
1007 		}
1008 	} else
1009 		return -ENOENT;  /* currently only deal with endpoint */
1010 
1011 	return 1;
1012 }
1013 
1014 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1015 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1016 
1017 /**
1018  * s3c_hsotg_stall_ep0 - stall ep0
1019  * @hsotg: The device state
1020  *
1021  * Set stall for ep0 as response for setup request.
1022  */
1023 static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg)
1024 {
1025 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1026 	u32 reg;
1027 	u32 ctrl;
1028 
1029 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1030 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1031 
1032 	/*
1033 	 * DxEPCTL_Stall will be cleared by EP once it has
1034 	 * taken effect, so no need to clear later.
1035 	 */
1036 
1037 	ctrl = readl(hsotg->regs + reg);
1038 	ctrl |= DXEPCTL_STALL;
1039 	ctrl |= DXEPCTL_CNAK;
1040 	writel(ctrl, hsotg->regs + reg);
1041 
1042 	dev_dbg(hsotg->dev,
1043 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1044 		ctrl, reg, readl(hsotg->regs + reg));
1045 
1046 	 /*
1047 	  * complete won't be called, so we enqueue
1048 	  * setup request here
1049 	  */
1050 	 s3c_hsotg_enqueue_setup(hsotg);
1051 }
1052 
1053 /**
1054  * s3c_hsotg_process_control - process a control request
1055  * @hsotg: The device state
1056  * @ctrl: The control request received
1057  *
1058  * The controller has received the SETUP phase of a control request, and
1059  * needs to work out what to do next (and whether to pass it on to the
1060  * gadget driver).
1061  */
1062 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1063 				      struct usb_ctrlrequest *ctrl)
1064 {
1065 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1066 	int ret = 0;
1067 	u32 dcfg;
1068 
1069 	ep0->sent_zlp = 0;
1070 
1071 	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1072 		 ctrl->bRequest, ctrl->bRequestType,
1073 		 ctrl->wValue, ctrl->wLength);
1074 
1075 	/*
1076 	 * record the direction of the request, for later use when enquing
1077 	 * packets onto EP0.
1078 	 */
1079 
1080 	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1081 	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1082 
1083 	/*
1084 	 * if we've no data with this request, then the last part of the
1085 	 * transaction is going to implicitly be IN.
1086 	 */
1087 	if (ctrl->wLength == 0)
1088 		ep0->dir_in = 1;
1089 
1090 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1091 		switch (ctrl->bRequest) {
1092 		case USB_REQ_SET_ADDRESS:
1093 			s3c_hsotg_disconnect(hsotg);
1094 			dcfg = readl(hsotg->regs + DCFG);
1095 			dcfg &= ~DCFG_DEVADDR_MASK;
1096 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1097 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1098 			writel(dcfg, hsotg->regs + DCFG);
1099 
1100 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1101 
1102 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1103 			return;
1104 
1105 		case USB_REQ_GET_STATUS:
1106 			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1107 			break;
1108 
1109 		case USB_REQ_CLEAR_FEATURE:
1110 		case USB_REQ_SET_FEATURE:
1111 			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1112 			break;
1113 		}
1114 	}
1115 
1116 	/* as a fallback, try delivering it to the driver to deal with */
1117 
1118 	if (ret == 0 && hsotg->driver) {
1119 		spin_unlock(&hsotg->lock);
1120 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1121 		spin_lock(&hsotg->lock);
1122 		if (ret < 0)
1123 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1124 	}
1125 
1126 	/*
1127 	 * the request is either unhandlable, or is not formatted correctly
1128 	 * so respond with a STALL for the status stage to indicate failure.
1129 	 */
1130 
1131 	if (ret < 0)
1132 		s3c_hsotg_stall_ep0(hsotg);
1133 }
1134 
1135 /**
1136  * s3c_hsotg_complete_setup - completion of a setup transfer
1137  * @ep: The endpoint the request was on.
1138  * @req: The request completed.
1139  *
1140  * Called on completion of any requests the driver itself submitted for
1141  * EP0 setup packets
1142  */
1143 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1144 				     struct usb_request *req)
1145 {
1146 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1147 	struct s3c_hsotg *hsotg = hs_ep->parent;
1148 
1149 	if (req->status < 0) {
1150 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1151 		return;
1152 	}
1153 
1154 	spin_lock(&hsotg->lock);
1155 	if (req->actual == 0)
1156 		s3c_hsotg_enqueue_setup(hsotg);
1157 	else
1158 		s3c_hsotg_process_control(hsotg, req->buf);
1159 	spin_unlock(&hsotg->lock);
1160 }
1161 
1162 /**
1163  * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1164  * @hsotg: The device state.
1165  *
1166  * Enqueue a request on EP0 if necessary to received any SETUP packets
1167  * received from the host.
1168  */
1169 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1170 {
1171 	struct usb_request *req = hsotg->ctrl_req;
1172 	struct s3c_hsotg_req *hs_req = our_req(req);
1173 	int ret;
1174 
1175 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1176 
1177 	req->zero = 0;
1178 	req->length = 8;
1179 	req->buf = hsotg->ctrl_buff;
1180 	req->complete = s3c_hsotg_complete_setup;
1181 
1182 	if (!list_empty(&hs_req->queue)) {
1183 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1184 		return;
1185 	}
1186 
1187 	hsotg->eps[0].dir_in = 0;
1188 
1189 	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1190 	if (ret < 0) {
1191 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1192 		/*
1193 		 * Don't think there's much we can do other than watch the
1194 		 * driver fail.
1195 		 */
1196 	}
1197 }
1198 
1199 /**
1200  * s3c_hsotg_complete_request - complete a request given to us
1201  * @hsotg: The device state.
1202  * @hs_ep: The endpoint the request was on.
1203  * @hs_req: The request to complete.
1204  * @result: The result code (0 => Ok, otherwise errno)
1205  *
1206  * The given request has finished, so call the necessary completion
1207  * if it has one and then look to see if we can start a new request
1208  * on the endpoint.
1209  *
1210  * Note, expects the ep to already be locked as appropriate.
1211  */
1212 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1213 				       struct s3c_hsotg_ep *hs_ep,
1214 				       struct s3c_hsotg_req *hs_req,
1215 				       int result)
1216 {
1217 	bool restart;
1218 
1219 	if (!hs_req) {
1220 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1221 		return;
1222 	}
1223 
1224 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1225 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1226 
1227 	/*
1228 	 * only replace the status if we've not already set an error
1229 	 * from a previous transaction
1230 	 */
1231 
1232 	if (hs_req->req.status == -EINPROGRESS)
1233 		hs_req->req.status = result;
1234 
1235 	hs_ep->req = NULL;
1236 	list_del_init(&hs_req->queue);
1237 
1238 	if (using_dma(hsotg))
1239 		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1240 
1241 	/*
1242 	 * call the complete request with the locks off, just in case the
1243 	 * request tries to queue more work for this endpoint.
1244 	 */
1245 
1246 	if (hs_req->req.complete) {
1247 		spin_unlock(&hsotg->lock);
1248 		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1249 		spin_lock(&hsotg->lock);
1250 	}
1251 
1252 	/*
1253 	 * Look to see if there is anything else to do. Note, the completion
1254 	 * of the previous request may have caused a new request to be started
1255 	 * so be careful when doing this.
1256 	 */
1257 
1258 	if (!hs_ep->req && result >= 0) {
1259 		restart = !list_empty(&hs_ep->queue);
1260 		if (restart) {
1261 			hs_req = get_ep_head(hs_ep);
1262 			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1263 		}
1264 	}
1265 }
1266 
1267 /**
1268  * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1269  * @hsotg: The device state.
1270  * @ep_idx: The endpoint index for the data
1271  * @size: The size of data in the fifo, in bytes
1272  *
1273  * The FIFO status shows there is data to read from the FIFO for a given
1274  * endpoint, so sort out whether we need to read the data into a request
1275  * that has been made for that endpoint.
1276  */
1277 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1278 {
1279 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1280 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1281 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1282 	int to_read;
1283 	int max_req;
1284 	int read_ptr;
1285 
1286 
1287 	if (!hs_req) {
1288 		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1289 		int ptr;
1290 
1291 		dev_warn(hsotg->dev,
1292 			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1293 			 __func__, size, ep_idx, epctl);
1294 
1295 		/* dump the data from the FIFO, we've nothing we can do */
1296 		for (ptr = 0; ptr < size; ptr += 4)
1297 			(void)readl(fifo);
1298 
1299 		return;
1300 	}
1301 
1302 	to_read = size;
1303 	read_ptr = hs_req->req.actual;
1304 	max_req = hs_req->req.length - read_ptr;
1305 
1306 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1307 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1308 
1309 	if (to_read > max_req) {
1310 		/*
1311 		 * more data appeared than we where willing
1312 		 * to deal with in this request.
1313 		 */
1314 
1315 		/* currently we don't deal this */
1316 		WARN_ON_ONCE(1);
1317 	}
1318 
1319 	hs_ep->total_data += to_read;
1320 	hs_req->req.actual += to_read;
1321 	to_read = DIV_ROUND_UP(to_read, 4);
1322 
1323 	/*
1324 	 * note, we might over-write the buffer end by 3 bytes depending on
1325 	 * alignment of the data.
1326 	 */
1327 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1328 }
1329 
1330 /**
1331  * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1332  * @hsotg: The device instance
1333  * @req: The request currently on this endpoint
1334  *
1335  * Generate a zero-length IN packet request for terminating a SETUP
1336  * transaction.
1337  *
1338  * Note, since we don't write any data to the TxFIFO, then it is
1339  * currently believed that we do not need to wait for any space in
1340  * the TxFIFO.
