xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 	gintsts2 &= gintmsk2;
264 
265 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
266 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
267 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
268 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
269 	}
270 }
271 
272 /**
273  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
274  * TX FIFOs
275  *
276  * @hsotg: Programming view of the DWC_otg controller
277  */
278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
279 {
280 	int tx_fifo_count;
281 	int tx_fifo_depth;
282 
283 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
284 
285 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
286 
287 	if (!tx_fifo_count)
288 		return tx_fifo_depth;
289 	else
290 		return tx_fifo_depth / tx_fifo_count;
291 }
292 
293 /**
294  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
295  * @hsotg: The device instance.
296  */
297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
298 {
299 	unsigned int ep;
300 	unsigned int addr;
301 	int timeout;
302 
303 	u32 val;
304 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
305 
306 	/* Reset fifo map if not correctly cleared during previous session */
307 	WARN_ON(hsotg->fifo_map);
308 	hsotg->fifo_map = 0;
309 
310 	/* set RX/NPTX FIFO sizes */
311 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
312 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
313 		    FIFOSIZE_STARTADDR_SHIFT) |
314 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
315 		    GNPTXFSIZ);
316 
317 	/*
318 	 * arange all the rest of the TX FIFOs, as some versions of this
319 	 * block have overlapping default addresses. This also ensures
320 	 * that if the settings have been changed, then they are set to
321 	 * known values.
322 	 */
323 
324 	/* start at the end of the GNPTXFSIZ, rounded up */
325 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
326 
327 	/*
328 	 * Configure fifos sizes from provided configuration and assign
329 	 * them to endpoints dynamically according to maxpacket size value of
330 	 * given endpoint.
331 	 */
332 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
333 		if (!txfsz[ep])
334 			continue;
335 		val = addr;
336 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
337 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
338 			  "insufficient fifo memory");
339 		addr += txfsz[ep];
340 
341 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
342 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
343 	}
344 
345 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
346 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
347 		    GDFIFOCFG);
348 	/*
349 	 * according to p428 of the design guide, we need to ensure that
350 	 * all fifos are flushed before continuing
351 	 */
352 
353 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
354 	       GRSTCTL_RXFFLSH, GRSTCTL);
355 
356 	/* wait until the fifos are both flushed */
357 	timeout = 100;
358 	while (1) {
359 		val = dwc2_readl(hsotg, GRSTCTL);
360 
361 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
362 			break;
363 
364 		if (--timeout == 0) {
365 			dev_err(hsotg->dev,
366 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
367 				__func__, val);
368 			break;
369 		}
370 
371 		udelay(1);
372 	}
373 
374 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 }
376 
377 /**
378  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
379  * @ep: USB endpoint to allocate request for.
380  * @flags: Allocation flags
381  *
382  * Allocate a new USB request structure appropriate for the specified endpoint
383  */
384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
385 						       gfp_t flags)
386 {
387 	struct dwc2_hsotg_req *req;
388 
389 	req = kzalloc(sizeof(*req), flags);
390 	if (!req)
391 		return NULL;
392 
393 	INIT_LIST_HEAD(&req->queue);
394 
395 	return &req->req;
396 }
397 
398 /**
399  * is_ep_periodic - return true if the endpoint is in periodic mode.
400  * @hs_ep: The endpoint to query.
401  *
402  * Returns true if the endpoint is in periodic mode, meaning it is being
403  * used for an Interrupt or ISO transfer.
404  */
405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
406 {
407 	return hs_ep->periodic;
408 }
409 
410 /**
411  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
412  * @hsotg: The device state.
413  * @hs_ep: The endpoint for the request
414  * @hs_req: The request being processed.
415  *
416  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
417  * of a request to ensure the buffer is ready for access by the caller.
418  */
419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
420 				 struct dwc2_hsotg_ep *hs_ep,
421 				struct dwc2_hsotg_req *hs_req)
422 {
423 	struct usb_request *req = &hs_req->req;
424 
425 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
426 }
427 
428 /*
429  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
430  * for Control endpoint
431  * @hsotg: The device state.
432  *
433  * This function will allocate 4 descriptor chains for EP 0: 2 for
434  * Setup stage, per one for IN and OUT data/status transactions.
435  */
436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
437 {
438 	hsotg->setup_desc[0] =
439 		dmam_alloc_coherent(hsotg->dev,
440 				    sizeof(struct dwc2_dma_desc),
441 				    &hsotg->setup_desc_dma[0],
442 				    GFP_KERNEL);
443 	if (!hsotg->setup_desc[0])
444 		goto fail;
445 
446 	hsotg->setup_desc[1] =
447 		dmam_alloc_coherent(hsotg->dev,
448 				    sizeof(struct dwc2_dma_desc),
449 				    &hsotg->setup_desc_dma[1],
450 				    GFP_KERNEL);
451 	if (!hsotg->setup_desc[1])
452 		goto fail;
453 
454 	hsotg->ctrl_in_desc =
455 		dmam_alloc_coherent(hsotg->dev,
456 				    sizeof(struct dwc2_dma_desc),
457 				    &hsotg->ctrl_in_desc_dma,
458 				    GFP_KERNEL);
459 	if (!hsotg->ctrl_in_desc)
460 		goto fail;
461 
462 	hsotg->ctrl_out_desc =
463 		dmam_alloc_coherent(hsotg->dev,
464 				    sizeof(struct dwc2_dma_desc),
465 				    &hsotg->ctrl_out_desc_dma,
466 				    GFP_KERNEL);
467 	if (!hsotg->ctrl_out_desc)
468 		goto fail;
469 
470 	return 0;
471 
472 fail:
473 	return -ENOMEM;
474 }
475 
476 /**
477  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
478  * @hsotg: The controller state.
479  * @hs_ep: The endpoint we're going to write for.
480  * @hs_req: The request to write data for.
481  *
482  * This is called when the TxFIFO has some space in it to hold a new
483  * transmission and we have something to give it. The actual setup of
484  * the data size is done elsewhere, so all we have to do is to actually
485  * write the data.
486  *
487  * The return value is zero if there is more space (or nothing was done)
488  * otherwise -ENOSPC is returned if the FIFO space was used up.
489  *
490  * This routine is only needed for PIO
491  */
492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
493 				 struct dwc2_hsotg_ep *hs_ep,
494 				struct dwc2_hsotg_req *hs_req)
495 {
496 	bool periodic = is_ep_periodic(hs_ep);
497 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
498 	int buf_pos = hs_req->req.actual;
499 	int to_write = hs_ep->size_loaded;
500 	void *data;
501 	int can_write;
502 	int pkt_round;
503 	int max_transfer;
504 
505 	to_write -= (buf_pos - hs_ep->last_load);
506 
507 	/* if there's nothing to write, get out early */
508 	if (to_write == 0)
509 		return 0;
510 
511 	if (periodic && !hsotg->dedicated_fifos) {
512 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
513 		int size_left;
514 		int size_done;
515 
516 		/*
517 		 * work out how much data was loaded so we can calculate
518 		 * how much data is left in the fifo.
519 		 */
520 
521 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
522 
523 		/*
524 		 * if shared fifo, we cannot write anything until the
525 		 * previous data has been completely sent.
526 		 */
527 		if (hs_ep->fifo_load != 0) {
528 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
529 			return -ENOSPC;
530 		}
531 
532 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
533 			__func__, size_left,
534 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
535 
536 		/* how much of the data has moved */
537 		size_done = hs_ep->size_loaded - size_left;
538 
539 		/* how much data is left in the fifo */
540 		can_write = hs_ep->fifo_load - size_done;
541 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
542 			__func__, can_write);
543 
544 		can_write = hs_ep->fifo_size - can_write;
545 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
546 			__func__, can_write);
547 
548 		if (can_write <= 0) {
549 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
550 			return -ENOSPC;
551 		}
552 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
553 		can_write = dwc2_readl(hsotg,
554 				       DTXFSTS(hs_ep->fifo_index));
555 
556 		can_write &= 0xffff;
557 		can_write *= 4;
558 	} else {
559 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
560 			dev_dbg(hsotg->dev,
561 				"%s: no queue slots available (0x%08x)\n",
562 				__func__, gnptxsts);
563 
564 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
565 			return -ENOSPC;
566 		}
567 
568 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
569 		can_write *= 4;	/* fifo size is in 32bit quantities. */
570 	}
571 
572 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
573 
574 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
575 		__func__, gnptxsts, can_write, to_write, max_transfer);
576 
577 	/*
578 	 * limit to 512 bytes of data, it seems at least on the non-periodic
579 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
580 	 * fragment of the end of the transfer in it.
581 	 */
582 	if (can_write > 512 && !periodic)
583 		can_write = 512;
584 
585 	/*
586 	 * limit the write to one max-packet size worth of data, but allow
587 	 * the transfer to return that it did not run out of fifo space
588 	 * doing it.
589 	 */
590 	if (to_write > max_transfer) {
591 		to_write = max_transfer;
592 
593 		/* it's needed only when we do not use dedicated fifos */
594 		if (!hsotg->dedicated_fifos)
595 			dwc2_hsotg_en_gsint(hsotg,
596 					    periodic ? GINTSTS_PTXFEMP :
597 					   GINTSTS_NPTXFEMP);
598 	}
599 
600 	/* see if we can write data */
601 
602 	if (to_write > can_write) {
603 		to_write = can_write;
604 		pkt_round = to_write % max_transfer;
605 
606 		/*
607 		 * Round the write down to an
608 		 * exact number of packets.
609 		 *
610 		 * Note, we do not currently check to see if we can ever
611 		 * write a full packet or not to the FIFO.
612 		 */
613 
614 		if (pkt_round)
615 			to_write -= pkt_round;
616 
617 		/*
618 		 * enable correct FIFO interrupt to alert us when there
619 		 * is more room left.
620 		 */
621 
622 		/* it's needed only when we do not use dedicated fifos */
623 		if (!hsotg->dedicated_fifos)
624 			dwc2_hsotg_en_gsint(hsotg,
625 					    periodic ? GINTSTS_PTXFEMP :
626 					   GINTSTS_NPTXFEMP);
627 	}
628 
629 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
630 		to_write, hs_req->req.length, can_write, buf_pos);
631 
632 	if (to_write <= 0)
633 		return -ENOSPC;
634 
635 	hs_req->req.actual = buf_pos + to_write;
636 	hs_ep->total_data += to_write;
637 
638 	if (periodic)
639 		hs_ep->fifo_load += to_write;
640 
641 	to_write = DIV_ROUND_UP(to_write, 4);
642 	data = hs_req->req.buf + buf_pos;
643 
644 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
645 
646 	return (to_write >= can_write) ? -ENOSPC : 0;
647 }
648 
649 /**
650  * get_ep_limit - get the maximum data legnth for this endpoint
651  * @hs_ep: The endpoint
652  *
653  * Return the maximum data that can be queued in one go on a given endpoint
654  * so that transfers that are too long can be split.
655  */
656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
657 {
658 	int index = hs_ep->index;
659 	unsigned int maxsize;
660 	unsigned int maxpkt;
661 
662 	if (index != 0) {
663 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
664 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
665 	} else {
666 		maxsize = 64 + 64;
667 		if (hs_ep->dir_in)
668 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
669 		else
670 			maxpkt = 2;
671 	}
672 
673 	/* we made the constant loading easier above by using +1 */
674 	maxpkt--;
675 	maxsize--;
676 
677 	/*
678 	 * constrain by packet count if maxpkts*pktsize is greater
679 	 * than the length register size.
680 	 */
681 
682 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
683 		maxsize = maxpkt * hs_ep->ep.maxpacket;
684 
685 	return maxsize;
686 }
687 
688 /**
689  * dwc2_hsotg_read_frameno - read current frame number
690  * @hsotg: The device instance
691  *
692  * Return the current frame number
693  */
694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
695 {
696 	u32 dsts;
697 
698 	dsts = dwc2_readl(hsotg, DSTS);
699 	dsts &= DSTS_SOFFN_MASK;
700 	dsts >>= DSTS_SOFFN_SHIFT;
701 
702 	return dsts;
703 }
704 
705 /**
706  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
707  * DMA descriptor chain prepared for specific endpoint
708  * @hs_ep: The endpoint
709  *
710  * Return the maximum data that can be queued in one go on a given endpoint
711  * depending on its descriptor chain capacity so that transfers that
712  * are too long can be split.
713  */
714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
715 {
716 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
717 	int is_isoc = hs_ep->isochronous;
718 	unsigned int maxsize;
719 	u32 mps = hs_ep->ep.maxpacket;
720 	int dir_in = hs_ep->dir_in;
721 
722 	if (is_isoc)
723 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
724 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
725 					   MAX_DMA_DESC_NUM_HS_ISOC;
726 	else
727 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
728 
729 	/* Interrupt OUT EP with mps not multiple of 4 */
730 	if (hs_ep->index)
731 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
732 			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
733 
734 	return maxsize;
735 }
736 
737 /*
738  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
739  * @hs_ep: The endpoint
740  * @mask: RX/TX bytes mask to be defined
741  *
742  * Returns maximum data payload for one descriptor after analyzing endpoint
743  * characteristics.
744  * DMA descriptor transfer bytes limit depends on EP type:
745  * Control out - MPS,
746  * Isochronous - descriptor rx/tx bytes bitfield limit,
747  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
748  * have concatenations from various descriptors within one packet.
749  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
750  * to a single descriptor.
751  *
752  * Selects corresponding mask for RX/TX bytes as well.
753  */
754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
755 {
756 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
757 	u32 mps = hs_ep->ep.maxpacket;
758 	int dir_in = hs_ep->dir_in;
759 	u32 desc_size = 0;
760 
761 	if (!hs_ep->index && !dir_in) {
762 		desc_size = mps;
763 		*mask = DEV_DMA_NBYTES_MASK;
764 	} else if (hs_ep->isochronous) {
765 		if (dir_in) {
766 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
767 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
768 		} else {
769 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
770 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
771 		}
772 	} else {
773 		desc_size = DEV_DMA_NBYTES_LIMIT;
774 		*mask = DEV_DMA_NBYTES_MASK;
775 
776 		/* Round down desc_size to be mps multiple */
777 		desc_size -= desc_size % mps;
778 	}
779 
780 	/* Interrupt OUT EP with mps not multiple of 4 */
781 	if (hs_ep->index)
782 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
783 			desc_size = mps;
784 			*mask = DEV_DMA_NBYTES_MASK;
785 		}
786 
787 	return desc_size;
788 }
789 
790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
791 						 struct dwc2_dma_desc **desc,
792 						 dma_addr_t dma_buff,
793 						 unsigned int len,
794 						 bool true_last)
795 {
796 	int dir_in = hs_ep->dir_in;
797 	u32 mps = hs_ep->ep.maxpacket;
798 	u32 maxsize = 0;
799 	u32 offset = 0;
800 	u32 mask = 0;
801 	int i;
802 
803 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
804 
805 	hs_ep->desc_count = (len / maxsize) +
806 				((len % maxsize) ? 1 : 0);
807 	if (len == 0)
808 		hs_ep->desc_count = 1;
809 
810 	for (i = 0; i < hs_ep->desc_count; ++i) {
811 		(*desc)->status = 0;
812 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
813 				 << DEV_DMA_BUFF_STS_SHIFT);
814 
815 		if (len > maxsize) {
816 			if (!hs_ep->index && !dir_in)
817 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
818 
819 			(*desc)->status |=
820 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
821 			(*desc)->buf = dma_buff + offset;
822 
823 			len -= maxsize;
824 			offset += maxsize;
825 		} else {
826 			if (true_last)
827 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
828 
829 			if (dir_in)
830 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
831 					((hs_ep->send_zlp && true_last) ?
832 					DEV_DMA_SHORT : 0);
833 
834 			(*desc)->status |=
835 				len << DEV_DMA_NBYTES_SHIFT & mask;
836 			(*desc)->buf = dma_buff + offset;
837 		}
838 
839 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
840 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
841 				 << DEV_DMA_BUFF_STS_SHIFT);
842 		(*desc)++;
843 	}
844 }
845 
846 /*
847  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
848  * @hs_ep: The endpoint
849  * @ureq: Request to transfer
850  * @offset: offset in bytes
851  * @len: Length of the transfer
852  *
853  * This function will iterate over descriptor chain and fill its entries
854  * with corresponding information based on transfer data.
855  */
856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
857 						 dma_addr_t dma_buff,
858 						 unsigned int len)
859 {
860 	struct usb_request *ureq = NULL;
861 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
862 	struct scatterlist *sg;
863 	int i;
864 	u8 desc_count = 0;
865 
866 	if (hs_ep->req)
867 		ureq = &hs_ep->req->req;
868 
869 	/* non-DMA sg buffer */
870 	if (!ureq || !ureq->num_sgs) {
871 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
872 			dma_buff, len, true);
873 		return;
874 	}
875 
876 	/* DMA sg buffer */
877 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
878 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
879 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
880 			sg_is_last(sg));
881 		desc_count += hs_ep->desc_count;
882 	}
883 
884 	hs_ep->desc_count = desc_count;
885 }
886 
887 /*
888  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
889  * @hs_ep: The isochronous endpoint.
890  * @dma_buff: usb requests dma buffer.
891  * @len: usb request transfer length.
892  *
893  * Fills next free descriptor with the data of the arrived usb request,
894  * frame info, sets Last and IOC bits increments next_desc. If filled
895  * descriptor is not the first one, removes L bit from the previous descriptor
896  * status.
897  */
898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
899 				      dma_addr_t dma_buff, unsigned int len)
900 {
901 	struct dwc2_dma_desc *desc;
902 	struct dwc2_hsotg *hsotg = hs_ep->parent;
903 	u32 index;
904 	u32 mask = 0;
905 	u8 pid = 0;
906 
907 	dwc2_gadget_get_desc_params(hs_ep, &mask);
908 
909 	index = hs_ep->next_desc;
910 	desc = &hs_ep->desc_list[index];
911 
912 	/* Check if descriptor chain full */
913 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
914 	    DEV_DMA_BUFF_STS_HREADY) {
915 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
916 		return 1;
917 	}
918 
919 	/* Clear L bit of previous desc if more than one entries in the chain */
920 	if (hs_ep->next_desc)
921 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
922 
923 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
924 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
925 
926 	desc->status = 0;
927 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
928 
929 	desc->buf = dma_buff;
930 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
931 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
932 
933 	if (hs_ep->dir_in) {
934 		if (len)
935 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
936 		else
937 			pid = 1;
938 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
939 				 DEV_DMA_ISOC_PID_MASK) |
940 				((len % hs_ep->ep.maxpacket) ?
