xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision a86854d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
51 {
52 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54 
55 static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
56 {
57 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  *
111  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
112  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
113  */
114 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
115 {
116 	hs_ep->target_frame += hs_ep->interval;
117 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
118 		hs_ep->frame_overrun = true;
119 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
120 	} else {
121 		hs_ep->frame_overrun = false;
122 	}
123 }
124 
125 /**
126  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
127  * @hsotg: The device state
128  * @ints: A bitmask of the interrupts to enable
129  */
130 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
131 {
132 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
133 	u32 new_gsintmsk;
134 
135 	new_gsintmsk = gsintmsk | ints;
136 
137 	if (new_gsintmsk != gsintmsk) {
138 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
139 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
140 	}
141 }
142 
143 /**
144  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
145  * @hsotg: The device state
146  * @ints: A bitmask of the interrupts to enable
147  */
148 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
149 {
150 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
151 	u32 new_gsintmsk;
152 
153 	new_gsintmsk = gsintmsk & ~ints;
154 
155 	if (new_gsintmsk != gsintmsk)
156 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
157 }
158 
159 /**
160  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
161  * @hsotg: The device state
162  * @ep: The endpoint index
163  * @dir_in: True if direction is in.
164  * @en: The enable value, true to enable
165  *
166  * Set or clear the mask for an individual endpoint's interrupt
167  * request.
168  */
169 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
170 				  unsigned int ep, unsigned int dir_in,
171 				 unsigned int en)
172 {
173 	unsigned long flags;
174 	u32 bit = 1 << ep;
175 	u32 daint;
176 
177 	if (!dir_in)
178 		bit <<= 16;
179 
180 	local_irq_save(flags);
181 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
182 	if (en)
183 		daint |= bit;
184 	else
185 		daint &= ~bit;
186 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
187 	local_irq_restore(flags);
188 }
189 
190 /**
191  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
192  *
193  * @hsotg: Programming view of the DWC_otg controller
194  */
195 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
196 {
197 	if (hsotg->hw_params.en_multiple_tx_fifo)
198 		/* In dedicated FIFO mode we need count of IN EPs */
199 		return hsotg->hw_params.num_dev_in_eps;
200 	else
201 		/* In shared FIFO mode we need count of Periodic IN EPs */
202 		return hsotg->hw_params.num_dev_perio_in_ep;
203 }
204 
205 /**
206  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
207  * device mode TX FIFOs
208  *
209  * @hsotg: Programming view of the DWC_otg controller
210  */
211 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
212 {
213 	int addr;
214 	int tx_addr_max;
215 	u32 np_tx_fifo_size;
216 
217 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
218 				hsotg->params.g_np_tx_fifo_size);
219 
220 	/* Get Endpoint Info Control block size in DWORDs. */
221 	tx_addr_max = hsotg->hw_params.total_fifo_size;
222 
223 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
224 	if (tx_addr_max <= addr)
225 		return 0;
226 
227 	return tx_addr_max - addr;
228 }
229 
230 /**
231  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
232  * TX FIFOs
233  *
234  * @hsotg: Programming view of the DWC_otg controller
235  */
236 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
237 {
238 	int tx_fifo_count;
239 	int tx_fifo_depth;
240 
241 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
242 
243 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
244 
245 	if (!tx_fifo_count)
246 		return tx_fifo_depth;
247 	else
248 		return tx_fifo_depth / tx_fifo_count;
249 }
250 
251 /**
252  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
253  * @hsotg: The device instance.
254  */
255 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
256 {
257 	unsigned int ep;
258 	unsigned int addr;
259 	int timeout;
260 
261 	u32 val;
262 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
263 
264 	/* Reset fifo map if not correctly cleared during previous session */
265 	WARN_ON(hsotg->fifo_map);
266 	hsotg->fifo_map = 0;
267 
268 	/* set RX/NPTX FIFO sizes */
269 	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
270 	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
271 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
272 		    hsotg->regs + GNPTXFSIZ);
273 
274 	/*
275 	 * arange all the rest of the TX FIFOs, as some versions of this
276 	 * block have overlapping default addresses. This also ensures
277 	 * that if the settings have been changed, then they are set to
278 	 * known values.
279 	 */
280 
281 	/* start at the end of the GNPTXFSIZ, rounded up */
282 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
283 
284 	/*
285 	 * Configure fifos sizes from provided configuration and assign
286 	 * them to endpoints dynamically according to maxpacket size value of
287 	 * given endpoint.
288 	 */
289 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
290 		if (!txfsz[ep])
291 			continue;
292 		val = addr;
293 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
294 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
295 			  "insufficient fifo memory");
296 		addr += txfsz[ep];
297 
298 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
299 		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
300 	}
301 
302 	dwc2_writel(hsotg->hw_params.total_fifo_size |
303 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
304 		    hsotg->regs + GDFIFOCFG);
305 	/*
306 	 * according to p428 of the design guide, we need to ensure that
307 	 * all fifos are flushed before continuing
308 	 */
309 
310 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
311 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
312 
313 	/* wait until the fifos are both flushed */
314 	timeout = 100;
315 	while (1) {
316 		val = dwc2_readl(hsotg->regs + GRSTCTL);
317 
318 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
319 			break;
320 
321 		if (--timeout == 0) {
322 			dev_err(hsotg->dev,
323 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
324 				__func__, val);
325 			break;
326 		}
327 
328 		udelay(1);
329 	}
330 
331 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
332 }
333 
334 /**
335  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
336  * @ep: USB endpoint to allocate request for.
337  * @flags: Allocation flags
338  *
339  * Allocate a new USB request structure appropriate for the specified endpoint
340  */
341 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
342 						       gfp_t flags)
343 {
344 	struct dwc2_hsotg_req *req;
345 
346 	req = kzalloc(sizeof(*req), flags);
347 	if (!req)
348 		return NULL;
349 
350 	INIT_LIST_HEAD(&req->queue);
351 
352 	return &req->req;
353 }
354 
355 /**
356  * is_ep_periodic - return true if the endpoint is in periodic mode.
357  * @hs_ep: The endpoint to query.
358  *
359  * Returns true if the endpoint is in periodic mode, meaning it is being
360  * used for an Interrupt or ISO transfer.
361  */
362 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
363 {
364 	return hs_ep->periodic;
365 }
366 
367 /**
368  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
369  * @hsotg: The device state.
370  * @hs_ep: The endpoint for the request
371  * @hs_req: The request being processed.
372  *
373  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
374  * of a request to ensure the buffer is ready for access by the caller.
375  */
376 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
377 				 struct dwc2_hsotg_ep *hs_ep,
378 				struct dwc2_hsotg_req *hs_req)
379 {
380 	struct usb_request *req = &hs_req->req;
381 
382 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
383 }
384 
385 /*
386  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
387  * for Control endpoint
388  * @hsotg: The device state.
389  *
390  * This function will allocate 4 descriptor chains for EP 0: 2 for
391  * Setup stage, per one for IN and OUT data/status transactions.
392  */
393 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
394 {
395 	hsotg->setup_desc[0] =
396 		dmam_alloc_coherent(hsotg->dev,
397 				    sizeof(struct dwc2_dma_desc),
398 				    &hsotg->setup_desc_dma[0],
399 				    GFP_KERNEL);
400 	if (!hsotg->setup_desc[0])
401 		goto fail;
402 
403 	hsotg->setup_desc[1] =
404 		dmam_alloc_coherent(hsotg->dev,
405 				    sizeof(struct dwc2_dma_desc),
406 				    &hsotg->setup_desc_dma[1],
407 				    GFP_KERNEL);
408 	if (!hsotg->setup_desc[1])
409 		goto fail;
410 
411 	hsotg->ctrl_in_desc =
412 		dmam_alloc_coherent(hsotg->dev,
413 				    sizeof(struct dwc2_dma_desc),
414 				    &hsotg->ctrl_in_desc_dma,
415 				    GFP_KERNEL);
416 	if (!hsotg->ctrl_in_desc)
417 		goto fail;
418 
419 	hsotg->ctrl_out_desc =
420 		dmam_alloc_coherent(hsotg->dev,
421 				    sizeof(struct dwc2_dma_desc),
422 				    &hsotg->ctrl_out_desc_dma,
423 				    GFP_KERNEL);
424 	if (!hsotg->ctrl_out_desc)
425 		goto fail;
426 
427 	return 0;
428 
429 fail:
430 	return -ENOMEM;
431 }
432 
433 /**
434  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
435  * @hsotg: The controller state.
436  * @hs_ep: The endpoint we're going to write for.
437  * @hs_req: The request to write data for.
438  *
439  * This is called when the TxFIFO has some space in it to hold a new
440  * transmission and we have something to give it. The actual setup of
441  * the data size is done elsewhere, so all we have to do is to actually
442  * write the data.
443  *
444  * The return value is zero if there is more space (or nothing was done)
445  * otherwise -ENOSPC is returned if the FIFO space was used up.
446  *
447  * This routine is only needed for PIO
448  */
449 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
450 				 struct dwc2_hsotg_ep *hs_ep,
451 				struct dwc2_hsotg_req *hs_req)
452 {
453 	bool periodic = is_ep_periodic(hs_ep);
454 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
455 	int buf_pos = hs_req->req.actual;
456 	int to_write = hs_ep->size_loaded;
457 	void *data;
458 	int can_write;
459 	int pkt_round;
460 	int max_transfer;
461 
462 	to_write -= (buf_pos - hs_ep->last_load);
463 
464 	/* if there's nothing to write, get out early */
465 	if (to_write == 0)
466 		return 0;
467 
468 	if (periodic && !hsotg->dedicated_fifos) {
469 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
470 		int size_left;
471 		int size_done;
472 
473 		/*
474 		 * work out how much data was loaded so we can calculate
475 		 * how much data is left in the fifo.
476 		 */
477 
478 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
479 
480 		/*
481 		 * if shared fifo, we cannot write anything until the
482 		 * previous data has been completely sent.
483 		 */
484 		if (hs_ep->fifo_load != 0) {
485 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
486 			return -ENOSPC;
487 		}
488 
489 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
490 			__func__, size_left,
491 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
492 
493 		/* how much of the data has moved */
494 		size_done = hs_ep->size_loaded - size_left;
495 
496 		/* how much data is left in the fifo */
497 		can_write = hs_ep->fifo_load - size_done;
498 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
499 			__func__, can_write);
500 
501 		can_write = hs_ep->fifo_size - can_write;
502 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
503 			__func__, can_write);
504 
505 		if (can_write <= 0) {
506 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
507 			return -ENOSPC;
508 		}
509 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
510 		can_write = dwc2_readl(hsotg->regs +
511 				DTXFSTS(hs_ep->fifo_index));
512 
513 		can_write &= 0xffff;
514 		can_write *= 4;
515 	} else {
516 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
517 			dev_dbg(hsotg->dev,
518 				"%s: no queue slots available (0x%08x)\n",
519 				__func__, gnptxsts);
520 
521 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
522 			return -ENOSPC;
523 		}
524 
525 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
526 		can_write *= 4;	/* fifo size is in 32bit quantities. */
527 	}
528 
529 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
530 
531 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
532 		__func__, gnptxsts, can_write, to_write, max_transfer);
533 
534 	/*
535 	 * limit to 512 bytes of data, it seems at least on the non-periodic
536 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
537 	 * fragment of the end of the transfer in it.
538 	 */
539 	if (can_write > 512 && !periodic)
540 		can_write = 512;
541 
542 	/*
543 	 * limit the write to one max-packet size worth of data, but allow
544 	 * the transfer to return that it did not run out of fifo space
545 	 * doing it.
546 	 */
547 	if (to_write > max_transfer) {
548 		to_write = max_transfer;
549 
550 		/* it's needed only when we do not use dedicated fifos */
551 		if (!hsotg->dedicated_fifos)
552 			dwc2_hsotg_en_gsint(hsotg,
553 					    periodic ? GINTSTS_PTXFEMP :
554 					   GINTSTS_NPTXFEMP);
555 	}
556 
557 	/* see if we can write data */
558 
559 	if (to_write > can_write) {
560 		to_write = can_write;
561 		pkt_round = to_write % max_transfer;
562 
563 		/*
564 		 * Round the write down to an
565 		 * exact number of packets.
566 		 *
567 		 * Note, we do not currently check to see if we can ever
568 		 * write a full packet or not to the FIFO.
569 		 */
570 
571 		if (pkt_round)
572 			to_write -= pkt_round;
573 
574 		/*
575 		 * enable correct FIFO interrupt to alert us when there
576 		 * is more room left.
577 		 */
578 
579 		/* it's needed only when we do not use dedicated fifos */
580 		if (!hsotg->dedicated_fifos)
581 			dwc2_hsotg_en_gsint(hsotg,
582 					    periodic ? GINTSTS_PTXFEMP :
583 					   GINTSTS_NPTXFEMP);
584 	}
585 
586 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
587 		to_write, hs_req->req.length, can_write, buf_pos);
588 
589 	if (to_write <= 0)
590 		return -ENOSPC;
591 
592 	hs_req->req.actual = buf_pos + to_write;
593 	hs_ep->total_data += to_write;
594 
595 	if (periodic)
596 		hs_ep->fifo_load += to_write;
597 
598 	to_write = DIV_ROUND_UP(to_write, 4);
599 	data = hs_req->req.buf + buf_pos;
600 
601 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
602 
603 	return (to_write >= can_write) ? -ENOSPC : 0;
604 }
605 
606 /**
607  * get_ep_limit - get the maximum data legnth for this endpoint
608  * @hs_ep: The endpoint
609  *
610  * Return the maximum data that can be queued in one go on a given endpoint
611  * so that transfers that are too long can be split.
612  */
613 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
614 {
615 	int index = hs_ep->index;
616 	unsigned int maxsize;
617 	unsigned int maxpkt;
618 
619 	if (index != 0) {
620 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
621 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
622 	} else {
623 		maxsize = 64 + 64;
624 		if (hs_ep->dir_in)
625 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
626 		else
627 			maxpkt = 2;
628 	}
629 
630 	/* we made the constant loading easier above by using +1 */
631 	maxpkt--;
632 	maxsize--;
633 
634 	/*
635 	 * constrain by packet count if maxpkts*pktsize is greater
636 	 * than the length register size.
637 	 */
638 
639 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
640 		maxsize = maxpkt * hs_ep->ep.maxpacket;
641 
642 	return maxsize;
643 }
644 
645 /**
646  * dwc2_hsotg_read_frameno - read current frame number
647  * @hsotg: The device instance
648  *
649  * Return the current frame number
650  */
651 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
652 {
653 	u32 dsts;
654 
655 	dsts = dwc2_readl(hsotg->regs + DSTS);
656 	dsts &= DSTS_SOFFN_MASK;
657 	dsts >>= DSTS_SOFFN_SHIFT;
658 
659 	return dsts;
660 }
661 
662 /**
663  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
664  * DMA descriptor chain prepared for specific endpoint
665  * @hs_ep: The endpoint
666  *
667  * Return the maximum data that can be queued in one go on a given endpoint
668  * depending on its descriptor chain capacity so that transfers that
669  * are too long can be split.
670  */
671 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
672 {
673 	int is_isoc = hs_ep->isochronous;
674 	unsigned int maxsize;
675 
676 	if (is_isoc)
677 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
678 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
679 	else
680 		maxsize = DEV_DMA_NBYTES_LIMIT;
681 
682 	/* Above size of one descriptor was chosen, multiple it */
683 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
684 
685 	return maxsize;
686 }
687 
688 /*
689  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
690  * @hs_ep: The endpoint
691  * @mask: RX/TX bytes mask to be defined
692  *
693  * Returns maximum data payload for one descriptor after analyzing endpoint
694  * characteristics.
695  * DMA descriptor transfer bytes limit depends on EP type:
696  * Control out - MPS,
697  * Isochronous - descriptor rx/tx bytes bitfield limit,
698  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
699  * have concatenations from various descriptors within one packet.
700  *
701  * Selects corresponding mask for RX/TX bytes as well.
702  */
703 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
704 {
705 	u32 mps = hs_ep->ep.maxpacket;
706 	int dir_in = hs_ep->dir_in;
707 	u32 desc_size = 0;
708 
709 	if (!hs_ep->index && !dir_in) {
710 		desc_size = mps;
711 		*mask = DEV_DMA_NBYTES_MASK;
712 	} else if (hs_ep->isochronous) {
713 		if (dir_in) {
714 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
715 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
716 		} else {
717 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
718 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
719 		}
720 	} else {
721 		desc_size = DEV_DMA_NBYTES_LIMIT;
722 		*mask = DEV_DMA_NBYTES_MASK;
723 
724 		/* Round down desc_size to be mps multiple */
725 		desc_size -= desc_size % mps;
726 	}
727 
728 	return desc_size;
729 }
730 
731 /*
732  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
733  * @hs_ep: The endpoint
734  * @dma_buff: DMA address to use
735  * @len: Length of the transfer
736  *
737  * This function will iterate over descriptor chain and fill its entries
738  * with corresponding information based on transfer data.
