xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 	gintsts2 &= gintmsk2;
264 
265 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
266 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
267 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
268 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
269 	}
270 }
271 
272 /**
273  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
274  * TX FIFOs
275  *
276  * @hsotg: Programming view of the DWC_otg controller
277  */
278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
279 {
280 	int tx_fifo_count;
281 	int tx_fifo_depth;
282 
283 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
284 
285 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
286 
287 	if (!tx_fifo_count)
288 		return tx_fifo_depth;
289 	else
290 		return tx_fifo_depth / tx_fifo_count;
291 }
292 
293 /**
294  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
295  * @hsotg: The device instance.
296  */
297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
298 {
299 	unsigned int ep;
300 	unsigned int addr;
301 	int timeout;
302 
303 	u32 val;
304 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
305 
306 	/* Reset fifo map if not correctly cleared during previous session */
307 	WARN_ON(hsotg->fifo_map);
308 	hsotg->fifo_map = 0;
309 
310 	/* set RX/NPTX FIFO sizes */
311 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
312 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
313 		    FIFOSIZE_STARTADDR_SHIFT) |
314 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
315 		    GNPTXFSIZ);
316 
317 	/*
318 	 * arange all the rest of the TX FIFOs, as some versions of this
319 	 * block have overlapping default addresses. This also ensures
320 	 * that if the settings have been changed, then they are set to
321 	 * known values.
322 	 */
323 
324 	/* start at the end of the GNPTXFSIZ, rounded up */
325 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
326 
327 	/*
328 	 * Configure fifos sizes from provided configuration and assign
329 	 * them to endpoints dynamically according to maxpacket size value of
330 	 * given endpoint.
331 	 */
332 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
333 		if (!txfsz[ep])
334 			continue;
335 		val = addr;
336 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
337 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
338 			  "insufficient fifo memory");
339 		addr += txfsz[ep];
340 
341 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
342 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
343 	}
344 
345 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
346 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
347 		    GDFIFOCFG);
348 	/*
349 	 * according to p428 of the design guide, we need to ensure that
350 	 * all fifos are flushed before continuing
351 	 */
352 
353 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
354 	       GRSTCTL_RXFFLSH, GRSTCTL);
355 
356 	/* wait until the fifos are both flushed */
357 	timeout = 100;
358 	while (1) {
359 		val = dwc2_readl(hsotg, GRSTCTL);
360 
361 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
362 			break;
363 
364 		if (--timeout == 0) {
365 			dev_err(hsotg->dev,
366 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
367 				__func__, val);
368 			break;
369 		}
370 
371 		udelay(1);
372 	}
373 
374 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 }
376 
377 /**
378  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
379  * @ep: USB endpoint to allocate request for.
380  * @flags: Allocation flags
381  *
382  * Allocate a new USB request structure appropriate for the specified endpoint
383  */
384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
385 						       gfp_t flags)
386 {
387 	struct dwc2_hsotg_req *req;
388 
389 	req = kzalloc(sizeof(*req), flags);
390 	if (!req)
391 		return NULL;
392 
393 	INIT_LIST_HEAD(&req->queue);
394 
395 	return &req->req;
396 }
397 
398 /**
399  * is_ep_periodic - return true if the endpoint is in periodic mode.
400  * @hs_ep: The endpoint to query.
401  *
402  * Returns true if the endpoint is in periodic mode, meaning it is being
403  * used for an Interrupt or ISO transfer.
404  */
405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
406 {
407 	return hs_ep->periodic;
408 }
409 
410 /**
411  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
412  * @hsotg: The device state.
413  * @hs_ep: The endpoint for the request
414  * @hs_req: The request being processed.
415  *
416  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
417  * of a request to ensure the buffer is ready for access by the caller.
418  */
419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
420 				 struct dwc2_hsotg_ep *hs_ep,
421 				struct dwc2_hsotg_req *hs_req)
422 {
423 	struct usb_request *req = &hs_req->req;
424 
425 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
426 }
427 
428 /*
429  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
430  * for Control endpoint
431  * @hsotg: The device state.
432  *
433  * This function will allocate 4 descriptor chains for EP 0: 2 for
434  * Setup stage, per one for IN and OUT data/status transactions.
435  */
436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
437 {
438 	hsotg->setup_desc[0] =
439 		dmam_alloc_coherent(hsotg->dev,
440 				    sizeof(struct dwc2_dma_desc),
441 				    &hsotg->setup_desc_dma[0],
442 				    GFP_KERNEL);
443 	if (!hsotg->setup_desc[0])
444 		goto fail;
445 
446 	hsotg->setup_desc[1] =
447 		dmam_alloc_coherent(hsotg->dev,
448 				    sizeof(struct dwc2_dma_desc),
449 				    &hsotg->setup_desc_dma[1],
450 				    GFP_KERNEL);
451 	if (!hsotg->setup_desc[1])
452 		goto fail;
453 
454 	hsotg->ctrl_in_desc =
455 		dmam_alloc_coherent(hsotg->dev,
456 				    sizeof(struct dwc2_dma_desc),
457 				    &hsotg->ctrl_in_desc_dma,
458 				    GFP_KERNEL);
459 	if (!hsotg->ctrl_in_desc)
460 		goto fail;
461 
462 	hsotg->ctrl_out_desc =
463 		dmam_alloc_coherent(hsotg->dev,
464 				    sizeof(struct dwc2_dma_desc),
465 				    &hsotg->ctrl_out_desc_dma,
466 				    GFP_KERNEL);
467 	if (!hsotg->ctrl_out_desc)
468 		goto fail;
469 
470 	return 0;
471 
472 fail:
473 	return -ENOMEM;
474 }
475 
476 /**
477  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
478  * @hsotg: The controller state.
479  * @hs_ep: The endpoint we're going to write for.
480  * @hs_req: The request to write data for.
481  *
482  * This is called when the TxFIFO has some space in it to hold a new
483  * transmission and we have something to give it. The actual setup of
484  * the data size is done elsewhere, so all we have to do is to actually
485  * write the data.
486  *
487  * The return value is zero if there is more space (or nothing was done)
488  * otherwise -ENOSPC is returned if the FIFO space was used up.
489  *
490  * This routine is only needed for PIO
491  */
492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
493 				 struct dwc2_hsotg_ep *hs_ep,
494 				struct dwc2_hsotg_req *hs_req)
495 {
496 	bool periodic = is_ep_periodic(hs_ep);
497 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
498 	int buf_pos = hs_req->req.actual;
499 	int to_write = hs_ep->size_loaded;
500 	void *data;
501 	int can_write;
502 	int pkt_round;
503 	int max_transfer;
504 
505 	to_write -= (buf_pos - hs_ep->last_load);
506 
507 	/* if there's nothing to write, get out early */
508 	if (to_write == 0)
509 		return 0;
510 
511 	if (periodic && !hsotg->dedicated_fifos) {
512 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
513 		int size_left;
514 		int size_done;
515 
516 		/*
517 		 * work out how much data was loaded so we can calculate
518 		 * how much data is left in the fifo.
519 		 */
520 
521 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
522 
523 		/*
524 		 * if shared fifo, we cannot write anything until the
525 		 * previous data has been completely sent.
526 		 */
527 		if (hs_ep->fifo_load != 0) {
528 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
529 			return -ENOSPC;
530 		}
531 
532 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
533 			__func__, size_left,
534 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
535 
536 		/* how much of the data has moved */
537 		size_done = hs_ep->size_loaded - size_left;
538 
539 		/* how much data is left in the fifo */
540 		can_write = hs_ep->fifo_load - size_done;
541 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
542 			__func__, can_write);
543 
544 		can_write = hs_ep->fifo_size - can_write;
545 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
546 			__func__, can_write);
547 
548 		if (can_write <= 0) {
549 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
550 			return -ENOSPC;
551 		}
552 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
553 		can_write = dwc2_readl(hsotg,
554 				       DTXFSTS(hs_ep->fifo_index));
555 
556 		can_write &= 0xffff;
557 		can_write *= 4;
558 	} else {
559 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
560 			dev_dbg(hsotg->dev,
561 				"%s: no queue slots available (0x%08x)\n",
562 				__func__, gnptxsts);
563 
564 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
565 			return -ENOSPC;
566 		}
567 
568 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
569 		can_write *= 4;	/* fifo size is in 32bit quantities. */
570 	}
571 
572 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
573 
574 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
575 		__func__, gnptxsts, can_write, to_write, max_transfer);
576 
577 	/*
578 	 * limit to 512 bytes of data, it seems at least on the non-periodic
579 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
580 	 * fragment of the end of the transfer in it.
581 	 */
582 	if (can_write > 512 && !periodic)
583 		can_write = 512;
584 
585 	/*
586 	 * limit the write to one max-packet size worth of data, but allow
587 	 * the transfer to return that it did not run out of fifo space
588 	 * doing it.
589 	 */
590 	if (to_write > max_transfer) {
591 		to_write = max_transfer;
592 
593 		/* it's needed only when we do not use dedicated fifos */
594 		if (!hsotg->dedicated_fifos)
595 			dwc2_hsotg_en_gsint(hsotg,
596 					    periodic ? GINTSTS_PTXFEMP :
597 					   GINTSTS_NPTXFEMP);
598 	}
599 
600 	/* see if we can write data */
601 
602 	if (to_write > can_write) {
603 		to_write = can_write;
604 		pkt_round = to_write % max_transfer;
605 
606 		/*
607 		 * Round the write down to an
608 		 * exact number of packets.
609 		 *
610 		 * Note, we do not currently check to see if we can ever
611 		 * write a full packet or not to the FIFO.
612 		 */
613 
614 		if (pkt_round)
615 			to_write -= pkt_round;
616 
617 		/*
618 		 * enable correct FIFO interrupt to alert us when there
619 		 * is more room left.
620 		 */
621 
622 		/* it's needed only when we do not use dedicated fifos */
623 		if (!hsotg->dedicated_fifos)
624 			dwc2_hsotg_en_gsint(hsotg,
625 					    periodic ? GINTSTS_PTXFEMP :
626 					   GINTSTS_NPTXFEMP);
627 	}
628 
629 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
630 		to_write, hs_req->req.length, can_write, buf_pos);
631 
632 	if (to_write <= 0)
633 		return -ENOSPC;
634 
635 	hs_req->req.actual = buf_pos + to_write;
636 	hs_ep->total_data += to_write;
637 
638 	if (periodic)
639 		hs_ep->fifo_load += to_write;
640 
641 	to_write = DIV_ROUND_UP(to_write, 4);
642 	data = hs_req->req.buf + buf_pos;
643 
644 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
645 
646 	return (to_write >= can_write) ? -ENOSPC : 0;
647 }
648 
649 /**
650  * get_ep_limit - get the maximum data legnth for this endpoint
651  * @hs_ep: The endpoint
652  *
653  * Return the maximum data that can be queued in one go on a given endpoint
654  * so that transfers that are too long can be split.
655  */
656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
657 {
658 	int index = hs_ep->index;
659 	unsigned int maxsize;
660 	unsigned int maxpkt;
661 
662 	if (index != 0) {
663 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
664 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
665 	} else {
666 		maxsize = 64 + 64;
667 		if (hs_ep->dir_in)
668 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
669 		else
670 			maxpkt = 2;
671 	}
672 
673 	/* we made the constant loading easier above by using +1 */
674 	maxpkt--;
675 	maxsize--;
676 
677 	/*
678 	 * constrain by packet count if maxpkts*pktsize is greater
679 	 * than the length register size.
680 	 */
681 
682 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
683 		maxsize = maxpkt * hs_ep->ep.maxpacket;
684 
685 	return maxsize;
686 }
687 
688 /**
689  * dwc2_hsotg_read_frameno - read current frame number
690  * @hsotg: The device instance
691  *
692  * Return the current frame number
693  */
694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
695 {
696 	u32 dsts;
697 
698 	dsts = dwc2_readl(hsotg, DSTS);
699 	dsts &= DSTS_SOFFN_MASK;
700 	dsts >>= DSTS_SOFFN_SHIFT;
701 
702 	return dsts;
703 }
704 
705 /**
706  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
707  * DMA descriptor chain prepared for specific endpoint
708  * @hs_ep: The endpoint
709  *
710  * Return the maximum data that can be queued in one go on a given endpoint
711  * depending on its descriptor chain capacity so that transfers that
712  * are too long can be split.
713  */
714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
715 {
716 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
717 	int is_isoc = hs_ep->isochronous;
718 	unsigned int maxsize;
719 	u32 mps = hs_ep->ep.maxpacket;
720 	int dir_in = hs_ep->dir_in;
721 
722 	if (is_isoc)
723 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
724 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
725 					   MAX_DMA_DESC_NUM_HS_ISOC;
726 	else
727 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
728 
729 	/* Interrupt OUT EP with mps not multiple of 4 */
730 	if (hs_ep->index)
731 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
732 			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
733 
734 	return maxsize;
735 }
736 
737 /*
738  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
739  * @hs_ep: The endpoint
740  * @mask: RX/TX bytes mask to be defined
741  *
742  * Returns maximum data payload for one descriptor after analyzing endpoint
743  * characteristics.
744  * DMA descriptor transfer bytes limit depends on EP type:
745  * Control out - MPS,
746  * Isochronous - descriptor rx/tx bytes bitfield limit,
747  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
748  * have concatenations from various descriptors within one packet.
749  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
750  * to a single descriptor.
751  *
752  * Selects corresponding mask for RX/TX bytes as well.
753  */
754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
755 {
756 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
757 	u32 mps = hs_ep->ep.maxpacket;
758 	int dir_in = hs_ep->dir_in;
759 	u32 desc_size = 0;
760 
761 	if (!hs_ep->index && !dir_in) {
762 		desc_size = mps;
763 		*mask = DEV_DMA_NBYTES_MASK;
764 	} else if (hs_ep->isochronous) {
765 		if (dir_in) {
766 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
767 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
768 		} else {
769 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
770 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
771 		}
772 	} else {
773 		desc_size = DEV_DMA_NBYTES_LIMIT;
774 		*mask = DEV_DMA_NBYTES_MASK;
775 
776 		/* Round down desc_size to be mps multiple */
777 		desc_size -= desc_size % mps;
778 	}
779 
780 	/* Interrupt OUT EP with mps not multiple of 4 */
781 	if (hs_ep->index)
782 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
783 			desc_size = mps;
784 			*mask = DEV_DMA_NBYTES_MASK;
785 		}
786 
787 	return desc_size;
788 }
789 
790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
791 						 struct dwc2_dma_desc **desc,
792 						 dma_addr_t dma_buff,
793 						 unsigned int len,
794 						 bool true_last)
795 {
796 	int dir_in = hs_ep->dir_in;
797 	u32 mps = hs_ep->ep.maxpacket;
798 	u32 maxsize = 0;
799 	u32 offset = 0;
800 	u32 mask = 0;
801 	int i;
802 
803 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
804 
805 	hs_ep->desc_count = (len / maxsize) +
806 				((len % maxsize) ? 1 : 0);
807 	if (len == 0)
808 		hs_ep->desc_count = 1;
809 
810 	for (i = 0; i < hs_ep->desc_count; ++i) {
811 		(*desc)->status = 0;
812 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
813 				 << DEV_DMA_BUFF_STS_SHIFT);
814 
815 		if (len > maxsize) {
816 			if (!hs_ep->index && !dir_in)
817 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
818 
819 			(*desc)->status |=
820 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
821 			(*desc)->buf = dma_buff + offset;
822 
823 			len -= maxsize;
824 			offset += maxsize;
825 		} else {
826 			if (true_last)
827 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
828 
829 			if (dir_in)
830 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
831 					((hs_ep->send_zlp && true_last) ?
832 					DEV_DMA_SHORT : 0);
833 
834 			(*desc)->status |=
835 				len << DEV_DMA_NBYTES_SHIFT & mask;
836 			(*desc)->buf = dma_buff + offset;
837 		}
838 
839 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
840 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
841 				 << DEV_DMA_BUFF_STS_SHIFT);
842 		(*desc)++;
843 	}
844 }
845 
846 /*
847  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
848  * @hs_ep: The endpoint
849  * @ureq: Request to transfer
850  * @offset: offset in bytes
851  * @len: Length of the transfer
852  *
853  * This function will iterate over descriptor chain and fill its entries
854  * with corresponding information based on transfer data.
855  */
856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
857 						 dma_addr_t dma_buff,
858 						 unsigned int len)
859 {
860 	struct usb_request *ureq = NULL;
861 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
862 	struct scatterlist *sg;
863 	int i;
864 	u8 desc_count = 0;
865 
866 	if (hs_ep->req)
867 		ureq = &hs_ep->req->req;
868 
869 	/* non-DMA sg buffer */
870 	if (!ureq || !ureq->num_sgs) {
871 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
872 			dma_buff, len, true);
873 		return;
874 	}
875 
876 	/* DMA sg buffer */
877 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
878 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
879 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
880 			sg_is_last(sg));
881 		desc_count += hs_ep->desc_count;
882 	}
883 
884 	hs_ep->desc_count = desc_count;
885 }
886 
887 /*
888  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
889  * @hs_ep: The isochronous endpoint.
890  * @dma_buff: usb requests dma buffer.
891  * @len: usb request transfer length.
892  *
893  * Fills next free descriptor with the data of the arrived usb request,
894  * frame info, sets Last and IOC bits increments next_desc. If filled
895  * descriptor is not the first one, removes L bit from the previous descriptor
896  * status.
897  */
898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
899 				      dma_addr_t dma_buff, unsigned int len)
900 {
901 	struct dwc2_dma_desc *desc;
902 	struct dwc2_hsotg *hsotg = hs_ep->parent;
903 	u32 index;
904 	u32 mask = 0;
905 	u8 pid = 0;
906 
907 	dwc2_gadget_get_desc_params(hs_ep, &mask);
908 
909 	index = hs_ep->next_desc;
910 	desc = &hs_ep->desc_list[index];
911 
912 	/* Check if descriptor chain full */
913 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
914 	    DEV_DMA_BUFF_STS_HREADY) {
915 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
916 		return 1;
917 	}
918 
919 	/* Clear L bit of previous desc if more than one entries in the chain */
920 	if (hs_ep->next_desc)
921 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
922 
923 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
924 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
925 
926 	desc->status = 0;
927 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
928 
929 	desc->buf = dma_buff;
930 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
931 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
932 
933 	if (hs_ep->dir_in) {
934 		if (len)
935 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
936 		else
937 			pid = 1;
938 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
939 				 DEV_DMA_ISOC_PID_MASK) |
940 				((len % hs_ep->ep.maxpacket) ?