941 				 DEV_DMA_SHORT : 0) |
942 				((hs_ep->target_frame <<
943 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
944 				 DEV_DMA_ISOC_FRNUM_MASK);
945 	}
946 
947 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
948 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
949 
950 	/* Increment frame number by interval for IN */
951 	if (hs_ep->dir_in)
952 		dwc2_gadget_incr_frame_num(hs_ep);
953 
954 	/* Update index of last configured entry in the chain */
955 	hs_ep->next_desc++;
956 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
957 		hs_ep->next_desc = 0;
958 
959 	return 0;
960 }
961 
962 /*
963  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
964  * @hs_ep: The isochronous endpoint.
965  *
966  * Prepare descriptor chain for isochronous endpoints. Afterwards
967  * write DMA address to HW and enable the endpoint.
968  */
969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
970 {
971 	struct dwc2_hsotg *hsotg = hs_ep->parent;
972 	struct dwc2_hsotg_req *hs_req, *treq;
973 	int index = hs_ep->index;
974 	int ret;
975 	int i;
976 	u32 dma_reg;
977 	u32 depctl;
978 	u32 ctrl;
979 	struct dwc2_dma_desc *desc;
980 
981 	if (list_empty(&hs_ep->queue)) {
982 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
983 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
984 		return;
985 	}
986 
987 	/* Initialize descriptor chain by Host Busy status */
988 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
989 		desc = &hs_ep->desc_list[i];
990 		desc->status = 0;
991 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
992 				    << DEV_DMA_BUFF_STS_SHIFT);
993 	}
994 
995 	hs_ep->next_desc = 0;
996 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
997 		dma_addr_t dma_addr = hs_req->req.dma;
998 
999 		if (hs_req->req.num_sgs) {
1000 			WARN_ON(hs_req->req.num_sgs > 1);
1001 			dma_addr = sg_dma_address(hs_req->req.sg);
1002 		}
1003 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1004 						 hs_req->req.length);
1005 		if (ret)
1006 			break;
1007 	}
1008 
1009 	hs_ep->compl_desc = 0;
1010 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1011 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1012 
1013 	/* write descriptor chain address to control register */
1014 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1015 
1016 	ctrl = dwc2_readl(hsotg, depctl);
1017 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1018 	dwc2_writel(hsotg, ctrl, depctl);
1019 }
1020 
1021 /**
1022  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1023  * @hsotg: The controller state.
1024  * @hs_ep: The endpoint to process a request for
1025  * @hs_req: The request to start.
1026  * @continuing: True if we are doing more for the current request.
1027  *
1028  * Start the given request running by setting the endpoint registers
1029  * appropriately, and writing any data to the FIFOs.
1030  */
1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1032 				 struct dwc2_hsotg_ep *hs_ep,
1033 				struct dwc2_hsotg_req *hs_req,
1034 				bool continuing)
1035 {
1036 	struct usb_request *ureq = &hs_req->req;
1037 	int index = hs_ep->index;
1038 	int dir_in = hs_ep->dir_in;
1039 	u32 epctrl_reg;
1040 	u32 epsize_reg;
1041 	u32 epsize;
1042 	u32 ctrl;
1043 	unsigned int length;
1044 	unsigned int packets;
1045 	unsigned int maxreq;
1046 	unsigned int dma_reg;
1047 
1048 	if (index != 0) {
1049 		if (hs_ep->req && !continuing) {
1050 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1051 			WARN_ON(1);
1052 			return;
1053 		} else if (hs_ep->req != hs_req && continuing) {
1054 			dev_err(hsotg->dev,
1055 				"%s: continue different req\n", __func__);
1056 			WARN_ON(1);
1057 			return;
1058 		}
1059 	}
1060 
1061 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1062 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1063 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1064 
1065 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1066 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1067 		hs_ep->dir_in ? "in" : "out");
1068 
1069 	/* If endpoint is stalled, we will restart request later */
1070 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1071 
1072 	if (index && ctrl & DXEPCTL_STALL) {
1073 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1074 		return;
1075 	}
1076 
1077 	length = ureq->length - ureq->actual;
1078 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1079 		ureq->length, ureq->actual);
1080 
1081 	if (!using_desc_dma(hsotg))
1082 		maxreq = get_ep_limit(hs_ep);
1083 	else
1084 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1085 
1086 	if (length > maxreq) {
1087 		int round = maxreq % hs_ep->ep.maxpacket;
1088 
1089 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1090 			__func__, length, maxreq, round);
1091 
1092 		/* round down to multiple of packets */
1093 		if (round)
1094 			maxreq -= round;
1095 
1096 		length = maxreq;
1097 	}
1098 
1099 	if (length)
1100 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1101 	else
1102 		packets = 1;	/* send one packet if length is zero. */
1103 
1104 	if (dir_in && index != 0)
1105 		if (hs_ep->isochronous)
1106 			epsize = DXEPTSIZ_MC(packets);
1107 		else
1108 			epsize = DXEPTSIZ_MC(1);
1109 	else
1110 		epsize = 0;
1111 
1112 	/*
1113 	 * zero length packet should be programmed on its own and should not
1114 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1115 	 */
1116 	if (dir_in && ureq->zero && !continuing) {
1117 		/* Test if zlp is actually required. */
1118 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1119 		    !(ureq->length % hs_ep->ep.maxpacket))
1120 			hs_ep->send_zlp = 1;
1121 	}
1122 
1123 	epsize |= DXEPTSIZ_PKTCNT(packets);
1124 	epsize |= DXEPTSIZ_XFERSIZE(length);
1125 
1126 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1127 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1128 
1129 	/* store the request as the current one we're doing */
1130 	hs_ep->req = hs_req;
1131 
1132 	if (using_desc_dma(hsotg)) {
1133 		u32 offset = 0;
1134 		u32 mps = hs_ep->ep.maxpacket;
1135 
1136 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1137 		if (!dir_in) {
1138 			if (!index)
1139 				length = mps;
1140 			else if (length % mps)
1141 				length += (mps - (length % mps));
1142 		}
1143 
1144 		if (continuing)
1145 			offset = ureq->actual;
1146 
1147 		/* Fill DDMA chain entries */
1148 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1149 						     length);
1150 
1151 		/* write descriptor chain address to control register */
1152 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1153 
1154 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1155 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1156 	} else {
1157 		/* write size / packets */
1158 		dwc2_writel(hsotg, epsize, epsize_reg);
1159 
1160 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1161 			/*
1162 			 * write DMA address to control register, buffer
1163 			 * already synced by dwc2_hsotg_ep_queue().
1164 			 */
1165 
1166 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1167 
1168 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1169 				__func__, &ureq->dma, dma_reg);
1170 		}
1171 	}
1172 
1173 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1174 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1175 		dwc2_gadget_incr_frame_num(hs_ep);
1176 
1177 		if (hs_ep->target_frame & 0x1)
1178 			ctrl |= DXEPCTL_SETODDFR;
1179 		else
1180 			ctrl |= DXEPCTL_SETEVENFR;
1181 	}
1182 
1183 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1184 
1185 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1186 
1187 	/* For Setup request do not clear NAK */
1188 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1189 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1190 
1191 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1192 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1193 
1194 	/*
1195 	 * set these, it seems that DMA support increments past the end
1196 	 * of the packet buffer so we need to calculate the length from
1197 	 * this information.
1198 	 */
1199 	hs_ep->size_loaded = length;
1200 	hs_ep->last_load = ureq->actual;
1201 
1202 	if (dir_in && !using_dma(hsotg)) {
1203 		/* set these anyway, we may need them for non-periodic in */
1204 		hs_ep->fifo_load = 0;
1205 
1206 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1207 	}
1208 
1209 	/*
1210 	 * Note, trying to clear the NAK here causes problems with transmit
1211 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1212 	 */
1213 
1214 	/* check ep is enabled */
1215 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1216 		dev_dbg(hsotg->dev,
1217 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1218 			 index, dwc2_readl(hsotg, epctrl_reg));
1219 
1220 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1221 		__func__, dwc2_readl(hsotg, epctrl_reg));
1222 
1223 	/* enable ep interrupts */
1224 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1225 }
1226 
1227 /**
1228  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1229  * @hsotg: The device state.
1230  * @hs_ep: The endpoint the request is on.
1231  * @req: The request being processed.
1232  *
1233  * We've been asked to queue a request, so ensure that the memory buffer
1234  * is correctly setup for DMA. If we've been passed an extant DMA address
1235  * then ensure the buffer has been synced to memory. If our buffer has no
1236  * DMA memory, then we map the memory and mark our request to allow us to
1237  * cleanup on completion.
1238  */
1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1240 			      struct dwc2_hsotg_ep *hs_ep,
1241 			     struct usb_request *req)
1242 {
1243 	int ret;
1244 
1245 	hs_ep->map_dir = hs_ep->dir_in;
1246 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1247 	if (ret)
1248 		goto dma_error;
1249 
1250 	return 0;
1251 
1252 dma_error:
1253 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1254 		__func__, req->buf, req->length);
1255 
1256 	return -EIO;
1257 }
1258 
1259 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1260 						 struct dwc2_hsotg_ep *hs_ep,
1261 						 struct dwc2_hsotg_req *hs_req)
1262 {
1263 	void *req_buf = hs_req->req.buf;
1264 
1265 	/* If dma is not being used or buffer is aligned */
1266 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1267 		return 0;
1268 
1269 	WARN_ON(hs_req->saved_req_buf);
1270 
1271 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1272 		hs_ep->ep.name, req_buf, hs_req->req.length);
1273 
1274 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1275 	if (!hs_req->req.buf) {
1276 		hs_req->req.buf = req_buf;
1277 		dev_err(hsotg->dev,
1278 			"%s: unable to allocate memory for bounce buffer\n",
1279 			__func__);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	/* Save actual buffer */
1284 	hs_req->saved_req_buf = req_buf;
1285 
1286 	if (hs_ep->dir_in)
1287 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1288 	return 0;
1289 }
1290 
1291 static void
1292 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1293 					 struct dwc2_hsotg_ep *hs_ep,
1294 					 struct dwc2_hsotg_req *hs_req)
1295 {
1296 	/* If dma is not being used or buffer was aligned */
1297 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1298 		return;
1299 
1300 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1301 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1302 
1303 	/* Copy data from bounce buffer on successful out transfer */
1304 	if (!hs_ep->dir_in && !hs_req->req.status)
1305 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1306 		       hs_req->req.actual);
1307 
1308 	/* Free bounce buffer */
1309 	kfree(hs_req->req.buf);
1310 
1311 	hs_req->req.buf = hs_req->saved_req_buf;
1312 	hs_req->saved_req_buf = NULL;
1313 }
1314 
1315 /**
1316  * dwc2_gadget_target_frame_elapsed - Checks target frame
1317  * @hs_ep: The driver endpoint to check
1318  *
1319  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1320  * corresponding transfer.
1321  */
1322 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1323 {
1324 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1325 	u32 target_frame = hs_ep->target_frame;
1326 	u32 current_frame = hsotg->frame_number;
1327 	bool frame_overrun = hs_ep->frame_overrun;
1328 
1329 	if (!frame_overrun && current_frame >= target_frame)
1330 		return true;
1331 
1332 	if (frame_overrun && current_frame >= target_frame &&
1333 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1334 		return true;
1335 
1336 	return false;
1337 }
1338 
1339 /*
1340  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1341  * @hsotg: The driver state
1342  * @hs_ep: the ep descriptor chain is for
1343  *
1344  * Called to update EP0 structure's pointers depend on stage of
1345  * control transfer.
1346  */
1347 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1348 					  struct dwc2_hsotg_ep *hs_ep)
1349 {
1350 	switch (hsotg->ep0_state) {
1351 	case DWC2_EP0_SETUP:
1352 	case DWC2_EP0_STATUS_OUT:
1353 		hs_ep->desc_list = hsotg->setup_desc[0];
1354 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1355 		break;
1356 	case DWC2_EP0_DATA_IN:
1357 	case DWC2_EP0_STATUS_IN:
1358 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1359 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1360 		break;
1361 	case DWC2_EP0_DATA_OUT:
1362 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1363 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1364 		break;
1365 	default:
1366 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1367 			hsotg->ep0_state);
1368 		return -EINVAL;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1375 			       gfp_t gfp_flags)
1376 {
1377 	struct dwc2_hsotg_req *hs_req = our_req(req);
1378 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1379 	struct dwc2_hsotg *hs = hs_ep->parent;
1380 	bool first;
1381 	int ret;
1382 	u32 maxsize = 0;
1383 	u32 mask = 0;
1384 
1385 
1386 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1387 		ep->name, req, req->length, req->buf, req->no_interrupt,
1388 		req->zero, req->short_not_ok);
1389 
1390 	/* Prevent new request submission when controller is suspended */
1391 	if (hs->lx_state != DWC2_L0) {
1392 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1393 			__func__);
1394 		return -EAGAIN;
1395 	}
1396 
1397 	/* initialise status of the request */
1398 	INIT_LIST_HEAD(&hs_req->queue);
1399 	req->actual = 0;
1400 	req->status = -EINPROGRESS;
1401 
1402 	/* Don't queue ISOC request if length greater than mps*mc */
1403 	if (hs_ep->isochronous &&
1404 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1405 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1406 		return -EINVAL;
1407 	}
1408 
1409 	/* In DDMA mode for ISOC's don't queue request if length greater
1410 	 * than descriptor limits.
1411 	 */
1412 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1413 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1414 		if (hs_ep->dir_in && req->length > maxsize) {
1415 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1416 				req->length, maxsize);
1417 			return -EINVAL;
1418 		}
1419 
1420 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1421 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1422 				req->length, hs_ep->ep.maxpacket);
1423 			return -EINVAL;
1424 		}
1425 	}
1426 
1427 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1428 	if (ret)
1429 		return ret;
1430 
1431 	/* if we're using DMA, sync the buffers as necessary */
1432 	if (using_dma(hs)) {
1433 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1434 		if (ret)
1435 			return ret;
1436 	}
1437 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1438 	if (using_desc_dma(hs) && !hs_ep->index) {
1439 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1440 		if (ret)
1441 			return ret;
1442 	}
1443 
1444 	first = list_empty(&hs_ep->queue);
1445 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1446 
1447 	/*
1448 	 * Handle DDMA isochronous transfers separately - just add new entry
1449 	 * to the descriptor chain.
1450 	 * Transfer will be started once SW gets either one of NAK or
1451 	 * OutTknEpDis interrupts.
1452 	 */
1453 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1454 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1455 			dma_addr_t dma_addr = hs_req->req.dma;
1456 
1457 			if (hs_req->req.num_sgs) {
1458 				WARN_ON(hs_req->req.num_sgs > 1);
1459 				dma_addr = sg_dma_address(hs_req->req.sg);
1460 			}
1461 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1462 						   hs_req->req.length);
1463 		}
1464 		return 0;
1465 	}
1466 
1467 	/* Change EP direction if status phase request is after data out */
1468 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1469 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1470 		hs_ep->dir_in = 1;
1471 
1472 	if (first) {
1473 		if (!hs_ep->isochronous) {
1474 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1475 			return 0;
1476 		}
1477 
1478 		/* Update current frame number value. */
1479 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1480 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1481 			dwc2_gadget_incr_frame_num(hs_ep);
1482 			/* Update current frame number value once more as it
1483 			 * changes here.
1484 			 */
1485 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1486 		}
1487 
1488 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1489 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1490 	}
1491 	return 0;
1492 }
1493 
1494 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1495 				    gfp_t gfp_flags)
1496 {
1497 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1498 	struct dwc2_hsotg *hs = hs_ep->parent;
1499 	unsigned long flags;
1500 	int ret;
1501 
1502 	spin_lock_irqsave(&hs->lock, flags);
1503 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1504 	spin_unlock_irqrestore(&hs->lock, flags);
1505 
1506 	return ret;
1507 }
1508 
1509 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1510 				       struct usb_request *req)
1511 {
1512 	struct dwc2_hsotg_req *hs_req = our_req(req);
1513 
1514 	kfree(hs_req);
1515 }
1516 
1517 /**
1518  * dwc2_hsotg_complete_oursetup - setup completion callback
1519  * @ep: The endpoint the request was on.
1520  * @req: The request completed.
1521  *
1522  * Called on completion of any requests the driver itself
1523  * submitted that need cleaning up.
1524  */
1525 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1526 					 struct usb_request *req)
1527 {
1528 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1529 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1530 
1531 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1532 
1533 	dwc2_hsotg_ep_free_request(ep, req);
1534 }
1535 
1536 /**
1537  * ep_from_windex - convert control wIndex value to endpoint
1538  * @hsotg: The driver state.
1539  * @windex: The control request wIndex field (in host order).
1540  *
1541  * Convert the given wIndex into a pointer to an driver endpoint
1542  * structure, or return NULL if it is not a valid endpoint.
1543  */
1544 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1545 					    u32 windex)
1546 {
1547 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1548 	int idx = windex & 0x7F;
1549 
1550 	if (windex >= 0x100)
1551 		return NULL;
1552 
1553 	if (idx > hsotg->num_of_eps)
1554 		return NULL;
1555 
1556 	return index_to_ep(hsotg, idx, dir);
1557 }
1558 
1559 /**
1560  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1561  * @hsotg: The driver state.
1562  * @testmode: requested usb test mode
1563  * Enable usb Test Mode requested by the Host.
1564  */
1565 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1566 {
1567 	int dctl = dwc2_readl(hsotg, DCTL);
1568 
1569 	dctl &= ~DCTL_TSTCTL_MASK;
1570 	switch (testmode) {
1571 	case USB_TEST_J:
1572 	case USB_TEST_K:
1573 	case USB_TEST_SE0_NAK:
1574 	case USB_TEST_PACKET:
1575 	case USB_TEST_FORCE_ENABLE:
1576 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1577 		break;
1578 	default:
1579 		return -EINVAL;
1580 	}
1581 	dwc2_writel(hsotg, dctl, DCTL);
1582 	return 0;
1583 }
1584 
1585 /**
1586  * dwc2_hsotg_send_reply - send reply to control request
1587  * @hsotg: The device state
1588  * @ep: Endpoint 0
1589  * @buff: Buffer for request
1590  * @length: Length of reply.
