1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 31 #include "core.h" 32 #include "hw.h" 33 34 /* conversion functions */ 35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 36 { 37 return container_of(req, struct dwc2_hsotg_req, req); 38 } 39 40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 41 { 42 return container_of(ep, struct dwc2_hsotg_ep, ep); 43 } 44 45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 46 { 47 return container_of(gadget, struct dwc2_hsotg, gadget); 48 } 49 50 static inline void dwc2_set_bit(void __iomem *ptr, u32 val) 51 { 52 dwc2_writel(dwc2_readl(ptr) | val, ptr); 53 } 54 55 static inline void dwc2_clear_bit(void __iomem *ptr, u32 val) 56 { 57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr); 58 } 59 60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 61 u32 ep_index, u32 dir_in) 62 { 63 if (dir_in) 64 return hsotg->eps_in[ep_index]; 65 else 66 return hsotg->eps_out[ep_index]; 67 } 68 69 /* forward declaration of functions */ 70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 71 72 /** 73 * using_dma - return the DMA status of the driver. 74 * @hsotg: The driver state. 75 * 76 * Return true if we're using DMA. 77 * 78 * Currently, we have the DMA support code worked into everywhere 79 * that needs it, but the AMBA DMA implementation in the hardware can 80 * only DMA from 32bit aligned addresses. This means that gadgets such 81 * as the CDC Ethernet cannot work as they often pass packets which are 82 * not 32bit aligned. 83 * 84 * Unfortunately the choice to use DMA or not is global to the controller 85 * and seems to be only settable when the controller is being put through 86 * a core reset. This means we either need to fix the gadgets to take 87 * account of DMA alignment, or add bounce buffers (yuerk). 88 * 89 * g_using_dma is set depending on dts flag. 90 */ 91 static inline bool using_dma(struct dwc2_hsotg *hsotg) 92 { 93 return hsotg->params.g_dma; 94 } 95 96 /* 97 * using_desc_dma - return the descriptor DMA status of the driver. 98 * @hsotg: The driver state. 99 * 100 * Return true if we're using descriptor DMA. 101 */ 102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 103 { 104 return hsotg->params.g_dma_desc; 105 } 106 107 /** 108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 109 * @hs_ep: The endpoint 110 * 111 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 112 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 113 */ 114 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 115 { 116 hs_ep->target_frame += hs_ep->interval; 117 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 118 hs_ep->frame_overrun = true; 119 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 120 } else { 121 hs_ep->frame_overrun = false; 122 } 123 } 124 125 /** 126 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 127 * @hsotg: The device state 128 * @ints: A bitmask of the interrupts to enable 129 */ 130 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 131 { 132 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 133 u32 new_gsintmsk; 134 135 new_gsintmsk = gsintmsk | ints; 136 137 if (new_gsintmsk != gsintmsk) { 138 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 139 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 140 } 141 } 142 143 /** 144 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 145 * @hsotg: The device state 146 * @ints: A bitmask of the interrupts to enable 147 */ 148 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 149 { 150 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 151 u32 new_gsintmsk; 152 153 new_gsintmsk = gsintmsk & ~ints; 154 155 if (new_gsintmsk != gsintmsk) 156 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 157 } 158 159 /** 160 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 161 * @hsotg: The device state 162 * @ep: The endpoint index 163 * @dir_in: True if direction is in. 164 * @en: The enable value, true to enable 165 * 166 * Set or clear the mask for an individual endpoint's interrupt 167 * request. 168 */ 169 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 170 unsigned int ep, unsigned int dir_in, 171 unsigned int en) 172 { 173 unsigned long flags; 174 u32 bit = 1 << ep; 175 u32 daint; 176 177 if (!dir_in) 178 bit <<= 16; 179 180 local_irq_save(flags); 181 daint = dwc2_readl(hsotg->regs + DAINTMSK); 182 if (en) 183 daint |= bit; 184 else 185 daint &= ~bit; 186 dwc2_writel(daint, hsotg->regs + DAINTMSK); 187 local_irq_restore(flags); 188 } 189 190 /** 191 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 192 * 193 * @hsotg: Programming view of the DWC_otg controller 194 */ 195 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 196 { 197 if (hsotg->hw_params.en_multiple_tx_fifo) 198 /* In dedicated FIFO mode we need count of IN EPs */ 199 return hsotg->hw_params.num_dev_in_eps; 200 else 201 /* In shared FIFO mode we need count of Periodic IN EPs */ 202 return hsotg->hw_params.num_dev_perio_in_ep; 203 } 204 205 /** 206 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 207 * device mode TX FIFOs 208 * 209 * @hsotg: Programming view of the DWC_otg controller 210 */ 211 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 212 { 213 int addr; 214 int tx_addr_max; 215 u32 np_tx_fifo_size; 216 217 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 218 hsotg->params.g_np_tx_fifo_size); 219 220 /* Get Endpoint Info Control block size in DWORDs. */ 221 tx_addr_max = hsotg->hw_params.total_fifo_size; 222 223 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 224 if (tx_addr_max <= addr) 225 return 0; 226 227 return tx_addr_max - addr; 228 } 229 230 /** 231 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 232 * TX FIFOs 233 * 234 * @hsotg: Programming view of the DWC_otg controller 235 */ 236 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 237 { 238 int tx_fifo_count; 239 int tx_fifo_depth; 240 241 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 242 243 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 244 245 if (!tx_fifo_count) 246 return tx_fifo_depth; 247 else 248 return tx_fifo_depth / tx_fifo_count; 249 } 250 251 /** 252 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 253 * @hsotg: The device instance. 254 */ 255 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 256 { 257 unsigned int ep; 258 unsigned int addr; 259 int timeout; 260 261 u32 val; 262 u32 *txfsz = hsotg->params.g_tx_fifo_size; 263 264 /* Reset fifo map if not correctly cleared during previous session */ 265 WARN_ON(hsotg->fifo_map); 266 hsotg->fifo_map = 0; 267 268 /* set RX/NPTX FIFO sizes */ 269 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ); 270 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) | 271 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 272 hsotg->regs + GNPTXFSIZ); 273 274 /* 275 * arange all the rest of the TX FIFOs, as some versions of this 276 * block have overlapping default addresses. This also ensures 277 * that if the settings have been changed, then they are set to 278 * known values. 279 */ 280 281 /* start at the end of the GNPTXFSIZ, rounded up */ 282 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 283 284 /* 285 * Configure fifos sizes from provided configuration and assign 286 * them to endpoints dynamically according to maxpacket size value of 287 * given endpoint. 288 */ 289 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 290 if (!txfsz[ep]) 291 continue; 292 val = addr; 293 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 294 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 295 "insufficient fifo memory"); 296 addr += txfsz[ep]; 297 298 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep)); 299 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep)); 300 } 301 302 dwc2_writel(hsotg->hw_params.total_fifo_size | 303 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 304 hsotg->regs + GDFIFOCFG); 305 /* 306 * according to p428 of the design guide, we need to ensure that 307 * all fifos are flushed before continuing 308 */ 309 310 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 311 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 312 313 /* wait until the fifos are both flushed */ 314 timeout = 100; 315 while (1) { 316 val = dwc2_readl(hsotg->regs + GRSTCTL); 317 318 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 319 break; 320 321 if (--timeout == 0) { 322 dev_err(hsotg->dev, 323 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 324 __func__, val); 325 break; 326 } 327 328 udelay(1); 329 } 330 331 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 332 } 333 334 /** 335 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 336 * @ep: USB endpoint to allocate request for. 337 * @flags: Allocation flags 338 * 339 * Allocate a new USB request structure appropriate for the specified endpoint 340 */ 341 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 342 gfp_t flags) 343 { 344 struct dwc2_hsotg_req *req; 345 346 req = kzalloc(sizeof(*req), flags); 347 if (!req) 348 return NULL; 349 350 INIT_LIST_HEAD(&req->queue); 351 352 return &req->req; 353 } 354 355 /** 356 * is_ep_periodic - return true if the endpoint is in periodic mode. 357 * @hs_ep: The endpoint to query. 358 * 359 * Returns true if the endpoint is in periodic mode, meaning it is being 360 * used for an Interrupt or ISO transfer. 361 */ 362 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 363 { 364 return hs_ep->periodic; 365 } 366 367 /** 368 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 369 * @hsotg: The device state. 370 * @hs_ep: The endpoint for the request 371 * @hs_req: The request being processed. 372 * 373 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 374 * of a request to ensure the buffer is ready for access by the caller. 375 */ 376 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 377 struct dwc2_hsotg_ep *hs_ep, 378 struct dwc2_hsotg_req *hs_req) 379 { 380 struct usb_request *req = &hs_req->req; 381 382 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 383 } 384 385 /* 386 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 387 * for Control endpoint 388 * @hsotg: The device state. 389 * 390 * This function will allocate 4 descriptor chains for EP 0: 2 for 391 * Setup stage, per one for IN and OUT data/status transactions. 392 */ 393 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 394 { 395 hsotg->setup_desc[0] = 396 dmam_alloc_coherent(hsotg->dev, 397 sizeof(struct dwc2_dma_desc), 398 &hsotg->setup_desc_dma[0], 399 GFP_KERNEL); 400 if (!hsotg->setup_desc[0]) 401 goto fail; 402 403 hsotg->setup_desc[1] = 404 dmam_alloc_coherent(hsotg->dev, 405 sizeof(struct dwc2_dma_desc), 406 &hsotg->setup_desc_dma[1], 407 GFP_KERNEL); 408 if (!hsotg->setup_desc[1]) 409 goto fail; 410 411 hsotg->ctrl_in_desc = 412 dmam_alloc_coherent(hsotg->dev, 413 sizeof(struct dwc2_dma_desc), 414 &hsotg->ctrl_in_desc_dma, 415 GFP_KERNEL); 416 if (!hsotg->ctrl_in_desc) 417 goto fail; 418 419 hsotg->ctrl_out_desc = 420 dmam_alloc_coherent(hsotg->dev, 421 sizeof(struct dwc2_dma_desc), 422 &hsotg->ctrl_out_desc_dma, 423 GFP_KERNEL); 424 if (!hsotg->ctrl_out_desc) 425 goto fail; 426 427 return 0; 428 429 fail: 430 return -ENOMEM; 431 } 432 433 /** 434 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 435 * @hsotg: The controller state. 436 * @hs_ep: The endpoint we're going to write for. 437 * @hs_req: The request to write data for. 438 * 439 * This is called when the TxFIFO has some space in it to hold a new 440 * transmission and we have something to give it. The actual setup of 441 * the data size is done elsewhere, so all we have to do is to actually 442 * write the data. 443 * 444 * The return value is zero if there is more space (or nothing was done) 445 * otherwise -ENOSPC is returned if the FIFO space was used up. 446 * 447 * This routine is only needed for PIO 448 */ 449 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 450 struct dwc2_hsotg_ep *hs_ep, 451 struct dwc2_hsotg_req *hs_req) 452 { 453 bool periodic = is_ep_periodic(hs_ep); 454 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 455 int buf_pos = hs_req->req.actual; 456 int to_write = hs_ep->size_loaded; 457 void *data; 458 int can_write; 459 int pkt_round; 460 int max_transfer; 461 462 to_write -= (buf_pos - hs_ep->last_load); 463 464 /* if there's nothing to write, get out early */ 465 if (to_write == 0) 466 return 0; 467 468 if (periodic && !hsotg->dedicated_fifos) { 469 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 470 int size_left; 471 int size_done; 472 473 /* 474 * work out how much data was loaded so we can calculate 475 * how much data is left in the fifo. 476 */ 477 478 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 479 480 /* 481 * if shared fifo, we cannot write anything until the 482 * previous data has been completely sent. 483 */ 484 if (hs_ep->fifo_load != 0) { 485 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 486 return -ENOSPC; 487 } 488 489 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 490 __func__, size_left, 491 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 492 493 /* how much of the data has moved */ 494 size_done = hs_ep->size_loaded - size_left; 495 496 /* how much data is left in the fifo */ 497 can_write = hs_ep->fifo_load - size_done; 498 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 499 __func__, can_write); 500 501 can_write = hs_ep->fifo_size - can_write; 502 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 503 __func__, can_write); 504 505 if (can_write <= 0) { 506 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 507 return -ENOSPC; 508 } 509 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 510 can_write = dwc2_readl(hsotg->regs + 511 DTXFSTS(hs_ep->fifo_index)); 512 513 can_write &= 0xffff; 514 can_write *= 4; 515 } else { 516 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 517 dev_dbg(hsotg->dev, 518 "%s: no queue slots available (0x%08x)\n", 519 __func__, gnptxsts); 520 521 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 522 return -ENOSPC; 523 } 524 525 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 526 can_write *= 4; /* fifo size is in 32bit quantities. */ 527 } 528 529 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 530 531 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 532 __func__, gnptxsts, can_write, to_write, max_transfer); 533 534 /* 535 * limit to 512 bytes of data, it seems at least on the non-periodic 536 * FIFO, requests of >512 cause the endpoint to get stuck with a 537 * fragment of the end of the transfer in it. 538 */ 539 if (can_write > 512 && !periodic) 540 can_write = 512; 541 542 /* 543 * limit the write to one max-packet size worth of data, but allow 544 * the transfer to return that it did not run out of fifo space 545 * doing it. 546 */ 547 if (to_write > max_transfer) { 548 to_write = max_transfer; 549 550 /* it's needed only when we do not use dedicated fifos */ 551 if (!hsotg->dedicated_fifos) 552 dwc2_hsotg_en_gsint(hsotg, 553 periodic ? GINTSTS_PTXFEMP : 554 GINTSTS_NPTXFEMP); 555 } 556 557 /* see if we can write data */ 558 559 if (to_write > can_write) { 560 to_write = can_write; 561 pkt_round = to_write % max_transfer; 562 563 /* 564 * Round the write down to an 565 * exact number of packets. 566 * 567 * Note, we do not currently check to see if we can ever 568 * write a full packet or not to the FIFO. 569 */ 570 571 if (pkt_round) 572 to_write -= pkt_round; 573 574 /* 575 * enable correct FIFO interrupt to alert us when there 576 * is more room left. 577 */ 578 579 /* it's needed only when we do not use dedicated fifos */ 580 if (!hsotg->dedicated_fifos) 581 dwc2_hsotg_en_gsint(hsotg, 582 periodic ? GINTSTS_PTXFEMP : 583 GINTSTS_NPTXFEMP); 584 } 585 586 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 587 to_write, hs_req->req.length, can_write, buf_pos); 588 589 if (to_write <= 0) 590 return -ENOSPC; 591 592 hs_req->req.actual = buf_pos + to_write; 593 hs_ep->total_data += to_write; 594 595 if (periodic) 596 hs_ep->fifo_load += to_write; 597 598 to_write = DIV_ROUND_UP(to_write, 4); 599 data = hs_req->req.buf + buf_pos; 600 601 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 602 603 return (to_write >= can_write) ? -ENOSPC : 0; 604 } 605 606 /** 607 * get_ep_limit - get the maximum data legnth for this endpoint 608 * @hs_ep: The endpoint 609 * 610 * Return the maximum data that can be queued in one go on a given endpoint 611 * so that transfers that are too long can be split. 612 */ 613 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 614 { 615 int index = hs_ep->index; 616 unsigned int maxsize; 617 unsigned int maxpkt; 618 619 if (index != 0) { 620 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 621 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 622 } else { 623 maxsize = 64 + 64; 624 if (hs_ep->dir_in) 625 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 626 else 627 maxpkt = 2; 628 } 629 630 /* we made the constant loading easier above by using +1 */ 631 maxpkt--; 632 maxsize--; 633 634 /* 635 * constrain by packet count if maxpkts*pktsize is greater 636 * than the length register size. 637 */ 638 639 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 640 maxsize = maxpkt * hs_ep->ep.maxpacket; 641 642 return maxsize; 643 } 644 645 /** 646 * dwc2_hsotg_read_frameno - read current frame number 647 * @hsotg: The device instance 648 * 649 * Return the current frame number 650 */ 651 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 652 { 653 u32 dsts; 654 655 dsts = dwc2_readl(hsotg->regs + DSTS); 656 dsts &= DSTS_SOFFN_MASK; 657 dsts >>= DSTS_SOFFN_SHIFT; 658 659 return dsts; 660 } 661 662 /** 663 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 664 * DMA descriptor chain prepared for specific endpoint 665 * @hs_ep: The endpoint 666 * 667 * Return the maximum data that can be queued in one go on a given endpoint 668 * depending on its descriptor chain capacity so that transfers that 669 * are too long can be split. 670 */ 671 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 672 { 673 int is_isoc = hs_ep->isochronous; 674 unsigned int maxsize; 675 676 if (is_isoc) 677 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 678 DEV_DMA_ISOC_RX_NBYTES_LIMIT; 679 else 680 maxsize = DEV_DMA_NBYTES_LIMIT; 681 682 /* Above size of one descriptor was chosen, multiple it */ 683 maxsize *= MAX_DMA_DESC_NUM_GENERIC; 684 685 return maxsize; 686 } 687 688 /* 689 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 690 * @hs_ep: The endpoint 691 * @mask: RX/TX bytes mask to be defined 692 * 693 * Returns maximum data payload for one descriptor after analyzing endpoint 694 * characteristics. 695 * DMA descriptor transfer bytes limit depends on EP type: 696 * Control out - MPS, 697 * Isochronous - descriptor rx/tx bytes bitfield limit, 698 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 699 * have concatenations from various descriptors within one packet. 