1 /** 2 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright 2008 Openmoko, Inc. 6 * Copyright 2008 Simtec Electronics 7 * Ben Dooks <ben@simtec.co.uk> 8 * http://armlinux.simtec.co.uk/ 9 * 10 * S3C USB2.0 High-speed / OtG driver 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/interrupt.h> 21 #include <linux/platform_device.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/debugfs.h> 24 #include <linux/mutex.h> 25 #include <linux/seq_file.h> 26 #include <linux/delay.h> 27 #include <linux/io.h> 28 #include <linux/slab.h> 29 #include <linux/clk.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/of_platform.h> 32 #include <linux/phy/phy.h> 33 34 #include <linux/usb/ch9.h> 35 #include <linux/usb/gadget.h> 36 #include <linux/usb/phy.h> 37 #include <linux/platform_data/s3c-hsotg.h> 38 39 #include "core.h" 40 #include "hw.h" 41 42 /* conversion functions */ 43 static inline struct s3c_hsotg_req *our_req(struct usb_request *req) 44 { 45 return container_of(req, struct s3c_hsotg_req, req); 46 } 47 48 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep) 49 { 50 return container_of(ep, struct s3c_hsotg_ep, ep); 51 } 52 53 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 54 { 55 return container_of(gadget, struct dwc2_hsotg, gadget); 56 } 57 58 static inline void __orr32(void __iomem *ptr, u32 val) 59 { 60 writel(readl(ptr) | val, ptr); 61 } 62 63 static inline void __bic32(void __iomem *ptr, u32 val) 64 { 65 writel(readl(ptr) & ~val, ptr); 66 } 67 68 /* forward decleration of functions */ 69 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg); 70 71 /** 72 * using_dma - return the DMA status of the driver. 73 * @hsotg: The driver state. 74 * 75 * Return true if we're using DMA. 76 * 77 * Currently, we have the DMA support code worked into everywhere 78 * that needs it, but the AMBA DMA implementation in the hardware can 79 * only DMA from 32bit aligned addresses. This means that gadgets such 80 * as the CDC Ethernet cannot work as they often pass packets which are 81 * not 32bit aligned. 82 * 83 * Unfortunately the choice to use DMA or not is global to the controller 84 * and seems to be only settable when the controller is being put through 85 * a core reset. This means we either need to fix the gadgets to take 86 * account of DMA alignment, or add bounce buffers (yuerk). 87 * 88 * Until this issue is sorted out, we always return 'false'. 89 */ 90 static inline bool using_dma(struct dwc2_hsotg *hsotg) 91 { 92 return false; /* support is not complete */ 93 } 94 95 /** 96 * s3c_hsotg_en_gsint - enable one or more of the general interrupt 97 * @hsotg: The device state 98 * @ints: A bitmask of the interrupts to enable 99 */ 100 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 101 { 102 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 103 u32 new_gsintmsk; 104 105 new_gsintmsk = gsintmsk | ints; 106 107 if (new_gsintmsk != gsintmsk) { 108 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 109 writel(new_gsintmsk, hsotg->regs + GINTMSK); 110 } 111 } 112 113 /** 114 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt 115 * @hsotg: The device state 116 * @ints: A bitmask of the interrupts to enable 117 */ 118 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 119 { 120 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 121 u32 new_gsintmsk; 122 123 new_gsintmsk = gsintmsk & ~ints; 124 125 if (new_gsintmsk != gsintmsk) 126 writel(new_gsintmsk, hsotg->regs + GINTMSK); 127 } 128 129 /** 130 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq 131 * @hsotg: The device state 132 * @ep: The endpoint index 133 * @dir_in: True if direction is in. 134 * @en: The enable value, true to enable 135 * 136 * Set or clear the mask for an individual endpoint's interrupt 137 * request. 138 */ 139 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 140 unsigned int ep, unsigned int dir_in, 141 unsigned int en) 142 { 143 unsigned long flags; 144 u32 bit = 1 << ep; 145 u32 daint; 146 147 if (!dir_in) 148 bit <<= 16; 149 150 local_irq_save(flags); 151 daint = readl(hsotg->regs + DAINTMSK); 152 if (en) 153 daint |= bit; 154 else 155 daint &= ~bit; 156 writel(daint, hsotg->regs + DAINTMSK); 157 local_irq_restore(flags); 158 } 159 160 /** 161 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs 162 * @hsotg: The device instance. 163 */ 164 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 165 { 166 unsigned int ep; 167 unsigned int addr; 168 unsigned int size; 169 int timeout; 170 u32 val; 171 172 /* set FIFO sizes to 2048/1024 */ 173 174 writel(2048, hsotg->regs + GRXFSIZ); 175 writel((2048 << FIFOSIZE_STARTADDR_SHIFT) | 176 (1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ); 177 178 /* 179 * arange all the rest of the TX FIFOs, as some versions of this 180 * block have overlapping default addresses. This also ensures 181 * that if the settings have been changed, then they are set to 182 * known values. 183 */ 184 185 /* start at the end of the GNPTXFSIZ, rounded up */ 186 addr = 2048 + 1024; 187 188 /* 189 * Because we have not enough memory to have each TX FIFO of size at 190 * least 3072 bytes (the maximum single packet size), we create four 191 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing 192 * them to endpoints dynamically according to maxpacket size value of 193 * given endpoint. 194 */ 195 196 /* 256*4=1024 bytes FIFO length */ 197 size = 256; 198 for (ep = 1; ep <= 4; ep++) { 199 val = addr; 200 val |= size << FIFOSIZE_DEPTH_SHIFT; 201 WARN_ONCE(addr + size > hsotg->fifo_mem, 202 "insufficient fifo memory"); 203 addr += size; 204 205 writel(val, hsotg->regs + DPTXFSIZN(ep)); 206 } 207 /* 768*4=3072 bytes FIFO length */ 208 size = 768; 209 for (ep = 5; ep <= 8; ep++) { 210 val = addr; 211 val |= size << FIFOSIZE_DEPTH_SHIFT; 212 WARN_ONCE(addr + size > hsotg->fifo_mem, 213 "insufficient fifo memory"); 214 addr += size; 215 216 writel(val, hsotg->regs + DPTXFSIZN(ep)); 217 } 218 219 /* 220 * according to p428 of the design guide, we need to ensure that 221 * all fifos are flushed before continuing 222 */ 223 224 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 225 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 226 227 /* wait until the fifos are both flushed */ 228 timeout = 100; 229 while (1) { 230 val = readl(hsotg->regs + GRSTCTL); 231 232 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 233 break; 234 235 if (--timeout == 0) { 236 dev_err(hsotg->dev, 237 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 238 __func__, val); 239 } 240 241 udelay(1); 242 } 243 244 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 245 } 246 247 /** 248 * @ep: USB endpoint to allocate request for. 249 * @flags: Allocation flags 250 * 251 * Allocate a new USB request structure appropriate for the specified endpoint 252 */ 253 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, 254 gfp_t flags) 255 { 256 struct s3c_hsotg_req *req; 257 258 req = kzalloc(sizeof(struct s3c_hsotg_req), flags); 259 if (!req) 260 return NULL; 261 262 INIT_LIST_HEAD(&req->queue); 263 264 return &req->req; 265 } 266 267 /** 268 * is_ep_periodic - return true if the endpoint is in periodic mode. 269 * @hs_ep: The endpoint to query. 270 * 271 * Returns true if the endpoint is in periodic mode, meaning it is being 272 * used for an Interrupt or ISO transfer. 273 */ 274 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep) 275 { 276 return hs_ep->periodic; 277 } 278 279 /** 280 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request 281 * @hsotg: The device state. 282 * @hs_ep: The endpoint for the request 283 * @hs_req: The request being processed. 284 * 285 * This is the reverse of s3c_hsotg_map_dma(), called for the completion 286 * of a request to ensure the buffer is ready for access by the caller. 287 */ 288 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 289 struct s3c_hsotg_ep *hs_ep, 290 struct s3c_hsotg_req *hs_req) 291 { 292 struct usb_request *req = &hs_req->req; 293 294 /* ignore this if we're not moving any data */ 295 if (hs_req->req.length == 0) 296 return; 297 298 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 299 } 300 301 /** 302 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO 303 * @hsotg: The controller state. 304 * @hs_ep: The endpoint we're going to write for. 305 * @hs_req: The request to write data for. 306 * 307 * This is called when the TxFIFO has some space in it to hold a new 308 * transmission and we have something to give it. The actual setup of 309 * the data size is done elsewhere, so all we have to do is to actually 310 * write the data. 311 * 312 * The return value is zero if there is more space (or nothing was done) 313 * otherwise -ENOSPC is returned if the FIFO space was used up. 314 * 315 * This routine is only needed for PIO 316 */ 317 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 318 struct s3c_hsotg_ep *hs_ep, 319 struct s3c_hsotg_req *hs_req) 320 { 321 bool periodic = is_ep_periodic(hs_ep); 322 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS); 323 int buf_pos = hs_req->req.actual; 324 int to_write = hs_ep->size_loaded; 325 void *data; 326 int can_write; 327 int pkt_round; 328 int max_transfer; 329 330 to_write -= (buf_pos - hs_ep->last_load); 331 332 /* if there's nothing to write, get out early */ 333 if (to_write == 0) 334 return 0; 335 336 if (periodic && !hsotg->dedicated_fifos) { 337 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 338 int size_left; 339 int size_done; 340 341 /* 342 * work out how much data was loaded so we can calculate 343 * how much data is left in the fifo. 344 */ 345 346 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 347 348 /* 349 * if shared fifo, we cannot write