739  */
740 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
741 						 dma_addr_t dma_buff,
742 						 unsigned int len)
743 {
744 	struct dwc2_hsotg *hsotg = hs_ep->parent;
745 	int dir_in = hs_ep->dir_in;
746 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
747 	u32 mps = hs_ep->ep.maxpacket;
748 	u32 maxsize = 0;
749 	u32 offset = 0;
750 	u32 mask = 0;
751 	int i;
752 
753 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
754 
755 	hs_ep->desc_count = (len / maxsize) +
756 				((len % maxsize) ? 1 : 0);
757 	if (len == 0)
758 		hs_ep->desc_count = 1;
759 
760 	for (i = 0; i < hs_ep->desc_count; ++i) {
761 		desc->status = 0;
762 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
763 				 << DEV_DMA_BUFF_STS_SHIFT);
764 
765 		if (len > maxsize) {
766 			if (!hs_ep->index && !dir_in)
767 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
768 
769 			desc->status |= (maxsize <<
770 						DEV_DMA_NBYTES_SHIFT & mask);
771 			desc->buf = dma_buff + offset;
772 
773 			len -= maxsize;
774 			offset += maxsize;
775 		} else {
776 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
777 
778 			if (dir_in)
779 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
780 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
781 			if (len > maxsize)
782 				dev_err(hsotg->dev, "wrong len %d\n", len);
783 
784 			desc->status |=
785 				len << DEV_DMA_NBYTES_SHIFT & mask;
786 			desc->buf = dma_buff + offset;
787 		}
788 
789 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
790 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
791 				 << DEV_DMA_BUFF_STS_SHIFT);
792 		desc++;
793 	}
794 }
795 
796 /*
797  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
798  * @hs_ep: The isochronous endpoint.
799  * @dma_buff: usb requests dma buffer.
800  * @len: usb request transfer length.
801  *
802  * Fills next free descriptor with the data of the arrived usb request,
803  * frame info, sets Last and IOC bits increments next_desc. If filled
804  * descriptor is not the first one, removes L bit from the previous descriptor
805  * status.
806  */
807 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
808 				      dma_addr_t dma_buff, unsigned int len)
809 {
810 	struct dwc2_dma_desc *desc;
811 	struct dwc2_hsotg *hsotg = hs_ep->parent;
812 	u32 index;
813 	u32 maxsize = 0;
814 	u32 mask = 0;
815 
816 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
817 
818 	index = hs_ep->next_desc;
819 	desc = &hs_ep->desc_list[index];
820 
821 	/* Check if descriptor chain full */
822 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
823 	    DEV_DMA_BUFF_STS_HREADY) {
824 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
825 		return 1;
826 	}
827 
828 	/* Clear L bit of previous desc if more than one entries in the chain */
829 	if (hs_ep->next_desc)
830 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
831 
832 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
833 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
834 
835 	desc->status = 0;
836 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
837 
838 	desc->buf = dma_buff;
839 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
840 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
841 
842 	if (hs_ep->dir_in) {
843 		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
844 				 DEV_DMA_ISOC_PID_MASK) |
845 				((len % hs_ep->ep.maxpacket) ?
846 				 DEV_DMA_SHORT : 0) |
847 				((hs_ep->target_frame <<
848 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
849 				 DEV_DMA_ISOC_FRNUM_MASK);
850 	}
851 
852 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
853 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
854 
855 	/* Increment frame number by interval for IN */
856 	if (hs_ep->dir_in)
857 		dwc2_gadget_incr_frame_num(hs_ep);
858 
859 	/* Update index of last configured entry in the chain */
860 	hs_ep->next_desc++;
861 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC)
862 		hs_ep->next_desc = 0;
863 
864 	return 0;
865 }
866 
867 /*
868  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
869  * @hs_ep: The isochronous endpoint.
870  *
871  * Prepare descriptor chain for isochronous endpoints. Afterwards
872  * write DMA address to HW and enable the endpoint.
873  */
874 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
875 {
876 	struct dwc2_hsotg *hsotg = hs_ep->parent;
877 	struct dwc2_hsotg_req *hs_req, *treq;
878 	int index = hs_ep->index;
879 	int ret;
880 	int i;
881 	u32 dma_reg;
882 	u32 depctl;
883 	u32 ctrl;
884 	struct dwc2_dma_desc *desc;
885 
886 	if (list_empty(&hs_ep->queue)) {
887 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
888 		return;
889 	}
890 
891 	/* Initialize descriptor chain by Host Busy status */
892 	for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) {
893 		desc = &hs_ep->desc_list[i];
894 		desc->status = 0;
895 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
896 				    << DEV_DMA_BUFF_STS_SHIFT);
897 	}
898 
899 	hs_ep->next_desc = 0;
900 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
901 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
902 						 hs_req->req.length);
903 		if (ret)
904 			break;
905 	}
906 
907 	hs_ep->compl_desc = 0;
908 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
909 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
910 
911 	/* write descriptor chain address to control register */
912 	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
913 
914 	ctrl = dwc2_readl(hsotg->regs + depctl);
915 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
916 	dwc2_writel(ctrl, hsotg->regs + depctl);
917 }
918 
919 /**
920  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
921  * @hsotg: The controller state.
922  * @hs_ep: The endpoint to process a request for
923  * @hs_req: The request to start.
924  * @continuing: True if we are doing more for the current request.
925  *
926  * Start the given request running by setting the endpoint registers
927  * appropriately, and writing any data to the FIFOs.
928  */
929 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
930 				 struct dwc2_hsotg_ep *hs_ep,
931 				struct dwc2_hsotg_req *hs_req,
932 				bool continuing)
933 {
934 	struct usb_request *ureq = &hs_req->req;
935 	int index = hs_ep->index;
936 	int dir_in = hs_ep->dir_in;
937 	u32 epctrl_reg;
938 	u32 epsize_reg;
939 	u32 epsize;
940 	u32 ctrl;
941 	unsigned int length;
942 	unsigned int packets;
943 	unsigned int maxreq;
944 	unsigned int dma_reg;
945 
946 	if (index != 0) {
947 		if (hs_ep->req && !continuing) {
948 			dev_err(hsotg->dev, "%s: active request\n", __func__);
949 			WARN_ON(1);
950 			return;
951 		} else if (hs_ep->req != hs_req && continuing) {
952 			dev_err(hsotg->dev,
953 				"%s: continue different req\n", __func__);
954 			WARN_ON(1);
955 			return;
956 		}
957 	}
958 
959 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
960 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
961 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
962 
963 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
964 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
965 		hs_ep->dir_in ? "in" : "out");
966 
967 	/* If endpoint is stalled, we will restart request later */
968 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
969 
970 	if (index && ctrl & DXEPCTL_STALL) {
971 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
972 		return;
973 	}
974 
975 	length = ureq->length - ureq->actual;
976 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
977 		ureq->length, ureq->actual);
978 
979 	if (!using_desc_dma(hsotg))
980 		maxreq = get_ep_limit(hs_ep);
981 	else
982 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
983 
984 	if (length > maxreq) {
985 		int round = maxreq % hs_ep->ep.maxpacket;
986 
987 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
988 			__func__, length, maxreq, round);
989 
990 		/* round down to multiple of packets */
991 		if (round)
992 			maxreq -= round;
993 
994 		length = maxreq;
995 	}
996 
997 	if (length)
998 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
999 	else
1000 		packets = 1;	/* send one packet if length is zero. */
1001 
1002 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1003 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1004 		return;
1005 	}
1006 
1007 	if (dir_in && index != 0)
1008 		if (hs_ep->isochronous)
1009 			epsize = DXEPTSIZ_MC(packets);
1010 		else
1011 			epsize = DXEPTSIZ_MC(1);
1012 	else
1013 		epsize = 0;
1014 
1015 	/*
1016 	 * zero length packet should be programmed on its own and should not
1017 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1018 	 */
1019 	if (dir_in && ureq->zero && !continuing) {
1020 		/* Test if zlp is actually required. */
1021 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1022 		    !(ureq->length % hs_ep->ep.maxpacket))
1023 			hs_ep->send_zlp = 1;
1024 	}
1025 
1026 	epsize |= DXEPTSIZ_PKTCNT(packets);
1027 	epsize |= DXEPTSIZ_XFERSIZE(length);
1028 
1029 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1030 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1031 
1032 	/* store the request as the current one we're doing */
1033 	hs_ep->req = hs_req;
1034 
1035 	if (using_desc_dma(hsotg)) {
1036 		u32 offset = 0;
1037 		u32 mps = hs_ep->ep.maxpacket;
1038 
1039 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1040 		if (!dir_in) {
1041 			if (!index)
1042 				length = mps;
1043 			else if (length % mps)
1044 				length += (mps - (length % mps));
1045 		}
1046 
1047 		/*
1048 		 * If more data to send, adjust DMA for EP0 out data stage.
1049 		 * ureq->dma stays unchanged, hence increment it by already
1050 		 * passed passed data count before starting new transaction.
1051 		 */
1052 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1053 		    continuing)
1054 			offset = ureq->actual;
1055 
1056 		/* Fill DDMA chain entries */
1057 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1058 						     length);
1059 
1060 		/* write descriptor chain address to control register */
1061 		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1062 
1063 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1064 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1065 	} else {
1066 		/* write size / packets */
1067 		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1068 
1069 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1070 			/*
1071 			 * write DMA address to control register, buffer
1072 			 * already synced by dwc2_hsotg_ep_queue().
1073 			 */
1074 
1075 			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1076 
1077 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1078 				__func__, &ureq->dma, dma_reg);
1079 		}
1080 	}
1081 
1082 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1083 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1084 		dwc2_gadget_incr_frame_num(hs_ep);
1085 
1086 		if (hs_ep->target_frame & 0x1)
1087 			ctrl |= DXEPCTL_SETODDFR;
1088 		else
1089 			ctrl |= DXEPCTL_SETEVENFR;
1090 	}
1091 
1092 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1093 
1094 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1095 
1096 	/* For Setup request do not clear NAK */
1097 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1098 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1099 
1100 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1101 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1102 
1103 	/*
1104 	 * set these, it seems that DMA support increments past the end
1105 	 * of the packet buffer so we need to calculate the length from
1106 	 * this information.
1107 	 */
1108 	hs_ep->size_loaded = length;
1109 	hs_ep->last_load = ureq->actual;
1110 
1111 	if (dir_in && !using_dma(hsotg)) {
1112 		/* set these anyway, we may need them for non-periodic in */
1113 		hs_ep->fifo_load = 0;
1114 
1115 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1116 	}
1117 
1118 	/*
1119 	 * Note, trying to clear the NAK here causes problems with transmit
1120 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1121 	 */
1122 
1123 	/* check ep is enabled */
1124 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1125 		dev_dbg(hsotg->dev,
1126 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1127 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1128 
1129 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1130 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1131 
1132 	/* enable ep interrupts */
1133 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1134 }
1135 
1136 /**
1137  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1138  * @hsotg: The device state.
1139  * @hs_ep: The endpoint the request is on.
1140  * @req: The request being processed.
1141  *
1142  * We've been asked to queue a request, so ensure that the memory buffer
1143  * is correctly setup for DMA. If we've been passed an extant DMA address
1144  * then ensure the buffer has been synced to memory. If our buffer has no
1145  * DMA memory, then we map the memory and mark our request to allow us to
1146  * cleanup on completion.
1147  */
1148 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1149 			      struct dwc2_hsotg_ep *hs_ep,
1150 			     struct usb_request *req)
1151 {
1152 	int ret;
1153 
1154 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1155 	if (ret)
1156 		goto dma_error;
1157 
1158 	return 0;
1159 
1160 dma_error:
1161 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1162 		__func__, req->buf, req->length);
1163 
1164 	return -EIO;
1165 }
1166 
1167 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1168 						 struct dwc2_hsotg_ep *hs_ep,
1169 						 struct dwc2_hsotg_req *hs_req)
1170 {
1171 	void *req_buf = hs_req->req.buf;
1172 
1173 	/* If dma is not being used or buffer is aligned */
1174 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1175 		return 0;
1176 
1177 	WARN_ON(hs_req->saved_req_buf);
1178 
1179 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1180 		hs_ep->ep.name, req_buf, hs_req->req.length);
1181 
1182 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1183 	if (!hs_req->req.buf) {
1184 		hs_req->req.buf = req_buf;
1185 		dev_err(hsotg->dev,
1186 			"%s: unable to allocate memory for bounce buffer\n",
1187 			__func__);
1188 		return -ENOMEM;
1189 	}
1190 
1191 	/* Save actual buffer */
1192 	hs_req->saved_req_buf = req_buf;
1193 
1194 	if (hs_ep->dir_in)
1195 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1196 	return 0;
1197 }
1198 
1199 static void
1200 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1201 					 struct dwc2_hsotg_ep *hs_ep,
1202 					 struct dwc2_hsotg_req *hs_req)
1203 {
1204 	/* If dma is not being used or buffer was aligned */
1205 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1206 		return;
1207 
1208 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1209 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1210 
1211 	/* Copy data from bounce buffer on successful out transfer */
1212 	if (!hs_ep->dir_in && !hs_req->req.status)
1213 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1214 		       hs_req->req.actual);
1215 
1216 	/* Free bounce buffer */
1217 	kfree(hs_req->req.buf);
1218 
1219 	hs_req->req.buf = hs_req->saved_req_buf;
1220 	hs_req->saved_req_buf = NULL;
1221 }
1222 
1223 /**
1224  * dwc2_gadget_target_frame_elapsed - Checks target frame
1225  * @hs_ep: The driver endpoint to check
1226  *
1227  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1228  * corresponding transfer.
1229  */
1230 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1231 {
1232 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1233 	u32 target_frame = hs_ep->target_frame;
1234 	u32 current_frame = hsotg->frame_number;
1235 	bool frame_overrun = hs_ep->frame_overrun;
1236 
1237 	if (!frame_overrun && current_frame >= target_frame)
1238 		return true;
1239 
1240 	if (frame_overrun && current_frame >= target_frame &&
1241 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1242 		return true;
1243 
1244 	return false;
1245 }
1246 
1247 /*
1248  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1249  * @hsotg: The driver state
1250  * @hs_ep: the ep descriptor chain is for
1251  *
1252  * Called to update EP0 structure's pointers depend on stage of
1253  * control transfer.
1254  */
1255 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1256 					  struct dwc2_hsotg_ep *hs_ep)
1257 {
1258 	switch (hsotg->ep0_state) {
1259 	case DWC2_EP0_SETUP:
1260 	case DWC2_EP0_STATUS_OUT:
1261 		hs_ep->desc_list = hsotg->setup_desc[0];
1262 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1263 		break;
1264 	case DWC2_EP0_DATA_IN:
1265 	case DWC2_EP0_STATUS_IN:
1266 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1267 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1268 		break;
1269 	case DWC2_EP0_DATA_OUT:
1270 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1271 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1272 		break;
1273 	default:
1274 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1275 			hsotg->ep0_state);
1276 		return -EINVAL;
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1283 			       gfp_t gfp_flags)
1284 {
1285 	struct dwc2_hsotg_req *hs_req = our_req(req);
1286 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1287 	struct dwc2_hsotg *hs = hs_ep->parent;
1288 	bool first;
1289 	int ret;
1290 	u32 maxsize = 0;
1291 	u32 mask = 0;
1292 
1293 
1294 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1295 		ep->name, req, req->length, req->buf, req->no_interrupt,
1296 		req->zero, req->short_not_ok);
1297 
1298 	/* Prevent new request submission when controller is suspended */
1299 	if (hs->lx_state != DWC2_L0) {
1300 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1301 			__func__);
1302 		return -EAGAIN;
1303 	}
1304 
1305 	/* initialise status of the request */
1306 	INIT_LIST_HEAD(&hs_req->queue);
1307 	req->actual = 0;
1308 	req->status = -EINPROGRESS;
1309 
1310 	/* In DDMA mode for ISOC's don't queue request if length greater
1311 	 * than descriptor limits.
1312 	 */
1313 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1314 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1315 		if (hs_ep->dir_in && req->length > maxsize) {
1316 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1317 				req->length, maxsize);
1318 			return -EINVAL;
1319 		}
1320 
1321 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1322 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1323 				req->length, hs_ep->ep.maxpacket);
1324 			return -EINVAL;
1325 		}
1326 	}
1327 
1328 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1329 	if (ret)
1330 		return ret;
1331 
1332 	/* if we're using DMA, sync the buffers as necessary */
1333 	if (using_dma(hs)) {
1334 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1335 		if (ret)
1336 			return ret;
1337 	}
1338 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1339 	if (using_desc_dma(hs) && !hs_ep->index) {
1340 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1341 		if (ret)
1342 			return ret;
1343 	}
1344 
1345 	first = list_empty(&hs_ep->queue);
1346 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1347 
1348 	/*
1349 	 * Handle DDMA isochronous transfers separately - just add new entry
1350 	 * to the descriptor chain.
1351 	 * Transfer will be started once SW gets either one of NAK or
1352 	 * OutTknEpDis interrupts.
1353 	 */
1354 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1355 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1356 			dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1357 						   hs_req->req.length);
1358 		}
1359 		return 0;
1360 	}
1361 
1362 	if (first) {
1363 		if (!hs_ep->isochronous) {
1364 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1365 			return 0;
1366 		}
1367 
1368 		/* Update current frame number value. */
1369 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1370 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1371 			dwc2_gadget_incr_frame_num(hs_ep);
1372 			/* Update current frame number value once more as it
1373 			 * changes here.