941 				 DEV_DMA_SHORT : 0) |
942 				((hs_ep->target_frame <<
943 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
944 				 DEV_DMA_ISOC_FRNUM_MASK);
945 	}
946 
947 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
948 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
949 
950 	/* Increment frame number by interval for IN */
951 	if (hs_ep->dir_in)
952 		dwc2_gadget_incr_frame_num(hs_ep);
953 
954 	/* Update index of last configured entry in the chain */
955 	hs_ep->next_desc++;
956 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
957 		hs_ep->next_desc = 0;
958 
959 	return 0;
960 }
961 
962 /*
963  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
964  * @hs_ep: The isochronous endpoint.
965  *
966  * Prepare descriptor chain for isochronous endpoints. Afterwards
967  * write DMA address to HW and enable the endpoint.
968  */
969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
970 {
971 	struct dwc2_hsotg *hsotg = hs_ep->parent;
972 	struct dwc2_hsotg_req *hs_req, *treq;
973 	int index = hs_ep->index;
974 	int ret;
975 	int i;
976 	u32 dma_reg;
977 	u32 depctl;
978 	u32 ctrl;
979 	struct dwc2_dma_desc *desc;
980 
981 	if (list_empty(&hs_ep->queue)) {
982 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
983 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
984 		return;
985 	}
986 
987 	/* Initialize descriptor chain by Host Busy status */
988 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
989 		desc = &hs_ep->desc_list[i];
990 		desc->status = 0;
991 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
992 				    << DEV_DMA_BUFF_STS_SHIFT);
993 	}
994 
995 	hs_ep->next_desc = 0;
996 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
997 		dma_addr_t dma_addr = hs_req->req.dma;
998 
999 		if (hs_req->req.num_sgs) {
1000 			WARN_ON(hs_req->req.num_sgs > 1);
1001 			dma_addr = sg_dma_address(hs_req->req.sg);
1002 		}
1003 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1004 						 hs_req->req.length);
1005 		if (ret)
1006 			break;
1007 	}
1008 
1009 	hs_ep->compl_desc = 0;
1010 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1011 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1012 
1013 	/* write descriptor chain address to control register */
1014 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1015 
1016 	ctrl = dwc2_readl(hsotg, depctl);
1017 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1018 	dwc2_writel(hsotg, ctrl, depctl);
1019 }
1020 
1021 /**
1022  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1023  * @hsotg: The controller state.
1024  * @hs_ep: The endpoint to process a request for
1025  * @hs_req: The request to start.
1026  * @continuing: True if we are doing more for the current request.
1027  *
1028  * Start the given request running by setting the endpoint registers
1029  * appropriately, and writing any data to the FIFOs.
1030  */
1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1032 				 struct dwc2_hsotg_ep *hs_ep,
1033 				struct dwc2_hsotg_req *hs_req,
1034 				bool continuing)
1035 {
1036 	struct usb_request *ureq = &hs_req->req;
1037 	int index = hs_ep->index;
1038 	int dir_in = hs_ep->dir_in;
1039 	u32 epctrl_reg;
1040 	u32 epsize_reg;
1041 	u32 epsize;
1042 	u32 ctrl;
1043 	unsigned int length;
1044 	unsigned int packets;
1045 	unsigned int maxreq;
1046 	unsigned int dma_reg;
1047 
1048 	if (index != 0) {
1049 		if (hs_ep->req && !continuing) {
1050 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1051 			WARN_ON(1);
1052 			return;
1053 		} else if (hs_ep->req != hs_req && continuing) {
1054 			dev_err(hsotg->dev,
1055 				"%s: continue different req\n", __func__);
1056 			WARN_ON(1);
1057 			return;
1058 		}
1059 	}
1060 
1061 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1062 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1063 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1064 
1065 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1066 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1067 		hs_ep->dir_in ? "in" : "out");
1068 
1069 	/* If endpoint is stalled, we will restart request later */
1070 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1071 
1072 	if (index && ctrl & DXEPCTL_STALL) {
1073 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1074 		return;
1075 	}
1076 
1077 	length = ureq->length - ureq->actual;
1078 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1079 		ureq->length, ureq->actual);
1080 
1081 	if (!using_desc_dma(hsotg))
1082 		maxreq = get_ep_limit(hs_ep);
1083 	else
1084 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1085 
1086 	if (length > maxreq) {
1087 		int round = maxreq % hs_ep->ep.maxpacket;
1088 
1089 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1090 			__func__, length, maxreq, round);
1091 
1092 		/* round down to multiple of packets */
1093 		if (round)
1094 			maxreq -= round;
1095 
1096 		length = maxreq;
1097 	}
1098 
1099 	if (length)
1100 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1101 	else
1102 		packets = 1;	/* send one packet if length is zero. */
1103 
1104 	if (dir_in && index != 0)
1105 		if (hs_ep->isochronous)
1106 			epsize = DXEPTSIZ_MC(packets);
1107 		else
1108 			epsize = DXEPTSIZ_MC(1);
1109 	else
1110 		epsize = 0;
1111 
1112 	/*
1113 	 * zero length packet should be programmed on its own and should not
1114 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1115 	 */
1116 	if (dir_in && ureq->zero && !continuing) {
1117 		/* Test if zlp is actually required. */
1118 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1119 		    !(ureq->length % hs_ep->ep.maxpacket))
1120 			hs_ep->send_zlp = 1;
1121 	}
1122 
1123 	epsize |= DXEPTSIZ_PKTCNT(packets);
1124 	epsize |= DXEPTSIZ_XFERSIZE(length);
1125 
1126 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1127 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1128 
1129 	/* store the request as the current one we're doing */
1130 	hs_ep->req = hs_req;
1131 
1132 	if (using_desc_dma(hsotg)) {
1133 		u32 offset = 0;
1134 		u32 mps = hs_ep->ep.maxpacket;
1135 
1136 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1137 		if (!dir_in) {
1138 			if (!index)
1139 				length = mps;
1140 			else if (length % mps)
1141 				length += (mps - (length % mps));
1142 		}
1143 
1144 		if (continuing)
1145 			offset = ureq->actual;
1146 
1147 		/* Fill DDMA chain entries */
1148 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1149 						     length);
1150 
1151 		/* write descriptor chain address to control register */
1152 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1153 
1154 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1155 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1156 	} else {
1157 		/* write size / packets */
1158 		dwc2_writel(hsotg, epsize, epsize_reg);
1159 
1160 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1161 			/*
1162 			 * write DMA address to control register, buffer
1163 			 * already synced by dwc2_hsotg_ep_queue().
1164 			 */
1165 
1166 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1167 
1168 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1169 				__func__, &ureq->dma, dma_reg);
1170 		}
1171 	}
1172 
1173 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1174 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1175 		dwc2_gadget_incr_frame_num(hs_ep);
1176 
1177 		if (hs_ep->target_frame & 0x1)
1178 			ctrl |= DXEPCTL_SETODDFR;
1179 		else
1180 			ctrl |= DXEPCTL_SETEVENFR;
1181 	}
1182 
1183 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1184 
1185 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1186 
1187 	/* For Setup request do not clear NAK */
1188 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1189 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1190 
1191 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1192 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1193 
1194 	/*
1195 	 * set these, it seems that DMA support increments past the end
1196 	 * of the packet buffer so we need to calculate the length from
1197 	 * this information.
1198 	 */
1199 	hs_ep->size_loaded = length;
1200 	hs_ep->last_load = ureq->actual;
1201 
1202 	if (dir_in && !using_dma(hsotg)) {
1203 		/* set these anyway, we may need them for non-periodic in */
1204 		hs_ep->fifo_load = 0;
1205 
1206 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1207 	}
1208 
1209 	/*
1210 	 * Note, trying to clear the NAK here causes problems with transmit
1211 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1212 	 */
1213 
1214 	/* check ep is enabled */
1215 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1216 		dev_dbg(hsotg->dev,
1217 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1218 			 index, dwc2_readl(hsotg, epctrl_reg));
1219 
1220 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1221 		__func__, dwc2_readl(hsotg, epctrl_reg));
1222 
1223 	/* enable ep interrupts */
1224 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1225 }
1226 
1227 /**
1228  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1229  * @hsotg: The device state.
1230  * @hs_ep: The endpoint the request is on.
1231  * @req: The request being processed.
1232  *
1233  * We've been asked to queue a request, so ensure that the memory buffer
1234  * is correctly setup for DMA. If we've been passed an extant DMA address
1235  * then ensure the buffer has been synced to memory. If our buffer has no
1236  * DMA memory, then we map the memory and mark our request to allow us to
1237  * cleanup on completion.
1238  */
1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1240 			      struct dwc2_hsotg_ep *hs_ep,
1241 			     struct usb_request *req)
1242 {
1243 	int ret;
1244 
1245 	hs_ep->map_dir = hs_ep->dir_in;
1246 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1247 	if (ret)
1248 		goto dma_error;
1249 
1250 	return 0;
1251 
1252 dma_error:
1253 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1254 		__func__, req->buf, req->length);
1255 
1256 	return -EIO;
1257 }
1258 
1259 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1260 						 struct dwc2_hsotg_ep *hs_ep,
1261 						 struct dwc2_hsotg_req *hs_req)
1262 {
1263 	void *req_buf = hs_req->req.buf;
1264 
1265 	/* If dma is not being used or buffer is aligned */
1266 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1267 		return 0;
1268 
1269 	WARN_ON(hs_req->saved_req_buf);
1270 
1271 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1272 		hs_ep->ep.name, req_buf, hs_req->req.length);
1273 
1274 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1275 	if (!hs_req->req.buf) {
1276 		hs_req->req.buf = req_buf;
1277 		dev_err(hsotg->dev,
1278 			"%s: unable to allocate memory for bounce buffer\n",
1279 			__func__);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	/* Save actual buffer */
1284 	hs_req->saved_req_buf = req_buf;
1285 
1286 	if (hs_ep->dir_in)
1287 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1288 	return 0;
1289 }
1290 
1291 static void
1292 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1293 					 struct dwc2_hsotg_ep *hs_ep,
1294 					 struct dwc2_hsotg_req *hs_req)
1295 {
1296 	/* If dma is not being used or buffer was aligned */
1297 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1298 		return;
1299 
1300 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1301 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1302 
1303 	/* Copy data from bounce buffer on successful out transfer */
1304 	if (!hs_ep->dir_in && !hs_req->req.status)
1305 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1306 		       hs_req->req.actual);
1307 
1308 	/* Free bounce buffer */
1309 	kfree(hs_req->req.buf);
1310 
1311 	hs_req->req.buf = hs_req->saved_req_buf;
1312 	hs_req->saved_req_buf = NULL;
1313 }
1314 
1315 /**
1316  * dwc2_gadget_target_frame_elapsed - Checks target frame
1317  * @hs_ep: The driver endpoint to check
1318  *
1319  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1320  * corresponding transfer.
1321  */
1322 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1323 {
1324 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1325 	u32 target_frame = hs_ep->target_frame;
1326 	u32 current_frame = hsotg->frame_number;
1327 	bool frame_overrun = hs_ep->frame_overrun;
1328 
1329 	if (!frame_overrun && current_frame >= target_frame)
1330 		return true;
1331 
1332 	if (frame_overrun && current_frame >= target_frame &&
1333 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1334 		return true;
1335 
1336 	return false;
1337 }
1338 
1339 /*
1340  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1341  * @hsotg: The driver state
1342  * @hs_ep: the ep descriptor chain is for
1343  *
1344  * Called to update EP0 structure's pointers depend on stage of
1345  * control transfer.
1346  */
1347 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1348 					  struct dwc2_hsotg_ep *hs_ep)
1349 {
1350 	switch (hsotg->ep0_state) {
1351 	case DWC2_EP0_SETUP:
1352 	case DWC2_EP0_STATUS_OUT:
1353 		hs_ep->desc_list = hsotg->setup_desc[0];
1354 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1355 		break;
1356 	case DWC2_EP0_DATA_IN:
1357 	case DWC2_EP0_STATUS_IN:
1358 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1359 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1360 		break;
1361 	case DWC2_EP0_DATA_OUT:
1362 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1363 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1364 		break;
1365 	default:
1366 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1367 			hsotg->ep0_state);
1368 		return -EINVAL;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1375 			       gfp_t gfp_flags)
1376 {
1377 	struct dwc2_hsotg_req *hs_req = our_req(req);
1378 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1379 	struct dwc2_hsotg *hs = hs_ep->parent;
1380 	bool first;
1381 	int ret;
1382 	u32 maxsize = 0;
1383 	u32 mask = 0;
1384 
1385 
1386 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1387 		ep->name, req, req->length, req->buf, req->no_interrupt,
1388 		req->zero, req->short_not_ok);
1389 
1390 	/* Prevent new request submission when controller is suspended */
1391 	if (hs->lx_state != DWC2_L0) {
1392 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1393 			__func__);
1394 		return -EAGAIN;
1395 	}
1396 
1397 	/* initialise status of the request */
1398 	INIT_LIST_HEAD(&hs_req->queue);
1399 	req->actual = 0;
1400 	req->status = -EINPROGRESS;
1401 
1402 	/* Don't queue ISOC request if length greater than mps*mc */
1403 	if (hs_ep->isochronous &&
1404 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1405 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1406 		return -EINVAL;
1407 	}
1408 
1409 	/* In DDMA mode for ISOC's don't queue request if length greater
1410 	 * than descriptor limits.
1411 	 */
1412 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1413 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1414 		if (hs_ep->dir_in && req->length > maxsize) {
1415 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1416 				req->length, maxsize);
1417 			return -EINVAL;
1418 		}
1419 
1420 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1421 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1422 				req->length, hs_ep->ep.maxpacket);
1423 			return -EINVAL;
1424 		}
1425 	}
1426 
1427 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1428 	if (ret)
1429 		return ret;
1430 
1431 	/* if we're using DMA, sync the buffers as necessary */
1432 	if (using_dma(hs)) {
1433 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1434 		if (ret)
1435 			return ret;
1436 	}
1437 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1438 	if (using_desc_dma(hs) && !hs_ep->index) {
1439 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1440 		if (ret)
1441 			return ret;
1442 	}
1443 
1444 	first = list_empty(&hs_ep->queue);
1445 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1446 
1447 	/*
1448 	 * Handle DDMA isochronous transfers separately - just add new entry
1449 	 * to the descriptor chain.
1450 	 * Transfer will be started once SW gets either one of NAK or
1451 	 * OutTknEpDis interrupts.
1452 	 */
1453 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1454 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1455 			dma_addr_t dma_addr = hs_req->req.dma;
1456 
1457 			if (hs_req->req.num_sgs) {
1458 				WARN_ON(hs_req->req.num_sgs > 1);
1459 				dma_addr = sg_dma_address(hs_req->req.sg);
1460 			}
1461 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1462 						   hs_req->req.length);
1463 		}
1464 		return 0;
1465 	}
1466 
1467 	/* Change EP direction if status phase request is after data out */
1468 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1469 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1470 		hs_ep->dir_in = 1;
1471 
1472 	if (first) {
1473 		if (!hs_ep->isochronous) {
1474 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1475 			return 0;
1476 		}
1477 
1478 		/* Update current frame number value. */
1479 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1480 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1481 			dwc2_gadget_incr_frame_num(hs_ep);
1482 			/* Update current frame number value once more as it
1483 			 * changes here.
1484 			 */
1485 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1486 		}
1487 
1488 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1489 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1490 	}
1491 	return 0;
1492 }
1493 
1494 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1495 				    gfp_t gfp_flags)
1496 {
1497 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1498 	struct dwc2_hsotg *hs = hs_ep->parent;
1499 	unsigned long flags;
1500 	int ret;
1501 
1502 	spin_lock_irqsave(&hs->lock, flags);
1503 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1504 	spin_unlock_irqrestore(&hs->lock, flags);
1505 
1506 	return ret;
1507 }
1508 
1509 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1510 				       struct usb_request *req)
1511 {
1512 	struct dwc2_hsotg_req *hs_req = our_req(req);
1513 
1514 	kfree(hs_req);
1515 }
1516 
1517 /**
1518  * dwc2_hsotg_complete_oursetup - setup completion callback
1519  * @ep: The endpoint the request was on.
1520  * @req: The request completed.
1521  *
1522  * Called on completion of any requests the driver itself
1523  * submitted that need cleaning up.
1524  */
1525 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1526 					 struct usb_request *req)
1527 {
1528 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1529 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1530 
1531 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1532 
1533 	dwc2_hsotg_ep_free_request(ep, req);
1534 }
1535 
1536 /**
1537  * ep_from_windex - convert control wIndex value to endpoint
1538  * @hsotg: The driver state.
1539  * @windex: The control request wIndex field (in host order).
1540  *
1541  * Convert the given wIndex into a pointer to an driver endpoint
1542  * structure, or return NULL if it is not a valid endpoint.
1543  */
1544 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1545 					    u32 windex)
1546 {
1547 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1548 	int idx = windex & 0x7F;
1549 
1550 	if (windex >= 0x100)
1551 		return NULL;
1552 
1553 	if (idx > hsotg->num_of_eps)
1554 		return NULL;
1555 
1556 	return index_to_ep(hsotg, idx, dir);
1557 }
1558 
1559 /**
1560  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1561  * @hsotg: The driver state.
1562  * @testmode: requested usb test mode
1563  * Enable usb Test Mode requested by the Host.
1564  */
1565 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1566 {
1567 	int dctl = dwc2_readl(hsotg, DCTL);
1568 
1569 	dctl &= ~DCTL_TSTCTL_MASK;
1570 	switch (testmode) {
1571 	case USB_TEST_J:
1572 	case USB_TEST_K:
1573 	case USB_TEST_SE0_NAK:
1574 	case USB_TEST_PACKET:
1575 	case USB_TEST_FORCE_ENABLE:
1576 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1577 		break;
1578 	default:
1579 		return -EINVAL;
1580 	}
1581 	dwc2_writel(hsotg, dctl, DCTL);
1582 	return 0;
1583 }
1584 
1585 /**
1586  * dwc2_hsotg_send_reply - send reply to control request
1587  * @hsotg: The device state
1588  * @ep: Endpoint 0
1589  * @buff: Buffer for request
1590  * @length: Length of reply.
1591  *
1592  * Create a request and queue it on the given endpoint. This is useful as
1593  * an internal method of sending replies to certain control requests, etc.