anything until the 350 * previous data has been completely sent. 351 */ 352 if (hs_ep->fifo_load != 0) { 353 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 354 return -ENOSPC; 355 } 356 357 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 358 __func__, size_left, 359 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 360 361 /* how much of the data has moved */ 362 size_done = hs_ep->size_loaded - size_left; 363 364 /* how much data is left in the fifo */ 365 can_write = hs_ep->fifo_load - size_done; 366 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 367 __func__, can_write); 368 369 can_write = hs_ep->fifo_size - can_write; 370 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 371 __func__, can_write); 372 373 if (can_write <= 0) { 374 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 375 return -ENOSPC; 376 } 377 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 378 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index)); 379 380 can_write &= 0xffff; 381 can_write *= 4; 382 } else { 383 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 384 dev_dbg(hsotg->dev, 385 "%s: no queue slots available (0x%08x)\n", 386 __func__, gnptxsts); 387 388 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 389 return -ENOSPC; 390 } 391 392 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 393 can_write *= 4; /* fifo size is in 32bit quantities. */ 394 } 395 396 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 397 398 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 399 __func__, gnptxsts, can_write, to_write, max_transfer); 400 401 /* 402 * limit to 512 bytes of data, it seems at least on the non-periodic 403 * FIFO, requests of >512 cause the endpoint to get stuck with a 404 * fragment of the end of the transfer in it. 405 */ 406 if (can_write > 512 && !periodic) 407 can_write = 512; 408 409 /* 410 * limit the write to one max-packet size worth of data, but allow 411 * the transfer to return that it did not run out of fifo space 412 * doing it. 413 */ 414 if (to_write > max_transfer) { 415 to_write = max_transfer; 416 417 /* it's needed only when we do not use dedicated fifos */ 418 if (!hsotg->dedicated_fifos) 419 s3c_hsotg_en_gsint(hsotg, 420 periodic ? GINTSTS_PTXFEMP : 421 GINTSTS_NPTXFEMP); 422 } 423 424 /* see if we can write data */ 425 426 if (to_write > can_write) { 427 to_write = can_write; 428 pkt_round = to_write % max_transfer; 429 430 /* 431 * Round the write down to an 432 * exact number of packets. 433 * 434 * Note, we do not currently check to see if we can ever 435 * write a full packet or not to the FIFO. 436 */ 437 438 if (pkt_round) 439 to_write -= pkt_round; 440 441 /* 442 * enable correct FIFO interrupt to alert us when there 443 * is more room left. 444 */ 445 446 /* it's needed only when we do not use dedicated fifos */ 447 if (!hsotg->dedicated_fifos) 448 s3c_hsotg_en_gsint(hsotg, 449 periodic ? GINTSTS_PTXFEMP : 450 GINTSTS_NPTXFEMP); 451 } 452 453 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 454 to_write, hs_req->req.length, can_write, buf_pos); 455 456 if (to_write <= 0) 457 return -ENOSPC; 458 459 hs_req->req.actual = buf_pos + to_write; 460 hs_ep->total_data += to_write; 461 462 if (periodic) 463 hs_ep->fifo_load += to_write; 464 465 to_write = DIV_ROUND_UP(to_write, 4); 466 data = hs_req->req.buf + buf_pos; 467 468 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 469 470 return (to_write >= can_write) ? -ENOSPC : 0; 471 } 472 473 /** 474 * get_ep_limit - get the maximum data legnth for this endpoint 475 * @hs_ep: The endpoint 476 * 477 * Return the maximum data that can be queued in one go on a given endpoint 478 * so that transfers that are too long can be split. 479 */ 480 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep) 481 { 482 int index = hs_ep->index; 483 unsigned maxsize; 484 unsigned maxpkt; 485 486 if (index != 0) { 487 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 488 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 489 } else { 490 maxsize = 64+64; 491 if (hs_ep->dir_in) 492 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 493 else 494 maxpkt = 2; 495 } 496 497 /* we made the constant loading easier above by using +1 */ 498 maxpkt--; 499 maxsize--; 500 501 /* 502 * constrain by packet count if maxpkts*pktsize is greater 503 * than the length register size. 504 */ 505 506 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 507 maxsize = maxpkt * hs_ep->ep.maxpacket; 508 509 return maxsize; 510 } 511 512 /** 513 * s3c_hsotg_start_req - start a USB request from an endpoint's queue 514 * @hsotg: The controller state. 515 * @hs_ep: The endpoint to process a request for 516 * @hs_req: The request to start. 517 * @continuing: True if we are doing more for the current request. 518 * 519 * Start the given request running by setting the endpoint registers 520 * appropriately, and writing any data to the FIFOs. 521 */ 522 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg, 523 struct s3c_hsotg_ep *hs_ep, 524 struct s3c_hsotg_req *hs_req, 525 bool continuing) 526 { 527 struct usb_request *ureq = &hs_req->req; 528 int index = hs_ep->index; 529 int dir_in = hs_ep->dir_in; 530 u32 epctrl_reg; 531 u32 epsize_reg; 532 u32 epsize; 533 u32 ctrl; 534 unsigned length; 535 unsigned packets; 536 unsigned maxreq; 537 538 if (index != 0) { 539 if (hs_ep->req && !continuing) { 540 dev_err(hsotg->dev, "%s: active request\n", __func__); 541 WARN_ON(1); 542 return; 543 } else if (hs_ep->req != hs_req && continuing) { 544 dev_err(hsotg->dev, 545 "%s: continue different req\n", __func__); 546 WARN_ON(1); 547 return; 548 } 549 } 550 551 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 552 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 553 554 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 555 __func__, readl(hsotg->regs + epctrl_reg), index, 556 hs_ep->dir_in ? "in" : "out"); 557 558 /* If endpoint is stalled, we will restart request later */ 559 ctrl = readl(hsotg->regs + epctrl_reg); 560 561 if (ctrl & DXEPCTL_STALL) { 562 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 563 return; 564 } 565 566 length = ureq->length - ureq->actual; 567 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 568 ureq->length, ureq->actual); 569 if (0) 570 dev_dbg(hsotg->dev, 571 "REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n", 572 ureq->buf, length, &ureq->dma, 573 ureq->no_interrupt, ureq->zero, ureq->short_not_ok); 574 575 maxreq = get_ep_limit(hs_ep); 576 if (length > maxreq) { 577 int round = maxreq % hs_ep->ep.maxpacket; 578 579 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 580 __func__, length, maxreq, round); 581 582 /* round down to multiple of packets */ 583 if (round) 584 maxreq -= round; 585 586 length = maxreq; 587 } 588 589 if (length) 590 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 591 else 592 packets = 1; /* send one packet if length is zero. */ 593 594 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 595 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 596 return; 597 } 598 599 if (dir_in && index != 0) 600 if (hs_ep->isochronous) 601 epsize = DXEPTSIZ_MC(packets); 602 else 603 epsize = DXEPTSIZ_MC(1); 604 else 605 epsize = 0; 606 607 if (index != 0 && ureq->zero) { 608 /* 609 * test for the packets being exactly right for the 610 * transfer 611 */ 612 613 if (length == (packets * hs_ep->ep.maxpacket)) 614 packets++; 615 } 616 617 epsize |= DXEPTSIZ_PKTCNT(packets); 618 epsize |= DXEPTSIZ_XFERSIZE(length); 619 620 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 621 __func__, packets, length, ureq->length, epsize, epsize_reg); 622 623 /* store the request as the current one we're doing */ 624 hs_ep->req = hs_req; 625 626 /* write size / packets */ 627 writel(epsize, hsotg->regs + epsize_reg); 628 629 if (using_dma(hsotg) && !continuing) { 630 unsigned int dma_reg; 631 632 /* 633 * write DMA address to control register, buffer already 634 * synced by s3c_hsotg_ep_queue(). 635 */ 636 637 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 638 writel(ureq->dma, hsotg->regs + dma_reg); 639 640 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 641 __func__, &ureq->dma, dma_reg); 642 } 643 644 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 645 ctrl |= DXEPCTL_USBACTEP; 646 647 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup); 648 649 /* For Setup request do not clear NAK */ 650 if (hsotg->setup && index == 0) 651 hsotg->setup = 0; 652 else 653 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 654 655 656 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 657 writel(ctrl, hsotg->regs + epctrl_reg); 658 659 /* 660 * set these, it seems that DMA support increments past the end 661 * of the packet buffer so we need to calculate the length from 662 * this information. 663 */ 664 hs_ep->size_loaded = length; 665 hs_ep->last_load = ureq->actual; 666 667 if (dir_in && !using_dma(hsotg)) { 668 /* set these anyway, we may need them for non-periodic in */ 669 hs_ep->fifo_load = 0; 670 671 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 672 } 673 674 /* 675 * clear the INTknTXFEmpMsk when we start request, more as a aide 676 * to debugging to see what is going on. 677 */ 678 if (dir_in) 679 writel(DIEPMSK_INTKNTXFEMPMSK, 680 hsotg->regs + DIEPINT(index)); 681 682 /* 683 * Note, trying to clear the NAK here causes problems with transmit 684 * on the S3C6400 ending up with the TXFIFO becoming full. 685 */ 686 687 /* check ep is enabled */ 688 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 689 dev_warn(hsotg->dev, 690 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 691 index, readl(hsotg->regs + epctrl_reg)); 692 693 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 694 __func__, readl(hsotg->regs + epctrl_reg)); 695 696 /* enable ep interrupts */ 697 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 698 } 699 700 /** 701 * s3c_hsotg_map_dma - map the DMA memory being used for the request 702 * @hsotg: The device state. 