1374 			 */
1375 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1376 		}
1377 
1378 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1379 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1380 	}
1381 	return 0;
1382 }
1383 
1384 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1385 				    gfp_t gfp_flags)
1386 {
1387 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1388 	struct dwc2_hsotg *hs = hs_ep->parent;
1389 	unsigned long flags = 0;
1390 	int ret = 0;
1391 
1392 	spin_lock_irqsave(&hs->lock, flags);
1393 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1394 	spin_unlock_irqrestore(&hs->lock, flags);
1395 
1396 	return ret;
1397 }
1398 
1399 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1400 				       struct usb_request *req)
1401 {
1402 	struct dwc2_hsotg_req *hs_req = our_req(req);
1403 
1404 	kfree(hs_req);
1405 }
1406 
1407 /**
1408  * dwc2_hsotg_complete_oursetup - setup completion callback
1409  * @ep: The endpoint the request was on.
1410  * @req: The request completed.
1411  *
1412  * Called on completion of any requests the driver itself
1413  * submitted that need cleaning up.
1414  */
1415 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1416 					 struct usb_request *req)
1417 {
1418 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1419 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1420 
1421 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1422 
1423 	dwc2_hsotg_ep_free_request(ep, req);
1424 }
1425 
1426 /**
1427  * ep_from_windex - convert control wIndex value to endpoint
1428  * @hsotg: The driver state.
1429  * @windex: The control request wIndex field (in host order).
1430  *
1431  * Convert the given wIndex into a pointer to an driver endpoint
1432  * structure, or return NULL if it is not a valid endpoint.
1433  */
1434 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1435 					    u32 windex)
1436 {
1437 	struct dwc2_hsotg_ep *ep;
1438 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1439 	int idx = windex & 0x7F;
1440 
1441 	if (windex >= 0x100)
1442 		return NULL;
1443 
1444 	if (idx > hsotg->num_of_eps)
1445 		return NULL;
1446 
1447 	ep = index_to_ep(hsotg, idx, dir);
1448 
1449 	if (idx && ep->dir_in != dir)
1450 		return NULL;
1451 
1452 	return ep;
1453 }
1454 
1455 /**
1456  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1457  * @hsotg: The driver state.
1458  * @testmode: requested usb test mode
1459  * Enable usb Test Mode requested by the Host.
1460  */
1461 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1462 {
1463 	int dctl = dwc2_readl(hsotg->regs + DCTL);
1464 
1465 	dctl &= ~DCTL_TSTCTL_MASK;
1466 	switch (testmode) {
1467 	case TEST_J:
1468 	case TEST_K:
1469 	case TEST_SE0_NAK:
1470 	case TEST_PACKET:
1471 	case TEST_FORCE_EN:
1472 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1473 		break;
1474 	default:
1475 		return -EINVAL;
1476 	}
1477 	dwc2_writel(dctl, hsotg->regs + DCTL);
1478 	return 0;
1479 }
1480 
1481 /**
1482  * dwc2_hsotg_send_reply - send reply to control request
1483  * @hsotg: The device state
1484  * @ep: Endpoint 0
1485  * @buff: Buffer for request
1486  * @length: Length of reply.
1487  *
1488  * Create a request and queue it on the given endpoint. This is useful as
1489  * an internal method of sending replies to certain control requests, etc.
1490  */
1491 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1492 				 struct dwc2_hsotg_ep *ep,
1493 				void *buff,
1494 				int length)
1495 {
1496 	struct usb_request *req;
1497 	int ret;
1498 
1499 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1500 
1501 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1502 	hsotg->ep0_reply = req;
1503 	if (!req) {
1504 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1505 		return -ENOMEM;
1506 	}
1507 
1508 	req->buf = hsotg->ep0_buff;
1509 	req->length = length;
1510 	/*
1511 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1512 	 * STATUS stage.
1513 	 */
1514 	req->zero = 0;
1515 	req->complete = dwc2_hsotg_complete_oursetup;
1516 
1517 	if (length)
1518 		memcpy(req->buf, buff, length);
1519 
1520 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1521 	if (ret) {
1522 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1523 		return ret;
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 /**
1530  * dwc2_hsotg_process_req_status - process request GET_STATUS
1531  * @hsotg: The device state
1532  * @ctrl: USB control request
1533  */
1534 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1535 					 struct usb_ctrlrequest *ctrl)
1536 {
1537 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1538 	struct dwc2_hsotg_ep *ep;
1539 	__le16 reply;
1540 	int ret;
1541 
1542 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1543 
1544 	if (!ep0->dir_in) {
1545 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1546 		return -EINVAL;
1547 	}
1548 
1549 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1550 	case USB_RECIP_DEVICE:
1551 		/*
1552 		 * bit 0 => self powered
1553 		 * bit 1 => remote wakeup
1554 		 */
1555 		reply = cpu_to_le16(0);
1556 		break;
1557 
1558 	case USB_RECIP_INTERFACE:
1559 		/* currently, the data result should be zero */
1560 		reply = cpu_to_le16(0);
1561 		break;
1562 
1563 	case USB_RECIP_ENDPOINT:
1564 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1565 		if (!ep)
1566 			return -ENOENT;
1567 
1568 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1569 		break;
1570 
1571 	default:
1572 		return 0;
1573 	}
1574 
1575 	if (le16_to_cpu(ctrl->wLength) != 2)
1576 		return -EINVAL;
1577 
1578 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1579 	if (ret) {
1580 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1581 		return ret;
1582 	}
1583 
1584 	return 1;
1585 }
1586 
1587 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1588 
1589 /**
1590  * get_ep_head - return the first request on the endpoint
1591  * @hs_ep: The controller endpoint to get
1592  *
1593  * Get the first request on the endpoint.
1594  */
1595 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1596 {
1597 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1598 					queue);
1599 }
1600 
1601 /**
1602  * dwc2_gadget_start_next_request - Starts next request from ep queue
1603  * @hs_ep: Endpoint structure
1604  *
1605  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1606  * in its handler. Hence we need to unmask it here to be able to do
1607  * resynchronization.
1608  */
1609 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1610 {
1611 	u32 mask;
1612 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1613 	int dir_in = hs_ep->dir_in;
1614 	struct dwc2_hsotg_req *hs_req;
1615 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1616 
1617 	if (!list_empty(&hs_ep->queue)) {
1618 		hs_req = get_ep_head(hs_ep);
1619 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1620 		return;
1621 	}
1622 	if (!hs_ep->isochronous)
1623 		return;
1624 
1625 	if (dir_in) {
1626 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1627 			__func__);
1628 	} else {
1629 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1630 			__func__);
1631 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1632 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1633 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1634 	}
1635 }
1636 
1637 /**
1638  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1639  * @hsotg: The device state
1640  * @ctrl: USB control request
1641  */
1642 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1643 					  struct usb_ctrlrequest *ctrl)
1644 {
1645 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1646 	struct dwc2_hsotg_req *hs_req;
1647 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1648 	struct dwc2_hsotg_ep *ep;
1649 	int ret;
1650 	bool halted;
1651 	u32 recip;
1652 	u32 wValue;
1653 	u32 wIndex;
1654 
1655 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1656 		__func__, set ? "SET" : "CLEAR");
1657 
1658 	wValue = le16_to_cpu(ctrl->wValue);
1659 	wIndex = le16_to_cpu(ctrl->wIndex);
1660 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1661 
1662 	switch (recip) {
1663 	case USB_RECIP_DEVICE:
1664 		switch (wValue) {
1665 		case USB_DEVICE_REMOTE_WAKEUP:
1666 			hsotg->remote_wakeup_allowed = 1;
1667 			break;
1668 
1669 		case USB_DEVICE_TEST_MODE:
1670 			if ((wIndex & 0xff) != 0)
1671 				return -EINVAL;
1672 			if (!set)
1673 				return -EINVAL;
1674 
1675 			hsotg->test_mode = wIndex >> 8;
1676 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1677 			if (ret) {
1678 				dev_err(hsotg->dev,
1679 					"%s: failed to send reply\n", __func__);
1680 				return ret;
1681 			}
1682 			break;
1683 		default:
1684 			return -ENOENT;
1685 		}
1686 		break;
1687 
1688 	case USB_RECIP_ENDPOINT:
1689 		ep = ep_from_windex(hsotg, wIndex);
1690 		if (!ep) {
1691 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1692 				__func__, wIndex);
1693 			return -ENOENT;
1694 		}
1695 
1696 		switch (wValue) {
1697 		case USB_ENDPOINT_HALT:
1698 			halted = ep->halted;
1699 
1700 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1701 
1702 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1703 			if (ret) {
1704 				dev_err(hsotg->dev,
1705 					"%s: failed to send reply\n", __func__);
1706 				return ret;
1707 			}
1708 
1709 			/*
1710 			 * we have to complete all requests for ep if it was
1711 			 * halted, and the halt was cleared by CLEAR_FEATURE
1712 			 */
1713 
1714 			if (!set && halted) {
1715 				/*
1716 				 * If we have request in progress,
1717 				 * then complete it
1718 				 */
1719 				if (ep->req) {
1720 					hs_req = ep->req;
1721 					ep->req = NULL;
1722 					list_del_init(&hs_req->queue);
1723 					if (hs_req->req.complete) {
1724 						spin_unlock(&hsotg->lock);
1725 						usb_gadget_giveback_request(
1726 							&ep->ep, &hs_req->req);
1727 						spin_lock(&hsotg->lock);
1728 					}
1729 				}
1730 
1731 				/* If we have pending request, then start it */
1732 				if (!ep->req)
1733 					dwc2_gadget_start_next_request(ep);
1734 			}
1735 
1736 			break;
1737 
1738 		default:
1739 			return -ENOENT;
1740 		}
1741 		break;
1742 	default:
1743 		return -ENOENT;
1744 	}
1745 	return 1;
1746 }
1747 
1748 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1749 
1750 /**
1751  * dwc2_hsotg_stall_ep0 - stall ep0
1752  * @hsotg: The device state
1753  *
1754  * Set stall for ep0 as response for setup request.
1755  */
1756 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1757 {
1758 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1759 	u32 reg;
1760 	u32 ctrl;
1761 
1762 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1763 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1764 
1765 	/*
1766 	 * DxEPCTL_Stall will be cleared by EP once it has
1767 	 * taken effect, so no need to clear later.
1768 	 */
1769 
1770 	ctrl = dwc2_readl(hsotg->regs + reg);
1771 	ctrl |= DXEPCTL_STALL;
1772 	ctrl |= DXEPCTL_CNAK;
1773 	dwc2_writel(ctrl, hsotg->regs + reg);
1774 
1775 	dev_dbg(hsotg->dev,
1776 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1777 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1778 
1779 	 /*
1780 	  * complete won't be called, so we enqueue
1781 	  * setup request here
1782 	  */
1783 	 dwc2_hsotg_enqueue_setup(hsotg);
1784 }
1785 
1786 /**
1787  * dwc2_hsotg_process_control - process a control request
1788  * @hsotg: The device state
1789  * @ctrl: The control request received
1790  *
1791  * The controller has received the SETUP phase of a control request, and
1792  * needs to work out what to do next (and whether to pass it on to the
1793  * gadget driver).
1794  */
1795 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1796 				       struct usb_ctrlrequest *ctrl)
1797 {
1798 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1799 	int ret = 0;
1800 	u32 dcfg;
1801 
1802 	dev_dbg(hsotg->dev,
1803 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1804 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1805 		ctrl->wIndex, ctrl->wLength);
1806 
1807 	if (ctrl->wLength == 0) {
1808 		ep0->dir_in = 1;
1809 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1810 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1811 		ep0->dir_in = 1;
1812 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1813 	} else {
1814 		ep0->dir_in = 0;
1815 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1816 	}
1817 
1818 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1819 		switch (ctrl->bRequest) {
1820 		case USB_REQ_SET_ADDRESS:
1821 			hsotg->connected = 1;
1822 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1823 			dcfg &= ~DCFG_DEVADDR_MASK;
1824 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1825 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1826 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1827 
1828 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1829 
1830 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1831 			return;
1832 
1833 		case USB_REQ_GET_STATUS:
1834 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1835 			break;
1836 
1837 		case USB_REQ_CLEAR_FEATURE:
1838 		case USB_REQ_SET_FEATURE:
1839 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1840 			break;
1841 		}
1842 	}
1843 
1844 	/* as a fallback, try delivering it to the driver to deal with */
1845 
1846 	if (ret == 0 && hsotg->driver) {
1847 		spin_unlock(&hsotg->lock);
1848 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1849 		spin_lock(&hsotg->lock);
1850 		if (ret < 0)
1851 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1852 	}
1853 
1854 	/*
1855 	 * the request is either unhandlable, or is not formatted correctly
1856 	 * so respond with a STALL for the status stage to indicate failure.
1857 	 */
1858 
1859 	if (ret < 0)
1860 		dwc2_hsotg_stall_ep0(hsotg);
1861 }
1862 
1863 /**
1864  * dwc2_hsotg_complete_setup - completion of a setup transfer
1865  * @ep: The endpoint the request was on.
1866  * @req: The request completed.
1867  *
1868  * Called on completion of any requests the driver itself submitted for
1869  * EP0 setup packets
1870  */
1871 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1872 				      struct usb_request *req)
1873 {
1874 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1875 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1876 
1877 	if (req->status < 0) {
1878 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1879 		return;
1880 	}
1881 
1882 	spin_lock(&hsotg->lock);
1883 	if (req->actual == 0)
1884 		dwc2_hsotg_enqueue_setup(hsotg);
1885 	else
1886 		dwc2_hsotg_process_control(hsotg, req->buf);
1887 	spin_unlock(&hsotg->lock);
1888 }
1889 
1890 /**
1891  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1892  * @hsotg: The device state.
1893  *
1894  * Enqueue a request on EP0 if necessary to received any SETUP packets
1895  * received from the host.
1896  */
1897 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1898 {
1899 	struct usb_request *req = hsotg->ctrl_req;
1900 	struct dwc2_hsotg_req *hs_req = our_req(req);
1901 	int ret;
1902 
1903 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1904 
1905 	req->zero = 0;
1906 	req->length = 8;
1907 	req->buf = hsotg->ctrl_buff;
1908 	req->complete = dwc2_hsotg_complete_setup;
1909 
1910 	if (!list_empty(&hs_req->queue)) {
1911 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1912 		return;
1913 	}
1914 
1915 	hsotg->eps_out[0]->dir_in = 0;
1916 	hsotg->eps_out[0]->send_zlp = 0;
1917 	hsotg->ep0_state = DWC2_EP0_SETUP;
1918 
1919 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1920 	if (ret < 0) {
1921 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1922 		/*
1923 		 * Don't think there's much we can do other than watch the
1924 		 * driver fail.
1925 		 */
1926 	}
1927 }
1928 
1929 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1930 				   struct dwc2_hsotg_ep *hs_ep)
1931 {
1932 	u32 ctrl;
1933 	u8 index = hs_ep->index;
1934 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1935 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1936 
1937 	if (hs_ep->dir_in)
1938 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1939 			index);
1940 	else
1941 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1942 			index);
1943 	if (using_desc_dma(hsotg)) {
1944 		/* Not specific buffer needed for ep0 ZLP */
1945 		dma_addr_t dma = hs_ep->desc_list_dma;
1946 
1947 		if (!index)
1948 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1949 
1950 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1951 	} else {
1952 		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1953 			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1954 			    epsiz_reg);
1955 	}
1956 
1957 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1958 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1959 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1960 	ctrl |= DXEPCTL_USBACTEP;
1961 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1962 }
1963 
1964 /**
1965  * dwc2_hsotg_complete_request - complete a request given to us
1966  * @hsotg: The device state.
1967  * @hs_ep: The endpoint the request was on.
1968  * @hs_req: The request to complete.
1969  * @result: The result code (0 => Ok, otherwise errno)
1970  *
1971  * The given request has finished, so call the necessary completion
1972  * if it has one and then look to see if we can start a new request
1973  * on the endpoint.
1974  *
1975  * Note, expects the ep to already be locked as appropriate.
1976  */
1977 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1978 					struct dwc2_hsotg_ep *hs_ep,
1979 				       struct dwc2_hsotg_req *hs_req,
1980 				       int result)
1981 {
1982 	if (!hs_req) {
1983 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1984 		return;
1985 	}
1986 
1987 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1988 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1989 
1990 	/*
1991 	 * only replace the status if we've not already set an error
1992 	 * from a previous transaction
1993 	 */
1994 
1995 	if (hs_req->req.status == -EINPROGRESS)
1996 		hs_req->req.status = result;
1997 
1998 	if (using_dma(hsotg))
1999 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2000 
2001 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2002 
2003 	hs_ep->req = NULL;
2004 	list_del_init(&hs_req->queue);
2005 
2006 	/*
2007 	 * call the complete request with the locks off, just in case the
2008 	 * request tries to queue more work for this endpoint.
2009 	 */
2010 
2011 	if (hs_req->req.complete) {
2012 		spin_unlock(&hsotg->lock);
2013 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2014 		spin_lock(&hsotg->lock);
2015 	}
2016 
2017 	/* In DDMA don't need to proceed to starting of next ISOC request */
2018 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2019 		return;
2020 
2021 	/*
2022 	 * Look to see if there is anything else to do. Note, the completion
2023 	 * of the previous request may have caused a new request to be started
2024 	 * so be careful when doing this.