1591  *
1592  * Create a request and queue it on the given endpoint. This is useful as
1593  * an internal method of sending replies to certain control requests, etc.
1594  */
1595 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1596 				 struct dwc2_hsotg_ep *ep,
1597 				void *buff,
1598 				int length)
1599 {
1600 	struct usb_request *req;
1601 	int ret;
1602 
1603 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1604 
1605 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1606 	hsotg->ep0_reply = req;
1607 	if (!req) {
1608 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1609 		return -ENOMEM;
1610 	}
1611 
1612 	req->buf = hsotg->ep0_buff;
1613 	req->length = length;
1614 	/*
1615 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1616 	 * STATUS stage.
1617 	 */
1618 	req->zero = 0;
1619 	req->complete = dwc2_hsotg_complete_oursetup;
1620 
1621 	if (length)
1622 		memcpy(req->buf, buff, length);
1623 
1624 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1625 	if (ret) {
1626 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1627 		return ret;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 /**
1634  * dwc2_hsotg_process_req_status - process request GET_STATUS
1635  * @hsotg: The device state
1636  * @ctrl: USB control request
1637  */
1638 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1639 					 struct usb_ctrlrequest *ctrl)
1640 {
1641 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1642 	struct dwc2_hsotg_ep *ep;
1643 	__le16 reply;
1644 	u16 status;
1645 	int ret;
1646 
1647 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1648 
1649 	if (!ep0->dir_in) {
1650 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1651 		return -EINVAL;
1652 	}
1653 
1654 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1655 	case USB_RECIP_DEVICE:
1656 		status = hsotg->gadget.is_selfpowered <<
1657 			 USB_DEVICE_SELF_POWERED;
1658 		status |= hsotg->remote_wakeup_allowed <<
1659 			  USB_DEVICE_REMOTE_WAKEUP;
1660 		reply = cpu_to_le16(status);
1661 		break;
1662 
1663 	case USB_RECIP_INTERFACE:
1664 		/* currently, the data result should be zero */
1665 		reply = cpu_to_le16(0);
1666 		break;
1667 
1668 	case USB_RECIP_ENDPOINT:
1669 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1670 		if (!ep)
1671 			return -ENOENT;
1672 
1673 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1674 		break;
1675 
1676 	default:
1677 		return 0;
1678 	}
1679 
1680 	if (le16_to_cpu(ctrl->wLength) != 2)
1681 		return -EINVAL;
1682 
1683 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1684 	if (ret) {
1685 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1686 		return ret;
1687 	}
1688 
1689 	return 1;
1690 }
1691 
1692 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1693 
1694 /**
1695  * get_ep_head - return the first request on the endpoint
1696  * @hs_ep: The controller endpoint to get
1697  *
1698  * Get the first request on the endpoint.
1699  */
1700 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1701 {
1702 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1703 					queue);
1704 }
1705 
1706 /**
1707  * dwc2_gadget_start_next_request - Starts next request from ep queue
1708  * @hs_ep: Endpoint structure
1709  *
1710  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1711  * in its handler. Hence we need to unmask it here to be able to do
1712  * resynchronization.
1713  */
1714 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1715 {
1716 	u32 mask;
1717 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1718 	int dir_in = hs_ep->dir_in;
1719 	struct dwc2_hsotg_req *hs_req;
1720 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1721 
1722 	if (!list_empty(&hs_ep->queue)) {
1723 		hs_req = get_ep_head(hs_ep);
1724 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1725 		return;
1726 	}
1727 	if (!hs_ep->isochronous)
1728 		return;
1729 
1730 	if (dir_in) {
1731 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1732 			__func__);
1733 	} else {
1734 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1735 			__func__);
1736 		mask = dwc2_readl(hsotg, epmsk_reg);
1737 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1738 		dwc2_writel(hsotg, mask, epmsk_reg);
1739 	}
1740 }
1741 
1742 /**
1743  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1744  * @hsotg: The device state
1745  * @ctrl: USB control request
1746  */
1747 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1748 					  struct usb_ctrlrequest *ctrl)
1749 {
1750 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1751 	struct dwc2_hsotg_req *hs_req;
1752 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1753 	struct dwc2_hsotg_ep *ep;
1754 	int ret;
1755 	bool halted;
1756 	u32 recip;
1757 	u32 wValue;
1758 	u32 wIndex;
1759 
1760 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1761 		__func__, set ? "SET" : "CLEAR");
1762 
1763 	wValue = le16_to_cpu(ctrl->wValue);
1764 	wIndex = le16_to_cpu(ctrl->wIndex);
1765 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1766 
1767 	switch (recip) {
1768 	case USB_RECIP_DEVICE:
1769 		switch (wValue) {
1770 		case USB_DEVICE_REMOTE_WAKEUP:
1771 			if (set)
1772 				hsotg->remote_wakeup_allowed = 1;
1773 			else
1774 				hsotg->remote_wakeup_allowed = 0;
1775 			break;
1776 
1777 		case USB_DEVICE_TEST_MODE:
1778 			if ((wIndex & 0xff) != 0)
1779 				return -EINVAL;
1780 			if (!set)
1781 				return -EINVAL;
1782 
1783 			hsotg->test_mode = wIndex >> 8;
1784 			break;
1785 		default:
1786 			return -ENOENT;
1787 		}
1788 
1789 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1790 		if (ret) {
1791 			dev_err(hsotg->dev,
1792 				"%s: failed to send reply\n", __func__);
1793 			return ret;
1794 		}
1795 		break;
1796 
1797 	case USB_RECIP_ENDPOINT:
1798 		ep = ep_from_windex(hsotg, wIndex);
1799 		if (!ep) {
1800 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1801 				__func__, wIndex);
1802 			return -ENOENT;
1803 		}
1804 
1805 		switch (wValue) {
1806 		case USB_ENDPOINT_HALT:
1807 			halted = ep->halted;
1808 
1809 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1810 
1811 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1812 			if (ret) {
1813 				dev_err(hsotg->dev,
1814 					"%s: failed to send reply\n", __func__);
1815 				return ret;
1816 			}
1817 
1818 			/*
1819 			 * we have to complete all requests for ep if it was
1820 			 * halted, and the halt was cleared by CLEAR_FEATURE
1821 			 */
1822 
1823 			if (!set && halted) {
1824 				/*
1825 				 * If we have request in progress,
1826 				 * then complete it
1827 				 */
1828 				if (ep->req) {
1829 					hs_req = ep->req;
1830 					ep->req = NULL;
1831 					list_del_init(&hs_req->queue);
1832 					if (hs_req->req.complete) {
1833 						spin_unlock(&hsotg->lock);
1834 						usb_gadget_giveback_request(
1835 							&ep->ep, &hs_req->req);
1836 						spin_lock(&hsotg->lock);
1837 					}
1838 				}
1839 
1840 				/* If we have pending request, then start it */
1841 				if (!ep->req)
1842 					dwc2_gadget_start_next_request(ep);
1843 			}
1844 
1845 			break;
1846 
1847 		default:
1848 			return -ENOENT;
1849 		}
1850 		break;
1851 	default:
1852 		return -ENOENT;
1853 	}
1854 	return 1;
1855 }
1856 
1857 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1858 
1859 /**
1860  * dwc2_hsotg_stall_ep0 - stall ep0
1861  * @hsotg: The device state
1862  *
1863  * Set stall for ep0 as response for setup request.
1864  */
1865 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1866 {
1867 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1868 	u32 reg;
1869 	u32 ctrl;
1870 
1871 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1872 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1873 
1874 	/*
1875 	 * DxEPCTL_Stall will be cleared by EP once it has
1876 	 * taken effect, so no need to clear later.
1877 	 */
1878 
1879 	ctrl = dwc2_readl(hsotg, reg);
1880 	ctrl |= DXEPCTL_STALL;
1881 	ctrl |= DXEPCTL_CNAK;
1882 	dwc2_writel(hsotg, ctrl, reg);
1883 
1884 	dev_dbg(hsotg->dev,
1885 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1886 		ctrl, reg, dwc2_readl(hsotg, reg));
1887 
1888 	 /*
1889 	  * complete won't be called, so we enqueue
1890 	  * setup request here
1891 	  */
1892 	 dwc2_hsotg_enqueue_setup(hsotg);
1893 }
1894 
1895 /**
1896  * dwc2_hsotg_process_control - process a control request
1897  * @hsotg: The device state
1898  * @ctrl: The control request received
1899  *
1900  * The controller has received the SETUP phase of a control request, and
1901  * needs to work out what to do next (and whether to pass it on to the
1902  * gadget driver).
1903  */
1904 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1905 				       struct usb_ctrlrequest *ctrl)
1906 {
1907 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1908 	int ret = 0;
1909 	u32 dcfg;
1910 
1911 	dev_dbg(hsotg->dev,
1912 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1913 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1914 		ctrl->wIndex, ctrl->wLength);
1915 
1916 	if (ctrl->wLength == 0) {
1917 		ep0->dir_in = 1;
1918 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1919 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1920 		ep0->dir_in = 1;
1921 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1922 	} else {
1923 		ep0->dir_in = 0;
1924 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1925 	}
1926 
1927 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1928 		switch (ctrl->bRequest) {
1929 		case USB_REQ_SET_ADDRESS:
1930 			hsotg->connected = 1;
1931 			dcfg = dwc2_readl(hsotg, DCFG);
1932 			dcfg &= ~DCFG_DEVADDR_MASK;
1933 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1934 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1935 			dwc2_writel(hsotg, dcfg, DCFG);
1936 
1937 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1938 
1939 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1940 			return;
1941 
1942 		case USB_REQ_GET_STATUS:
1943 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1944 			break;
1945 
1946 		case USB_REQ_CLEAR_FEATURE:
1947 		case USB_REQ_SET_FEATURE:
1948 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1949 			break;
1950 		}
1951 	}
1952 
1953 	/* as a fallback, try delivering it to the driver to deal with */
1954 
1955 	if (ret == 0 && hsotg->driver) {
1956 		spin_unlock(&hsotg->lock);
1957 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1958 		spin_lock(&hsotg->lock);
1959 		if (ret < 0)
1960 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1961 	}
1962 
1963 	hsotg->delayed_status = false;
1964 	if (ret == USB_GADGET_DELAYED_STATUS)
1965 		hsotg->delayed_status = true;
1966 
1967 	/*
1968 	 * the request is either unhandlable, or is not formatted correctly
1969 	 * so respond with a STALL for the status stage to indicate failure.
1970 	 */
1971 
1972 	if (ret < 0)
1973 		dwc2_hsotg_stall_ep0(hsotg);
1974 }
1975 
1976 /**
1977  * dwc2_hsotg_complete_setup - completion of a setup transfer
1978  * @ep: The endpoint the request was on.
1979  * @req: The request completed.
1980  *
1981  * Called on completion of any requests the driver itself submitted for
1982  * EP0 setup packets
1983  */
1984 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1985 				      struct usb_request *req)
1986 {
1987 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1988 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1989 
1990 	if (req->status < 0) {
1991 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1992 		return;
1993 	}
1994 
1995 	spin_lock(&hsotg->lock);
1996 	if (req->actual == 0)
1997 		dwc2_hsotg_enqueue_setup(hsotg);
1998 	else
1999 		dwc2_hsotg_process_control(hsotg, req->buf);
2000 	spin_unlock(&hsotg->lock);
2001 }
2002 
2003 /**
2004  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2005  * @hsotg: The device state.
2006  *
2007  * Enqueue a request on EP0 if necessary to received any SETUP packets
2008  * received from the host.
2009  */
2010 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2011 {
2012 	struct usb_request *req = hsotg->ctrl_req;
2013 	struct dwc2_hsotg_req *hs_req = our_req(req);
2014 	int ret;
2015 
2016 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2017 
2018 	req->zero = 0;
2019 	req->length = 8;
2020 	req->buf = hsotg->ctrl_buff;
2021 	req->complete = dwc2_hsotg_complete_setup;
2022 
2023 	if (!list_empty(&hs_req->queue)) {
2024 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2025 		return;
2026 	}
2027 
2028 	hsotg->eps_out[0]->dir_in = 0;
2029 	hsotg->eps_out[0]->send_zlp = 0;
2030 	hsotg->ep0_state = DWC2_EP0_SETUP;
2031 
2032 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2033 	if (ret < 0) {
2034 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2035 		/*
2036 		 * Don't think there's much we can do other than watch the
2037 		 * driver fail.
2038 		 */
2039 	}
2040 }
2041 
2042 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2043 				   struct dwc2_hsotg_ep *hs_ep)
2044 {
2045 	u32 ctrl;
2046 	u8 index = hs_ep->index;
2047 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2048 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2049 
2050 	if (hs_ep->dir_in)
2051 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2052 			index);
2053 	else
2054 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2055 			index);
2056 	if (using_desc_dma(hsotg)) {
2057 		/* Not specific buffer needed for ep0 ZLP */
2058 		dma_addr_t dma = hs_ep->desc_list_dma;
2059 
2060 		if (!index)
2061 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2062 
2063 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2064 	} else {
2065 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2066 			    DXEPTSIZ_XFERSIZE(0),
2067 			    epsiz_reg);
2068 	}
2069 
2070 	ctrl = dwc2_readl(hsotg, epctl_reg);
2071 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2072 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2073 	ctrl |= DXEPCTL_USBACTEP;
2074 	dwc2_writel(hsotg, ctrl, epctl_reg);
2075 }
2076 
2077 /**
2078  * dwc2_hsotg_complete_request - complete a request given to us
2079  * @hsotg: The device state.
2080  * @hs_ep: The endpoint the request was on.
2081  * @hs_req: The request to complete.
2082  * @result: The result code (0 => Ok, otherwise errno)
2083  *
2084  * The given request has finished, so call the necessary completion
2085  * if it has one and then look to see if we can start a new request
2086  * on the endpoint.
2087  *
2088  * Note, expects the ep to already be locked as appropriate.
2089  */
2090 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2091 					struct dwc2_hsotg_ep *hs_ep,
2092 				       struct dwc2_hsotg_req *hs_req,
2093 				       int result)
2094 {
2095 	if (!hs_req) {
2096 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2097 		return;
2098 	}
2099 
2100 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2101 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2102 
2103 	/*
2104 	 * only replace the status if we've not already set an error
2105 	 * from a previous transaction
2106 	 */
2107 
2108 	if (hs_req->req.status == -EINPROGRESS)
2109 		hs_req->req.status = result;
2110 
2111 	if (using_dma(hsotg))
2112 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2113 
2114 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2115 
2116 	hs_ep->req = NULL;
2117 	list_del_init(&hs_req->queue);
2118 
2119 	/*
2120 	 * call the complete request with the locks off, just in case the
2121 	 * request tries to queue more work for this endpoint.
2122 	 */
2123 
2124 	if (hs_req->req.complete) {
2125 		spin_unlock(&hsotg->lock);
2126 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2127 		spin_lock(&hsotg->lock);
2128 	}
2129 
2130 	/* In DDMA don't need to proceed to starting of next ISOC request */
2131 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2132 		return;
2133 
2134 	/*
2135 	 * Look to see if there is anything else to do. Note, the completion
2136 	 * of the previous request may have caused a new request to be started
2137 	 * so be careful when doing this.
2138 	 */
2139 
2140 	if (!hs_ep->req && result >= 0)
2141 		dwc2_gadget_start_next_request(hs_ep);
2142 }
2143 
2144 /*
2145  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2146  * @hs_ep: The endpoint the request was on.
2147  *
2148  * Get first request from the ep queue, determine descriptor on which complete
2149  * happened. SW discovers which descriptor currently in use by HW, adjusts
2150  * dma_address and calculates index of completed descriptor based on the value
2151  * of DEPDMA register. Update actual length of request, giveback to gadget.
2152  */
2153 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2154 {
2155 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2156 	struct dwc2_hsotg_req *hs_req;
2157 	struct usb_request *ureq;
2158 	u32 desc_sts;
2159 	u32 mask;
2160 
2161 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2162 
2163 	/* Process only descriptors with buffer status set to DMA done */
2164 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2165 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2166 
2167 		hs_req = get_ep_head(hs_ep);
2168 		if (!hs_req) {
2169 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2170 			return;
2171 		}
2172 		ureq = &hs_req->req;
2173 
2174 		/* Check completion status */
2175 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2176 			DEV_DMA_STS_SUCC) {
2177 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2178 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2179 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2180 				DEV_DMA_ISOC_NBYTES_SHIFT);
2181 
2182 			/* Adjust actual len for ISOC Out if len is
2183 			 * not align of 4
2184 			 */
2185 			if (!hs_ep->dir_in && ureq->length & 0x3)
2186 				ureq->actual += 4 - (ureq->length & 0x3);
2187 
2188 			/* Set actual frame number for completed transfers */
2189 			ureq->frame_number =
2190 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2191 				DEV_DMA_ISOC_FRNUM_SHIFT;
2192 		}
2193 
2194 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2195 
2196 		hs_ep->compl_desc++;
2197 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2198 			hs_ep->compl_desc = 0;
2199 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2200 	}
2201 }
2202 
2203 /*
2204  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2205  * @hs_ep: The isochronous endpoint.
2206  *
2207  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2208  * interrupt. Reset target frame and next_desc to allow to start
2209  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2210  * interrupt for OUT direction.
2211  */
2212 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2213 {
2214 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2215 
2216 	if (!hs_ep->dir_in)
2217 		dwc2_flush_rx_fifo(hsotg);
2218 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2219 
2220 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2221 	hs_ep->next_desc = 0;
2222 	hs_ep->compl_desc = 0;
2223 }
2224 
2225 /**
2226  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2227  * @hsotg: The device state.
2228  * @ep_idx: The endpoint index for the data
2229  * @size: The size of data in the fifo, in bytes
2230  *
2231  * The FIFO status shows there is data to read from the FIFO for a given
2232  * endpoint, so sort out whether we need to read the data into a request
2233  * that has been made for that endpoint.
2234  */
2235 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2236 {
2237 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2238 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2239 	int to_read;
2240 	int max_req;
2241 	int read_ptr;
2242 
2243 	if (!hs_req) {
2244 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2245 		int ptr;
2246 
2247 		dev_dbg(hsotg->dev,
2248 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2249 			 __func__, size, ep_idx, epctl);
2250 
2251 		/* dump the data from the FIFO, we've nothing we can do */
2252 		for (ptr = 0; ptr < size; ptr += 4)
2253 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2254 
2255 		return;
2256 	}
2257 
2258 	to_read = size;
2259 	read_ptr = hs_req->req.actual;
2260 	max_req = hs_req->req.length - read_ptr;
2261 
2262 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2263 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2264 
2265 	if (to_read > max_req) {
2266 		/*
2267 		 * more data appeared than we where willing
2268 		 * to deal with in this request.