1594  */
1595 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1596 				 struct dwc2_hsotg_ep *ep,
1597 				void *buff,
1598 				int length)
1599 {
1600 	struct usb_request *req;
1601 	int ret;
1602 
1603 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1604 
1605 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1606 	hsotg->ep0_reply = req;
1607 	if (!req) {
1608 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1609 		return -ENOMEM;
1610 	}
1611 
1612 	req->buf = hsotg->ep0_buff;
1613 	req->length = length;
1614 	/*
1615 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1616 	 * STATUS stage.
1617 	 */
1618 	req->zero = 0;
1619 	req->complete = dwc2_hsotg_complete_oursetup;
1620 
1621 	if (length)
1622 		memcpy(req->buf, buff, length);
1623 
1624 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1625 	if (ret) {
1626 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1627 		return ret;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 /**
1634  * dwc2_hsotg_process_req_status - process request GET_STATUS
1635  * @hsotg: The device state
1636  * @ctrl: USB control request
1637  */
1638 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1639 					 struct usb_ctrlrequest *ctrl)
1640 {
1641 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1642 	struct dwc2_hsotg_ep *ep;
1643 	__le16 reply;
1644 	u16 status;
1645 	int ret;
1646 
1647 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1648 
1649 	if (!ep0->dir_in) {
1650 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1651 		return -EINVAL;
1652 	}
1653 
1654 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1655 	case USB_RECIP_DEVICE:
1656 		status = hsotg->gadget.is_selfpowered <<
1657 			 USB_DEVICE_SELF_POWERED;
1658 		status |= hsotg->remote_wakeup_allowed <<
1659 			  USB_DEVICE_REMOTE_WAKEUP;
1660 		reply = cpu_to_le16(status);
1661 		break;
1662 
1663 	case USB_RECIP_INTERFACE:
1664 		/* currently, the data result should be zero */
1665 		reply = cpu_to_le16(0);
1666 		break;
1667 
1668 	case USB_RECIP_ENDPOINT:
1669 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1670 		if (!ep)
1671 			return -ENOENT;
1672 
1673 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1674 		break;
1675 
1676 	default:
1677 		return 0;
1678 	}
1679 
1680 	if (le16_to_cpu(ctrl->wLength) != 2)
1681 		return -EINVAL;
1682 
1683 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1684 	if (ret) {
1685 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1686 		return ret;
1687 	}
1688 
1689 	return 1;
1690 }
1691 
1692 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1693 
1694 /**
1695  * get_ep_head - return the first request on the endpoint
1696  * @hs_ep: The controller endpoint to get
1697  *
1698  * Get the first request on the endpoint.
1699  */
1700 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1701 {
1702 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1703 					queue);
1704 }
1705 
1706 /**
1707  * dwc2_gadget_start_next_request - Starts next request from ep queue
1708  * @hs_ep: Endpoint structure
1709  *
1710  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1711  * in its handler. Hence we need to unmask it here to be able to do
1712  * resynchronization.
1713  */
1714 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1715 {
1716 	u32 mask;
1717 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1718 	int dir_in = hs_ep->dir_in;
1719 	struct dwc2_hsotg_req *hs_req;
1720 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1721 
1722 	if (!list_empty(&hs_ep->queue)) {
1723 		hs_req = get_ep_head(hs_ep);
1724 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1725 		return;
1726 	}
1727 	if (!hs_ep->isochronous)
1728 		return;
1729 
1730 	if (dir_in) {
1731 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1732 			__func__);
1733 	} else {
1734 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1735 			__func__);
1736 		mask = dwc2_readl(hsotg, epmsk_reg);
1737 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1738 		dwc2_writel(hsotg, mask, epmsk_reg);
1739 	}
1740 }
1741 
1742 /**
1743  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1744  * @hsotg: The device state
1745  * @ctrl: USB control request
1746  */
1747 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1748 					  struct usb_ctrlrequest *ctrl)
1749 {
1750 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1751 	struct dwc2_hsotg_req *hs_req;
1752 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1753 	struct dwc2_hsotg_ep *ep;
1754 	int ret;
1755 	bool halted;
1756 	u32 recip;
1757 	u32 wValue;
1758 	u32 wIndex;
1759 
1760 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1761 		__func__, set ? "SET" : "CLEAR");
1762 
1763 	wValue = le16_to_cpu(ctrl->wValue);
1764 	wIndex = le16_to_cpu(ctrl->wIndex);
1765 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1766 
1767 	switch (recip) {
1768 	case USB_RECIP_DEVICE:
1769 		switch (wValue) {
1770 		case USB_DEVICE_REMOTE_WAKEUP:
1771 			if (set)
1772 				hsotg->remote_wakeup_allowed = 1;
1773 			else
1774 				hsotg->remote_wakeup_allowed = 0;
1775 			break;
1776 
1777 		case USB_DEVICE_TEST_MODE:
1778 			if ((wIndex & 0xff) != 0)
1779 				return -EINVAL;
1780 			if (!set)
1781 				return -EINVAL;
1782 
1783 			hsotg->test_mode = wIndex >> 8;
1784 			break;
1785 		default:
1786 			return -ENOENT;
1787 		}
1788 
1789 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1790 		if (ret) {
1791 			dev_err(hsotg->dev,
1792 				"%s: failed to send reply\n", __func__);
1793 			return ret;
1794 		}
1795 		break;
1796 
1797 	case USB_RECIP_ENDPOINT:
1798 		ep = ep_from_windex(hsotg, wIndex);
1799 		if (!ep) {
1800 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1801 				__func__, wIndex);
1802 			return -ENOENT;
1803 		}
1804 
1805 		switch (wValue) {
1806 		case USB_ENDPOINT_HALT:
1807 			halted = ep->halted;
1808 
1809 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1810 
1811 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1812 			if (ret) {
1813 				dev_err(hsotg->dev,
1814 					"%s: failed to send reply\n", __func__);
1815 				return ret;
1816 			}
1817 
1818 			/*
1819 			 * we have to complete all requests for ep if it was
1820 			 * halted, and the halt was cleared by CLEAR_FEATURE
1821 			 */
1822 
1823 			if (!set && halted) {
1824 				/*
1825 				 * If we have request in progress,
1826 				 * then complete it
1827 				 */
1828 				if (ep->req) {
1829 					hs_req = ep->req;
1830 					ep->req = NULL;
1831 					list_del_init(&hs_req->queue);
1832 					if (hs_req->req.complete) {
1833 						spin_unlock(&hsotg->lock);
1834 						usb_gadget_giveback_request(
1835 							&ep->ep, &hs_req->req);
1836 						spin_lock(&hsotg->lock);
1837 					}
1838 				}
1839 
1840 				/* If we have pending request, then start it */
1841 				if (!ep->req)
1842 					dwc2_gadget_start_next_request(ep);
1843 			}
1844 
1845 			break;
1846 
1847 		default:
1848 			return -ENOENT;
1849 		}
1850 		break;
1851 	default:
1852 		return -ENOENT;
1853 	}
1854 	return 1;
1855 }
1856 
1857 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1858 
1859 /**
1860  * dwc2_hsotg_stall_ep0 - stall ep0
1861  * @hsotg: The device state
1862  *
1863  * Set stall for ep0 as response for setup request.
1864  */
1865 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1866 {
1867 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1868 	u32 reg;
1869 	u32 ctrl;
1870 
1871 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1872 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1873 
1874 	/*
1875 	 * DxEPCTL_Stall will be cleared by EP once it has
1876 	 * taken effect, so no need to clear later.
1877 	 */
1878 
1879 	ctrl = dwc2_readl(hsotg, reg);
1880 	ctrl |= DXEPCTL_STALL;
1881 	ctrl |= DXEPCTL_CNAK;
1882 	dwc2_writel(hsotg, ctrl, reg);
1883 
1884 	dev_dbg(hsotg->dev,
1885 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1886 		ctrl, reg, dwc2_readl(hsotg, reg));
1887 
1888 	 /*
1889 	  * complete won't be called, so we enqueue
1890 	  * setup request here
1891 	  */
1892 	 dwc2_hsotg_enqueue_setup(hsotg);
1893 }
1894 
1895 /**
1896  * dwc2_hsotg_process_control - process a control request
1897  * @hsotg: The device state
1898  * @ctrl: The control request received
1899  *
1900  * The controller has received the SETUP phase of a control request, and
1901  * needs to work out what to do next (and whether to pass it on to the
1902  * gadget driver).
1903  */
1904 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1905 				       struct usb_ctrlrequest *ctrl)
1906 {
1907 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1908 	int ret = 0;
1909 	u32 dcfg;
1910 
1911 	dev_dbg(hsotg->dev,
1912 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1913 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1914 		ctrl->wIndex, ctrl->wLength);
1915 
1916 	if (ctrl->wLength == 0) {
1917 		ep0->dir_in = 1;
1918 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1919 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1920 		ep0->dir_in = 1;
1921 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1922 	} else {
1923 		ep0->dir_in = 0;
1924 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1925 	}
1926 
1927 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1928 		switch (ctrl->bRequest) {
1929 		case USB_REQ_SET_ADDRESS:
1930 			hsotg->connected = 1;
1931 			dcfg = dwc2_readl(hsotg, DCFG);
1932 			dcfg &= ~DCFG_DEVADDR_MASK;
1933 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1934 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1935 			dwc2_writel(hsotg, dcfg, DCFG);
1936 
1937 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1938 
1939 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1940 			return;
1941 
1942 		case USB_REQ_GET_STATUS:
1943 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1944 			break;
1945 
1946 		case USB_REQ_CLEAR_FEATURE:
1947 		case USB_REQ_SET_FEATURE:
1948 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1949 			break;
1950 		}
1951 	}
1952 
1953 	/* as a fallback, try delivering it to the driver to deal with */
1954 
1955 	if (ret == 0 && hsotg->driver) {
1956 		spin_unlock(&hsotg->lock);
1957 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1958 		spin_lock(&hsotg->lock);
1959 		if (ret < 0)
1960 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1961 	}
1962 
1963 	hsotg->delayed_status = false;
1964 	if (ret == USB_GADGET_DELAYED_STATUS)
1965 		hsotg->delayed_status = true;
1966 
1967 	/*
1968 	 * the request is either unhandlable, or is not formatted correctly
1969 	 * so respond with a STALL for the status stage to indicate failure.
1970 	 */
1971 
1972 	if (ret < 0)
1973 		dwc2_hsotg_stall_ep0(hsotg);
1974 }
1975 
1976 /**
1977  * dwc2_hsotg_complete_setup - completion of a setup transfer
1978  * @ep: The endpoint the request was on.
1979  * @req: The request completed.
1980  *
1981  * Called on completion of any requests the driver itself submitted for
1982  * EP0 setup packets
1983  */
1984 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1985 				      struct usb_request *req)
1986 {
1987 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1988 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1989 
1990 	if (req->status < 0) {
1991 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1992 		return;
1993 	}
1994 
1995 	spin_lock(&hsotg->lock);
1996 	if (req->actual == 0)
1997 		dwc2_hsotg_enqueue_setup(hsotg);
1998 	else
1999 		dwc2_hsotg_process_control(hsotg, req->buf);
2000 	spin_unlock(&hsotg->lock);
2001 }
2002 
2003 /**
2004  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2005  * @hsotg: The device state.
2006  *
2007  * Enqueue a request on EP0 if necessary to received any SETUP packets
2008  * received from the host.
2009  */
2010 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2011 {
2012 	struct usb_request *req = hsotg->ctrl_req;
2013 	struct dwc2_hsotg_req *hs_req = our_req(req);
2014 	int ret;
2015 
2016 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2017 
2018 	req->zero = 0;
2019 	req->length = 8;
2020 	req->buf = hsotg->ctrl_buff;
2021 	req->complete = dwc2_hsotg_complete_setup;
2022 
2023 	if (!list_empty(&hs_req->queue)) {
2024 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2025 		return;
2026 	}
2027 
2028 	hsotg->eps_out[0]->dir_in = 0;
2029 	hsotg->eps_out[0]->send_zlp = 0;
2030 	hsotg->ep0_state = DWC2_EP0_SETUP;
2031 
2032 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2033 	if (ret < 0) {
2034 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2035 		/*
2036 		 * Don't think there's much we can do other than watch the
2037 		 * driver fail.
2038 		 */
2039 	}
2040 }
2041 
2042 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2043 				   struct dwc2_hsotg_ep *hs_ep)
2044 {
2045 	u32 ctrl;
2046 	u8 index = hs_ep->index;
2047 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2048 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2049 
2050 	if (hs_ep->dir_in)
2051 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2052 			index);
2053 	else
2054 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2055 			index);
2056 	if (using_desc_dma(hsotg)) {
2057 		/* Not specific buffer needed for ep0 ZLP */
2058 		dma_addr_t dma = hs_ep->desc_list_dma;
2059 
2060 		if (!index)
2061 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2062 
2063 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2064 	} else {
2065 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2066 			    DXEPTSIZ_XFERSIZE(0),
2067 			    epsiz_reg);
2068 	}
2069 
2070 	ctrl = dwc2_readl(hsotg, epctl_reg);
2071 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2072 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2073 	ctrl |= DXEPCTL_USBACTEP;
2074 	dwc2_writel(hsotg, ctrl, epctl_reg);
2075 }
2076 
2077 /**
2078  * dwc2_hsotg_complete_request - complete a request given to us
2079  * @hsotg: The device state.
2080  * @hs_ep: The endpoint the request was on.
2081  * @hs_req: The request to complete.
2082  * @result: The result code (0 => Ok, otherwise errno)
2083  *
2084  * The given request has finished, so call the necessary completion
2085  * if it has one and then look to see if we can start a new request
2086  * on the endpoint.
2087  *
2088  * Note, expects the ep to already be locked as appropriate.
2089  */
2090 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2091 					struct dwc2_hsotg_ep *hs_ep,
2092 				       struct dwc2_hsotg_req *hs_req,
2093 				       int result)
2094 {
2095 	if (!hs_req) {
2096 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2097 		return;
2098 	}
2099 
2100 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2101 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2102 
2103 	/*
2104 	 * only replace the status if we've not already set an error
2105 	 * from a previous transaction
2106 	 */
2107 
2108 	if (hs_req->req.status == -EINPROGRESS)
2109 		hs_req->req.status = result;
2110 
2111 	if (using_dma(hsotg))
2112 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2113 
2114 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2115 
2116 	hs_ep->req = NULL;
2117 	list_del_init(&hs_req->queue);
2118 
2119 	/*
2120 	 * call the complete request with the locks off, just in case the
2121 	 * request tries to queue more work for this endpoint.
2122 	 */
2123 
2124 	if (hs_req->req.complete) {
2125 		spin_unlock(&hsotg->lock);
2126 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2127 		spin_lock(&hsotg->lock);
2128 	}
2129 
2130 	/* In DDMA don't need to proceed to starting of next ISOC request */
2131 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2132 		return;
2133 
2134 	/*
2135 	 * Look to see if there is anything else to do. Note, the completion
2136 	 * of the previous request may have caused a new request to be started
2137 	 * so be careful when doing this.
2138 	 */
2139 
2140 	if (!hs_ep->req && result >= 0)
2141 		dwc2_gadget_start_next_request(hs_ep);
2142 }
2143 
2144 /*
2145  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2146  * @hs_ep: The endpoint the request was on.
2147  *
2148  * Get first request from the ep queue, determine descriptor on which complete
2149  * happened. SW discovers which descriptor currently in use by HW, adjusts
2150  * dma_address and calculates index of completed descriptor based on the value
2151  * of DEPDMA register. Update actual length of request, giveback to gadget.
2152  */
2153 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2154 {
2155 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2156 	struct dwc2_hsotg_req *hs_req;
2157 	struct usb_request *ureq;
2158 	u32 desc_sts;
2159 	u32 mask;
2160 
2161 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2162 
2163 	/* Process only descriptors with buffer status set to DMA done */
2164 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2165 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2166 
2167 		hs_req = get_ep_head(hs_ep);
2168 		if (!hs_req) {
2169 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2170 			return;
2171 		}
2172 		ureq = &hs_req->req;
2173 
2174 		/* Check completion status */
2175 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2176 			DEV_DMA_STS_SUCC) {
2177 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2178 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2179 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2180 				DEV_DMA_ISOC_NBYTES_SHIFT);
2181 
2182 			/* Adjust actual len for ISOC Out if len is
2183 			 * not align of 4
2184 			 */
2185 			if (!hs_ep->dir_in && ureq->length & 0x3)
2186 				ureq->actual += 4 - (ureq->length & 0x3);
2187 
2188 			/* Set actual frame number for completed transfers */
2189 			ureq->frame_number =
2190 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2191 				DEV_DMA_ISOC_FRNUM_SHIFT;
2192 		}
2193 
2194 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2195 
2196 		hs_ep->compl_desc++;
2197 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2198 			hs_ep->compl_desc = 0;
2199 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2200 	}
2201 }
2202 
2203 /*
2204  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2205  * @hs_ep: The isochronous endpoint.
2206  *
2207  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2208  * interrupt. Reset target frame and next_desc to allow to start
2209  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2210  * interrupt for OUT direction.
2211  */
2212 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2213 {
2214 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2215 
2216 	if (!hs_ep->dir_in)
2217 		dwc2_flush_rx_fifo(hsotg);
2218 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2219 
2220 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2221 	hs_ep->next_desc = 0;
2222 	hs_ep->compl_desc = 0;
2223 }
2224 
2225 /**
2226  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2227  * @hsotg: The device state.
2228  * @ep_idx: The endpoint index for the data
2229  * @size: The size of data in the fifo, in bytes
2230  *
2231  * The FIFO status shows there is data to read from the FIFO for a given
2232  * endpoint, so sort out whether we need to read the data into a request
2233  * that has been made for that endpoint.
2234  */
2235 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2236 {
2237 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2238 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2239 	int to_read;
2240 	int max_req;
2241 	int read_ptr;
2242 
2243 	if (!hs_req) {
2244 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2245 		int ptr;
2246 
2247 		dev_dbg(hsotg->dev,
2248 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2249 			 __func__, size, ep_idx, epctl);
2250 
2251 		/* dump the data from the FIFO, we've nothing we can do */
2252 		for (ptr = 0; ptr < size; ptr += 4)
2253 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2254 
2255 		return;
2256 	}
2257 
2258 	to_read = size;
2259 	read_ptr = hs_req->req.actual;
2260 	max_req = hs_req->req.length - read_ptr;
2261 
2262 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2263 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2264 
2265 	if (to_read > max_req) {
2266 		/*
2267 		 * more data appeared than we where willing
2268 		 * to deal with in this request.