2025 	 */
2026 
2027 	if (!hs_ep->req && result >= 0)
2028 		dwc2_gadget_start_next_request(hs_ep);
2029 }
2030 
2031 /*
2032  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2033  * @hs_ep: The endpoint the request was on.
2034  *
2035  * Get first request from the ep queue, determine descriptor on which complete
2036  * happened. SW discovers which descriptor currently in use by HW, adjusts
2037  * dma_address and calculates index of completed descriptor based on the value
2038  * of DEPDMA register. Update actual length of request, giveback to gadget.
2039  */
2040 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2041 {
2042 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2043 	struct dwc2_hsotg_req *hs_req;
2044 	struct usb_request *ureq;
2045 	u32 desc_sts;
2046 	u32 mask;
2047 
2048 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2049 
2050 	/* Process only descriptors with buffer status set to DMA done */
2051 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2052 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2053 
2054 		hs_req = get_ep_head(hs_ep);
2055 		if (!hs_req) {
2056 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2057 			return;
2058 		}
2059 		ureq = &hs_req->req;
2060 
2061 		/* Check completion status */
2062 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2063 			DEV_DMA_STS_SUCC) {
2064 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2065 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2066 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2067 				DEV_DMA_ISOC_NBYTES_SHIFT);
2068 
2069 			/* Adjust actual len for ISOC Out if len is
2070 			 * not align of 4
2071 			 */
2072 			if (!hs_ep->dir_in && ureq->length & 0x3)
2073 				ureq->actual += 4 - (ureq->length & 0x3);
2074 		}
2075 
2076 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2077 
2078 		hs_ep->compl_desc++;
2079 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1))
2080 			hs_ep->compl_desc = 0;
2081 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2082 	}
2083 }
2084 
2085 /*
2086  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2087  * @hs_ep: The isochronous endpoint.
2088  *
2089  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2090  * interrupt. Reset target frame and next_desc to allow to start
2091  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2092  * interrupt for OUT direction.
2093  */
2094 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2095 {
2096 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2097 
2098 	if (!hs_ep->dir_in)
2099 		dwc2_flush_rx_fifo(hsotg);
2100 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2101 
2102 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2103 	hs_ep->next_desc = 0;
2104 	hs_ep->compl_desc = 0;
2105 }
2106 
2107 /**
2108  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2109  * @hsotg: The device state.
2110  * @ep_idx: The endpoint index for the data
2111  * @size: The size of data in the fifo, in bytes
2112  *
2113  * The FIFO status shows there is data to read from the FIFO for a given
2114  * endpoint, so sort out whether we need to read the data into a request
2115  * that has been made for that endpoint.
2116  */
2117 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2118 {
2119 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2120 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2121 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2122 	int to_read;
2123 	int max_req;
2124 	int read_ptr;
2125 
2126 	if (!hs_req) {
2127 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2128 		int ptr;
2129 
2130 		dev_dbg(hsotg->dev,
2131 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2132 			 __func__, size, ep_idx, epctl);
2133 
2134 		/* dump the data from the FIFO, we've nothing we can do */
2135 		for (ptr = 0; ptr < size; ptr += 4)
2136 			(void)dwc2_readl(fifo);
2137 
2138 		return;
2139 	}
2140 
2141 	to_read = size;
2142 	read_ptr = hs_req->req.actual;
2143 	max_req = hs_req->req.length - read_ptr;
2144 
2145 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2146 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2147 
2148 	if (to_read > max_req) {
2149 		/*
2150 		 * more data appeared than we where willing
2151 		 * to deal with in this request.
2152 		 */
2153 
2154 		/* currently we don't deal this */
2155 		WARN_ON_ONCE(1);
2156 	}
2157 
2158 	hs_ep->total_data += to_read;
2159 	hs_req->req.actual += to_read;
2160 	to_read = DIV_ROUND_UP(to_read, 4);
2161 
2162 	/*
2163 	 * note, we might over-write the buffer end by 3 bytes depending on
2164 	 * alignment of the data.
2165 	 */
2166 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2167 }
2168 
2169 /**
2170  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2171  * @hsotg: The device instance
2172  * @dir_in: If IN zlp
2173  *
2174  * Generate a zero-length IN packet request for terminating a SETUP
2175  * transaction.
2176  *
2177  * Note, since we don't write any data to the TxFIFO, then it is
2178  * currently believed that we do not need to wait for any space in
2179  * the TxFIFO.
2180  */
2181 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2182 {
2183 	/* eps_out[0] is used in both directions */
2184 	hsotg->eps_out[0]->dir_in = dir_in;
2185 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2186 
2187 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2188 }
2189 
2190 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2191 					    u32 epctl_reg)
2192 {
2193 	u32 ctrl;
2194 
2195 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2196 	if (ctrl & DXEPCTL_EOFRNUM)
2197 		ctrl |= DXEPCTL_SETEVENFR;
2198 	else
2199 		ctrl |= DXEPCTL_SETODDFR;
2200 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2201 }
2202 
2203 /*
2204  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2205  * @hs_ep - The endpoint on which transfer went
2206  *
2207  * Iterate over endpoints descriptor chain and get info on bytes remained
2208  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2209  */
2210 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2211 {
2212 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2213 	unsigned int bytes_rem = 0;
2214 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2215 	int i;
2216 	u32 status;
2217 
2218 	if (!desc)
2219 		return -EINVAL;
2220 
2221 	for (i = 0; i < hs_ep->desc_count; ++i) {
2222 		status = desc->status;
2223 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2224 
2225 		if (status & DEV_DMA_STS_MASK)
2226 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2227 				i, status & DEV_DMA_STS_MASK);
2228 	}
2229 
2230 	return bytes_rem;
2231 }
2232 
2233 /**
2234  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2235  * @hsotg: The device instance
2236  * @epnum: The endpoint received from
2237  *
2238  * The RXFIFO has delivered an OutDone event, which means that the data
2239  * transfer for an OUT endpoint has been completed, either by a short
2240  * packet or by the finish of a transfer.
2241  */
2242 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2243 {
2244 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2245 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2246 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2247 	struct usb_request *req = &hs_req->req;
2248 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2249 	int result = 0;
2250 
2251 	if (!hs_req) {
2252 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2253 		return;
2254 	}
2255 
2256 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2257 		dev_dbg(hsotg->dev, "zlp packet received\n");
2258 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2259 		dwc2_hsotg_enqueue_setup(hsotg);
2260 		return;
2261 	}
2262 
2263 	if (using_desc_dma(hsotg))
2264 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2265 
2266 	if (using_dma(hsotg)) {
2267 		unsigned int size_done;
2268 
2269 		/*
2270 		 * Calculate the size of the transfer by checking how much
2271 		 * is left in the endpoint size register and then working it
2272 		 * out from the amount we loaded for the transfer.
2273 		 *
2274 		 * We need to do this as DMA pointers are always 32bit aligned
2275 		 * so may overshoot/undershoot the transfer.
2276 		 */
2277 
2278 		size_done = hs_ep->size_loaded - size_left;
2279 		size_done += hs_ep->last_load;
2280 
2281 		req->actual = size_done;
2282 	}
2283 
2284 	/* if there is more request to do, schedule new transfer */
2285 	if (req->actual < req->length && size_left == 0) {
2286 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2287 		return;
2288 	}
2289 
2290 	if (req->actual < req->length && req->short_not_ok) {
2291 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2292 			__func__, req->actual, req->length);
2293 
2294 		/*
2295 		 * todo - what should we return here? there's no one else
2296 		 * even bothering to check the status.
2297 		 */
2298 	}
2299 
2300 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2301 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2302 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2303 		/* Move to STATUS IN */
2304 		dwc2_hsotg_ep0_zlp(hsotg, true);
2305 		return;
2306 	}
2307 
2308 	/*
2309 	 * Slave mode OUT transfers do not go through XferComplete so
2310 	 * adjust the ISOC parity here.
2311 	 */
2312 	if (!using_dma(hsotg)) {
2313 		if (hs_ep->isochronous && hs_ep->interval == 1)
2314 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2315 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2316 			dwc2_gadget_incr_frame_num(hs_ep);
2317 	}
2318 
2319 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2320 }
2321 
2322 /**
2323  * dwc2_hsotg_handle_rx - RX FIFO has data
2324  * @hsotg: The device instance
2325  *
2326  * The IRQ handler has detected that the RX FIFO has some data in it
2327  * that requires processing, so find out what is in there and do the
2328  * appropriate read.
2329  *
2330  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2331  * chunks, so if you have x packets received on an endpoint you'll get x
2332  * FIFO events delivered, each with a packet's worth of data in it.
2333  *
2334  * When using DMA, we should not be processing events from the RXFIFO
2335  * as the actual data should be sent to the memory directly and we turn
2336  * on the completion interrupts to get notifications of transfer completion.
2337  */
2338 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2339 {
2340 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2341 	u32 epnum, status, size;
2342 
2343 	WARN_ON(using_dma(hsotg));
2344 
2345 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2346 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2347 
2348 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2349 	size >>= GRXSTS_BYTECNT_SHIFT;
2350 
2351 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2352 		__func__, grxstsr, size, epnum);
2353 
2354 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2355 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2356 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2357 		break;
2358 
2359 	case GRXSTS_PKTSTS_OUTDONE:
2360 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2361 			dwc2_hsotg_read_frameno(hsotg));
2362 
2363 		if (!using_dma(hsotg))
2364 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2365 		break;
2366 
2367 	case GRXSTS_PKTSTS_SETUPDONE:
2368 		dev_dbg(hsotg->dev,
2369 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2370 			dwc2_hsotg_read_frameno(hsotg),
2371 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2372 		/*
2373 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2374 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2375 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2376 		 */
2377 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2378 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2379 		break;
2380 
2381 	case GRXSTS_PKTSTS_OUTRX:
2382 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2383 		break;
2384 
2385 	case GRXSTS_PKTSTS_SETUPRX:
2386 		dev_dbg(hsotg->dev,
2387 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2388 			dwc2_hsotg_read_frameno(hsotg),
2389 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2390 
2391 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2392 
2393 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2394 		break;
2395 
2396 	default:
2397 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2398 			 __func__, grxstsr);
2399 
2400 		dwc2_hsotg_dump(hsotg);
2401 		break;
2402 	}
2403 }
2404 
2405 /**
2406  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2407  * @mps: The maximum packet size in bytes.
2408  */
2409 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2410 {
2411 	switch (mps) {
2412 	case 64:
2413 		return D0EPCTL_MPS_64;
2414 	case 32:
2415 		return D0EPCTL_MPS_32;
2416 	case 16:
2417 		return D0EPCTL_MPS_16;
2418 	case 8:
2419 		return D0EPCTL_MPS_8;
2420 	}
2421 
2422 	/* bad max packet size, warn and return invalid result */
2423 	WARN_ON(1);
2424 	return (u32)-1;
2425 }
2426 
2427 /**
2428  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2429  * @hsotg: The driver state.
2430  * @ep: The index number of the endpoint
2431  * @mps: The maximum packet size in bytes
2432  * @mc: The multicount value
2433  * @dir_in: True if direction is in.
2434  *
2435  * Configure the maximum packet size for the given endpoint, updating
2436  * the hardware control registers to reflect this.
2437  */
2438 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2439 					unsigned int ep, unsigned int mps,
2440 					unsigned int mc, unsigned int dir_in)
2441 {
2442 	struct dwc2_hsotg_ep *hs_ep;
2443 	void __iomem *regs = hsotg->regs;
2444 	u32 reg;
2445 
2446 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2447 	if (!hs_ep)
2448 		return;
2449 
2450 	if (ep == 0) {
2451 		u32 mps_bytes = mps;
2452 
2453 		/* EP0 is a special case */
2454 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2455 		if (mps > 3)
2456 			goto bad_mps;
2457 		hs_ep->ep.maxpacket = mps_bytes;
2458 		hs_ep->mc = 1;
2459 	} else {
2460 		if (mps > 1024)
2461 			goto bad_mps;
2462 		hs_ep->mc = mc;
2463 		if (mc > 3)
2464 			goto bad_mps;
2465 		hs_ep->ep.maxpacket = mps;
2466 	}
2467 
2468 	if (dir_in) {
2469 		reg = dwc2_readl(regs + DIEPCTL(ep));
2470 		reg &= ~DXEPCTL_MPS_MASK;
2471 		reg |= mps;
2472 		dwc2_writel(reg, regs + DIEPCTL(ep));
2473 	} else {
2474 		reg = dwc2_readl(regs + DOEPCTL(ep));
2475 		reg &= ~DXEPCTL_MPS_MASK;
2476 		reg |= mps;
2477 		dwc2_writel(reg, regs + DOEPCTL(ep));
2478 	}
2479 
2480 	return;
2481 
2482 bad_mps:
2483 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2484 }
2485 
2486 /**
2487  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2488  * @hsotg: The driver state
2489  * @idx: The index for the endpoint (0..15)
2490  */
2491 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2492 {
2493 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2494 		    hsotg->regs + GRSTCTL);
2495 
2496 	/* wait until the fifo is flushed */
2497 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2498 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2499 			 __func__);
2500 }
2501 
2502 /**
2503  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2504  * @hsotg: The driver state
2505  * @hs_ep: The driver endpoint to check.
2506  *
2507  * Check to see if there is a request that has data to send, and if so
2508  * make an attempt to write data into the FIFO.
2509  */
2510 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2511 			    struct dwc2_hsotg_ep *hs_ep)
2512 {
2513 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2514 
2515 	if (!hs_ep->dir_in || !hs_req) {
2516 		/**
2517 		 * if request is not enqueued, we disable interrupts
2518 		 * for endpoints, excepting ep0
2519 		 */
2520 		if (hs_ep->index != 0)
2521 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2522 					      hs_ep->dir_in, 0);
2523 		return 0;
2524 	}
2525 
2526 	if (hs_req->req.actual < hs_req->req.length) {
2527 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2528 			hs_ep->index);
2529 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2530 	}
2531 
2532 	return 0;
2533 }
2534 
2535 /**
2536  * dwc2_hsotg_complete_in - complete IN transfer
2537  * @hsotg: The device state.
2538  * @hs_ep: The endpoint that has just completed.
2539  *
2540  * An IN transfer has been completed, update the transfer's state and then
2541  * call the relevant completion routines.
2542  */
2543 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2544 				   struct dwc2_hsotg_ep *hs_ep)
2545 {
2546 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2547 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2548 	int size_left, size_done;
2549 
2550 	if (!hs_req) {
2551 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2552 		return;
2553 	}
2554 
2555 	/* Finish ZLP handling for IN EP0 transactions */
2556 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2557 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2558 
2559 		/*
2560 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2561 		 * changed to IN. Change back to complete OUT transfer request
2562 		 */
2563 		hs_ep->dir_in = 0;
2564 
2565 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2566 		if (hsotg->test_mode) {
2567 			int ret;
2568 
2569 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2570 			if (ret < 0) {
2571 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2572 					hsotg->test_mode);
2573 				dwc2_hsotg_stall_ep0(hsotg);
2574 				return;
2575 			}
2576 		}
2577 		dwc2_hsotg_enqueue_setup(hsotg);
2578 		return;
2579 	}
2580 
2581 	/*
2582 	 * Calculate the size of the transfer by checking how much is left
2583 	 * in the endpoint size register and then working it out from
2584 	 * the amount we loaded for the transfer.
2585 	 *
2586 	 * We do this even for DMA, as the transfer may have incremented
2587 	 * past the end of the buffer (DMA transfers are always 32bit
2588 	 * aligned).
2589 	 */
2590 	if (using_desc_dma(hsotg)) {
2591 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2592 		if (size_left < 0)
2593 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2594 				size_left);
2595 	} else {
2596 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2597 	}
2598 
2599 	size_done = hs_ep->size_loaded - size_left;
2600 	size_done += hs_ep->last_load;
2601 
2602 	if (hs_req->req.actual != size_done)
2603 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2604 			__func__, hs_req->req.actual, size_done);
2605 
2606 	hs_req->req.actual = size_done;
2607 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2608 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2609 
2610 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2611 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2612 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2613 		return;
2614 	}
2615 
2616 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2617 	if (hs_ep->send_zlp) {
2618 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2619 		hs_ep->send_zlp = 0;
2620 		/* transfer will be completed on next complete interrupt */
2621 		return;
2622 	}
2623 
2624 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2625 		/* Move to STATUS OUT */
2626 		dwc2_hsotg_ep0_zlp(hsotg, false);
2627 		return;
2628 	}
2629 
2630 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2631 }
2632 
2633 /**
2634  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2635  * @hsotg: The device state.
2636  * @idx: Index of ep.
2637  * @dir_in: Endpoint direction 1-in 0-out.
2638  *
2639  * Reads for endpoint with given index and direction, by masking
2640  * epint_reg with coresponding mask.
2641  */
2642 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2643 					  unsigned int idx, int dir_in)
2644 {
2645 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2646 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2647 	u32 ints;
2648 	u32 mask;
2649 	u32 diepempmsk;
2650 
2651 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2652 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2653 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2654 	mask |= DXEPINT_SETUP_RCVD;
2655 
2656 	ints = dwc2_readl(hsotg->regs + epint_reg);
2657 	ints &= mask;
2658 	return ints;
2659 }
2660 
2661 /**
2662  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2663  * @hs_ep: The endpoint on which interrupt is asserted.