1341  */
1342 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1343 			       struct s3c_hsotg_req *req)
1344 {
1345 	u32 ctrl;
1346 
1347 	if (!req) {
1348 		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1349 		return;
1350 	}
1351 
1352 	if (req->req.length == 0) {
1353 		hsotg->eps[0].sent_zlp = 1;
1354 		s3c_hsotg_enqueue_setup(hsotg);
1355 		return;
1356 	}
1357 
1358 	hsotg->eps[0].dir_in = 1;
1359 	hsotg->eps[0].sent_zlp = 1;
1360 
1361 	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1362 
1363 	/* issue a zero-sized packet to terminate this */
1364 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1365 	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1366 
1367 	ctrl = readl(hsotg->regs + DIEPCTL0);
1368 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1369 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1370 	ctrl |= DXEPCTL_USBACTEP;
1371 	writel(ctrl, hsotg->regs + DIEPCTL0);
1372 }
1373 
1374 /**
1375  * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1376  * @hsotg: The device instance
1377  * @epnum: The endpoint received from
1378  * @was_setup: Set if processing a SetupDone event.
1379  *
1380  * The RXFIFO has delivered an OutDone event, which means that the data
1381  * transfer for an OUT endpoint has been completed, either by a short
1382  * packet or by the finish of a transfer.
1383  */
1384 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1385 				     int epnum, bool was_setup)
1386 {
1387 	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1388 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1389 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1390 	struct usb_request *req = &hs_req->req;
1391 	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1392 	int result = 0;
1393 
1394 	if (!hs_req) {
1395 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1396 		return;
1397 	}
1398 
1399 	if (using_dma(hsotg)) {
1400 		unsigned size_done;
1401 
1402 		/*
1403 		 * Calculate the size of the transfer by checking how much
1404 		 * is left in the endpoint size register and then working it
1405 		 * out from the amount we loaded for the transfer.
1406 		 *
1407 		 * We need to do this as DMA pointers are always 32bit aligned
1408 		 * so may overshoot/undershoot the transfer.
1409 		 */
1410 
1411 		size_done = hs_ep->size_loaded - size_left;
1412 		size_done += hs_ep->last_load;
1413 
1414 		req->actual = size_done;
1415 	}
1416 
1417 	/* if there is more request to do, schedule new transfer */
1418 	if (req->actual < req->length && size_left == 0) {
1419 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1420 		return;
1421 	} else if (epnum == 0) {
1422 		/*
1423 		 * After was_setup = 1 =>
1424 		 * set CNAK for non Setup requests
1425 		 */
1426 		hsotg->setup = was_setup ? 0 : 1;
1427 	}
1428 
1429 	if (req->actual < req->length && req->short_not_ok) {
1430 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1431 			__func__, req->actual, req->length);
1432 
1433 		/*
1434 		 * todo - what should we return here? there's no one else
1435 		 * even bothering to check the status.
1436 		 */
1437 	}
1438 
1439 	if (epnum == 0) {
1440 		/*
1441 		 * Condition req->complete != s3c_hsotg_complete_setup says:
1442 		 * send ZLP when we have an asynchronous request from gadget
1443 		 */
1444 		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1445 			s3c_hsotg_send_zlp(hsotg, hs_req);
1446 	}
1447 
1448 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1449 }
1450 
1451 /**
1452  * s3c_hsotg_read_frameno - read current frame number
1453  * @hsotg: The device instance
1454  *
1455  * Return the current frame number
1456  */
1457 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1458 {
1459 	u32 dsts;
1460 
1461 	dsts = readl(hsotg->regs + DSTS);
1462 	dsts &= DSTS_SOFFN_MASK;
1463 	dsts >>= DSTS_SOFFN_SHIFT;
1464 
1465 	return dsts;
1466 }
1467 
1468 /**
1469  * s3c_hsotg_handle_rx - RX FIFO has data
1470  * @hsotg: The device instance
1471  *
1472  * The IRQ handler has detected that the RX FIFO has some data in it
1473  * that requires processing, so find out what is in there and do the
1474  * appropriate read.
1475  *
1476  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1477  * chunks, so if you have x packets received on an endpoint you'll get x
1478  * FIFO events delivered, each with a packet's worth of data in it.
1479  *
1480  * When using DMA, we should not be processing events from the RXFIFO
1481  * as the actual data should be sent to the memory directly and we turn
1482  * on the completion interrupts to get notifications of transfer completion.
1483  */
1484 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1485 {
1486 	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1487 	u32 epnum, status, size;
1488 
1489 	WARN_ON(using_dma(hsotg));
1490 
1491 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1492 	status = grxstsr & GRXSTS_PKTSTS_MASK;
1493 
1494 	size = grxstsr & GRXSTS_BYTECNT_MASK;
1495 	size >>= GRXSTS_BYTECNT_SHIFT;
1496 
1497 	if (1)
1498 		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1499 			__func__, grxstsr, size, epnum);
1500 
1501 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1502 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1503 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1504 		break;
1505 
1506 	case GRXSTS_PKTSTS_OUTDONE:
1507 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1508 			s3c_hsotg_read_frameno(hsotg));
1509 
1510 		if (!using_dma(hsotg))
1511 			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1512 		break;
1513 
1514 	case GRXSTS_PKTSTS_SETUPDONE:
1515 		dev_dbg(hsotg->dev,
1516 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1517 			s3c_hsotg_read_frameno(hsotg),
1518 			readl(hsotg->regs + DOEPCTL(0)));
1519 
1520 		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1521 		break;
1522 
1523 	case GRXSTS_PKTSTS_OUTRX:
1524 		s3c_hsotg_rx_data(hsotg, epnum, size);
1525 		break;
1526 
1527 	case GRXSTS_PKTSTS_SETUPRX:
1528 		dev_dbg(hsotg->dev,
1529 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1530 			s3c_hsotg_read_frameno(hsotg),
1531 			readl(hsotg->regs + DOEPCTL(0)));
1532 
1533 		s3c_hsotg_rx_data(hsotg, epnum, size);
1534 		break;
1535 
1536 	default:
1537 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1538 			 __func__, grxstsr);
1539 
1540 		s3c_hsotg_dump(hsotg);
1541 		break;
1542 	}
1543 }
1544 
1545 /**
1546  * s3c_hsotg_ep0_mps - turn max packet size into register setting
1547  * @mps: The maximum packet size in bytes.
1548  */
1549 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1550 {
1551 	switch (mps) {
1552 	case 64:
1553 		return D0EPCTL_MPS_64;
1554 	case 32:
1555 		return D0EPCTL_MPS_32;
1556 	case 16:
1557 		return D0EPCTL_MPS_16;
1558 	case 8:
1559 		return D0EPCTL_MPS_8;
1560 	}
1561 
1562 	/* bad max packet size, warn and return invalid result */
1563 	WARN_ON(1);
1564 	return (u32)-1;
1565 }
1566 
1567 /**
1568  * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1569  * @hsotg: The driver state.
1570  * @ep: The index number of the endpoint
1571  * @mps: The maximum packet size in bytes
1572  *
1573  * Configure the maximum packet size for the given endpoint, updating
1574  * the hardware control registers to reflect this.
1575  */
1576 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1577 				       unsigned int ep, unsigned int mps)
1578 {
1579 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1580 	void __iomem *regs = hsotg->regs;
1581 	u32 mpsval;
1582 	u32 mcval;
1583 	u32 reg;
1584 
1585 	if (ep == 0) {
1586 		/* EP0 is a special case */
1587 		mpsval = s3c_hsotg_ep0_mps(mps);
1588 		if (mpsval > 3)
1589 			goto bad_mps;
1590 		hs_ep->ep.maxpacket = mps;
1591 		hs_ep->mc = 1;
1592 	} else {
1593 		mpsval = mps & DXEPCTL_MPS_MASK;
1594 		if (mpsval > 1024)
1595 			goto bad_mps;
1596 		mcval = ((mps >> 11) & 0x3) + 1;
1597 		hs_ep->mc = mcval;
1598 		if (mcval > 3)
1599 			goto bad_mps;
1600 		hs_ep->ep.maxpacket = mpsval;
1601 	}
1602 
1603 	/*
1604 	 * update both the in and out endpoint controldir_ registers, even
1605 	 * if one of the directions may not be in use.
1606 	 */
1607 
1608 	reg = readl(regs + DIEPCTL(ep));
1609 	reg &= ~DXEPCTL_MPS_MASK;
1610 	reg |= mpsval;
1611 	writel(reg, regs + DIEPCTL(ep));
1612 
1613 	if (ep) {
1614 		reg = readl(regs + DOEPCTL(ep));
1615 		reg &= ~DXEPCTL_MPS_MASK;
1616 		reg |= mpsval;
1617 		writel(reg, regs + DOEPCTL(ep));
1618 	}
1619 
1620 	return;
1621 
1622 bad_mps:
1623 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1624 }
1625 
1626 /**
1627  * s3c_hsotg_txfifo_flush - flush Tx FIFO
1628  * @hsotg: The driver state
1629  * @idx: The index for the endpoint (0..15)
1630  */
1631 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1632 {
1633 	int timeout;
1634 	int val;
1635 
1636 	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1637 		hsotg->regs + GRSTCTL);
1638 
1639 	/* wait until the fifo is flushed */
1640 	timeout = 100;
1641 
1642 	while (1) {
1643 		val = readl(hsotg->regs + GRSTCTL);
1644 
1645 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1646 			break;
1647 
1648 		if (--timeout == 0) {
1649 			dev_err(hsotg->dev,
1650 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1651 				__func__, val);
1652 			break;
1653 		}
1654 
1655 		udelay(1);
1656 	}
1657 }
1658 
1659 /**
1660  * s3c_hsotg_trytx - check to see if anything needs transmitting
1661  * @hsotg: The driver state
1662  * @hs_ep: The driver endpoint to check.
1663  *
1664  * Check to see if there is a request that has data to send, and if so
1665  * make an attempt to write data into the FIFO.