703 * @hs_ep: The endpoint the request is on. 704 * @req: The request being processed. 705 * 706 * We've been asked to queue a request, so ensure that the memory buffer 707 * is correctly setup for DMA. If we've been passed an extant DMA address 708 * then ensure the buffer has been synced to memory. If our buffer has no 709 * DMA memory, then we map the memory and mark our request to allow us to 710 * cleanup on completion. 711 */ 712 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg, 713 struct s3c_hsotg_ep *hs_ep, 714 struct usb_request *req) 715 { 716 struct s3c_hsotg_req *hs_req = our_req(req); 717 int ret; 718 719 /* if the length is zero, ignore the DMA data */ 720 if (hs_req->req.length == 0) 721 return 0; 722 723 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 724 if (ret) 725 goto dma_error; 726 727 return 0; 728 729 dma_error: 730 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 731 __func__, req->buf, req->length); 732 733 return -EIO; 734 } 735 736 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 737 gfp_t gfp_flags) 738 { 739 struct s3c_hsotg_req *hs_req = our_req(req); 740 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 741 struct dwc2_hsotg *hs = hs_ep->parent; 742 bool first; 743 744 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 745 ep->name, req, req->length, req->buf, req->no_interrupt, 746 req->zero, req->short_not_ok); 747 748 /* initialise status of the request */ 749 INIT_LIST_HEAD(&hs_req->queue); 750 req->actual = 0; 751 req->status = -EINPROGRESS; 752 753 /* if we're using DMA, sync the buffers as necessary */ 754 if (using_dma(hs)) { 755 int ret = s3c_hsotg_map_dma(hs, hs_ep, req); 756 if (ret) 757 return ret; 758 } 759 760 first = list_empty(&hs_ep->queue); 761 list_add_tail(&hs_req->queue, &hs_ep->queue); 762 763 if (first) 764 s3c_hsotg_start_req(hs, hs_ep, hs_req, false); 765 766 return 0; 767 } 768 769 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 770 gfp_t gfp_flags) 771 { 772 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 773 struct dwc2_hsotg *hs = hs_ep->parent; 774 unsigned long flags = 0; 775 int ret = 0; 776 777 spin_lock_irqsave(&hs->lock, flags); 778 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags); 779 spin_unlock_irqrestore(&hs->lock, flags); 780 781 return ret; 782 } 783 784 static void s3c_hsotg_ep_free_request(struct usb_ep *ep, 785 struct usb_request *req) 786 { 787 struct s3c_hsotg_req *hs_req = our_req(req); 788 789 kfree(hs_req); 790 } 791 792 /** 793 * s3c_hsotg_complete_oursetup - setup completion callback 794 * @ep: The endpoint the request was on. 795 * @req: The request completed. 796 * 797 * Called on completion of any requests the driver itself 798 * submitted that need cleaning up. 799 */ 800 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep, 801 struct usb_request *req) 802 { 803 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 804 struct dwc2_hsotg *hsotg = hs_ep->parent; 805 806 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 807 808 s3c_hsotg_ep_free_request(ep, req); 809 } 810 811 /** 812 * ep_from_windex - convert control wIndex value to endpoint 813 * @hsotg: The driver state. 814 * @windex: The control request wIndex field (in host order). 815 * 816 * Convert the given wIndex into a pointer to an driver endpoint 817 * structure, or return NULL if it is not a valid endpoint. 818 */ 819 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 820 u32 windex) 821 { 822 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F]; 823 int dir = (windex & USB_DIR_IN) ? 1 : 0; 824 int idx = windex & 0x7F; 825 826 if (windex >= 0x100) 827 return NULL; 828 829 if (idx > hsotg->num_of_eps) 830 return NULL; 831 832 if (idx && ep->dir_in != dir) 833 return NULL; 834 835 return ep; 836 } 837 838 /** 839 * s3c_hsotg_send_reply - send reply to control request 840 * @hsotg: The device state 841 * @ep: Endpoint 0 842 * @buff: Buffer for request 843 * @length: Length of reply. 844 * 845 * Create a request and queue it on the given endpoint. This is useful as 846 * an internal method of sending replies to certain control requests, etc. 847 */ 848 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg, 849 struct s3c_hsotg_ep *ep, 850 void *buff, 851 int length) 852 { 853 struct usb_request *req; 854 int ret; 855 856 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 857 858 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 859 hsotg->ep0_reply = req; 860 if (!req) { 861 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 862 return -ENOMEM; 863 } 864 865 req->buf = hsotg->ep0_buff; 866 req->length = length; 867 req->zero = 1; /* always do zero-length final transfer */ 868 req->complete = s3c_hsotg_complete_oursetup; 869 870 if (length) 871 memcpy(req->buf, buff, length); 872 else 873 ep->sent_zlp = 1; 874 875 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 876 if (ret) { 877 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 878 return ret; 879 } 880 881 return 0; 882 } 883 884 /** 885 * s3c_hsotg_process_req_status - process request GET_STATUS 886 * @hsotg: The device state 887 * @ctrl: USB control request 888 */ 889 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 890 struct usb_ctrlrequest *ctrl) 891 { 892 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 893 struct s3c_hsotg_ep *ep; 894 __le16 reply; 895 int ret; 896 897 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 898 899 if (!ep0->dir_in) { 900 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 901 return -EINVAL; 902 } 903 904 switch (ctrl->bRequestType & USB_RECIP_MASK) { 905 case USB_RECIP_DEVICE: 906 reply = cpu_to_le16(0); /* bit 0 => self powered, 907 * bit 1 => remote wakeup */ 908 break; 909 910 case USB_RECIP_INTERFACE: 911 /* currently, the data result should be zero */ 912 reply = cpu_to_le16(0); 913 break; 914 915 case USB_RECIP_ENDPOINT: 916 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 917 if (!ep) 918 return -ENOENT; 919 920 reply = cpu_to_le16(ep->halted ? 1 : 0); 921 break; 922 923 default: 924 return 0; 925 } 926 927 if (le16_to_cpu(ctrl->wLength) != 2) 928 return -EINVAL; 929 930 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2); 931 if (ret) { 932 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 933 return ret; 934 } 935 936 return 1; 937 } 938 939 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value); 940 941 /** 942 * get_ep_head - return the first request on the endpoint 943 * @hs_ep: The controller endpoint to get 944 * 945 * Get the first request on the endpoint. 946 */ 947 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep) 948 { 949 if (list_empty(&hs_ep->queue)) 950 return NULL; 951 952 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue); 953 } 954 955 /** 956 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE 957 * @hsotg: The device state 958 * @ctrl: USB control request 959 */ 960 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 961 struct usb_ctrlrequest *ctrl) 962 { 963 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 964 struct s3c_hsotg_req *hs_req; 965 bool restart; 966 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 967 struct s3c_hsotg_ep *ep; 968 int ret; 969 bool halted; 970 971 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 972 __func__, set ? "SET" : "CLEAR"); 973 974 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) { 975 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 976 if (!ep) { 977 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 978 __func__, le16_to_cpu(ctrl->wIndex)); 979 return -ENOENT; 980 } 981 982 switch (le16_to_cpu(ctrl->wValue)) { 983 case USB_ENDPOINT_HALT: 984 halted = ep->halted; 985 986 s3c_hsotg_ep_sethalt(&ep->ep, set); 987 988 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 989 if (ret) { 990 dev_err(hsotg->dev, 991 "%s: failed to send reply\n", __func__); 992 return ret; 993 } 994 995 /* 996 * we have to complete all requests for ep if it was 997 * halted, and the halt was cleared by CLEAR_FEATURE 998 */ 999 1000 if (!set && halted) { 1001 /* 1002 * If we have request in progress, 1003 * then complete it 1004 */ 1005 if (ep->req) { 1006 hs_req = ep->req; 1007 ep->req = NULL; 1008 list_del_init(&hs_req->queue); 1009 usb_gadget_giveback_request(&ep->ep, 1010 &hs_req->req); 1011 } 1012 1013 /* If we have pending request, then start it */ 1014 restart = !list_empty(&ep->queue); 1015 if (restart) { 1016 hs_req = get_ep_head(ep); 1017 s3c_hsotg_start_req(hsotg, ep, 1018 hs_req, false); 1019 } 1020 } 1021 1022 break; 1023 1024 default: 1025 return -ENOENT; 1026 } 1027 } else 1028 return -ENOENT; /* currently only deal with endpoint */ 1029 1030 return 1; 1031 } 1032 1033 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1034 1035 /** 1036 * s3c_hsotg_stall_ep0 - stall ep0 1037 * @hsotg: The device state 1038 * 1039 * Set stall for ep0 as response for setup request. 1040 */ 1041 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1042 { 1043 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 1044 u32 reg; 1045 u32 ctrl; 1046 1047 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1048 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1049 1050 /* 1051 * DxEPCTL_Stall will be cleared by EP once it has 1052 * taken effect, so no need to clear later. 