2269 		 */
2270 
2271 		/* currently we don't deal this */
2272 		WARN_ON_ONCE(1);
2273 	}
2274 
2275 	hs_ep->total_data += to_read;
2276 	hs_req->req.actual += to_read;
2277 	to_read = DIV_ROUND_UP(to_read, 4);
2278 
2279 	/*
2280 	 * note, we might over-write the buffer end by 3 bytes depending on
2281 	 * alignment of the data.
2282 	 */
2283 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2284 		       hs_req->req.buf + read_ptr, to_read);
2285 }
2286 
2287 /**
2288  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2289  * @hsotg: The device instance
2290  * @dir_in: If IN zlp
2291  *
2292  * Generate a zero-length IN packet request for terminating a SETUP
2293  * transaction.
2294  *
2295  * Note, since we don't write any data to the TxFIFO, then it is
2296  * currently believed that we do not need to wait for any space in
2297  * the TxFIFO.
2298  */
2299 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2300 {
2301 	/* eps_out[0] is used in both directions */
2302 	hsotg->eps_out[0]->dir_in = dir_in;
2303 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2304 
2305 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2306 }
2307 
2308 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2309 					    u32 epctl_reg)
2310 {
2311 	u32 ctrl;
2312 
2313 	ctrl = dwc2_readl(hsotg, epctl_reg);
2314 	if (ctrl & DXEPCTL_EOFRNUM)
2315 		ctrl |= DXEPCTL_SETEVENFR;
2316 	else
2317 		ctrl |= DXEPCTL_SETODDFR;
2318 	dwc2_writel(hsotg, ctrl, epctl_reg);
2319 }
2320 
2321 /*
2322  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2323  * @hs_ep - The endpoint on which transfer went
2324  *
2325  * Iterate over endpoints descriptor chain and get info on bytes remained
2326  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2327  */
2328 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2329 {
2330 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2331 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2332 	unsigned int bytes_rem = 0;
2333 	unsigned int bytes_rem_correction = 0;
2334 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2335 	int i;
2336 	u32 status;
2337 	u32 mps = hs_ep->ep.maxpacket;
2338 	int dir_in = hs_ep->dir_in;
2339 
2340 	if (!desc)
2341 		return -EINVAL;
2342 
2343 	/* Interrupt OUT EP with mps not multiple of 4 */
2344 	if (hs_ep->index)
2345 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2346 			bytes_rem_correction = 4 - (mps % 4);
2347 
2348 	for (i = 0; i < hs_ep->desc_count; ++i) {
2349 		status = desc->status;
2350 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2351 		bytes_rem -= bytes_rem_correction;
2352 
2353 		if (status & DEV_DMA_STS_MASK)
2354 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2355 				i, status & DEV_DMA_STS_MASK);
2356 
2357 		if (status & DEV_DMA_L)
2358 			break;
2359 
2360 		desc++;
2361 	}
2362 
2363 	return bytes_rem;
2364 }
2365 
2366 /**
2367  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2368  * @hsotg: The device instance
2369  * @epnum: The endpoint received from
2370  *
2371  * The RXFIFO has delivered an OutDone event, which means that the data
2372  * transfer for an OUT endpoint has been completed, either by a short
2373  * packet or by the finish of a transfer.
2374  */
2375 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2376 {
2377 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2378 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2379 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2380 	struct usb_request *req = &hs_req->req;
2381 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2382 	int result = 0;
2383 
2384 	if (!hs_req) {
2385 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2386 		return;
2387 	}
2388 
2389 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2390 		dev_dbg(hsotg->dev, "zlp packet received\n");
2391 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2392 		dwc2_hsotg_enqueue_setup(hsotg);
2393 		return;
2394 	}
2395 
2396 	if (using_desc_dma(hsotg))
2397 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2398 
2399 	if (using_dma(hsotg)) {
2400 		unsigned int size_done;
2401 
2402 		/*
2403 		 * Calculate the size of the transfer by checking how much
2404 		 * is left in the endpoint size register and then working it
2405 		 * out from the amount we loaded for the transfer.
2406 		 *
2407 		 * We need to do this as DMA pointers are always 32bit aligned
2408 		 * so may overshoot/undershoot the transfer.
2409 		 */
2410 
2411 		size_done = hs_ep->size_loaded - size_left;
2412 		size_done += hs_ep->last_load;
2413 
2414 		req->actual = size_done;
2415 	}
2416 
2417 	/* if there is more request to do, schedule new transfer */
2418 	if (req->actual < req->length && size_left == 0) {
2419 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2420 		return;
2421 	}
2422 
2423 	if (req->actual < req->length && req->short_not_ok) {
2424 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2425 			__func__, req->actual, req->length);
2426 
2427 		/*
2428 		 * todo - what should we return here? there's no one else
2429 		 * even bothering to check the status.
2430 		 */
2431 	}
2432 
2433 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2434 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2435 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2436 		/* Move to STATUS IN */
2437 		if (!hsotg->delayed_status)
2438 			dwc2_hsotg_ep0_zlp(hsotg, true);
2439 	}
2440 
2441 	/*
2442 	 * Slave mode OUT transfers do not go through XferComplete so
2443 	 * adjust the ISOC parity here.
2444 	 */
2445 	if (!using_dma(hsotg)) {
2446 		if (hs_ep->isochronous && hs_ep->interval == 1)
2447 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2448 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2449 			dwc2_gadget_incr_frame_num(hs_ep);
2450 	}
2451 
2452 	/* Set actual frame number for completed transfers */
2453 	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2454 		req->frame_number = hsotg->frame_number;
2455 
2456 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2457 }
2458 
2459 /**
2460  * dwc2_hsotg_handle_rx - RX FIFO has data
2461  * @hsotg: The device instance
2462  *
2463  * The IRQ handler has detected that the RX FIFO has some data in it
2464  * that requires processing, so find out what is in there and do the
2465  * appropriate read.
2466  *
2467  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2468  * chunks, so if you have x packets received on an endpoint you'll get x
2469  * FIFO events delivered, each with a packet's worth of data in it.
2470  *
2471  * When using DMA, we should not be processing events from the RXFIFO
2472  * as the actual data should be sent to the memory directly and we turn
2473  * on the completion interrupts to get notifications of transfer completion.
2474  */
2475 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2476 {
2477 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2478 	u32 epnum, status, size;
2479 
2480 	WARN_ON(using_dma(hsotg));
2481 
2482 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2483 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2484 
2485 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2486 	size >>= GRXSTS_BYTECNT_SHIFT;
2487 
2488 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2489 		__func__, grxstsr, size, epnum);
2490 
2491 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2492 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2493 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2494 		break;
2495 
2496 	case GRXSTS_PKTSTS_OUTDONE:
2497 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2498 			dwc2_hsotg_read_frameno(hsotg));
2499 
2500 		if (!using_dma(hsotg))
2501 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2502 		break;
2503 
2504 	case GRXSTS_PKTSTS_SETUPDONE:
2505 		dev_dbg(hsotg->dev,
2506 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2507 			dwc2_hsotg_read_frameno(hsotg),
2508 			dwc2_readl(hsotg, DOEPCTL(0)));
2509 		/*
2510 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2511 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2512 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2513 		 */
2514 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2515 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2516 		break;
2517 
2518 	case GRXSTS_PKTSTS_OUTRX:
2519 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2520 		break;
2521 
2522 	case GRXSTS_PKTSTS_SETUPRX:
2523 		dev_dbg(hsotg->dev,
2524 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2525 			dwc2_hsotg_read_frameno(hsotg),
2526 			dwc2_readl(hsotg, DOEPCTL(0)));
2527 
2528 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2529 
2530 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2531 		break;
2532 
2533 	default:
2534 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2535 			 __func__, grxstsr);
2536 
2537 		dwc2_hsotg_dump(hsotg);
2538 		break;
2539 	}
2540 }
2541 
2542 /**
2543  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2544  * @mps: The maximum packet size in bytes.
2545  */
2546 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2547 {
2548 	switch (mps) {
2549 	case 64:
2550 		return D0EPCTL_MPS_64;
2551 	case 32:
2552 		return D0EPCTL_MPS_32;
2553 	case 16:
2554 		return D0EPCTL_MPS_16;
2555 	case 8:
2556 		return D0EPCTL_MPS_8;
2557 	}
2558 
2559 	/* bad max packet size, warn and return invalid result */
2560 	WARN_ON(1);
2561 	return (u32)-1;
2562 }
2563 
2564 /**
2565  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2566  * @hsotg: The driver state.
2567  * @ep: The index number of the endpoint
2568  * @mps: The maximum packet size in bytes
2569  * @mc: The multicount value
2570  * @dir_in: True if direction is in.
2571  *
2572  * Configure the maximum packet size for the given endpoint, updating
2573  * the hardware control registers to reflect this.
2574  */
2575 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2576 					unsigned int ep, unsigned int mps,
2577 					unsigned int mc, unsigned int dir_in)
2578 {
2579 	struct dwc2_hsotg_ep *hs_ep;
2580 	u32 reg;
2581 
2582 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2583 	if (!hs_ep)
2584 		return;
2585 
2586 	if (ep == 0) {
2587 		u32 mps_bytes = mps;
2588 
2589 		/* EP0 is a special case */
2590 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2591 		if (mps > 3)
2592 			goto bad_mps;
2593 		hs_ep->ep.maxpacket = mps_bytes;
2594 		hs_ep->mc = 1;
2595 	} else {
2596 		if (mps > 1024)
2597 			goto bad_mps;
2598 		hs_ep->mc = mc;
2599 		if (mc > 3)
2600 			goto bad_mps;
2601 		hs_ep->ep.maxpacket = mps;
2602 	}
2603 
2604 	if (dir_in) {
2605 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2606 		reg &= ~DXEPCTL_MPS_MASK;
2607 		reg |= mps;
2608 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2609 	} else {
2610 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2611 		reg &= ~DXEPCTL_MPS_MASK;
2612 		reg |= mps;
2613 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2614 	}
2615 
2616 	return;
2617 
2618 bad_mps:
2619 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2620 }
2621 
2622 /**
2623  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2624  * @hsotg: The driver state
2625  * @idx: The index for the endpoint (0..15)
2626  */
2627 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2628 {
2629 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2630 		    GRSTCTL);
2631 
2632 	/* wait until the fifo is flushed */
2633 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2634 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2635 			 __func__);
2636 }
2637 
2638 /**
2639  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2640  * @hsotg: The driver state
2641  * @hs_ep: The driver endpoint to check.
2642  *
2643  * Check to see if there is a request that has data to send, and if so
2644  * make an attempt to write data into the FIFO.
2645  */
2646 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2647 			    struct dwc2_hsotg_ep *hs_ep)
2648 {
2649 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2650 
2651 	if (!hs_ep->dir_in || !hs_req) {
2652 		/**
2653 		 * if request is not enqueued, we disable interrupts
2654 		 * for endpoints, excepting ep0
2655 		 */
2656 		if (hs_ep->index != 0)
2657 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2658 					      hs_ep->dir_in, 0);
2659 		return 0;
2660 	}
2661 
2662 	if (hs_req->req.actual < hs_req->req.length) {
2663 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2664 			hs_ep->index);
2665 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2666 	}
2667 
2668 	return 0;
2669 }
2670 
2671 /**
2672  * dwc2_hsotg_complete_in - complete IN transfer
2673  * @hsotg: The device state.
2674  * @hs_ep: The endpoint that has just completed.
2675  *
2676  * An IN transfer has been completed, update the transfer's state and then
2677  * call the relevant completion routines.
2678  */
2679 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2680 				   struct dwc2_hsotg_ep *hs_ep)
2681 {
2682 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2683 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2684 	int size_left, size_done;
2685 
2686 	if (!hs_req) {
2687 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2688 		return;
2689 	}
2690 
2691 	/* Finish ZLP handling for IN EP0 transactions */
2692 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2693 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2694 
2695 		/*
2696 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2697 		 * changed to IN. Change back to complete OUT transfer request
2698 		 */
2699 		hs_ep->dir_in = 0;
2700 
2701 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2702 		if (hsotg->test_mode) {
2703 			int ret;
2704 
2705 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2706 			if (ret < 0) {
2707 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2708 					hsotg->test_mode);
2709 				dwc2_hsotg_stall_ep0(hsotg);
2710 				return;
2711 			}
2712 		}
2713 		dwc2_hsotg_enqueue_setup(hsotg);
2714 		return;
2715 	}
2716 
2717 	/*
2718 	 * Calculate the size of the transfer by checking how much is left
2719 	 * in the endpoint size register and then working it out from
2720 	 * the amount we loaded for the transfer.
2721 	 *
2722 	 * We do this even for DMA, as the transfer may have incremented
2723 	 * past the end of the buffer (DMA transfers are always 32bit
2724 	 * aligned).
2725 	 */
2726 	if (using_desc_dma(hsotg)) {
2727 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2728 		if (size_left < 0)
2729 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2730 				size_left);
2731 	} else {
2732 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2733 	}
2734 
2735 	size_done = hs_ep->size_loaded - size_left;
2736 	size_done += hs_ep->last_load;
2737 
2738 	if (hs_req->req.actual != size_done)
2739 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2740 			__func__, hs_req->req.actual, size_done);
2741 
2742 	hs_req->req.actual = size_done;
2743 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2744 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2745 
2746 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2747 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2748 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2749 		return;
2750 	}
2751 
2752 	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2753 	if (hs_ep->send_zlp) {
2754 		hs_ep->send_zlp = 0;
2755 		if (!using_desc_dma(hsotg)) {
2756 			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2757 			/* transfer will be completed on next complete interrupt */
2758 			return;
2759 		}
2760 	}
2761 
2762 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2763 		/* Move to STATUS OUT */
2764 		dwc2_hsotg_ep0_zlp(hsotg, false);
2765 		return;
2766 	}
2767 
2768 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2769 }
2770 
2771 /**
2772  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2773  * @hsotg: The device state.
2774  * @idx: Index of ep.
2775  * @dir_in: Endpoint direction 1-in 0-out.
2776  *
2777  * Reads for endpoint with given index and direction, by masking
2778  * epint_reg with coresponding mask.
2779  */
2780 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2781 					  unsigned int idx, int dir_in)
2782 {
2783 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2784 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2785 	u32 ints;
2786 	u32 mask;
2787 	u32 diepempmsk;
2788 
2789 	mask = dwc2_readl(hsotg, epmsk_reg);
2790 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2791 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2792 	mask |= DXEPINT_SETUP_RCVD;
2793 
2794 	ints = dwc2_readl(hsotg, epint_reg);
2795 	ints &= mask;
2796 	return ints;
2797 }
2798 
2799 /**
2800  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2801  * @hs_ep: The endpoint on which interrupt is asserted.
2802  *
2803  * This interrupt indicates that the endpoint has been disabled per the
2804  * application's request.
2805  *
2806  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2807  * in case of ISOC completes current request.
2808  *
2809  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2810  * request starts it.
2811  */
2812 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2813 {
2814 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2815 	struct dwc2_hsotg_req *hs_req;
2816 	unsigned char idx = hs_ep->index;
2817 	int dir_in = hs_ep->dir_in;
2818 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2819 	int dctl = dwc2_readl(hsotg, DCTL);
2820 
2821 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2822 
2823 	if (dir_in) {
2824 		int epctl = dwc2_readl(hsotg, epctl_reg);
2825 
2826 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2827 
2828 		if (hs_ep->isochronous) {
2829 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2830 			return;
2831 		}
2832 
2833 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2834 			int dctl = dwc2_readl(hsotg, DCTL);
2835 
2836 			dctl |= DCTL_CGNPINNAK;
2837 			dwc2_writel(hsotg, dctl, DCTL);
2838 		}
2839 		return;
2840 	}
2841 
2842 	if (dctl & DCTL_GOUTNAKSTS) {
2843 		dctl |= DCTL_CGOUTNAK;
2844 		dwc2_writel(hsotg, dctl, DCTL);
2845 	}
2846 
2847 	if (!hs_ep->isochronous)
2848 		return;
2849 
2850 	if (list_empty(&hs_ep->queue)) {
2851 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2852 			__func__, hs_ep);
2853 		return;
2854 	}
2855 
2856 	do {
2857 		hs_req = get_ep_head(hs_ep);
2858 		if (hs_req)
2859 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2860 						    -ENODATA);
2861 		dwc2_gadget_incr_frame_num(hs_ep);
2862 		/* Update current frame number value. */
2863 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2864 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2865 
2866 	dwc2_gadget_start_next_request(hs_ep);
2867 }
2868 
2869 /**
2870  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2871  * @ep: The endpoint on which interrupt is asserted.
2872  *
2873  * This is starting point for ISOC-OUT transfer, synchronization done with
2874  * first out token received from host while corresponding EP is disabled.
2875  *
2876  * Device does not know initial frame in which out token will come. For this
2877  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2878  * getting this interrupt SW starts calculation for next transfer frame.
2879  */
2880 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2881 {
2882 	struct dwc2_hsotg *hsotg = ep->parent;
2883 	int dir_in = ep->dir_in;
2884 	u32 doepmsk;
2885 
2886 	if (dir_in || !ep->isochronous)
2887 		return;
2888 
2889 	if (using_desc_dma(hsotg)) {
2890 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2891 			/* Start first ISO Out */
2892 			ep->target_frame = hsotg->frame_number;
2893 			dwc2_gadget_start_isoc_ddma(ep);
2894 		}
2895 		return;
2896 	}
2897 
2898 	if (ep->interval > 1 &&
2899 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2900 		u32 ctrl;
2901 
2902 		ep->target_frame = hsotg->frame_number;
2903 		dwc2_gadget_incr_frame_num(ep);
2904 
2905 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2906 		if (ep->target_frame & 0x1)
2907 			ctrl |= DXEPCTL_SETODDFR;
2908 		else
2909 			ctrl |= DXEPCTL_SETEVENFR;
2910 
2911 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2912 	}
2913 
2914 	dwc2_gadget_start_next_request(ep);
2915 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2916 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2917 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2918 }
2919 
2920 /**
2921  * dwc2_gadget_handle_nak - handle NAK interrupt
2922  * @hs_ep: The endpoint on which interrupt is asserted.
2923  *
2924  * This is starting point for ISOC-IN transfer, synchronization done with
2925  * first IN token received from host while corresponding EP is disabled.
2926  *
2927  * Device does not know when first one token will arrive from host. On first
2928  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2929  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2930  * sent in response to that as there was no data in FIFO. SW is basing on this
2931  * interrupt to obtain frame in which token has come and then based on the
2932  * interval calculates next frame for transfer.