1666  */
1667 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1668 			   struct s3c_hsotg_ep *hs_ep)
1669 {
1670 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1671 
1672 	if (!hs_ep->dir_in || !hs_req) {
1673 		/**
1674 		 * if request is not enqueued, we disable interrupts
1675 		 * for endpoints, excepting ep0
1676 		 */
1677 		if (hs_ep->index != 0)
1678 			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1679 					     hs_ep->dir_in, 0);
1680 		return 0;
1681 	}
1682 
1683 	if (hs_req->req.actual < hs_req->req.length) {
1684 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1685 			hs_ep->index);
1686 		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 /**
1693  * s3c_hsotg_complete_in - complete IN transfer
1694  * @hsotg: The device state.
1695  * @hs_ep: The endpoint that has just completed.
1696  *
1697  * An IN transfer has been completed, update the transfer's state and then
1698  * call the relevant completion routines.
1699  */
1700 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1701 				  struct s3c_hsotg_ep *hs_ep)
1702 {
1703 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1704 	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1705 	int size_left, size_done;
1706 
1707 	if (!hs_req) {
1708 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1709 		return;
1710 	}
1711 
1712 	/* Finish ZLP handling for IN EP0 transactions */
1713 	if (hsotg->eps[0].sent_zlp) {
1714 		dev_dbg(hsotg->dev, "zlp packet received\n");
1715 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1716 		return;
1717 	}
1718 
1719 	/*
1720 	 * Calculate the size of the transfer by checking how much is left
1721 	 * in the endpoint size register and then working it out from
1722 	 * the amount we loaded for the transfer.
1723 	 *
1724 	 * We do this even for DMA, as the transfer may have incremented
1725 	 * past the end of the buffer (DMA transfers are always 32bit
1726 	 * aligned).
1727 	 */
1728 
1729 	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1730 
1731 	size_done = hs_ep->size_loaded - size_left;
1732 	size_done += hs_ep->last_load;
1733 
1734 	if (hs_req->req.actual != size_done)
1735 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1736 			__func__, hs_req->req.actual, size_done);
1737 
1738 	hs_req->req.actual = size_done;
1739 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1740 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1741 
1742 	/*
1743 	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1744 	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1745 	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1746 	 * inform the host that no more data is available.
1747 	 * The state of req.zero member is checked to be sure that the value to
1748 	 * send is smaller than wValue expected from host.
1749 	 * Check req.length to NOT send another ZLP when the current one is
1750 	 * under completion (the one for which this completion has been called).
1751 	 */
1752 	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1753 	    hs_req->req.length == hs_req->req.actual &&
1754 	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1755 
1756 		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1757 		s3c_hsotg_send_zlp(hsotg, hs_req);
1758 
1759 		return;
1760 	}
1761 
1762 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1763 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1764 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1765 	} else
1766 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1767 }
1768 
1769 /**
1770  * s3c_hsotg_epint - handle an in/out endpoint interrupt
1771  * @hsotg: The driver state
1772  * @idx: The index for the endpoint (0..15)
1773  * @dir_in: Set if this is an IN endpoint
1774  *
1775  * Process and clear any interrupt pending for an individual endpoint
1776  */
1777 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1778 			    int dir_in)
1779 {
1780 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1781 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1782 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1783 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1784 	u32 ints;
1785 	u32 ctrl;
1786 
1787 	ints = readl(hsotg->regs + epint_reg);
1788 	ctrl = readl(hsotg->regs + epctl_reg);
1789 
1790 	/* Clear endpoint interrupts */
1791 	writel(ints, hsotg->regs + epint_reg);
1792 
1793 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1794 		__func__, idx, dir_in ? "in" : "out", ints);
1795 
1796 	if (ints & DXEPINT_XFERCOMPL) {
1797 		if (hs_ep->isochronous && hs_ep->interval == 1) {
1798 			if (ctrl & DXEPCTL_EOFRNUM)
1799 				ctrl |= DXEPCTL_SETEVENFR;
1800 			else
1801 				ctrl |= DXEPCTL_SETODDFR;
1802 			writel(ctrl, hsotg->regs + epctl_reg);
1803 		}
1804 
1805 		dev_dbg(hsotg->dev,
1806 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1807 			__func__, readl(hsotg->regs + epctl_reg),
1808 			readl(hsotg->regs + epsiz_reg));
1809 
1810 		/*
1811 		 * we get OutDone from the FIFO, so we only need to look
1812 		 * at completing IN requests here
1813 		 */
1814 		if (dir_in) {
1815 			s3c_hsotg_complete_in(hsotg, hs_ep);
1816 
1817 			if (idx == 0 && !hs_ep->req)
1818 				s3c_hsotg_enqueue_setup(hsotg);
1819 		} else if (using_dma(hsotg)) {
1820 			/*
1821 			 * We're using DMA, we need to fire an OutDone here
1822 			 * as we ignore the RXFIFO.
1823 			 */
1824 
1825 			s3c_hsotg_handle_outdone(hsotg, idx, false);
1826 		}
1827 	}
1828 
1829 	if (ints & DXEPINT_EPDISBLD) {
1830 		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1831 
1832 		if (dir_in) {
1833 			int epctl = readl(hsotg->regs + epctl_reg);
1834 
1835 			s3c_hsotg_txfifo_flush(hsotg, idx);
1836 
1837 			if ((epctl & DXEPCTL_STALL) &&
1838 				(epctl & DXEPCTL_EPTYPE_BULK)) {
1839 				int dctl = readl(hsotg->regs + DCTL);
1840 
1841 				dctl |= DCTL_CGNPINNAK;
1842 				writel(dctl, hsotg->regs + DCTL);
1843 			}
1844 		}
1845 	}
1846 
1847 	if (ints & DXEPINT_AHBERR)
1848 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1849 
1850 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1851 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1852 
1853 		if (using_dma(hsotg) && idx == 0) {
1854 			/*
1855 			 * this is the notification we've received a
1856 			 * setup packet. In non-DMA mode we'd get this
1857 			 * from the RXFIFO, instead we need to process
1858 			 * the setup here.
1859 			 */
1860 
1861 			if (dir_in)
1862 				WARN_ON_ONCE(1);
1863 			else
1864 				s3c_hsotg_handle_outdone(hsotg, 0, true);
1865 		}
1866 	}
1867 
1868 	if (ints & DXEPINT_BACK2BACKSETUP)
1869 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1870 
1871 	if (dir_in && !hs_ep->isochronous) {
1872 		/* not sure if this is important, but we'll clear it anyway */
1873 		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1874 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1875 				__func__, idx);
1876 		}
1877 
1878 		/* this probably means something bad is happening */
1879 		if (ints & DIEPMSK_INTKNEPMISMSK) {
1880 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1881 				 __func__, idx);
1882 		}
1883 
1884 		/* FIFO has space or is empty (see GAHBCFG) */
1885 		if (hsotg->dedicated_fifos &&
1886 		    ints & DIEPMSK_TXFIFOEMPTY) {
1887 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1888 				__func__, idx);
1889 			if (!using_dma(hsotg))
1890 				s3c_hsotg_trytx(hsotg, hs_ep);
1891 		}
1892 	}
1893 }
1894 
1895 /**
1896  * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1897  * @hsotg: The device state.
1898  *
1899  * Handle updating the device settings after the enumeration phase has
1900  * been completed.
1901  */
1902 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1903 {
1904 	u32 dsts = readl(hsotg->regs + DSTS);
1905 	int ep0_mps = 0, ep_mps = 8;
1906 
1907 	/*
1908 	 * This should signal the finish of the enumeration phase
1909 	 * of the USB handshaking, so we should now know what rate
1910 	 * we connected at.
1911 	 */
1912 
1913 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1914 
1915 	/*
1916 	 * note, since we're limited by the size of transfer on EP0, and
1917 	 * it seems IN transfers must be a even number of packets we do
1918 	 * not advertise a 64byte MPS on EP0.
1919 	 */
1920 
1921 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1922 	switch (dsts & DSTS_ENUMSPD_MASK) {
1923 	case DSTS_ENUMSPD_FS:
1924 	case DSTS_ENUMSPD_FS48:
1925 		hsotg->gadget.speed = USB_SPEED_FULL;
1926 		ep0_mps = EP0_MPS_LIMIT;
1927 		ep_mps = 1023;
1928 		break;
1929 
1930 	case DSTS_ENUMSPD_HS:
1931 		hsotg->gadget.speed = USB_SPEED_HIGH;
1932 		ep0_mps = EP0_MPS_LIMIT;
1933 		ep_mps = 1024;
1934 		break;
1935 
1936 	case DSTS_ENUMSPD_LS:
1937 		hsotg->gadget.speed = USB_SPEED_LOW;
1938 		/*
1939 		 * note, we don't actually support LS in this driver at the
1940 		 * moment, and the documentation seems to imply that it isn't
1941 		 * supported by the PHYs on some of the devices.
1942 		 */
1943 		break;
1944 	}
1945 	dev_info(hsotg->dev, "new device is %s\n",
1946 		 usb_speed_string(hsotg->gadget.speed));
1947 
1948 	/*
1949 	 * we should now know the maximum packet size for an
1950 	 * endpoint, so set the endpoints to a default value.
1951 	 */
1952 
1953 	if (ep0_mps) {
1954 		int i;
1955 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1956 		for (i = 1; i < hsotg->num_of_eps; i++)
1957 			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1958 	}
1959 
1960 	/* ensure after enumeration our EP0 is active */
1961 
1962 	s3c_hsotg_enqueue_setup(hsotg);
1963 
1964 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1965 		readl(hsotg->regs + DIEPCTL0),
1966 		readl(hsotg->regs + DOEPCTL0));
1967 }
1968 
1969 /**
1970  * kill_all_requests - remove all requests from the endpoint's queue
1971  * @hsotg: The device state.
1972  * @ep: The endpoint the requests may be on.
1973  * @result: The result code to use.
1974  * @force: Force removal of any current requests
1975  *
1976  * Go through the requests on the given endpoint and mark them
1977  * completed with the given result code.