2269 		 */
2270 
2271 		/* currently we don't deal this */
2272 		WARN_ON_ONCE(1);
2273 	}
2274 
2275 	hs_ep->total_data += to_read;
2276 	hs_req->req.actual += to_read;
2277 	to_read = DIV_ROUND_UP(to_read, 4);
2278 
2279 	/*
2280 	 * note, we might over-write the buffer end by 3 bytes depending on
2281 	 * alignment of the data.
2282 	 */
2283 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2284 		       hs_req->req.buf + read_ptr, to_read);
2285 }
2286 
2287 /**
2288  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2289  * @hsotg: The device instance
2290  * @dir_in: If IN zlp
2291  *
2292  * Generate a zero-length IN packet request for terminating a SETUP
2293  * transaction.
2294  *
2295  * Note, since we don't write any data to the TxFIFO, then it is
2296  * currently believed that we do not need to wait for any space in
2297  * the TxFIFO.
2298  */
2299 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2300 {
2301 	/* eps_out[0] is used in both directions */
2302 	hsotg->eps_out[0]->dir_in = dir_in;
2303 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2304 
2305 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2306 }
2307 
2308 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2309 					    u32 epctl_reg)
2310 {
2311 	u32 ctrl;
2312 
2313 	ctrl = dwc2_readl(hsotg, epctl_reg);
2314 	if (ctrl & DXEPCTL_EOFRNUM)
2315 		ctrl |= DXEPCTL_SETEVENFR;
2316 	else
2317 		ctrl |= DXEPCTL_SETODDFR;
2318 	dwc2_writel(hsotg, ctrl, epctl_reg);
2319 }
2320 
2321 /*
2322  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2323  * @hs_ep - The endpoint on which transfer went
2324  *
2325  * Iterate over endpoints descriptor chain and get info on bytes remained
2326  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2327  */
2328 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2329 {
2330 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2331 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2332 	unsigned int bytes_rem = 0;
2333 	unsigned int bytes_rem_correction = 0;
2334 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2335 	int i;
2336 	u32 status;
2337 	u32 mps = hs_ep->ep.maxpacket;
2338 	int dir_in = hs_ep->dir_in;
2339 
2340 	if (!desc)
2341 		return -EINVAL;
2342 
2343 	/* Interrupt OUT EP with mps not multiple of 4 */
2344 	if (hs_ep->index)
2345 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2346 			bytes_rem_correction = 4 - (mps % 4);
2347 
2348 	for (i = 0; i < hs_ep->desc_count; ++i) {
2349 		status = desc->status;
2350 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2351 		bytes_rem -= bytes_rem_correction;
2352 
2353 		if (status & DEV_DMA_STS_MASK)
2354 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2355 				i, status & DEV_DMA_STS_MASK);
2356 
2357 		if (status & DEV_DMA_L)
2358 			break;
2359 
2360 		desc++;
2361 	}
2362 
2363 	return bytes_rem;
2364 }
2365 
2366 /**
2367  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2368  * @hsotg: The device instance
2369  * @epnum: The endpoint received from
2370  *
2371  * The RXFIFO has delivered an OutDone event, which means that the data
2372  * transfer for an OUT endpoint has been completed, either by a short
2373  * packet or by the finish of a transfer.
2374  */
2375 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2376 {
2377 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2378 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2379 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2380 	struct usb_request *req = &hs_req->req;
2381 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2382 	int result = 0;
2383 
2384 	if (!hs_req) {
2385 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2386 		return;
2387 	}
2388 
2389 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2390 		dev_dbg(hsotg->dev, "zlp packet received\n");
2391 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2392 		dwc2_hsotg_enqueue_setup(hsotg);
2393 		return;
2394 	}
2395 
2396 	if (using_desc_dma(hsotg))
2397 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2398 
2399 	if (using_dma(hsotg)) {
2400 		unsigned int size_done;
2401 
2402 		/*
2403 		 * Calculate the size of the transfer by checking how much
2404 		 * is left in the endpoint size register and then working it
2405 		 * out from the amount we loaded for the transfer.
2406 		 *
2407 		 * We need to do this as DMA pointers are always 32bit aligned
2408 		 * so may overshoot/undershoot the transfer.
2409 		 */
2410 
2411 		size_done = hs_ep->size_loaded - size_left;
2412 		size_done += hs_ep->last_load;
2413 
2414 		req->actual = size_done;
2415 	}
2416 
2417 	/* if there is more request to do, schedule new transfer */
2418 	if (req->actual < req->length && size_left == 0) {
2419 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2420 		return;
2421 	}
2422 
2423 	if (req->actual < req->length && req->short_not_ok) {
2424 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2425 			__func__, req->actual, req->length);
2426 
2427 		/*
2428 		 * todo - what should we return here? there's no one else
2429 		 * even bothering to check the status.
2430 		 */
2431 	}
2432 
2433 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2434 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2435 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2436 		/* Move to STATUS IN */
2437 		if (!hsotg->delayed_status)
2438 			dwc2_hsotg_ep0_zlp(hsotg, true);
2439 	}
2440 
2441 	/*
2442 	 * Slave mode OUT transfers do not go through XferComplete so
2443 	 * adjust the ISOC parity here.
2444 	 */
2445 	if (!using_dma(hsotg)) {
2446 		if (hs_ep->isochronous && hs_ep->interval == 1)
2447 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2448 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2449 			dwc2_gadget_incr_frame_num(hs_ep);
2450 	}
2451 
2452 	/* Set actual frame number for completed transfers */
2453 	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2454 		req->frame_number = hsotg->frame_number;
2455 
2456 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2457 }
2458 
2459 /**
2460  * dwc2_hsotg_handle_rx - RX FIFO has data
2461  * @hsotg: The device instance
2462  *
2463  * The IRQ handler has detected that the RX FIFO has some data in it
2464  * that requires processing, so find out what is in there and do the
2465  * appropriate read.
2466  *
2467  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2468  * chunks, so if you have x packets received on an endpoint you'll get x
2469  * FIFO events delivered, each with a packet's worth of data in it.
2470  *
2471  * When using DMA, we should not be processing events from the RXFIFO
2472  * as the actual data should be sent to the memory directly and we turn
2473  * on the completion interrupts to get notifications of transfer completion.
2474  */
2475 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2476 {
2477 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2478 	u32 epnum, status, size;
2479 
2480 	WARN_ON(using_dma(hsotg));
2481 
2482 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2483 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2484 
2485 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2486 	size >>= GRXSTS_BYTECNT_SHIFT;
2487 
2488 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2489 		__func__, grxstsr, size, epnum);
2490 
2491 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2492 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2493 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2494 		break;
2495 
2496 	case GRXSTS_PKTSTS_OUTDONE:
2497 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2498 			dwc2_hsotg_read_frameno(hsotg));
2499 
2500 		if (!using_dma(hsotg))
2501 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2502 		break;
2503 
2504 	case GRXSTS_PKTSTS_SETUPDONE:
2505 		dev_dbg(hsotg->dev,
2506 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2507 			dwc2_hsotg_read_frameno(hsotg),
2508 			dwc2_readl(hsotg, DOEPCTL(0)));
2509 		/*
2510 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2511 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2512 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2513 		 */
2514 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2515 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2516 		break;
2517 
2518 	case GRXSTS_PKTSTS_OUTRX:
2519 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2520 		break;
2521 
2522 	case GRXSTS_PKTSTS_SETUPRX:
2523 		dev_dbg(hsotg->dev,
2524 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2525 			dwc2_hsotg_read_frameno(hsotg),
2526 			dwc2_readl(hsotg, DOEPCTL(0)));
2527 
2528 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2529 
2530 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2531 		break;
2532 
2533 	default:
2534 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2535 			 __func__, grxstsr);
2536 
2537 		dwc2_hsotg_dump(hsotg);
2538 		break;
2539 	}
2540 }
2541 
2542 /**
2543  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2544  * @mps: The maximum packet size in bytes.
2545  */
2546 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2547 {
2548 	switch (mps) {
2549 	case 64:
2550 		return D0EPCTL_MPS_64;
2551 	case 32:
2552 		return D0EPCTL_MPS_32;
2553 	case 16:
2554 		return D0EPCTL_MPS_16;
2555 	case 8:
2556 		return D0EPCTL_MPS_8;
2557 	}
2558 
2559 	/* bad max packet size, warn and return invalid result */
2560 	WARN_ON(1);
2561 	return (u32)-1;
2562 }
2563 
2564 /**
2565  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2566  * @hsotg: The driver state.
2567  * @ep: The index number of the endpoint
2568  * @mps: The maximum packet size in bytes
2569  * @mc: The multicount value
2570  * @dir_in: True if direction is in.
2571  *
2572  * Configure the maximum packet size for the given endpoint, updating
2573  * the hardware control registers to reflect this.
2574  */
2575 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2576 					unsigned int ep, unsigned int mps,
2577 					unsigned int mc, unsigned int dir_in)
2578 {
2579 	struct dwc2_hsotg_ep *hs_ep;
2580 	u32 reg;
2581 
2582 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2583 	if (!hs_ep)
2584 		return;
2585 
2586 	if (ep == 0) {
2587 		u32 mps_bytes = mps;
2588 
2589 		/* EP0 is a special case */
2590 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2591 		if (mps > 3)
2592 			goto bad_mps;
2593 		hs_ep->ep.maxpacket = mps_bytes;
2594 		hs_ep->mc = 1;
2595 	} else {
2596 		if (mps > 1024)
2597 			goto bad_mps;
2598 		hs_ep->mc = mc;
2599 		if (mc > 3)
2600 			goto bad_mps;
2601 		hs_ep->ep.maxpacket = mps;
2602 	}
2603 
2604 	if (dir_in) {
2605 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2606 		reg &= ~DXEPCTL_MPS_MASK;
2607 		reg |= mps;
2608 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2609 	} else {
2610 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2611 		reg &= ~DXEPCTL_MPS_MASK;
2612 		reg |= mps;
2613 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2614 	}
2615 
2616 	return;
2617 
2618 bad_mps:
2619 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2620 }
2621 
2622 /**
2623  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2624  * @hsotg: The driver state
2625  * @idx: The index for the endpoint (0..15)
2626  */
2627 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2628 {
2629 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2630 		    GRSTCTL);
2631 
2632 	/* wait until the fifo is flushed */
2633 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2634 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2635 			 __func__);
2636 }
2637 
2638 /**
2639  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2640  * @hsotg: The driver state
2641  * @hs_ep: The driver endpoint to check.
2642  *
2643  * Check to see if there is a request that has data to send, and if so
2644  * make an attempt to write data into the FIFO.
2645  */
2646 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2647 			    struct dwc2_hsotg_ep *hs_ep)
2648 {
2649 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2650 
2651 	if (!hs_ep->dir_in || !hs_req) {
2652 		/**
2653 		 * if request is not enqueued, we disable interrupts
2654 		 * for endpoints, excepting ep0
2655 		 */
2656 		if (hs_ep->index != 0)
2657 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2658 					      hs_ep->dir_in, 0);
2659 		return 0;
2660 	}
2661 
2662 	if (hs_req->req.actual < hs_req->req.length) {
2663 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2664 			hs_ep->index);
2665 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2666 	}
2667 
2668 	return 0;
2669 }
2670 
2671 /**
2672  * dwc2_hsotg_complete_in - complete IN transfer
2673  * @hsotg: The device state.
2674  * @hs_ep: The endpoint that has just completed.
2675  *
2676  * An IN transfer has been completed, update the transfer's state and then
2677  * call the relevant completion routines.
2678  */
2679 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2680 				   struct dwc2_hsotg_ep *hs_ep)
2681 {
2682 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2683 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2684 	int size_left, size_done;
2685 
2686 	if (!hs_req) {
2687 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2688 		return;
2689 	}
2690 
2691 	/* Finish ZLP handling for IN EP0 transactions */
2692 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2693 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2694 
2695 		/*
2696 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2697 		 * changed to IN. Change back to complete OUT transfer request
2698 		 */
2699 		hs_ep->dir_in = 0;
2700 
2701 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2702 		if (hsotg->test_mode) {
2703 			int ret;
2704 
2705 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2706 			if (ret < 0) {
2707 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2708 					hsotg->test_mode);
2709 				dwc2_hsotg_stall_ep0(hsotg);
2710 				return;
2711 			}
2712 		}
2713 		dwc2_hsotg_enqueue_setup(hsotg);
2714 		return;
2715 	}
2716 
2717 	/*
2718 	 * Calculate the size of the transfer by checking how much is left
2719 	 * in the endpoint size register and then working it out from
2720 	 * the amount we loaded for the transfer.
2721 	 *
2722 	 * We do this even for DMA, as the transfer may have incremented
2723 	 * past the end of the buffer (DMA transfers are always 32bit
2724 	 * aligned).
2725 	 */
2726 	if (using_desc_dma(hsotg)) {
2727 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2728 		if (size_left < 0)
2729 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2730 				size_left);
2731 	} else {
2732 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2733 	}
2734 
2735 	size_done = hs_ep->size_loaded - size_left;
2736 	size_done += hs_ep->last_load;
2737 
2738 	if (hs_req->req.actual != size_done)
2739 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2740 			__func__, hs_req->req.actual, size_done);
2741 
2742 	hs_req->req.actual = size_done;
2743 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2744 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2745 
2746 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2747 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2748 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2749 		return;
2750 	}
2751 
2752 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2753 	if (hs_ep->send_zlp) {
2754 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2755 		hs_ep->send_zlp = 0;
2756 		/* transfer will be completed on next complete interrupt */
2757 		return;
2758 	}
2759 
2760 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2761 		/* Move to STATUS OUT */
2762 		dwc2_hsotg_ep0_zlp(hsotg, false);
2763 		return;
2764 	}
2765 
2766 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2767 }
2768 
2769 /**
2770  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2771  * @hsotg: The device state.
2772  * @idx: Index of ep.
2773  * @dir_in: Endpoint direction 1-in 0-out.
2774  *
2775  * Reads for endpoint with given index and direction, by masking
2776  * epint_reg with coresponding mask.
2777  */
2778 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2779 					  unsigned int idx, int dir_in)
2780 {
2781 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2782 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2783 	u32 ints;
2784 	u32 mask;
2785 	u32 diepempmsk;
2786 
2787 	mask = dwc2_readl(hsotg, epmsk_reg);
2788 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2789 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2790 	mask |= DXEPINT_SETUP_RCVD;
2791 
2792 	ints = dwc2_readl(hsotg, epint_reg);
2793 	ints &= mask;
2794 	return ints;
2795 }
2796 
2797 /**
2798  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2799  * @hs_ep: The endpoint on which interrupt is asserted.
2800  *
2801  * This interrupt indicates that the endpoint has been disabled per the
2802  * application's request.
2803  *
2804  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2805  * in case of ISOC completes current request.
2806  *
2807  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2808  * request starts it.
2809  */
2810 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2811 {
2812 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2813 	struct dwc2_hsotg_req *hs_req;
2814 	unsigned char idx = hs_ep->index;
2815 	int dir_in = hs_ep->dir_in;
2816 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2817 	int dctl = dwc2_readl(hsotg, DCTL);
2818 
2819 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2820 
2821 	if (dir_in) {
2822 		int epctl = dwc2_readl(hsotg, epctl_reg);
2823 
2824 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2825 
2826 		if (hs_ep->isochronous) {
2827 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2828 			return;
2829 		}
2830 
2831 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2832 			int dctl = dwc2_readl(hsotg, DCTL);
2833 
2834 			dctl |= DCTL_CGNPINNAK;
2835 			dwc2_writel(hsotg, dctl, DCTL);
2836 		}
2837 		return;
2838 	}
2839 
2840 	if (dctl & DCTL_GOUTNAKSTS) {
2841 		dctl |= DCTL_CGOUTNAK;
2842 		dwc2_writel(hsotg, dctl, DCTL);
2843 	}
2844 
2845 	if (!hs_ep->isochronous)
2846 		return;
2847 
2848 	if (list_empty(&hs_ep->queue)) {
2849 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2850 			__func__, hs_ep);
2851 		return;
2852 	}
2853 
2854 	do {
2855 		hs_req = get_ep_head(hs_ep);
2856 		if (hs_req)
2857 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2858 						    -ENODATA);
2859 		dwc2_gadget_incr_frame_num(hs_ep);
2860 		/* Update current frame number value. */
2861 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2862 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2863 
2864 	dwc2_gadget_start_next_request(hs_ep);
2865 }
2866 
2867 /**
2868  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2869  * @ep: The endpoint on which interrupt is asserted.
2870  *
2871  * This is starting point for ISOC-OUT transfer, synchronization done with
2872  * first out token received from host while corresponding EP is disabled.
2873  *
2874  * Device does not know initial frame in which out token will come. For this
2875  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2876  * getting this interrupt SW starts calculation for next transfer frame.
2877  */
2878 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2879 {
2880 	struct dwc2_hsotg *hsotg = ep->parent;
2881 	int dir_in = ep->dir_in;
2882 	u32 doepmsk;
2883 
2884 	if (dir_in || !ep->isochronous)
2885 		return;
2886 
2887 	if (using_desc_dma(hsotg)) {
2888 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2889 			/* Start first ISO Out */
2890 			ep->target_frame = hsotg->frame_number;
2891 			dwc2_gadget_start_isoc_ddma(ep);
2892 		}
2893 		return;
2894 	}
2895 
2896 	if (ep->interval > 1 &&
2897 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2898 		u32 ctrl;
2899 
2900 		ep->target_frame = hsotg->frame_number;
2901 		dwc2_gadget_incr_frame_num(ep);
2902 
2903 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2904 		if (ep->target_frame & 0x1)
2905 			ctrl |= DXEPCTL_SETODDFR;
2906 		else
2907 			ctrl |= DXEPCTL_SETEVENFR;
2908 
2909 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2910 	}
2911 
2912 	dwc2_gadget_start_next_request(ep);
2913 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2914 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2915 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2916 }
2917 
2918 /**
2919  * dwc2_gadget_handle_nak - handle NAK interrupt
2920  * @hs_ep: The endpoint on which interrupt is asserted.