2933  */
2934 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2935 {
2936 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2937 	int dir_in = hs_ep->dir_in;
2938 
2939 	if (!dir_in || !hs_ep->isochronous)
2940 		return;
2941 
2942 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2943 
2944 		if (using_desc_dma(hsotg)) {
2945 			hs_ep->target_frame = hsotg->frame_number;
2946 			dwc2_gadget_incr_frame_num(hs_ep);
2947 
2948 			/* In service interval mode target_frame must
2949 			 * be set to last (u)frame of the service interval.
2950 			 */
2951 			if (hsotg->params.service_interval) {
2952 				/* Set target_frame to the first (u)frame of
2953 				 * the service interval
2954 				 */
2955 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2956 
2957 				/* Set target_frame to the last (u)frame of
2958 				 * the service interval
2959 				 */
2960 				dwc2_gadget_incr_frame_num(hs_ep);
2961 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2962 			}
2963 
2964 			dwc2_gadget_start_isoc_ddma(hs_ep);
2965 			return;
2966 		}
2967 
2968 		hs_ep->target_frame = hsotg->frame_number;
2969 		if (hs_ep->interval > 1) {
2970 			u32 ctrl = dwc2_readl(hsotg,
2971 					      DIEPCTL(hs_ep->index));
2972 			if (hs_ep->target_frame & 0x1)
2973 				ctrl |= DXEPCTL_SETODDFR;
2974 			else
2975 				ctrl |= DXEPCTL_SETEVENFR;
2976 
2977 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2978 		}
2979 
2980 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2981 					    get_ep_head(hs_ep), 0);
2982 	}
2983 
2984 	if (!using_desc_dma(hsotg))
2985 		dwc2_gadget_incr_frame_num(hs_ep);
2986 }
2987 
2988 /**
2989  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2990  * @hsotg: The driver state
2991  * @idx: The index for the endpoint (0..15)
2992  * @dir_in: Set if this is an IN endpoint
2993  *
2994  * Process and clear any interrupt pending for an individual endpoint
2995  */
2996 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2997 			     int dir_in)
2998 {
2999 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3000 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3001 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3002 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3003 	u32 ints;
3004 
3005 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3006 
3007 	/* Clear endpoint interrupts */
3008 	dwc2_writel(hsotg, ints, epint_reg);
3009 
3010 	if (!hs_ep) {
3011 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3012 			__func__, idx, dir_in ? "in" : "out");
3013 		return;
3014 	}
3015 
3016 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3017 		__func__, idx, dir_in ? "in" : "out", ints);
3018 
3019 	/* Don't process XferCompl interrupt if it is a setup packet */
3020 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3021 		ints &= ~DXEPINT_XFERCOMPL;
3022 
3023 	/*
3024 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3025 	 * stage and xfercomplete was generated without SETUP phase done
3026 	 * interrupt. SW should parse received setup packet only after host's
3027 	 * exit from setup phase of control transfer.
3028 	 */
3029 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3030 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3031 		ints &= ~DXEPINT_XFERCOMPL;
3032 
3033 	if (ints & DXEPINT_XFERCOMPL) {
3034 		dev_dbg(hsotg->dev,
3035 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3036 			__func__, dwc2_readl(hsotg, epctl_reg),
3037 			dwc2_readl(hsotg, epsiz_reg));
3038 
3039 		/* In DDMA handle isochronous requests separately */
3040 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3041 			/* XferCompl set along with BNA */
3042 			if (!(ints & DXEPINT_BNAINTR))
3043 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3044 		} else if (dir_in) {
3045 			/*
3046 			 * We get OutDone from the FIFO, so we only
3047 			 * need to look at completing IN requests here
3048 			 * if operating slave mode
3049 			 */
3050 			if (hs_ep->isochronous && hs_ep->interval > 1)
3051 				dwc2_gadget_incr_frame_num(hs_ep);
3052 
3053 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3054 			if (ints & DXEPINT_NAKINTRPT)
3055 				ints &= ~DXEPINT_NAKINTRPT;
3056 
3057 			if (idx == 0 && !hs_ep->req)
3058 				dwc2_hsotg_enqueue_setup(hsotg);
3059 		} else if (using_dma(hsotg)) {
3060 			/*
3061 			 * We're using DMA, we need to fire an OutDone here
3062 			 * as we ignore the RXFIFO.
3063 			 */
3064 			if (hs_ep->isochronous && hs_ep->interval > 1)
3065 				dwc2_gadget_incr_frame_num(hs_ep);
3066 
3067 			dwc2_hsotg_handle_outdone(hsotg, idx);
3068 		}
3069 	}
3070 
3071 	if (ints & DXEPINT_EPDISBLD)
3072 		dwc2_gadget_handle_ep_disabled(hs_ep);
3073 
3074 	if (ints & DXEPINT_OUTTKNEPDIS)
3075 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3076 
3077 	if (ints & DXEPINT_NAKINTRPT)
3078 		dwc2_gadget_handle_nak(hs_ep);
3079 
3080 	if (ints & DXEPINT_AHBERR)
3081 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3082 
3083 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3084 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3085 
3086 		if (using_dma(hsotg) && idx == 0) {
3087 			/*
3088 			 * this is the notification we've received a
3089 			 * setup packet. In non-DMA mode we'd get this
3090 			 * from the RXFIFO, instead we need to process
3091 			 * the setup here.
3092 			 */
3093 
3094 			if (dir_in)
3095 				WARN_ON_ONCE(1);
3096 			else
3097 				dwc2_hsotg_handle_outdone(hsotg, 0);
3098 		}
3099 	}
3100 
3101 	if (ints & DXEPINT_STSPHSERCVD) {
3102 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3103 
3104 		/* Safety check EP0 state when STSPHSERCVD asserted */
3105 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3106 			/* Move to STATUS IN for DDMA */
3107 			if (using_desc_dma(hsotg)) {
3108 				if (!hsotg->delayed_status)
3109 					dwc2_hsotg_ep0_zlp(hsotg, true);
3110 				else
3111 				/* In case of 3 stage Control Write with delayed
3112 				 * status, when Status IN transfer started
3113 				 * before STSPHSERCVD asserted, NAKSTS bit not
3114 				 * cleared by CNAK in dwc2_hsotg_start_req()
3115 				 * function. Clear now NAKSTS to allow complete
3116 				 * transfer.
3117 				 */
3118 					dwc2_set_bit(hsotg, DIEPCTL(0),
3119 						     DXEPCTL_CNAK);
3120 			}
3121 		}
3122 
3123 	}
3124 
3125 	if (ints & DXEPINT_BACK2BACKSETUP)
3126 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3127 
3128 	if (ints & DXEPINT_BNAINTR) {
3129 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3130 		if (hs_ep->isochronous)
3131 			dwc2_gadget_handle_isoc_bna(hs_ep);
3132 	}
3133 
3134 	if (dir_in && !hs_ep->isochronous) {
3135 		/* not sure if this is important, but we'll clear it anyway */
3136 		if (ints & DXEPINT_INTKNTXFEMP) {
3137 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3138 				__func__, idx);
3139 		}
3140 
3141 		/* this probably means something bad is happening */
3142 		if (ints & DXEPINT_INTKNEPMIS) {
3143 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3144 				 __func__, idx);
3145 		}
3146 
3147 		/* FIFO has space or is empty (see GAHBCFG) */
3148 		if (hsotg->dedicated_fifos &&
3149 		    ints & DXEPINT_TXFEMP) {
3150 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3151 				__func__, idx);
3152 			if (!using_dma(hsotg))
3153 				dwc2_hsotg_trytx(hsotg, hs_ep);
3154 		}
3155 	}
3156 }
3157 
3158 /**
3159  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3160  * @hsotg: The device state.
3161  *
3162  * Handle updating the device settings after the enumeration phase has
3163  * been completed.
3164  */
3165 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3166 {
3167 	u32 dsts = dwc2_readl(hsotg, DSTS);
3168 	int ep0_mps = 0, ep_mps = 8;
3169 
3170 	/*
3171 	 * This should signal the finish of the enumeration phase
3172 	 * of the USB handshaking, so we should now know what rate
3173 	 * we connected at.
3174 	 */
3175 
3176 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3177 
3178 	/*
3179 	 * note, since we're limited by the size of transfer on EP0, and
3180 	 * it seems IN transfers must be a even number of packets we do
3181 	 * not advertise a 64byte MPS on EP0.
3182 	 */
3183 
3184 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3185 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3186 	case DSTS_ENUMSPD_FS:
3187 	case DSTS_ENUMSPD_FS48:
3188 		hsotg->gadget.speed = USB_SPEED_FULL;
3189 		ep0_mps = EP0_MPS_LIMIT;
3190 		ep_mps = 1023;
3191 		break;
3192 
3193 	case DSTS_ENUMSPD_HS:
3194 		hsotg->gadget.speed = USB_SPEED_HIGH;
3195 		ep0_mps = EP0_MPS_LIMIT;
3196 		ep_mps = 1024;
3197 		break;
3198 
3199 	case DSTS_ENUMSPD_LS:
3200 		hsotg->gadget.speed = USB_SPEED_LOW;
3201 		ep0_mps = 8;
3202 		ep_mps = 8;
3203 		/*
3204 		 * note, we don't actually support LS in this driver at the
3205 		 * moment, and the documentation seems to imply that it isn't
3206 		 * supported by the PHYs on some of the devices.
3207 		 */
3208 		break;
3209 	}
3210 	dev_info(hsotg->dev, "new device is %s\n",
3211 		 usb_speed_string(hsotg->gadget.speed));
3212 
3213 	/*
3214 	 * we should now know the maximum packet size for an
3215 	 * endpoint, so set the endpoints to a default value.
3216 	 */
3217 
3218 	if (ep0_mps) {
3219 		int i;
3220 		/* Initialize ep0 for both in and out directions */
3221 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3222 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3223 		for (i = 1; i < hsotg->num_of_eps; i++) {
3224 			if (hsotg->eps_in[i])
3225 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3226 							    0, 1);
3227 			if (hsotg->eps_out[i])
3228 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3229 							    0, 0);
3230 		}
3231 	}
3232 
3233 	/* ensure after enumeration our EP0 is active */
3234 
3235 	dwc2_hsotg_enqueue_setup(hsotg);
3236 
3237 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3238 		dwc2_readl(hsotg, DIEPCTL0),
3239 		dwc2_readl(hsotg, DOEPCTL0));
3240 }
3241 
3242 /**
3243  * kill_all_requests - remove all requests from the endpoint's queue
3244  * @hsotg: The device state.
3245  * @ep: The endpoint the requests may be on.
3246  * @result: The result code to use.
3247  *
3248  * Go through the requests on the given endpoint and mark them
3249  * completed with the given result code.
3250  */
3251 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3252 			      struct dwc2_hsotg_ep *ep,
3253 			      int result)
3254 {
3255 	unsigned int size;
3256 
3257 	ep->req = NULL;
3258 
3259 	while (!list_empty(&ep->queue)) {
3260 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3261 
3262 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3263 	}
3264 
3265 	if (!hsotg->dedicated_fifos)
3266 		return;
3267 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3268 	if (size < ep->fifo_size)
3269 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3270 }
3271 
3272 /**
3273  * dwc2_hsotg_disconnect - disconnect service
3274  * @hsotg: The device state.
3275  *
3276  * The device has been disconnected. Remove all current
3277  * transactions and signal the gadget driver that this
3278  * has happened.
3279  */
3280 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3281 {
3282 	unsigned int ep;
3283 
3284 	if (!hsotg->connected)
3285 		return;
3286 
3287 	hsotg->connected = 0;
3288 	hsotg->test_mode = 0;
3289 
3290 	/* all endpoints should be shutdown */
3291 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3292 		if (hsotg->eps_in[ep])
3293 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3294 					  -ESHUTDOWN);
3295 		if (hsotg->eps_out[ep])
3296 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3297 					  -ESHUTDOWN);
3298 	}
3299 
3300 	call_gadget(hsotg, disconnect);
3301 	hsotg->lx_state = DWC2_L3;
3302 
3303 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3304 }
3305 
3306 /**
3307  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3308  * @hsotg: The device state:
3309  * @periodic: True if this is a periodic FIFO interrupt
3310  */
3311 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3312 {
3313 	struct dwc2_hsotg_ep *ep;
3314 	int epno, ret;
3315 
3316 	/* look through for any more data to transmit */
3317 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3318 		ep = index_to_ep(hsotg, epno, 1);
3319 
3320 		if (!ep)
3321 			continue;
3322 
3323 		if (!ep->dir_in)
3324 			continue;
3325 
3326 		if ((periodic && !ep->periodic) ||
3327 		    (!periodic && ep->periodic))
3328 			continue;
3329 
3330 		ret = dwc2_hsotg_trytx(hsotg, ep);
3331 		if (ret < 0)
3332 			break;
3333 	}
3334 }
3335 
3336 /* IRQ flags which will trigger a retry around the IRQ loop */
3337 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3338 			GINTSTS_PTXFEMP |  \
3339 			GINTSTS_RXFLVL)
3340 
3341 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3342 /**
3343  * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3344  * @hsotg: The device state
3345  * @is_usb_reset: Usb resetting flag
3346  *
3347  * Issue a soft reset to the core, and await the core finishing it.
3348  */
3349 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3350 				       bool is_usb_reset)
3351 {
3352 	u32 intmsk;
3353 	u32 val;
3354 	u32 usbcfg;
3355 	u32 dcfg = 0;
3356 	int ep;
3357 
3358 	/* Kill any ep0 requests as controller will be reinitialized */
3359 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3360 
3361 	if (!is_usb_reset) {
3362 		if (dwc2_core_reset(hsotg, true))
3363 			return;
3364 	} else {
3365 		/* all endpoints should be shutdown */
3366 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3367 			if (hsotg->eps_in[ep])
3368 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3369 			if (hsotg->eps_out[ep])
3370 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3371 		}
3372 	}
3373 
3374 	/*
3375 	 * we must now enable ep0 ready for host detection and then
3376 	 * set configuration.
3377 	 */
3378 
3379 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3380 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3381 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3382 	usbcfg |= GUSBCFG_TOUTCAL(7);
3383 
3384 	/* remove the HNP/SRP and set the PHY */
3385 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3386         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3387 
3388 	dwc2_phy_init(hsotg, true);
3389 
3390 	dwc2_hsotg_init_fifo(hsotg);
3391 
3392 	if (!is_usb_reset)
3393 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3394 
3395 	dcfg |= DCFG_EPMISCNT(1);
3396 
3397 	switch (hsotg->params.speed) {
3398 	case DWC2_SPEED_PARAM_LOW:
3399 		dcfg |= DCFG_DEVSPD_LS;
3400 		break;
3401 	case DWC2_SPEED_PARAM_FULL:
3402 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3403 			dcfg |= DCFG_DEVSPD_FS48;
3404 		else
3405 			dcfg |= DCFG_DEVSPD_FS;
3406 		break;
3407 	default:
3408 		dcfg |= DCFG_DEVSPD_HS;
3409 	}
3410 
3411 	if (hsotg->params.ipg_isoc_en)
3412 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3413 
3414 	dwc2_writel(hsotg, dcfg,  DCFG);
3415 
3416 	/* Clear any pending OTG interrupts */
3417 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3418 
3419 	/* Clear any pending interrupts */
3420 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3421 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3422 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3423 		GINTSTS_USBRST | GINTSTS_RESETDET |
3424 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3425 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3426 		GINTSTS_LPMTRANRCVD;
3427 
3428 	if (!using_desc_dma(hsotg))
3429 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3430 
3431 	if (!hsotg->params.external_id_pin_ctl)
3432 		intmsk |= GINTSTS_CONIDSTSCHNG;
3433 
3434 	dwc2_writel(hsotg, intmsk, GINTMSK);
3435 
3436 	if (using_dma(hsotg)) {
3437 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3438 			    hsotg->params.ahbcfg,
3439 			    GAHBCFG);
3440 
3441 		/* Set DDMA mode support in the core if needed */
3442 		if (using_desc_dma(hsotg))
3443 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3444 
3445 	} else {
3446 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3447 						(GAHBCFG_NP_TXF_EMP_LVL |
3448 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3449 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3450 	}
3451 
3452 	/*
3453 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3454 	 * when we have no data to transfer. Otherwise we get being flooded by
3455 	 * interrupts.
3456 	 */
3457 
3458 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3459 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3460 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3461 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3462 		DIEPMSK);
3463 
3464 	/*
3465 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3466 	 * DMA mode we may need this and StsPhseRcvd.
3467 	 */
3468 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3469 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3470 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3471 		DOEPMSK_SETUPMSK,
3472 		DOEPMSK);
3473 
3474 	/* Enable BNA interrupt for DDMA */
3475 	if (using_desc_dma(hsotg)) {
3476 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3477 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3478 	}
3479 
3480 	/* Enable Service Interval mode if supported */
3481 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3482 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3483 
3484 	dwc2_writel(hsotg, 0, DAINTMSK);
3485 
3486 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3487 		dwc2_readl(hsotg, DIEPCTL0),
3488 		dwc2_readl(hsotg, DOEPCTL0));
3489 
3490 	/* enable in and out endpoint interrupts */
3491 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3492 
3493 	/*
3494 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3495 	 * the data. In DMA mode, we get events from the FIFO but also
3496 	 * things we cannot process, so do not use it.
3497 	 */
3498 	if (!using_dma(hsotg))
3499 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3500 
3501 	/* Enable interrupts for EP0 in and out */
3502 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3503 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3504 
3505 	if (!is_usb_reset) {
3506 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3507 		udelay(10);  /* see openiboot */
3508 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3509 	}
3510 
3511 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3512 
3513 	/*
3514 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3515 	 * writing to the EPCTL register..