1978  */
1979 static void kill_all_requests(struct s3c_hsotg *hsotg,
1980 			      struct s3c_hsotg_ep *ep,
1981 			      int result, bool force)
1982 {
1983 	struct s3c_hsotg_req *req, *treq;
1984 
1985 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1986 		/*
1987 		 * currently, we can't do much about an already
1988 		 * running request on an in endpoint
1989 		 */
1990 
1991 		if (ep->req == req && ep->dir_in && !force)
1992 			continue;
1993 
1994 		s3c_hsotg_complete_request(hsotg, ep, req,
1995 					   result);
1996 	}
1997 	if (hsotg->dedicated_fifos)
1998 		if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
1999 			s3c_hsotg_txfifo_flush(hsotg, ep->index);
2000 }
2001 
2002 /**
2003  * s3c_hsotg_disconnect - disconnect service
2004  * @hsotg: The device state.
2005  *
2006  * The device has been disconnected. Remove all current
2007  * transactions and signal the gadget driver that this
2008  * has happened.
2009  */
2010 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2011 {
2012 	unsigned ep;
2013 
2014 	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2015 		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2016 
2017 	call_gadget(hsotg, disconnect);
2018 }
2019 
2020 /**
2021  * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2022  * @hsotg: The device state:
2023  * @periodic: True if this is a periodic FIFO interrupt
2024  */
2025 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2026 {
2027 	struct s3c_hsotg_ep *ep;
2028 	int epno, ret;
2029 
2030 	/* look through for any more data to transmit */
2031 
2032 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2033 		ep = &hsotg->eps[epno];
2034 
2035 		if (!ep->dir_in)
2036 			continue;
2037 
2038 		if ((periodic && !ep->periodic) ||
2039 		    (!periodic && ep->periodic))
2040 			continue;
2041 
2042 		ret = s3c_hsotg_trytx(hsotg, ep);
2043 		if (ret < 0)
2044 			break;
2045 	}
2046 }
2047 
2048 /* IRQ flags which will trigger a retry around the IRQ loop */
2049 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2050 			GINTSTS_PTXFEMP |  \
2051 			GINTSTS_RXFLVL)
2052 
2053 /**
2054  * s3c_hsotg_corereset - issue softreset to the core
2055  * @hsotg: The device state
2056  *
2057  * Issue a soft reset to the core, and await the core finishing it.
2058  */
2059 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2060 {
2061 	int timeout;
2062 	u32 grstctl;
2063 
2064 	dev_dbg(hsotg->dev, "resetting core\n");
2065 
2066 	/* issue soft reset */
2067 	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2068 
2069 	timeout = 10000;
2070 	do {
2071 		grstctl = readl(hsotg->regs + GRSTCTL);
2072 	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2073 
2074 	if (grstctl & GRSTCTL_CSFTRST) {
2075 		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2076 		return -EINVAL;
2077 	}
2078 
2079 	timeout = 10000;
2080 
2081 	while (1) {
2082 		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2083 
2084 		if (timeout-- < 0) {
2085 			dev_info(hsotg->dev,
2086 				 "%s: reset failed, GRSTCTL=%08x\n",
2087 				 __func__, grstctl);
2088 			return -ETIMEDOUT;
2089 		}
2090 
2091 		if (!(grstctl & GRSTCTL_AHBIDLE))
2092 			continue;
2093 
2094 		break;		/* reset done */
2095 	}
2096 
2097 	dev_dbg(hsotg->dev, "reset successful\n");
2098 	return 0;
2099 }
2100 
2101 /**
2102  * s3c_hsotg_core_init - issue softreset to the core
2103  * @hsotg: The device state
2104  *
2105  * Issue a soft reset to the core, and await the core finishing it.
2106  */
2107 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2108 {
2109 	s3c_hsotg_corereset(hsotg);
2110 
2111 	/*
2112 	 * we must now enable ep0 ready for host detection and then
2113 	 * set configuration.
2114 	 */
2115 
2116 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2117 	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2118 	       (0x5 << 10), hsotg->regs + GUSBCFG);
2119 
2120 	s3c_hsotg_init_fifo(hsotg);
2121 
2122 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2123 
2124 	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2125 
2126 	/* Clear any pending OTG interrupts */
2127 	writel(0xffffffff, hsotg->regs + GOTGINT);
2128 
2129 	/* Clear any pending interrupts */
2130 	writel(0xffffffff, hsotg->regs + GINTSTS);
2131 
2132 	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2133 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2134 		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2135 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2136 		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2137 		hsotg->regs + GINTMSK);
2138 
2139 	if (using_dma(hsotg))
2140 		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2141 		       GAHBCFG_HBSTLEN_INCR4,
2142 		       hsotg->regs + GAHBCFG);
2143 	else
2144 		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2145 						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2146 		       GAHBCFG_GLBL_INTR_EN,
2147 		       hsotg->regs + GAHBCFG);
2148 
2149 	/*
2150 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2151 	 * when we have no data to transfer. Otherwise we get being flooded by
2152 	 * interrupts.
2153 	 */
2154 
2155 	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
2156 		DIEPMSK_INTKNTXFEMPMSK : 0) |
2157 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2158 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2159 		DIEPMSK_INTKNEPMISMSK,
2160 		hsotg->regs + DIEPMSK);
2161 
2162 	/*
2163 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2164 	 * DMA mode we may need this.
2165 	 */
2166 	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2167 				    DIEPMSK_TIMEOUTMSK) : 0) |
2168 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2169 		DOEPMSK_SETUPMSK,
2170 		hsotg->regs + DOEPMSK);
2171 
2172 	writel(0, hsotg->regs + DAINTMSK);
2173 
2174 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2175 		readl(hsotg->regs + DIEPCTL0),
2176 		readl(hsotg->regs + DOEPCTL0));
2177 
2178 	/* enable in and out endpoint interrupts */
2179 	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2180 
2181 	/*
2182 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2183 	 * the data. In DMA mode, we get events from the FIFO but also
2184 	 * things we cannot process, so do not use it.
2185 	 */
2186 	if (!using_dma(hsotg))
2187 		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2188 
2189 	/* Enable interrupts for EP0 in and out */
2190 	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2191 	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2192 
2193 	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2194 	udelay(10);  /* see openiboot */
2195 	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2196 
2197 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2198 
2199 	/*
2200 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2201 	 * writing to the EPCTL register..
2202 	 */
2203 
2204 	/* set to read 1 8byte packet */
2205 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2206 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2207 
2208 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2209 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2210 	       DXEPCTL_USBACTEP,
2211 	       hsotg->regs + DOEPCTL0);
2212 
2213 	/* enable, but don't activate EP0in */
2214 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2215 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2216 
2217 	s3c_hsotg_enqueue_setup(hsotg);
2218 
2219 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2220 		readl(hsotg->regs + DIEPCTL0),
2221 		readl(hsotg->regs + DOEPCTL0));
2222 
2223 	/* clear global NAKs */
2224 	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2225 	       hsotg->regs + DCTL);
2226 
2227 	/* must be at-least 3ms to allow bus to see disconnect */
2228 	mdelay(3);
2229 
2230 	/* remove the soft-disconnect and let's go */
2231 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2232 }
2233 
2234 /**
2235  * s3c_hsotg_irq - handle device interrupt
2236  * @irq: The IRQ number triggered
2237  * @pw: The pw value when registered the handler.
2238  */
2239 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2240 {
2241 	struct s3c_hsotg *hsotg = pw;
2242 	int retry_count = 8;
2243 	u32 gintsts;
2244 	u32 gintmsk;
2245 
2246 	spin_lock(&hsotg->lock);
2247 irq_retry:
2248 	gintsts = readl(hsotg->regs + GINTSTS);
2249 	gintmsk = readl(hsotg->regs + GINTMSK);
2250 
2251 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2252 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2253 
2254 	gintsts &= gintmsk;
2255 
2256 	if (gintsts & GINTSTS_OTGINT) {
2257 		u32 otgint = readl(hsotg->regs + GOTGINT);
2258 
2259 		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2260 
2261 		writel(otgint, hsotg->regs + GOTGINT);
2262 	}
2263 
2264 	if (gintsts & GINTSTS_SESSREQINT) {
2265 		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2266 		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2267 	}
2268 
2269 	if (gintsts & GINTSTS_ENUMDONE) {
2270 		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2271 
2272 		s3c_hsotg_irq_enumdone(hsotg);
2273 	}
2274 
2275 	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2276 		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2277 			readl(hsotg->regs + DSTS),
2278 			readl(hsotg->regs + GOTGCTL));
2279 
2280 		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2281 	}
2282 
2283 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2284 		u32 daint = readl(hsotg->regs + DAINT);
2285 		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2286 		u32 daint_out, daint_in;
2287 		int ep;
2288 
2289 		daint &= daintmsk;
2290 		daint_out = daint >> DAINT_OUTEP_SHIFT;
2291 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2292 
2293 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2294 
2295 		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2296 			if (daint_out & 1)
2297 				s3c_hsotg_epint(hsotg, ep, 0);
2298 		}
2299 
2300 		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2301 			if (daint_in & 1)
2302 				s3c_hsotg_epint(hsotg, ep, 1);
2303 		}
2304 	}
2305 
2306 	if (gintsts & GINTSTS_USBRST) {
2307 
2308 		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2309 
2310 		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2311 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2312 			readl(hsotg->regs + GNPTXSTS));
2313 
2314 		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2315 
2316 		if (usb_status & GOTGCTL_BSESVLD) {
2317 			if (time_after(jiffies, hsotg->last_rst +
2318 				       msecs_to_jiffies(200))) {
2319 
2320 				kill_all_requests(hsotg, &hsotg->eps[0],
2321 							  -ECONNRESET, true);
2322 
2323 				s3c_hsotg_core_init(hsotg);
2324 				hsotg->last_rst = jiffies;
2325 			}
2326 		}
2327 	}
2328 
2329 	/* check both FIFOs */
2330 
2331 	if (gintsts & GINTSTS_NPTXFEMP) {
2332 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2333 
2334 		/*
2335 		 * Disable the interrupt to stop it happening again
2336 		 * unless one of these endpoint routines decides that
2337 		 * it needs re-enabling
2338 		 */
2339 
2340 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2341 		s3c_hsotg_irq_fifoempty(hsotg, false);
2342 	}
2343 
2344 	if (gintsts & GINTSTS_PTXFEMP) {
2345 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2346 
2347 		/* See note in GINTSTS_NPTxFEmp */
2348 
2349 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2350 		s3c_hsotg_irq_fifoempty(hsotg, true);
2351 	}
2352 
2353 	if (gintsts & GINTSTS_RXFLVL) {
2354 		/*
2355 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2356 		 * we need to retry s3c_hsotg_handle_rx if this is still
2357 		 * set.