2664  *
2665  * This interrupt indicates that the endpoint has been disabled per the
2666  * application's request.
2667  *
2668  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2669  * in case of ISOC completes current request.
2670  *
2671  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2672  * request starts it.
2673  */
2674 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2675 {
2676 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2677 	struct dwc2_hsotg_req *hs_req;
2678 	unsigned char idx = hs_ep->index;
2679 	int dir_in = hs_ep->dir_in;
2680 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2681 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2682 
2683 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2684 
2685 	if (dir_in) {
2686 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2687 
2688 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2689 
2690 		if (hs_ep->isochronous) {
2691 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2692 			return;
2693 		}
2694 
2695 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2696 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2697 
2698 			dctl |= DCTL_CGNPINNAK;
2699 			dwc2_writel(dctl, hsotg->regs + DCTL);
2700 		}
2701 		return;
2702 	}
2703 
2704 	if (dctl & DCTL_GOUTNAKSTS) {
2705 		dctl |= DCTL_CGOUTNAK;
2706 		dwc2_writel(dctl, hsotg->regs + DCTL);
2707 	}
2708 
2709 	if (!hs_ep->isochronous)
2710 		return;
2711 
2712 	if (list_empty(&hs_ep->queue)) {
2713 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2714 			__func__, hs_ep);
2715 		return;
2716 	}
2717 
2718 	do {
2719 		hs_req = get_ep_head(hs_ep);
2720 		if (hs_req)
2721 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2722 						    -ENODATA);
2723 		dwc2_gadget_incr_frame_num(hs_ep);
2724 		/* Update current frame number value. */
2725 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2726 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2727 
2728 	dwc2_gadget_start_next_request(hs_ep);
2729 }
2730 
2731 /**
2732  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2733  * @ep: The endpoint on which interrupt is asserted.
2734  *
2735  * This is starting point for ISOC-OUT transfer, synchronization done with
2736  * first out token received from host while corresponding EP is disabled.
2737  *
2738  * Device does not know initial frame in which out token will come. For this
2739  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2740  * getting this interrupt SW starts calculation for next transfer frame.
2741  */
2742 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2743 {
2744 	struct dwc2_hsotg *hsotg = ep->parent;
2745 	int dir_in = ep->dir_in;
2746 	u32 doepmsk;
2747 	u32 tmp;
2748 
2749 	if (dir_in || !ep->isochronous)
2750 		return;
2751 
2752 	/*
2753 	 * Store frame in which irq was asserted here, as
2754 	 * it can change while completing request below.
2755 	 */
2756 	tmp = dwc2_hsotg_read_frameno(hsotg);
2757 
2758 	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), 0);
2759 
2760 	if (using_desc_dma(hsotg)) {
2761 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2762 			/* Start first ISO Out */
2763 			ep->target_frame = tmp;
2764 			dwc2_gadget_start_isoc_ddma(ep);
2765 		}
2766 		return;
2767 	}
2768 
2769 	if (ep->interval > 1 &&
2770 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2771 		u32 dsts;
2772 		u32 ctrl;
2773 
2774 		dsts = dwc2_readl(hsotg->regs + DSTS);
2775 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2776 		dwc2_gadget_incr_frame_num(ep);
2777 
2778 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2779 		if (ep->target_frame & 0x1)
2780 			ctrl |= DXEPCTL_SETODDFR;
2781 		else
2782 			ctrl |= DXEPCTL_SETEVENFR;
2783 
2784 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2785 	}
2786 
2787 	dwc2_gadget_start_next_request(ep);
2788 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2789 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2790 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2791 }
2792 
2793 /**
2794  * dwc2_gadget_handle_nak - handle NAK interrupt
2795  * @hs_ep: The endpoint on which interrupt is asserted.
2796  *
2797  * This is starting point for ISOC-IN transfer, synchronization done with
2798  * first IN token received from host while corresponding EP is disabled.
2799  *
2800  * Device does not know when first one token will arrive from host. On first
2801  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2802  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2803  * sent in response to that as there was no data in FIFO. SW is basing on this
2804  * interrupt to obtain frame in which token has come and then based on the
2805  * interval calculates next frame for transfer.
2806  */
2807 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2808 {
2809 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2810 	int dir_in = hs_ep->dir_in;
2811 	u32 tmp;
2812 
2813 	if (!dir_in || !hs_ep->isochronous)
2814 		return;
2815 
2816 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2817 
2818 		tmp = dwc2_hsotg_read_frameno(hsotg);
2819 		if (using_desc_dma(hsotg)) {
2820 			dwc2_hsotg_complete_request(hsotg, hs_ep,
2821 						    get_ep_head(hs_ep), 0);
2822 
2823 			hs_ep->target_frame = tmp;
2824 			dwc2_gadget_incr_frame_num(hs_ep);
2825 			dwc2_gadget_start_isoc_ddma(hs_ep);
2826 			return;
2827 		}
2828 
2829 		hs_ep->target_frame = tmp;
2830 		if (hs_ep->interval > 1) {
2831 			u32 ctrl = dwc2_readl(hsotg->regs +
2832 					      DIEPCTL(hs_ep->index));
2833 			if (hs_ep->target_frame & 0x1)
2834 				ctrl |= DXEPCTL_SETODDFR;
2835 			else
2836 				ctrl |= DXEPCTL_SETEVENFR;
2837 
2838 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2839 		}
2840 
2841 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2842 					    get_ep_head(hs_ep), 0);
2843 	}
2844 
2845 	if (!using_desc_dma(hsotg))
2846 		dwc2_gadget_incr_frame_num(hs_ep);
2847 }
2848 
2849 /**
2850  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2851  * @hsotg: The driver state
2852  * @idx: The index for the endpoint (0..15)
2853  * @dir_in: Set if this is an IN endpoint
2854  *
2855  * Process and clear any interrupt pending for an individual endpoint
2856  */
2857 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2858 			     int dir_in)
2859 {
2860 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2861 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2862 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2863 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2864 	u32 ints;
2865 	u32 ctrl;
2866 
2867 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2868 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2869 
2870 	/* Clear endpoint interrupts */
2871 	dwc2_writel(ints, hsotg->regs + epint_reg);
2872 
2873 	if (!hs_ep) {
2874 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2875 			__func__, idx, dir_in ? "in" : "out");
2876 		return;
2877 	}
2878 
2879 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2880 		__func__, idx, dir_in ? "in" : "out", ints);
2881 
2882 	/* Don't process XferCompl interrupt if it is a setup packet */
2883 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2884 		ints &= ~DXEPINT_XFERCOMPL;
2885 
2886 	/*
2887 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2888 	 * stage and xfercomplete was generated without SETUP phase done
2889 	 * interrupt. SW should parse received setup packet only after host's
2890 	 * exit from setup phase of control transfer.
2891 	 */
2892 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2893 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2894 		ints &= ~DXEPINT_XFERCOMPL;
2895 
2896 	if (ints & DXEPINT_XFERCOMPL) {
2897 		dev_dbg(hsotg->dev,
2898 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2899 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2900 			dwc2_readl(hsotg->regs + epsiz_reg));
2901 
2902 		/* In DDMA handle isochronous requests separately */
2903 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2904 			/* XferCompl set along with BNA */
2905 			if (!(ints & DXEPINT_BNAINTR))
2906 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2907 		} else if (dir_in) {
2908 			/*
2909 			 * We get OutDone from the FIFO, so we only
2910 			 * need to look at completing IN requests here
2911 			 * if operating slave mode
2912 			 */
2913 			if (hs_ep->isochronous && hs_ep->interval > 1)
2914 				dwc2_gadget_incr_frame_num(hs_ep);
2915 
2916 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2917 			if (ints & DXEPINT_NAKINTRPT)
2918 				ints &= ~DXEPINT_NAKINTRPT;
2919 
2920 			if (idx == 0 && !hs_ep->req)
2921 				dwc2_hsotg_enqueue_setup(hsotg);
2922 		} else if (using_dma(hsotg)) {
2923 			/*
2924 			 * We're using DMA, we need to fire an OutDone here
2925 			 * as we ignore the RXFIFO.
2926 			 */
2927 			if (hs_ep->isochronous && hs_ep->interval > 1)
2928 				dwc2_gadget_incr_frame_num(hs_ep);
2929 
2930 			dwc2_hsotg_handle_outdone(hsotg, idx);
2931 		}
2932 	}
2933 
2934 	if (ints & DXEPINT_EPDISBLD)
2935 		dwc2_gadget_handle_ep_disabled(hs_ep);
2936 
2937 	if (ints & DXEPINT_OUTTKNEPDIS)
2938 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2939 
2940 	if (ints & DXEPINT_NAKINTRPT)
2941 		dwc2_gadget_handle_nak(hs_ep);
2942 
2943 	if (ints & DXEPINT_AHBERR)
2944 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2945 
2946 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2947 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2948 
2949 		if (using_dma(hsotg) && idx == 0) {
2950 			/*
2951 			 * this is the notification we've received a
2952 			 * setup packet. In non-DMA mode we'd get this
2953 			 * from the RXFIFO, instead we need to process
2954 			 * the setup here.
2955 			 */
2956 
2957 			if (dir_in)
2958 				WARN_ON_ONCE(1);
2959 			else
2960 				dwc2_hsotg_handle_outdone(hsotg, 0);
2961 		}
2962 	}
2963 
2964 	if (ints & DXEPINT_STSPHSERCVD) {
2965 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2966 
2967 		/* Safety check EP0 state when STSPHSERCVD asserted */
2968 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2969 			/* Move to STATUS IN for DDMA */
2970 			if (using_desc_dma(hsotg))
2971 				dwc2_hsotg_ep0_zlp(hsotg, true);
2972 		}
2973 
2974 	}
2975 
2976 	if (ints & DXEPINT_BACK2BACKSETUP)
2977 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2978 
2979 	if (ints & DXEPINT_BNAINTR) {
2980 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2981 		if (hs_ep->isochronous)
2982 			dwc2_gadget_handle_isoc_bna(hs_ep);
2983 	}
2984 
2985 	if (dir_in && !hs_ep->isochronous) {
2986 		/* not sure if this is important, but we'll clear it anyway */
2987 		if (ints & DXEPINT_INTKNTXFEMP) {
2988 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2989 				__func__, idx);
2990 		}
2991 
2992 		/* this probably means something bad is happening */
2993 		if (ints & DXEPINT_INTKNEPMIS) {
2994 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2995 				 __func__, idx);
2996 		}
2997 
2998 		/* FIFO has space or is empty (see GAHBCFG) */
2999 		if (hsotg->dedicated_fifos &&
3000 		    ints & DXEPINT_TXFEMP) {
3001 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3002 				__func__, idx);
3003 			if (!using_dma(hsotg))
3004 				dwc2_hsotg_trytx(hsotg, hs_ep);
3005 		}
3006 	}
3007 }
3008 
3009 /**
3010  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3011  * @hsotg: The device state.
3012  *
3013  * Handle updating the device settings after the enumeration phase has
3014  * been completed.
3015  */
3016 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3017 {
3018 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3019 	int ep0_mps = 0, ep_mps = 8;
3020 
3021 	/*
3022 	 * This should signal the finish of the enumeration phase
3023 	 * of the USB handshaking, so we should now know what rate
3024 	 * we connected at.
3025 	 */
3026 
3027 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3028 
3029 	/*
3030 	 * note, since we're limited by the size of transfer on EP0, and
3031 	 * it seems IN transfers must be a even number of packets we do
3032 	 * not advertise a 64byte MPS on EP0.
3033 	 */
3034 
3035 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3036 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3037 	case DSTS_ENUMSPD_FS:
3038 	case DSTS_ENUMSPD_FS48:
3039 		hsotg->gadget.speed = USB_SPEED_FULL;
3040 		ep0_mps = EP0_MPS_LIMIT;
3041 		ep_mps = 1023;
3042 		break;
3043 
3044 	case DSTS_ENUMSPD_HS:
3045 		hsotg->gadget.speed = USB_SPEED_HIGH;
3046 		ep0_mps = EP0_MPS_LIMIT;
3047 		ep_mps = 1024;
3048 		break;
3049 
3050 	case DSTS_ENUMSPD_LS:
3051 		hsotg->gadget.speed = USB_SPEED_LOW;
3052 		ep0_mps = 8;
3053 		ep_mps = 8;
3054 		/*
3055 		 * note, we don't actually support LS in this driver at the
3056 		 * moment, and the documentation seems to imply that it isn't
3057 		 * supported by the PHYs on some of the devices.
3058 		 */
3059 		break;
3060 	}
3061 	dev_info(hsotg->dev, "new device is %s\n",
3062 		 usb_speed_string(hsotg->gadget.speed));
3063 
3064 	/*
3065 	 * we should now know the maximum packet size for an
3066 	 * endpoint, so set the endpoints to a default value.
3067 	 */
3068 
3069 	if (ep0_mps) {
3070 		int i;
3071 		/* Initialize ep0 for both in and out directions */
3072 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3073 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3074 		for (i = 1; i < hsotg->num_of_eps; i++) {
3075 			if (hsotg->eps_in[i])
3076 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3077 							    0, 1);
3078 			if (hsotg->eps_out[i])
3079 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3080 							    0, 0);
3081 		}
3082 	}
3083 
3084 	/* ensure after enumeration our EP0 is active */
3085 
3086 	dwc2_hsotg_enqueue_setup(hsotg);
3087 
3088 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3089 		dwc2_readl(hsotg->regs + DIEPCTL0),
3090 		dwc2_readl(hsotg->regs + DOEPCTL0));
3091 }
3092 
3093 /**
3094  * kill_all_requests - remove all requests from the endpoint's queue
3095  * @hsotg: The device state.
3096  * @ep: The endpoint the requests may be on.
3097  * @result: The result code to use.
3098  *
3099  * Go through the requests on the given endpoint and mark them
3100  * completed with the given result code.
3101  */
3102 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3103 			      struct dwc2_hsotg_ep *ep,
3104 			      int result)
3105 {
3106 	struct dwc2_hsotg_req *req, *treq;
3107 	unsigned int size;
3108 
3109 	ep->req = NULL;
3110 
3111 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3112 		dwc2_hsotg_complete_request(hsotg, ep, req,
3113 					    result);
3114 
3115 	if (!hsotg->dedicated_fifos)
3116 		return;
3117 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3118 	if (size < ep->fifo_size)
3119 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3120 }
3121 
3122 /**
3123  * dwc2_hsotg_disconnect - disconnect service
3124  * @hsotg: The device state.
3125  *
3126  * The device has been disconnected. Remove all current
3127  * transactions and signal the gadget driver that this
3128  * has happened.
3129  */
3130 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3131 {
3132 	unsigned int ep;
3133 
3134 	if (!hsotg->connected)
3135 		return;
3136 
3137 	hsotg->connected = 0;
3138 	hsotg->test_mode = 0;
3139 
3140 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3141 		if (hsotg->eps_in[ep])
3142 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3143 					  -ESHUTDOWN);
3144 		if (hsotg->eps_out[ep])
3145 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3146 					  -ESHUTDOWN);
3147 	}
3148 
3149 	call_gadget(hsotg, disconnect);
3150 	hsotg->lx_state = DWC2_L3;
3151 
3152 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3153 }
3154 
3155 /**
3156  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3157  * @hsotg: The device state:
3158  * @periodic: True if this is a periodic FIFO interrupt
3159  */
3160 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3161 {
3162 	struct dwc2_hsotg_ep *ep;
3163 	int epno, ret;
3164 
3165 	/* look through for any more data to transmit */
3166 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3167 		ep = index_to_ep(hsotg, epno, 1);
3168 
3169 		if (!ep)
3170 			continue;
3171 
3172 		if (!ep->dir_in)
3173 			continue;
3174 
3175 		if ((periodic && !ep->periodic) ||
3176 		    (!periodic && ep->periodic))
3177 			continue;
3178 
3179 		ret = dwc2_hsotg_trytx(hsotg, ep);
3180 		if (ret < 0)
3181 			break;
3182 	}
3183 }
3184 
3185 /* IRQ flags which will trigger a retry around the IRQ loop */
3186 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3187 			GINTSTS_PTXFEMP |  \
3188 			GINTSTS_RXFLVL)
3189 
3190 /**
3191  * dwc2_hsotg_core_init - issue softreset to the core
3192  * @hsotg: The device state
3193  * @is_usb_reset: Usb resetting flag
3194  *
3195  * Issue a soft reset to the core, and await the core finishing it.
3196  */
3197 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3198 				       bool is_usb_reset)
3199 {
3200 	u32 intmsk;
3201 	u32 val;
3202 	u32 usbcfg;
3203 	u32 dcfg = 0;
3204 
3205 	/* Kill any ep0 requests as controller will be reinitialized */
3206 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3207 
3208 	if (!is_usb_reset)
3209 		if (dwc2_core_reset(hsotg, true))
3210 			return;
3211 
3212 	/*
3213 	 * we must now enable ep0 ready for host detection and then
3214 	 * set configuration.