2921  *
2922  * This is starting point for ISOC-IN transfer, synchronization done with
2923  * first IN token received from host while corresponding EP is disabled.
2924  *
2925  * Device does not know when first one token will arrive from host. On first
2926  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2927  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2928  * sent in response to that as there was no data in FIFO. SW is basing on this
2929  * interrupt to obtain frame in which token has come and then based on the
2930  * interval calculates next frame for transfer.
2931  */
2932 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2933 {
2934 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2935 	int dir_in = hs_ep->dir_in;
2936 
2937 	if (!dir_in || !hs_ep->isochronous)
2938 		return;
2939 
2940 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2941 
2942 		if (using_desc_dma(hsotg)) {
2943 			hs_ep->target_frame = hsotg->frame_number;
2944 			dwc2_gadget_incr_frame_num(hs_ep);
2945 
2946 			/* In service interval mode target_frame must
2947 			 * be set to last (u)frame of the service interval.
2948 			 */
2949 			if (hsotg->params.service_interval) {
2950 				/* Set target_frame to the first (u)frame of
2951 				 * the service interval
2952 				 */
2953 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2954 
2955 				/* Set target_frame to the last (u)frame of
2956 				 * the service interval
2957 				 */
2958 				dwc2_gadget_incr_frame_num(hs_ep);
2959 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2960 			}
2961 
2962 			dwc2_gadget_start_isoc_ddma(hs_ep);
2963 			return;
2964 		}
2965 
2966 		hs_ep->target_frame = hsotg->frame_number;
2967 		if (hs_ep->interval > 1) {
2968 			u32 ctrl = dwc2_readl(hsotg,
2969 					      DIEPCTL(hs_ep->index));
2970 			if (hs_ep->target_frame & 0x1)
2971 				ctrl |= DXEPCTL_SETODDFR;
2972 			else
2973 				ctrl |= DXEPCTL_SETEVENFR;
2974 
2975 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2976 		}
2977 
2978 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2979 					    get_ep_head(hs_ep), 0);
2980 	}
2981 
2982 	if (!using_desc_dma(hsotg))
2983 		dwc2_gadget_incr_frame_num(hs_ep);
2984 }
2985 
2986 /**
2987  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2988  * @hsotg: The driver state
2989  * @idx: The index for the endpoint (0..15)
2990  * @dir_in: Set if this is an IN endpoint
2991  *
2992  * Process and clear any interrupt pending for an individual endpoint
2993  */
2994 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2995 			     int dir_in)
2996 {
2997 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2998 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2999 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3000 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3001 	u32 ints;
3002 
3003 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3004 
3005 	/* Clear endpoint interrupts */
3006 	dwc2_writel(hsotg, ints, epint_reg);
3007 
3008 	if (!hs_ep) {
3009 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3010 			__func__, idx, dir_in ? "in" : "out");
3011 		return;
3012 	}
3013 
3014 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3015 		__func__, idx, dir_in ? "in" : "out", ints);
3016 
3017 	/* Don't process XferCompl interrupt if it is a setup packet */
3018 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3019 		ints &= ~DXEPINT_XFERCOMPL;
3020 
3021 	/*
3022 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3023 	 * stage and xfercomplete was generated without SETUP phase done
3024 	 * interrupt. SW should parse received setup packet only after host's
3025 	 * exit from setup phase of control transfer.
3026 	 */
3027 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3028 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3029 		ints &= ~DXEPINT_XFERCOMPL;
3030 
3031 	if (ints & DXEPINT_XFERCOMPL) {
3032 		dev_dbg(hsotg->dev,
3033 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3034 			__func__, dwc2_readl(hsotg, epctl_reg),
3035 			dwc2_readl(hsotg, epsiz_reg));
3036 
3037 		/* In DDMA handle isochronous requests separately */
3038 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3039 			/* XferCompl set along with BNA */
3040 			if (!(ints & DXEPINT_BNAINTR))
3041 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3042 		} else if (dir_in) {
3043 			/*
3044 			 * We get OutDone from the FIFO, so we only
3045 			 * need to look at completing IN requests here
3046 			 * if operating slave mode
3047 			 */
3048 			if (hs_ep->isochronous && hs_ep->interval > 1)
3049 				dwc2_gadget_incr_frame_num(hs_ep);
3050 
3051 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3052 			if (ints & DXEPINT_NAKINTRPT)
3053 				ints &= ~DXEPINT_NAKINTRPT;
3054 
3055 			if (idx == 0 && !hs_ep->req)
3056 				dwc2_hsotg_enqueue_setup(hsotg);
3057 		} else if (using_dma(hsotg)) {
3058 			/*
3059 			 * We're using DMA, we need to fire an OutDone here
3060 			 * as we ignore the RXFIFO.
3061 			 */
3062 			if (hs_ep->isochronous && hs_ep->interval > 1)
3063 				dwc2_gadget_incr_frame_num(hs_ep);
3064 
3065 			dwc2_hsotg_handle_outdone(hsotg, idx);
3066 		}
3067 	}
3068 
3069 	if (ints & DXEPINT_EPDISBLD)
3070 		dwc2_gadget_handle_ep_disabled(hs_ep);
3071 
3072 	if (ints & DXEPINT_OUTTKNEPDIS)
3073 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3074 
3075 	if (ints & DXEPINT_NAKINTRPT)
3076 		dwc2_gadget_handle_nak(hs_ep);
3077 
3078 	if (ints & DXEPINT_AHBERR)
3079 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3080 
3081 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3082 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3083 
3084 		if (using_dma(hsotg) && idx == 0) {
3085 			/*
3086 			 * this is the notification we've received a
3087 			 * setup packet. In non-DMA mode we'd get this
3088 			 * from the RXFIFO, instead we need to process
3089 			 * the setup here.
3090 			 */
3091 
3092 			if (dir_in)
3093 				WARN_ON_ONCE(1);
3094 			else
3095 				dwc2_hsotg_handle_outdone(hsotg, 0);
3096 		}
3097 	}
3098 
3099 	if (ints & DXEPINT_STSPHSERCVD) {
3100 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3101 
3102 		/* Safety check EP0 state when STSPHSERCVD asserted */
3103 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3104 			/* Move to STATUS IN for DDMA */
3105 			if (using_desc_dma(hsotg)) {
3106 				if (!hsotg->delayed_status)
3107 					dwc2_hsotg_ep0_zlp(hsotg, true);
3108 				else
3109 				/* In case of 3 stage Control Write with delayed
3110 				 * status, when Status IN transfer started
3111 				 * before STSPHSERCVD asserted, NAKSTS bit not
3112 				 * cleared by CNAK in dwc2_hsotg_start_req()
3113 				 * function. Clear now NAKSTS to allow complete
3114 				 * transfer.
3115 				 */
3116 					dwc2_set_bit(hsotg, DIEPCTL(0),
3117 						     DXEPCTL_CNAK);
3118 			}
3119 		}
3120 
3121 	}
3122 
3123 	if (ints & DXEPINT_BACK2BACKSETUP)
3124 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3125 
3126 	if (ints & DXEPINT_BNAINTR) {
3127 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3128 		if (hs_ep->isochronous)
3129 			dwc2_gadget_handle_isoc_bna(hs_ep);
3130 	}
3131 
3132 	if (dir_in && !hs_ep->isochronous) {
3133 		/* not sure if this is important, but we'll clear it anyway */
3134 		if (ints & DXEPINT_INTKNTXFEMP) {
3135 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3136 				__func__, idx);
3137 		}
3138 
3139 		/* this probably means something bad is happening */
3140 		if (ints & DXEPINT_INTKNEPMIS) {
3141 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3142 				 __func__, idx);
3143 		}
3144 
3145 		/* FIFO has space or is empty (see GAHBCFG) */
3146 		if (hsotg->dedicated_fifos &&
3147 		    ints & DXEPINT_TXFEMP) {
3148 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3149 				__func__, idx);
3150 			if (!using_dma(hsotg))
3151 				dwc2_hsotg_trytx(hsotg, hs_ep);
3152 		}
3153 	}
3154 }
3155 
3156 /**
3157  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3158  * @hsotg: The device state.
3159  *
3160  * Handle updating the device settings after the enumeration phase has
3161  * been completed.
3162  */
3163 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3164 {
3165 	u32 dsts = dwc2_readl(hsotg, DSTS);
3166 	int ep0_mps = 0, ep_mps = 8;
3167 
3168 	/*
3169 	 * This should signal the finish of the enumeration phase
3170 	 * of the USB handshaking, so we should now know what rate
3171 	 * we connected at.
3172 	 */
3173 
3174 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3175 
3176 	/*
3177 	 * note, since we're limited by the size of transfer on EP0, and
3178 	 * it seems IN transfers must be a even number of packets we do
3179 	 * not advertise a 64byte MPS on EP0.
3180 	 */
3181 
3182 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3183 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3184 	case DSTS_ENUMSPD_FS:
3185 	case DSTS_ENUMSPD_FS48:
3186 		hsotg->gadget.speed = USB_SPEED_FULL;
3187 		ep0_mps = EP0_MPS_LIMIT;
3188 		ep_mps = 1023;
3189 		break;
3190 
3191 	case DSTS_ENUMSPD_HS:
3192 		hsotg->gadget.speed = USB_SPEED_HIGH;
3193 		ep0_mps = EP0_MPS_LIMIT;
3194 		ep_mps = 1024;
3195 		break;
3196 
3197 	case DSTS_ENUMSPD_LS:
3198 		hsotg->gadget.speed = USB_SPEED_LOW;
3199 		ep0_mps = 8;
3200 		ep_mps = 8;
3201 		/*
3202 		 * note, we don't actually support LS in this driver at the
3203 		 * moment, and the documentation seems to imply that it isn't
3204 		 * supported by the PHYs on some of the devices.
3205 		 */
3206 		break;
3207 	}
3208 	dev_info(hsotg->dev, "new device is %s\n",
3209 		 usb_speed_string(hsotg->gadget.speed));
3210 
3211 	/*
3212 	 * we should now know the maximum packet size for an
3213 	 * endpoint, so set the endpoints to a default value.
3214 	 */
3215 
3216 	if (ep0_mps) {
3217 		int i;
3218 		/* Initialize ep0 for both in and out directions */
3219 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3220 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3221 		for (i = 1; i < hsotg->num_of_eps; i++) {
3222 			if (hsotg->eps_in[i])
3223 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3224 							    0, 1);
3225 			if (hsotg->eps_out[i])
3226 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3227 							    0, 0);
3228 		}
3229 	}
3230 
3231 	/* ensure after enumeration our EP0 is active */
3232 
3233 	dwc2_hsotg_enqueue_setup(hsotg);
3234 
3235 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3236 		dwc2_readl(hsotg, DIEPCTL0),
3237 		dwc2_readl(hsotg, DOEPCTL0));
3238 }
3239 
3240 /**
3241  * kill_all_requests - remove all requests from the endpoint's queue
3242  * @hsotg: The device state.
3243  * @ep: The endpoint the requests may be on.
3244  * @result: The result code to use.
3245  *
3246  * Go through the requests on the given endpoint and mark them
3247  * completed with the given result code.
3248  */
3249 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3250 			      struct dwc2_hsotg_ep *ep,
3251 			      int result)
3252 {
3253 	unsigned int size;
3254 
3255 	ep->req = NULL;
3256 
3257 	while (!list_empty(&ep->queue)) {
3258 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3259 
3260 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3261 	}
3262 
3263 	if (!hsotg->dedicated_fifos)
3264 		return;
3265 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3266 	if (size < ep->fifo_size)
3267 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3268 }
3269 
3270 /**
3271  * dwc2_hsotg_disconnect - disconnect service
3272  * @hsotg: The device state.
3273  *
3274  * The device has been disconnected. Remove all current
3275  * transactions and signal the gadget driver that this
3276  * has happened.
3277  */
3278 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3279 {
3280 	unsigned int ep;
3281 
3282 	if (!hsotg->connected)
3283 		return;
3284 
3285 	hsotg->connected = 0;
3286 	hsotg->test_mode = 0;
3287 
3288 	/* all endpoints should be shutdown */
3289 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3290 		if (hsotg->eps_in[ep])
3291 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3292 					  -ESHUTDOWN);
3293 		if (hsotg->eps_out[ep])
3294 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3295 					  -ESHUTDOWN);
3296 	}
3297 
3298 	call_gadget(hsotg, disconnect);
3299 	hsotg->lx_state = DWC2_L3;
3300 
3301 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3302 }
3303 
3304 /**
3305  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3306  * @hsotg: The device state:
3307  * @periodic: True if this is a periodic FIFO interrupt
3308  */
3309 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3310 {
3311 	struct dwc2_hsotg_ep *ep;
3312 	int epno, ret;
3313 
3314 	/* look through for any more data to transmit */
3315 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3316 		ep = index_to_ep(hsotg, epno, 1);
3317 
3318 		if (!ep)
3319 			continue;
3320 
3321 		if (!ep->dir_in)
3322 			continue;
3323 
3324 		if ((periodic && !ep->periodic) ||
3325 		    (!periodic && ep->periodic))
3326 			continue;
3327 
3328 		ret = dwc2_hsotg_trytx(hsotg, ep);
3329 		if (ret < 0)
3330 			break;
3331 	}
3332 }
3333 
3334 /* IRQ flags which will trigger a retry around the IRQ loop */
3335 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3336 			GINTSTS_PTXFEMP |  \
3337 			GINTSTS_RXFLVL)
3338 
3339 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3340 /**
3341  * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3342  * @hsotg: The device state
3343  * @is_usb_reset: Usb resetting flag
3344  *
3345  * Issue a soft reset to the core, and await the core finishing it.
3346  */
3347 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3348 				       bool is_usb_reset)
3349 {
3350 	u32 intmsk;
3351 	u32 val;
3352 	u32 usbcfg;
3353 	u32 dcfg = 0;
3354 	int ep;
3355 
3356 	/* Kill any ep0 requests as controller will be reinitialized */
3357 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3358 
3359 	if (!is_usb_reset) {
3360 		if (dwc2_core_reset(hsotg, true))
3361 			return;
3362 	} else {
3363 		/* all endpoints should be shutdown */
3364 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3365 			if (hsotg->eps_in[ep])
3366 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3367 			if (hsotg->eps_out[ep])
3368 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3369 		}
3370 	}
3371 
3372 	/*
3373 	 * we must now enable ep0 ready for host detection and then
3374 	 * set configuration.
3375 	 */
3376 
3377 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3378 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3379 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3380 	usbcfg |= GUSBCFG_TOUTCAL(7);
3381 
3382 	/* remove the HNP/SRP and set the PHY */
3383 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3384         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3385 
3386 	dwc2_phy_init(hsotg, true);
3387 
3388 	dwc2_hsotg_init_fifo(hsotg);
3389 
3390 	if (!is_usb_reset)
3391 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3392 
3393 	dcfg |= DCFG_EPMISCNT(1);
3394 
3395 	switch (hsotg->params.speed) {
3396 	case DWC2_SPEED_PARAM_LOW:
3397 		dcfg |= DCFG_DEVSPD_LS;
3398 		break;
3399 	case DWC2_SPEED_PARAM_FULL:
3400 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3401 			dcfg |= DCFG_DEVSPD_FS48;
3402 		else
3403 			dcfg |= DCFG_DEVSPD_FS;
3404 		break;
3405 	default:
3406 		dcfg |= DCFG_DEVSPD_HS;
3407 	}
3408 
3409 	if (hsotg->params.ipg_isoc_en)
3410 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3411 
3412 	dwc2_writel(hsotg, dcfg,  DCFG);
3413 
3414 	/* Clear any pending OTG interrupts */
3415 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3416 
3417 	/* Clear any pending interrupts */
3418 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3419 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3420 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3421 		GINTSTS_USBRST | GINTSTS_RESETDET |
3422 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3423 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3424 		GINTSTS_LPMTRANRCVD;
3425 
3426 	if (!using_desc_dma(hsotg))
3427 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3428 
3429 	if (!hsotg->params.external_id_pin_ctl)
3430 		intmsk |= GINTSTS_CONIDSTSCHNG;
3431 
3432 	dwc2_writel(hsotg, intmsk, GINTMSK);
3433 
3434 	if (using_dma(hsotg)) {
3435 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3436 			    hsotg->params.ahbcfg,
3437 			    GAHBCFG);
3438 
3439 		/* Set DDMA mode support in the core if needed */
3440 		if (using_desc_dma(hsotg))
3441 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3442 
3443 	} else {
3444 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3445 						(GAHBCFG_NP_TXF_EMP_LVL |
3446 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3447 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3448 	}
3449 
3450 	/*
3451 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3452 	 * when we have no data to transfer. Otherwise we get being flooded by
3453 	 * interrupts.
3454 	 */
3455 
3456 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3457 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3458 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3459 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3460 		DIEPMSK);
3461 
3462 	/*
3463 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3464 	 * DMA mode we may need this and StsPhseRcvd.
3465 	 */
3466 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3467 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3468 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3469 		DOEPMSK_SETUPMSK,
3470 		DOEPMSK);
3471 
3472 	/* Enable BNA interrupt for DDMA */
3473 	if (using_desc_dma(hsotg)) {
3474 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3475 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3476 	}
3477 
3478 	/* Enable Service Interval mode if supported */
3479 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3480 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3481 
3482 	dwc2_writel(hsotg, 0, DAINTMSK);
3483 
3484 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3485 		dwc2_readl(hsotg, DIEPCTL0),
3486 		dwc2_readl(hsotg, DOEPCTL0));
3487 
3488 	/* enable in and out endpoint interrupts */
3489 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3490 
3491 	/*
3492 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3493 	 * the data. In DMA mode, we get events from the FIFO but also
3494 	 * things we cannot process, so do not use it.
3495 	 */
3496 	if (!using_dma(hsotg))
3497 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3498 
3499 	/* Enable interrupts for EP0 in and out */
3500 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3501 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3502 
3503 	if (!is_usb_reset) {
3504 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3505 		udelay(10);  /* see openiboot */
3506 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3507 	}
3508 
3509 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3510 
3511 	/*
3512 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3513 	 * writing to the EPCTL register..