700 * 701 * Selects corresponding mask for RX/TX bytes as well. 702 */ 703 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 704 { 705 u32 mps = hs_ep->ep.maxpacket; 706 int dir_in = hs_ep->dir_in; 707 u32 desc_size = 0; 708 709 if (!hs_ep->index && !dir_in) { 710 desc_size = mps; 711 *mask = DEV_DMA_NBYTES_MASK; 712 } else if (hs_ep->isochronous) { 713 if (dir_in) { 714 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 715 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 716 } else { 717 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 718 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 719 } 720 } else { 721 desc_size = DEV_DMA_NBYTES_LIMIT; 722 *mask = DEV_DMA_NBYTES_MASK; 723 724 /* Round down desc_size to be mps multiple */ 725 desc_size -= desc_size % mps; 726 } 727 728 return desc_size; 729 } 730 731 /* 732 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 733 * @hs_ep: The endpoint 734 * @dma_buff: DMA address to use 735 * @len: Length of the transfer 736 * 737 * This function will iterate over descriptor chain and fill its entries 738 * with corresponding information based on transfer data. 739 */ 740 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 741 dma_addr_t dma_buff, 742 unsigned int len) 743 { 744 struct dwc2_hsotg *hsotg = hs_ep->parent; 745 int dir_in = hs_ep->dir_in; 746 struct dwc2_dma_desc *desc = hs_ep->desc_list; 747 u32 mps = hs_ep->ep.maxpacket; 748 u32 maxsize = 0; 749 u32 offset = 0; 750 u32 mask = 0; 751 int i; 752 753 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 754 755 hs_ep->desc_count = (len / maxsize) + 756 ((len % maxsize) ? 1 : 0); 757 if (len == 0) 758 hs_ep->desc_count = 1; 759 760 for (i = 0; i < hs_ep->desc_count; ++i) { 761 desc->status = 0; 762 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 763 << DEV_DMA_BUFF_STS_SHIFT); 764 765 if (len > maxsize) { 766 if (!hs_ep->index && !dir_in) 767 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 768 769 desc->status |= (maxsize << 770 DEV_DMA_NBYTES_SHIFT & mask); 771 desc->buf = dma_buff + offset; 772 773 len -= maxsize; 774 offset += maxsize; 775 } else { 776 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 777 778 if (dir_in) 779 desc->status |= (len % mps) ? DEV_DMA_SHORT : 780 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0); 781 if (len > maxsize) 782 dev_err(hsotg->dev, "wrong len %d\n", len); 783 784 desc->status |= 785 len << DEV_DMA_NBYTES_SHIFT & mask; 786 desc->buf = dma_buff + offset; 787 } 788 789 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 790 desc->status |= (DEV_DMA_BUFF_STS_HREADY 791 << DEV_DMA_BUFF_STS_SHIFT); 792 desc++; 793 } 794 } 795 796 /* 797 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 798 * @hs_ep: The isochronous endpoint. 799 * @dma_buff: usb requests dma buffer. 800 * @len: usb request transfer length. 801 * 802 * Fills next free descriptor with the data of the arrived usb request, 803 * frame info, sets Last and IOC bits increments next_desc. If filled 804 * descriptor is not the first one, removes L bit from the previous descriptor 805 * status. 806 */ 807 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 808 dma_addr_t dma_buff, unsigned int len) 809 { 810 struct dwc2_dma_desc *desc; 811 struct dwc2_hsotg *hsotg = hs_ep->parent; 812 u32 index; 813 u32 maxsize = 0; 814 u32 mask = 0; 815 u8 pid = 0; 816 817 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 818 819 index = hs_ep->next_desc; 820 desc = &hs_ep->desc_list[index]; 821 822 /* Check if descriptor chain full */ 823 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 824 DEV_DMA_BUFF_STS_HREADY) { 825 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 826 return 1; 827 } 828 829 /* Clear L bit of previous desc if more than one entries in the chain */ 830 if (hs_ep->next_desc) 831 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 832 833 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 834 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 835 836 desc->status = 0; 837 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 838 839 desc->buf = dma_buff; 840 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 841 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 842 843 if (hs_ep->dir_in) { 844 if (len) 845 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 846 else 847 pid = 1; 848 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 849 DEV_DMA_ISOC_PID_MASK) | 850 ((len % hs_ep->ep.maxpacket) ? 851 DEV_DMA_SHORT : 0) | 852 ((hs_ep->target_frame << 853 DEV_DMA_ISOC_FRNUM_SHIFT) & 854 DEV_DMA_ISOC_FRNUM_MASK); 855 } 856 857 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 858 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 859 860 /* Increment frame number by interval for IN */ 861 if (hs_ep->dir_in) 862 dwc2_gadget_incr_frame_num(hs_ep); 863 864 /* Update index of last configured entry in the chain */ 865 hs_ep->next_desc++; 866 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC) 867 hs_ep->next_desc = 0; 868 869 return 0; 870 } 871 872 /* 873 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 874 * @hs_ep: The isochronous endpoint. 875 * 876 * Prepare descriptor chain for isochronous endpoints. Afterwards 877 * write DMA address to HW and enable the endpoint. 878 */ 879 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 880 { 881 struct dwc2_hsotg *hsotg = hs_ep->parent; 882 struct dwc2_hsotg_req *hs_req, *treq; 883 int index = hs_ep->index; 884 int ret; 885 int i; 886 u32 dma_reg; 887 u32 depctl; 888 u32 ctrl; 889 struct dwc2_dma_desc *desc; 890 891 if (list_empty(&hs_ep->queue)) { 892 hs_ep->target_frame = TARGET_FRAME_INITIAL; 893 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 894 return; 895 } 896 897 /* Initialize descriptor chain by Host Busy status */ 898 for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) { 899 desc = &hs_ep->desc_list[i]; 900 desc->status = 0; 901 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 902 << DEV_DMA_BUFF_STS_SHIFT); 903 } 904 905 hs_ep->next_desc = 0; 906 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 907 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 908 hs_req->req.length); 909 if (ret) 910 break; 911 } 912 913 hs_ep->compl_desc = 0; 914 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 915 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 916 917 /* write descriptor chain address to control register */ 918 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 919 920 ctrl = dwc2_readl(hsotg->regs + depctl); 921 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 922 dwc2_writel(ctrl, hsotg->regs + depctl); 923 } 924 925 /** 926 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 927 * @hsotg: The controller state. 928 * @hs_ep: The endpoint to process a request for 929 * @hs_req: The request to start. 930 * @continuing: True if we are doing more for the current request. 931 * 932 * Start the given request running by setting the endpoint registers 933 * appropriately, and writing any data to the FIFOs. 934 */ 935 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 936 struct dwc2_hsotg_ep *hs_ep, 937 struct dwc2_hsotg_req *hs_req, 938 bool continuing) 939 { 940 struct usb_request *ureq = &hs_req->req; 941 int index = hs_ep->index; 942 int dir_in = hs_ep->dir_in; 943 u32 epctrl_reg; 944 u32 epsize_reg; 945 u32 epsize; 946 u32 ctrl; 947 unsigned int length; 948 unsigned int packets; 949 unsigned int maxreq; 950 unsigned int dma_reg; 951 952 if (index != 0) { 953 if (hs_ep->req && !continuing) { 954 dev_err(hsotg->dev, "%s: active request\n", __func__); 955 WARN_ON(1); 956 return; 957 } else if (hs_ep->req != hs_req && continuing) { 958 dev_err(hsotg->dev, 959 "%s: continue different req\n", __func__); 960 WARN_ON(1); 961 return; 962 } 963 } 964 965 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 966 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 967 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 968 969 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 970 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index, 971 hs_ep->dir_in ? "in" : "out"); 972 973 /* If endpoint is stalled, we will restart request later */ 974 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 975 976 if (index && ctrl & DXEPCTL_STALL) { 977 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 978 return; 979 } 980 981 length = ureq->length - ureq->actual; 982 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 983 ureq->length, ureq->actual); 984 985 if (!using_desc_dma(hsotg)) 986 maxreq = get_ep_limit(hs_ep); 987 else 988 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 989 990 if (length > maxreq) { 991 int round = maxreq % hs_ep->ep.maxpacket; 992 993 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 994 __func__, length, maxreq, round); 995 996 /* round down to multiple of packets */ 997 if (round) 998 maxreq -= round; 999 1000 length = maxreq; 1001 } 1002 1003 if (length) 1004 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1005 else 1006 packets = 1; /* send one packet if length is zero. */ 1007 1008 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1009 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 1010 return; 1011 } 1012 1013 if (dir_in && index != 0) 1014 if (hs_ep->isochronous) 1015 epsize = DXEPTSIZ_MC(packets); 1016 else 1017 epsize = DXEPTSIZ_MC(1); 1018 else 1019 epsize = 0; 1020 1021 /* 1022 * zero length packet should be programmed on its own and should not 1023 * be counted in DIEPTSIZ.PktCnt with other packets. 1024 */ 1025 if (dir_in && ureq->zero && !continuing) { 1026 /* Test if zlp is actually required. */ 1027 if ((ureq->length >= hs_ep->ep.maxpacket) && 1028 !(ureq->length % hs_ep->ep.maxpacket)) 1029 hs_ep->send_zlp = 1; 1030 } 1031 1032 epsize |= DXEPTSIZ_PKTCNT(packets); 1033 epsize |= DXEPTSIZ_XFERSIZE(length); 1034 1035 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1036 __func__, packets, length, ureq->length, epsize, epsize_reg); 1037 1038 /* store the request as the current one we're doing */ 1039 hs_ep->req = hs_req; 1040 1041 if (using_desc_dma(hsotg)) { 1042 u32 offset = 0; 1043 u32 mps = hs_ep->ep.maxpacket; 1044 1045 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1046 if (!dir_in) { 1047 if (!index) 1048 length = mps; 1049 else if (length % mps) 1050 length += (mps - (length % mps)); 1051 } 1052 1053 /* 1054 * If more data to send, adjust DMA for EP0 out data stage. 1055 * ureq->dma stays unchanged, hence increment it by already 1056 * passed passed data count before starting new transaction. 1057 */ 1058 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1059 continuing) 1060 offset = ureq->actual; 1061 1062 /* Fill DDMA chain entries */ 1063 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1064 length); 1065 1066 /* write descriptor chain address to control register */ 1067 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 1068 1069 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1070 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1071 } else { 1072 /* write size / packets */ 1073 dwc2_writel(epsize, hsotg->regs + epsize_reg); 1074 1075 if (using_dma(hsotg) && !continuing && (length != 0)) { 1076 /* 1077 * write DMA address to control register, buffer 1078 * already synced by dwc2_hsotg_ep_queue(). 1079 */ 1080 1081 dwc2_writel(ureq->dma, hsotg->regs + dma_reg); 1082 1083 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1084 __func__, &ureq->dma, dma_reg); 1085 } 1086 } 1087 1088 if (hs_ep->isochronous && hs_ep->interval == 1) { 1089 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1090 dwc2_gadget_incr_frame_num(hs_ep); 1091 1092 if (hs_ep->target_frame & 0x1) 1093 ctrl |= DXEPCTL_SETODDFR; 1094 else 1095 ctrl |= DXEPCTL_SETEVENFR; 1096 } 1097 1098 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1099 1100 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1101 1102 /* For Setup request do not clear NAK */ 1103 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1104 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1105 1106 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1107 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 1108 1109 /* 1110 * set these, it seems that DMA support increments past the end 1111 * of the packet buffer so we need to calculate the length from 1112 * this information. 1113 */ 1114 hs_ep->size_loaded = length; 1115 hs_ep->last_load = ureq->actual; 1116 1117 if (dir_in && !using_dma(hsotg)) { 1118 /* set these anyway, we may need them for non-periodic in */ 1119 hs_ep->fifo_load = 0; 1120 1121 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1122 } 1123 1124 /* 1125 * Note, trying to clear the NAK here causes problems with transmit 1126 * on the S3C6400 ending up with the TXFIFO becoming full. 1127 */ 1128 1129 /* check ep is enabled */ 1130 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 1131 dev_dbg(hsotg->dev, 1132 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1133 index, dwc2_readl(hsotg->regs + epctrl_reg)); 1134 1135 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1136 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 1137 1138 /* enable ep interrupts */ 1139 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1140 } 1141 1142 /** 1143 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1144 * @hsotg: The device state. 1145 * @hs_ep: The endpoint the request is on. 1146 * @req: The request being processed. 1147 * 1148 * We've been asked to queue a request, so ensure that the memory buffer 1149 * is correctly setup for DMA. If we've been passed an extant DMA address 1150 * then ensure the buffer has been synced to memory. If our buffer has no 1151 * DMA memory, then we map the memory and mark our request to allow us to 1152 * cleanup on completion. 1153 */ 1154 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1155 struct dwc2_hsotg_ep *hs_ep, 1156 struct usb_request *req) 1157 { 1158 int ret; 1159 1160 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1161 if (ret) 1162 goto dma_error; 1163 1164 return 0; 1165 1166 dma_error: 1167 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1168 __func__, req->buf, req->length); 1169 1170 return -EIO; 1171 } 1172 1173 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1174 struct dwc2_hsotg_ep *hs_ep, 1175 struct dwc2_hsotg_req *hs_req) 1176 { 1177 void *req_buf = hs_req->req.buf; 1178 1179 /* If dma is not being used or buffer is aligned */ 1180 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1181 return 0; 1182 1183 WARN_ON(hs_req->saved_req_buf); 1184 1185 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1186 hs_ep->ep.name, req_buf, hs_req->req.length); 1187 1188 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1189 if (!hs_req->req.buf) { 1190 hs_req->req.buf = req_buf; 1191 dev_err(hsotg->dev, 1192 "%s: unable to allocate memory for bounce buffer\n", 1193 __func__); 1194 return -ENOMEM; 1195 } 1196 1197 /* Save actual buffer */ 1198 hs_req->saved_req_buf = req_buf; 1199 1200 if (hs_ep->dir_in) 1201 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1202 return 0; 1203 } 1204 1205 static void 1206 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1207 struct dwc2_hsotg_ep *hs_ep, 1208 struct dwc2_hsotg_req *hs_req) 1209 { 1210 /* If dma is not being used or buffer was aligned */ 1211 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1212 return; 1213 1214 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1215 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1216 1217 /* Copy data from bounce buffer on successful out transfer */ 1218 if (!hs_ep->dir_in && !hs_req->req.status) 1219 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1220 hs_req->req.actual); 1221 1222 /* Free bounce buffer */ 1223 kfree(hs_req->req.buf); 1224 1225 hs_req->req.buf = hs_req->saved_req_buf; 1226 hs_req->saved_req_buf = NULL; 1227 } 1228 1229 /** 1230 * dwc2_gadget_target_frame_elapsed - Checks target frame 1231 * @hs_ep: The driver endpoint to check 1232 * 1233 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1234 * corresponding transfer. 1235 */ 1236 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1237 { 1238 struct dwc2_hsotg *hsotg = hs_ep->parent; 1239 u32 target_frame = hs_ep->target_frame; 1240 u32 current_frame = hsotg->frame_number; 1241 bool frame_overrun = hs_ep->frame_overrun; 1242 1243 if (!frame_overrun && current_frame >= target_frame) 1244 return true; 1245 1246 if (frame_overrun && current_frame >= target_frame && 1247 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1248 return true; 1249 1250 return false; 1251 } 1252 1253 /* 1254 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1255 * @hsotg: The driver state 1256 * @hs_ep: the ep descriptor chain is for 1257 * 1258 * Called to update EP0 structure's pointers depend on stage of 1259 * control transfer. 1260 */ 1261 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1262 struct dwc2_hsotg_ep *hs_ep) 1263 { 1264 switch (hsotg->ep0_state) { 1265 case DWC2_EP0_SETUP: 1266 case DWC2_EP0_STATUS_OUT: 1267 hs_ep->desc_list = hsotg->setup_desc[0]; 1268 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1269 break; 1270 case DWC2_EP0_DATA_IN: 1271 case DWC2_EP0_STATUS_IN: 1272 hs_ep->desc_list = hsotg->ctrl_in_desc; 1273 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1274 break; 1275 case DWC2_EP0_DATA_OUT: 1276 hs_ep->desc_list = hsotg->ctrl_out_desc; 1277 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1278 break; 1279 default: 1280 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1281 hsotg->ep0_state); 1282 return -EINVAL; 1283 } 1284 1285 return 0; 1286 } 1287 1288 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1289 gfp_t gfp_flags) 1290 { 1291 struct dwc2_hsotg_req *hs_req = our_req(req); 1292 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1293 struct dwc2_hsotg *hs = hs_ep->parent; 1294 bool first; 1295 int ret; 1296 u32 maxsize = 0; 1297 u32 mask = 0; 1298 1299 1300 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1301 ep->name, req, req->length, req->buf, req->no_interrupt, 1302 req->zero, req->short_not_ok); 1303 1304 /* Prevent new request submission when controller is suspended */ 1305 if (hs->lx_state != DWC2_L0) { 1306 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1307 __func__); 1308 return -EAGAIN; 1309 } 1310 1311 /* initialise status of the request */ 1312 INIT_LIST_HEAD(&hs_req->queue); 1313 req->actual = 0; 1314 req->status = -EINPROGRESS; 1315 1316 /* In DDMA mode for ISOC's don't queue request if length greater 1317 * than descriptor limits. 