2358 		 */
2359 
2360 		s3c_hsotg_handle_rx(hsotg);
2361 	}
2362 
2363 	if (gintsts & GINTSTS_MODEMIS) {
2364 		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2365 		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2366 	}
2367 
2368 	if (gintsts & GINTSTS_USBSUSP) {
2369 		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2370 		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2371 
2372 		call_gadget(hsotg, suspend);
2373 	}
2374 
2375 	if (gintsts & GINTSTS_WKUPINT) {
2376 		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2377 		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2378 
2379 		call_gadget(hsotg, resume);
2380 	}
2381 
2382 	if (gintsts & GINTSTS_ERLYSUSP) {
2383 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2384 		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2385 	}
2386 
2387 	/*
2388 	 * these next two seem to crop-up occasionally causing the core
2389 	 * to shutdown the USB transfer, so try clearing them and logging
2390 	 * the occurrence.
2391 	 */
2392 
2393 	if (gintsts & GINTSTS_GOUTNAKEFF) {
2394 		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2395 
2396 		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2397 
2398 		s3c_hsotg_dump(hsotg);
2399 	}
2400 
2401 	if (gintsts & GINTSTS_GINNAKEFF) {
2402 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2403 
2404 		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2405 
2406 		s3c_hsotg_dump(hsotg);
2407 	}
2408 
2409 	/*
2410 	 * if we've had fifo events, we should try and go around the
2411 	 * loop again to see if there's any point in returning yet.
2412 	 */
2413 
2414 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2415 			goto irq_retry;
2416 
2417 	spin_unlock(&hsotg->lock);
2418 
2419 	return IRQ_HANDLED;
2420 }
2421 
2422 /**
2423  * s3c_hsotg_ep_enable - enable the given endpoint
2424  * @ep: The USB endpint to configure
2425  * @desc: The USB endpoint descriptor to configure with.
2426  *
2427  * This is called from the USB gadget code's usb_ep_enable().
2428  */
2429 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2430 			       const struct usb_endpoint_descriptor *desc)
2431 {
2432 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2433 	struct s3c_hsotg *hsotg = hs_ep->parent;
2434 	unsigned long flags;
2435 	int index = hs_ep->index;
2436 	u32 epctrl_reg;
2437 	u32 epctrl;
2438 	u32 mps;
2439 	int dir_in;
2440 	int ret = 0;
2441 
2442 	dev_dbg(hsotg->dev,
2443 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2444 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2445 		desc->wMaxPacketSize, desc->bInterval);
2446 
2447 	/* not to be called for EP0 */
2448 	WARN_ON(index == 0);
2449 
2450 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2451 	if (dir_in != hs_ep->dir_in) {
2452 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2453 		return -EINVAL;
2454 	}
2455 
2456 	mps = usb_endpoint_maxp(desc);
2457 
2458 	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2459 
2460 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2461 	epctrl = readl(hsotg->regs + epctrl_reg);
2462 
2463 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2464 		__func__, epctrl, epctrl_reg);
2465 
2466 	spin_lock_irqsave(&hsotg->lock, flags);
2467 
2468 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2469 	epctrl |= DXEPCTL_MPS(mps);
2470 
2471 	/*
2472 	 * mark the endpoint as active, otherwise the core may ignore
2473 	 * transactions entirely for this endpoint
2474 	 */
2475 	epctrl |= DXEPCTL_USBACTEP;
2476 
2477 	/*
2478 	 * set the NAK status on the endpoint, otherwise we might try and
2479 	 * do something with data that we've yet got a request to process
2480 	 * since the RXFIFO will take data for an endpoint even if the
2481 	 * size register hasn't been set.
2482 	 */
2483 
2484 	epctrl |= DXEPCTL_SNAK;
2485 
2486 	/* update the endpoint state */
2487 	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2488 
2489 	/* default, set to non-periodic */
2490 	hs_ep->isochronous = 0;
2491 	hs_ep->periodic = 0;
2492 	hs_ep->halted = 0;
2493 	hs_ep->interval = desc->bInterval;
2494 
2495 	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2496 		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2497 
2498 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2499 	case USB_ENDPOINT_XFER_ISOC:
2500 		epctrl |= DXEPCTL_EPTYPE_ISO;
2501 		epctrl |= DXEPCTL_SETEVENFR;
2502 		hs_ep->isochronous = 1;
2503 		if (dir_in)
2504 			hs_ep->periodic = 1;
2505 		break;
2506 
2507 	case USB_ENDPOINT_XFER_BULK:
2508 		epctrl |= DXEPCTL_EPTYPE_BULK;
2509 		break;
2510 
2511 	case USB_ENDPOINT_XFER_INT:
2512 		if (dir_in) {
2513 			/*
2514 			 * Allocate our TxFNum by simply using the index
2515 			 * of the endpoint for the moment. We could do
2516 			 * something better if the host indicates how
2517 			 * many FIFOs we are expecting to use.
2518 			 */
2519 
2520 			hs_ep->periodic = 1;
2521 			epctrl |= DXEPCTL_TXFNUM(index);
2522 		}
2523 
2524 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2525 		break;
2526 
2527 	case USB_ENDPOINT_XFER_CONTROL:
2528 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2529 		break;
2530 	}
2531 
2532 	/*
2533 	 * if the hardware has dedicated fifos, we must give each IN EP
2534 	 * a unique tx-fifo even if it is non-periodic.
2535 	 */
2536 	if (dir_in && hsotg->dedicated_fifos)
2537 		epctrl |= DXEPCTL_TXFNUM(index);
2538 
2539 	/* for non control endpoints, set PID to D0 */
2540 	if (index)
2541 		epctrl |= DXEPCTL_SETD0PID;
2542 
2543 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2544 		__func__, epctrl);
2545 
2546 	writel(epctrl, hsotg->regs + epctrl_reg);
2547 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2548 		__func__, readl(hsotg->regs + epctrl_reg));
2549 
2550 	/* enable the endpoint interrupt */
2551 	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2552 
2553 	spin_unlock_irqrestore(&hsotg->lock, flags);
2554 	return ret;
2555 }
2556 
2557 /**
2558  * s3c_hsotg_ep_disable - disable given endpoint
2559  * @ep: The endpoint to disable.
2560  */
2561 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2562 {
2563 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2564 	struct s3c_hsotg *hsotg = hs_ep->parent;
2565 	int dir_in = hs_ep->dir_in;
2566 	int index = hs_ep->index;
2567 	unsigned long flags;
2568 	u32 epctrl_reg;
2569 	u32 ctrl;
2570 
2571 	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2572 
2573 	if (ep == &hsotg->eps[0].ep) {
2574 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2575 		return -EINVAL;
2576 	}
2577 
2578 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2579 
2580 	spin_lock_irqsave(&hsotg->lock, flags);
2581 	/* terminate all requests with shutdown */
2582 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2583 
2584 
2585 	ctrl = readl(hsotg->regs + epctrl_reg);
2586 	ctrl &= ~DXEPCTL_EPENA;
2587 	ctrl &= ~DXEPCTL_USBACTEP;
2588 	ctrl |= DXEPCTL_SNAK;
2589 
2590 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2591 	writel(ctrl, hsotg->regs + epctrl_reg);
2592 
2593 	/* disable endpoint interrupts */
2594 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2595 
2596 	spin_unlock_irqrestore(&hsotg->lock, flags);
2597 	return 0;
2598 }
2599 
2600 /**
2601  * on_list - check request is on the given endpoint
2602  * @ep: The endpoint to check.
2603  * @test: The request to test if it is on the endpoint.
2604  */
2605 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2606 {
2607 	struct s3c_hsotg_req *req, *treq;
2608 
2609 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2610 		if (req == test)
2611 			return true;
2612 	}
2613 
2614 	return false;
2615 }
2616 
2617 /**
2618  * s3c_hsotg_ep_dequeue - dequeue given endpoint
2619  * @ep: The endpoint to dequeue.
2620  * @req: The request to be removed from a queue.
2621  */
2622 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2623 {
2624 	struct s3c_hsotg_req *hs_req = our_req(req);
2625 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2626 	struct s3c_hsotg *hs = hs_ep->parent;
2627 	unsigned long flags;
2628 
2629 	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2630 
2631 	spin_lock_irqsave(&hs->lock, flags);
2632 
2633 	if (!on_list(hs_ep, hs_req)) {
2634 		spin_unlock_irqrestore(&hs->lock, flags);
2635 		return -EINVAL;
2636 	}
2637 
2638 	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2639 	spin_unlock_irqrestore(&hs->lock, flags);
2640 
2641 	return 0;
2642 }
2643 
2644 /**
2645  * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2646  * @ep: The endpoint to set halt.
2647  * @value: Set or unset the halt.