3514 	 */
3515 
3516 	/* set to read 1 8byte packet */
3517 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3518 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3519 
3520 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3521 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3522 	       DXEPCTL_USBACTEP,
3523 	       DOEPCTL0);
3524 
3525 	/* enable, but don't activate EP0in */
3526 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3527 	       DXEPCTL_USBACTEP, DIEPCTL0);
3528 
3529 	/* clear global NAKs */
3530 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3531 	if (!is_usb_reset)
3532 		val |= DCTL_SFTDISCON;
3533 	dwc2_set_bit(hsotg, DCTL, val);
3534 
3535 	/* configure the core to support LPM */
3536 	dwc2_gadget_init_lpm(hsotg);
3537 
3538 	/* program GREFCLK register if needed */
3539 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3540 		dwc2_gadget_program_ref_clk(hsotg);
3541 
3542 	/* must be at-least 3ms to allow bus to see disconnect */
3543 	mdelay(3);
3544 
3545 	hsotg->lx_state = DWC2_L0;
3546 
3547 	dwc2_hsotg_enqueue_setup(hsotg);
3548 
3549 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3550 		dwc2_readl(hsotg, DIEPCTL0),
3551 		dwc2_readl(hsotg, DOEPCTL0));
3552 }
3553 
3554 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3555 {
3556 	/* set the soft-disconnect bit */
3557 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3558 }
3559 
3560 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3561 {
3562 	/* remove the soft-disconnect and let's go */
3563 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3564 }
3565 
3566 /**
3567  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3568  * @hsotg: The device state:
3569  *
3570  * This interrupt indicates one of the following conditions occurred while
3571  * transmitting an ISOC transaction.
3572  * - Corrupted IN Token for ISOC EP.
3573  * - Packet not complete in FIFO.
3574  *
3575  * The following actions will be taken:
3576  * - Determine the EP
3577  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3578  */
3579 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3580 {
3581 	struct dwc2_hsotg_ep *hs_ep;
3582 	u32 epctrl;
3583 	u32 daintmsk;
3584 	u32 idx;
3585 
3586 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3587 
3588 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3589 
3590 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3591 		hs_ep = hsotg->eps_in[idx];
3592 		/* Proceed only unmasked ISOC EPs */
3593 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3594 			continue;
3595 
3596 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3597 		if ((epctrl & DXEPCTL_EPENA) &&
3598 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3599 			epctrl |= DXEPCTL_SNAK;
3600 			epctrl |= DXEPCTL_EPDIS;
3601 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3602 		}
3603 	}
3604 
3605 	/* Clear interrupt */
3606 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3607 }
3608 
3609 /**
3610  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3611  * @hsotg: The device state:
3612  *
3613  * This interrupt indicates one of the following conditions occurred while
3614  * transmitting an ISOC transaction.
3615  * - Corrupted OUT Token for ISOC EP.
3616  * - Packet not complete in FIFO.
3617  *
3618  * The following actions will be taken:
3619  * - Determine the EP
3620  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3621  */
3622 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3623 {
3624 	u32 gintsts;
3625 	u32 gintmsk;
3626 	u32 daintmsk;
3627 	u32 epctrl;
3628 	struct dwc2_hsotg_ep *hs_ep;
3629 	int idx;
3630 
3631 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3632 
3633 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3634 	daintmsk >>= DAINT_OUTEP_SHIFT;
3635 
3636 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3637 		hs_ep = hsotg->eps_out[idx];
3638 		/* Proceed only unmasked ISOC EPs */
3639 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3640 			continue;
3641 
3642 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3643 		if ((epctrl & DXEPCTL_EPENA) &&
3644 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3645 			/* Unmask GOUTNAKEFF interrupt */
3646 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3647 			gintmsk |= GINTSTS_GOUTNAKEFF;
3648 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3649 
3650 			gintsts = dwc2_readl(hsotg, GINTSTS);
3651 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3652 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3653 				break;
3654 			}
3655 		}
3656 	}
3657 
3658 	/* Clear interrupt */
3659 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3660 }
3661 
3662 /**
3663  * dwc2_hsotg_irq - handle device interrupt
3664  * @irq: The IRQ number triggered
3665  * @pw: The pw value when registered the handler.
3666  */
3667 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3668 {
3669 	struct dwc2_hsotg *hsotg = pw;
3670 	int retry_count = 8;
3671 	u32 gintsts;
3672 	u32 gintmsk;
3673 
3674 	if (!dwc2_is_device_mode(hsotg))
3675 		return IRQ_NONE;
3676 
3677 	spin_lock(&hsotg->lock);
3678 irq_retry:
3679 	gintsts = dwc2_readl(hsotg, GINTSTS);
3680 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3681 
3682 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3683 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3684 
3685 	gintsts &= gintmsk;
3686 
3687 	if (gintsts & GINTSTS_RESETDET) {
3688 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3689 
3690 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3691 
3692 		/* This event must be used only if controller is suspended */
3693 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3694 			dwc2_exit_partial_power_down(hsotg, 0, true);
3695 
3696 		hsotg->lx_state = DWC2_L0;
3697 	}
3698 
3699 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3700 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3701 		u32 connected = hsotg->connected;
3702 
3703 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3704 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3705 			dwc2_readl(hsotg, GNPTXSTS));
3706 
3707 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3708 
3709 		/* Report disconnection if it is not already done. */
3710 		dwc2_hsotg_disconnect(hsotg);
3711 
3712 		/* Reset device address to zero */
3713 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3714 
3715 		if (usb_status & GOTGCTL_BSESVLD && connected)
3716 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3717 	}
3718 
3719 	if (gintsts & GINTSTS_ENUMDONE) {
3720 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3721 
3722 		dwc2_hsotg_irq_enumdone(hsotg);
3723 	}
3724 
3725 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3726 		u32 daint = dwc2_readl(hsotg, DAINT);
3727 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3728 		u32 daint_out, daint_in;
3729 		int ep;
3730 
3731 		daint &= daintmsk;
3732 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3733 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3734 
3735 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3736 
3737 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3738 						ep++, daint_out >>= 1) {
3739 			if (daint_out & 1)
3740 				dwc2_hsotg_epint(hsotg, ep, 0);
3741 		}
3742 
3743 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3744 						ep++, daint_in >>= 1) {
3745 			if (daint_in & 1)
3746 				dwc2_hsotg_epint(hsotg, ep, 1);
3747 		}
3748 	}
3749 
3750 	/* check both FIFOs */
3751 
3752 	if (gintsts & GINTSTS_NPTXFEMP) {
3753 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3754 
3755 		/*
3756 		 * Disable the interrupt to stop it happening again
3757 		 * unless one of these endpoint routines decides that
3758 		 * it needs re-enabling
3759 		 */
3760 
3761 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3762 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3763 	}
3764 
3765 	if (gintsts & GINTSTS_PTXFEMP) {
3766 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3767 
3768 		/* See note in GINTSTS_NPTxFEmp */
3769 
3770 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3771 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3772 	}
3773 
3774 	if (gintsts & GINTSTS_RXFLVL) {
3775 		/*
3776 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3777 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3778 		 * set.
3779 		 */
3780 
3781 		dwc2_hsotg_handle_rx(hsotg);
3782 	}
3783 
3784 	if (gintsts & GINTSTS_ERLYSUSP) {
3785 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3786 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3787 	}
3788 
3789 	/*
3790 	 * these next two seem to crop-up occasionally causing the core
3791 	 * to shutdown the USB transfer, so try clearing them and logging
3792 	 * the occurrence.
3793 	 */
3794 
3795 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3796 		u8 idx;
3797 		u32 epctrl;
3798 		u32 gintmsk;
3799 		u32 daintmsk;
3800 		struct dwc2_hsotg_ep *hs_ep;
3801 
3802 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3803 		daintmsk >>= DAINT_OUTEP_SHIFT;
3804 		/* Mask this interrupt */
3805 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3806 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3807 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3808 
3809 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3810 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3811 			hs_ep = hsotg->eps_out[idx];
3812 			/* Proceed only unmasked ISOC EPs */
3813 			if (BIT(idx) & ~daintmsk)
3814 				continue;
3815 
3816 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3817 
3818 			//ISOC Ep's only
3819 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3820 				epctrl |= DXEPCTL_SNAK;
3821 				epctrl |= DXEPCTL_EPDIS;
3822 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3823 				continue;
3824 			}
3825 
3826 			//Non-ISOC EP's
3827 			if (hs_ep->halted) {
3828 				if (!(epctrl & DXEPCTL_EPENA))
3829 					epctrl |= DXEPCTL_EPENA;
3830 				epctrl |= DXEPCTL_EPDIS;
3831 				epctrl |= DXEPCTL_STALL;
3832 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3833 			}
3834 		}
3835 
3836 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3837 	}
3838 
3839 	if (gintsts & GINTSTS_GINNAKEFF) {
3840 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3841 
3842 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3843 
3844 		dwc2_hsotg_dump(hsotg);
3845 	}
3846 
3847 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3848 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3849 
3850 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3851 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3852 
3853 	/*
3854 	 * if we've had fifo events, we should try and go around the
3855 	 * loop again to see if there's any point in returning yet.
3856 	 */
3857 
3858 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3859 		goto irq_retry;
3860 
3861 	/* Check WKUP_ALERT interrupt*/
3862 	if (hsotg->params.service_interval)
3863 		dwc2_gadget_wkup_alert_handler(hsotg);
3864 
3865 	spin_unlock(&hsotg->lock);
3866 
3867 	return IRQ_HANDLED;
3868 }
3869 
3870 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3871 				   struct dwc2_hsotg_ep *hs_ep)
3872 {
3873 	u32 epctrl_reg;
3874 	u32 epint_reg;
3875 
3876 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3877 		DOEPCTL(hs_ep->index);
3878 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3879 		DOEPINT(hs_ep->index);
3880 
3881 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3882 		hs_ep->name);
3883 
3884 	if (hs_ep->dir_in) {
3885 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3886 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3887 			/* Wait for Nak effect */
3888 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3889 						    DXEPINT_INEPNAKEFF, 100))
3890 				dev_warn(hsotg->dev,
3891 					 "%s: timeout DIEPINT.NAKEFF\n",
3892 					 __func__);
3893 		} else {
3894 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3895 			/* Wait for Nak effect */
3896 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3897 						    GINTSTS_GINNAKEFF, 100))
3898 				dev_warn(hsotg->dev,
3899 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3900 					 __func__);
3901 		}
3902 	} else {
3903 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3904 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3905 
3906 		/* Wait for global nak to take effect */
3907 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3908 					    GINTSTS_GOUTNAKEFF, 100))
3909 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3910 				 __func__);
3911 	}
3912 
3913 	/* Disable ep */
3914 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3915 
3916 	/* Wait for ep to be disabled */
3917 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3918 		dev_warn(hsotg->dev,
3919 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3920 
3921 	/* Clear EPDISBLD interrupt */
3922 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3923 
3924 	if (hs_ep->dir_in) {
3925 		unsigned short fifo_index;
3926 
3927 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3928 			fifo_index = hs_ep->fifo_index;
3929 		else
3930 			fifo_index = 0;
3931 
3932 		/* Flush TX FIFO */
3933 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3934 
3935 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3936 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3937 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3938 
3939 	} else {
3940 		/* Remove global NAKs */
3941 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3942 	}
3943 }
3944 
3945 /**
3946  * dwc2_hsotg_ep_enable - enable the given endpoint
3947  * @ep: The USB endpint to configure
3948  * @desc: The USB endpoint descriptor to configure with.
3949  *
3950  * This is called from the USB gadget code's usb_ep_enable().
3951  */
3952 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3953 				const struct usb_endpoint_descriptor *desc)
3954 {
3955 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3956 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3957 	unsigned long flags;
3958 	unsigned int index = hs_ep->index;
3959 	u32 epctrl_reg;
3960 	u32 epctrl;
3961 	u32 mps;
3962 	u32 mc;
3963 	u32 mask;
3964 	unsigned int dir_in;
3965 	unsigned int i, val, size;
3966 	int ret = 0;
3967 	unsigned char ep_type;
3968 	int desc_num;
3969 
3970 	dev_dbg(hsotg->dev,
3971 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3972 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3973 		desc->wMaxPacketSize, desc->bInterval);
3974 
3975 	/* not to be called for EP0 */
3976 	if (index == 0) {
3977 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3978 		return -EINVAL;
3979 	}
3980 
3981 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3982 	if (dir_in != hs_ep->dir_in) {
3983 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3984 		return -EINVAL;
3985 	}
3986 
3987 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3988 	mps = usb_endpoint_maxp(desc);
3989 	mc = usb_endpoint_maxp_mult(desc);
3990 
3991 	/* ISOC IN in DDMA supported bInterval up to 10 */
3992 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3993 	    dir_in && desc->bInterval > 10) {
3994 		dev_err(hsotg->dev,
3995 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3996 		return -EINVAL;
3997 	}
3998 
3999 	/* High bandwidth ISOC OUT in DDMA not supported */
4000 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4001 	    !dir_in && mc > 1) {
4002 		dev_err(hsotg->dev,
4003 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4004 		return -EINVAL;
4005 	}
4006 
4007 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4008 
4009 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4010 	epctrl = dwc2_readl(hsotg, epctrl_reg);
4011 
4012 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4013 		__func__, epctrl, epctrl_reg);
4014 
4015 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4016 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4017 	else
4018 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4019 
4020 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4021 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4022 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4023 			desc_num * sizeof(struct dwc2_dma_desc),
4024 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4025 		if (!hs_ep->desc_list) {
4026 			ret = -ENOMEM;
4027 			goto error2;
4028 		}
4029 	}
4030 
4031 	spin_lock_irqsave(&hsotg->lock, flags);
4032 
4033 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4034 	epctrl |= DXEPCTL_MPS(mps);
4035 
4036 	/*
4037 	 * mark the endpoint as active, otherwise the core may ignore
4038 	 * transactions entirely for this endpoint
4039 	 */
4040 	epctrl |= DXEPCTL_USBACTEP;
4041 
4042 	/* update the endpoint state */
4043 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4044 
4045 	/* default, set to non-periodic */
4046 	hs_ep->isochronous = 0;
4047 	hs_ep->periodic = 0;
4048 	hs_ep->halted = 0;
4049 	hs_ep->interval = desc->bInterval;
4050 
4051 	switch (ep_type) {
4052 	case USB_ENDPOINT_XFER_ISOC:
4053 		epctrl |= DXEPCTL_EPTYPE_ISO;
4054 		epctrl |= DXEPCTL_SETEVENFR;
4055 		hs_ep->isochronous = 1;
4056 		hs_ep->interval = 1 << (desc->bInterval - 1);
4057 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4058 		hs_ep->next_desc = 0;
4059 		hs_ep->compl_desc = 0;
4060 		if (dir_in) {
4061 			hs_ep->periodic = 1;
4062 			mask = dwc2_readl(hsotg, DIEPMSK);
4063 			mask |= DIEPMSK_NAKMSK;
4064 			dwc2_writel(hsotg, mask, DIEPMSK);
4065 		} else {
4066 			mask = dwc2_readl(hsotg, DOEPMSK);
4067 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4068 			dwc2_writel(hsotg, mask, DOEPMSK);
4069 		}
4070 		break;
4071 
4072 	case USB_ENDPOINT_XFER_BULK:
4073 		epctrl |= DXEPCTL_EPTYPE_BULK;
4074 		break;
4075 
4076 	case USB_ENDPOINT_XFER_INT:
4077 		if (dir_in)
4078 			hs_ep->periodic = 1;
4079 
4080 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4081 			hs_ep->interval = 1 << (desc->bInterval - 1);
4082 
4083 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4084 		break;
4085 
4086 	case USB_ENDPOINT_XFER_CONTROL:
4087 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4088 		break;
4089 	}
4090 
4091 	/*
4092 	 * if the hardware has dedicated fifos, we must give each IN EP
4093 	 * a unique tx-fifo even if it is non-periodic.
4094 	 */
4095 	if (dir_in && hsotg->dedicated_fifos) {
4096 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4097 		u32 fifo_index = 0;
4098 		u32 fifo_size = UINT_MAX;
4099 
4100 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4101 		for (i = 1; i <= fifo_count; ++i) {
4102 			if (hsotg->fifo_map & (1 << i))
4103 				continue;
4104 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4105 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4106 			if (val < size)
4107 				continue;
4108 			/* Search for smallest acceptable fifo */
4109 			if (val < fifo_size) {
4110 				fifo_size = val;
4111 				fifo_index = i;
4112 			}
4113 		}
4114 		if (!fifo_index) {
4115 			dev_err(hsotg->dev,
4116 				"%s: No suitable fifo found\n", __func__);
4117 			ret = -ENOMEM;
4118 			goto error1;
4119 		}
4120 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4121 		hsotg->fifo_map |= 1 << fifo_index;
4122 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4123 		hs_ep->fifo_index = fifo_index;
4124 		hs_ep->fifo_size = fifo_size;
4125 	}
4126 
4127 	/* for non control endpoints, set PID to D0 */
4128 	if (index && !hs_ep->isochronous)
4129 		epctrl |= DXEPCTL_SETD0PID;
4130 
4131 	/* WA for Full speed ISOC IN in DDMA mode.
4132 	 * By Clear NAK status of EP, core will send ZLP
4133 	 * to IN token and assert NAK interrupt relying
4134 	 * on TxFIFO status only
4135 	 */
4136 
4137 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4138 	    hs_ep->isochronous && dir_in) {
4139 		/* The WA applies only to core versions from 2.72a
4140 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4141 		 * and HS_IOT_1.00a.
4142 		 */
4143 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4144 
4145 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4146 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4147 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4148 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4149 			epctrl |= DXEPCTL_CNAK;
4150 	}
4151 
4152 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4153 		__func__, epctrl);
4154 
4155 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4156 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4157 		__func__, dwc2_readl(hsotg, epctrl_reg));
4158 
4159 	/* enable the endpoint interrupt */
4160 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4161 
4162 error1:
4163 	spin_unlock_irqrestore(&hsotg->lock, flags);
4164 
4165 error2:
4166 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4167 		dmam_free_coherent(hsotg->dev, desc_num *
4168 			sizeof(struct dwc2_dma_desc),
4169 			hs_ep->desc_list, hs_ep->desc_list_dma);
4170 		hs_ep->desc_list = NULL;
4171 	}
4172 
4173 	return ret;
4174 }
4175 
4176 /**
4177  * dwc2_hsotg_ep_disable - disable given endpoint
4178  * @ep: The endpoint to disable.