1053 */ 1054 1055 ctrl = readl(hsotg->regs + reg); 1056 ctrl |= DXEPCTL_STALL; 1057 ctrl |= DXEPCTL_CNAK; 1058 writel(ctrl, hsotg->regs + reg); 1059 1060 dev_dbg(hsotg->dev, 1061 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1062 ctrl, reg, readl(hsotg->regs + reg)); 1063 1064 /* 1065 * complete won't be called, so we enqueue 1066 * setup request here 1067 */ 1068 s3c_hsotg_enqueue_setup(hsotg); 1069 } 1070 1071 /** 1072 * s3c_hsotg_process_control - process a control request 1073 * @hsotg: The device state 1074 * @ctrl: The control request received 1075 * 1076 * The controller has received the SETUP phase of a control request, and 1077 * needs to work out what to do next (and whether to pass it on to the 1078 * gadget driver). 1079 */ 1080 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg, 1081 struct usb_ctrlrequest *ctrl) 1082 { 1083 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 1084 int ret = 0; 1085 u32 dcfg; 1086 1087 ep0->sent_zlp = 0; 1088 1089 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n", 1090 ctrl->bRequest, ctrl->bRequestType, 1091 ctrl->wValue, ctrl->wLength); 1092 1093 /* 1094 * record the direction of the request, for later use when enquing 1095 * packets onto EP0. 1096 */ 1097 1098 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0; 1099 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in); 1100 1101 /* 1102 * if we've no data with this request, then the last part of the 1103 * transaction is going to implicitly be IN. 1104 */ 1105 if (ctrl->wLength == 0) 1106 ep0->dir_in = 1; 1107 1108 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1109 switch (ctrl->bRequest) { 1110 case USB_REQ_SET_ADDRESS: 1111 dcfg = readl(hsotg->regs + DCFG); 1112 dcfg &= ~DCFG_DEVADDR_MASK; 1113 dcfg |= (le16_to_cpu(ctrl->wValue) << 1114 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1115 writel(dcfg, hsotg->regs + DCFG); 1116 1117 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1118 1119 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 1120 return; 1121 1122 case USB_REQ_GET_STATUS: 1123 ret = s3c_hsotg_process_req_status(hsotg, ctrl); 1124 break; 1125 1126 case USB_REQ_CLEAR_FEATURE: 1127 case USB_REQ_SET_FEATURE: 1128 ret = s3c_hsotg_process_req_feature(hsotg, ctrl); 1129 break; 1130 } 1131 } 1132 1133 /* as a fallback, try delivering it to the driver to deal with */ 1134 1135 if (ret == 0 && hsotg->driver) { 1136 spin_unlock(&hsotg->lock); 1137 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1138 spin_lock(&hsotg->lock); 1139 if (ret < 0) 1140 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1141 } 1142 1143 /* 1144 * the request is either unhandlable, or is not formatted correctly 1145 * so respond with a STALL for the status stage to indicate failure. 1146 */ 1147 1148 if (ret < 0) 1149 s3c_hsotg_stall_ep0(hsotg); 1150 } 1151 1152 /** 1153 * s3c_hsotg_complete_setup - completion of a setup transfer 1154 * @ep: The endpoint the request was on. 1155 * @req: The request completed. 1156 * 1157 * Called on completion of any requests the driver itself submitted for 1158 * EP0 setup packets 1159 */ 1160 static void s3c_hsotg_complete_setup(struct usb_ep *ep, 1161 struct usb_request *req) 1162 { 1163 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 1164 struct dwc2_hsotg *hsotg = hs_ep->parent; 1165 1166 if (req->status < 0) { 1167 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1168 return; 1169 } 1170 1171 spin_lock(&hsotg->lock); 1172 if (req->actual == 0) 1173 s3c_hsotg_enqueue_setup(hsotg); 1174 else 1175 s3c_hsotg_process_control(hsotg, req->buf); 1176 spin_unlock(&hsotg->lock); 1177 } 1178 1179 /** 1180 * s3c_hsotg_enqueue_setup - start a request for EP0 packets 1181 * @hsotg: The device state. 1182 * 1183 * Enqueue a request on EP0 if necessary to received any SETUP packets 1184 * received from the host. 1185 */ 1186 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1187 { 1188 struct usb_request *req = hsotg->ctrl_req; 1189 struct s3c_hsotg_req *hs_req = our_req(req); 1190 int ret; 1191 1192 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1193 1194 req->zero = 0; 1195 req->length = 8; 1196 req->buf = hsotg->ctrl_buff; 1197 req->complete = s3c_hsotg_complete_setup; 1198 1199 if (!list_empty(&hs_req->queue)) { 1200 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1201 return; 1202 } 1203 1204 hsotg->eps[0].dir_in = 0; 1205 1206 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC); 1207 if (ret < 0) { 1208 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1209 /* 1210 * Don't think there's much we can do other than watch the 1211 * driver fail. 1212 */ 1213 } 1214 } 1215 1216 /** 1217 * s3c_hsotg_complete_request - complete a request given to us 1218 * @hsotg: The device state. 1219 * @hs_ep: The endpoint the request was on. 1220 * @hs_req: The request to complete. 1221 * @result: The result code (0 => Ok, otherwise errno) 1222 * 1223 * The given request has finished, so call the necessary completion 1224 * if it has one and then look to see if we can start a new request 1225 * on the endpoint. 1226 * 1227 * Note, expects the ep to already be locked as appropriate. 1228 */ 1229 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1230 struct s3c_hsotg_ep *hs_ep, 1231 struct s3c_hsotg_req *hs_req, 1232 int result) 1233 { 1234 bool restart; 1235 1236 if (!hs_req) { 1237 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1238 return; 1239 } 1240 1241 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1242 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1243 1244 /* 1245 * only replace the status if we've not already set an error 1246 * from a previous transaction 1247 */ 1248 1249 if (hs_req->req.status == -EINPROGRESS) 1250 hs_req->req.status = result; 1251 1252 hs_ep->req = NULL; 1253 list_del_init(&hs_req->queue); 1254 1255 if (using_dma(hsotg)) 1256 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1257 1258 /* 1259 * call the complete request with the locks off, just in case the 1260 * request tries to queue more work for this endpoint. 1261 */ 1262 1263 if (hs_req->req.complete) { 1264 spin_unlock(&hsotg->lock); 1265 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 1266 spin_lock(&hsotg->lock); 1267 } 1268 1269 /* 1270 * Look to see if there is anything else to do. Note, the completion 1271 * of the previous request may have caused a new request to be started 1272 * so be careful when doing this. 1273 */ 1274 1275 if (!hs_ep->req && result >= 0) { 1276 restart = !list_empty(&hs_ep->queue); 1277 if (restart) { 1278 hs_req = get_ep_head(hs_ep); 1279 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1280 } 1281 } 1282 } 1283 1284 /** 1285 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint 1286 * @hsotg: The device state. 1287 * @ep_idx: The endpoint index for the data 1288 * @size: The size of data in the fifo, in bytes 1289 * 1290 * The FIFO status shows there is data to read from the FIFO for a given 1291 * endpoint, so sort out whether we need to read the data into a request 1292 * that has been made for that endpoint. 1293 */ 1294 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 1295 { 1296 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx]; 1297 struct s3c_hsotg_req *hs_req = hs_ep->req; 1298 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 1299 int to_read; 1300 int max_req; 1301 int read_ptr; 1302 1303 1304 if (!hs_req) { 1305 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx)); 1306 int ptr; 1307 1308 dev_warn(hsotg->dev, 1309 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 1310 __func__, size, ep_idx, epctl); 1311 1312 /* dump the data from the FIFO, we've nothing we can do */ 1313 for (ptr = 0; ptr < size; ptr += 4) 1314 (void)readl(fifo); 1315 1316 return; 1317 } 1318 1319 to_read = size; 1320 read_ptr = hs_req->req.actual; 1321 max_req = hs_req->req.length - read_ptr; 1322 1323 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 1324 __func__, to_read, max_req, read_ptr, hs_req->req.length); 1325 1326 if (to_read > max_req) { 1327 /* 1328 * more data appeared than we where willing 1329 * to deal with in this request. 1330 */ 1331 1332 /* currently we don't deal this */ 1333 WARN_ON_ONCE(1); 1334 } 1335 1336 hs_ep->total_data += to_read; 1337 hs_req->req.actual += to_read; 1338 to_read = DIV_ROUND_UP(to_read, 4); 1339 1340 /* 1341 * note, we might over-write the buffer end by 3 bytes depending on 1342 * alignment of the data. 1343 */ 1344 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 1345 } 1346 1347 /** 1348 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint 1349 * @hsotg: The device instance 1350 * @req: The request currently on this endpoint 1351 * 1352 * Generate a zero-length IN packet request for terminating a SETUP 1353 * transaction. 1354 * 1355 * Note, since we don't write any data to the TxFIFO, then it is 1356 * currently believed that we do not need to wait for any space in 1357 * the TxFIFO. 1358 */ 1359 static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg, 1360 struct s3c_hsotg_req *req) 1361 { 1362 u32 ctrl; 1363 1364 if (!req) { 1365 dev_warn(hsotg->dev, "%s: no request?\n", __func__); 1366 return; 1367 } 1368 1369 if (req->req.length == 0) { 1370 hsotg->eps[0].sent_zlp = 1; 1371 s3c_hsotg_enqueue_setup(hsotg); 1372 return; 1373 } 1374 1375 hsotg->eps[0].dir_in = 1; 1376 hsotg->eps[0].sent_zlp = 1; 1377 1378 dev_dbg(hsotg->dev, "sending zero-length packet\n"); 1379 1380 /* issue a zero-sized packet to terminate this */ 1381 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1382 DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0)); 1383 1384 ctrl = readl(hsotg->regs + DIEPCTL0); 1385 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1386 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1387 ctrl |= DXEPCTL_USBACTEP; 1388 writel(ctrl, hsotg->regs + DIEPCTL0); 1389 } 1390 1391 /** 1392 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 1393 * @hsotg: The device instance 1394 * @epnum: The endpoint received from 1395 * @was_setup: Set if processing a SetupDone event. 