3516 	 */
3517 
3518 	/* set to read 1 8byte packet */
3519 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3520 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3521 
3522 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3523 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3524 	       DXEPCTL_USBACTEP,
3525 	       DOEPCTL0);
3526 
3527 	/* enable, but don't activate EP0in */
3528 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3529 	       DXEPCTL_USBACTEP, DIEPCTL0);
3530 
3531 	/* clear global NAKs */
3532 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3533 	if (!is_usb_reset)
3534 		val |= DCTL_SFTDISCON;
3535 	dwc2_set_bit(hsotg, DCTL, val);
3536 
3537 	/* configure the core to support LPM */
3538 	dwc2_gadget_init_lpm(hsotg);
3539 
3540 	/* program GREFCLK register if needed */
3541 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3542 		dwc2_gadget_program_ref_clk(hsotg);
3543 
3544 	/* must be at-least 3ms to allow bus to see disconnect */
3545 	mdelay(3);
3546 
3547 	hsotg->lx_state = DWC2_L0;
3548 
3549 	dwc2_hsotg_enqueue_setup(hsotg);
3550 
3551 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3552 		dwc2_readl(hsotg, DIEPCTL0),
3553 		dwc2_readl(hsotg, DOEPCTL0));
3554 }
3555 
3556 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3557 {
3558 	/* set the soft-disconnect bit */
3559 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3560 }
3561 
3562 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3563 {
3564 	/* remove the soft-disconnect and let's go */
3565 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3566 }
3567 
3568 /**
3569  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3570  * @hsotg: The device state:
3571  *
3572  * This interrupt indicates one of the following conditions occurred while
3573  * transmitting an ISOC transaction.
3574  * - Corrupted IN Token for ISOC EP.
3575  * - Packet not complete in FIFO.
3576  *
3577  * The following actions will be taken:
3578  * - Determine the EP
3579  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3580  */
3581 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3582 {
3583 	struct dwc2_hsotg_ep *hs_ep;
3584 	u32 epctrl;
3585 	u32 daintmsk;
3586 	u32 idx;
3587 
3588 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3589 
3590 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3591 
3592 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3593 		hs_ep = hsotg->eps_in[idx];
3594 		/* Proceed only unmasked ISOC EPs */
3595 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3596 			continue;
3597 
3598 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3599 		if ((epctrl & DXEPCTL_EPENA) &&
3600 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3601 			epctrl |= DXEPCTL_SNAK;
3602 			epctrl |= DXEPCTL_EPDIS;
3603 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3604 		}
3605 	}
3606 
3607 	/* Clear interrupt */
3608 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3609 }
3610 
3611 /**
3612  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3613  * @hsotg: The device state:
3614  *
3615  * This interrupt indicates one of the following conditions occurred while
3616  * transmitting an ISOC transaction.
3617  * - Corrupted OUT Token for ISOC EP.
3618  * - Packet not complete in FIFO.
3619  *
3620  * The following actions will be taken:
3621  * - Determine the EP
3622  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3623  */
3624 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3625 {
3626 	u32 gintsts;
3627 	u32 gintmsk;
3628 	u32 daintmsk;
3629 	u32 epctrl;
3630 	struct dwc2_hsotg_ep *hs_ep;
3631 	int idx;
3632 
3633 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3634 
3635 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3636 	daintmsk >>= DAINT_OUTEP_SHIFT;
3637 
3638 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3639 		hs_ep = hsotg->eps_out[idx];
3640 		/* Proceed only unmasked ISOC EPs */
3641 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3642 			continue;
3643 
3644 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3645 		if ((epctrl & DXEPCTL_EPENA) &&
3646 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3647 			/* Unmask GOUTNAKEFF interrupt */
3648 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3649 			gintmsk |= GINTSTS_GOUTNAKEFF;
3650 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3651 
3652 			gintsts = dwc2_readl(hsotg, GINTSTS);
3653 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3654 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3655 				break;
3656 			}
3657 		}
3658 	}
3659 
3660 	/* Clear interrupt */
3661 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3662 }
3663 
3664 /**
3665  * dwc2_hsotg_irq - handle device interrupt
3666  * @irq: The IRQ number triggered
3667  * @pw: The pw value when registered the handler.
3668  */
3669 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3670 {
3671 	struct dwc2_hsotg *hsotg = pw;
3672 	int retry_count = 8;
3673 	u32 gintsts;
3674 	u32 gintmsk;
3675 
3676 	if (!dwc2_is_device_mode(hsotg))
3677 		return IRQ_NONE;
3678 
3679 	spin_lock(&hsotg->lock);
3680 irq_retry:
3681 	gintsts = dwc2_readl(hsotg, GINTSTS);
3682 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3683 
3684 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3685 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3686 
3687 	gintsts &= gintmsk;
3688 
3689 	if (gintsts & GINTSTS_RESETDET) {
3690 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3691 
3692 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3693 
3694 		/* This event must be used only if controller is suspended */
3695 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3696 			dwc2_exit_partial_power_down(hsotg, 0, true);
3697 
3698 		hsotg->lx_state = DWC2_L0;
3699 	}
3700 
3701 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3702 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3703 		u32 connected = hsotg->connected;
3704 
3705 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3706 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3707 			dwc2_readl(hsotg, GNPTXSTS));
3708 
3709 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3710 
3711 		/* Report disconnection if it is not already done. */
3712 		dwc2_hsotg_disconnect(hsotg);
3713 
3714 		/* Reset device address to zero */
3715 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3716 
3717 		if (usb_status & GOTGCTL_BSESVLD && connected)
3718 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3719 	}
3720 
3721 	if (gintsts & GINTSTS_ENUMDONE) {
3722 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3723 
3724 		dwc2_hsotg_irq_enumdone(hsotg);
3725 	}
3726 
3727 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3728 		u32 daint = dwc2_readl(hsotg, DAINT);
3729 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3730 		u32 daint_out, daint_in;
3731 		int ep;
3732 
3733 		daint &= daintmsk;
3734 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3735 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3736 
3737 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3738 
3739 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3740 						ep++, daint_out >>= 1) {
3741 			if (daint_out & 1)
3742 				dwc2_hsotg_epint(hsotg, ep, 0);
3743 		}
3744 
3745 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3746 						ep++, daint_in >>= 1) {
3747 			if (daint_in & 1)
3748 				dwc2_hsotg_epint(hsotg, ep, 1);
3749 		}
3750 	}
3751 
3752 	/* check both FIFOs */
3753 
3754 	if (gintsts & GINTSTS_NPTXFEMP) {
3755 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3756 
3757 		/*
3758 		 * Disable the interrupt to stop it happening again
3759 		 * unless one of these endpoint routines decides that
3760 		 * it needs re-enabling
3761 		 */
3762 
3763 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3764 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3765 	}
3766 
3767 	if (gintsts & GINTSTS_PTXFEMP) {
3768 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3769 
3770 		/* See note in GINTSTS_NPTxFEmp */
3771 
3772 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3773 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3774 	}
3775 
3776 	if (gintsts & GINTSTS_RXFLVL) {
3777 		/*
3778 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3779 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3780 		 * set.
3781 		 */
3782 
3783 		dwc2_hsotg_handle_rx(hsotg);
3784 	}
3785 
3786 	if (gintsts & GINTSTS_ERLYSUSP) {
3787 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3788 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3789 	}
3790 
3791 	/*
3792 	 * these next two seem to crop-up occasionally causing the core
3793 	 * to shutdown the USB transfer, so try clearing them and logging
3794 	 * the occurrence.
3795 	 */
3796 
3797 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3798 		u8 idx;
3799 		u32 epctrl;
3800 		u32 gintmsk;
3801 		u32 daintmsk;
3802 		struct dwc2_hsotg_ep *hs_ep;
3803 
3804 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3805 		daintmsk >>= DAINT_OUTEP_SHIFT;
3806 		/* Mask this interrupt */
3807 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3808 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3809 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3810 
3811 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3812 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3813 			hs_ep = hsotg->eps_out[idx];
3814 			/* Proceed only unmasked ISOC EPs */
3815 			if (BIT(idx) & ~daintmsk)
3816 				continue;
3817 
3818 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3819 
3820 			//ISOC Ep's only
3821 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3822 				epctrl |= DXEPCTL_SNAK;
3823 				epctrl |= DXEPCTL_EPDIS;
3824 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3825 				continue;
3826 			}
3827 
3828 			//Non-ISOC EP's
3829 			if (hs_ep->halted) {
3830 				if (!(epctrl & DXEPCTL_EPENA))
3831 					epctrl |= DXEPCTL_EPENA;
3832 				epctrl |= DXEPCTL_EPDIS;
3833 				epctrl |= DXEPCTL_STALL;
3834 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3835 			}
3836 		}
3837 
3838 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3839 	}
3840 
3841 	if (gintsts & GINTSTS_GINNAKEFF) {
3842 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3843 
3844 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3845 
3846 		dwc2_hsotg_dump(hsotg);
3847 	}
3848 
3849 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3850 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3851 
3852 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3853 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3854 
3855 	/*
3856 	 * if we've had fifo events, we should try and go around the
3857 	 * loop again to see if there's any point in returning yet.
3858 	 */
3859 
3860 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3861 		goto irq_retry;
3862 
3863 	/* Check WKUP_ALERT interrupt*/
3864 	if (hsotg->params.service_interval)
3865 		dwc2_gadget_wkup_alert_handler(hsotg);
3866 
3867 	spin_unlock(&hsotg->lock);
3868 
3869 	return IRQ_HANDLED;
3870 }
3871 
3872 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3873 				   struct dwc2_hsotg_ep *hs_ep)
3874 {
3875 	u32 epctrl_reg;
3876 	u32 epint_reg;
3877 
3878 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3879 		DOEPCTL(hs_ep->index);
3880 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3881 		DOEPINT(hs_ep->index);
3882 
3883 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3884 		hs_ep->name);
3885 
3886 	if (hs_ep->dir_in) {
3887 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3888 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3889 			/* Wait for Nak effect */
3890 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3891 						    DXEPINT_INEPNAKEFF, 100))
3892 				dev_warn(hsotg->dev,
3893 					 "%s: timeout DIEPINT.NAKEFF\n",
3894 					 __func__);
3895 		} else {
3896 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3897 			/* Wait for Nak effect */
3898 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3899 						    GINTSTS_GINNAKEFF, 100))
3900 				dev_warn(hsotg->dev,
3901 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3902 					 __func__);
3903 		}
3904 	} else {
3905 		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3906 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3907 
3908 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3909 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3910 
3911 		if (!using_dma(hsotg)) {
3912 			/* Wait for GINTSTS_RXFLVL interrupt */
3913 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3914 						    GINTSTS_RXFLVL, 100)) {
3915 				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3916 					 __func__);
3917 			} else {
3918 				/*
3919 				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3920 				 * to assert GOUTNAKEFF interrupt
3921 				 */
3922 				dwc2_readl(hsotg, GRXSTSP);
3923 			}
3924 		}
3925 
3926 		/* Wait for global nak to take effect */
3927 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3928 					    GINTSTS_GOUTNAKEFF, 100))
3929 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3930 				 __func__);
3931 	}
3932 
3933 	/* Disable ep */
3934 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3935 
3936 	/* Wait for ep to be disabled */
3937 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3938 		dev_warn(hsotg->dev,
3939 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3940 
3941 	/* Clear EPDISBLD interrupt */
3942 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3943 
3944 	if (hs_ep->dir_in) {
3945 		unsigned short fifo_index;
3946 
3947 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3948 			fifo_index = hs_ep->fifo_index;
3949 		else
3950 			fifo_index = 0;
3951 
3952 		/* Flush TX FIFO */
3953 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3954 
3955 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3956 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3957 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3958 
3959 	} else {
3960 		/* Remove global NAKs */
3961 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3962 	}
3963 }
3964 
3965 /**
3966  * dwc2_hsotg_ep_enable - enable the given endpoint
3967  * @ep: The USB endpint to configure
3968  * @desc: The USB endpoint descriptor to configure with.
3969  *
3970  * This is called from the USB gadget code's usb_ep_enable().
3971  */
3972 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3973 				const struct usb_endpoint_descriptor *desc)
3974 {
3975 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3976 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3977 	unsigned long flags;
3978 	unsigned int index = hs_ep->index;
3979 	u32 epctrl_reg;
3980 	u32 epctrl;
3981 	u32 mps;
3982 	u32 mc;
3983 	u32 mask;
3984 	unsigned int dir_in;
3985 	unsigned int i, val, size;
3986 	int ret = 0;
3987 	unsigned char ep_type;
3988 	int desc_num;
3989 
3990 	dev_dbg(hsotg->dev,
3991 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3992 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3993 		desc->wMaxPacketSize, desc->bInterval);
3994 
3995 	/* not to be called for EP0 */
3996 	if (index == 0) {
3997 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3998 		return -EINVAL;
3999 	}
4000 
4001 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4002 	if (dir_in != hs_ep->dir_in) {
4003 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4004 		return -EINVAL;
4005 	}
4006 
4007 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4008 	mps = usb_endpoint_maxp(desc);
4009 	mc = usb_endpoint_maxp_mult(desc);
4010 
4011 	/* ISOC IN in DDMA supported bInterval up to 10 */
4012 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4013 	    dir_in && desc->bInterval > 10) {
4014 		dev_err(hsotg->dev,
4015 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4016 		return -EINVAL;
4017 	}
4018 
4019 	/* High bandwidth ISOC OUT in DDMA not supported */
4020 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4021 	    !dir_in && mc > 1) {
4022 		dev_err(hsotg->dev,
4023 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4024 		return -EINVAL;
4025 	}
4026 
4027 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4028 
4029 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4030 	epctrl = dwc2_readl(hsotg, epctrl_reg);
4031 
4032 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4033 		__func__, epctrl, epctrl_reg);
4034 
4035 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4036 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4037 	else
4038 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4039 
4040 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4041 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4042 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4043 			desc_num * sizeof(struct dwc2_dma_desc),
4044 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4045 		if (!hs_ep->desc_list) {
4046 			ret = -ENOMEM;
4047 			goto error2;
4048 		}
4049 	}
4050 
4051 	spin_lock_irqsave(&hsotg->lock, flags);
4052 
4053 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4054 	epctrl |= DXEPCTL_MPS(mps);
4055 
4056 	/*
4057 	 * mark the endpoint as active, otherwise the core may ignore
4058 	 * transactions entirely for this endpoint
4059 	 */
4060 	epctrl |= DXEPCTL_USBACTEP;
4061 
4062 	/* update the endpoint state */
4063 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4064 
4065 	/* default, set to non-periodic */
4066 	hs_ep->isochronous = 0;
4067 	hs_ep->periodic = 0;
4068 	hs_ep->halted = 0;
4069 	hs_ep->interval = desc->bInterval;
4070 
4071 	switch (ep_type) {
4072 	case USB_ENDPOINT_XFER_ISOC:
4073 		epctrl |= DXEPCTL_EPTYPE_ISO;
4074 		epctrl |= DXEPCTL_SETEVENFR;
4075 		hs_ep->isochronous = 1;
4076 		hs_ep->interval = 1 << (desc->bInterval - 1);
4077 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4078 		hs_ep->next_desc = 0;
4079 		hs_ep->compl_desc = 0;
4080 		if (dir_in) {
4081 			hs_ep->periodic = 1;
4082 			mask = dwc2_readl(hsotg, DIEPMSK);
4083 			mask |= DIEPMSK_NAKMSK;
4084 			dwc2_writel(hsotg, mask, DIEPMSK);
4085 		} else {
4086 			mask = dwc2_readl(hsotg, DOEPMSK);
4087 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4088 			dwc2_writel(hsotg, mask, DOEPMSK);
4089 		}
4090 		break;
4091 
4092 	case USB_ENDPOINT_XFER_BULK:
4093 		epctrl |= DXEPCTL_EPTYPE_BULK;
4094 		break;
4095 
4096 	case USB_ENDPOINT_XFER_INT:
4097 		if (dir_in)
4098 			hs_ep->periodic = 1;
4099 
4100 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4101 			hs_ep->interval = 1 << (desc->bInterval - 1);
4102 
4103 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4104 		break;
4105 
4106 	case USB_ENDPOINT_XFER_CONTROL:
4107 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4108 		break;
4109 	}
4110 
4111 	/*
4112 	 * if the hardware has dedicated fifos, we must give each IN EP
4113 	 * a unique tx-fifo even if it is non-periodic.
4114 	 */
4115 	if (dir_in && hsotg->dedicated_fifos) {
4116 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4117 		u32 fifo_index = 0;
4118 		u32 fifo_size = UINT_MAX;
4119 
4120 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4121 		for (i = 1; i <= fifo_count; ++i) {
4122 			if (hsotg->fifo_map & (1 << i))
4123 				continue;
4124 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4125 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4126 			if (val < size)
4127 				continue;
4128 			/* Search for smallest acceptable fifo */
4129 			if (val < fifo_size) {
4130 				fifo_size = val;
4131 				fifo_index = i;
4132 			}
4133 		}
4134 		if (!fifo_index) {
4135 			dev_err(hsotg->dev,
4136 				"%s: No suitable fifo found\n", __func__);
4137 			ret = -ENOMEM;
4138 			goto error1;
4139 		}
4140 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4141 		hsotg->fifo_map |= 1 << fifo_index;
4142 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4143 		hs_ep->fifo_index = fifo_index;
4144 		hs_ep->fifo_size = fifo_size;
4145 	}
4146 
4147 	/* for non control endpoints, set PID to D0 */
4148 	if (index && !hs_ep->isochronous)
4149 		epctrl |= DXEPCTL_SETD0PID;
4150 
4151 	/* WA for Full speed ISOC IN in DDMA mode.
4152 	 * By Clear NAK status of EP, core will send ZLP
4153 	 * to IN token and assert NAK interrupt relying
4154 	 * on TxFIFO status only
4155 	 */
4156 
4157 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4158 	    hs_ep->isochronous && dir_in) {
4159 		/* The WA applies only to core versions from 2.72a
4160 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4161 		 * and HS_IOT_1.00a.
4162 		 */
4163 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4164 
4165 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4166 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4167 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4168 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4169 			epctrl |= DXEPCTL_CNAK;
4170 	}
4171 
4172 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4173 		__func__, epctrl);
4174 
4175 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4176 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4177 		__func__, dwc2_readl(hsotg, epctrl_reg));
4178 
4179 	/* enable the endpoint interrupt */
4180 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4181 
4182 error1:
4183 	spin_unlock_irqrestore(&hsotg->lock, flags);
4184 
4185 error2:
4186 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4187 		dmam_free_coherent(hsotg->dev, desc_num *
4188 			sizeof(struct dwc2_dma_desc),
4189 			hs_ep->desc_list, hs_ep->desc_list_dma);
4190 		hs_ep->desc_list = NULL;
4191 	}
4192 
4193 	return ret;
4194 }
4195 
4196 /**
4197  * dwc2_hsotg_ep_disable - disable given endpoint
4198  * @ep: The endpoint to disable.