1318 */ 1319 if (using_desc_dma(hs) && hs_ep->isochronous) { 1320 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1321 if (hs_ep->dir_in && req->length > maxsize) { 1322 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1323 req->length, maxsize); 1324 return -EINVAL; 1325 } 1326 1327 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1328 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1329 req->length, hs_ep->ep.maxpacket); 1330 return -EINVAL; 1331 } 1332 } 1333 1334 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1335 if (ret) 1336 return ret; 1337 1338 /* if we're using DMA, sync the buffers as necessary */ 1339 if (using_dma(hs)) { 1340 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1341 if (ret) 1342 return ret; 1343 } 1344 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1345 if (using_desc_dma(hs) && !hs_ep->index) { 1346 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1347 if (ret) 1348 return ret; 1349 } 1350 1351 first = list_empty(&hs_ep->queue); 1352 list_add_tail(&hs_req->queue, &hs_ep->queue); 1353 1354 /* 1355 * Handle DDMA isochronous transfers separately - just add new entry 1356 * to the descriptor chain. 1357 * Transfer will be started once SW gets either one of NAK or 1358 * OutTknEpDis interrupts. 1359 */ 1360 if (using_desc_dma(hs) && hs_ep->isochronous) { 1361 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1362 dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 1363 hs_req->req.length); 1364 } 1365 return 0; 1366 } 1367 1368 if (first) { 1369 if (!hs_ep->isochronous) { 1370 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1371 return 0; 1372 } 1373 1374 /* Update current frame number value. */ 1375 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1376 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1377 dwc2_gadget_incr_frame_num(hs_ep); 1378 /* Update current frame number value once more as it 1379 * changes here. 1380 */ 1381 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1382 } 1383 1384 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1385 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1386 } 1387 return 0; 1388 } 1389 1390 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1391 gfp_t gfp_flags) 1392 { 1393 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1394 struct dwc2_hsotg *hs = hs_ep->parent; 1395 unsigned long flags = 0; 1396 int ret = 0; 1397 1398 spin_lock_irqsave(&hs->lock, flags); 1399 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1400 spin_unlock_irqrestore(&hs->lock, flags); 1401 1402 return ret; 1403 } 1404 1405 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1406 struct usb_request *req) 1407 { 1408 struct dwc2_hsotg_req *hs_req = our_req(req); 1409 1410 kfree(hs_req); 1411 } 1412 1413 /** 1414 * dwc2_hsotg_complete_oursetup - setup completion callback 1415 * @ep: The endpoint the request was on. 1416 * @req: The request completed. 1417 * 1418 * Called on completion of any requests the driver itself 1419 * submitted that need cleaning up. 1420 */ 1421 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1422 struct usb_request *req) 1423 { 1424 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1425 struct dwc2_hsotg *hsotg = hs_ep->parent; 1426 1427 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1428 1429 dwc2_hsotg_ep_free_request(ep, req); 1430 } 1431 1432 /** 1433 * ep_from_windex - convert control wIndex value to endpoint 1434 * @hsotg: The driver state. 1435 * @windex: The control request wIndex field (in host order). 1436 * 1437 * Convert the given wIndex into a pointer to an driver endpoint 1438 * structure, or return NULL if it is not a valid endpoint. 1439 */ 1440 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1441 u32 windex) 1442 { 1443 struct dwc2_hsotg_ep *ep; 1444 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1445 int idx = windex & 0x7F; 1446 1447 if (windex >= 0x100) 1448 return NULL; 1449 1450 if (idx > hsotg->num_of_eps) 1451 return NULL; 1452 1453 ep = index_to_ep(hsotg, idx, dir); 1454 1455 if (idx && ep->dir_in != dir) 1456 return NULL; 1457 1458 return ep; 1459 } 1460 1461 /** 1462 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1463 * @hsotg: The driver state. 1464 * @testmode: requested usb test mode 1465 * Enable usb Test Mode requested by the Host. 1466 */ 1467 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1468 { 1469 int dctl = dwc2_readl(hsotg->regs + DCTL); 1470 1471 dctl &= ~DCTL_TSTCTL_MASK; 1472 switch (testmode) { 1473 case TEST_J: 1474 case TEST_K: 1475 case TEST_SE0_NAK: 1476 case TEST_PACKET: 1477 case TEST_FORCE_EN: 1478 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1479 break; 1480 default: 1481 return -EINVAL; 1482 } 1483 dwc2_writel(dctl, hsotg->regs + DCTL); 1484 return 0; 1485 } 1486 1487 /** 1488 * dwc2_hsotg_send_reply - send reply to control request 1489 * @hsotg: The device state 1490 * @ep: Endpoint 0 1491 * @buff: Buffer for request 1492 * @length: Length of reply. 1493 * 1494 * Create a request and queue it on the given endpoint. This is useful as 1495 * an internal method of sending replies to certain control requests, etc. 1496 */ 1497 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1498 struct dwc2_hsotg_ep *ep, 1499 void *buff, 1500 int length) 1501 { 1502 struct usb_request *req; 1503 int ret; 1504 1505 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1506 1507 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1508 hsotg->ep0_reply = req; 1509 if (!req) { 1510 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1511 return -ENOMEM; 1512 } 1513 1514 req->buf = hsotg->ep0_buff; 1515 req->length = length; 1516 /* 1517 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1518 * STATUS stage. 1519 */ 1520 req->zero = 0; 1521 req->complete = dwc2_hsotg_complete_oursetup; 1522 1523 if (length) 1524 memcpy(req->buf, buff, length); 1525 1526 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1527 if (ret) { 1528 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1529 return ret; 1530 } 1531 1532 return 0; 1533 } 1534 1535 /** 1536 * dwc2_hsotg_process_req_status - process request GET_STATUS 1537 * @hsotg: The device state 1538 * @ctrl: USB control request 1539 */ 1540 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1541 struct usb_ctrlrequest *ctrl) 1542 { 1543 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1544 struct dwc2_hsotg_ep *ep; 1545 __le16 reply; 1546 int ret; 1547 1548 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1549 1550 if (!ep0->dir_in) { 1551 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1552 return -EINVAL; 1553 } 1554 1555 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1556 case USB_RECIP_DEVICE: 1557 /* 1558 * bit 0 => self powered 1559 * bit 1 => remote wakeup 1560 */ 1561 reply = cpu_to_le16(0); 1562 break; 1563 1564 case USB_RECIP_INTERFACE: 1565 /* currently, the data result should be zero */ 1566 reply = cpu_to_le16(0); 1567 break; 1568 1569 case USB_RECIP_ENDPOINT: 1570 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1571 if (!ep) 1572 return -ENOENT; 1573 1574 reply = cpu_to_le16(ep->halted ? 1 : 0); 1575 break; 1576 1577 default: 1578 return 0; 1579 } 1580 1581 if (le16_to_cpu(ctrl->wLength) != 2) 1582 return -EINVAL; 1583 1584 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1585 if (ret) { 1586 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1587 return ret; 1588 } 1589 1590 return 1; 1591 } 1592 1593 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1594 1595 /** 1596 * get_ep_head - return the first request on the endpoint 1597 * @hs_ep: The controller endpoint to get 1598 * 1599 * Get the first request on the endpoint. 1600 */ 1601 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1602 { 1603 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1604 queue); 1605 } 1606 1607 /** 1608 * dwc2_gadget_start_next_request - Starts next request from ep queue 1609 * @hs_ep: Endpoint structure 1610 * 1611 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1612 * in its handler. Hence we need to unmask it here to be able to do 1613 * resynchronization. 1614 */ 1615 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1616 { 1617 u32 mask; 1618 struct dwc2_hsotg *hsotg = hs_ep->parent; 1619 int dir_in = hs_ep->dir_in; 1620 struct dwc2_hsotg_req *hs_req; 1621 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1622 1623 if (!list_empty(&hs_ep->queue)) { 1624 hs_req = get_ep_head(hs_ep); 1625 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1626 return; 1627 } 1628 if (!hs_ep->isochronous) 1629 return; 1630 1631 if (dir_in) { 1632 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1633 __func__); 1634 } else { 1635 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1636 __func__); 1637 mask = dwc2_readl(hsotg->regs + epmsk_reg); 1638 mask |= DOEPMSK_OUTTKNEPDISMSK; 1639 dwc2_writel(mask, hsotg->regs + epmsk_reg); 1640 } 1641 } 1642 1643 /** 1644 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1645 * @hsotg: The device state 1646 * @ctrl: USB control request 1647 */ 1648 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1649 struct usb_ctrlrequest *ctrl) 1650 { 1651 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1652 struct dwc2_hsotg_req *hs_req; 1653 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1654 struct dwc2_hsotg_ep *ep; 1655 int ret; 1656 bool halted; 1657 u32 recip; 1658 u32 wValue; 1659 u32 wIndex; 1660 1661 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1662 __func__, set ? "SET" : "CLEAR"); 1663 1664 wValue = le16_to_cpu(ctrl->wValue); 1665 wIndex = le16_to_cpu(ctrl->wIndex); 1666 recip = ctrl->bRequestType & USB_RECIP_MASK; 1667 1668 switch (recip) { 1669 case USB_RECIP_DEVICE: 1670 switch (wValue) { 1671 case USB_DEVICE_REMOTE_WAKEUP: 1672 hsotg->remote_wakeup_allowed = 1; 1673 break; 1674 1675 case USB_DEVICE_TEST_MODE: 1676 if ((wIndex & 0xff) != 0) 1677 return -EINVAL; 1678 if (!set) 1679 return -EINVAL; 1680 1681 hsotg->test_mode = wIndex >> 8; 1682 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1683 if (ret) { 1684 dev_err(hsotg->dev, 1685 "%s: failed to send reply\n", __func__); 1686 return ret; 1687 } 1688 break; 1689 default: 1690 return -ENOENT; 1691 } 1692 break; 1693 1694 case USB_RECIP_ENDPOINT: 1695 ep = ep_from_windex(hsotg, wIndex); 1696 if (!ep) { 1697 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1698 __func__, wIndex); 1699 return -ENOENT; 1700 } 1701 1702 switch (wValue) { 1703 case USB_ENDPOINT_HALT: 1704 halted = ep->halted; 1705 1706 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1707 1708 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1709 if (ret) { 1710 dev_err(hsotg->dev, 1711 "%s: failed to send reply\n", __func__); 1712 return ret; 1713 } 1714 1715 /* 1716 * we have to complete all requests for ep if it was 1717 * halted, and the halt was cleared by CLEAR_FEATURE 1718 */ 1719 1720 if (!set && halted) { 1721 /* 1722 * If we have request in progress, 1723 * then complete it 1724 */ 1725 if (ep->req) { 1726 hs_req = ep->req; 1727 ep->req = NULL; 1728 list_del_init(&hs_req->queue); 1729 if (hs_req->req.complete) { 1730 spin_unlock(&hsotg->lock); 1731 usb_gadget_giveback_request( 1732 &ep->ep, &hs_req->req); 1733 spin_lock(&hsotg->lock); 1734 } 1735 } 1736 1737 /* If we have pending request, then start it */ 1738 if (!ep->req) 1739 dwc2_gadget_start_next_request(ep); 1740 } 1741 1742 break; 1743 1744 default: 1745 return -ENOENT; 1746 } 1747 break; 1748 default: 1749 return -ENOENT; 1750 } 1751 return 1; 1752 } 1753 1754 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1755 1756 /** 1757 * dwc2_hsotg_stall_ep0 - stall ep0 1758 * @hsotg: The device state 1759 * 1760 * Set stall for ep0 as response for setup request. 1761 */ 1762 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1763 { 1764 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1765 u32 reg; 1766 u32 ctrl; 1767 1768 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1769 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1770 1771 /* 1772 * DxEPCTL_Stall will be cleared by EP once it has 1773 * taken effect, so no need to clear later. 1774 */ 1775 1776 ctrl = dwc2_readl(hsotg->regs + reg); 1777 ctrl |= DXEPCTL_STALL; 1778 ctrl |= DXEPCTL_CNAK; 1779 dwc2_writel(ctrl, hsotg->regs + reg); 1780 1781 dev_dbg(hsotg->dev, 1782 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1783 ctrl, reg, dwc2_readl(hsotg->regs + reg)); 1784 1785 /* 1786 * complete won't be called, so we enqueue 1787 * setup request here 1788 */ 1789 dwc2_hsotg_enqueue_setup(hsotg); 1790 } 1791 1792 /** 1793 * dwc2_hsotg_process_control - process a control request 1794 * @hsotg: The device state 1795 * @ctrl: The control request received 1796 * 1797 * The controller has received the SETUP phase of a control request, and 1798 * needs to work out what to do next (and whether to pass it on to the 1799 * gadget driver). 1800 */ 1801 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1802 struct usb_ctrlrequest *ctrl) 1803 { 1804 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1805 int ret = 0; 1806 u32 dcfg; 1807 1808 dev_dbg(hsotg->dev, 1809 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1810 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1811 ctrl->wIndex, ctrl->wLength); 1812 1813 if (ctrl->wLength == 0) { 1814 ep0->dir_in = 1; 1815 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1816 } else if (ctrl->bRequestType & USB_DIR_IN) { 1817 ep0->dir_in = 1; 1818 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1819 } else { 1820 ep0->dir_in = 0; 1821 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1822 } 1823 1824 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1825 switch (ctrl->bRequest) { 1826 case USB_REQ_SET_ADDRESS: 1827 hsotg->connected = 1; 1828 dcfg = dwc2_readl(hsotg->regs + DCFG); 1829 dcfg &= ~DCFG_DEVADDR_MASK; 1830 dcfg |= (le16_to_cpu(ctrl->wValue) << 1831 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1832 dwc2_writel(dcfg, hsotg->regs + DCFG); 1833 1834 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1835 1836 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1837 return; 1838 1839 case USB_REQ_GET_STATUS: 1840 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1841 break; 1842 1843 case USB_REQ_CLEAR_FEATURE: 1844 case USB_REQ_SET_FEATURE: 1845 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1846 break; 1847 } 1848 } 1849 1850 /* as a fallback, try delivering it to the driver to deal with */ 1851 1852 if (ret == 0 && hsotg->driver) { 1853 spin_unlock(&hsotg->lock); 1854 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1855 spin_lock(&hsotg->lock); 1856 if (ret < 0) 1857 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1858 } 1859 1860 /* 1861 * the request is either unhandlable, or is not formatted correctly 1862 * so respond with a STALL for the status stage to indicate failure. 1863 */ 1864 1865 if (ret < 0) 1866 dwc2_hsotg_stall_ep0(hsotg); 1867 } 1868 1869 /** 1870 * dwc2_hsotg_complete_setup - completion of a setup transfer 1871 * @ep: The endpoint the request was on. 1872 * @req: The request completed. 1873 * 1874 * Called on completion of any requests the driver itself submitted for 1875 * EP0 setup packets 1876 */ 1877 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1878 struct usb_request *req) 1879 { 1880 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1881 struct dwc2_hsotg *hsotg = hs_ep->parent; 1882 1883 if (req->status < 0) { 1884 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1885 return; 1886 } 1887 1888 spin_lock(&hsotg->lock); 1889 if (req->actual == 0) 1890 dwc2_hsotg_enqueue_setup(hsotg); 1891 else 1892 dwc2_hsotg_process_control(hsotg, req->buf); 1893 spin_unlock(&hsotg->lock); 1894 } 1895 1896 /** 1897 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1898 * @hsotg: The device state. 1899 * 1900 * Enqueue a request on EP0 if necessary to received any SETUP packets 1901 * received from the host. 1902 */ 1903 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1904 { 1905 struct usb_request *req = hsotg->ctrl_req; 1906 struct dwc2_hsotg_req *hs_req = our_req(req); 1907 int ret; 1908 1909 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1910 1911 req->zero = 0; 1912 req->length = 8; 1913 req->buf = hsotg->ctrl_buff; 1914 req->complete = dwc2_hsotg_complete_setup; 1915 1916 if (!list_empty(&hs_req->queue)) { 1917 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1918 return; 1919 } 1920 1921 hsotg->eps_out[0]->dir_in = 0; 1922 hsotg->eps_out[0]->send_zlp = 0; 1923 hsotg->ep0_state = DWC2_EP0_SETUP; 1924 1925 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 1926 if (ret < 0) { 1927 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1928 /* 1929 * Don't think there's much we can do other than watch the 1930 * driver fail. 1931 */ 1932 } 1933 } 1934 1935 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 1936 struct dwc2_hsotg_ep *hs_ep) 1937 { 1938 u32 ctrl; 1939 u8 index = hs_ep->index; 1940 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1941 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1942 1943 if (hs_ep->dir_in) 1944 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 1945 index); 1946 else 1947 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 1948 index); 1949 if (using_desc_dma(hsotg)) { 1950 /* Not specific buffer needed for ep0 ZLP */ 1951 dma_addr_t dma = hs_ep->desc_list_dma; 1952 1953 if (!index) 1954 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 1955 1956 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 1957 } else { 1958 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1959 DXEPTSIZ_XFERSIZE(0), hsotg->regs + 1960 epsiz_reg); 1961 } 1962 1963 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 1964 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1965 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1966 ctrl |= DXEPCTL_USBACTEP; 1967 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 1968 } 1969 1970 /** 1971 * dwc2_hsotg_complete_request - complete a request given to us 1972 * @hsotg: The device state. 1973 * @hs_ep: The endpoint the request was on. 1974 * @hs_req: The request to complete. 1975 * @result: The result code (0 => Ok, otherwise errno) 1976 * 1977 * The given request has finished, so call the necessary completion 1978 * if it has one and then look to see if we can start a new request 1979 * on the endpoint. 1980 * 1981 * Note, expects the ep to already be locked as appropriate. 1982 */ 1983 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1984 struct dwc2_hsotg_ep *hs_ep, 1985 struct dwc2_hsotg_req *hs_req, 1986 int result) 1987 { 1988 if (!hs_req) { 1989 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1990 return; 1991 } 1992 1993 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1994 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1995 1996 /* 1997 * only replace the status if we've not already set an error 1998 * from a previous transaction 1999 */ 2000 2001 if (hs_req->req.status == -EINPROGRESS) 2002 hs_req->req.status = result; 2003 2004 if (using_dma(hsotg)) 2005 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2006 2007 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2008 2009 hs_ep->req = NULL; 2010 list_del_init(&hs_req->queue); 2011 2012 /* 2013 * call the complete request with the locks off, just in case the 2014 * request tries to queue more work for this endpoint. 