4179  */
4180 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4181 {
4182 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4183 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4184 	int dir_in = hs_ep->dir_in;
4185 	int index = hs_ep->index;
4186 	u32 epctrl_reg;
4187 	u32 ctrl;
4188 
4189 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4190 
4191 	if (ep == &hsotg->eps_out[0]->ep) {
4192 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4193 		return -EINVAL;
4194 	}
4195 
4196 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4197 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4198 		return -EINVAL;
4199 	}
4200 
4201 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4202 
4203 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4204 
4205 	if (ctrl & DXEPCTL_EPENA)
4206 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4207 
4208 	ctrl &= ~DXEPCTL_EPENA;
4209 	ctrl &= ~DXEPCTL_USBACTEP;
4210 	ctrl |= DXEPCTL_SNAK;
4211 
4212 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4213 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4214 
4215 	/* disable endpoint interrupts */
4216 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4217 
4218 	/* terminate all requests with shutdown */
4219 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4220 
4221 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4222 	hs_ep->fifo_index = 0;
4223 	hs_ep->fifo_size = 0;
4224 
4225 	return 0;
4226 }
4227 
4228 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4229 {
4230 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4231 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4232 	unsigned long flags;
4233 	int ret;
4234 
4235 	spin_lock_irqsave(&hsotg->lock, flags);
4236 	ret = dwc2_hsotg_ep_disable(ep);
4237 	spin_unlock_irqrestore(&hsotg->lock, flags);
4238 	return ret;
4239 }
4240 
4241 /**
4242  * on_list - check request is on the given endpoint
4243  * @ep: The endpoint to check.
4244  * @test: The request to test if it is on the endpoint.
4245  */
4246 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4247 {
4248 	struct dwc2_hsotg_req *req, *treq;
4249 
4250 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4251 		if (req == test)
4252 			return true;
4253 	}
4254 
4255 	return false;
4256 }
4257 
4258 /**
4259  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4260  * @ep: The endpoint to dequeue.
4261  * @req: The request to be removed from a queue.
4262  */
4263 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4264 {
4265 	struct dwc2_hsotg_req *hs_req = our_req(req);
4266 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4267 	struct dwc2_hsotg *hs = hs_ep->parent;
4268 	unsigned long flags;
4269 
4270 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4271 
4272 	spin_lock_irqsave(&hs->lock, flags);
4273 
4274 	if (!on_list(hs_ep, hs_req)) {
4275 		spin_unlock_irqrestore(&hs->lock, flags);
4276 		return -EINVAL;
4277 	}
4278 
4279 	/* Dequeue already started request */
4280 	if (req == &hs_ep->req->req)
4281 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4282 
4283 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4284 	spin_unlock_irqrestore(&hs->lock, flags);
4285 
4286 	return 0;
4287 }
4288 
4289 /**
4290  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4291  * @ep: The endpoint to set halt.
4292  * @value: Set or unset the halt.
4293  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4294  *       the endpoint is busy processing requests.
4295  *
4296  * We need to stall the endpoint immediately if request comes from set_feature
4297  * protocol command handler.
4298  */
4299 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4300 {
4301 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4302 	struct dwc2_hsotg *hs = hs_ep->parent;
4303 	int index = hs_ep->index;
4304 	u32 epreg;
4305 	u32 epctl;
4306 	u32 xfertype;
4307 
4308 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4309 
4310 	if (index == 0) {
4311 		if (value)
4312 			dwc2_hsotg_stall_ep0(hs);
4313 		else
4314 			dev_warn(hs->dev,
4315 				 "%s: can't clear halt on ep0\n", __func__);
4316 		return 0;
4317 	}
4318 
4319 	if (hs_ep->isochronous) {
4320 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4321 		return -EINVAL;
4322 	}
4323 
4324 	if (!now && value && !list_empty(&hs_ep->queue)) {
4325 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4326 			ep->name);
4327 		return -EAGAIN;
4328 	}
4329 
4330 	if (hs_ep->dir_in) {
4331 		epreg = DIEPCTL(index);
4332 		epctl = dwc2_readl(hs, epreg);
4333 
4334 		if (value) {
4335 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4336 			if (epctl & DXEPCTL_EPENA)
4337 				epctl |= DXEPCTL_EPDIS;
4338 		} else {
4339 			epctl &= ~DXEPCTL_STALL;
4340 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4341 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4342 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4343 				epctl |= DXEPCTL_SETD0PID;
4344 		}
4345 		dwc2_writel(hs, epctl, epreg);
4346 	} else {
4347 		epreg = DOEPCTL(index);
4348 		epctl = dwc2_readl(hs, epreg);
4349 
4350 		if (value) {
4351 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4352 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4353 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4354 		} else {
4355 			epctl &= ~DXEPCTL_STALL;
4356 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4357 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4358 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4359 				epctl |= DXEPCTL_SETD0PID;
4360 			dwc2_writel(hs, epctl, epreg);
4361 		}
4362 	}
4363 
4364 	hs_ep->halted = value;
4365 	return 0;
4366 }
4367 
4368 /**
4369  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4370  * @ep: The endpoint to set halt.
4371  * @value: Set or unset the halt.
4372  */
4373 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4374 {
4375 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4376 	struct dwc2_hsotg *hs = hs_ep->parent;
4377 	unsigned long flags;
4378 	int ret;
4379 
4380 	spin_lock_irqsave(&hs->lock, flags);
4381 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4382 	spin_unlock_irqrestore(&hs->lock, flags);
4383 
4384 	return ret;
4385 }
4386 
4387 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4388 	.enable		= dwc2_hsotg_ep_enable,
4389 	.disable	= dwc2_hsotg_ep_disable_lock,
4390 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4391 	.free_request	= dwc2_hsotg_ep_free_request,
4392 	.queue		= dwc2_hsotg_ep_queue_lock,
4393 	.dequeue	= dwc2_hsotg_ep_dequeue,
4394 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4395 	/* note, don't believe we have any call for the fifo routines */
4396 };
4397 
4398 /**
4399  * dwc2_hsotg_init - initialize the usb core
4400  * @hsotg: The driver state
4401  */
4402 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4403 {
4404 	/* unmask subset of endpoint interrupts */
4405 
4406 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4407 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4408 		    DIEPMSK);
4409 
4410 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4411 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4412 		    DOEPMSK);
4413 
4414 	dwc2_writel(hsotg, 0, DAINTMSK);
4415 
4416 	/* Be in disconnected state until gadget is registered */
4417 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4418 
4419 	/* setup fifos */
4420 
4421 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4422 		dwc2_readl(hsotg, GRXFSIZ),
4423 		dwc2_readl(hsotg, GNPTXFSIZ));
4424 
4425 	dwc2_hsotg_init_fifo(hsotg);
4426 
4427 	if (using_dma(hsotg))
4428 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4429 }
4430 
4431 /**
4432  * dwc2_hsotg_udc_start - prepare the udc for work
4433  * @gadget: The usb gadget state
4434  * @driver: The usb gadget driver
4435  *
4436  * Perform initialization to prepare udc device and driver
4437  * to work.
4438  */
4439 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4440 				struct usb_gadget_driver *driver)
4441 {
4442 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4443 	unsigned long flags;
4444 	int ret;
4445 
4446 	if (!hsotg) {
4447 		pr_err("%s: called with no device\n", __func__);
4448 		return -ENODEV;
4449 	}
4450 
4451 	if (!driver) {
4452 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4453 		return -EINVAL;
4454 	}
4455 
4456 	if (driver->max_speed < USB_SPEED_FULL)
4457 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4458 
4459 	if (!driver->setup) {
4460 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4461 		return -EINVAL;
4462 	}
4463 
4464 	WARN_ON(hsotg->driver);
4465 
4466 	driver->driver.bus = NULL;
4467 	hsotg->driver = driver;
4468 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4469 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4470 
4471 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4472 		ret = dwc2_lowlevel_hw_enable(hsotg);
4473 		if (ret)
4474 			goto err;
4475 	}
4476 
4477 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4478 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4479 
4480 	spin_lock_irqsave(&hsotg->lock, flags);
4481 	if (dwc2_hw_is_device(hsotg)) {
4482 		dwc2_hsotg_init(hsotg);
4483 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4484 	}
4485 
4486 	hsotg->enabled = 0;
4487 	spin_unlock_irqrestore(&hsotg->lock, flags);
4488 
4489 	gadget->sg_supported = using_desc_dma(hsotg);
4490 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4491 
4492 	return 0;
4493 
4494 err:
4495 	hsotg->driver = NULL;
4496 	return ret;
4497 }
4498 
4499 /**
4500  * dwc2_hsotg_udc_stop - stop the udc
4501  * @gadget: The usb gadget state
4502  *
4503  * Stop udc hw block and stay tunned for future transmissions
4504  */
4505 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4506 {
4507 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4508 	unsigned long flags;
4509 	int ep;
4510 
4511 	if (!hsotg)
4512 		return -ENODEV;
4513 
4514 	/* all endpoints should be shutdown */
4515 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4516 		if (hsotg->eps_in[ep])
4517 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4518 		if (hsotg->eps_out[ep])
4519 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4520 	}
4521 
4522 	spin_lock_irqsave(&hsotg->lock, flags);
4523 
4524 	hsotg->driver = NULL;
4525 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4526 	hsotg->enabled = 0;
4527 
4528 	spin_unlock_irqrestore(&hsotg->lock, flags);
4529 
4530 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4531 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4532 
4533 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4534 		dwc2_lowlevel_hw_disable(hsotg);
4535 
4536 	return 0;
4537 }
4538 
4539 /**
4540  * dwc2_hsotg_gadget_getframe - read the frame number
4541  * @gadget: The usb gadget state
4542  *
4543  * Read the {micro} frame number
4544  */
4545 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4546 {
4547 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4548 }
4549 
4550 /**
4551  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4552  * @gadget: The usb gadget state
4553  * @is_selfpowered: Whether the device is self-powered
4554  *
4555  * Set if the device is self or bus powered.
4556  */
4557 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4558 				      int is_selfpowered)
4559 {
4560 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4561 	unsigned long flags;
4562 
4563 	spin_lock_irqsave(&hsotg->lock, flags);
4564 	gadget->is_selfpowered = !!is_selfpowered;
4565 	spin_unlock_irqrestore(&hsotg->lock, flags);
4566 
4567 	return 0;
4568 }
4569 
4570 /**
4571  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4572  * @gadget: The usb gadget state
4573  * @is_on: Current state of the USB PHY
4574  *
4575  * Connect/Disconnect the USB PHY pullup
4576  */
4577 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4578 {
4579 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4580 	unsigned long flags;
4581 
4582 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4583 		hsotg->op_state);
4584 
4585 	/* Don't modify pullup state while in host mode */
4586 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4587 		hsotg->enabled = is_on;
4588 		return 0;
4589 	}
4590 
4591 	spin_lock_irqsave(&hsotg->lock, flags);
4592 	if (is_on) {
4593 		hsotg->enabled = 1;
4594 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4595 		/* Enable ACG feature in device mode,if supported */
4596 		dwc2_enable_acg(hsotg);
4597 		dwc2_hsotg_core_connect(hsotg);
4598 	} else {
4599 		dwc2_hsotg_core_disconnect(hsotg);
4600 		dwc2_hsotg_disconnect(hsotg);
4601 		hsotg->enabled = 0;
4602 	}
4603 
4604 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4605 	spin_unlock_irqrestore(&hsotg->lock, flags);
4606 
4607 	return 0;
4608 }
4609 
4610 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4611 {
4612 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4613 	unsigned long flags;
4614 
4615 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4616 	spin_lock_irqsave(&hsotg->lock, flags);
4617 
4618 	/*
4619 	 * If controller is in partial power down state, it must exit from
4620 	 * that state before being initialized / de-initialized
4621 	 */
4622 	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4623 		/*
4624 		 * No need to check the return value as
4625 		 * registers are not being restored.
4626 		 */
4627 		dwc2_exit_partial_power_down(hsotg, 0, false);
4628 
4629 	if (is_active) {
4630 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4631 
4632 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4633 		if (hsotg->enabled) {
4634 			/* Enable ACG feature in device mode,if supported */
4635 			dwc2_enable_acg(hsotg);
4636 			dwc2_hsotg_core_connect(hsotg);
4637 		}
4638 	} else {
4639 		dwc2_hsotg_core_disconnect(hsotg);
4640 		dwc2_hsotg_disconnect(hsotg);
4641 	}
4642 
4643 	spin_unlock_irqrestore(&hsotg->lock, flags);
4644 	return 0;
4645 }
4646 
4647 /**
4648  * dwc2_hsotg_vbus_draw - report bMaxPower field
4649  * @gadget: The usb gadget state
4650  * @mA: Amount of current
4651  *
4652  * Report how much power the device may consume to the phy.
4653  */
4654 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4655 {
4656 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4657 
4658 	if (IS_ERR_OR_NULL(hsotg->uphy))
4659 		return -ENOTSUPP;
4660 	return usb_phy_set_power(hsotg->uphy, mA);
4661 }
4662 
4663 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4664 	.get_frame	= dwc2_hsotg_gadget_getframe,
4665 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4666 	.udc_start		= dwc2_hsotg_udc_start,
4667 	.udc_stop		= dwc2_hsotg_udc_stop,
4668 	.pullup                 = dwc2_hsotg_pullup,
4669 	.vbus_session		= dwc2_hsotg_vbus_session,
4670 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4671 };
4672 
4673 /**
4674  * dwc2_hsotg_initep - initialise a single endpoint
4675  * @hsotg: The device state.
4676  * @hs_ep: The endpoint to be initialised.
4677  * @epnum: The endpoint number
4678  * @dir_in: True if direction is in.
4679  *
4680  * Initialise the given endpoint (as part of the probe and device state
4681  * creation) to give to the gadget driver. Setup the endpoint name, any
4682  * direction information and other state that may be required.
4683  */
4684 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4685 			      struct dwc2_hsotg_ep *hs_ep,
4686 				       int epnum,
4687 				       bool dir_in)
4688 {
4689 	char *dir;
4690 
4691 	if (epnum == 0)
4692 		dir = "";
4693 	else if (dir_in)
4694 		dir = "in";
4695 	else
4696 		dir = "out";
4697 
4698 	hs_ep->dir_in = dir_in;
4699 	hs_ep->index = epnum;
4700 
4701 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4702 
4703 	INIT_LIST_HEAD(&hs_ep->queue);
4704 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4705 
4706 	/* add to the list of endpoints known by the gadget driver */
4707 	if (epnum)
4708 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4709 
4710 	hs_ep->parent = hsotg;
4711 	hs_ep->ep.name = hs_ep->name;
4712 
4713 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4714 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4715 	else
4716 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4717 					   epnum ? 1024 : EP0_MPS_LIMIT);
4718 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4719 
4720 	if (epnum == 0) {
4721 		hs_ep->ep.caps.type_control = true;
4722 	} else {
4723 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4724 			hs_ep->ep.caps.type_iso = true;
4725 			hs_ep->ep.caps.type_bulk = true;
4726 		}
4727 		hs_ep->ep.caps.type_int = true;
4728 	}
4729 
4730 	if (dir_in)
4731 		hs_ep->ep.caps.dir_in = true;
4732 	else
4733 		hs_ep->ep.caps.dir_out = true;
4734 
4735 	/*
4736 	 * if we're using dma, we need to set the next-endpoint pointer
4737 	 * to be something valid.