4199  */
4200 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4201 {
4202 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4203 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4204 	int dir_in = hs_ep->dir_in;
4205 	int index = hs_ep->index;
4206 	u32 epctrl_reg;
4207 	u32 ctrl;
4208 
4209 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4210 
4211 	if (ep == &hsotg->eps_out[0]->ep) {
4212 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4213 		return -EINVAL;
4214 	}
4215 
4216 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4217 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4218 		return -EINVAL;
4219 	}
4220 
4221 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4222 
4223 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4224 
4225 	if (ctrl & DXEPCTL_EPENA)
4226 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4227 
4228 	ctrl &= ~DXEPCTL_EPENA;
4229 	ctrl &= ~DXEPCTL_USBACTEP;
4230 	ctrl |= DXEPCTL_SNAK;
4231 
4232 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4233 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4234 
4235 	/* disable endpoint interrupts */
4236 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4237 
4238 	/* terminate all requests with shutdown */
4239 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4240 
4241 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4242 	hs_ep->fifo_index = 0;
4243 	hs_ep->fifo_size = 0;
4244 
4245 	return 0;
4246 }
4247 
4248 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4249 {
4250 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4251 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4252 	unsigned long flags;
4253 	int ret;
4254 
4255 	spin_lock_irqsave(&hsotg->lock, flags);
4256 	ret = dwc2_hsotg_ep_disable(ep);
4257 	spin_unlock_irqrestore(&hsotg->lock, flags);
4258 	return ret;
4259 }
4260 
4261 /**
4262  * on_list - check request is on the given endpoint
4263  * @ep: The endpoint to check.
4264  * @test: The request to test if it is on the endpoint.
4265  */
4266 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4267 {
4268 	struct dwc2_hsotg_req *req, *treq;
4269 
4270 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4271 		if (req == test)
4272 			return true;
4273 	}
4274 
4275 	return false;
4276 }
4277 
4278 /**
4279  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4280  * @ep: The endpoint to dequeue.
4281  * @req: The request to be removed from a queue.
4282  */
4283 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4284 {
4285 	struct dwc2_hsotg_req *hs_req = our_req(req);
4286 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4287 	struct dwc2_hsotg *hs = hs_ep->parent;
4288 	unsigned long flags;
4289 
4290 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4291 
4292 	spin_lock_irqsave(&hs->lock, flags);
4293 
4294 	if (!on_list(hs_ep, hs_req)) {
4295 		spin_unlock_irqrestore(&hs->lock, flags);
4296 		return -EINVAL;
4297 	}
4298 
4299 	/* Dequeue already started request */
4300 	if (req == &hs_ep->req->req)
4301 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4302 
4303 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4304 	spin_unlock_irqrestore(&hs->lock, flags);
4305 
4306 	return 0;
4307 }
4308 
4309 /**
4310  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4311  * @ep: The endpoint to set halt.
4312  * @value: Set or unset the halt.
4313  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4314  *       the endpoint is busy processing requests.
4315  *
4316  * We need to stall the endpoint immediately if request comes from set_feature
4317  * protocol command handler.
4318  */
4319 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4320 {
4321 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4322 	struct dwc2_hsotg *hs = hs_ep->parent;
4323 	int index = hs_ep->index;
4324 	u32 epreg;
4325 	u32 epctl;
4326 	u32 xfertype;
4327 
4328 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4329 
4330 	if (index == 0) {
4331 		if (value)
4332 			dwc2_hsotg_stall_ep0(hs);
4333 		else
4334 			dev_warn(hs->dev,
4335 				 "%s: can't clear halt on ep0\n", __func__);
4336 		return 0;
4337 	}
4338 
4339 	if (hs_ep->isochronous) {
4340 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4341 		return -EINVAL;
4342 	}
4343 
4344 	if (!now && value && !list_empty(&hs_ep->queue)) {
4345 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4346 			ep->name);
4347 		return -EAGAIN;
4348 	}
4349 
4350 	if (hs_ep->dir_in) {
4351 		epreg = DIEPCTL(index);
4352 		epctl = dwc2_readl(hs, epreg);
4353 
4354 		if (value) {
4355 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4356 			if (epctl & DXEPCTL_EPENA)
4357 				epctl |= DXEPCTL_EPDIS;
4358 		} else {
4359 			epctl &= ~DXEPCTL_STALL;
4360 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4361 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4362 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4363 				epctl |= DXEPCTL_SETD0PID;
4364 		}
4365 		dwc2_writel(hs, epctl, epreg);
4366 	} else {
4367 		epreg = DOEPCTL(index);
4368 		epctl = dwc2_readl(hs, epreg);
4369 
4370 		if (value) {
4371 			/* Unmask GOUTNAKEFF interrupt */
4372 			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4373 
4374 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4375 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4376 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4377 		} else {
4378 			epctl &= ~DXEPCTL_STALL;
4379 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4380 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4381 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4382 				epctl |= DXEPCTL_SETD0PID;
4383 			dwc2_writel(hs, epctl, epreg);
4384 		}
4385 	}
4386 
4387 	hs_ep->halted = value;
4388 	return 0;
4389 }
4390 
4391 /**
4392  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4393  * @ep: The endpoint to set halt.
4394  * @value: Set or unset the halt.
4395  */
4396 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4397 {
4398 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4399 	struct dwc2_hsotg *hs = hs_ep->parent;
4400 	unsigned long flags;
4401 	int ret;
4402 
4403 	spin_lock_irqsave(&hs->lock, flags);
4404 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4405 	spin_unlock_irqrestore(&hs->lock, flags);
4406 
4407 	return ret;
4408 }
4409 
4410 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4411 	.enable		= dwc2_hsotg_ep_enable,
4412 	.disable	= dwc2_hsotg_ep_disable_lock,
4413 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4414 	.free_request	= dwc2_hsotg_ep_free_request,
4415 	.queue		= dwc2_hsotg_ep_queue_lock,
4416 	.dequeue	= dwc2_hsotg_ep_dequeue,
4417 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4418 	/* note, don't believe we have any call for the fifo routines */
4419 };
4420 
4421 /**
4422  * dwc2_hsotg_init - initialize the usb core
4423  * @hsotg: The driver state
4424  */
4425 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4426 {
4427 	/* unmask subset of endpoint interrupts */
4428 
4429 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4430 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4431 		    DIEPMSK);
4432 
4433 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4434 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4435 		    DOEPMSK);
4436 
4437 	dwc2_writel(hsotg, 0, DAINTMSK);
4438 
4439 	/* Be in disconnected state until gadget is registered */
4440 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4441 
4442 	/* setup fifos */
4443 
4444 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4445 		dwc2_readl(hsotg, GRXFSIZ),
4446 		dwc2_readl(hsotg, GNPTXFSIZ));
4447 
4448 	dwc2_hsotg_init_fifo(hsotg);
4449 
4450 	if (using_dma(hsotg))
4451 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4452 }
4453 
4454 /**
4455  * dwc2_hsotg_udc_start - prepare the udc for work
4456  * @gadget: The usb gadget state
4457  * @driver: The usb gadget driver
4458  *
4459  * Perform initialization to prepare udc device and driver
4460  * to work.
4461  */
4462 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4463 				struct usb_gadget_driver *driver)
4464 {
4465 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4466 	unsigned long flags;
4467 	int ret;
4468 
4469 	if (!hsotg) {
4470 		pr_err("%s: called with no device\n", __func__);
4471 		return -ENODEV;
4472 	}
4473 
4474 	if (!driver) {
4475 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4476 		return -EINVAL;
4477 	}
4478 
4479 	if (driver->max_speed < USB_SPEED_FULL)
4480 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4481 
4482 	if (!driver->setup) {
4483 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4484 		return -EINVAL;
4485 	}
4486 
4487 	WARN_ON(hsotg->driver);
4488 
4489 	driver->driver.bus = NULL;
4490 	hsotg->driver = driver;
4491 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4492 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4493 
4494 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4495 		ret = dwc2_lowlevel_hw_enable(hsotg);
4496 		if (ret)
4497 			goto err;
4498 	}
4499 
4500 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4501 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4502 
4503 	spin_lock_irqsave(&hsotg->lock, flags);
4504 	if (dwc2_hw_is_device(hsotg)) {
4505 		dwc2_hsotg_init(hsotg);
4506 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4507 	}
4508 
4509 	hsotg->enabled = 0;
4510 	spin_unlock_irqrestore(&hsotg->lock, flags);
4511 
4512 	gadget->sg_supported = using_desc_dma(hsotg);
4513 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4514 
4515 	return 0;
4516 
4517 err:
4518 	hsotg->driver = NULL;
4519 	return ret;
4520 }
4521 
4522 /**
4523  * dwc2_hsotg_udc_stop - stop the udc
4524  * @gadget: The usb gadget state
4525  *
4526  * Stop udc hw block and stay tunned for future transmissions
4527  */
4528 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4529 {
4530 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4531 	unsigned long flags;
4532 	int ep;
4533 
4534 	if (!hsotg)
4535 		return -ENODEV;
4536 
4537 	/* all endpoints should be shutdown */
4538 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4539 		if (hsotg->eps_in[ep])
4540 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4541 		if (hsotg->eps_out[ep])
4542 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4543 	}
4544 
4545 	spin_lock_irqsave(&hsotg->lock, flags);
4546 
4547 	hsotg->driver = NULL;
4548 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4549 	hsotg->enabled = 0;
4550 
4551 	spin_unlock_irqrestore(&hsotg->lock, flags);
4552 
4553 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4554 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4555 
4556 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4557 		dwc2_lowlevel_hw_disable(hsotg);
4558 
4559 	return 0;
4560 }
4561 
4562 /**
4563  * dwc2_hsotg_gadget_getframe - read the frame number
4564  * @gadget: The usb gadget state
4565  *
4566  * Read the {micro} frame number
4567  */
4568 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4569 {
4570 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4571 }
4572 
4573 /**
4574  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4575  * @gadget: The usb gadget state
4576  * @is_selfpowered: Whether the device is self-powered
4577  *
4578  * Set if the device is self or bus powered.
4579  */
4580 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4581 				      int is_selfpowered)
4582 {
4583 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4584 	unsigned long flags;
4585 
4586 	spin_lock_irqsave(&hsotg->lock, flags);
4587 	gadget->is_selfpowered = !!is_selfpowered;
4588 	spin_unlock_irqrestore(&hsotg->lock, flags);
4589 
4590 	return 0;
4591 }
4592 
4593 /**
4594  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4595  * @gadget: The usb gadget state
4596  * @is_on: Current state of the USB PHY
4597  *
4598  * Connect/Disconnect the USB PHY pullup
4599  */
4600 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4601 {
4602 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4603 	unsigned long flags;
4604 
4605 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4606 		hsotg->op_state);
4607 
4608 	/* Don't modify pullup state while in host mode */
4609 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4610 		hsotg->enabled = is_on;
4611 		return 0;
4612 	}
4613 
4614 	spin_lock_irqsave(&hsotg->lock, flags);
4615 	if (is_on) {
4616 		hsotg->enabled = 1;
4617 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4618 		/* Enable ACG feature in device mode,if supported */
4619 		dwc2_enable_acg(hsotg);
4620 		dwc2_hsotg_core_connect(hsotg);
4621 	} else {
4622 		dwc2_hsotg_core_disconnect(hsotg);
4623 		dwc2_hsotg_disconnect(hsotg);
4624 		hsotg->enabled = 0;
4625 	}
4626 
4627 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4628 	spin_unlock_irqrestore(&hsotg->lock, flags);
4629 
4630 	return 0;
4631 }
4632 
4633 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4634 {
4635 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4636 	unsigned long flags;
4637 
4638 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4639 	spin_lock_irqsave(&hsotg->lock, flags);
4640 
4641 	/*
4642 	 * If controller is in partial power down state, it must exit from
4643 	 * that state before being initialized / de-initialized
4644 	 */
4645 	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4646 		/*
4647 		 * No need to check the return value as
4648 		 * registers are not being restored.
4649 		 */
4650 		dwc2_exit_partial_power_down(hsotg, 0, false);
4651 
4652 	if (is_active) {
4653 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4654 
4655 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4656 		if (hsotg->enabled) {
4657 			/* Enable ACG feature in device mode,if supported */
4658 			dwc2_enable_acg(hsotg);
4659 			dwc2_hsotg_core_connect(hsotg);
4660 		}
4661 	} else {
4662 		dwc2_hsotg_core_disconnect(hsotg);
4663 		dwc2_hsotg_disconnect(hsotg);
4664 	}
4665 
4666 	spin_unlock_irqrestore(&hsotg->lock, flags);
4667 	return 0;
4668 }
4669 
4670 /**
4671  * dwc2_hsotg_vbus_draw - report bMaxPower field
4672  * @gadget: The usb gadget state
4673  * @mA: Amount of current
4674  *
4675  * Report how much power the device may consume to the phy.
4676  */
4677 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4678 {
4679 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4680 
4681 	if (IS_ERR_OR_NULL(hsotg->uphy))
4682 		return -ENOTSUPP;
4683 	return usb_phy_set_power(hsotg->uphy, mA);
4684 }
4685 
4686 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4687 	.get_frame	= dwc2_hsotg_gadget_getframe,
4688 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4689 	.udc_start		= dwc2_hsotg_udc_start,
4690 	.udc_stop		= dwc2_hsotg_udc_stop,
4691 	.pullup                 = dwc2_hsotg_pullup,
4692 	.vbus_session		= dwc2_hsotg_vbus_session,
4693 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4694 };
4695 
4696 /**
4697  * dwc2_hsotg_initep - initialise a single endpoint
4698  * @hsotg: The device state.
4699  * @hs_ep: The endpoint to be initialised.
4700  * @epnum: The endpoint number
4701  * @dir_in: True if direction is in.
4702  *
4703  * Initialise the given endpoint (as part of the probe and device state
4704  * creation) to give to the gadget driver. Setup the endpoint name, any
4705  * direction information and other state that may be required.
4706  */
4707 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4708 			      struct dwc2_hsotg_ep *hs_ep,
4709 				       int epnum,
4710 				       bool dir_in)
4711 {
4712 	char *dir;
4713 
4714 	if (epnum == 0)
4715 		dir = "";
4716 	else if (dir_in)
4717 		dir = "in";
4718 	else
4719 		dir = "out";
4720 
4721 	hs_ep->dir_in = dir_in;
4722 	hs_ep->index = epnum;
4723 
4724 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4725 
4726 	INIT_LIST_HEAD(&hs_ep->queue);
4727 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4728 
4729 	/* add to the list of endpoints known by the gadget driver */
4730 	if (epnum)
4731 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4732 
4733 	hs_ep->parent = hsotg;
4734 	hs_ep->ep.name = hs_ep->name;
4735 
4736 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4737 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4738 	else
4739 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4740 					   epnum ? 1024 : EP0_MPS_LIMIT);
4741 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4742 
4743 	if (epnum == 0) {
4744 		hs_ep->ep.caps.type_control = true;
4745 	} else {
4746 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4747 			hs_ep->ep.caps.type_iso = true;
4748 			hs_ep->ep.caps.type_bulk = true;
4749 		}
4750 		hs_ep->ep.caps.type_int = true;
4751 	}
4752 
4753 	if (dir_in)
4754 		hs_ep->ep.caps.dir_in = true;
4755 	else
4756 		hs_ep->ep.caps.dir_out = true;
4757 
4758 	/*
4759 	 * if we're using dma, we need to set the next-endpoint pointer
4760 	 * to be something valid.