2015 */ 2016 2017 if (hs_req->req.complete) { 2018 spin_unlock(&hsotg->lock); 2019 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2020 spin_lock(&hsotg->lock); 2021 } 2022 2023 /* In DDMA don't need to proceed to starting of next ISOC request */ 2024 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2025 return; 2026 2027 /* 2028 * Look to see if there is anything else to do. Note, the completion 2029 * of the previous request may have caused a new request to be started 2030 * so be careful when doing this. 2031 */ 2032 2033 if (!hs_ep->req && result >= 0) 2034 dwc2_gadget_start_next_request(hs_ep); 2035 } 2036 2037 /* 2038 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2039 * @hs_ep: The endpoint the request was on. 2040 * 2041 * Get first request from the ep queue, determine descriptor on which complete 2042 * happened. SW discovers which descriptor currently in use by HW, adjusts 2043 * dma_address and calculates index of completed descriptor based on the value 2044 * of DEPDMA register. Update actual length of request, giveback to gadget. 2045 */ 2046 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2047 { 2048 struct dwc2_hsotg *hsotg = hs_ep->parent; 2049 struct dwc2_hsotg_req *hs_req; 2050 struct usb_request *ureq; 2051 u32 desc_sts; 2052 u32 mask; 2053 2054 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2055 2056 /* Process only descriptors with buffer status set to DMA done */ 2057 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2058 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2059 2060 hs_req = get_ep_head(hs_ep); 2061 if (!hs_req) { 2062 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2063 return; 2064 } 2065 ureq = &hs_req->req; 2066 2067 /* Check completion status */ 2068 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2069 DEV_DMA_STS_SUCC) { 2070 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2071 DEV_DMA_ISOC_RX_NBYTES_MASK; 2072 ureq->actual = ureq->length - ((desc_sts & mask) >> 2073 DEV_DMA_ISOC_NBYTES_SHIFT); 2074 2075 /* Adjust actual len for ISOC Out if len is 2076 * not align of 4 2077 */ 2078 if (!hs_ep->dir_in && ureq->length & 0x3) 2079 ureq->actual += 4 - (ureq->length & 0x3); 2080 } 2081 2082 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2083 2084 hs_ep->compl_desc++; 2085 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1)) 2086 hs_ep->compl_desc = 0; 2087 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2088 } 2089 } 2090 2091 /* 2092 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2093 * @hs_ep: The isochronous endpoint. 2094 * 2095 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2096 * interrupt. Reset target frame and next_desc to allow to start 2097 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2098 * interrupt for OUT direction. 2099 */ 2100 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2101 { 2102 struct dwc2_hsotg *hsotg = hs_ep->parent; 2103 2104 if (!hs_ep->dir_in) 2105 dwc2_flush_rx_fifo(hsotg); 2106 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2107 2108 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2109 hs_ep->next_desc = 0; 2110 hs_ep->compl_desc = 0; 2111 } 2112 2113 /** 2114 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2115 * @hsotg: The device state. 2116 * @ep_idx: The endpoint index for the data 2117 * @size: The size of data in the fifo, in bytes 2118 * 2119 * The FIFO status shows there is data to read from the FIFO for a given 2120 * endpoint, so sort out whether we need to read the data into a request 2121 * that has been made for that endpoint. 2122 */ 2123 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2124 { 2125 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2126 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2127 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 2128 int to_read; 2129 int max_req; 2130 int read_ptr; 2131 2132 if (!hs_req) { 2133 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx)); 2134 int ptr; 2135 2136 dev_dbg(hsotg->dev, 2137 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2138 __func__, size, ep_idx, epctl); 2139 2140 /* dump the data from the FIFO, we've nothing we can do */ 2141 for (ptr = 0; ptr < size; ptr += 4) 2142 (void)dwc2_readl(fifo); 2143 2144 return; 2145 } 2146 2147 to_read = size; 2148 read_ptr = hs_req->req.actual; 2149 max_req = hs_req->req.length - read_ptr; 2150 2151 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2152 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2153 2154 if (to_read > max_req) { 2155 /* 2156 * more data appeared than we where willing 2157 * to deal with in this request. 2158 */ 2159 2160 /* currently we don't deal this */ 2161 WARN_ON_ONCE(1); 2162 } 2163 2164 hs_ep->total_data += to_read; 2165 hs_req->req.actual += to_read; 2166 to_read = DIV_ROUND_UP(to_read, 4); 2167 2168 /* 2169 * note, we might over-write the buffer end by 3 bytes depending on 2170 * alignment of the data. 2171 */ 2172 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 2173 } 2174 2175 /** 2176 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2177 * @hsotg: The device instance 2178 * @dir_in: If IN zlp 2179 * 2180 * Generate a zero-length IN packet request for terminating a SETUP 2181 * transaction. 2182 * 2183 * Note, since we don't write any data to the TxFIFO, then it is 2184 * currently believed that we do not need to wait for any space in 2185 * the TxFIFO. 2186 */ 2187 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2188 { 2189 /* eps_out[0] is used in both directions */ 2190 hsotg->eps_out[0]->dir_in = dir_in; 2191 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2192 2193 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2194 } 2195 2196 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2197 u32 epctl_reg) 2198 { 2199 u32 ctrl; 2200 2201 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2202 if (ctrl & DXEPCTL_EOFRNUM) 2203 ctrl |= DXEPCTL_SETEVENFR; 2204 else 2205 ctrl |= DXEPCTL_SETODDFR; 2206 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 2207 } 2208 2209 /* 2210 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2211 * @hs_ep - The endpoint on which transfer went 2212 * 2213 * Iterate over endpoints descriptor chain and get info on bytes remained 2214 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2215 */ 2216 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2217 { 2218 struct dwc2_hsotg *hsotg = hs_ep->parent; 2219 unsigned int bytes_rem = 0; 2220 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2221 int i; 2222 u32 status; 2223 2224 if (!desc) 2225 return -EINVAL; 2226 2227 for (i = 0; i < hs_ep->desc_count; ++i) { 2228 status = desc->status; 2229 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2230 2231 if (status & DEV_DMA_STS_MASK) 2232 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2233 i, status & DEV_DMA_STS_MASK); 2234 } 2235 2236 return bytes_rem; 2237 } 2238 2239 /** 2240 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2241 * @hsotg: The device instance 2242 * @epnum: The endpoint received from 2243 * 2244 * The RXFIFO has delivered an OutDone event, which means that the data 2245 * transfer for an OUT endpoint has been completed, either by a short 2246 * packet or by the finish of a transfer. 2247 */ 2248 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2249 { 2250 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum)); 2251 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2252 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2253 struct usb_request *req = &hs_req->req; 2254 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2255 int result = 0; 2256 2257 if (!hs_req) { 2258 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2259 return; 2260 } 2261 2262 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2263 dev_dbg(hsotg->dev, "zlp packet received\n"); 2264 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2265 dwc2_hsotg_enqueue_setup(hsotg); 2266 return; 2267 } 2268 2269 if (using_desc_dma(hsotg)) 2270 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2271 2272 if (using_dma(hsotg)) { 2273 unsigned int size_done; 2274 2275 /* 2276 * Calculate the size of the transfer by checking how much 2277 * is left in the endpoint size register and then working it 2278 * out from the amount we loaded for the transfer. 2279 * 2280 * We need to do this as DMA pointers are always 32bit aligned 2281 * so may overshoot/undershoot the transfer. 2282 */ 2283 2284 size_done = hs_ep->size_loaded - size_left; 2285 size_done += hs_ep->last_load; 2286 2287 req->actual = size_done; 2288 } 2289 2290 /* if there is more request to do, schedule new transfer */ 2291 if (req->actual < req->length && size_left == 0) { 2292 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2293 return; 2294 } 2295 2296 if (req->actual < req->length && req->short_not_ok) { 2297 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2298 __func__, req->actual, req->length); 2299 2300 /* 2301 * todo - what should we return here? there's no one else 2302 * even bothering to check the status. 2303 */ 2304 } 2305 2306 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2307 if (!using_desc_dma(hsotg) && epnum == 0 && 2308 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2309 /* Move to STATUS IN */ 2310 dwc2_hsotg_ep0_zlp(hsotg, true); 2311 return; 2312 } 2313 2314 /* 2315 * Slave mode OUT transfers do not go through XferComplete so 2316 * adjust the ISOC parity here. 2317 */ 2318 if (!using_dma(hsotg)) { 2319 if (hs_ep->isochronous && hs_ep->interval == 1) 2320 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2321 else if (hs_ep->isochronous && hs_ep->interval > 1) 2322 dwc2_gadget_incr_frame_num(hs_ep); 2323 } 2324 2325 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2326 } 2327 2328 /** 2329 * dwc2_hsotg_handle_rx - RX FIFO has data 2330 * @hsotg: The device instance 2331 * 2332 * The IRQ handler has detected that the RX FIFO has some data in it 2333 * that requires processing, so find out what is in there and do the 2334 * appropriate read. 2335 * 2336 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2337 * chunks, so if you have x packets received on an endpoint you'll get x 2338 * FIFO events delivered, each with a packet's worth of data in it. 2339 * 2340 * When using DMA, we should not be processing events from the RXFIFO 2341 * as the actual data should be sent to the memory directly and we turn 2342 * on the completion interrupts to get notifications of transfer completion. 2343 */ 2344 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2345 { 2346 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP); 2347 u32 epnum, status, size; 2348 2349 WARN_ON(using_dma(hsotg)); 2350 2351 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2352 status = grxstsr & GRXSTS_PKTSTS_MASK; 2353 2354 size = grxstsr & GRXSTS_BYTECNT_MASK; 2355 size >>= GRXSTS_BYTECNT_SHIFT; 2356 2357 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2358 __func__, grxstsr, size, epnum); 2359 2360 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2361 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2362 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2363 break; 2364 2365 case GRXSTS_PKTSTS_OUTDONE: 2366 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2367 dwc2_hsotg_read_frameno(hsotg)); 2368 2369 if (!using_dma(hsotg)) 2370 dwc2_hsotg_handle_outdone(hsotg, epnum); 2371 break; 2372 2373 case GRXSTS_PKTSTS_SETUPDONE: 2374 dev_dbg(hsotg->dev, 2375 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2376 dwc2_hsotg_read_frameno(hsotg), 2377 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2378 /* 2379 * Call dwc2_hsotg_handle_outdone here if it was not called from 2380 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2381 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2382 */ 2383 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2384 dwc2_hsotg_handle_outdone(hsotg, epnum); 2385 break; 2386 2387 case GRXSTS_PKTSTS_OUTRX: 2388 dwc2_hsotg_rx_data(hsotg, epnum, size); 2389 break; 2390 2391 case GRXSTS_PKTSTS_SETUPRX: 2392 dev_dbg(hsotg->dev, 2393 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2394 dwc2_hsotg_read_frameno(hsotg), 2395 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2396 2397 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2398 2399 dwc2_hsotg_rx_data(hsotg, epnum, size); 2400 break; 2401 2402 default: 2403 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2404 __func__, grxstsr); 2405 2406 dwc2_hsotg_dump(hsotg); 2407 break; 2408 } 2409 } 2410 2411 /** 2412 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2413 * @mps: The maximum packet size in bytes. 2414 */ 2415 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2416 { 2417 switch (mps) { 2418 case 64: 2419 return D0EPCTL_MPS_64; 2420 case 32: 2421 return D0EPCTL_MPS_32; 2422 case 16: 2423 return D0EPCTL_MPS_16; 2424 case 8: 2425 return D0EPCTL_MPS_8; 2426 } 2427 2428 /* bad max packet size, warn and return invalid result */ 2429 WARN_ON(1); 2430 return (u32)-1; 2431 } 2432 2433 /** 2434 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2435 * @hsotg: The driver state. 2436 * @ep: The index number of the endpoint 2437 * @mps: The maximum packet size in bytes 2438 * @mc: The multicount value 2439 * @dir_in: True if direction is in. 2440 * 2441 * Configure the maximum packet size for the given endpoint, updating 2442 * the hardware control registers to reflect this. 2443 */ 2444 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2445 unsigned int ep, unsigned int mps, 2446 unsigned int mc, unsigned int dir_in) 2447 { 2448 struct dwc2_hsotg_ep *hs_ep; 2449 void __iomem *regs = hsotg->regs; 2450 u32 reg; 2451 2452 hs_ep = index_to_ep(hsotg, ep, dir_in); 2453 if (!hs_ep) 2454 return; 2455 2456 if (ep == 0) { 2457 u32 mps_bytes = mps; 2458 2459 /* EP0 is a special case */ 2460 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2461 if (mps > 3) 2462 goto bad_mps; 2463 hs_ep->ep.maxpacket = mps_bytes; 2464 hs_ep->mc = 1; 2465 } else { 2466 if (mps > 1024) 2467 goto bad_mps; 2468 hs_ep->mc = mc; 2469 if (mc > 3) 2470 goto bad_mps; 2471 hs_ep->ep.maxpacket = mps; 2472 } 2473 2474 if (dir_in) { 2475 reg = dwc2_readl(regs + DIEPCTL(ep)); 2476 reg &= ~DXEPCTL_MPS_MASK; 2477 reg |= mps; 2478 dwc2_writel(reg, regs + DIEPCTL(ep)); 2479 } else { 2480 reg = dwc2_readl(regs + DOEPCTL(ep)); 2481 reg &= ~DXEPCTL_MPS_MASK; 2482 reg |= mps; 2483 dwc2_writel(reg, regs + DOEPCTL(ep)); 2484 } 2485 2486 return; 2487 2488 bad_mps: 2489 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2490 } 2491 2492 /** 2493 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2494 * @hsotg: The driver state 2495 * @idx: The index for the endpoint (0..15) 2496 */ 2497 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2498 { 2499 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2500 hsotg->regs + GRSTCTL); 2501 2502 /* wait until the fifo is flushed */ 2503 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2504 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2505 __func__); 2506 } 2507 2508 /** 2509 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2510 * @hsotg: The driver state 2511 * @hs_ep: The driver endpoint to check. 2512 * 2513 * Check to see if there is a request that has data to send, and if so 2514 * make an attempt to write data into the FIFO. 2515 */ 2516 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2517 struct dwc2_hsotg_ep *hs_ep) 2518 { 2519 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2520 2521 if (!hs_ep->dir_in || !hs_req) { 2522 /** 2523 * if request is not enqueued, we disable interrupts 2524 * for endpoints, excepting ep0 2525 */ 2526 if (hs_ep->index != 0) 2527 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2528 hs_ep->dir_in, 0); 2529 return 0; 2530 } 2531 2532 if (hs_req->req.actual < hs_req->req.length) { 2533 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2534 hs_ep->index); 2535 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2536 } 2537 2538 return 0; 2539 } 2540 2541 /** 2542 * dwc2_hsotg_complete_in - complete IN transfer 2543 * @hsotg: The device state. 2544 * @hs_ep: The endpoint that has just completed. 2545 * 2546 * An IN transfer has been completed, update the transfer's state and then 2547 * call the relevant completion routines. 2548 */ 2549 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2550 struct dwc2_hsotg_ep *hs_ep) 2551 { 2552 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2553 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 2554 int size_left, size_done; 2555 2556 if (!hs_req) { 2557 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2558 return; 2559 } 2560 2561 /* Finish ZLP handling for IN EP0 transactions */ 2562 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2563 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2564 2565 /* 2566 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2567 * changed to IN. Change back to complete OUT transfer request 2568 */ 2569 hs_ep->dir_in = 0; 2570 2571 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2572 if (hsotg->test_mode) { 2573 int ret; 2574 2575 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2576 if (ret < 0) { 2577 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2578 hsotg->test_mode); 2579 dwc2_hsotg_stall_ep0(hsotg); 2580 return; 2581 } 2582 } 2583 dwc2_hsotg_enqueue_setup(hsotg); 2584 return; 2585 } 2586 2587 /* 2588 * Calculate the size of the transfer by checking how much is left 2589 * in the endpoint size register and then working it out from 2590 * the amount we loaded for the transfer. 2591 * 2592 * We do this even for DMA, as the transfer may have incremented 2593 * past the end of the buffer (DMA transfers are always 32bit 2594 * aligned). 2595 */ 2596 if (using_desc_dma(hsotg)) { 2597 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2598 if (size_left < 0) 2599 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2600 size_left); 2601 } else { 2602 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2603 } 2604 2605 size_done = hs_ep->size_loaded - size_left; 2606 size_done += hs_ep->last_load; 2607 2608 if (hs_req->req.actual != size_done) 2609 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2610 __func__, hs_req->req.actual, size_done); 2611 2612 hs_req->req.actual = size_done; 2613 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2614 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2615 2616 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2617 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2618 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2619 return; 2620 } 2621 2622 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2623 if (hs_ep->send_zlp) { 2624 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2625 hs_ep->send_zlp = 0; 2626 /* transfer will be completed on next complete interrupt */ 2627 return; 2628 } 2629 2630 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2631 /* Move to STATUS OUT */ 2632 dwc2_hsotg_ep0_zlp(hsotg, false); 2633 return; 2634 } 2635 2636 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2637 } 2638 2639 /** 2640 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2641 * @hsotg: The device state. 