3215 	 */
3216 
3217 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3218 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3219 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3220 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3221 
3222 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3223 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3224 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3225 		/* FS/LS Dedicated Transceiver Interface */
3226 		usbcfg |= GUSBCFG_PHYSEL;
3227 	} else {
3228 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3229 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3230 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3231 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3232 	}
3233 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3234 
3235 	dwc2_hsotg_init_fifo(hsotg);
3236 
3237 	if (!is_usb_reset)
3238 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3239 
3240 	dcfg |= DCFG_EPMISCNT(1);
3241 
3242 	switch (hsotg->params.speed) {
3243 	case DWC2_SPEED_PARAM_LOW:
3244 		dcfg |= DCFG_DEVSPD_LS;
3245 		break;
3246 	case DWC2_SPEED_PARAM_FULL:
3247 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3248 			dcfg |= DCFG_DEVSPD_FS48;
3249 		else
3250 			dcfg |= DCFG_DEVSPD_FS;
3251 		break;
3252 	default:
3253 		dcfg |= DCFG_DEVSPD_HS;
3254 	}
3255 
3256 	if (hsotg->params.ipg_isoc_en)
3257 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3258 
3259 	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3260 
3261 	/* Clear any pending OTG interrupts */
3262 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3263 
3264 	/* Clear any pending interrupts */
3265 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3266 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3267 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3268 		GINTSTS_USBRST | GINTSTS_RESETDET |
3269 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3270 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3271 		GINTSTS_LPMTRANRCVD;
3272 
3273 	if (!using_desc_dma(hsotg))
3274 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3275 
3276 	if (!hsotg->params.external_id_pin_ctl)
3277 		intmsk |= GINTSTS_CONIDSTSCHNG;
3278 
3279 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3280 
3281 	if (using_dma(hsotg)) {
3282 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3283 			    hsotg->params.ahbcfg,
3284 			    hsotg->regs + GAHBCFG);
3285 
3286 		/* Set DDMA mode support in the core if needed */
3287 		if (using_desc_dma(hsotg))
3288 			dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3289 
3290 	} else {
3291 		dwc2_writel(((hsotg->dedicated_fifos) ?
3292 						(GAHBCFG_NP_TXF_EMP_LVL |
3293 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3294 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3295 	}
3296 
3297 	/*
3298 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3299 	 * when we have no data to transfer. Otherwise we get being flooded by
3300 	 * interrupts.
3301 	 */
3302 
3303 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3304 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3305 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3306 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3307 		hsotg->regs + DIEPMSK);
3308 
3309 	/*
3310 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3311 	 * DMA mode we may need this and StsPhseRcvd.
3312 	 */
3313 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3314 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3315 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3316 		DOEPMSK_SETUPMSK,
3317 		hsotg->regs + DOEPMSK);
3318 
3319 	/* Enable BNA interrupt for DDMA */
3320 	if (using_desc_dma(hsotg)) {
3321 		dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3322 		dwc2_set_bit(hsotg->regs + DIEPMSK, DIEPMSK_BNAININTRMSK);
3323 	}
3324 
3325 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3326 
3327 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3328 		dwc2_readl(hsotg->regs + DIEPCTL0),
3329 		dwc2_readl(hsotg->regs + DOEPCTL0));
3330 
3331 	/* enable in and out endpoint interrupts */
3332 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3333 
3334 	/*
3335 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3336 	 * the data. In DMA mode, we get events from the FIFO but also
3337 	 * things we cannot process, so do not use it.
3338 	 */
3339 	if (!using_dma(hsotg))
3340 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3341 
3342 	/* Enable interrupts for EP0 in and out */
3343 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3344 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3345 
3346 	if (!is_usb_reset) {
3347 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3348 		udelay(10);  /* see openiboot */
3349 		dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3350 	}
3351 
3352 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3353 
3354 	/*
3355 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3356 	 * writing to the EPCTL register..
3357 	 */
3358 
3359 	/* set to read 1 8byte packet */
3360 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3361 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3362 
3363 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3364 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3365 	       DXEPCTL_USBACTEP,
3366 	       hsotg->regs + DOEPCTL0);
3367 
3368 	/* enable, but don't activate EP0in */
3369 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3370 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3371 
3372 	/* clear global NAKs */
3373 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3374 	if (!is_usb_reset)
3375 		val |= DCTL_SFTDISCON;
3376 	dwc2_set_bit(hsotg->regs + DCTL, val);
3377 
3378 	/* configure the core to support LPM */
3379 	dwc2_gadget_init_lpm(hsotg);
3380 
3381 	/* must be at-least 3ms to allow bus to see disconnect */
3382 	mdelay(3);
3383 
3384 	hsotg->lx_state = DWC2_L0;
3385 
3386 	dwc2_hsotg_enqueue_setup(hsotg);
3387 
3388 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3389 		dwc2_readl(hsotg->regs + DIEPCTL0),
3390 		dwc2_readl(hsotg->regs + DOEPCTL0));
3391 }
3392 
3393 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3394 {
3395 	/* set the soft-disconnect bit */
3396 	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3397 }
3398 
3399 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3400 {
3401 	/* remove the soft-disconnect and let's go */
3402 	dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3403 }
3404 
3405 /**
3406  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3407  * @hsotg: The device state:
3408  *
3409  * This interrupt indicates one of the following conditions occurred while
3410  * transmitting an ISOC transaction.
3411  * - Corrupted IN Token for ISOC EP.
3412  * - Packet not complete in FIFO.
3413  *
3414  * The following actions will be taken:
3415  * - Determine the EP
3416  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3417  */
3418 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3419 {
3420 	struct dwc2_hsotg_ep *hs_ep;
3421 	u32 epctrl;
3422 	u32 daintmsk;
3423 	u32 idx;
3424 
3425 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3426 
3427 	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3428 
3429 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3430 		hs_ep = hsotg->eps_in[idx];
3431 		/* Proceed only unmasked ISOC EPs */
3432 		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3433 			continue;
3434 
3435 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3436 		if ((epctrl & DXEPCTL_EPENA) &&
3437 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3438 			epctrl |= DXEPCTL_SNAK;
3439 			epctrl |= DXEPCTL_EPDIS;
3440 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3441 		}
3442 	}
3443 
3444 	/* Clear interrupt */
3445 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3446 }
3447 
3448 /**
3449  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3450  * @hsotg: The device state:
3451  *
3452  * This interrupt indicates one of the following conditions occurred while
3453  * transmitting an ISOC transaction.
3454  * - Corrupted OUT Token for ISOC EP.
3455  * - Packet not complete in FIFO.
3456  *
3457  * The following actions will be taken:
3458  * - Determine the EP
3459  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3460  */
3461 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3462 {
3463 	u32 gintsts;
3464 	u32 gintmsk;
3465 	u32 daintmsk;
3466 	u32 epctrl;
3467 	struct dwc2_hsotg_ep *hs_ep;
3468 	int idx;
3469 
3470 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3471 
3472 	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3473 	daintmsk >>= DAINT_OUTEP_SHIFT;
3474 
3475 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3476 		hs_ep = hsotg->eps_out[idx];
3477 		/* Proceed only unmasked ISOC EPs */
3478 		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3479 			continue;
3480 
3481 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3482 		if ((epctrl & DXEPCTL_EPENA) &&
3483 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3484 			/* Unmask GOUTNAKEFF interrupt */
3485 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3486 			gintmsk |= GINTSTS_GOUTNAKEFF;
3487 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3488 
3489 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3490 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3491 				dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3492 				break;
3493 			}
3494 		}
3495 	}
3496 
3497 	/* Clear interrupt */
3498 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3499 }
3500 
3501 /**
3502  * dwc2_hsotg_irq - handle device interrupt
3503  * @irq: The IRQ number triggered
3504  * @pw: The pw value when registered the handler.
3505  */
3506 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3507 {
3508 	struct dwc2_hsotg *hsotg = pw;
3509 	int retry_count = 8;
3510 	u32 gintsts;
3511 	u32 gintmsk;
3512 
3513 	if (!dwc2_is_device_mode(hsotg))
3514 		return IRQ_NONE;
3515 
3516 	spin_lock(&hsotg->lock);
3517 irq_retry:
3518 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3519 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3520 
3521 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3522 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3523 
3524 	gintsts &= gintmsk;
3525 
3526 	if (gintsts & GINTSTS_RESETDET) {
3527 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3528 
3529 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3530 
3531 		/* This event must be used only if controller is suspended */
3532 		if (hsotg->lx_state == DWC2_L2) {
3533 			dwc2_exit_partial_power_down(hsotg, true);
3534 			hsotg->lx_state = DWC2_L0;
3535 		}
3536 	}
3537 
3538 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3539 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3540 		u32 connected = hsotg->connected;
3541 
3542 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3543 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3544 			dwc2_readl(hsotg->regs + GNPTXSTS));
3545 
3546 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3547 
3548 		/* Report disconnection if it is not already done. */
3549 		dwc2_hsotg_disconnect(hsotg);
3550 
3551 		/* Reset device address to zero */
3552 		dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3553 
3554 		if (usb_status & GOTGCTL_BSESVLD && connected)
3555 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3556 	}
3557 
3558 	if (gintsts & GINTSTS_ENUMDONE) {
3559 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3560 
3561 		dwc2_hsotg_irq_enumdone(hsotg);
3562 	}
3563 
3564 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3565 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3566 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3567 		u32 daint_out, daint_in;
3568 		int ep;
3569 
3570 		daint &= daintmsk;
3571 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3572 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3573 
3574 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3575 
3576 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3577 						ep++, daint_out >>= 1) {
3578 			if (daint_out & 1)
3579 				dwc2_hsotg_epint(hsotg, ep, 0);
3580 		}
3581 
3582 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3583 						ep++, daint_in >>= 1) {
3584 			if (daint_in & 1)
3585 				dwc2_hsotg_epint(hsotg, ep, 1);
3586 		}
3587 	}
3588 
3589 	/* check both FIFOs */
3590 
3591 	if (gintsts & GINTSTS_NPTXFEMP) {
3592 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3593 
3594 		/*
3595 		 * Disable the interrupt to stop it happening again
3596 		 * unless one of these endpoint routines decides that
3597 		 * it needs re-enabling
3598 		 */
3599 
3600 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3601 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3602 	}
3603 
3604 	if (gintsts & GINTSTS_PTXFEMP) {
3605 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3606 
3607 		/* See note in GINTSTS_NPTxFEmp */
3608 
3609 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3610 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3611 	}
3612 
3613 	if (gintsts & GINTSTS_RXFLVL) {
3614 		/*
3615 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3616 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3617 		 * set.
3618 		 */
3619 
3620 		dwc2_hsotg_handle_rx(hsotg);
3621 	}
3622 
3623 	if (gintsts & GINTSTS_ERLYSUSP) {
3624 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3625 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3626 	}
3627 
3628 	/*
3629 	 * these next two seem to crop-up occasionally causing the core
3630 	 * to shutdown the USB transfer, so try clearing them and logging
3631 	 * the occurrence.
3632 	 */
3633 
3634 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3635 		u8 idx;
3636 		u32 epctrl;
3637 		u32 gintmsk;
3638 		u32 daintmsk;
3639 		struct dwc2_hsotg_ep *hs_ep;
3640 
3641 		daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3642 		daintmsk >>= DAINT_OUTEP_SHIFT;
3643 		/* Mask this interrupt */
3644 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3645 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3646 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3647 
3648 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3649 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3650 			hs_ep = hsotg->eps_out[idx];
3651 			/* Proceed only unmasked ISOC EPs */
3652 			if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3653 				continue;
3654 
3655 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3656 
3657 			if (epctrl & DXEPCTL_EPENA) {
3658 				epctrl |= DXEPCTL_SNAK;
3659 				epctrl |= DXEPCTL_EPDIS;
3660 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3661 			}
3662 		}
3663 
3664 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3665 	}
3666 
3667 	if (gintsts & GINTSTS_GINNAKEFF) {
3668 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3669 
3670 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3671 
3672 		dwc2_hsotg_dump(hsotg);
3673 	}
3674 
3675 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3676 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3677 
3678 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3679 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3680 
3681 	/*
3682 	 * if we've had fifo events, we should try and go around the
3683 	 * loop again to see if there's any point in returning yet.
3684 	 */
3685 
3686 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3687 		goto irq_retry;
3688 
3689 	spin_unlock(&hsotg->lock);
3690 
3691 	return IRQ_HANDLED;
3692 }
3693 
3694 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3695 				   struct dwc2_hsotg_ep *hs_ep)
3696 {
3697 	u32 epctrl_reg;
3698 	u32 epint_reg;
3699 
3700 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3701 		DOEPCTL(hs_ep->index);
3702 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3703 		DOEPINT(hs_ep->index);
3704 
3705 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3706 		hs_ep->name);
3707 
3708 	if (hs_ep->dir_in) {
3709 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3710 			dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3711 			/* Wait for Nak effect */
3712 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3713 						    DXEPINT_INEPNAKEFF, 100))
3714 				dev_warn(hsotg->dev,
3715 					 "%s: timeout DIEPINT.NAKEFF\n",
3716 					 __func__);
3717 		} else {
3718 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3719 			/* Wait for Nak effect */
3720 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3721 						    GINTSTS_GINNAKEFF, 100))
3722 				dev_warn(hsotg->dev,
3723 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3724 					 __func__);
3725 		}
3726 	} else {
3727 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3728 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3729 
3730 		/* Wait for global nak to take effect */
3731 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3732 					    GINTSTS_GOUTNAKEFF, 100))
3733 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3734 				 __func__);
3735 	}
3736 
3737 	/* Disable ep */
3738 	dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3739 
3740 	/* Wait for ep to be disabled */
3741 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3742 		dev_warn(hsotg->dev,
3743 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3744 
3745 	/* Clear EPDISBLD interrupt */
3746 	dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3747 
3748 	if (hs_ep->dir_in) {
3749 		unsigned short fifo_index;
3750 
3751 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3752 			fifo_index = hs_ep->fifo_index;
3753 		else
3754 			fifo_index = 0;
3755 
3756 		/* Flush TX FIFO */
3757 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3758 
3759 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3760 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3761 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3762 
3763 	} else {
3764 		/* Remove global NAKs */
3765 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3766 	}
3767 }
3768 
3769 /**
3770  * dwc2_hsotg_ep_enable - enable the given endpoint
3771  * @ep: The USB endpint to configure
3772  * @desc: The USB endpoint descriptor to configure with.
3773  *
3774  * This is called from the USB gadget code's usb_ep_enable().
3775  */
3776 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3777 				const struct usb_endpoint_descriptor *desc)
3778 {
3779 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3780 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3781 	unsigned long flags;
3782 	unsigned int index = hs_ep->index;
3783 	u32 epctrl_reg;
3784 	u32 epctrl;
3785 	u32 mps;
3786 	u32 mc;
3787 	u32 mask;
3788 	unsigned int dir_in;
3789 	unsigned int i, val, size;
3790 	int ret = 0;
3791 	unsigned char ep_type;
3792 
3793 	dev_dbg(hsotg->dev,
3794 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3795 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3796 		desc->wMaxPacketSize, desc->bInterval);
3797 
3798 	/* not to be called for EP0 */
3799 	if (index == 0) {
3800 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3801 		return -EINVAL;
3802 	}
3803 
3804 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3805 	if (dir_in != hs_ep->dir_in) {
3806 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3807 		return -EINVAL;
3808 	}
3809 
3810 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3811 	mps = usb_endpoint_maxp(desc);
3812 	mc = usb_endpoint_maxp_mult(desc);
3813 
3814 	/* ISOC IN in DDMA supported bInterval up to 10 */
3815 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3816 	    dir_in && desc->bInterval > 10) {
3817 		dev_err(hsotg->dev,
3818 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3819 		return -EINVAL;
3820 	}
3821 
3822 	/* High bandwidth ISOC OUT in DDMA not supported */
3823 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3824 	    !dir_in && mc > 1) {
3825 		dev_err(hsotg->dev,
3826 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3827 		return -EINVAL;
3828 	}
3829 
3830 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3831 
3832 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3833 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3834 
3835 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3836 		__func__, epctrl, epctrl_reg);
3837 
3838 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3839 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3840 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3841 			MAX_DMA_DESC_NUM_GENERIC *
3842 			sizeof(struct dwc2_dma_desc),
3843 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3844 		if (!hs_ep->desc_list) {
3845 			ret = -ENOMEM;
3846 			goto error2;
3847 		}
3848 	}
3849 
3850 	spin_lock_irqsave(&hsotg->lock, flags);
3851 
3852 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3853 	epctrl |= DXEPCTL_MPS(mps);
3854 
3855 	/*
3856 	 * mark the endpoint as active, otherwise the core may ignore
3857 	 * transactions entirely for this endpoint
3858 	 */
3859 	epctrl |= DXEPCTL_USBACTEP;
3860 
3861 	/* update the endpoint state */
3862 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3863 
3864 	/* default, set to non-periodic */
3865 	hs_ep->isochronous = 0;
3866 	hs_ep->periodic = 0;
3867 	hs_ep->halted = 0;
3868 	hs_ep->interval = desc->bInterval;
3869 
3870 	switch (ep_type) {
3871 	case USB_ENDPOINT_XFER_ISOC:
3872 		epctrl |= DXEPCTL_EPTYPE_ISO;
3873 		epctrl |= DXEPCTL_SETEVENFR;
3874 		hs_ep->isochronous = 1;
3875 		hs_ep->interval = 1 << (desc->bInterval - 1);
3876 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3877 		hs_ep->next_desc = 0;
3878 		hs_ep->compl_desc = 0;
3879 		if (dir_in) {
3880 			hs_ep->periodic = 1;
3881 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3882 			mask |= DIEPMSK_NAKMSK;
3883 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3884 		} else {
3885 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3886 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3887 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3888 		}
3889 		break;
3890 
3891 	case USB_ENDPOINT_XFER_BULK:
3892 		epctrl |= DXEPCTL_EPTYPE_BULK;
3893 		break;
3894 
3895 	case USB_ENDPOINT_XFER_INT:
3896 		if (dir_in)
3897 			hs_ep->periodic = 1;
3898 
3899 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3900 			hs_ep->interval = 1 << (desc->bInterval - 1);
3901 
3902 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3903 		break;
3904 
3905 	case USB_ENDPOINT_XFER_CONTROL:
3906 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3907 		break;
3908 	}
3909 
3910 	/*
3911 	 * if the hardware has dedicated fifos, we must give each IN EP
3912 	 * a unique tx-fifo even if it is non-periodic.