2648  */
2649 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2650 {
2651 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2652 	struct s3c_hsotg *hs = hs_ep->parent;
2653 	int index = hs_ep->index;
2654 	u32 epreg;
2655 	u32 epctl;
2656 	u32 xfertype;
2657 
2658 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2659 
2660 	if (index == 0) {
2661 		if (value)
2662 			s3c_hsotg_stall_ep0(hs);
2663 		else
2664 			dev_warn(hs->dev,
2665 				 "%s: can't clear halt on ep0\n", __func__);
2666 		return 0;
2667 	}
2668 
2669 	/* write both IN and OUT control registers */
2670 
2671 	epreg = DIEPCTL(index);
2672 	epctl = readl(hs->regs + epreg);
2673 
2674 	if (value) {
2675 		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2676 		if (epctl & DXEPCTL_EPENA)
2677 			epctl |= DXEPCTL_EPDIS;
2678 	} else {
2679 		epctl &= ~DXEPCTL_STALL;
2680 		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2681 		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2682 			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2683 				epctl |= DXEPCTL_SETD0PID;
2684 	}
2685 
2686 	writel(epctl, hs->regs + epreg);
2687 
2688 	epreg = DOEPCTL(index);
2689 	epctl = readl(hs->regs + epreg);
2690 
2691 	if (value)
2692 		epctl |= DXEPCTL_STALL;
2693 	else {
2694 		epctl &= ~DXEPCTL_STALL;
2695 		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2696 		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2697 			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2698 				epctl |= DXEPCTL_SETD0PID;
2699 	}
2700 
2701 	writel(epctl, hs->regs + epreg);
2702 
2703 	hs_ep->halted = value;
2704 
2705 	return 0;
2706 }
2707 
2708 /**
2709  * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2710  * @ep: The endpoint to set halt.
2711  * @value: Set or unset the halt.
2712  */
2713 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2714 {
2715 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2716 	struct s3c_hsotg *hs = hs_ep->parent;
2717 	unsigned long flags = 0;
2718 	int ret = 0;
2719 
2720 	spin_lock_irqsave(&hs->lock, flags);
2721 	ret = s3c_hsotg_ep_sethalt(ep, value);
2722 	spin_unlock_irqrestore(&hs->lock, flags);
2723 
2724 	return ret;
2725 }
2726 
2727 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2728 	.enable		= s3c_hsotg_ep_enable,
2729 	.disable	= s3c_hsotg_ep_disable,
2730 	.alloc_request	= s3c_hsotg_ep_alloc_request,
2731 	.free_request	= s3c_hsotg_ep_free_request,
2732 	.queue		= s3c_hsotg_ep_queue_lock,
2733 	.dequeue	= s3c_hsotg_ep_dequeue,
2734 	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2735 	/* note, don't believe we have any call for the fifo routines */
2736 };
2737 
2738 /**
2739  * s3c_hsotg_phy_enable - enable platform phy dev
2740  * @hsotg: The driver state
2741  *
2742  * A wrapper for platform code responsible for controlling
2743  * low-level USB code
2744  */
2745 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2746 {
2747 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2748 
2749 	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2750 
2751 	if (hsotg->uphy)
2752 		usb_phy_init(hsotg->uphy);
2753 	else if (hsotg->plat && hsotg->plat->phy_init)
2754 		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2755 	else {
2756 		phy_init(hsotg->phy);
2757 		phy_power_on(hsotg->phy);
2758 	}
2759 }
2760 
2761 /**
2762  * s3c_hsotg_phy_disable - disable platform phy dev
2763  * @hsotg: The driver state
2764  *
2765  * A wrapper for platform code responsible for controlling
2766  * low-level USB code
2767  */
2768 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2769 {
2770 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2771 
2772 	if (hsotg->uphy)
2773 		usb_phy_shutdown(hsotg->uphy);
2774 	else if (hsotg->plat && hsotg->plat->phy_exit)
2775 		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2776 	else {
2777 		phy_power_off(hsotg->phy);
2778 		phy_exit(hsotg->phy);
2779 	}
2780 }
2781 
2782 /**
2783  * s3c_hsotg_init - initalize the usb core
2784  * @hsotg: The driver state
2785  */
2786 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2787 {
2788 	/* unmask subset of endpoint interrupts */
2789 
2790 	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2791 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2792 		hsotg->regs + DIEPMSK);
2793 
2794 	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2795 		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2796 		hsotg->regs + DOEPMSK);
2797 
2798 	writel(0, hsotg->regs + DAINTMSK);
2799 
2800 	/* Be in disconnected state until gadget is registered */
2801 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2802 
2803 	if (0) {
2804 		/* post global nak until we're ready */
2805 		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2806 		       hsotg->regs + DCTL);
2807 	}
2808 
2809 	/* setup fifos */
2810 
2811 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2812 		readl(hsotg->regs + GRXFSIZ),
2813 		readl(hsotg->regs + GNPTXFSIZ));
2814 
2815 	s3c_hsotg_init_fifo(hsotg);
2816 
2817 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2818 	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2819 	       hsotg->regs + GUSBCFG);
2820 
2821 	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2822 	       hsotg->regs + GAHBCFG);
2823 }
2824 
2825 /**
2826  * s3c_hsotg_udc_start - prepare the udc for work
2827  * @gadget: The usb gadget state
2828  * @driver: The usb gadget driver
2829  *
2830  * Perform initialization to prepare udc device and driver
2831  * to work.
2832  */
2833 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2834 			   struct usb_gadget_driver *driver)
2835 {
2836 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2837 	int ret;
2838 
2839 	if (!hsotg) {
2840 		pr_err("%s: called with no device\n", __func__);
2841 		return -ENODEV;
2842 	}
2843 
2844 	if (!driver) {
2845 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2846 		return -EINVAL;
2847 	}
2848 
2849 	if (driver->max_speed < USB_SPEED_FULL)
2850 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2851 
2852 	if (!driver->setup) {
2853 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2854 		return -EINVAL;
2855 	}
2856 
2857 	WARN_ON(hsotg->driver);
2858 
2859 	driver->driver.bus = NULL;
2860 	hsotg->driver = driver;
2861 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2862 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2863 
2864 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2865 				    hsotg->supplies);
2866 	if (ret) {
2867 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2868 		goto err;
2869 	}
2870 
2871 	hsotg->last_rst = jiffies;
2872 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2873 	return 0;
2874 
2875 err:
2876 	hsotg->driver = NULL;
2877 	return ret;
2878 }
2879 
2880 /**
2881  * s3c_hsotg_udc_stop - stop the udc
2882  * @gadget: The usb gadget state
2883  * @driver: The usb gadget driver
2884  *
2885  * Stop udc hw block and stay tunned for future transmissions
2886  */
2887 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2888 			  struct usb_gadget_driver *driver)
2889 {
2890 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2891 	unsigned long flags = 0;
2892 	int ep;
2893 
2894 	if (!hsotg)
2895 		return -ENODEV;
2896 
2897 	/* all endpoints should be shutdown */
2898 	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2899 		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2900 
2901 	spin_lock_irqsave(&hsotg->lock, flags);
2902 
2903 	if (!driver)
2904 		hsotg->driver = NULL;
2905 
2906 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2907 
2908 	spin_unlock_irqrestore(&hsotg->lock, flags);
2909 
2910 	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2911 
2912 	return 0;
2913 }
2914 
2915 /**
2916  * s3c_hsotg_gadget_getframe - read the frame number
2917  * @gadget: The usb gadget state
2918  *
2919  * Read the {micro} frame number
2920  */
2921 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2922 {
2923 	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2924 }
2925 
2926 /**
2927  * s3c_hsotg_pullup - connect/disconnect the USB PHY
2928  * @gadget: The usb gadget state
2929  * @is_on: Current state of the USB PHY
2930  *
2931  * Connect/Disconnect the USB PHY pullup
2932  */
2933 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
2934 {
2935 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2936 	unsigned long flags = 0;
2937 
2938 	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
2939 
2940 	spin_lock_irqsave(&hsotg->lock, flags);
2941 	if (is_on) {
2942 		s3c_hsotg_phy_enable(hsotg);
2943 		s3c_hsotg_core_init(hsotg);
2944 	} else {
2945 		s3c_hsotg_phy_disable(hsotg);
2946 	}
2947 
2948 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2949 	spin_unlock_irqrestore(&hsotg->lock, flags);
2950 
2951 	return 0;
2952 }
2953 
2954 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2955 	.get_frame	= s3c_hsotg_gadget_getframe,
2956 	.udc_start		= s3c_hsotg_udc_start,
2957 	.udc_stop		= s3c_hsotg_udc_stop,
2958 	.pullup                 = s3c_hsotg_pullup,
2959 };
2960 
2961 /**
2962  * s3c_hsotg_initep - initialise a single endpoint
2963  * @hsotg: The device state.
2964  * @hs_ep: The endpoint to be initialised.
2965  * @epnum: The endpoint number
2966  *
2967  * Initialise the given endpoint (as part of the probe and device state
2968  * creation) to give to the gadget driver. Setup the endpoint name, any
2969  * direction information and other state that may be required.
2970  */
2971 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2972 				       struct s3c_hsotg_ep *hs_ep,
2973 				       int epnum)
2974 {
2975 	u32 ptxfifo;
2976 	char *dir;
2977 
2978 	if (epnum == 0)
2979 		dir = "";
2980 	else if ((epnum % 2) == 0) {
2981 		dir = "out";
2982 	} else {
2983 		dir = "in";
2984 		hs_ep->dir_in = 1;
2985 	}
2986 
2987 	hs_ep->index = epnum;
2988 
2989 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2990 
2991 	INIT_LIST_HEAD(&hs_ep->queue);
2992 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2993 
2994 	/* add to the list of endpoints known by the gadget driver */
2995 	if (epnum)
2996 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2997 
2998 	hs_ep->parent = hsotg;
2999 	hs_ep->ep.name = hs_ep->name;
3000 	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3001 	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3002 
3003 	/*
3004 	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3005 	 * an OUT endpoint, we may as well do this if in future the
3006 	 * code is changed to make each endpoint's direction changeable.
3007 	 */
3008 
3009 	ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum));
3010 	hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4;
3011 
3012 	/*
3013 	 * if we're using dma, we need to set the next-endpoint pointer
3014 	 * to be something valid.