2642 * @idx: Index of ep. 2643 * @dir_in: Endpoint direction 1-in 0-out. 2644 * 2645 * Reads for endpoint with given index and direction, by masking 2646 * epint_reg with coresponding mask. 2647 */ 2648 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2649 unsigned int idx, int dir_in) 2650 { 2651 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2652 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2653 u32 ints; 2654 u32 mask; 2655 u32 diepempmsk; 2656 2657 mask = dwc2_readl(hsotg->regs + epmsk_reg); 2658 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK); 2659 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2660 mask |= DXEPINT_SETUP_RCVD; 2661 2662 ints = dwc2_readl(hsotg->regs + epint_reg); 2663 ints &= mask; 2664 return ints; 2665 } 2666 2667 /** 2668 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2669 * @hs_ep: The endpoint on which interrupt is asserted. 2670 * 2671 * This interrupt indicates that the endpoint has been disabled per the 2672 * application's request. 2673 * 2674 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2675 * in case of ISOC completes current request. 2676 * 2677 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2678 * request starts it. 2679 */ 2680 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2681 { 2682 struct dwc2_hsotg *hsotg = hs_ep->parent; 2683 struct dwc2_hsotg_req *hs_req; 2684 unsigned char idx = hs_ep->index; 2685 int dir_in = hs_ep->dir_in; 2686 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2687 int dctl = dwc2_readl(hsotg->regs + DCTL); 2688 2689 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2690 2691 if (dir_in) { 2692 int epctl = dwc2_readl(hsotg->regs + epctl_reg); 2693 2694 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2695 2696 if (hs_ep->isochronous) { 2697 dwc2_hsotg_complete_in(hsotg, hs_ep); 2698 return; 2699 } 2700 2701 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2702 int dctl = dwc2_readl(hsotg->regs + DCTL); 2703 2704 dctl |= DCTL_CGNPINNAK; 2705 dwc2_writel(dctl, hsotg->regs + DCTL); 2706 } 2707 return; 2708 } 2709 2710 if (dctl & DCTL_GOUTNAKSTS) { 2711 dctl |= DCTL_CGOUTNAK; 2712 dwc2_writel(dctl, hsotg->regs + DCTL); 2713 } 2714 2715 if (!hs_ep->isochronous) 2716 return; 2717 2718 if (list_empty(&hs_ep->queue)) { 2719 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2720 __func__, hs_ep); 2721 return; 2722 } 2723 2724 do { 2725 hs_req = get_ep_head(hs_ep); 2726 if (hs_req) 2727 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2728 -ENODATA); 2729 dwc2_gadget_incr_frame_num(hs_ep); 2730 /* Update current frame number value. */ 2731 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2732 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2733 2734 dwc2_gadget_start_next_request(hs_ep); 2735 } 2736 2737 /** 2738 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2739 * @ep: The endpoint on which interrupt is asserted. 2740 * 2741 * This is starting point for ISOC-OUT transfer, synchronization done with 2742 * first out token received from host while corresponding EP is disabled. 2743 * 2744 * Device does not know initial frame in which out token will come. For this 2745 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2746 * getting this interrupt SW starts calculation for next transfer frame. 2747 */ 2748 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2749 { 2750 struct dwc2_hsotg *hsotg = ep->parent; 2751 int dir_in = ep->dir_in; 2752 u32 doepmsk; 2753 u32 tmp; 2754 2755 if (dir_in || !ep->isochronous) 2756 return; 2757 2758 /* 2759 * Store frame in which irq was asserted here, as 2760 * it can change while completing request below. 2761 */ 2762 tmp = dwc2_hsotg_read_frameno(hsotg); 2763 2764 if (using_desc_dma(hsotg)) { 2765 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2766 /* Start first ISO Out */ 2767 ep->target_frame = tmp; 2768 dwc2_gadget_start_isoc_ddma(ep); 2769 } 2770 return; 2771 } 2772 2773 if (ep->interval > 1 && 2774 ep->target_frame == TARGET_FRAME_INITIAL) { 2775 u32 dsts; 2776 u32 ctrl; 2777 2778 dsts = dwc2_readl(hsotg->regs + DSTS); 2779 ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2780 dwc2_gadget_incr_frame_num(ep); 2781 2782 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index)); 2783 if (ep->target_frame & 0x1) 2784 ctrl |= DXEPCTL_SETODDFR; 2785 else 2786 ctrl |= DXEPCTL_SETEVENFR; 2787 2788 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index)); 2789 } 2790 2791 dwc2_gadget_start_next_request(ep); 2792 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 2793 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2794 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK); 2795 } 2796 2797 /** 2798 * dwc2_gadget_handle_nak - handle NAK interrupt 2799 * @hs_ep: The endpoint on which interrupt is asserted. 2800 * 2801 * This is starting point for ISOC-IN transfer, synchronization done with 2802 * first IN token received from host while corresponding EP is disabled. 2803 * 2804 * Device does not know when first one token will arrive from host. On first 2805 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2806 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2807 * sent in response to that as there was no data in FIFO. SW is basing on this 2808 * interrupt to obtain frame in which token has come and then based on the 2809 * interval calculates next frame for transfer. 2810 */ 2811 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2812 { 2813 struct dwc2_hsotg *hsotg = hs_ep->parent; 2814 int dir_in = hs_ep->dir_in; 2815 u32 tmp; 2816 2817 if (!dir_in || !hs_ep->isochronous) 2818 return; 2819 2820 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2821 2822 tmp = dwc2_hsotg_read_frameno(hsotg); 2823 if (using_desc_dma(hsotg)) { 2824 hs_ep->target_frame = tmp; 2825 dwc2_gadget_incr_frame_num(hs_ep); 2826 dwc2_gadget_start_isoc_ddma(hs_ep); 2827 return; 2828 } 2829 2830 hs_ep->target_frame = tmp; 2831 if (hs_ep->interval > 1) { 2832 u32 ctrl = dwc2_readl(hsotg->regs + 2833 DIEPCTL(hs_ep->index)); 2834 if (hs_ep->target_frame & 0x1) 2835 ctrl |= DXEPCTL_SETODDFR; 2836 else 2837 ctrl |= DXEPCTL_SETEVENFR; 2838 2839 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index)); 2840 } 2841 2842 dwc2_hsotg_complete_request(hsotg, hs_ep, 2843 get_ep_head(hs_ep), 0); 2844 } 2845 2846 if (!using_desc_dma(hsotg)) 2847 dwc2_gadget_incr_frame_num(hs_ep); 2848 } 2849 2850 /** 2851 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2852 * @hsotg: The driver state 2853 * @idx: The index for the endpoint (0..15) 2854 * @dir_in: Set if this is an IN endpoint 2855 * 2856 * Process and clear any interrupt pending for an individual endpoint 2857 */ 2858 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2859 int dir_in) 2860 { 2861 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2862 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2863 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2864 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2865 u32 ints; 2866 u32 ctrl; 2867 2868 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2869 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2870 2871 /* Clear endpoint interrupts */ 2872 dwc2_writel(ints, hsotg->regs + epint_reg); 2873 2874 if (!hs_ep) { 2875 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2876 __func__, idx, dir_in ? "in" : "out"); 2877 return; 2878 } 2879 2880 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2881 __func__, idx, dir_in ? "in" : "out", ints); 2882 2883 /* Don't process XferCompl interrupt if it is a setup packet */ 2884 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2885 ints &= ~DXEPINT_XFERCOMPL; 2886 2887 /* 2888 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 2889 * stage and xfercomplete was generated without SETUP phase done 2890 * interrupt. SW should parse received setup packet only after host's 2891 * exit from setup phase of control transfer. 2892 */ 2893 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 2894 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 2895 ints &= ~DXEPINT_XFERCOMPL; 2896 2897 if (ints & DXEPINT_XFERCOMPL) { 2898 dev_dbg(hsotg->dev, 2899 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 2900 __func__, dwc2_readl(hsotg->regs + epctl_reg), 2901 dwc2_readl(hsotg->regs + epsiz_reg)); 2902 2903 /* In DDMA handle isochronous requests separately */ 2904 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 2905 /* XferCompl set along with BNA */ 2906 if (!(ints & DXEPINT_BNAINTR)) 2907 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 2908 } else if (dir_in) { 2909 /* 2910 * We get OutDone from the FIFO, so we only 2911 * need to look at completing IN requests here 2912 * if operating slave mode 2913 */ 2914 if (hs_ep->isochronous && hs_ep->interval > 1) 2915 dwc2_gadget_incr_frame_num(hs_ep); 2916 2917 dwc2_hsotg_complete_in(hsotg, hs_ep); 2918 if (ints & DXEPINT_NAKINTRPT) 2919 ints &= ~DXEPINT_NAKINTRPT; 2920 2921 if (idx == 0 && !hs_ep->req) 2922 dwc2_hsotg_enqueue_setup(hsotg); 2923 } else if (using_dma(hsotg)) { 2924 /* 2925 * We're using DMA, we need to fire an OutDone here 2926 * as we ignore the RXFIFO. 2927 */ 2928 if (hs_ep->isochronous && hs_ep->interval > 1) 2929 dwc2_gadget_incr_frame_num(hs_ep); 2930 2931 dwc2_hsotg_handle_outdone(hsotg, idx); 2932 } 2933 } 2934 2935 if (ints & DXEPINT_EPDISBLD) 2936 dwc2_gadget_handle_ep_disabled(hs_ep); 2937 2938 if (ints & DXEPINT_OUTTKNEPDIS) 2939 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 2940 2941 if (ints & DXEPINT_NAKINTRPT) 2942 dwc2_gadget_handle_nak(hs_ep); 2943 2944 if (ints & DXEPINT_AHBERR) 2945 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 2946 2947 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 2948 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 2949 2950 if (using_dma(hsotg) && idx == 0) { 2951 /* 2952 * this is the notification we've received a 2953 * setup packet. In non-DMA mode we'd get this 2954 * from the RXFIFO, instead we need to process 2955 * the setup here. 2956 */ 2957 2958 if (dir_in) 2959 WARN_ON_ONCE(1); 2960 else 2961 dwc2_hsotg_handle_outdone(hsotg, 0); 2962 } 2963 } 2964 2965 if (ints & DXEPINT_STSPHSERCVD) { 2966 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 2967 2968 /* Safety check EP0 state when STSPHSERCVD asserted */ 2969 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2970 /* Move to STATUS IN for DDMA */ 2971 if (using_desc_dma(hsotg)) 2972 dwc2_hsotg_ep0_zlp(hsotg, true); 2973 } 2974 2975 } 2976 2977 if (ints & DXEPINT_BACK2BACKSETUP) 2978 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 2979 2980 if (ints & DXEPINT_BNAINTR) { 2981 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 2982 if (hs_ep->isochronous) 2983 dwc2_gadget_handle_isoc_bna(hs_ep); 2984 } 2985 2986 if (dir_in && !hs_ep->isochronous) { 2987 /* not sure if this is important, but we'll clear it anyway */ 2988 if (ints & DXEPINT_INTKNTXFEMP) { 2989 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 2990 __func__, idx); 2991 } 2992 2993 /* this probably means something bad is happening */ 2994 if (ints & DXEPINT_INTKNEPMIS) { 2995 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 2996 __func__, idx); 2997 } 2998 2999 /* FIFO has space or is empty (see GAHBCFG) */ 3000 if (hsotg->dedicated_fifos && 3001 ints & DXEPINT_TXFEMP) { 3002 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3003 __func__, idx); 3004 if (!using_dma(hsotg)) 3005 dwc2_hsotg_trytx(hsotg, hs_ep); 3006 } 3007 } 3008 } 3009 3010 /** 3011 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3012 * @hsotg: The device state. 3013 * 3014 * Handle updating the device settings after the enumeration phase has 3015 * been completed. 3016 */ 3017 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3018 { 3019 u32 dsts = dwc2_readl(hsotg->regs + DSTS); 3020 int ep0_mps = 0, ep_mps = 8; 3021 3022 /* 3023 * This should signal the finish of the enumeration phase 3024 * of the USB handshaking, so we should now know what rate 3025 * we connected at. 3026 */ 3027 3028 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3029 3030 /* 3031 * note, since we're limited by the size of transfer on EP0, and 3032 * it seems IN transfers must be a even number of packets we do 3033 * not advertise a 64byte MPS on EP0. 3034 */ 3035 3036 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3037 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3038 case DSTS_ENUMSPD_FS: 3039 case DSTS_ENUMSPD_FS48: 3040 hsotg->gadget.speed = USB_SPEED_FULL; 3041 ep0_mps = EP0_MPS_LIMIT; 3042 ep_mps = 1023; 3043 break; 3044 3045 case DSTS_ENUMSPD_HS: 3046 hsotg->gadget.speed = USB_SPEED_HIGH; 3047 ep0_mps = EP0_MPS_LIMIT; 3048 ep_mps = 1024; 3049 break; 3050 3051 case DSTS_ENUMSPD_LS: 3052 hsotg->gadget.speed = USB_SPEED_LOW; 3053 ep0_mps = 8; 3054 ep_mps = 8; 3055 /* 3056 * note, we don't actually support LS in this driver at the 3057 * moment, and the documentation seems to imply that it isn't 3058 * supported by the PHYs on some of the devices. 3059 */ 3060 break; 3061 } 3062 dev_info(hsotg->dev, "new device is %s\n", 3063 usb_speed_string(hsotg->gadget.speed)); 3064 3065 /* 3066 * we should now know the maximum packet size for an 3067 * endpoint, so set the endpoints to a default value. 3068 */ 3069 3070 if (ep0_mps) { 3071 int i; 3072 /* Initialize ep0 for both in and out directions */ 3073 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3074 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3075 for (i = 1; i < hsotg->num_of_eps; i++) { 3076 if (hsotg->eps_in[i]) 3077 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3078 0, 1); 3079 if (hsotg->eps_out[i]) 3080 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3081 0, 0); 3082 } 3083 } 3084 3085 /* ensure after enumeration our EP0 is active */ 3086 3087 dwc2_hsotg_enqueue_setup(hsotg); 3088 3089 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3090 dwc2_readl(hsotg->regs + DIEPCTL0), 3091 dwc2_readl(hsotg->regs + DOEPCTL0)); 3092 } 3093 3094 /** 3095 * kill_all_requests - remove all requests from the endpoint's queue 3096 * @hsotg: The device state. 3097 * @ep: The endpoint the requests may be on. 3098 * @result: The result code to use. 3099 * 3100 * Go through the requests on the given endpoint and mark them 3101 * completed with the given result code. 3102 */ 3103 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3104 struct dwc2_hsotg_ep *ep, 3105 int result) 3106 { 3107 struct dwc2_hsotg_req *req, *treq; 3108 unsigned int size; 3109 3110 ep->req = NULL; 3111 3112 list_for_each_entry_safe(req, treq, &ep->queue, queue) 3113 dwc2_hsotg_complete_request(hsotg, ep, req, 3114 result); 3115 3116 if (!hsotg->dedicated_fifos) 3117 return; 3118 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3119 if (size < ep->fifo_size) 3120 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3121 } 3122 3123 /** 3124 * dwc2_hsotg_disconnect - disconnect service 3125 * @hsotg: The device state. 3126 * 3127 * The device has been disconnected. Remove all current 3128 * transactions and signal the gadget driver that this 3129 * has happened. 3130 */ 3131 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3132 { 3133 unsigned int ep; 3134 3135 if (!hsotg->connected) 3136 return; 3137 3138 hsotg->connected = 0; 3139 hsotg->test_mode = 0; 3140 3141 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3142 if (hsotg->eps_in[ep]) 3143 kill_all_requests(hsotg, hsotg->eps_in[ep], 3144 -ESHUTDOWN); 3145 if (hsotg->eps_out[ep]) 3146 kill_all_requests(hsotg, hsotg->eps_out[ep], 3147 -ESHUTDOWN); 3148 } 3149 3150 call_gadget(hsotg, disconnect); 3151 hsotg->lx_state = DWC2_L3; 3152 3153 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3154 } 3155 3156 /** 3157 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3158 * @hsotg: The device state: 3159 * @periodic: True if this is a periodic FIFO interrupt 3160 */ 3161 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3162 { 3163 struct dwc2_hsotg_ep *ep; 3164 int epno, ret; 3165 3166 /* look through for any more data to transmit */ 3167 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3168 ep = index_to_ep(hsotg, epno, 1); 3169 3170 if (!ep) 3171 continue; 3172 3173 if (!ep->dir_in) 3174 continue; 3175 3176 if ((periodic && !ep->periodic) || 3177 (!periodic && ep->periodic)) 3178 continue; 3179 3180 ret = dwc2_hsotg_trytx(hsotg, ep); 3181 if (ret < 0) 3182 break; 3183 } 3184 } 3185 3186 /* IRQ flags which will trigger a retry around the IRQ loop */ 3187 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3188 GINTSTS_PTXFEMP | \ 3189 GINTSTS_RXFLVL) 3190 3191 /** 3192 * dwc2_hsotg_core_init - issue softreset to the core 3193 * @hsotg: The device state 3194 * @is_usb_reset: Usb resetting flag 3195 * 3196 * Issue a soft reset to the core, and await the core finishing it. 3197 */ 3198 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3199 bool is_usb_reset) 3200 { 3201 u32 intmsk; 3202 u32 val; 3203 u32 usbcfg; 3204 u32 dcfg = 0; 3205 3206 /* Kill any ep0 requests as controller will be reinitialized */ 3207 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3208 3209 if (!is_usb_reset) 3210 if (dwc2_core_reset(hsotg, true)) 3211 return; 3212 3213 /* 3214 * we must now enable ep0 ready for host detection and then 3215 * set configuration. 3216 */ 3217 3218 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3219 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 3220 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 3221 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 3222 3223 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS && 3224 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 3225 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) { 3226 /* FS/LS Dedicated Transceiver Interface */ 3227 usbcfg |= GUSBCFG_PHYSEL; 3228 } else { 3229 /* set the PLL on, remove the HNP/SRP and set the PHY */ 3230 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 3231 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 3232 (val << GUSBCFG_USBTRDTIM_SHIFT); 3233 } 3234 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 3235 3236 dwc2_hsotg_init_fifo(hsotg); 3237 3238 if (!is_usb_reset) 3239 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3240 3241 dcfg |= DCFG_EPMISCNT(1); 3242 3243 switch (hsotg->params.speed) { 3244 case DWC2_SPEED_PARAM_LOW: 3245 dcfg |= DCFG_DEVSPD_LS; 3246 break; 3247 case DWC2_SPEED_PARAM_FULL: 3248 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3249 dcfg |= DCFG_DEVSPD_FS48; 3250 else 3251 dcfg |= DCFG_DEVSPD_FS; 3252 break; 3253 default: 3254 dcfg |= DCFG_DEVSPD_HS; 3255 } 3256 3257 if (hsotg->params.ipg_isoc_en) 3258 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3259 3260 dwc2_writel(dcfg, hsotg->regs + DCFG); 3261 3262 /* Clear any pending OTG interrupts */ 3263 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 3264 3265 /* Clear any pending interrupts */ 3266 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 3267 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3268 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3269 GINTSTS_USBRST | GINTSTS_RESETDET | 3270 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3271 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3272 GINTSTS_LPMTRANRCVD; 3273 3274 if (!using_desc_dma(hsotg)) 3275 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3276 3277 if (!hsotg->params.external_id_pin_ctl) 3278 intmsk |= GINTSTS_CONIDSTSCHNG; 3279 3280 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 3281 3282 if (using_dma(hsotg)) { 3283 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3284 hsotg->params.ahbcfg, 3285 hsotg->regs + GAHBCFG); 3286 3287 /* Set DDMA mode support in the core if needed */ 3288 if (using_desc_dma(hsotg)) 3289 dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN); 3290 3291 } else { 3292 dwc2_writel(((hsotg->dedicated_fifos) ? 