3913 	 */
3914 	if (dir_in && hsotg->dedicated_fifos) {
3915 		u32 fifo_index = 0;
3916 		u32 fifo_size = UINT_MAX;
3917 
3918 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3919 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3920 			if (hsotg->fifo_map & (1 << i))
3921 				continue;
3922 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3923 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3924 			if (val < size)
3925 				continue;
3926 			/* Search for smallest acceptable fifo */
3927 			if (val < fifo_size) {
3928 				fifo_size = val;
3929 				fifo_index = i;
3930 			}
3931 		}
3932 		if (!fifo_index) {
3933 			dev_err(hsotg->dev,
3934 				"%s: No suitable fifo found\n", __func__);
3935 			ret = -ENOMEM;
3936 			goto error1;
3937 		}
3938 		hsotg->fifo_map |= 1 << fifo_index;
3939 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3940 		hs_ep->fifo_index = fifo_index;
3941 		hs_ep->fifo_size = fifo_size;
3942 	}
3943 
3944 	/* for non control endpoints, set PID to D0 */
3945 	if (index && !hs_ep->isochronous)
3946 		epctrl |= DXEPCTL_SETD0PID;
3947 
3948 	/* WA for Full speed ISOC IN in DDMA mode.
3949 	 * By Clear NAK status of EP, core will send ZLP
3950 	 * to IN token and assert NAK interrupt relying
3951 	 * on TxFIFO status only
3952 	 */
3953 
3954 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
3955 	    hs_ep->isochronous && dir_in) {
3956 		/* The WA applies only to core versions from 2.72a
3957 		 * to 4.00a (including both). Also for FS_IOT_1.00a
3958 		 * and HS_IOT_1.00a.
3959 		 */
3960 		u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID);
3961 
3962 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
3963 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
3964 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
3965 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
3966 			epctrl |= DXEPCTL_CNAK;
3967 	}
3968 
3969 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3970 		__func__, epctrl);
3971 
3972 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3973 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3974 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3975 
3976 	/* enable the endpoint interrupt */
3977 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3978 
3979 error1:
3980 	spin_unlock_irqrestore(&hsotg->lock, flags);
3981 
3982 error2:
3983 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3984 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3985 			sizeof(struct dwc2_dma_desc),
3986 			hs_ep->desc_list, hs_ep->desc_list_dma);
3987 		hs_ep->desc_list = NULL;
3988 	}
3989 
3990 	return ret;
3991 }
3992 
3993 /**
3994  * dwc2_hsotg_ep_disable - disable given endpoint
3995  * @ep: The endpoint to disable.
3996  */
3997 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3998 {
3999 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4000 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4001 	int dir_in = hs_ep->dir_in;
4002 	int index = hs_ep->index;
4003 	unsigned long flags;
4004 	u32 epctrl_reg;
4005 	u32 ctrl;
4006 
4007 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4008 
4009 	if (ep == &hsotg->eps_out[0]->ep) {
4010 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4011 		return -EINVAL;
4012 	}
4013 
4014 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4015 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4016 		return -EINVAL;
4017 	}
4018 
4019 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4020 
4021 	spin_lock_irqsave(&hsotg->lock, flags);
4022 
4023 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4024 
4025 	if (ctrl & DXEPCTL_EPENA)
4026 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4027 
4028 	ctrl &= ~DXEPCTL_EPENA;
4029 	ctrl &= ~DXEPCTL_USBACTEP;
4030 	ctrl |= DXEPCTL_SNAK;
4031 
4032 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4033 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4034 
4035 	/* disable endpoint interrupts */
4036 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4037 
4038 	/* terminate all requests with shutdown */
4039 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4040 
4041 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4042 	hs_ep->fifo_index = 0;
4043 	hs_ep->fifo_size = 0;
4044 
4045 	spin_unlock_irqrestore(&hsotg->lock, flags);
4046 	return 0;
4047 }
4048 
4049 /**
4050  * on_list - check request is on the given endpoint
4051  * @ep: The endpoint to check.
4052  * @test: The request to test if it is on the endpoint.
4053  */
4054 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4055 {
4056 	struct dwc2_hsotg_req *req, *treq;
4057 
4058 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4059 		if (req == test)
4060 			return true;
4061 	}
4062 
4063 	return false;
4064 }
4065 
4066 /**
4067  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4068  * @ep: The endpoint to dequeue.
4069  * @req: The request to be removed from a queue.
4070  */
4071 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4072 {
4073 	struct dwc2_hsotg_req *hs_req = our_req(req);
4074 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4075 	struct dwc2_hsotg *hs = hs_ep->parent;
4076 	unsigned long flags;
4077 
4078 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4079 
4080 	spin_lock_irqsave(&hs->lock, flags);
4081 
4082 	if (!on_list(hs_ep, hs_req)) {
4083 		spin_unlock_irqrestore(&hs->lock, flags);
4084 		return -EINVAL;
4085 	}
4086 
4087 	/* Dequeue already started request */
4088 	if (req == &hs_ep->req->req)
4089 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4090 
4091 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4092 	spin_unlock_irqrestore(&hs->lock, flags);
4093 
4094 	return 0;
4095 }
4096 
4097 /**
4098  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4099  * @ep: The endpoint to set halt.
4100  * @value: Set or unset the halt.
4101  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4102  *       the endpoint is busy processing requests.
4103  *
4104  * We need to stall the endpoint immediately if request comes from set_feature
4105  * protocol command handler.
4106  */
4107 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4108 {
4109 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4110 	struct dwc2_hsotg *hs = hs_ep->parent;
4111 	int index = hs_ep->index;
4112 	u32 epreg;
4113 	u32 epctl;
4114 	u32 xfertype;
4115 
4116 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4117 
4118 	if (index == 0) {
4119 		if (value)
4120 			dwc2_hsotg_stall_ep0(hs);
4121 		else
4122 			dev_warn(hs->dev,
4123 				 "%s: can't clear halt on ep0\n", __func__);
4124 		return 0;
4125 	}
4126 
4127 	if (hs_ep->isochronous) {
4128 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4129 		return -EINVAL;
4130 	}
4131 
4132 	if (!now && value && !list_empty(&hs_ep->queue)) {
4133 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4134 			ep->name);
4135 		return -EAGAIN;
4136 	}
4137 
4138 	if (hs_ep->dir_in) {
4139 		epreg = DIEPCTL(index);
4140 		epctl = dwc2_readl(hs->regs + epreg);
4141 
4142 		if (value) {
4143 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4144 			if (epctl & DXEPCTL_EPENA)
4145 				epctl |= DXEPCTL_EPDIS;
4146 		} else {
4147 			epctl &= ~DXEPCTL_STALL;
4148 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4149 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4150 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4151 				epctl |= DXEPCTL_SETD0PID;
4152 		}
4153 		dwc2_writel(epctl, hs->regs + epreg);
4154 	} else {
4155 		epreg = DOEPCTL(index);
4156 		epctl = dwc2_readl(hs->regs + epreg);
4157 
4158 		if (value) {
4159 			epctl |= DXEPCTL_STALL;
4160 		} else {
4161 			epctl &= ~DXEPCTL_STALL;
4162 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4163 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4164 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4165 				epctl |= DXEPCTL_SETD0PID;
4166 		}
4167 		dwc2_writel(epctl, hs->regs + epreg);
4168 	}
4169 
4170 	hs_ep->halted = value;
4171 
4172 	return 0;
4173 }
4174 
4175 /**
4176  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4177  * @ep: The endpoint to set halt.
4178  * @value: Set or unset the halt.
4179  */
4180 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4181 {
4182 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4183 	struct dwc2_hsotg *hs = hs_ep->parent;
4184 	unsigned long flags = 0;
4185 	int ret = 0;
4186 
4187 	spin_lock_irqsave(&hs->lock, flags);
4188 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4189 	spin_unlock_irqrestore(&hs->lock, flags);
4190 
4191 	return ret;
4192 }
4193 
4194 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4195 	.enable		= dwc2_hsotg_ep_enable,
4196 	.disable	= dwc2_hsotg_ep_disable,
4197 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4198 	.free_request	= dwc2_hsotg_ep_free_request,
4199 	.queue		= dwc2_hsotg_ep_queue_lock,
4200 	.dequeue	= dwc2_hsotg_ep_dequeue,
4201 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4202 	/* note, don't believe we have any call for the fifo routines */
4203 };
4204 
4205 /**
4206  * dwc2_hsotg_init - initialize the usb core
4207  * @hsotg: The driver state
4208  */
4209 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4210 {
4211 	u32 trdtim;
4212 	u32 usbcfg;
4213 	/* unmask subset of endpoint interrupts */
4214 
4215 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4216 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4217 		    hsotg->regs + DIEPMSK);
4218 
4219 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4220 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4221 		    hsotg->regs + DOEPMSK);
4222 
4223 	dwc2_writel(0, hsotg->regs + DAINTMSK);
4224 
4225 	/* Be in disconnected state until gadget is registered */
4226 	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4227 
4228 	/* setup fifos */
4229 
4230 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4231 		dwc2_readl(hsotg->regs + GRXFSIZ),
4232 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4233 
4234 	dwc2_hsotg_init_fifo(hsotg);
4235 
4236 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4237 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4238 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4239 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4240 
4241 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4242 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4243 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4244 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4245 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4246 
4247 	if (using_dma(hsotg))
4248 		dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4249 }
4250 
4251 /**
4252  * dwc2_hsotg_udc_start - prepare the udc for work
4253  * @gadget: The usb gadget state
4254  * @driver: The usb gadget driver
4255  *
4256  * Perform initialization to prepare udc device and driver
4257  * to work.
4258  */
4259 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4260 				struct usb_gadget_driver *driver)
4261 {
4262 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4263 	unsigned long flags;
4264 	int ret;
4265 
4266 	if (!hsotg) {
4267 		pr_err("%s: called with no device\n", __func__);
4268 		return -ENODEV;
4269 	}
4270 
4271 	if (!driver) {
4272 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4273 		return -EINVAL;
4274 	}
4275 
4276 	if (driver->max_speed < USB_SPEED_FULL)
4277 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4278 
4279 	if (!driver->setup) {
4280 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4281 		return -EINVAL;
4282 	}
4283 
4284 	WARN_ON(hsotg->driver);
4285 
4286 	driver->driver.bus = NULL;
4287 	hsotg->driver = driver;
4288 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4289 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4290 
4291 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4292 		ret = dwc2_lowlevel_hw_enable(hsotg);
4293 		if (ret)
4294 			goto err;
4295 	}
4296 
4297 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4298 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4299 
4300 	spin_lock_irqsave(&hsotg->lock, flags);
4301 	if (dwc2_hw_is_device(hsotg)) {
4302 		dwc2_hsotg_init(hsotg);
4303 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4304 	}
4305 
4306 	hsotg->enabled = 0;
4307 	spin_unlock_irqrestore(&hsotg->lock, flags);
4308 
4309 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4310 
4311 	return 0;
4312 
4313 err:
4314 	hsotg->driver = NULL;
4315 	return ret;
4316 }
4317 
4318 /**
4319  * dwc2_hsotg_udc_stop - stop the udc
4320  * @gadget: The usb gadget state
4321  *
4322  * Stop udc hw block and stay tunned for future transmissions
4323  */
4324 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4325 {
4326 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4327 	unsigned long flags = 0;
4328 	int ep;
4329 
4330 	if (!hsotg)
4331 		return -ENODEV;
4332 
4333 	/* all endpoints should be shutdown */
4334 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4335 		if (hsotg->eps_in[ep])
4336 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4337 		if (hsotg->eps_out[ep])
4338 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4339 	}
4340 
4341 	spin_lock_irqsave(&hsotg->lock, flags);
4342 
4343 	hsotg->driver = NULL;
4344 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4345 	hsotg->enabled = 0;
4346 
4347 	spin_unlock_irqrestore(&hsotg->lock, flags);
4348 
4349 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4350 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4351 
4352 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4353 		dwc2_lowlevel_hw_disable(hsotg);
4354 
4355 	return 0;
4356 }
4357 
4358 /**
4359  * dwc2_hsotg_gadget_getframe - read the frame number
4360  * @gadget: The usb gadget state
4361  *
4362  * Read the {micro} frame number
4363  */
4364 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4365 {
4366 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4367 }
4368 
4369 /**
4370  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4371  * @gadget: The usb gadget state
4372  * @is_on: Current state of the USB PHY
4373  *
4374  * Connect/Disconnect the USB PHY pullup
4375  */
4376 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4377 {
4378 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4379 	unsigned long flags = 0;
4380 
4381 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4382 		hsotg->op_state);
4383 
4384 	/* Don't modify pullup state while in host mode */
4385 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4386 		hsotg->enabled = is_on;
4387 		return 0;
4388 	}
4389 
4390 	spin_lock_irqsave(&hsotg->lock, flags);
4391 	if (is_on) {
4392 		hsotg->enabled = 1;
4393 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4394 		/* Enable ACG feature in device mode,if supported */
4395 		dwc2_enable_acg(hsotg);
4396 		dwc2_hsotg_core_connect(hsotg);
4397 	} else {
4398 		dwc2_hsotg_core_disconnect(hsotg);
4399 		dwc2_hsotg_disconnect(hsotg);
4400 		hsotg->enabled = 0;
4401 	}
4402 
4403 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4404 	spin_unlock_irqrestore(&hsotg->lock, flags);
4405 
4406 	return 0;
4407 }
4408 
4409 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4410 {
4411 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4412 	unsigned long flags;
4413 
4414 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4415 	spin_lock_irqsave(&hsotg->lock, flags);
4416 
4417 	/*
4418 	 * If controller is hibernated, it must exit from power_down
4419 	 * before being initialized / de-initialized
4420 	 */
4421 	if (hsotg->lx_state == DWC2_L2)
4422 		dwc2_exit_partial_power_down(hsotg, false);
4423 
4424 	if (is_active) {
4425 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4426 
4427 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4428 		if (hsotg->enabled) {
4429 			/* Enable ACG feature in device mode,if supported */
4430 			dwc2_enable_acg(hsotg);
4431 			dwc2_hsotg_core_connect(hsotg);
4432 		}
4433 	} else {
4434 		dwc2_hsotg_core_disconnect(hsotg);
4435 		dwc2_hsotg_disconnect(hsotg);
4436 	}
4437 
4438 	spin_unlock_irqrestore(&hsotg->lock, flags);
4439 	return 0;
4440 }
4441 
4442 /**
4443  * dwc2_hsotg_vbus_draw - report bMaxPower field
4444  * @gadget: The usb gadget state
4445  * @mA: Amount of current
4446  *
4447  * Report how much power the device may consume to the phy.
4448  */
4449 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4450 {
4451 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4452 
4453 	if (IS_ERR_OR_NULL(hsotg->uphy))
4454 		return -ENOTSUPP;
4455 	return usb_phy_set_power(hsotg->uphy, mA);
4456 }
4457 
4458 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4459 	.get_frame	= dwc2_hsotg_gadget_getframe,
4460 	.udc_start		= dwc2_hsotg_udc_start,
4461 	.udc_stop		= dwc2_hsotg_udc_stop,
4462 	.pullup                 = dwc2_hsotg_pullup,
4463 	.vbus_session		= dwc2_hsotg_vbus_session,
4464 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4465 };
4466 
4467 /**
4468  * dwc2_hsotg_initep - initialise a single endpoint
4469  * @hsotg: The device state.
4470  * @hs_ep: The endpoint to be initialised.
4471  * @epnum: The endpoint number
4472  * @dir_in: True if direction is in.
4473  *
4474  * Initialise the given endpoint (as part of the probe and device state
4475  * creation) to give to the gadget driver. Setup the endpoint name, any
4476  * direction information and other state that may be required.