3015 	 */
3016 
3017 	if (using_dma(hsotg)) {
3018 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3019 		writel(next, hsotg->regs + DIEPCTL(epnum));
3020 		writel(next, hsotg->regs + DOEPCTL(epnum));
3021 	}
3022 }
3023 
3024 /**
3025  * s3c_hsotg_hw_cfg - read HW configuration registers
3026  * @param: The device state
3027  *
3028  * Read the USB core HW configuration registers
3029  */
3030 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3031 {
3032 	u32 cfg2, cfg4;
3033 	/* check hardware configuration */
3034 
3035 	cfg2 = readl(hsotg->regs + 0x48);
3036 	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3037 
3038 	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3039 
3040 	cfg4 = readl(hsotg->regs + 0x50);
3041 	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3042 
3043 	dev_info(hsotg->dev, "%s fifos\n",
3044 		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3045 }
3046 
3047 /**
3048  * s3c_hsotg_dump - dump state of the udc
3049  * @param: The device state
3050  */
3051 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3052 {
3053 #ifdef DEBUG
3054 	struct device *dev = hsotg->dev;
3055 	void __iomem *regs = hsotg->regs;
3056 	u32 val;
3057 	int idx;
3058 
3059 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3060 		 readl(regs + DCFG), readl(regs + DCTL),
3061 		 readl(regs + DIEPMSK));
3062 
3063 	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3064 		 readl(regs + GAHBCFG), readl(regs + 0x44));
3065 
3066 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3067 		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3068 
3069 	/* show periodic fifo settings */
3070 
3071 	for (idx = 1; idx <= 15; idx++) {
3072 		val = readl(regs + DPTXFSIZN(idx));
3073 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3074 			 val >> FIFOSIZE_DEPTH_SHIFT,
3075 			 val & FIFOSIZE_STARTADDR_MASK);
3076 	}
3077 
3078 	for (idx = 0; idx < 15; idx++) {
3079 		dev_info(dev,
3080 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3081 			 readl(regs + DIEPCTL(idx)),
3082 			 readl(regs + DIEPTSIZ(idx)),
3083 			 readl(regs + DIEPDMA(idx)));
3084 
3085 		val = readl(regs + DOEPCTL(idx));
3086 		dev_info(dev,
3087 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3088 			 idx, readl(regs + DOEPCTL(idx)),
3089 			 readl(regs + DOEPTSIZ(idx)),
3090 			 readl(regs + DOEPDMA(idx)));
3091 
3092 	}
3093 
3094 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3095 		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3096 #endif
3097 }
3098 
3099 /**
3100  * state_show - debugfs: show overall driver and device state.
3101  * @seq: The seq file to write to.
3102  * @v: Unused parameter.
3103  *
3104  * This debugfs entry shows the overall state of the hardware and
3105  * some general information about each of the endpoints available
3106  * to the system.
3107  */
3108 static int state_show(struct seq_file *seq, void *v)
3109 {
3110 	struct s3c_hsotg *hsotg = seq->private;
3111 	void __iomem *regs = hsotg->regs;
3112 	int idx;
3113 
3114 	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3115 		 readl(regs + DCFG),
3116 		 readl(regs + DCTL),
3117 		 readl(regs + DSTS));
3118 
3119 	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3120 		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3121 
3122 	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3123 		   readl(regs + GINTMSK),
3124 		   readl(regs + GINTSTS));
3125 
3126 	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3127 		   readl(regs + DAINTMSK),
3128 		   readl(regs + DAINT));
3129 
3130 	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3131 		   readl(regs + GNPTXSTS),
3132 		   readl(regs + GRXSTSR));
3133 
3134 	seq_puts(seq, "\nEndpoint status:\n");
3135 
3136 	for (idx = 0; idx < 15; idx++) {
3137 		u32 in, out;
3138 
3139 		in = readl(regs + DIEPCTL(idx));
3140 		out = readl(regs + DOEPCTL(idx));
3141 
3142 		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3143 			   idx, in, out);
3144 
3145 		in = readl(regs + DIEPTSIZ(idx));
3146 		out = readl(regs + DOEPTSIZ(idx));
3147 
3148 		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3149 			   in, out);
3150 
3151 		seq_puts(seq, "\n");
3152 	}
3153 
3154 	return 0;
3155 }
3156 
3157 static int state_open(struct inode *inode, struct file *file)
3158 {
3159 	return single_open(file, state_show, inode->i_private);
3160 }
3161 
3162 static const struct file_operations state_fops = {
3163 	.owner		= THIS_MODULE,
3164 	.open		= state_open,
3165 	.read		= seq_read,
3166 	.llseek		= seq_lseek,
3167 	.release	= single_release,
3168 };
3169 
3170 /**
3171  * fifo_show - debugfs: show the fifo information
3172  * @seq: The seq_file to write data to.
3173  * @v: Unused parameter.
3174  *
3175  * Show the FIFO information for the overall fifo and all the
3176  * periodic transmission FIFOs.
3177  */
3178 static int fifo_show(struct seq_file *seq, void *v)
3179 {
3180 	struct s3c_hsotg *hsotg = seq->private;
3181 	void __iomem *regs = hsotg->regs;
3182 	u32 val;
3183 	int idx;
3184 
3185 	seq_puts(seq, "Non-periodic FIFOs:\n");
3186 	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3187 
3188 	val = readl(regs + GNPTXFSIZ);
3189 	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3190 		   val >> FIFOSIZE_DEPTH_SHIFT,
3191 		   val & FIFOSIZE_DEPTH_MASK);
3192 
3193 	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3194 
3195 	for (idx = 1; idx <= 15; idx++) {
3196 		val = readl(regs + DPTXFSIZN(idx));
3197 
3198 		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3199 			   val >> FIFOSIZE_DEPTH_SHIFT,
3200 			   val & FIFOSIZE_STARTADDR_MASK);
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 static int fifo_open(struct inode *inode, struct file *file)
3207 {
3208 	return single_open(file, fifo_show, inode->i_private);
3209 }
3210 
3211 static const struct file_operations fifo_fops = {
3212 	.owner		= THIS_MODULE,
3213 	.open		= fifo_open,
3214 	.read		= seq_read,
3215 	.llseek		= seq_lseek,
3216 	.release	= single_release,
3217 };
3218 
3219 
3220 static const char *decode_direction(int is_in)
3221 {
3222 	return is_in ? "in" : "out";
3223 }
3224 
3225 /**
3226  * ep_show - debugfs: show the state of an endpoint.
3227  * @seq: The seq_file to write data to.
3228  * @v: Unused parameter.
3229  *
3230  * This debugfs entry shows the state of the given endpoint (one is
3231  * registered for each available).
3232  */
3233 static int ep_show(struct seq_file *seq, void *v)
3234 {
3235 	struct s3c_hsotg_ep *ep = seq->private;
3236 	struct s3c_hsotg *hsotg = ep->parent;
3237 	struct s3c_hsotg_req *req;
3238 	void __iomem *regs = hsotg->regs;
3239 	int index = ep->index;
3240 	int show_limit = 15;
3241 	unsigned long flags;
3242 
3243 	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3244 		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3245 
3246 	/* first show the register state */
3247 
3248 	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3249 		   readl(regs + DIEPCTL(index)),
3250 		   readl(regs + DOEPCTL(index)));
3251 
3252 	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3253 		   readl(regs + DIEPDMA(index)),
3254 		   readl(regs + DOEPDMA(index)));
3255 
3256 	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3257 		   readl(regs + DIEPINT(index)),
3258 		   readl(regs + DOEPINT(index)));
3259 
3260 	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3261 		   readl(regs + DIEPTSIZ(index)),
3262 		   readl(regs + DOEPTSIZ(index)));
3263 
3264 	seq_puts(seq, "\n");
3265 	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3266 	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3267 
3268 	seq_printf(seq, "request list (%p,%p):\n",
3269 		   ep->queue.next, ep->queue.prev);
3270 
3271 	spin_lock_irqsave(&hsotg->lock, flags);
3272 
3273 	list_for_each_entry(req, &ep->queue, queue) {
3274 		if (--show_limit < 0) {
3275 			seq_puts(seq, "not showing more requests...\n");
3276 			break;
3277 		}
3278 
3279 		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3280 			   req == ep->req ? '*' : ' ',
3281 			   req, req->req.length, req->req.buf);
3282 		seq_printf(seq, "%d done, res %d\n",
3283 			   req->req.actual, req->req.status);
3284 	}
3285 
3286 	spin_unlock_irqrestore(&hsotg->lock, flags);
3287 
3288 	return 0;
3289 }
3290 
3291 static int ep_open(struct inode *inode, struct file *file)
3292 {
3293 	return single_open(file, ep_show, inode->i_private);
3294 }
3295 
3296 static const struct file_operations ep_fops = {
3297 	.owner		= THIS_MODULE,
3298 	.open		= ep_open,
3299 	.read		= seq_read,
3300 	.llseek		= seq_lseek,
3301 	.release	= single_release,
3302 };
3303 
3304 /**
3305  * s3c_hsotg_create_debug - create debugfs directory and files
3306  * @hsotg: The driver state
3307  *
3308  * Create the debugfs files to allow the user to get information
3309  * about the state of the system. The directory name is created
3310  * with the same name as the device itself, in case we end up
3311  * with multiple blocks in future systems.