1396 * 1397 * The RXFIFO has delivered an OutDone event, which means that the data 1398 * transfer for an OUT endpoint has been completed, either by a short 1399 * packet or by the finish of a transfer. 1400 */ 1401 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, 1402 int epnum, bool was_setup) 1403 { 1404 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum)); 1405 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum]; 1406 struct s3c_hsotg_req *hs_req = hs_ep->req; 1407 struct usb_request *req = &hs_req->req; 1408 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1409 int result = 0; 1410 1411 if (!hs_req) { 1412 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 1413 return; 1414 } 1415 1416 if (using_dma(hsotg)) { 1417 unsigned size_done; 1418 1419 /* 1420 * Calculate the size of the transfer by checking how much 1421 * is left in the endpoint size register and then working it 1422 * out from the amount we loaded for the transfer. 1423 * 1424 * We need to do this as DMA pointers are always 32bit aligned 1425 * so may overshoot/undershoot the transfer. 1426 */ 1427 1428 size_done = hs_ep->size_loaded - size_left; 1429 size_done += hs_ep->last_load; 1430 1431 req->actual = size_done; 1432 } 1433 1434 /* if there is more request to do, schedule new transfer */ 1435 if (req->actual < req->length && size_left == 0) { 1436 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1437 return; 1438 } else if (epnum == 0) { 1439 /* 1440 * After was_setup = 1 => 1441 * set CNAK for non Setup requests 1442 */ 1443 hsotg->setup = was_setup ? 0 : 1; 1444 } 1445 1446 if (req->actual < req->length && req->short_not_ok) { 1447 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 1448 __func__, req->actual, req->length); 1449 1450 /* 1451 * todo - what should we return here? there's no one else 1452 * even bothering to check the status. 1453 */ 1454 } 1455 1456 if (epnum == 0) { 1457 /* 1458 * Condition req->complete != s3c_hsotg_complete_setup says: 1459 * send ZLP when we have an asynchronous request from gadget 1460 */ 1461 if (!was_setup && req->complete != s3c_hsotg_complete_setup) 1462 s3c_hsotg_send_zlp(hsotg, hs_req); 1463 } 1464 1465 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 1466 } 1467 1468 /** 1469 * s3c_hsotg_read_frameno - read current frame number 1470 * @hsotg: The device instance 1471 * 1472 * Return the current frame number 1473 */ 1474 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 1475 { 1476 u32 dsts; 1477 1478 dsts = readl(hsotg->regs + DSTS); 1479 dsts &= DSTS_SOFFN_MASK; 1480 dsts >>= DSTS_SOFFN_SHIFT; 1481 1482 return dsts; 1483 } 1484 1485 /** 1486 * s3c_hsotg_handle_rx - RX FIFO has data 1487 * @hsotg: The device instance 1488 * 1489 * The IRQ handler has detected that the RX FIFO has some data in it 1490 * that requires processing, so find out what is in there and do the 1491 * appropriate read. 1492 * 1493 * The RXFIFO is a true FIFO, the packets coming out are still in packet 1494 * chunks, so if you have x packets received on an endpoint you'll get x 1495 * FIFO events delivered, each with a packet's worth of data in it. 1496 * 1497 * When using DMA, we should not be processing events from the RXFIFO 1498 * as the actual data should be sent to the memory directly and we turn 1499 * on the completion interrupts to get notifications of transfer completion. 1500 */ 1501 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 1502 { 1503 u32 grxstsr = readl(hsotg->regs + GRXSTSP); 1504 u32 epnum, status, size; 1505 1506 WARN_ON(using_dma(hsotg)); 1507 1508 epnum = grxstsr & GRXSTS_EPNUM_MASK; 1509 status = grxstsr & GRXSTS_PKTSTS_MASK; 1510 1511 size = grxstsr & GRXSTS_BYTECNT_MASK; 1512 size >>= GRXSTS_BYTECNT_SHIFT; 1513 1514 if (1) 1515 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 1516 __func__, grxstsr, size, epnum); 1517 1518 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 1519 case GRXSTS_PKTSTS_GLOBALOUTNAK: 1520 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 1521 break; 1522 1523 case GRXSTS_PKTSTS_OUTDONE: 1524 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 1525 s3c_hsotg_read_frameno(hsotg)); 1526 1527 if (!using_dma(hsotg)) 1528 s3c_hsotg_handle_outdone(hsotg, epnum, false); 1529 break; 1530 1531 case GRXSTS_PKTSTS_SETUPDONE: 1532 dev_dbg(hsotg->dev, 1533 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1534 s3c_hsotg_read_frameno(hsotg), 1535 readl(hsotg->regs + DOEPCTL(0))); 1536 1537 s3c_hsotg_handle_outdone(hsotg, epnum, true); 1538 break; 1539 1540 case GRXSTS_PKTSTS_OUTRX: 1541 s3c_hsotg_rx_data(hsotg, epnum, size); 1542 break; 1543 1544 case GRXSTS_PKTSTS_SETUPRX: 1545 dev_dbg(hsotg->dev, 1546 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1547 s3c_hsotg_read_frameno(hsotg), 1548 readl(hsotg->regs + DOEPCTL(0))); 1549 1550 s3c_hsotg_rx_data(hsotg, epnum, size); 1551 break; 1552 1553 default: 1554 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 1555 __func__, grxstsr); 1556 1557 s3c_hsotg_dump(hsotg); 1558 break; 1559 } 1560 } 1561 1562 /** 1563 * s3c_hsotg_ep0_mps - turn max packet size into register setting 1564 * @mps: The maximum packet size in bytes. 1565 */ 1566 static u32 s3c_hsotg_ep0_mps(unsigned int mps) 1567 { 1568 switch (mps) { 1569 case 64: 1570 return D0EPCTL_MPS_64; 1571 case 32: 1572 return D0EPCTL_MPS_32; 1573 case 16: 1574 return D0EPCTL_MPS_16; 1575 case 8: 1576 return D0EPCTL_MPS_8; 1577 } 1578 1579 /* bad max packet size, warn and return invalid result */ 1580 WARN_ON(1); 1581 return (u32)-1; 1582 } 1583 1584 /** 1585 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field 1586 * @hsotg: The driver state. 1587 * @ep: The index number of the endpoint 1588 * @mps: The maximum packet size in bytes 1589 * 1590 * Configure the maximum packet size for the given endpoint, updating 1591 * the hardware control registers to reflect this. 1592 */ 1593 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 1594 unsigned int ep, unsigned int mps) 1595 { 1596 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep]; 1597 void __iomem *regs = hsotg->regs; 1598 u32 mpsval; 1599 u32 mcval; 1600 u32 reg; 1601 1602 if (ep == 0) { 1603 /* EP0 is a special case */ 1604 mpsval = s3c_hsotg_ep0_mps(mps); 1605 if (mpsval > 3) 1606 goto bad_mps; 1607 hs_ep->ep.maxpacket = mps; 1608 hs_ep->mc = 1; 1609 } else { 1610 mpsval = mps & DXEPCTL_MPS_MASK; 1611 if (mpsval > 1024) 1612 goto bad_mps; 1613 mcval = ((mps >> 11) & 0x3) + 1; 1614 hs_ep->mc = mcval; 1615 if (mcval > 3) 1616 goto bad_mps; 1617 hs_ep->ep.maxpacket = mpsval; 1618 } 1619 1620 /* 1621 * update both the in and out endpoint controldir_ registers, even 1622 * if one of the directions may not be in use. 1623 */ 1624 1625 reg = readl(regs + DIEPCTL(ep)); 1626 reg &= ~DXEPCTL_MPS_MASK; 1627 reg |= mpsval; 1628 writel(reg, regs + DIEPCTL(ep)); 1629 1630 if (ep) { 1631 reg = readl(regs + DOEPCTL(ep)); 1632 reg &= ~DXEPCTL_MPS_MASK; 1633 reg |= mpsval; 1634 writel(reg, regs + DOEPCTL(ep)); 1635 } 1636 1637 return; 1638 1639 bad_mps: 1640 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 1641 } 1642 1643 /** 1644 * s3c_hsotg_txfifo_flush - flush Tx FIFO 1645 * @hsotg: The driver state 1646 * @idx: The index for the endpoint (0..15) 1647 */ 1648 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 1649 { 1650 int timeout; 1651 int val; 1652 1653 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 1654 hsotg->regs + GRSTCTL); 1655 1656 /* wait until the fifo is flushed */ 1657 timeout = 100; 1658 1659 while (1) { 1660 val = readl(hsotg->regs + GRSTCTL); 1661 1662 if ((val & (GRSTCTL_TXFFLSH)) == 0) 1663 break; 1664 1665 if (--timeout == 0) { 1666 dev_err(hsotg->dev, 1667 "%s: timeout flushing fifo (GRSTCTL=%08x)\n", 1668 __func__, val); 1669 break; 1670 } 1671 1672 udelay(1); 1673 } 1674 } 1675 1676 /** 1677 * s3c_hsotg_trytx - check to see if anything needs transmitting 1678 * @hsotg: The driver state 1679 * @hs_ep: The driver endpoint to check. 1680 * 1681 * Check to see if there is a request that has data to send, and if so 1682 * make an attempt to write data into the FIFO. 1683 */ 1684 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg, 1685 struct s3c_hsotg_ep *hs_ep) 1686 { 1687 struct s3c_hsotg_req *hs_req = hs_ep->req; 1688 1689 if (!hs_ep->dir_in || !hs_req) { 1690 /** 1691 * if request is not enqueued, we disable interrupts 1692 * for endpoints, excepting ep0 1693 */ 1694 if (hs_ep->index != 0) 1695 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, 1696 hs_ep->dir_in, 0); 1697 return 0; 1698 } 1699 1700 if (hs_req->req.actual < hs_req->req.length) { 1701 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 1702 hs_ep->index); 1703 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1704 } 1705 1706 return 0; 1707 } 1708 1709 /** 1710 * s3c_hsotg_complete_in - complete IN transfer 1711 * @hsotg: The device state. 1712 * @hs_ep: The endpoint that has just completed. 1713 * 1714 * An IN transfer has been completed, update the transfer's state and then 1715 * call the relevant completion routines. 1716 */ 1717 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg, 1718 struct s3c_hsotg_ep *hs_ep) 1719 { 1720 struct s3c_hsotg_req *hs_req = hs_ep->req; 1721 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 1722 int size_left, size_done; 1723 1724 if (!hs_req) { 1725 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 1726 return; 1727 } 1728 1729 /* Finish ZLP handling for IN EP0 transactions */ 1730 if (hsotg->eps[0].sent_zlp) { 1731 dev_dbg(hsotg->dev, "zlp packet received\n"); 1732 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1733 return; 1734 } 1735 1736 /* 1737 * Calculate the size of the transfer by checking how much is left 1738 * in the endpoint size register and then working it out from 1739 * the amount we loaded for the transfer. 