4477  */
4478 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4479 			      struct dwc2_hsotg_ep *hs_ep,
4480 				       int epnum,
4481 				       bool dir_in)
4482 {
4483 	char *dir;
4484 
4485 	if (epnum == 0)
4486 		dir = "";
4487 	else if (dir_in)
4488 		dir = "in";
4489 	else
4490 		dir = "out";
4491 
4492 	hs_ep->dir_in = dir_in;
4493 	hs_ep->index = epnum;
4494 
4495 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4496 
4497 	INIT_LIST_HEAD(&hs_ep->queue);
4498 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4499 
4500 	/* add to the list of endpoints known by the gadget driver */
4501 	if (epnum)
4502 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4503 
4504 	hs_ep->parent = hsotg;
4505 	hs_ep->ep.name = hs_ep->name;
4506 
4507 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4508 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4509 	else
4510 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4511 					   epnum ? 1024 : EP0_MPS_LIMIT);
4512 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4513 
4514 	if (epnum == 0) {
4515 		hs_ep->ep.caps.type_control = true;
4516 	} else {
4517 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4518 			hs_ep->ep.caps.type_iso = true;
4519 			hs_ep->ep.caps.type_bulk = true;
4520 		}
4521 		hs_ep->ep.caps.type_int = true;
4522 	}
4523 
4524 	if (dir_in)
4525 		hs_ep->ep.caps.dir_in = true;
4526 	else
4527 		hs_ep->ep.caps.dir_out = true;
4528 
4529 	/*
4530 	 * if we're using dma, we need to set the next-endpoint pointer
4531 	 * to be something valid.
4532 	 */
4533 
4534 	if (using_dma(hsotg)) {
4535 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4536 
4537 		if (dir_in)
4538 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4539 		else
4540 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4541 	}
4542 }
4543 
4544 /**
4545  * dwc2_hsotg_hw_cfg - read HW configuration registers
4546  * @hsotg: Programming view of the DWC_otg controller
4547  *
4548  * Read the USB core HW configuration registers
4549  */
4550 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4551 {
4552 	u32 cfg;
4553 	u32 ep_type;
4554 	u32 i;
4555 
4556 	/* check hardware configuration */
4557 
4558 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4559 
4560 	/* Add ep0 */
4561 	hsotg->num_of_eps++;
4562 
4563 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4564 					sizeof(struct dwc2_hsotg_ep),
4565 					GFP_KERNEL);
4566 	if (!hsotg->eps_in[0])
4567 		return -ENOMEM;
4568 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4569 	hsotg->eps_out[0] = hsotg->eps_in[0];
4570 
4571 	cfg = hsotg->hw_params.dev_ep_dirs;
4572 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4573 		ep_type = cfg & 3;
4574 		/* Direction in or both */
4575 		if (!(ep_type & 2)) {
4576 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4577 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4578 			if (!hsotg->eps_in[i])
4579 				return -ENOMEM;
4580 		}
4581 		/* Direction out or both */
4582 		if (!(ep_type & 1)) {
4583 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4584 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4585 			if (!hsotg->eps_out[i])
4586 				return -ENOMEM;
4587 		}
4588 	}
4589 
4590 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4591 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4592 
4593 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4594 		 hsotg->num_of_eps,
4595 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4596 		 hsotg->fifo_mem);
4597 	return 0;
4598 }
4599 
4600 /**
4601  * dwc2_hsotg_dump - dump state of the udc
4602  * @hsotg: Programming view of the DWC_otg controller
4603  *
4604  */
4605 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4606 {
4607 #ifdef DEBUG
4608 	struct device *dev = hsotg->dev;
4609 	void __iomem *regs = hsotg->regs;
4610 	u32 val;
4611 	int idx;
4612 
4613 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4614 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4615 		 dwc2_readl(regs + DIEPMSK));
4616 
4617 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4618 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4619 
4620 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4621 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4622 
4623 	/* show periodic fifo settings */
4624 
4625 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4626 		val = dwc2_readl(regs + DPTXFSIZN(idx));
4627 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4628 			 val >> FIFOSIZE_DEPTH_SHIFT,
4629 			 val & FIFOSIZE_STARTADDR_MASK);
4630 	}
4631 
4632 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4633 		dev_info(dev,
4634 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4635 			 dwc2_readl(regs + DIEPCTL(idx)),
4636 			 dwc2_readl(regs + DIEPTSIZ(idx)),
4637 			 dwc2_readl(regs + DIEPDMA(idx)));
4638 
4639 		val = dwc2_readl(regs + DOEPCTL(idx));
4640 		dev_info(dev,
4641 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4642 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4643 			 dwc2_readl(regs + DOEPTSIZ(idx)),
4644 			 dwc2_readl(regs + DOEPDMA(idx)));
4645 	}
4646 
4647 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4648 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4649 #endif
4650 }
4651 
4652 /**
4653  * dwc2_gadget_init - init function for gadget
4654  * @hsotg: Programming view of the DWC_otg controller
4655  *
4656  */
4657 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4658 {
4659 	struct device *dev = hsotg->dev;
4660 	int epnum;
4661 	int ret;
4662 
4663 	/* Dump fifo information */
4664 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4665 		hsotg->params.g_np_tx_fifo_size);
4666 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4667 
4668 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4669 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4670 	hsotg->gadget.name = dev_name(dev);
4671 	hsotg->remote_wakeup_allowed = 0;
4672 
4673 	if (hsotg->params.lpm)
4674 		hsotg->gadget.lpm_capable = true;
4675 
4676 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4677 		hsotg->gadget.is_otg = 1;
4678 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4679 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4680 
4681 	ret = dwc2_hsotg_hw_cfg(hsotg);
4682 	if (ret) {
4683 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4684 		return ret;
4685 	}
4686 
4687 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4688 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4689 	if (!hsotg->ctrl_buff)
4690 		return -ENOMEM;
4691 
4692 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4693 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4694 	if (!hsotg->ep0_buff)
4695 		return -ENOMEM;
4696 
4697 	if (using_desc_dma(hsotg)) {
4698 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4699 		if (ret < 0)
4700 			return ret;
4701 	}
4702 
4703 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4704 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4705 	if (ret < 0) {
4706 		dev_err(dev, "cannot claim IRQ for gadget\n");
4707 		return ret;
4708 	}
4709 
4710 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4711 
4712 	if (hsotg->num_of_eps == 0) {
4713 		dev_err(dev, "wrong number of EPs (zero)\n");
4714 		return -EINVAL;
4715 	}
4716 
4717 	/* setup endpoint information */
4718 
4719 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4720 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4721 
4722 	/* allocate EP0 request */
4723 
4724 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4725 						     GFP_KERNEL);
4726 	if (!hsotg->ctrl_req) {
4727 		dev_err(dev, "failed to allocate ctrl req\n");
4728 		return -ENOMEM;
4729 	}
4730 
4731 	/* initialise the endpoints now the core has been initialised */
4732 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4733 		if (hsotg->eps_in[epnum])
4734 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4735 					  epnum, 1);
4736 		if (hsotg->eps_out[epnum])
4737 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4738 					  epnum, 0);
4739 	}
4740 
4741 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4742 	if (ret)
4743 		return ret;
4744 
4745 	dwc2_hsotg_dump(hsotg);
4746 
4747 	return 0;
4748 }
4749 
4750 /**
4751  * dwc2_hsotg_remove - remove function for hsotg driver
4752  * @hsotg: Programming view of the DWC_otg controller
4753  *
4754  */
4755 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4756 {
4757 	usb_del_gadget_udc(&hsotg->gadget);
4758 
4759 	return 0;
4760 }
4761 
4762 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4763 {
4764 	unsigned long flags;
4765 
4766 	if (hsotg->lx_state != DWC2_L0)
4767 		return 0;
4768 
4769 	if (hsotg->driver) {
4770 		int ep;
4771 
4772 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4773 			 hsotg->driver->driver.name);
4774 
4775 		spin_lock_irqsave(&hsotg->lock, flags);
4776 		if (hsotg->enabled)
4777 			dwc2_hsotg_core_disconnect(hsotg);
4778 		dwc2_hsotg_disconnect(hsotg);
4779 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4780 		spin_unlock_irqrestore(&hsotg->lock, flags);
4781 
4782 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4783 			if (hsotg->eps_in[ep])
4784 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4785 			if (hsotg->eps_out[ep])
4786 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4787 		}
4788 	}
4789 
4790 	return 0;
4791 }
4792 
4793 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4794 {
4795 	unsigned long flags;
4796 
4797 	if (hsotg->lx_state == DWC2_L2)
4798 		return 0;
4799 
4800 	if (hsotg->driver) {
4801 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4802 			 hsotg->driver->driver.name);
4803 
4804 		spin_lock_irqsave(&hsotg->lock, flags);
4805 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4806 		if (hsotg->enabled) {
4807 			/* Enable ACG feature in device mode,if supported */
4808 			dwc2_enable_acg(hsotg);
4809 			dwc2_hsotg_core_connect(hsotg);
4810 		}
4811 		spin_unlock_irqrestore(&hsotg->lock, flags);
4812 	}
4813 
4814 	return 0;
4815 }
4816 
4817 /**
4818  * dwc2_backup_device_registers() - Backup controller device registers.
4819  * When suspending usb bus, registers needs to be backuped
4820  * if controller power is disabled once suspended.
4821  *
4822  * @hsotg: Programming view of the DWC_otg controller
4823  */
4824 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4825 {
4826 	struct dwc2_dregs_backup *dr;
4827 	int i;
4828 
4829 	dev_dbg(hsotg->dev, "%s\n", __func__);
4830 
4831 	/* Backup dev regs */
4832 	dr = &hsotg->dr_backup;
4833 
4834 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4835 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4836 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4837 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4838 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4839 
4840 	for (i = 0; i < hsotg->num_of_eps; i++) {
4841 		/* Backup IN EPs */
4842 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4843 
4844 		/* Ensure DATA PID is correctly configured */
4845 		if (dr->diepctl[i] & DXEPCTL_DPID)
4846 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4847 		else
4848 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4849 
4850 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4851 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4852 
4853 		/* Backup OUT EPs */
4854 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4855 
4856 		/* Ensure DATA PID is correctly configured */
4857 		if (dr->doepctl[i] & DXEPCTL_DPID)
4858 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4859 		else
4860 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4861 
4862 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4863 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4864 		dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
4865 	}
4866 	dr->valid = true;
4867 	return 0;
4868 }
4869 
4870 /**
4871  * dwc2_restore_device_registers() - Restore controller device registers.
4872  * When resuming usb bus, device registers needs to be restored
4873  * if controller power were disabled.
4874  *
4875  * @hsotg: Programming view of the DWC_otg controller
4876  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
4877  *
4878  * Return: 0 if successful, negative error code otherwise
4879  */
4880 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4881 {
4882 	struct dwc2_dregs_backup *dr;
4883 	int i;
4884 
4885 	dev_dbg(hsotg->dev, "%s\n", __func__);
4886 
4887 	/* Restore dev regs */
4888 	dr = &hsotg->dr_backup;
4889 	if (!dr->valid) {
4890 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4891 			__func__);
4892 		return -EINVAL;
4893 	}
4894 	dr->valid = false;
4895 
4896 	if (!remote_wakeup)
4897 		dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4898 
4899 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4900 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4901 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4902 
4903 	for (i = 0; i < hsotg->num_of_eps; i++) {
4904 		/* Restore IN EPs */
4905 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4906 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4907 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4908 		/** WA for enabled EPx's IN in DDMA mode. On entering to
4909 		 * hibernation wrong value read and saved from DIEPDMAx,
4910 		 * as result BNA interrupt asserted on hibernation exit
4911 		 * by restoring from saved area.
4912 		 */
4913 		if (hsotg->params.g_dma_desc &&
4914 		    (dr->diepctl[i] & DXEPCTL_EPENA))
4915 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4916 		dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
4917 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4918 		/* Restore OUT EPs */
4919 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4920 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
4921 		 * hibernation wrong value read and saved from DOEPDMAx,
4922 		 * as result BNA interrupt asserted on hibernation exit
4923 		 * by restoring from saved area.
4924 		 */
4925 		if (hsotg->params.g_dma_desc &&
4926 		    (dr->doepctl[i] & DXEPCTL_EPENA))
4927 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4928 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4929 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4930 	}
4931 
4932 	return 0;
4933 }
4934 
4935 /**
4936  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
4937  *
4938  * @hsotg: Programming view of DWC_otg controller
4939  *
4940  */
4941 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
4942 {
4943 	u32 val;
4944 
4945 	if (!hsotg->params.lpm)
4946 		return;
4947 
4948 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
4949 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
4950 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
4951 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
4952 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
4953 	dwc2_writel(val, hsotg->regs + GLPMCFG);
4954 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs
4955 		+ GLPMCFG));
4956 }
4957 
4958 /**
4959  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
4960  *
4961  * @hsotg: Programming view of the DWC_otg controller
4962  *
4963  * Return non-zero if failed to enter to hibernation.
4964  */
4965 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
4966 {
4967 	u32 gpwrdn;
4968 	int ret = 0;
4969 
4970 	/* Change to L2(suspend) state */
4971 	hsotg->lx_state = DWC2_L2;
4972 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
4973 	ret = dwc2_backup_global_registers(hsotg);
4974 	if (ret) {
4975 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
4976 			__func__);
4977 		return ret;
4978 	}
4979 	ret = dwc2_backup_device_registers(hsotg);
4980 	if (ret) {
4981 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
4982 			__func__);
4983 		return ret;
4984 	}
4985 
4986 	gpwrdn = GPWRDN_PWRDNRSTN;
4987 	gpwrdn |= GPWRDN_PMUACTV;
4988 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4989 	udelay(10);
4990 
4991 	/* Set flag to indicate that we are in hibernation */
4992 	hsotg->hibernated = 1;
4993 
4994 	/* Enable interrupts from wake up logic */
4995 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4996 	gpwrdn |= GPWRDN_PMUINTSEL;
4997 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4998 	udelay(10);
4999 
5000 	/* Unmask device mode interrupts in GPWRDN */
5001 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5002 	gpwrdn |= GPWRDN_RST_DET_MSK;
5003 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5004 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5005 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5006 	udelay(10);
5007 
5008 	/* Enable Power Down Clamp */
5009 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5010 	gpwrdn |= GPWRDN_PWRDNCLMP;
5011 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5012 	udelay(10);
5013 
5014 	/* Switch off VDD */
5015 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5016 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5017 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5018 	udelay(10);
5019 
5020 	/* Save gpwrdn register for further usage if stschng interrupt */
5021 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5022 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5023 
5024 	return ret;
5025 }
5026 
5027 /**
5028  * dwc2_gadget_exit_hibernation()
5029  * This function is for exiting from Device mode hibernation by host initiated
5030  * resume/reset and device initiated remote-wakeup.
5031  *
5032  * @hsotg: Programming view of the DWC_otg controller
5033  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5034  * @reset: indicates whether resume is initiated by Reset.
5035  *
5036  * Return non-zero if failed to exit from hibernation.
5037  */
5038 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5039 				 int rem_wakeup, int reset)
5040 {
5041 	u32 pcgcctl;
5042 	u32 gpwrdn;
5043 	u32 dctl;
5044 	int ret = 0;
5045 	struct dwc2_gregs_backup *gr;
5046 	struct dwc2_dregs_backup *dr;
5047 
5048 	gr = &hsotg->gr_backup;
5049 	dr = &hsotg->dr_backup;
5050 
5051 	if (!hsotg->hibernated) {
5052 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5053 		return 1;
5054 	}
5055 	dev_dbg(hsotg->dev,
5056 		"%s: called with rem_wakeup = %d reset = %d\n",
5057 		__func__, rem_wakeup, reset);
5058 
5059 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5060 
5061 	if (!reset) {
5062 		/* Clear all pending interupts */
5063 		dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5064 	}
5065 
5066 	/* De-assert Restore */
5067 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5068 	gpwrdn &= ~GPWRDN_RESTORE;
5069 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5070 	udelay(10);
5071 
5072 	if (!rem_wakeup) {
5073 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5074 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5075 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5076 	}
5077 
5078 	/* Restore GUSBCFG, DCFG and DCTL */
5079 	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5080 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
5081 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
5082 
5083 	/* De-assert Wakeup Logic */
5084 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5085 	gpwrdn &= ~GPWRDN_PMUACTV;
5086 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5087 
5088 	if (rem_wakeup) {
5089 		udelay(10);
5090 		/* Start Remote Wakeup Signaling */
5091 		dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL);
5092 	} else {
5093 		udelay(50);
5094 		/* Set Device programming done bit */
5095 		dctl = dwc2_readl(hsotg->regs + DCTL);
5096 		dctl |= DCTL_PWRONPRGDONE;
5097 		dwc2_writel(dctl, hsotg->regs + DCTL);
5098 	}
5099 	/* Wait for interrupts which must be cleared */
5100 	mdelay(2);
5101 	/* Clear all pending interupts */
5102 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5103 
5104 	/* Restore global registers */
5105 	ret = dwc2_restore_global_registers(hsotg);
5106 	if (ret) {
5107 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5108 			__func__);
5109 		return ret;
5110 	}
5111 
5112 	/* Restore device registers */
5113 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5114 	if (ret) {
5115 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5116 			__func__);
5117 		return ret;
5118 	}
5119 
5120 	if (rem_wakeup) {
5121 		mdelay(10);
5122 		dctl = dwc2_readl(hsotg->regs + DCTL);
5123 		dctl &= ~DCTL_RMTWKUPSIG;
5124 		dwc2_writel(dctl, hsotg->regs + DCTL);
5125 	}
5126 
5127 	hsotg->hibernated = 0;
5128 	hsotg->lx_state = DWC2_L0;
5129 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5130 
5131 	return ret;
5132 }
5133