3293 (GAHBCFG_NP_TXF_EMP_LVL | 3294 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3295 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG); 3296 } 3297 3298 /* 3299 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3300 * when we have no data to transfer. Otherwise we get being flooded by 3301 * interrupts. 3302 */ 3303 3304 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3305 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3306 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3307 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3308 hsotg->regs + DIEPMSK); 3309 3310 /* 3311 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3312 * DMA mode we may need this and StsPhseRcvd. 3313 */ 3314 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3315 DOEPMSK_STSPHSERCVDMSK) : 0) | 3316 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3317 DOEPMSK_SETUPMSK, 3318 hsotg->regs + DOEPMSK); 3319 3320 /* Enable BNA interrupt for DDMA */ 3321 if (using_desc_dma(hsotg)) { 3322 dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK); 3323 dwc2_set_bit(hsotg->regs + DIEPMSK, DIEPMSK_BNAININTRMSK); 3324 } 3325 3326 dwc2_writel(0, hsotg->regs + DAINTMSK); 3327 3328 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3329 dwc2_readl(hsotg->regs + DIEPCTL0), 3330 dwc2_readl(hsotg->regs + DOEPCTL0)); 3331 3332 /* enable in and out endpoint interrupts */ 3333 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3334 3335 /* 3336 * Enable the RXFIFO when in slave mode, as this is how we collect 3337 * the data. In DMA mode, we get events from the FIFO but also 3338 * things we cannot process, so do not use it. 3339 */ 3340 if (!using_dma(hsotg)) 3341 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3342 3343 /* Enable interrupts for EP0 in and out */ 3344 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3345 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3346 3347 if (!is_usb_reset) { 3348 dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3349 udelay(10); /* see openiboot */ 3350 dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3351 } 3352 3353 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL)); 3354 3355 /* 3356 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3357 * writing to the EPCTL register.. 3358 */ 3359 3360 /* set to read 1 8byte packet */ 3361 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3362 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 3363 3364 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3365 DXEPCTL_CNAK | DXEPCTL_EPENA | 3366 DXEPCTL_USBACTEP, 3367 hsotg->regs + DOEPCTL0); 3368 3369 /* enable, but don't activate EP0in */ 3370 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3371 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 3372 3373 /* clear global NAKs */ 3374 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3375 if (!is_usb_reset) 3376 val |= DCTL_SFTDISCON; 3377 dwc2_set_bit(hsotg->regs + DCTL, val); 3378 3379 /* configure the core to support LPM */ 3380 dwc2_gadget_init_lpm(hsotg); 3381 3382 /* must be at-least 3ms to allow bus to see disconnect */ 3383 mdelay(3); 3384 3385 hsotg->lx_state = DWC2_L0; 3386 3387 dwc2_hsotg_enqueue_setup(hsotg); 3388 3389 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3390 dwc2_readl(hsotg->regs + DIEPCTL0), 3391 dwc2_readl(hsotg->regs + DOEPCTL0)); 3392 } 3393 3394 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3395 { 3396 /* set the soft-disconnect bit */ 3397 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3398 } 3399 3400 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3401 { 3402 /* remove the soft-disconnect and let's go */ 3403 dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3404 } 3405 3406 /** 3407 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3408 * @hsotg: The device state: 3409 * 3410 * This interrupt indicates one of the following conditions occurred while 3411 * transmitting an ISOC transaction. 3412 * - Corrupted IN Token for ISOC EP. 3413 * - Packet not complete in FIFO. 3414 * 3415 * The following actions will be taken: 3416 * - Determine the EP 3417 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3418 */ 3419 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3420 { 3421 struct dwc2_hsotg_ep *hs_ep; 3422 u32 epctrl; 3423 u32 daintmsk; 3424 u32 idx; 3425 3426 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3427 3428 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3429 3430 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3431 hs_ep = hsotg->eps_in[idx]; 3432 /* Proceed only unmasked ISOC EPs */ 3433 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3434 continue; 3435 3436 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx)); 3437 if ((epctrl & DXEPCTL_EPENA) && 3438 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3439 epctrl |= DXEPCTL_SNAK; 3440 epctrl |= DXEPCTL_EPDIS; 3441 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx)); 3442 } 3443 } 3444 3445 /* Clear interrupt */ 3446 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS); 3447 } 3448 3449 /** 3450 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3451 * @hsotg: The device state: 3452 * 3453 * This interrupt indicates one of the following conditions occurred while 3454 * transmitting an ISOC transaction. 3455 * - Corrupted OUT Token for ISOC EP. 3456 * - Packet not complete in FIFO. 3457 * 3458 * The following actions will be taken: 3459 * - Determine the EP 3460 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3461 */ 3462 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3463 { 3464 u32 gintsts; 3465 u32 gintmsk; 3466 u32 daintmsk; 3467 u32 epctrl; 3468 struct dwc2_hsotg_ep *hs_ep; 3469 int idx; 3470 3471 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3472 3473 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3474 daintmsk >>= DAINT_OUTEP_SHIFT; 3475 3476 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3477 hs_ep = hsotg->eps_out[idx]; 3478 /* Proceed only unmasked ISOC EPs */ 3479 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3480 continue; 3481 3482 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3483 if ((epctrl & DXEPCTL_EPENA) && 3484 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3485 /* Unmask GOUTNAKEFF interrupt */ 3486 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3487 gintmsk |= GINTSTS_GOUTNAKEFF; 3488 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3489 3490 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3491 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3492 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3493 break; 3494 } 3495 } 3496 } 3497 3498 /* Clear interrupt */ 3499 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS); 3500 } 3501 3502 /** 3503 * dwc2_hsotg_irq - handle device interrupt 3504 * @irq: The IRQ number triggered 3505 * @pw: The pw value when registered the handler. 3506 */ 3507 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3508 { 3509 struct dwc2_hsotg *hsotg = pw; 3510 int retry_count = 8; 3511 u32 gintsts; 3512 u32 gintmsk; 3513 3514 if (!dwc2_is_device_mode(hsotg)) 3515 return IRQ_NONE; 3516 3517 spin_lock(&hsotg->lock); 3518 irq_retry: 3519 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3520 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3521 3522 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3523 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3524 3525 gintsts &= gintmsk; 3526 3527 if (gintsts & GINTSTS_RESETDET) { 3528 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3529 3530 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS); 3531 3532 /* This event must be used only if controller is suspended */ 3533 if (hsotg->lx_state == DWC2_L2) { 3534 dwc2_exit_partial_power_down(hsotg, true); 3535 hsotg->lx_state = DWC2_L0; 3536 } 3537 } 3538 3539 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3540 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL); 3541 u32 connected = hsotg->connected; 3542 3543 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3544 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3545 dwc2_readl(hsotg->regs + GNPTXSTS)); 3546 3547 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 3548 3549 /* Report disconnection if it is not already done. */ 3550 dwc2_hsotg_disconnect(hsotg); 3551 3552 /* Reset device address to zero */ 3553 dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK); 3554 3555 if (usb_status & GOTGCTL_BSESVLD && connected) 3556 dwc2_hsotg_core_init_disconnected(hsotg, true); 3557 } 3558 3559 if (gintsts & GINTSTS_ENUMDONE) { 3560 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 3561 3562 dwc2_hsotg_irq_enumdone(hsotg); 3563 } 3564 3565 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3566 u32 daint = dwc2_readl(hsotg->regs + DAINT); 3567 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3568 u32 daint_out, daint_in; 3569 int ep; 3570 3571 daint &= daintmsk; 3572 daint_out = daint >> DAINT_OUTEP_SHIFT; 3573 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3574 3575 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3576 3577 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3578 ep++, daint_out >>= 1) { 3579 if (daint_out & 1) 3580 dwc2_hsotg_epint(hsotg, ep, 0); 3581 } 3582 3583 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3584 ep++, daint_in >>= 1) { 3585 if (daint_in & 1) 3586 dwc2_hsotg_epint(hsotg, ep, 1); 3587 } 3588 } 3589 3590 /* check both FIFOs */ 3591 3592 if (gintsts & GINTSTS_NPTXFEMP) { 3593 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3594 3595 /* 3596 * Disable the interrupt to stop it happening again 3597 * unless one of these endpoint routines decides that 3598 * it needs re-enabling 3599 */ 3600 3601 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3602 dwc2_hsotg_irq_fifoempty(hsotg, false); 3603 } 3604 3605 if (gintsts & GINTSTS_PTXFEMP) { 3606 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3607 3608 /* See note in GINTSTS_NPTxFEmp */ 3609 3610 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3611 dwc2_hsotg_irq_fifoempty(hsotg, true); 3612 } 3613 3614 if (gintsts & GINTSTS_RXFLVL) { 3615 /* 3616 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3617 * we need to retry dwc2_hsotg_handle_rx if this is still 3618 * set. 3619 */ 3620 3621 dwc2_hsotg_handle_rx(hsotg); 3622 } 3623 3624 if (gintsts & GINTSTS_ERLYSUSP) { 3625 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3626 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 3627 } 3628 3629 /* 3630 * these next two seem to crop-up occasionally causing the core 3631 * to shutdown the USB transfer, so try clearing them and logging 3632 * the occurrence. 3633 */ 3634 3635 if (gintsts & GINTSTS_GOUTNAKEFF) { 3636 u8 idx; 3637 u32 epctrl; 3638 u32 gintmsk; 3639 u32 daintmsk; 3640 struct dwc2_hsotg_ep *hs_ep; 3641 3642 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3643 daintmsk >>= DAINT_OUTEP_SHIFT; 3644 /* Mask this interrupt */ 3645 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3646 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3647 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3648 3649 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3650 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3651 hs_ep = hsotg->eps_out[idx]; 3652 /* Proceed only unmasked ISOC EPs */ 3653 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3654 continue; 3655 3656 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3657 3658 if (epctrl & DXEPCTL_EPENA) { 3659 epctrl |= DXEPCTL_SNAK; 3660 epctrl |= DXEPCTL_EPDIS; 3661 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx)); 3662 } 3663 } 3664 3665 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3666 } 3667 3668 if (gintsts & GINTSTS_GINNAKEFF) { 3669 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3670 3671 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3672 3673 dwc2_hsotg_dump(hsotg); 3674 } 3675 3676 if (gintsts & GINTSTS_INCOMPL_SOIN) 3677 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3678 3679 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3680 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3681 3682 /* 3683 * if we've had fifo events, we should try and go around the 3684 * loop again to see if there's any point in returning yet. 3685 */ 3686 3687 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3688 goto irq_retry; 3689 3690 spin_unlock(&hsotg->lock); 3691 3692 return IRQ_HANDLED; 3693 } 3694 3695 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3696 struct dwc2_hsotg_ep *hs_ep) 3697 { 3698 u32 epctrl_reg; 3699 u32 epint_reg; 3700 3701 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3702 DOEPCTL(hs_ep->index); 3703 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3704 DOEPINT(hs_ep->index); 3705 3706 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3707 hs_ep->name); 3708 3709 if (hs_ep->dir_in) { 3710 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3711 dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK); 3712 /* Wait for Nak effect */ 3713 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3714 DXEPINT_INEPNAKEFF, 100)) 3715 dev_warn(hsotg->dev, 3716 "%s: timeout DIEPINT.NAKEFF\n", 3717 __func__); 3718 } else { 3719 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK); 3720 /* Wait for Nak effect */ 3721 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3722 GINTSTS_GINNAKEFF, 100)) 3723 dev_warn(hsotg->dev, 3724 "%s: timeout GINTSTS.GINNAKEFF\n", 3725 __func__); 3726 } 3727 } else { 3728 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF)) 3729 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3730 3731 /* Wait for global nak to take effect */ 3732 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3733 GINTSTS_GOUTNAKEFF, 100)) 3734 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3735 __func__); 3736 } 3737 3738 /* Disable ep */ 3739 dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3740 3741 /* Wait for ep to be disabled */ 3742 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3743 dev_warn(hsotg->dev, 3744 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3745 3746 /* Clear EPDISBLD interrupt */ 3747 dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD); 3748 3749 if (hs_ep->dir_in) { 3750 unsigned short fifo_index; 3751 3752 if (hsotg->dedicated_fifos || hs_ep->periodic) 3753 fifo_index = hs_ep->fifo_index; 3754 else 3755 fifo_index = 0; 3756 3757 /* Flush TX FIFO */ 3758 dwc2_flush_tx_fifo(hsotg, fifo_index); 3759 3760 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3761 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3762 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3763 3764 } else { 3765 /* Remove global NAKs */ 3766 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK); 3767 } 3768 } 3769 3770 /** 3771 * dwc2_hsotg_ep_enable - enable the given endpoint 3772 * @ep: The USB endpint to configure 3773 * @desc: The USB endpoint descriptor to configure with. 3774 * 3775 * This is called from the USB gadget code's usb_ep_enable(). 3776 */ 3777 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3778 const struct usb_endpoint_descriptor *desc) 3779 { 3780 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3781 struct dwc2_hsotg *hsotg = hs_ep->parent; 3782 unsigned long flags; 3783 unsigned int index = hs_ep->index; 3784 u32 epctrl_reg; 3785 u32 epctrl; 3786 u32 mps; 3787 u32 mc; 3788 u32 mask; 3789 unsigned int dir_in; 3790 unsigned int i, val, size; 3791 int ret = 0; 3792 unsigned char ep_type; 3793 3794 dev_dbg(hsotg->dev, 3795 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3796 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3797 desc->wMaxPacketSize, desc->bInterval); 3798 3799 /* not to be called for EP0 */ 3800 if (index == 0) { 3801 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3802 return -EINVAL; 3803 } 3804 3805 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3806 if (dir_in != hs_ep->dir_in) { 3807 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3808 return -EINVAL; 3809 } 3810 3811 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 3812 mps = usb_endpoint_maxp(desc); 3813 mc = usb_endpoint_maxp_mult(desc); 3814 3815 /* ISOC IN in DDMA supported bInterval up to 10 */ 3816 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3817 dir_in && desc->bInterval > 10) { 3818 dev_err(hsotg->dev, 3819 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 3820 return -EINVAL; 3821 } 3822 3823 /* High bandwidth ISOC OUT in DDMA not supported */ 3824 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3825 !dir_in && mc > 1) { 3826 dev_err(hsotg->dev, 3827 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 3828 return -EINVAL; 3829 } 3830 3831 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3832 3833 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3834 epctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3835 3836 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3837 __func__, epctrl, epctrl_reg); 3838 3839 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 3840 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 3841 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 3842 MAX_DMA_DESC_NUM_GENERIC * 3843 sizeof(struct dwc2_dma_desc), 3844 &hs_ep->desc_list_dma, GFP_ATOMIC); 3845 if (!hs_ep->desc_list) { 3846 ret = -ENOMEM; 3847 goto error2; 3848 } 3849 } 3850 3851 spin_lock_irqsave(&hsotg->lock, flags); 3852 3853 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 3854 epctrl |= DXEPCTL_MPS(mps); 3855 3856 /* 3857 * mark the endpoint as active, otherwise the core may ignore 3858 * transactions entirely for this endpoint 3859 */ 3860 epctrl |= DXEPCTL_USBACTEP; 3861 3862 /* update the endpoint state */ 3863 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 3864 3865 /* default, set to non-periodic */ 3866 hs_ep->isochronous = 0; 3867 hs_ep->periodic = 0; 3868 hs_ep->halted = 0; 3869 hs_ep->interval = desc->bInterval; 3870 3871 switch (ep_type) { 3872 case USB_ENDPOINT_XFER_ISOC: 3873 epctrl |= DXEPCTL_EPTYPE_ISO; 3874 epctrl |= DXEPCTL_SETEVENFR; 3875 hs_ep->isochronous = 1; 3876 hs_ep->interval = 1 << (desc->bInterval - 1); 3877 hs_ep->target_frame = TARGET_FRAME_INITIAL; 3878 hs_ep->next_desc = 0; 3879 hs_ep->compl_desc = 0; 3880 if (dir_in) { 3881 hs_ep->periodic = 1; 3882 mask = dwc2_readl(hsotg->regs + DIEPMSK); 3883 mask |= DIEPMSK_NAKMSK; 3884 dwc2_writel(mask, hsotg->regs + DIEPMSK); 3885 } else { 3886 mask = dwc2_readl(hsotg->regs + DOEPMSK); 3887 mask |= DOEPMSK_OUTTKNEPDISMSK; 3888 dwc2_writel(mask, hsotg->regs + DOEPMSK); 3889 } 3890 break; 3891 3892 case USB_ENDPOINT_XFER_BULK: 3893 epctrl |= DXEPCTL_EPTYPE_BULK; 3894 break; 3895 3896 case USB_ENDPOINT_XFER_INT: 3897 if (dir_in) 3898 hs_ep->periodic = 1; 3899 3900 if (hsotg->gadget.speed == USB_SPEED_HIGH) 3901 hs_ep->interval = 1 << (desc->bInterval - 1); 3902 3903 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 3904 break; 3905 3906 case USB_ENDPOINT_XFER_CONTROL: 3907 epctrl |= DXEPCTL_EPTYPE_CONTROL; 3908 break; 3909 } 3910 3911 /* 3912 * if the hardware has dedicated fifos, we must give each IN EP 3913 * a unique tx-fifo even if it is non-periodic. 