4761 	 */
4762 
4763 	if (using_dma(hsotg)) {
4764 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4765 
4766 		if (dir_in)
4767 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4768 		else
4769 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4770 	}
4771 }
4772 
4773 /**
4774  * dwc2_hsotg_hw_cfg - read HW configuration registers
4775  * @hsotg: Programming view of the DWC_otg controller
4776  *
4777  * Read the USB core HW configuration registers
4778  */
4779 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4780 {
4781 	u32 cfg;
4782 	u32 ep_type;
4783 	u32 i;
4784 
4785 	/* check hardware configuration */
4786 
4787 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4788 
4789 	/* Add ep0 */
4790 	hsotg->num_of_eps++;
4791 
4792 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4793 					sizeof(struct dwc2_hsotg_ep),
4794 					GFP_KERNEL);
4795 	if (!hsotg->eps_in[0])
4796 		return -ENOMEM;
4797 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4798 	hsotg->eps_out[0] = hsotg->eps_in[0];
4799 
4800 	cfg = hsotg->hw_params.dev_ep_dirs;
4801 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4802 		ep_type = cfg & 3;
4803 		/* Direction in or both */
4804 		if (!(ep_type & 2)) {
4805 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4806 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4807 			if (!hsotg->eps_in[i])
4808 				return -ENOMEM;
4809 		}
4810 		/* Direction out or both */
4811 		if (!(ep_type & 1)) {
4812 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4813 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4814 			if (!hsotg->eps_out[i])
4815 				return -ENOMEM;
4816 		}
4817 	}
4818 
4819 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4820 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4821 
4822 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4823 		 hsotg->num_of_eps,
4824 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4825 		 hsotg->fifo_mem);
4826 	return 0;
4827 }
4828 
4829 /**
4830  * dwc2_hsotg_dump - dump state of the udc
4831  * @hsotg: Programming view of the DWC_otg controller
4832  *
4833  */
4834 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4835 {
4836 #ifdef DEBUG
4837 	struct device *dev = hsotg->dev;
4838 	u32 val;
4839 	int idx;
4840 
4841 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4842 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4843 		 dwc2_readl(hsotg, DIEPMSK));
4844 
4845 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4846 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4847 
4848 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4849 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4850 
4851 	/* show periodic fifo settings */
4852 
4853 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4854 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4855 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4856 			 val >> FIFOSIZE_DEPTH_SHIFT,
4857 			 val & FIFOSIZE_STARTADDR_MASK);
4858 	}
4859 
4860 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4861 		dev_info(dev,
4862 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4863 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4864 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4865 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4866 
4867 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4868 		dev_info(dev,
4869 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4870 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4871 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4872 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4873 	}
4874 
4875 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4876 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4877 #endif
4878 }
4879 
4880 /**
4881  * dwc2_gadget_init - init function for gadget
4882  * @hsotg: Programming view of the DWC_otg controller
4883  *
4884  */
4885 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4886 {
4887 	struct device *dev = hsotg->dev;
4888 	int epnum;
4889 	int ret;
4890 
4891 	/* Dump fifo information */
4892 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4893 		hsotg->params.g_np_tx_fifo_size);
4894 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4895 
4896 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4897 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4898 	hsotg->gadget.name = dev_name(dev);
4899 	hsotg->remote_wakeup_allowed = 0;
4900 
4901 	if (hsotg->params.lpm)
4902 		hsotg->gadget.lpm_capable = true;
4903 
4904 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4905 		hsotg->gadget.is_otg = 1;
4906 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4907 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4908 
4909 	ret = dwc2_hsotg_hw_cfg(hsotg);
4910 	if (ret) {
4911 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4912 		return ret;
4913 	}
4914 
4915 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4916 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4917 	if (!hsotg->ctrl_buff)
4918 		return -ENOMEM;
4919 
4920 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4921 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4922 	if (!hsotg->ep0_buff)
4923 		return -ENOMEM;
4924 
4925 	if (using_desc_dma(hsotg)) {
4926 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4927 		if (ret < 0)
4928 			return ret;
4929 	}
4930 
4931 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4932 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4933 	if (ret < 0) {
4934 		dev_err(dev, "cannot claim IRQ for gadget\n");
4935 		return ret;
4936 	}
4937 
4938 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4939 
4940 	if (hsotg->num_of_eps == 0) {
4941 		dev_err(dev, "wrong number of EPs (zero)\n");
4942 		return -EINVAL;
4943 	}
4944 
4945 	/* setup endpoint information */
4946 
4947 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4948 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4949 
4950 	/* allocate EP0 request */
4951 
4952 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4953 						     GFP_KERNEL);
4954 	if (!hsotg->ctrl_req) {
4955 		dev_err(dev, "failed to allocate ctrl req\n");
4956 		return -ENOMEM;
4957 	}
4958 
4959 	/* initialise the endpoints now the core has been initialised */
4960 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4961 		if (hsotg->eps_in[epnum])
4962 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4963 					  epnum, 1);
4964 		if (hsotg->eps_out[epnum])
4965 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4966 					  epnum, 0);
4967 	}
4968 
4969 	dwc2_hsotg_dump(hsotg);
4970 
4971 	return 0;
4972 }
4973 
4974 /**
4975  * dwc2_hsotg_remove - remove function for hsotg driver
4976  * @hsotg: Programming view of the DWC_otg controller
4977  *
4978  */
4979 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4980 {
4981 	usb_del_gadget_udc(&hsotg->gadget);
4982 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4983 
4984 	return 0;
4985 }
4986 
4987 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4988 {
4989 	unsigned long flags;
4990 
4991 	if (hsotg->lx_state != DWC2_L0)
4992 		return 0;
4993 
4994 	if (hsotg->driver) {
4995 		int ep;
4996 
4997 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4998 			 hsotg->driver->driver.name);
4999 
5000 		spin_lock_irqsave(&hsotg->lock, flags);
5001 		if (hsotg->enabled)
5002 			dwc2_hsotg_core_disconnect(hsotg);
5003 		dwc2_hsotg_disconnect(hsotg);
5004 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5005 		spin_unlock_irqrestore(&hsotg->lock, flags);
5006 
5007 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
5008 			if (hsotg->eps_in[ep])
5009 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5010 			if (hsotg->eps_out[ep])
5011 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5012 		}
5013 	}
5014 
5015 	return 0;
5016 }
5017 
5018 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5019 {
5020 	unsigned long flags;
5021 
5022 	if (hsotg->lx_state == DWC2_L2)
5023 		return 0;
5024 
5025 	if (hsotg->driver) {
5026 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5027 			 hsotg->driver->driver.name);
5028 
5029 		spin_lock_irqsave(&hsotg->lock, flags);
5030 		dwc2_hsotg_core_init_disconnected(hsotg, false);
5031 		if (hsotg->enabled) {
5032 			/* Enable ACG feature in device mode,if supported */
5033 			dwc2_enable_acg(hsotg);
5034 			dwc2_hsotg_core_connect(hsotg);
5035 		}
5036 		spin_unlock_irqrestore(&hsotg->lock, flags);
5037 	}
5038 
5039 	return 0;
5040 }
5041 
5042 /**
5043  * dwc2_backup_device_registers() - Backup controller device registers.
5044  * When suspending usb bus, registers needs to be backuped
5045  * if controller power is disabled once suspended.
5046  *
5047  * @hsotg: Programming view of the DWC_otg controller
5048  */
5049 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5050 {
5051 	struct dwc2_dregs_backup *dr;
5052 	int i;
5053 
5054 	dev_dbg(hsotg->dev, "%s\n", __func__);
5055 
5056 	/* Backup dev regs */
5057 	dr = &hsotg->dr_backup;
5058 
5059 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5060 	dr->dctl = dwc2_readl(hsotg, DCTL);
5061 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5062 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5063 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5064 
5065 	for (i = 0; i < hsotg->num_of_eps; i++) {
5066 		/* Backup IN EPs */
5067 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5068 
5069 		/* Ensure DATA PID is correctly configured */
5070 		if (dr->diepctl[i] & DXEPCTL_DPID)
5071 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5072 		else
5073 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5074 
5075 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5076 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5077 
5078 		/* Backup OUT EPs */
5079 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5080 
5081 		/* Ensure DATA PID is correctly configured */
5082 		if (dr->doepctl[i] & DXEPCTL_DPID)
5083 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5084 		else
5085 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5086 
5087 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5088 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5089 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5090 	}
5091 	dr->valid = true;
5092 	return 0;
5093 }
5094 
5095 /**
5096  * dwc2_restore_device_registers() - Restore controller device registers.
5097  * When resuming usb bus, device registers needs to be restored
5098  * if controller power were disabled.
5099  *
5100  * @hsotg: Programming view of the DWC_otg controller
5101  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5102  *
5103  * Return: 0 if successful, negative error code otherwise
5104  */
5105 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5106 {
5107 	struct dwc2_dregs_backup *dr;
5108 	int i;
5109 
5110 	dev_dbg(hsotg->dev, "%s\n", __func__);
5111 
5112 	/* Restore dev regs */
5113 	dr = &hsotg->dr_backup;
5114 	if (!dr->valid) {
5115 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5116 			__func__);
5117 		return -EINVAL;
5118 	}
5119 	dr->valid = false;
5120 
5121 	if (!remote_wakeup)
5122 		dwc2_writel(hsotg, dr->dctl, DCTL);
5123 
5124 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5125 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5126 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5127 
5128 	for (i = 0; i < hsotg->num_of_eps; i++) {
5129 		/* Restore IN EPs */
5130 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5131 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5132 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5133 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5134 		 * hibernation wrong value read and saved from DIEPDMAx,
5135 		 * as result BNA interrupt asserted on hibernation exit
5136 		 * by restoring from saved area.
5137 		 */
5138 		if (hsotg->params.g_dma_desc &&
5139 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5140 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5141 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5142 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5143 		/* Restore OUT EPs */
5144 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5145 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5146 		 * hibernation wrong value read and saved from DOEPDMAx,
5147 		 * as result BNA interrupt asserted on hibernation exit
5148 		 * by restoring from saved area.
5149 		 */
5150 		if (hsotg->params.g_dma_desc &&
5151 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5152 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5153 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5154 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5155 	}
5156 
5157 	return 0;
5158 }
5159 
5160 /**
5161  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5162  *
5163  * @hsotg: Programming view of DWC_otg controller
5164  *
5165  */
5166 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5167 {
5168 	u32 val;
5169 
5170 	if (!hsotg->params.lpm)
5171 		return;
5172 
5173 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5174 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5175 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5176 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5177 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5178 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5179 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5180 	dwc2_writel(hsotg, val, GLPMCFG);
5181 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5182 
5183 	/* Unmask WKUP_ALERT Interrupt */
5184 	if (hsotg->params.service_interval)
5185 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5186 }
5187 
5188 /**
5189  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5190  *
5191  * @hsotg: Programming view of DWC_otg controller
5192  *
5193  */
5194 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5195 {
5196 	u32 val = 0;
5197 
5198 	val |= GREFCLK_REF_CLK_MODE;
5199 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5200 	val |= hsotg->params.sof_cnt_wkup_alert <<
5201 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5202 
5203 	dwc2_writel(hsotg, val, GREFCLK);
5204 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5205 }
5206 
5207 /**
5208  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5209  *
5210  * @hsotg: Programming view of the DWC_otg controller
5211  *
5212  * Return non-zero if failed to enter to hibernation.
5213  */
5214 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5215 {
5216 	u32 gpwrdn;
5217 	int ret = 0;
5218 
5219 	/* Change to L2(suspend) state */
5220 	hsotg->lx_state = DWC2_L2;
5221 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5222 	ret = dwc2_backup_global_registers(hsotg);
5223 	if (ret) {
5224 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5225 			__func__);
5226 		return ret;
5227 	}
5228 	ret = dwc2_backup_device_registers(hsotg);
5229 	if (ret) {
5230 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5231 			__func__);
5232 		return ret;
5233 	}
5234 
5235 	gpwrdn = GPWRDN_PWRDNRSTN;
5236 	gpwrdn |= GPWRDN_PMUACTV;
5237 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5238 	udelay(10);
5239 
5240 	/* Set flag to indicate that we are in hibernation */
5241 	hsotg->hibernated = 1;
5242 
5243 	/* Enable interrupts from wake up logic */
5244 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5245 	gpwrdn |= GPWRDN_PMUINTSEL;
5246 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5247 	udelay(10);
5248 
5249 	/* Unmask device mode interrupts in GPWRDN */
5250 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5251 	gpwrdn |= GPWRDN_RST_DET_MSK;
5252 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5253 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5254 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5255 	udelay(10);
5256 
5257 	/* Enable Power Down Clamp */
5258 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5259 	gpwrdn |= GPWRDN_PWRDNCLMP;
5260 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5261 	udelay(10);
5262 
5263 	/* Switch off VDD */
5264 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5265 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5266 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5267 	udelay(10);
5268 
5269 	/* Save gpwrdn register for further usage if stschng interrupt */
5270 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5271 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5272 
5273 	return ret;
5274 }
5275 
5276 /**
5277  * dwc2_gadget_exit_hibernation()
5278  * This function is for exiting from Device mode hibernation by host initiated
5279  * resume/reset and device initiated remote-wakeup.
5280  *
5281  * @hsotg: Programming view of the DWC_otg controller
5282  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5283  * @reset: indicates whether resume is initiated by Reset.
5284  *
5285  * Return non-zero if failed to exit from hibernation.
5286  */
5287 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5288 				 int rem_wakeup, int reset)
5289 {
5290 	u32 pcgcctl;
5291 	u32 gpwrdn;
5292 	u32 dctl;
5293 	int ret = 0;
5294 	struct dwc2_gregs_backup *gr;
5295 	struct dwc2_dregs_backup *dr;
5296 
5297 	gr = &hsotg->gr_backup;
5298 	dr = &hsotg->dr_backup;
5299 
5300 	if (!hsotg->hibernated) {
5301 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5302 		return 1;
5303 	}
5304 	dev_dbg(hsotg->dev,
5305 		"%s: called with rem_wakeup = %d reset = %d\n",
5306 		__func__, rem_wakeup, reset);
5307 
5308 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5309 
5310 	if (!reset) {
5311 		/* Clear all pending interupts */
5312 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5313 	}
5314 
5315 	/* De-assert Restore */
5316 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5317 	gpwrdn &= ~GPWRDN_RESTORE;
5318 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5319 	udelay(10);
5320 
5321 	if (!rem_wakeup) {
5322 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5323 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5324 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5325 	}
5326 
5327 	/* Restore GUSBCFG, DCFG and DCTL */
5328 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5329 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5330 	dwc2_writel(hsotg, dr->dctl, DCTL);
5331 
5332 	/* On USB Reset, reset device address to zero */
5333 	if (reset)
5334 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5335 
5336 	/* De-assert Wakeup Logic */
5337 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5338 	gpwrdn &= ~GPWRDN_PMUACTV;
5339 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5340 
5341 	if (rem_wakeup) {
5342 		udelay(10);
5343 		/* Start Remote Wakeup Signaling */
5344 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5345 	} else {
5346 		udelay(50);
5347 		/* Set Device programming done bit */
5348 		dctl = dwc2_readl(hsotg, DCTL);
5349 		dctl |= DCTL_PWRONPRGDONE;
5350 		dwc2_writel(hsotg, dctl, DCTL);
5351 	}
5352 	/* Wait for interrupts which must be cleared */
5353 	mdelay(2);
5354 	/* Clear all pending interupts */
5355 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5356 
5357 	/* Restore global registers */
5358 	ret = dwc2_restore_global_registers(hsotg);
5359 	if (ret) {
5360 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5361 			__func__);
5362 		return ret;
5363 	}
5364 
5365 	/* Restore device registers */
5366 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5367 	if (ret) {
5368 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5369 			__func__);
5370 		return ret;
5371 	}
5372 
5373 	if (rem_wakeup) {
5374 		mdelay(10);
5375 		dctl = dwc2_readl(hsotg, DCTL);
5376 		dctl &= ~DCTL_RMTWKUPSIG;
5377 		dwc2_writel(hsotg, dctl, DCTL);
5378 	}
5379 
5380 	hsotg->hibernated = 0;
5381 	hsotg->lx_state = DWC2_L0;
5382 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5383 
5384 	return ret;
5385 }
5386 
5387 /**
5388  * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5389  * power down.
5390  *
5391  * @hsotg: Programming view of the DWC_otg controller
5392  *
5393  * Return: non-zero if failed to enter device partial power down.
5394  *
5395  * This function is for entering device mode partial power down.
5396  */
5397 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5398 {
5399 	u32 pcgcctl;
5400 	int ret = 0;
5401 
5402 	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5403 
5404 	/* Backup all registers */
5405 	ret = dwc2_backup_global_registers(hsotg);
5406 	if (ret) {
5407 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5408 			__func__);
5409 		return ret;
5410 	}
5411 
5412 	ret = dwc2_backup_device_registers(hsotg);
5413 	if (ret) {
5414 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5415 			__func__);
5416 		return ret;
5417 	}
5418 
5419 	/*
5420 	 * Clear any pending interrupts since dwc2 will not be able to
5421 	 * clear them after entering partial_power_down.
5422 	 */
5423 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5424 
5425 	/* Put the controller in low power state */
5426 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5427 
5428 	pcgcctl |= PCGCTL_PWRCLMP;
5429 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5430 	udelay(5);
5431 
5432 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5433 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5434 	udelay(5);
5435 
5436 	pcgcctl |= PCGCTL_STOPPCLK;
5437 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5438 
5439 	/* Set in_ppd flag to 1 as here core enters suspend. */
5440 	hsotg->in_ppd = 1;
5441 	hsotg->lx_state = DWC2_L2;
5442 
5443 	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5444 
5445 	return ret;
5446 }
5447 
5448 /*
5449  * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5450  * power down.
5451  *
5452  * @hsotg: Programming view of the DWC_otg controller
5453  * @restore: indicates whether need to restore the registers or not.
5454  *
5455  * Return: non-zero if failed to exit device partial power down.
5456  *
5457  * This function is for exiting from device mode partial power down.
5458  */
5459 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5460 					bool restore)
5461 {
5462 	u32 pcgcctl;
5463 	u32 dctl;
5464 	struct dwc2_dregs_backup *dr;
5465 	int ret = 0;
5466 
5467 	dr = &hsotg->dr_backup;
5468 
5469 	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5470 
5471 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5472 	pcgcctl &= ~PCGCTL_STOPPCLK;
5473 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5474 
5475 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5476 	pcgcctl &= ~PCGCTL_PWRCLMP;
5477 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5478 
5479 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5480 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5481 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5482 
5483 	udelay(100);
5484 	if (restore) {
5485 		ret = dwc2_restore_global_registers(hsotg);
5486 		if (ret) {
5487 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5488 				__func__);
5489 			return ret;
5490 		}
5491 		/* Restore DCFG */
5492 		dwc2_writel(hsotg, dr->dcfg, DCFG);
5493 
5494 		ret = dwc2_restore_device_registers(hsotg, 0);
5495 		if (ret) {
5496 			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5497 				__func__);
5498 			return ret;
5499 		}
5500 	}
5501 
5502 	/* Set the Power-On Programming done bit */
5503 	dctl = dwc2_readl(hsotg, DCTL);
5504 	dctl |= DCTL_PWRONPRGDONE;
5505 	dwc2_writel(hsotg, dctl, DCTL);
5506 
5507 	/* Set in_ppd flag to 0 as here core exits from suspend. */
5508 	hsotg->in_ppd = 0;
5509 	hsotg->lx_state = DWC2_L0;
5510 
5511 	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5512 	return ret;
5513 }
5514 
5515 /**
5516  * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5517  *
5518  * @hsotg: Programming view of the DWC_otg controller
5519  *
5520  * Return: non-zero if failed to enter device partial power down.
5521  *
5522  * This function is for entering device mode clock gating.
5523  */
5524 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5525 {
5526 	u32 pcgctl;
5527 
5528 	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5529 
5530 	/* Set the Phy Clock bit as suspend is received. */
5531 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5532 	pcgctl |= PCGCTL_STOPPCLK;
5533 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5534 	udelay(5);
5535 
5536 	/* Set the Gate hclk as suspend is received. */
5537 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5538 	pcgctl |= PCGCTL_GATEHCLK;
5539 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5540 	udelay(5);
5541 
5542 	hsotg->lx_state = DWC2_L2;
5543 	hsotg->bus_suspended = true;
5544 }
5545 
5546 /*
5547  * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5548  *
5549  * @hsotg: Programming view of the DWC_otg controller
5550  * @rem_wakeup: indicates whether remote wake up is enabled.
5551  *
5552  * This function is for exiting from device mode clock gating.
5553  */
5554 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5555 {
5556 	u32 pcgctl;
5557 	u32 dctl;
5558 
5559 	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5560 
5561 	/* Clear the Gate hclk. */
5562 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5563 	pcgctl &= ~PCGCTL_GATEHCLK;
5564 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5565 	udelay(5);
5566 
5567 	/* Phy Clock bit. */
5568 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5569 	pcgctl &= ~PCGCTL_STOPPCLK;
5570 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5571 	udelay(5);
5572 
5573 	if (rem_wakeup) {
5574 		/* Set Remote Wakeup Signaling */
5575 		dctl = dwc2_readl(hsotg, DCTL);
5576 		dctl |= DCTL_RMTWKUPSIG;
5577 		dwc2_writel(hsotg, dctl, DCTL);
5578 	}
5579 
5580 	/* Change to L0 state */
5581 	call_gadget(hsotg, resume);
5582 	hsotg->lx_state = DWC2_L0;
5583 	hsotg->bus_suspended = false;
5584 }
5585