4738 	 */
4739 
4740 	if (using_dma(hsotg)) {
4741 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4742 
4743 		if (dir_in)
4744 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4745 		else
4746 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4747 	}
4748 }
4749 
4750 /**
4751  * dwc2_hsotg_hw_cfg - read HW configuration registers
4752  * @hsotg: Programming view of the DWC_otg controller
4753  *
4754  * Read the USB core HW configuration registers
4755  */
4756 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4757 {
4758 	u32 cfg;
4759 	u32 ep_type;
4760 	u32 i;
4761 
4762 	/* check hardware configuration */
4763 
4764 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4765 
4766 	/* Add ep0 */
4767 	hsotg->num_of_eps++;
4768 
4769 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4770 					sizeof(struct dwc2_hsotg_ep),
4771 					GFP_KERNEL);
4772 	if (!hsotg->eps_in[0])
4773 		return -ENOMEM;
4774 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4775 	hsotg->eps_out[0] = hsotg->eps_in[0];
4776 
4777 	cfg = hsotg->hw_params.dev_ep_dirs;
4778 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4779 		ep_type = cfg & 3;
4780 		/* Direction in or both */
4781 		if (!(ep_type & 2)) {
4782 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4783 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4784 			if (!hsotg->eps_in[i])
4785 				return -ENOMEM;
4786 		}
4787 		/* Direction out or both */
4788 		if (!(ep_type & 1)) {
4789 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4790 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4791 			if (!hsotg->eps_out[i])
4792 				return -ENOMEM;
4793 		}
4794 	}
4795 
4796 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4797 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4798 
4799 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4800 		 hsotg->num_of_eps,
4801 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4802 		 hsotg->fifo_mem);
4803 	return 0;
4804 }
4805 
4806 /**
4807  * dwc2_hsotg_dump - dump state of the udc
4808  * @hsotg: Programming view of the DWC_otg controller
4809  *
4810  */
4811 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4812 {
4813 #ifdef DEBUG
4814 	struct device *dev = hsotg->dev;
4815 	u32 val;
4816 	int idx;
4817 
4818 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4819 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4820 		 dwc2_readl(hsotg, DIEPMSK));
4821 
4822 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4823 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4824 
4825 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4826 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4827 
4828 	/* show periodic fifo settings */
4829 
4830 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4831 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4832 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4833 			 val >> FIFOSIZE_DEPTH_SHIFT,
4834 			 val & FIFOSIZE_STARTADDR_MASK);
4835 	}
4836 
4837 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4838 		dev_info(dev,
4839 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4840 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4841 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4842 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4843 
4844 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4845 		dev_info(dev,
4846 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4847 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4848 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4849 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4850 	}
4851 
4852 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4853 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4854 #endif
4855 }
4856 
4857 /**
4858  * dwc2_gadget_init - init function for gadget
4859  * @hsotg: Programming view of the DWC_otg controller
4860  *
4861  */
4862 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4863 {
4864 	struct device *dev = hsotg->dev;
4865 	int epnum;
4866 	int ret;
4867 
4868 	/* Dump fifo information */
4869 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4870 		hsotg->params.g_np_tx_fifo_size);
4871 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4872 
4873 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4874 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4875 	hsotg->gadget.name = dev_name(dev);
4876 	hsotg->remote_wakeup_allowed = 0;
4877 
4878 	if (hsotg->params.lpm)
4879 		hsotg->gadget.lpm_capable = true;
4880 
4881 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4882 		hsotg->gadget.is_otg = 1;
4883 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4884 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4885 
4886 	ret = dwc2_hsotg_hw_cfg(hsotg);
4887 	if (ret) {
4888 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4889 		return ret;
4890 	}
4891 
4892 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4893 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4894 	if (!hsotg->ctrl_buff)
4895 		return -ENOMEM;
4896 
4897 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4898 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4899 	if (!hsotg->ep0_buff)
4900 		return -ENOMEM;
4901 
4902 	if (using_desc_dma(hsotg)) {
4903 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4904 		if (ret < 0)
4905 			return ret;
4906 	}
4907 
4908 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4909 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4910 	if (ret < 0) {
4911 		dev_err(dev, "cannot claim IRQ for gadget\n");
4912 		return ret;
4913 	}
4914 
4915 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4916 
4917 	if (hsotg->num_of_eps == 0) {
4918 		dev_err(dev, "wrong number of EPs (zero)\n");
4919 		return -EINVAL;
4920 	}
4921 
4922 	/* setup endpoint information */
4923 
4924 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4925 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4926 
4927 	/* allocate EP0 request */
4928 
4929 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4930 						     GFP_KERNEL);
4931 	if (!hsotg->ctrl_req) {
4932 		dev_err(dev, "failed to allocate ctrl req\n");
4933 		return -ENOMEM;
4934 	}
4935 
4936 	/* initialise the endpoints now the core has been initialised */
4937 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4938 		if (hsotg->eps_in[epnum])
4939 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4940 					  epnum, 1);
4941 		if (hsotg->eps_out[epnum])
4942 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4943 					  epnum, 0);
4944 	}
4945 
4946 	dwc2_hsotg_dump(hsotg);
4947 
4948 	return 0;
4949 }
4950 
4951 /**
4952  * dwc2_hsotg_remove - remove function for hsotg driver
4953  * @hsotg: Programming view of the DWC_otg controller
4954  *
4955  */
4956 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4957 {
4958 	usb_del_gadget_udc(&hsotg->gadget);
4959 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4960 
4961 	return 0;
4962 }
4963 
4964 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4965 {
4966 	unsigned long flags;
4967 
4968 	if (hsotg->lx_state != DWC2_L0)
4969 		return 0;
4970 
4971 	if (hsotg->driver) {
4972 		int ep;
4973 
4974 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4975 			 hsotg->driver->driver.name);
4976 
4977 		spin_lock_irqsave(&hsotg->lock, flags);
4978 		if (hsotg->enabled)
4979 			dwc2_hsotg_core_disconnect(hsotg);
4980 		dwc2_hsotg_disconnect(hsotg);
4981 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4982 		spin_unlock_irqrestore(&hsotg->lock, flags);
4983 
4984 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4985 			if (hsotg->eps_in[ep])
4986 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4987 			if (hsotg->eps_out[ep])
4988 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4989 		}
4990 	}
4991 
4992 	return 0;
4993 }
4994 
4995 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4996 {
4997 	unsigned long flags;
4998 
4999 	if (hsotg->lx_state == DWC2_L2)
5000 		return 0;
5001 
5002 	if (hsotg->driver) {
5003 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5004 			 hsotg->driver->driver.name);
5005 
5006 		spin_lock_irqsave(&hsotg->lock, flags);
5007 		dwc2_hsotg_core_init_disconnected(hsotg, false);
5008 		if (hsotg->enabled) {
5009 			/* Enable ACG feature in device mode,if supported */
5010 			dwc2_enable_acg(hsotg);
5011 			dwc2_hsotg_core_connect(hsotg);
5012 		}
5013 		spin_unlock_irqrestore(&hsotg->lock, flags);
5014 	}
5015 
5016 	return 0;
5017 }
5018 
5019 /**
5020  * dwc2_backup_device_registers() - Backup controller device registers.
5021  * When suspending usb bus, registers needs to be backuped
5022  * if controller power is disabled once suspended.
5023  *
5024  * @hsotg: Programming view of the DWC_otg controller
5025  */
5026 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5027 {
5028 	struct dwc2_dregs_backup *dr;
5029 	int i;
5030 
5031 	dev_dbg(hsotg->dev, "%s\n", __func__);
5032 
5033 	/* Backup dev regs */
5034 	dr = &hsotg->dr_backup;
5035 
5036 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5037 	dr->dctl = dwc2_readl(hsotg, DCTL);
5038 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5039 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5040 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5041 
5042 	for (i = 0; i < hsotg->num_of_eps; i++) {
5043 		/* Backup IN EPs */
5044 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5045 
5046 		/* Ensure DATA PID is correctly configured */
5047 		if (dr->diepctl[i] & DXEPCTL_DPID)
5048 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5049 		else
5050 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5051 
5052 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5053 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5054 
5055 		/* Backup OUT EPs */
5056 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5057 
5058 		/* Ensure DATA PID is correctly configured */
5059 		if (dr->doepctl[i] & DXEPCTL_DPID)
5060 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5061 		else
5062 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5063 
5064 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5065 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5066 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5067 	}
5068 	dr->valid = true;
5069 	return 0;
5070 }
5071 
5072 /**
5073  * dwc2_restore_device_registers() - Restore controller device registers.
5074  * When resuming usb bus, device registers needs to be restored
5075  * if controller power were disabled.
5076  *
5077  * @hsotg: Programming view of the DWC_otg controller
5078  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5079  *
5080  * Return: 0 if successful, negative error code otherwise
5081  */
5082 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5083 {
5084 	struct dwc2_dregs_backup *dr;
5085 	int i;
5086 
5087 	dev_dbg(hsotg->dev, "%s\n", __func__);
5088 
5089 	/* Restore dev regs */
5090 	dr = &hsotg->dr_backup;
5091 	if (!dr->valid) {
5092 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5093 			__func__);
5094 		return -EINVAL;
5095 	}
5096 	dr->valid = false;
5097 
5098 	if (!remote_wakeup)
5099 		dwc2_writel(hsotg, dr->dctl, DCTL);
5100 
5101 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5102 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5103 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5104 
5105 	for (i = 0; i < hsotg->num_of_eps; i++) {
5106 		/* Restore IN EPs */
5107 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5108 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5109 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5110 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5111 		 * hibernation wrong value read and saved from DIEPDMAx,
5112 		 * as result BNA interrupt asserted on hibernation exit
5113 		 * by restoring from saved area.
5114 		 */
5115 		if (hsotg->params.g_dma_desc &&
5116 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5117 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5118 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5119 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5120 		/* Restore OUT EPs */
5121 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5122 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5123 		 * hibernation wrong value read and saved from DOEPDMAx,
5124 		 * as result BNA interrupt asserted on hibernation exit
5125 		 * by restoring from saved area.
5126 		 */
5127 		if (hsotg->params.g_dma_desc &&
5128 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5129 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5130 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5131 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5132 	}
5133 
5134 	return 0;
5135 }
5136 
5137 /**
5138  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5139  *
5140  * @hsotg: Programming view of DWC_otg controller
5141  *
5142  */
5143 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5144 {
5145 	u32 val;
5146 
5147 	if (!hsotg->params.lpm)
5148 		return;
5149 
5150 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5151 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5152 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5153 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5154 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5155 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5156 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5157 	dwc2_writel(hsotg, val, GLPMCFG);
5158 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5159 
5160 	/* Unmask WKUP_ALERT Interrupt */
5161 	if (hsotg->params.service_interval)
5162 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5163 }
5164 
5165 /**
5166  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5167  *
5168  * @hsotg: Programming view of DWC_otg controller
5169  *
5170  */
5171 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5172 {
5173 	u32 val = 0;
5174 
5175 	val |= GREFCLK_REF_CLK_MODE;
5176 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5177 	val |= hsotg->params.sof_cnt_wkup_alert <<
5178 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5179 
5180 	dwc2_writel(hsotg, val, GREFCLK);
5181 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5182 }
5183 
5184 /**
5185  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5186  *
5187  * @hsotg: Programming view of the DWC_otg controller
5188  *
5189  * Return non-zero if failed to enter to hibernation.
5190  */
5191 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5192 {
5193 	u32 gpwrdn;
5194 	int ret = 0;
5195 
5196 	/* Change to L2(suspend) state */
5197 	hsotg->lx_state = DWC2_L2;
5198 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5199 	ret = dwc2_backup_global_registers(hsotg);
5200 	if (ret) {
5201 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5202 			__func__);
5203 		return ret;
5204 	}
5205 	ret = dwc2_backup_device_registers(hsotg);
5206 	if (ret) {
5207 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5208 			__func__);
5209 		return ret;
5210 	}
5211 
5212 	gpwrdn = GPWRDN_PWRDNRSTN;
5213 	gpwrdn |= GPWRDN_PMUACTV;
5214 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5215 	udelay(10);
5216 
5217 	/* Set flag to indicate that we are in hibernation */
5218 	hsotg->hibernated = 1;
5219 
5220 	/* Enable interrupts from wake up logic */
5221 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5222 	gpwrdn |= GPWRDN_PMUINTSEL;
5223 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5224 	udelay(10);
5225 
5226 	/* Unmask device mode interrupts in GPWRDN */
5227 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5228 	gpwrdn |= GPWRDN_RST_DET_MSK;
5229 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5230 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5231 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5232 	udelay(10);
5233 
5234 	/* Enable Power Down Clamp */
5235 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5236 	gpwrdn |= GPWRDN_PWRDNCLMP;
5237 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5238 	udelay(10);
5239 
5240 	/* Switch off VDD */
5241 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5242 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5243 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5244 	udelay(10);
5245 
5246 	/* Save gpwrdn register for further usage if stschng interrupt */
5247 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5248 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5249 
5250 	return ret;
5251 }
5252 
5253 /**
5254  * dwc2_gadget_exit_hibernation()
5255  * This function is for exiting from Device mode hibernation by host initiated
5256  * resume/reset and device initiated remote-wakeup.
5257  *
5258  * @hsotg: Programming view of the DWC_otg controller
5259  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5260  * @reset: indicates whether resume is initiated by Reset.
5261  *
5262  * Return non-zero if failed to exit from hibernation.
5263  */
5264 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5265 				 int rem_wakeup, int reset)
5266 {
5267 	u32 pcgcctl;
5268 	u32 gpwrdn;
5269 	u32 dctl;
5270 	int ret = 0;
5271 	struct dwc2_gregs_backup *gr;
5272 	struct dwc2_dregs_backup *dr;
5273 
5274 	gr = &hsotg->gr_backup;
5275 	dr = &hsotg->dr_backup;
5276 
5277 	if (!hsotg->hibernated) {
5278 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5279 		return 1;
5280 	}
5281 	dev_dbg(hsotg->dev,
5282 		"%s: called with rem_wakeup = %d reset = %d\n",
5283 		__func__, rem_wakeup, reset);
5284 
5285 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5286 
5287 	if (!reset) {
5288 		/* Clear all pending interupts */
5289 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5290 	}
5291 
5292 	/* De-assert Restore */
5293 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5294 	gpwrdn &= ~GPWRDN_RESTORE;
5295 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5296 	udelay(10);
5297 
5298 	if (!rem_wakeup) {
5299 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5300 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5301 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5302 	}
5303 
5304 	/* Restore GUSBCFG, DCFG and DCTL */
5305 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5306 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5307 	dwc2_writel(hsotg, dr->dctl, DCTL);
5308 
5309 	/* On USB Reset, reset device address to zero */
5310 	if (reset)
5311 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5312 
5313 	/* De-assert Wakeup Logic */
5314 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5315 	gpwrdn &= ~GPWRDN_PMUACTV;
5316 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5317 
5318 	if (rem_wakeup) {
5319 		udelay(10);
5320 		/* Start Remote Wakeup Signaling */
5321 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5322 	} else {
5323 		udelay(50);
5324 		/* Set Device programming done bit */
5325 		dctl = dwc2_readl(hsotg, DCTL);
5326 		dctl |= DCTL_PWRONPRGDONE;
5327 		dwc2_writel(hsotg, dctl, DCTL);
5328 	}
5329 	/* Wait for interrupts which must be cleared */
5330 	mdelay(2);
5331 	/* Clear all pending interupts */
5332 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5333 
5334 	/* Restore global registers */
5335 	ret = dwc2_restore_global_registers(hsotg);
5336 	if (ret) {
5337 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5338 			__func__);
5339 		return ret;
5340 	}
5341 
5342 	/* Restore device registers */
5343 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5344 	if (ret) {
5345 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5346 			__func__);
5347 		return ret;
5348 	}
5349 
5350 	if (rem_wakeup) {
5351 		mdelay(10);
5352 		dctl = dwc2_readl(hsotg, DCTL);
5353 		dctl &= ~DCTL_RMTWKUPSIG;
5354 		dwc2_writel(hsotg, dctl, DCTL);
5355 	}
5356 
5357 	hsotg->hibernated = 0;
5358 	hsotg->lx_state = DWC2_L0;
5359 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5360 
5361 	return ret;
5362 }
5363 
5364 /**
5365  * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5366  * power down.
5367  *
5368  * @hsotg: Programming view of the DWC_otg controller
5369  *
5370  * Return: non-zero if failed to enter device partial power down.
5371  *
5372  * This function is for entering device mode partial power down.
5373  */
5374 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5375 {
5376 	u32 pcgcctl;
5377 	int ret = 0;
5378 
5379 	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5380 
5381 	/* Backup all registers */
5382 	ret = dwc2_backup_global_registers(hsotg);
5383 	if (ret) {
5384 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5385 			__func__);
5386 		return ret;
5387 	}
5388 
5389 	ret = dwc2_backup_device_registers(hsotg);
5390 	if (ret) {
5391 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5392 			__func__);
5393 		return ret;
5394 	}
5395 
5396 	/*
5397 	 * Clear any pending interrupts since dwc2 will not be able to
5398 	 * clear them after entering partial_power_down.
5399 	 */
5400 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5401 
5402 	/* Put the controller in low power state */
5403 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5404 
5405 	pcgcctl |= PCGCTL_PWRCLMP;
5406 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5407 	udelay(5);
5408 
5409 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5410 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5411 	udelay(5);
5412 
5413 	pcgcctl |= PCGCTL_STOPPCLK;
5414 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5415 
5416 	/* Set in_ppd flag to 1 as here core enters suspend. */
5417 	hsotg->in_ppd = 1;
5418 	hsotg->lx_state = DWC2_L2;
5419 
5420 	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5421 
5422 	return ret;
5423 }
5424 
5425 /*
5426  * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5427  * power down.
5428  *
5429  * @hsotg: Programming view of the DWC_otg controller
5430  * @restore: indicates whether need to restore the registers or not.
5431  *
5432  * Return: non-zero if failed to exit device partial power down.
5433  *
5434  * This function is for exiting from device mode partial power down.
5435  */
5436 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5437 					bool restore)
5438 {
5439 	u32 pcgcctl;
5440 	u32 dctl;
5441 	struct dwc2_dregs_backup *dr;
5442 	int ret = 0;
5443 
5444 	dr = &hsotg->dr_backup;
5445 
5446 	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5447 
5448 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5449 	pcgcctl &= ~PCGCTL_STOPPCLK;
5450 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5451 
5452 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5453 	pcgcctl &= ~PCGCTL_PWRCLMP;
5454 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5455 
5456 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5457 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5458 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5459 
5460 	udelay(100);
5461 	if (restore) {
5462 		ret = dwc2_restore_global_registers(hsotg);
5463 		if (ret) {
5464 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5465 				__func__);
5466 			return ret;
5467 		}
5468 		/* Restore DCFG */
5469 		dwc2_writel(hsotg, dr->dcfg, DCFG);
5470 
5471 		ret = dwc2_restore_device_registers(hsotg, 0);
5472 		if (ret) {
5473 			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5474 				__func__);
5475 			return ret;
5476 		}
5477 	}
5478 
5479 	/* Set the Power-On Programming done bit */
5480 	dctl = dwc2_readl(hsotg, DCTL);
5481 	dctl |= DCTL_PWRONPRGDONE;
5482 	dwc2_writel(hsotg, dctl, DCTL);
5483 
5484 	/* Set in_ppd flag to 0 as here core exits from suspend. */
5485 	hsotg->in_ppd = 0;
5486 	hsotg->lx_state = DWC2_L0;
5487 
5488 	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5489 	return ret;
5490 }
5491 
5492 /**
5493  * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5494  *
5495  * @hsotg: Programming view of the DWC_otg controller
5496  *
5497  * Return: non-zero if failed to enter device partial power down.
5498  *
5499  * This function is for entering device mode clock gating.
5500  */
5501 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5502 {
5503 	u32 pcgctl;
5504 
5505 	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5506 
5507 	/* Set the Phy Clock bit as suspend is received. */
5508 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5509 	pcgctl |= PCGCTL_STOPPCLK;
5510 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5511 	udelay(5);
5512 
5513 	/* Set the Gate hclk as suspend is received. */
5514 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5515 	pcgctl |= PCGCTL_GATEHCLK;
5516 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5517 	udelay(5);
5518 
5519 	hsotg->lx_state = DWC2_L2;
5520 	hsotg->bus_suspended = true;
5521 }
5522 
5523 /*
5524  * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5525  *
5526  * @hsotg: Programming view of the DWC_otg controller
5527  * @rem_wakeup: indicates whether remote wake up is enabled.
5528  *
5529  * This function is for exiting from device mode clock gating.
5530  */
5531 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5532 {
5533 	u32 pcgctl;
5534 	u32 dctl;
5535 
5536 	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5537 
5538 	/* Clear the Gate hclk. */
5539 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5540 	pcgctl &= ~PCGCTL_GATEHCLK;
5541 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5542 	udelay(5);
5543 
5544 	/* Phy Clock bit. */
5545 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5546 	pcgctl &= ~PCGCTL_STOPPCLK;
5547 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5548 	udelay(5);
5549 
5550 	if (rem_wakeup) {
5551 		/* Set Remote Wakeup Signaling */
5552 		dctl = dwc2_readl(hsotg, DCTL);
5553 		dctl |= DCTL_RMTWKUPSIG;
5554 		dwc2_writel(hsotg, dctl, DCTL);
5555 	}
5556 
5557 	/* Change to L0 state */
5558 	call_gadget(hsotg, resume);
5559 	hsotg->lx_state = DWC2_L0;
5560 	hsotg->bus_suspended = false;
5561 }
5562