3914 */ 3915 if (dir_in && hsotg->dedicated_fifos) { 3916 u32 fifo_index = 0; 3917 u32 fifo_size = UINT_MAX; 3918 3919 size = hs_ep->ep.maxpacket * hs_ep->mc; 3920 for (i = 1; i < hsotg->num_of_eps; ++i) { 3921 if (hsotg->fifo_map & (1 << i)) 3922 continue; 3923 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i)); 3924 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 3925 if (val < size) 3926 continue; 3927 /* Search for smallest acceptable fifo */ 3928 if (val < fifo_size) { 3929 fifo_size = val; 3930 fifo_index = i; 3931 } 3932 } 3933 if (!fifo_index) { 3934 dev_err(hsotg->dev, 3935 "%s: No suitable fifo found\n", __func__); 3936 ret = -ENOMEM; 3937 goto error1; 3938 } 3939 hsotg->fifo_map |= 1 << fifo_index; 3940 epctrl |= DXEPCTL_TXFNUM(fifo_index); 3941 hs_ep->fifo_index = fifo_index; 3942 hs_ep->fifo_size = fifo_size; 3943 } 3944 3945 /* for non control endpoints, set PID to D0 */ 3946 if (index && !hs_ep->isochronous) 3947 epctrl |= DXEPCTL_SETD0PID; 3948 3949 /* WA for Full speed ISOC IN in DDMA mode. 3950 * By Clear NAK status of EP, core will send ZLP 3951 * to IN token and assert NAK interrupt relying 3952 * on TxFIFO status only 3953 */ 3954 3955 if (hsotg->gadget.speed == USB_SPEED_FULL && 3956 hs_ep->isochronous && dir_in) { 3957 /* The WA applies only to core versions from 2.72a 3958 * to 4.00a (including both). Also for FS_IOT_1.00a 3959 * and HS_IOT_1.00a. 3960 */ 3961 u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID); 3962 3963 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 3964 gsnpsid <= DWC2_CORE_REV_4_00a) || 3965 gsnpsid == DWC2_FS_IOT_REV_1_00a || 3966 gsnpsid == DWC2_HS_IOT_REV_1_00a) 3967 epctrl |= DXEPCTL_CNAK; 3968 } 3969 3970 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 3971 __func__, epctrl); 3972 3973 dwc2_writel(epctrl, hsotg->regs + epctrl_reg); 3974 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 3975 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 3976 3977 /* enable the endpoint interrupt */ 3978 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 3979 3980 error1: 3981 spin_unlock_irqrestore(&hsotg->lock, flags); 3982 3983 error2: 3984 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 3985 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC * 3986 sizeof(struct dwc2_dma_desc), 3987 hs_ep->desc_list, hs_ep->desc_list_dma); 3988 hs_ep->desc_list = NULL; 3989 } 3990 3991 return ret; 3992 } 3993 3994 /** 3995 * dwc2_hsotg_ep_disable - disable given endpoint 3996 * @ep: The endpoint to disable. 3997 */ 3998 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 3999 { 4000 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4001 struct dwc2_hsotg *hsotg = hs_ep->parent; 4002 int dir_in = hs_ep->dir_in; 4003 int index = hs_ep->index; 4004 unsigned long flags; 4005 u32 epctrl_reg; 4006 u32 ctrl; 4007 4008 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4009 4010 if (ep == &hsotg->eps_out[0]->ep) { 4011 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4012 return -EINVAL; 4013 } 4014 4015 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4016 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4017 return -EINVAL; 4018 } 4019 4020 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4021 4022 spin_lock_irqsave(&hsotg->lock, flags); 4023 4024 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 4025 4026 if (ctrl & DXEPCTL_EPENA) 4027 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4028 4029 ctrl &= ~DXEPCTL_EPENA; 4030 ctrl &= ~DXEPCTL_USBACTEP; 4031 ctrl |= DXEPCTL_SNAK; 4032 4033 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4034 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 4035 4036 /* disable endpoint interrupts */ 4037 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4038 4039 /* terminate all requests with shutdown */ 4040 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4041 4042 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4043 hs_ep->fifo_index = 0; 4044 hs_ep->fifo_size = 0; 4045 4046 spin_unlock_irqrestore(&hsotg->lock, flags); 4047 return 0; 4048 } 4049 4050 /** 4051 * on_list - check request is on the given endpoint 4052 * @ep: The endpoint to check. 4053 * @test: The request to test if it is on the endpoint. 4054 */ 4055 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4056 { 4057 struct dwc2_hsotg_req *req, *treq; 4058 4059 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4060 if (req == test) 4061 return true; 4062 } 4063 4064 return false; 4065 } 4066 4067 /** 4068 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4069 * @ep: The endpoint to dequeue. 4070 * @req: The request to be removed from a queue. 4071 */ 4072 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4073 { 4074 struct dwc2_hsotg_req *hs_req = our_req(req); 4075 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4076 struct dwc2_hsotg *hs = hs_ep->parent; 4077 unsigned long flags; 4078 4079 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4080 4081 spin_lock_irqsave(&hs->lock, flags); 4082 4083 if (!on_list(hs_ep, hs_req)) { 4084 spin_unlock_irqrestore(&hs->lock, flags); 4085 return -EINVAL; 4086 } 4087 4088 /* Dequeue already started request */ 4089 if (req == &hs_ep->req->req) 4090 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4091 4092 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4093 spin_unlock_irqrestore(&hs->lock, flags); 4094 4095 return 0; 4096 } 4097 4098 /** 4099 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4100 * @ep: The endpoint to set halt. 4101 * @value: Set or unset the halt. 4102 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4103 * the endpoint is busy processing requests. 4104 * 4105 * We need to stall the endpoint immediately if request comes from set_feature 4106 * protocol command handler. 4107 */ 4108 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4109 { 4110 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4111 struct dwc2_hsotg *hs = hs_ep->parent; 4112 int index = hs_ep->index; 4113 u32 epreg; 4114 u32 epctl; 4115 u32 xfertype; 4116 4117 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4118 4119 if (index == 0) { 4120 if (value) 4121 dwc2_hsotg_stall_ep0(hs); 4122 else 4123 dev_warn(hs->dev, 4124 "%s: can't clear halt on ep0\n", __func__); 4125 return 0; 4126 } 4127 4128 if (hs_ep->isochronous) { 4129 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4130 return -EINVAL; 4131 } 4132 4133 if (!now && value && !list_empty(&hs_ep->queue)) { 4134 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4135 ep->name); 4136 return -EAGAIN; 4137 } 4138 4139 if (hs_ep->dir_in) { 4140 epreg = DIEPCTL(index); 4141 epctl = dwc2_readl(hs->regs + epreg); 4142 4143 if (value) { 4144 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4145 if (epctl & DXEPCTL_EPENA) 4146 epctl |= DXEPCTL_EPDIS; 4147 } else { 4148 epctl &= ~DXEPCTL_STALL; 4149 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4150 if (xfertype == DXEPCTL_EPTYPE_BULK || 4151 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4152 epctl |= DXEPCTL_SETD0PID; 4153 } 4154 dwc2_writel(epctl, hs->regs + epreg); 4155 } else { 4156 epreg = DOEPCTL(index); 4157 epctl = dwc2_readl(hs->regs + epreg); 4158 4159 if (value) { 4160 epctl |= DXEPCTL_STALL; 4161 } else { 4162 epctl &= ~DXEPCTL_STALL; 4163 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4164 if (xfertype == DXEPCTL_EPTYPE_BULK || 4165 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4166 epctl |= DXEPCTL_SETD0PID; 4167 } 4168 dwc2_writel(epctl, hs->regs + epreg); 4169 } 4170 4171 hs_ep->halted = value; 4172 4173 return 0; 4174 } 4175 4176 /** 4177 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4178 * @ep: The endpoint to set halt. 4179 * @value: Set or unset the halt. 4180 */ 4181 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4182 { 4183 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4184 struct dwc2_hsotg *hs = hs_ep->parent; 4185 unsigned long flags = 0; 4186 int ret = 0; 4187 4188 spin_lock_irqsave(&hs->lock, flags); 4189 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4190 spin_unlock_irqrestore(&hs->lock, flags); 4191 4192 return ret; 4193 } 4194 4195 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4196 .enable = dwc2_hsotg_ep_enable, 4197 .disable = dwc2_hsotg_ep_disable, 4198 .alloc_request = dwc2_hsotg_ep_alloc_request, 4199 .free_request = dwc2_hsotg_ep_free_request, 4200 .queue = dwc2_hsotg_ep_queue_lock, 4201 .dequeue = dwc2_hsotg_ep_dequeue, 4202 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4203 /* note, don't believe we have any call for the fifo routines */ 4204 }; 4205 4206 /** 4207 * dwc2_hsotg_init - initialize the usb core 4208 * @hsotg: The driver state 4209 */ 4210 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4211 { 4212 u32 trdtim; 4213 u32 usbcfg; 4214 /* unmask subset of endpoint interrupts */ 4215 4216 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4217 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4218 hsotg->regs + DIEPMSK); 4219 4220 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4221 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4222 hsotg->regs + DOEPMSK); 4223 4224 dwc2_writel(0, hsotg->regs + DAINTMSK); 4225 4226 /* Be in disconnected state until gadget is registered */ 4227 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 4228 4229 /* setup fifos */ 4230 4231 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4232 dwc2_readl(hsotg->regs + GRXFSIZ), 4233 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 4234 4235 dwc2_hsotg_init_fifo(hsotg); 4236 4237 /* keep other bits untouched (so e.g. forced modes are not lost) */ 4238 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 4239 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 4240 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 4241 4242 /* set the PLL on, remove the HNP/SRP and set the PHY */ 4243 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 4244 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 4245 (trdtim << GUSBCFG_USBTRDTIM_SHIFT); 4246 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 4247 4248 if (using_dma(hsotg)) 4249 dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN); 4250 } 4251 4252 /** 4253 * dwc2_hsotg_udc_start - prepare the udc for work 4254 * @gadget: The usb gadget state 4255 * @driver: The usb gadget driver 4256 * 4257 * Perform initialization to prepare udc device and driver 4258 * to work. 4259 */ 4260 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4261 struct usb_gadget_driver *driver) 4262 { 4263 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4264 unsigned long flags; 4265 int ret; 4266 4267 if (!hsotg) { 4268 pr_err("%s: called with no device\n", __func__); 4269 return -ENODEV; 4270 } 4271 4272 if (!driver) { 4273 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4274 return -EINVAL; 4275 } 4276 4277 if (driver->max_speed < USB_SPEED_FULL) 4278 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4279 4280 if (!driver->setup) { 4281 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4282 return -EINVAL; 4283 } 4284 4285 WARN_ON(hsotg->driver); 4286 4287 driver->driver.bus = NULL; 4288 hsotg->driver = driver; 4289 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4290 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4291 4292 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4293 ret = dwc2_lowlevel_hw_enable(hsotg); 4294 if (ret) 4295 goto err; 4296 } 4297 4298 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4299 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4300 4301 spin_lock_irqsave(&hsotg->lock, flags); 4302 if (dwc2_hw_is_device(hsotg)) { 4303 dwc2_hsotg_init(hsotg); 4304 dwc2_hsotg_core_init_disconnected(hsotg, false); 4305 } 4306 4307 hsotg->enabled = 0; 4308 spin_unlock_irqrestore(&hsotg->lock, flags); 4309 4310 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4311 4312 return 0; 4313 4314 err: 4315 hsotg->driver = NULL; 4316 return ret; 4317 } 4318 4319 /** 4320 * dwc2_hsotg_udc_stop - stop the udc 4321 * @gadget: The usb gadget state 4322 * 4323 * Stop udc hw block and stay tunned for future transmissions 4324 */ 4325 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4326 { 4327 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4328 unsigned long flags = 0; 4329 int ep; 4330 4331 if (!hsotg) 4332 return -ENODEV; 4333 4334 /* all endpoints should be shutdown */ 4335 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4336 if (hsotg->eps_in[ep]) 4337 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4338 if (hsotg->eps_out[ep]) 4339 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4340 } 4341 4342 spin_lock_irqsave(&hsotg->lock, flags); 4343 4344 hsotg->driver = NULL; 4345 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4346 hsotg->enabled = 0; 4347 4348 spin_unlock_irqrestore(&hsotg->lock, flags); 4349 4350 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4351 otg_set_peripheral(hsotg->uphy->otg, NULL); 4352 4353 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4354 dwc2_lowlevel_hw_disable(hsotg); 4355 4356 return 0; 4357 } 4358 4359 /** 4360 * dwc2_hsotg_gadget_getframe - read the frame number 4361 * @gadget: The usb gadget state 4362 * 4363 * Read the {micro} frame number 4364 */ 4365 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4366 { 4367 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4368 } 4369 4370 /** 4371 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4372 * @gadget: The usb gadget state 4373 * @is_on: Current state of the USB PHY 4374 * 4375 * Connect/Disconnect the USB PHY pullup 4376 */ 4377 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4378 { 4379 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4380 unsigned long flags = 0; 4381 4382 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4383 hsotg->op_state); 4384 4385 /* Don't modify pullup state while in host mode */ 4386 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4387 hsotg->enabled = is_on; 4388 return 0; 4389 } 4390 4391 spin_lock_irqsave(&hsotg->lock, flags); 4392 if (is_on) { 4393 hsotg->enabled = 1; 4394 dwc2_hsotg_core_init_disconnected(hsotg, false); 4395 /* Enable ACG feature in device mode,if supported */ 4396 dwc2_enable_acg(hsotg); 4397 dwc2_hsotg_core_connect(hsotg); 4398 } else { 4399 dwc2_hsotg_core_disconnect(hsotg); 4400 dwc2_hsotg_disconnect(hsotg); 4401 hsotg->enabled = 0; 4402 } 4403 4404 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4405 spin_unlock_irqrestore(&hsotg->lock, flags); 4406 4407 return 0; 4408 } 4409 4410 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4411 { 4412 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4413 unsigned long flags; 4414 4415 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4416 spin_lock_irqsave(&hsotg->lock, flags); 4417 4418 /* 4419 * If controller is hibernated, it must exit from power_down 4420 * before being initialized / de-initialized 4421 */ 4422 if (hsotg->lx_state == DWC2_L2) 4423 dwc2_exit_partial_power_down(hsotg, false); 4424 4425 if (is_active) { 4426 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4427 4428 dwc2_hsotg_core_init_disconnected(hsotg, false); 4429 if (hsotg->enabled) { 4430 /* Enable ACG feature in device mode,if supported */ 4431 dwc2_enable_acg(hsotg); 4432 dwc2_hsotg_core_connect(hsotg); 4433 } 4434 } else { 4435 dwc2_hsotg_core_disconnect(hsotg); 4436 dwc2_hsotg_disconnect(hsotg); 4437 } 4438 4439 spin_unlock_irqrestore(&hsotg->lock, flags); 4440 return 0; 4441 } 4442 4443 /** 4444 * dwc2_hsotg_vbus_draw - report bMaxPower field 4445 * @gadget: The usb gadget state 4446 * @mA: Amount of current 4447 * 4448 * Report how much power the device may consume to the phy. 4449 */ 4450 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4451 { 4452 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4453 4454 if (IS_ERR_OR_NULL(hsotg->uphy)) 4455 return -ENOTSUPP; 4456 return usb_phy_set_power(hsotg->uphy, mA); 4457 } 4458 4459 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4460 .get_frame = dwc2_hsotg_gadget_getframe, 4461 .udc_start = dwc2_hsotg_udc_start, 4462 .udc_stop = dwc2_hsotg_udc_stop, 4463 .pullup = dwc2_hsotg_pullup, 4464 .vbus_session = dwc2_hsotg_vbus_session, 4465 .vbus_draw = dwc2_hsotg_vbus_draw, 4466 }; 4467 4468 /** 4469 * dwc2_hsotg_initep - initialise a single endpoint 4470 * @hsotg: The device state. 4471 * @hs_ep: The endpoint to be initialised. 4472 * @epnum: The endpoint number 4473 * @dir_in: True if direction is in. 4474 * 4475 * Initialise the given endpoint (as part of the probe and device state 4476 * creation) to give to the gadget driver. Setup the endpoint name, any 4477 * direction information and other state that may be required. 4478 */ 4479 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4480 struct dwc2_hsotg_ep *hs_ep, 4481 int epnum, 4482 bool dir_in) 4483 { 4484 char *dir; 4485 4486 if (epnum == 0) 4487 dir = ""; 4488 else if (dir_in) 4489 dir = "in"; 4490 else 4491 dir = "out"; 4492 4493 hs_ep->dir_in = dir_in; 4494 hs_ep->index = epnum; 4495 4496 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4497 4498 INIT_LIST_HEAD(&hs_ep->queue); 4499 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4500 4501 /* add to the list of endpoints known by the gadget driver */ 4502 if (epnum) 4503 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4504 4505 hs_ep->parent = hsotg; 4506 hs_ep->ep.name = hs_ep->name; 4507 4508 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4509 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4510 else 4511 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4512 epnum ? 