3312  */
3313 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3314 {
3315 	struct dentry *root;
3316 	unsigned epidx;
3317 
3318 	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3319 	hsotg->debug_root = root;
3320 	if (IS_ERR(root)) {
3321 		dev_err(hsotg->dev, "cannot create debug root\n");
3322 		return;
3323 	}
3324 
3325 	/* create general state file */
3326 
3327 	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3328 						hsotg, &state_fops);
3329 
3330 	if (IS_ERR(hsotg->debug_file))
3331 		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3332 
3333 	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3334 						hsotg, &fifo_fops);
3335 
3336 	if (IS_ERR(hsotg->debug_fifo))
3337 		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3338 
3339 	/* create one file for each endpoint */
3340 
3341 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3342 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3343 
3344 		ep->debugfs = debugfs_create_file(ep->name, 0444,
3345 						  root, ep, &ep_fops);
3346 
3347 		if (IS_ERR(ep->debugfs))
3348 			dev_err(hsotg->dev, "failed to create %s debug file\n",
3349 				ep->name);
3350 	}
3351 }
3352 
3353 /**
3354  * s3c_hsotg_delete_debug - cleanup debugfs entries
3355  * @hsotg: The driver state
3356  *
3357  * Cleanup (remove) the debugfs files for use on module exit.
3358  */
3359 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3360 {
3361 	unsigned epidx;
3362 
3363 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3364 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3365 		debugfs_remove(ep->debugfs);
3366 	}
3367 
3368 	debugfs_remove(hsotg->debug_file);
3369 	debugfs_remove(hsotg->debug_fifo);
3370 	debugfs_remove(hsotg->debug_root);
3371 }
3372 
3373 /**
3374  * s3c_hsotg_probe - probe function for hsotg driver
3375  * @pdev: The platform information for the driver
3376  */
3377 
3378 static int s3c_hsotg_probe(struct platform_device *pdev)
3379 {
3380 	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3381 	struct phy *phy;
3382 	struct usb_phy *uphy;
3383 	struct device *dev = &pdev->dev;
3384 	struct s3c_hsotg_ep *eps;
3385 	struct s3c_hsotg *hsotg;
3386 	struct resource *res;
3387 	int epnum;
3388 	int ret;
3389 	int i;
3390 
3391 	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3392 	if (!hsotg)
3393 		return -ENOMEM;
3394 
3395 	/*
3396 	 * Attempt to find a generic PHY, then look for an old style
3397 	 * USB PHY, finally fall back to pdata
3398 	 */
3399 	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3400 	if (IS_ERR(phy)) {
3401 		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3402 		if (IS_ERR(uphy)) {
3403 			/* Fallback for pdata */
3404 			plat = dev_get_platdata(&pdev->dev);
3405 			if (!plat) {
3406 				dev_err(&pdev->dev,
3407 				"no platform data or transceiver defined\n");
3408 				return -EPROBE_DEFER;
3409 			}
3410 			hsotg->plat = plat;
3411 		} else
3412 			hsotg->uphy = uphy;
3413 	} else
3414 		hsotg->phy = phy;
3415 
3416 	hsotg->dev = dev;
3417 
3418 	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3419 	if (IS_ERR(hsotg->clk)) {
3420 		dev_err(dev, "cannot get otg clock\n");
3421 		return PTR_ERR(hsotg->clk);
3422 	}
3423 
3424 	platform_set_drvdata(pdev, hsotg);
3425 
3426 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3427 
3428 	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3429 	if (IS_ERR(hsotg->regs)) {
3430 		ret = PTR_ERR(hsotg->regs);
3431 		goto err_clk;
3432 	}
3433 
3434 	ret = platform_get_irq(pdev, 0);
3435 	if (ret < 0) {
3436 		dev_err(dev, "cannot find IRQ\n");
3437 		goto err_clk;
3438 	}
3439 
3440 	spin_lock_init(&hsotg->lock);
3441 
3442 	hsotg->irq = ret;
3443 
3444 	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3445 
3446 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3447 	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3448 	hsotg->gadget.name = dev_name(dev);
3449 
3450 	/* reset the system */
3451 
3452 	clk_prepare_enable(hsotg->clk);
3453 
3454 	/* regulators */
3455 
3456 	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3457 		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3458 
3459 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3460 				 hsotg->supplies);
3461 	if (ret) {
3462 		dev_err(dev, "failed to request supplies: %d\n", ret);
3463 		goto err_clk;
3464 	}
3465 
3466 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3467 				    hsotg->supplies);
3468 
3469 	if (ret) {
3470 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3471 		goto err_supplies;
3472 	}
3473 
3474 	/* Set default UTMI width */
3475 	hsotg->phyif = GUSBCFG_PHYIF16;
3476 
3477 	/*
3478 	 * If using the generic PHY framework, check if the PHY bus
3479 	 * width is 8-bit and set the phyif appropriately.
3480 	 */
3481 	if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3482 		hsotg->phyif = GUSBCFG_PHYIF8;
3483 
3484 	/* usb phy enable */
3485 	s3c_hsotg_phy_enable(hsotg);
3486 
3487 	s3c_hsotg_corereset(hsotg);
3488 	s3c_hsotg_init(hsotg);
3489 	s3c_hsotg_hw_cfg(hsotg);
3490 
3491 	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3492 				dev_name(dev), hsotg);
3493 	if (ret < 0) {
3494 		s3c_hsotg_phy_disable(hsotg);
3495 		clk_disable_unprepare(hsotg->clk);
3496 		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3497 				       hsotg->supplies);
3498 		dev_err(dev, "cannot claim IRQ\n");
3499 		goto err_clk;
3500 	}
3501 
3502 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3503 
3504 	if (hsotg->num_of_eps == 0) {
3505 		dev_err(dev, "wrong number of EPs (zero)\n");
3506 		ret = -EINVAL;
3507 		goto err_supplies;
3508 	}
3509 
3510 	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3511 		      GFP_KERNEL);
3512 	if (!eps) {
3513 		ret = -ENOMEM;
3514 		goto err_supplies;
3515 	}
3516 
3517 	hsotg->eps = eps;
3518 
3519 	/* setup endpoint information */
3520 
3521 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3522 	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3523 
3524 	/* allocate EP0 request */
3525 
3526 	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3527 						     GFP_KERNEL);
3528 	if (!hsotg->ctrl_req) {
3529 		dev_err(dev, "failed to allocate ctrl req\n");
3530 		ret = -ENOMEM;
3531 		goto err_ep_mem;
3532 	}
3533 
3534 	/* initialise the endpoints now the core has been initialised */
3535 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3536 		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3537 
3538 	/* disable power and clock */
3539 
3540 	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3541 				    hsotg->supplies);
3542 	if (ret) {
3543 		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3544 		goto err_ep_mem;
3545 	}
3546 
3547 	s3c_hsotg_phy_disable(hsotg);
3548 
3549 	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3550 	if (ret)
3551 		goto err_ep_mem;
3552 
3553 	s3c_hsotg_create_debug(hsotg);
3554 
3555 	s3c_hsotg_dump(hsotg);
3556 
3557 	return 0;
3558 
3559 err_ep_mem:
3560 	kfree(eps);
3561 err_supplies:
3562 	s3c_hsotg_phy_disable(hsotg);
3563 err_clk:
3564 	clk_disable_unprepare(hsotg->clk);
3565 
3566 	return ret;
3567 }
3568 
3569 /**
3570  * s3c_hsotg_remove - remove function for hsotg driver
3571  * @pdev: The platform information for the driver
3572  */
3573 static int s3c_hsotg_remove(struct platform_device *pdev)
3574 {
3575 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3576 
3577 	usb_del_gadget_udc(&hsotg->gadget);
3578 
3579 	s3c_hsotg_delete_debug(hsotg);
3580 
3581 	if (hsotg->driver) {
3582 		/* should have been done already by driver model core */
3583 		usb_gadget_unregister_driver(hsotg->driver);
3584 	}
3585 
3586 	clk_disable_unprepare(hsotg->clk);
3587 
3588 	return 0;
3589 }
3590 
3591 static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
3592 {
3593 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3594 	unsigned long flags;
3595 	int ret = 0;
3596 
3597 	if (hsotg->driver)
3598 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3599 			 hsotg->driver->driver.name);
3600 
3601 	spin_lock_irqsave(&hsotg->lock, flags);
3602 	s3c_hsotg_disconnect(hsotg);
3603 	s3c_hsotg_phy_disable(hsotg);
3604 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3605 	spin_unlock_irqrestore(&hsotg->lock, flags);
3606 
3607 	if (hsotg->driver) {
3608 		int ep;
3609 		for (ep = 0; ep < hsotg->num_of_eps; ep++)
3610 			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3611 
3612 		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3613 					     hsotg->supplies);
3614 	}
3615 
3616 	return ret;
3617 }
3618 
3619 static int s3c_hsotg_resume(struct platform_device *pdev)
3620 {
3621 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3622 	unsigned long flags;
3623 	int ret = 0;
3624 
3625 	if (hsotg->driver) {
3626 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3627 			 hsotg->driver->driver.name);
3628 		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3629 				      hsotg->supplies);
3630 	}
3631 
3632 	spin_lock_irqsave(&hsotg->lock, flags);
3633 	hsotg->last_rst = jiffies;
3634 	s3c_hsotg_phy_enable(hsotg);
3635 	s3c_hsotg_core_init(hsotg);
3636 	spin_unlock_irqrestore(&hsotg->lock, flags);
3637 
3638 	return ret;
3639 }
3640 
3641 #ifdef CONFIG_OF
3642 static const struct of_device_id s3c_hsotg_of_ids[] = {
3643 	{ .compatible = "samsung,s3c6400-hsotg", },
3644 	{ .compatible = "snps,dwc2", },
3645 	{ /* sentinel */ }
3646 };
3647 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3648 #endif
3649 
3650 static struct platform_driver s3c_hsotg_driver = {
3651 	.driver		= {
3652 		.name	= "s3c-hsotg",
3653 		.owner	= THIS_MODULE,
3654 		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3655 	},
3656 	.probe		= s3c_hsotg_probe,
3657 	.remove		= s3c_hsotg_remove,
3658 	.suspend	= s3c_hsotg_suspend,
3659 	.resume		= s3c_hsotg_resume,
3660 };
3661 
3662 module_platform_driver(s3c_hsotg_driver);
3663 
3664 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3665 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3666 MODULE_LICENSE("GPL");
3667 MODULE_ALIAS("platform:s3c-hsotg");
3668