1740 * 1741 * We do this even for DMA, as the transfer may have incremented 1742 * past the end of the buffer (DMA transfers are always 32bit 1743 * aligned). 1744 */ 1745 1746 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1747 1748 size_done = hs_ep->size_loaded - size_left; 1749 size_done += hs_ep->last_load; 1750 1751 if (hs_req->req.actual != size_done) 1752 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 1753 __func__, hs_req->req.actual, size_done); 1754 1755 hs_req->req.actual = size_done; 1756 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 1757 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 1758 1759 /* 1760 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0 1761 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B 1762 * ,256B ... ), after last MPS sized packet send IN ZLP packet to 1763 * inform the host that no more data is available. 1764 * The state of req.zero member is checked to be sure that the value to 1765 * send is smaller than wValue expected from host. 1766 * Check req.length to NOT send another ZLP when the current one is 1767 * under completion (the one for which this completion has been called). 1768 */ 1769 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero && 1770 hs_req->req.length == hs_req->req.actual && 1771 !(hs_req->req.length % hs_ep->ep.maxpacket)) { 1772 1773 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n"); 1774 s3c_hsotg_send_zlp(hsotg, hs_req); 1775 1776 return; 1777 } 1778 1779 if (!size_left && hs_req->req.actual < hs_req->req.length) { 1780 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 1781 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1782 } else 1783 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1784 } 1785 1786 /** 1787 * s3c_hsotg_epint - handle an in/out endpoint interrupt 1788 * @hsotg: The driver state 1789 * @idx: The index for the endpoint (0..15) 1790 * @dir_in: Set if this is an IN endpoint 1791 * 1792 * Process and clear any interrupt pending for an individual endpoint 1793 */ 1794 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 1795 int dir_in) 1796 { 1797 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx]; 1798 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 1799 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 1800 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 1801 u32 ints; 1802 u32 ctrl; 1803 1804 ints = readl(hsotg->regs + epint_reg); 1805 ctrl = readl(hsotg->regs + epctl_reg); 1806 1807 /* Clear endpoint interrupts */ 1808 writel(ints, hsotg->regs + epint_reg); 1809 1810 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 1811 __func__, idx, dir_in ? "in" : "out", ints); 1812 1813 if (ints & DXEPINT_XFERCOMPL) { 1814 if (hs_ep->isochronous && hs_ep->interval == 1) { 1815 if (ctrl & DXEPCTL_EOFRNUM) 1816 ctrl |= DXEPCTL_SETEVENFR; 1817 else 1818 ctrl |= DXEPCTL_SETODDFR; 1819 writel(ctrl, hsotg->regs + epctl_reg); 1820 } 1821 1822 dev_dbg(hsotg->dev, 1823 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 1824 __func__, readl(hsotg->regs + epctl_reg), 1825 readl(hsotg->regs + epsiz_reg)); 1826 1827 /* 1828 * we get OutDone from the FIFO, so we only need to look 1829 * at completing IN requests here 1830 */ 1831 if (dir_in) { 1832 s3c_hsotg_complete_in(hsotg, hs_ep); 1833 1834 if (idx == 0 && !hs_ep->req) 1835 s3c_hsotg_enqueue_setup(hsotg); 1836 } else if (using_dma(hsotg)) { 1837 /* 1838 * We're using DMA, we need to fire an OutDone here 1839 * as we ignore the RXFIFO. 1840 */ 1841 1842 s3c_hsotg_handle_outdone(hsotg, idx, false); 1843 } 1844 } 1845 1846 if (ints & DXEPINT_EPDISBLD) { 1847 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 1848 1849 if (dir_in) { 1850 int epctl = readl(hsotg->regs + epctl_reg); 1851 1852 s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 1853 1854 if ((epctl & DXEPCTL_STALL) && 1855 (epctl & DXEPCTL_EPTYPE_BULK)) { 1856 int dctl = readl(hsotg->regs + DCTL); 1857 1858 dctl |= DCTL_CGNPINNAK; 1859 writel(dctl, hsotg->regs + DCTL); 1860 } 1861 } 1862 } 1863 1864 if (ints & DXEPINT_AHBERR) 1865 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 1866 1867 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 1868 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 1869 1870 if (using_dma(hsotg) && idx == 0) { 1871 /* 1872 * this is the notification we've received a 1873 * setup packet. In non-DMA mode we'd get this 1874 * from the RXFIFO, instead we need to process 1875 * the setup here. 1876 */ 1877 1878 if (dir_in) 1879 WARN_ON_ONCE(1); 1880 else 1881 s3c_hsotg_handle_outdone(hsotg, 0, true); 1882 } 1883 } 1884 1885 if (ints & DXEPINT_BACK2BACKSETUP) 1886 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 1887 1888 if (dir_in && !hs_ep->isochronous) { 1889 /* not sure if this is important, but we'll clear it anyway */ 1890 if (ints & DIEPMSK_INTKNTXFEMPMSK) { 1891 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 1892 __func__, idx); 1893 } 1894 1895 /* this probably means something bad is happening */ 1896 if (ints & DIEPMSK_INTKNEPMISMSK) { 1897 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 1898 __func__, idx); 1899 } 1900 1901 /* FIFO has space or is empty (see GAHBCFG) */ 1902 if (hsotg->dedicated_fifos && 1903 ints & DIEPMSK_TXFIFOEMPTY) { 1904 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 1905 __func__, idx); 1906 if (!using_dma(hsotg)) 1907 s3c_hsotg_trytx(hsotg, hs_ep); 1908 } 1909 } 1910 } 1911 1912 /** 1913 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 1914 * @hsotg: The device state. 1915 * 1916 * Handle updating the device settings after the enumeration phase has 1917 * been completed. 1918 */ 1919 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 1920 { 1921 u32 dsts = readl(hsotg->regs + DSTS); 1922 int ep0_mps = 0, ep_mps = 8; 1923 1924 /* 1925 * This should signal the finish of the enumeration phase 1926 * of the USB handshaking, so we should now know what rate 1927 * we connected at. 1928 */ 1929 1930 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 1931 1932 /* 1933 * note, since we're limited by the size of transfer on EP0, and 1934 * it seems IN transfers must be a even number of packets we do 1935 * not advertise a 64byte MPS on EP0. 1936 */ 1937 1938 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 1939 switch (dsts & DSTS_ENUMSPD_MASK) { 1940 case DSTS_ENUMSPD_FS: 1941 case DSTS_ENUMSPD_FS48: 1942 hsotg->gadget.speed = USB_SPEED_FULL; 1943 ep0_mps = EP0_MPS_LIMIT; 1944 ep_mps = 1023; 1945 break; 1946 1947 case DSTS_ENUMSPD_HS: 1948 hsotg->gadget.speed = USB_SPEED_HIGH; 1949 ep0_mps = EP0_MPS_LIMIT; 1950 ep_mps = 1024; 1951 break; 1952 1953 case DSTS_ENUMSPD_LS: 1954 hsotg->gadget.speed = USB_SPEED_LOW; 1955 /* 1956 * note, we don't actually support LS in this driver at the 1957 * moment, and the documentation seems to imply that it isn't 1958 * supported by the PHYs on some of the devices. 1959 */ 1960 break; 1961 } 1962 dev_info(hsotg->dev, "new device is %s\n", 1963 usb_speed_string(hsotg->gadget.speed)); 1964 1965 /* 1966 * we should now know the maximum packet size for an 1967 * endpoint, so set the endpoints to a default value. 1968 */ 1969 1970 if (ep0_mps) { 1971 int i; 1972 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps); 1973 for (i = 1; i < hsotg->num_of_eps; i++) 1974 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps); 1975 } 1976 1977 /* ensure after enumeration our EP0 is active */ 1978 1979 s3c_hsotg_enqueue_setup(hsotg); 1980 1981 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 1982 readl(hsotg->regs + DIEPCTL0), 1983 readl(hsotg->regs + DOEPCTL0)); 1984 } 1985 1986 /** 1987 * kill_all_requests - remove all requests from the endpoint's queue 1988 * @hsotg: The device state. 1989 * @ep: The endpoint the requests may be on. 1990 * @result: The result code to use. 1991 * @force: Force removal of any current requests 1992 * 1993 * Go through the requests on the given endpoint and mark them 1994 * completed with the given result code. 1995 */ 1996 static void kill_all_requests(struct dwc2_hsotg *hsotg, 1997 struct s3c_hsotg_ep *ep, 1998 int result, bool force) 1999 { 2000 struct s3c_hsotg_req *req, *treq; 2001 unsigned size; 2002 2003 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 2004 /* 2005 * currently, we can't do much about an already 2006 * running request on an in endpoint 2007 */ 2008 2009 if (ep->req == req && ep->dir_in && !force) 2010 continue; 2011 2012 s3c_hsotg_complete_request(hsotg, ep, req, 2013 result); 2014 } 2015 if (!hsotg->dedicated_fifos) 2016 return; 2017 size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4; 2018 if (size < ep->fifo_size) 2019 s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index); 2020 } 2021 2022 /** 2023 * s3c_hsotg_disconnect - disconnect service 2024 * @hsotg: The device state. 2025 * 2026 * The device has been disconnected. Remove all current 2027 * transactions and signal the gadget driver that this 2028 * has happened. 