1024 : EP0_MPS_LIMIT); 4513 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4514 4515 if (epnum == 0) { 4516 hs_ep->ep.caps.type_control = true; 4517 } else { 4518 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4519 hs_ep->ep.caps.type_iso = true; 4520 hs_ep->ep.caps.type_bulk = true; 4521 } 4522 hs_ep->ep.caps.type_int = true; 4523 } 4524 4525 if (dir_in) 4526 hs_ep->ep.caps.dir_in = true; 4527 else 4528 hs_ep->ep.caps.dir_out = true; 4529 4530 /* 4531 * if we're using dma, we need to set the next-endpoint pointer 4532 * to be something valid. 4533 */ 4534 4535 if (using_dma(hsotg)) { 4536 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4537 4538 if (dir_in) 4539 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum)); 4540 else 4541 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum)); 4542 } 4543 } 4544 4545 /** 4546 * dwc2_hsotg_hw_cfg - read HW configuration registers 4547 * @hsotg: Programming view of the DWC_otg controller 4548 * 4549 * Read the USB core HW configuration registers 4550 */ 4551 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4552 { 4553 u32 cfg; 4554 u32 ep_type; 4555 u32 i; 4556 4557 /* check hardware configuration */ 4558 4559 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4560 4561 /* Add ep0 */ 4562 hsotg->num_of_eps++; 4563 4564 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4565 sizeof(struct dwc2_hsotg_ep), 4566 GFP_KERNEL); 4567 if (!hsotg->eps_in[0]) 4568 return -ENOMEM; 4569 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4570 hsotg->eps_out[0] = hsotg->eps_in[0]; 4571 4572 cfg = hsotg->hw_params.dev_ep_dirs; 4573 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4574 ep_type = cfg & 3; 4575 /* Direction in or both */ 4576 if (!(ep_type & 2)) { 4577 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4578 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4579 if (!hsotg->eps_in[i]) 4580 return -ENOMEM; 4581 } 4582 /* Direction out or both */ 4583 if (!(ep_type & 1)) { 4584 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4585 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4586 if (!hsotg->eps_out[i]) 4587 return -ENOMEM; 4588 } 4589 } 4590 4591 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4592 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4593 4594 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4595 hsotg->num_of_eps, 4596 hsotg->dedicated_fifos ? "dedicated" : "shared", 4597 hsotg->fifo_mem); 4598 return 0; 4599 } 4600 4601 /** 4602 * dwc2_hsotg_dump - dump state of the udc 4603 * @hsotg: Programming view of the DWC_otg controller 4604 * 4605 */ 4606 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4607 { 4608 #ifdef DEBUG 4609 struct device *dev = hsotg->dev; 4610 void __iomem *regs = hsotg->regs; 4611 u32 val; 4612 int idx; 4613 4614 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4615 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL), 4616 dwc2_readl(regs + DIEPMSK)); 4617 4618 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4619 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1)); 4620 4621 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4622 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ)); 4623 4624 /* show periodic fifo settings */ 4625 4626 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4627 val = dwc2_readl(regs + DPTXFSIZN(idx)); 4628 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4629 val >> FIFOSIZE_DEPTH_SHIFT, 4630 val & FIFOSIZE_STARTADDR_MASK); 4631 } 4632 4633 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4634 dev_info(dev, 4635 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4636 dwc2_readl(regs + DIEPCTL(idx)), 4637 dwc2_readl(regs + DIEPTSIZ(idx)), 4638 dwc2_readl(regs + DIEPDMA(idx))); 4639 4640 val = dwc2_readl(regs + DOEPCTL(idx)); 4641 dev_info(dev, 4642 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4643 idx, dwc2_readl(regs + DOEPCTL(idx)), 4644 dwc2_readl(regs + DOEPTSIZ(idx)), 4645 dwc2_readl(regs + DOEPDMA(idx))); 4646 } 4647 4648 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4649 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE)); 4650 #endif 4651 } 4652 4653 /** 4654 * dwc2_gadget_init - init function for gadget 4655 * @hsotg: Programming view of the DWC_otg controller 4656 * 4657 */ 4658 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4659 { 4660 struct device *dev = hsotg->dev; 4661 int epnum; 4662 int ret; 4663 4664 /* Dump fifo information */ 4665 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4666 hsotg->params.g_np_tx_fifo_size); 4667 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4668 4669 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4670 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4671 hsotg->gadget.name = dev_name(dev); 4672 hsotg->remote_wakeup_allowed = 0; 4673 4674 if (hsotg->params.lpm) 4675 hsotg->gadget.lpm_capable = true; 4676 4677 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4678 hsotg->gadget.is_otg = 1; 4679 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4680 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4681 4682 ret = dwc2_hsotg_hw_cfg(hsotg); 4683 if (ret) { 4684 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4685 return ret; 4686 } 4687 4688 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4689 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4690 if (!hsotg->ctrl_buff) 4691 return -ENOMEM; 4692 4693 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4694 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4695 if (!hsotg->ep0_buff) 4696 return -ENOMEM; 4697 4698 if (using_desc_dma(hsotg)) { 4699 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4700 if (ret < 0) 4701 return ret; 4702 } 4703 4704 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4705 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4706 if (ret < 0) { 4707 dev_err(dev, "cannot claim IRQ for gadget\n"); 4708 return ret; 4709 } 4710 4711 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4712 4713 if (hsotg->num_of_eps == 0) { 4714 dev_err(dev, "wrong number of EPs (zero)\n"); 4715 return -EINVAL; 4716 } 4717 4718 /* setup endpoint information */ 4719 4720 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4721 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4722 4723 /* allocate EP0 request */ 4724 4725 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4726 GFP_KERNEL); 4727 if (!hsotg->ctrl_req) { 4728 dev_err(dev, "failed to allocate ctrl req\n"); 4729 return -ENOMEM; 4730 } 4731 4732 /* initialise the endpoints now the core has been initialised */ 4733 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4734 if (hsotg->eps_in[epnum]) 4735 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4736 epnum, 1); 4737 if (hsotg->eps_out[epnum]) 4738 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4739 epnum, 0); 4740 } 4741 4742 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4743 if (ret) { 4744 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, 4745 hsotg->ctrl_req); 4746 return ret; 4747 } 4748 dwc2_hsotg_dump(hsotg); 4749 4750 return 0; 4751 } 4752 4753 /** 4754 * dwc2_hsotg_remove - remove function for hsotg driver 4755 * @hsotg: Programming view of the DWC_otg controller 4756 * 4757 */ 4758 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4759 { 4760 usb_del_gadget_udc(&hsotg->gadget); 4761 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4762 4763 return 0; 4764 } 4765 4766 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4767 { 4768 unsigned long flags; 4769 4770 if (hsotg->lx_state != DWC2_L0) 4771 return 0; 4772 4773 if (hsotg->driver) { 4774 int ep; 4775 4776 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4777 hsotg->driver->driver.name); 4778 4779 spin_lock_irqsave(&hsotg->lock, flags); 4780 if (hsotg->enabled) 4781 dwc2_hsotg_core_disconnect(hsotg); 4782 dwc2_hsotg_disconnect(hsotg); 4783 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4784 spin_unlock_irqrestore(&hsotg->lock, flags); 4785 4786 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4787 if (hsotg->eps_in[ep]) 4788 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4789 if (hsotg->eps_out[ep]) 4790 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4791 } 4792 } 4793 4794 return 0; 4795 } 4796 4797 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4798 { 4799 unsigned long flags; 4800 4801 if (hsotg->lx_state == DWC2_L2) 4802 return 0; 4803 4804 if (hsotg->driver) { 4805 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4806 hsotg->driver->driver.name); 4807 4808 spin_lock_irqsave(&hsotg->lock, flags); 4809 dwc2_hsotg_core_init_disconnected(hsotg, false); 4810 if (hsotg->enabled) { 4811 /* Enable ACG feature in device mode,if supported */ 4812 dwc2_enable_acg(hsotg); 4813 dwc2_hsotg_core_connect(hsotg); 4814 } 4815 spin_unlock_irqrestore(&hsotg->lock, flags); 4816 } 4817 4818 return 0; 4819 } 4820 4821 /** 4822 * dwc2_backup_device_registers() - Backup controller device registers. 4823 * When suspending usb bus, registers needs to be backuped 4824 * if controller power is disabled once suspended. 4825 * 4826 * @hsotg: Programming view of the DWC_otg controller 4827 */ 4828 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4829 { 4830 struct dwc2_dregs_backup *dr; 4831 int i; 4832 4833 dev_dbg(hsotg->dev, "%s\n", __func__); 4834 4835 /* Backup dev regs */ 4836 dr = &hsotg->dr_backup; 4837 4838 dr->dcfg = dwc2_readl(hsotg->regs + DCFG); 4839 dr->dctl = dwc2_readl(hsotg->regs + DCTL); 4840 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 4841 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK); 4842 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 4843 4844 for (i = 0; i < hsotg->num_of_eps; i++) { 4845 /* Backup IN EPs */ 4846 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i)); 4847 4848 /* Ensure DATA PID is correctly configured */ 4849 if (dr->diepctl[i] & DXEPCTL_DPID) 4850 dr->diepctl[i] |= DXEPCTL_SETD1PID; 4851 else 4852 dr->diepctl[i] |= DXEPCTL_SETD0PID; 4853 4854 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i)); 4855 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i)); 4856 4857 /* Backup OUT EPs */ 4858 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i)); 4859 4860 /* Ensure DATA PID is correctly configured */ 4861 if (dr->doepctl[i] & DXEPCTL_DPID) 4862 dr->doepctl[i] |= DXEPCTL_SETD1PID; 4863 else 4864 dr->doepctl[i] |= DXEPCTL_SETD0PID; 4865 4866 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i)); 4867 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i)); 4868 dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i)); 4869 } 4870 dr->valid = true; 4871 return 0; 4872 } 4873 4874 /** 4875 * dwc2_restore_device_registers() - Restore controller device registers. 4876 * When resuming usb bus, device registers needs to be restored 4877 * if controller power were disabled. 4878 * 4879 * @hsotg: Programming view of the DWC_otg controller 4880 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 4881 * 4882 * Return: 0 if successful, negative error code otherwise 4883 */ 4884 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 4885 { 4886 struct dwc2_dregs_backup *dr; 4887 int i; 4888 4889 dev_dbg(hsotg->dev, "%s\n", __func__); 4890 4891 /* Restore dev regs */ 4892 dr = &hsotg->dr_backup; 4893 if (!dr->valid) { 4894 dev_err(hsotg->dev, "%s: no device registers to restore\n", 4895 __func__); 4896 return -EINVAL; 4897 } 4898 dr->valid = false; 4899 4900 if (!remote_wakeup) 4901 dwc2_writel(dr->dctl, hsotg->regs + DCTL); 4902 4903 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK); 4904 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK); 4905 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK); 4906 4907 for (i = 0; i < hsotg->num_of_eps; i++) { 4908 /* Restore IN EPs */ 4909 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i)); 4910 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i)); 4911 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i)); 4912 /** WA for enabled EPx's IN in DDMA mode. On entering to 4913 * hibernation wrong value read and saved from DIEPDMAx, 4914 * as result BNA interrupt asserted on hibernation exit 4915 * by restoring from saved area. 4916 */ 4917 if (hsotg->params.g_dma_desc && 4918 (dr->diepctl[i] & DXEPCTL_EPENA)) 4919 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 4920 dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i)); 4921 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i)); 4922 /* Restore OUT EPs */ 4923 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i)); 4924 /* WA for enabled EPx's OUT in DDMA mode. On entering to 4925 * hibernation wrong value read and saved from DOEPDMAx, 4926 * as result BNA interrupt asserted on hibernation exit 4927 * by restoring from saved area. 4928 */ 4929 if (hsotg->params.g_dma_desc && 4930 (dr->doepctl[i] & DXEPCTL_EPENA)) 4931 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 4932 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i)); 4933 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i)); 4934 } 4935 4936 return 0; 4937 } 4938 4939 /** 4940 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 4941 * 4942 * @hsotg: Programming view of DWC_otg controller 4943 * 4944 */ 4945 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 4946 { 4947 u32 val; 4948 4949 if (!hsotg->params.lpm) 4950 return; 4951 4952 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 4953 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 4954 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 4955 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 4956 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 4957 dwc2_writel(val, hsotg->regs + GLPMCFG); 4958 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs 4959 + GLPMCFG)); 4960 } 4961 4962 /** 4963 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 4964 * 4965 * @hsotg: Programming view of the DWC_otg controller 4966 * 4967 * Return non-zero if failed to enter to hibernation. 4968 */ 4969 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 4970 { 4971 u32 gpwrdn; 4972 int ret = 0; 4973 4974 /* Change to L2(suspend) state */ 4975 hsotg->lx_state = DWC2_L2; 4976 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 4977 ret = dwc2_backup_global_registers(hsotg); 4978 if (ret) { 4979 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 4980 __func__); 4981 return ret; 4982 } 4983 ret = dwc2_backup_device_registers(hsotg); 4984 if (ret) { 4985 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 4986 __func__); 4987 return ret; 4988 } 4989 4990 gpwrdn = GPWRDN_PWRDNRSTN; 4991 gpwrdn |= GPWRDN_PMUACTV; 4992 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 4993 udelay(10); 4994 4995 /* Set flag to indicate that we are in hibernation */ 4996 hsotg->hibernated = 1; 4997 4998 /* Enable interrupts from wake up logic */ 4999 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5000 gpwrdn |= GPWRDN_PMUINTSEL; 5001 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5002 udelay(10); 5003 5004 /* Unmask device mode interrupts in GPWRDN */ 5005 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5006 gpwrdn |= GPWRDN_RST_DET_MSK; 5007 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5008 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5009 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5010 udelay(10); 5011 5012 /* Enable Power Down Clamp */ 5013 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5014 gpwrdn |= GPWRDN_PWRDNCLMP; 5015 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5016 udelay(10); 5017 5018 /* Switch off VDD */ 5019 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5020 gpwrdn |= GPWRDN_PWRDNSWTCH; 5021 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5022 udelay(10); 5023 5024 /* Save gpwrdn register for further usage if stschng interrupt */ 5025 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5026 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5027 5028 return ret; 5029 } 5030 5031 /** 5032 * dwc2_gadget_exit_hibernation() 5033 * This function is for exiting from Device mode hibernation by host initiated 5034 * resume/reset and device initiated remote-wakeup. 5035 * 5036 * @hsotg: Programming view of the DWC_otg controller 5037 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5038 * @reset: indicates whether resume is initiated by Reset. 5039 * 5040 * Return non-zero if failed to exit from hibernation. 5041 */ 5042 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5043 int rem_wakeup, int reset) 5044 { 5045 u32 pcgcctl; 5046 u32 gpwrdn; 5047 u32 dctl; 5048 int ret = 0; 5049 struct dwc2_gregs_backup *gr; 5050 struct dwc2_dregs_backup *dr; 5051 5052 gr = &hsotg->gr_backup; 5053 dr = &hsotg->dr_backup; 5054 5055 if (!hsotg->hibernated) { 5056 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5057 return 1; 5058 } 5059 dev_dbg(hsotg->dev, 5060 "%s: called with rem_wakeup = %d reset = %d\n", 5061 __func__, rem_wakeup, reset); 5062 5063 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5064 5065 if (!reset) { 5066 /* Clear all pending interupts */ 5067 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 5068 } 5069 5070 /* De-assert Restore */ 5071 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5072 gpwrdn &= ~GPWRDN_RESTORE; 5073 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5074 udelay(10); 5075 5076 if (!rem_wakeup) { 5077 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL); 5078 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5079 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL); 5080 } 5081 5082 /* Restore GUSBCFG, DCFG and DCTL */ 5083 dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG); 5084 dwc2_writel(dr->dcfg, hsotg->regs + DCFG); 5085 dwc2_writel(dr->dctl, hsotg->regs + DCTL); 5086 5087 /* De-assert Wakeup Logic */ 5088 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5089 gpwrdn &= ~GPWRDN_PMUACTV; 5090 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5091 5092 if (rem_wakeup) { 5093 udelay(10); 5094 /* Start Remote Wakeup Signaling */ 5095 dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL); 5096 } else { 5097 udelay(50); 5098 /* Set Device programming done bit */ 5099 dctl = dwc2_readl(hsotg->regs + DCTL); 5100 dctl |= DCTL_PWRONPRGDONE; 5101 dwc2_writel(dctl, hsotg->regs + DCTL); 5102 } 5103 /* Wait for interrupts which must be cleared */ 5104 mdelay(2); 5105 /* Clear all pending interupts */ 5106 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 5107 5108 /* Restore global registers */ 5109 ret = dwc2_restore_global_registers(hsotg); 5110 if (ret) { 5111 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5112 __func__); 5113 return ret; 5114 } 5115 5116 /* Restore device registers */ 5117 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5118 if (ret) { 5119 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5120 __func__); 5121 return ret; 5122 } 5123 5124 if (rem_wakeup) { 5125 mdelay(10); 5126 dctl = dwc2_readl(hsotg->regs + DCTL); 5127 dctl &= ~DCTL_RMTWKUPSIG; 5128 dwc2_writel(dctl, hsotg->regs + DCTL); 5129 } 5130 5131 hsotg->hibernated = 0; 5132 hsotg->lx_state = DWC2_L0; 5133 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5134 5135 return ret; 5136 } 5137