2029 */ 2030 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg) 2031 { 2032 unsigned ep; 2033 2034 if (!hsotg->connected) 2035 return; 2036 2037 hsotg->connected = 0; 2038 for (ep = 0; ep < hsotg->num_of_eps; ep++) 2039 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true); 2040 2041 call_gadget(hsotg, disconnect); 2042 } 2043 EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect); 2044 2045 /** 2046 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 2047 * @hsotg: The device state: 2048 * @periodic: True if this is a periodic FIFO interrupt 2049 */ 2050 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 2051 { 2052 struct s3c_hsotg_ep *ep; 2053 int epno, ret; 2054 2055 /* look through for any more data to transmit */ 2056 2057 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 2058 ep = &hsotg->eps[epno]; 2059 2060 if (!ep->dir_in) 2061 continue; 2062 2063 if ((periodic && !ep->periodic) || 2064 (!periodic && ep->periodic)) 2065 continue; 2066 2067 ret = s3c_hsotg_trytx(hsotg, ep); 2068 if (ret < 0) 2069 break; 2070 } 2071 } 2072 2073 /* IRQ flags which will trigger a retry around the IRQ loop */ 2074 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 2075 GINTSTS_PTXFEMP | \ 2076 GINTSTS_RXFLVL) 2077 2078 /** 2079 * s3c_hsotg_corereset - issue softreset to the core 2080 * @hsotg: The device state 2081 * 2082 * Issue a soft reset to the core, and await the core finishing it. 2083 */ 2084 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg) 2085 { 2086 int timeout; 2087 u32 grstctl; 2088 2089 dev_dbg(hsotg->dev, "resetting core\n"); 2090 2091 /* issue soft reset */ 2092 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL); 2093 2094 timeout = 10000; 2095 do { 2096 grstctl = readl(hsotg->regs + GRSTCTL); 2097 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0); 2098 2099 if (grstctl & GRSTCTL_CSFTRST) { 2100 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n"); 2101 return -EINVAL; 2102 } 2103 2104 timeout = 10000; 2105 2106 while (1) { 2107 u32 grstctl = readl(hsotg->regs + GRSTCTL); 2108 2109 if (timeout-- < 0) { 2110 dev_info(hsotg->dev, 2111 "%s: reset failed, GRSTCTL=%08x\n", 2112 __func__, grstctl); 2113 return -ETIMEDOUT; 2114 } 2115 2116 if (!(grstctl & GRSTCTL_AHBIDLE)) 2117 continue; 2118 2119 break; /* reset done */ 2120 } 2121 2122 dev_dbg(hsotg->dev, "reset successful\n"); 2123 return 0; 2124 } 2125 2126 /** 2127 * s3c_hsotg_core_init - issue softreset to the core 2128 * @hsotg: The device state 2129 * 2130 * Issue a soft reset to the core, and await the core finishing it. 2131 */ 2132 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg) 2133 { 2134 s3c_hsotg_corereset(hsotg); 2135 2136 /* 2137 * we must now enable ep0 ready for host detection and then 2138 * set configuration. 2139 */ 2140 2141 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2142 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) | 2143 (0x5 << 10), hsotg->regs + GUSBCFG); 2144 2145 s3c_hsotg_init_fifo(hsotg); 2146 2147 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2148 2149 writel(1 << 18 | DCFG_DEVSPD_HS, hsotg->regs + DCFG); 2150 2151 /* Clear any pending OTG interrupts */ 2152 writel(0xffffffff, hsotg->regs + GOTGINT); 2153 2154 /* Clear any pending interrupts */ 2155 writel(0xffffffff, hsotg->regs + GINTSTS); 2156 2157 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 2158 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 2159 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST | 2160 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 2161 GINTSTS_USBSUSP | GINTSTS_WKUPINT, 2162 hsotg->regs + GINTMSK); 2163 2164 if (using_dma(hsotg)) 2165 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 2166 GAHBCFG_HBSTLEN_INCR4, 2167 hsotg->regs + GAHBCFG); 2168 else 2169 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL | 2170 GAHBCFG_P_TXF_EMP_LVL) : 0) | 2171 GAHBCFG_GLBL_INTR_EN, 2172 hsotg->regs + GAHBCFG); 2173 2174 /* 2175 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 2176 * when we have no data to transfer. Otherwise we get being flooded by 2177 * interrupts. 2178 */ 2179 2180 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY | 2181 DIEPMSK_INTKNTXFEMPMSK : 0) | 2182 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 2183 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2184 DIEPMSK_INTKNEPMISMSK, 2185 hsotg->regs + DIEPMSK); 2186 2187 /* 2188 * don't need XferCompl, we get that from RXFIFO in slave mode. In 2189 * DMA mode we may need this. 2190 */ 2191 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 2192 DIEPMSK_TIMEOUTMSK) : 0) | 2193 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 2194 DOEPMSK_SETUPMSK, 2195 hsotg->regs + DOEPMSK); 2196 2197 writel(0, hsotg->regs + DAINTMSK); 2198 2199 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2200 readl(hsotg->regs + DIEPCTL0), 2201 readl(hsotg->regs + DOEPCTL0)); 2202 2203 /* enable in and out endpoint interrupts */ 2204 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 2205 2206 /* 2207 * Enable the RXFIFO when in slave mode, as this is how we collect 2208 * the data. In DMA mode, we get events from the FIFO but also 2209 * things we cannot process, so do not use it. 2210 */ 2211 if (!using_dma(hsotg)) 2212 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 2213 2214 /* Enable interrupts for EP0 in and out */ 2215 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1); 2216 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1); 2217 2218 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2219 udelay(10); /* see openiboot */ 2220 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2221 2222 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL)); 2223 2224 /* 2225 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 2226 * writing to the EPCTL register.. 2227 */ 2228 2229 /* set to read 1 8byte packet */ 2230 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2231 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 2232 2233 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | 2234 DXEPCTL_CNAK | DXEPCTL_EPENA | 2235 DXEPCTL_USBACTEP, 2236 hsotg->regs + DOEPCTL0); 2237 2238 /* enable, but don't activate EP0in */ 2239 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | 2240 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 2241 2242 s3c_hsotg_enqueue_setup(hsotg); 2243 2244 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2245 readl(hsotg->regs + DIEPCTL0), 2246 readl(hsotg->regs + DOEPCTL0)); 2247 2248 /* clear global NAKs */ 2249 writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON, 2250 hsotg->regs + DCTL); 2251 2252 /* must be at-least 3ms to allow bus to see disconnect */ 2253 mdelay(3); 2254 2255 hsotg->last_rst = jiffies; 2256 } 2257 2258 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 2259 { 2260 /* set the soft-disconnect bit */ 2261 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2262 } 2263 2264 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg) 2265 { 2266 /* remove the soft-disconnect and let's go */ 2267 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2268 } 2269 2270 /** 2271 * s3c_hsotg_irq - handle device interrupt 2272 * @irq: The IRQ number triggered 2273 * @pw: The pw value when registered the handler. 2274 */ 2275 static irqreturn_t s3c_hsotg_irq(int irq, void *pw) 2276 { 2277 struct dwc2_hsotg *hsotg = pw; 2278 int retry_count = 8; 2279 u32 gintsts; 2280 u32 gintmsk; 2281 2282 spin_lock(&hsotg->lock); 2283 irq_retry: 2284 gintsts = readl(hsotg->regs + GINTSTS); 2285 gintmsk = readl(hsotg->regs + GINTMSK); 2286 2287 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 2288 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 2289 2290 gintsts &= gintmsk; 2291 2292 if (gintsts & GINTSTS_ENUMDONE) { 2293 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 2294 2295 s3c_hsotg_irq_enumdone(hsotg); 2296 hsotg->connected = 1; 2297 } 2298 2299 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 2300 u32 daint = readl(hsotg->regs + DAINT); 2301 u32 daintmsk = readl(hsotg->regs + DAINTMSK); 2302 u32 daint_out, daint_in; 2303 int ep; 2304 2305 daint &= daintmsk; 2306 daint_out = daint >> DAINT_OUTEP_SHIFT; 2307 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 2308 2309 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 2310 2311 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) { 2312 if (daint_out & 1) 2313 s3c_hsotg_epint(hsotg, ep, 0); 2314 } 2315 2316 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) { 2317 if (daint_in & 1) 2318 s3c_hsotg_epint(hsotg, ep, 1); 2319 } 2320 } 2321 2322 if (gintsts & GINTSTS_USBRST) { 2323 2324 u32 usb_status = readl(hsotg->regs + GOTGCTL); 2325 2326 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 2327 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 2328 readl(hsotg->regs + GNPTXSTS)); 2329 2330 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 2331 2332 if (usb_status & GOTGCTL_BSESVLD) { 2333 if (time_after(jiffies, hsotg->last_rst + 2334 msecs_to_jiffies(200))) { 2335 2336 kill_all_requests(hsotg, &hsotg->eps[0], 2337 -ECONNRESET, true); 2338 2339 s3c_hsotg_core_init_disconnected(hsotg); 2340 s3c_hsotg_core_connect(hsotg); 2341 } 2342 } 2343 } 2344 2345 /* check both FIFOs */ 2346 2347 if (gintsts & GINTSTS_NPTXFEMP) { 2348 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 2349 2350 /* 2351 * Disable the interrupt to stop it happening again 2352 * unless one of these endpoint routines decides that 2353 * it needs re-enabling 2354 */ 2355 2356 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 2357 s3c_hsotg_irq_fifoempty(hsotg, false); 2358 } 2359 2360 if (gintsts & GINTSTS_PTXFEMP) { 2361 dev_dbg(hsotg->dev, "PTxFEmp\n"); 2362 2363 /* See note in GINTSTS_NPTxFEmp */ 2364 2365 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 2366 s3c_hsotg_irq_fifoempty(hsotg, true); 2367 } 2368 2369 if (gintsts & GINTSTS_RXFLVL) { 2370 /* 2371 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 2372 * we need to retry s3c_hsotg_handle_rx if this is still 2373 * set. 2374 */ 2375 2376 s3c_hsotg_handle_rx(hsotg); 2377 } 2378 2379 if (gintsts & GINTSTS_ERLYSUSP) { 2380 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 2381 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 2382 } 2383 2384 /* 2385 * these next two seem to crop-up occasionally causing the core 2386 * to shutdown the USB transfer, so try clearing them and logging 2387 * the occurrence. 2388 */ 2389 2390 if (gintsts & GINTSTS_GOUTNAKEFF) { 2391 dev_info(hsotg->dev, "GOUTNakEff triggered\n"); 2392 2393 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL); 2394 2395 s3c_hsotg_dump(hsotg); 2396 } 2397 2398 if (gintsts & GINTSTS_GINNAKEFF) { 2399 dev_info(hsotg->dev, "GINNakEff triggered\n"); 2400 2401 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL); 2402 2403 s3c_hsotg_dump(hsotg); 2404 } 2405 2406 /* 2407 * if we've had fifo events, we should try and go around the 2408 * loop again to see if there's any point in returning yet. 2409 */ 2410 2411 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 2412 goto irq_retry; 2413 2414 spin_unlock(&hsotg->lock); 2415 2416 return IRQ_HANDLED; 2417 } 2418 2419 /** 2420 * s3c_hsotg_ep_enable - enable the given endpoint 2421 * @ep: The USB endpint to configure 2422 * @desc: The USB endpoint descriptor to configure with. 2423 * 2424 * This is called from the USB gadget code's usb_ep_enable(). 2425 */ 2426 static int s3c_hsotg_ep_enable(struct usb_ep *ep, 2427 const struct usb_endpoint_descriptor *desc) 2428 { 2429 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2430 struct dwc2_hsotg *hsotg = hs_ep->parent; 2431 unsigned long flags; 2432 int index = hs_ep->index; 2433 u32 epctrl_reg; 2434 u32 epctrl; 2435 u32 mps; 2436 int dir_in; 2437 int i, val, size; 2438 int ret = 0; 2439 2440 dev_dbg(hsotg->dev, 2441 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 2442 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 2443 desc->wMaxPacketSize, desc->bInterval); 2444 2445 /* not to be called for EP0 */ 2446 WARN_ON(index == 0); 2447 2448 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 2449 if (dir_in != hs_ep->dir_in) { 2450 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 2451 return -EINVAL; 2452 } 2453 2454 mps = usb_endpoint_maxp(desc); 2455 2456 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */ 2457 2458 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2459 epctrl = readl(hsotg->regs + epctrl_reg); 2460 2461 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 2462 __func__, epctrl, epctrl_reg); 2463 2464 spin_lock_irqsave(&hsotg->lock, flags); 2465 2466 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 2467 epctrl |= DXEPCTL_MPS(mps); 2468 2469 /* 2470 * mark the endpoint as active, otherwise the core may ignore 2471 * transactions entirely for this endpoint 2472 */ 2473 epctrl |= DXEPCTL_USBACTEP; 2474 2475 /* 2476 * set the NAK status on the endpoint, otherwise we might try and 2477 * do something with data that we've yet got a request to process 2478 * since the RXFIFO will take data for an endpoint even if the 2479 * size register hasn't been set. 2480 */ 2481 2482 epctrl |= DXEPCTL_SNAK; 2483 2484 /* update the endpoint state */ 2485 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps); 2486 2487 /* default, set to non-periodic */ 2488 hs_ep->isochronous = 0; 2489 hs_ep->periodic = 0; 2490 hs_ep->halted = 0; 2491 hs_ep->interval = desc->bInterval; 2492 2493 if (hs_ep->interval > 1 && hs_ep->mc > 1) 2494 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n"); 2495 2496 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 2497 case USB_ENDPOINT_XFER_ISOC: 2498 epctrl |= DXEPCTL_EPTYPE_ISO; 2499 epctrl |= DXEPCTL_SETEVENFR; 2500 hs_ep->isochronous = 1; 2501 if (dir_in) 2502 hs_ep->periodic = 1; 2503 break; 2504 2505 case USB_ENDPOINT_XFER_BULK: 2506 epctrl |= DXEPCTL_EPTYPE_BULK; 2507 break; 2508 2509 case USB_ENDPOINT_XFER_INT: 2510 if (dir_in) 2511 hs_ep->periodic = 1; 2512 2513 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 2514 break; 2515 2516 case USB_ENDPOINT_XFER_CONTROL: 2517 epctrl |= DXEPCTL_EPTYPE_CONTROL; 2518 break; 2519 } 2520 2521 /* 2522 * if the hardware has dedicated fifos, we must give each IN EP 2523 * a unique tx-fifo even if it is non-periodic. 2524 */ 2525 if (dir_in && hsotg->dedicated_fifos) { 2526 size = hs_ep->ep.maxpacket*hs_ep->mc; 2527 for (i = 1; i <= 8; ++i) { 2528 if (hsotg->fifo_map & (1<<i)) 2529 continue; 2530 val = readl(hsotg->regs + DPTXFSIZN(i)); 2531 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4; 2532 if (val < size) 2533 continue; 2534 hsotg->fifo_map |= 1<<i; 2535 2536 epctrl |= DXEPCTL_TXFNUM(i); 2537 hs_ep->fifo_index = i; 2538 hs_ep->fifo_size = val; 2539 break; 2540 } 2541 if (i == 8) { 2542 ret = -ENOMEM; 2543 goto error; 2544 } 2545 } 2546 2547 /* for non control endpoints, set PID to D0 */ 2548 if (index) 2549 epctrl |= DXEPCTL_SETD0PID; 2550 2551 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 2552 __func__, epctrl); 2553 2554 writel(epctrl, hsotg->regs + epctrl_reg); 2555 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 2556 __func__, readl(hsotg->regs + epctrl_reg)); 2557 2558 /* enable the endpoint interrupt */ 2559 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 2560 2561 error: 2562 spin_unlock_irqrestore(&hsotg->lock, flags); 2563 return ret; 2564 } 2565 2566 /** 2567 * s3c_hsotg_ep_disable - disable given endpoint 2568 * @ep: The endpoint to disable. 2569 */ 2570 static int s3c_hsotg_ep_disable(struct usb_ep *ep) 2571 { 2572 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2573 struct dwc2_hsotg *hsotg = hs_ep->parent; 2574 int dir_in = hs_ep->dir_in; 2575 int index = hs_ep->index; 2576 unsigned long flags; 2577 u32 epctrl_reg; 2578 u32 ctrl; 2579 2580 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 2581 2582 if (ep == &hsotg->eps[0].ep) { 2583 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 2584 return -EINVAL; 2585 } 2586 2587 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2588 2589 spin_lock_irqsave(&hsotg->lock, flags); 2590 /* terminate all requests with shutdown */ 2591 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false); 2592 2593 hsotg->fifo_map &= ~(1<<hs_ep->fifo_index); 2594 hs_ep->fifo_index = 0; 2595 hs_ep->fifo_size = 0; 2596 2597 ctrl = readl(hsotg->regs + epctrl_reg); 2598 ctrl &= ~DXEPCTL_EPENA; 2599 ctrl &= ~DXEPCTL_USBACTEP; 2600 ctrl |= DXEPCTL_SNAK; 2601 2602 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 2603 writel(ctrl, hsotg->regs + epctrl_reg); 2604 2605 /* disable endpoint interrupts */ 2606 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 2607 2608 spin_unlock_irqrestore(&hsotg->lock, flags); 2609 return 0; 2610 } 2611 2612 /** 2613 * on_list - check request is on the given endpoint 2614 * @ep: The endpoint to check. 2615 * @test: The request to test if it is on the endpoint. 2616 */ 2617 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test) 2618 { 2619 struct s3c_hsotg_req *req, *treq; 2620 2621 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 2622 if (req == test) 2623 return true; 2624 } 2625 2626 return false; 2627 } 2628 2629 /** 2630 * s3c_hsotg_ep_dequeue - dequeue given endpoint 2631 * @ep: The endpoint to dequeue. 2632 * @req: The request to be removed from a queue. 2633 */ 2634 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 2635 { 2636 struct s3c_hsotg_req *hs_req = our_req(req); 2637 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2638 struct dwc2_hsotg *hs = hs_ep->parent; 2639 unsigned long flags; 2640 2641 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 2642 2643 spin_lock_irqsave(&hs->lock, flags); 2644 2645 if (!on_list(hs_ep, hs_req)) { 2646 spin_unlock_irqrestore(&hs->lock, flags); 2647 return -EINVAL; 2648 } 2649 2650 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 2651 spin_unlock_irqrestore(&hs->lock, flags); 2652 2653 return 0; 2654 } 2655 2656 /** 2657 * s3c_hsotg_ep_sethalt - set halt on a given endpoint 2658 * @ep: The endpoint to set halt. 2659 * @value: Set or unset the halt. 2660 */ 2661 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value) 2662 { 2663 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2664 struct dwc2_hsotg *hs = hs_ep->parent; 2665 int index = hs_ep->index; 2666 u32 epreg; 2667 u32 epctl; 2668 u32 xfertype; 2669 2670 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 2671 2672 if (index == 0) { 2673 if (value) 2674 s3c_hsotg_stall_ep0(hs); 2675 else 2676 dev_warn(hs->dev, 2677 "%s: can't clear halt on ep0\n", __func__); 2678 return 0; 2679 } 2680 2681 /* write both IN and OUT control registers */ 2682 2683 epreg = DIEPCTL(index); 2684 epctl = readl(hs->regs + epreg); 2685 2686 if (value) { 2687 epctl |= DXEPCTL_STALL + DXEPCTL_SNAK; 2688 if (epctl & DXEPCTL_EPENA) 2689 epctl |= DXEPCTL_EPDIS; 2690 } else { 2691 epctl &= ~DXEPCTL_STALL; 2692 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2693 if (xfertype == DXEPCTL_EPTYPE_BULK || 2694 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2695 epctl |= DXEPCTL_SETD0PID; 2696 } 2697 2698 writel(epctl, hs->regs + epreg); 2699 2700 epreg = DOEPCTL(index); 2701 epctl = readl(hs->regs + epreg); 2702 2703 if (value) 2704 epctl |= DXEPCTL_STALL; 2705 else { 2706 epctl &= ~DXEPCTL_STALL; 2707 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2708 if (xfertype == DXEPCTL_EPTYPE_BULK || 2709 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2710 epctl |= DXEPCTL_SETD0PID; 2711 } 2712 2713 writel(epctl, hs->regs + epreg); 2714 2715 hs_ep->halted = value; 2716 2717 return 0; 2718 } 2719 2720 /** 2721 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 2722 * @ep: The endpoint to set halt. 2723 * @value: Set or unset the halt. 2724 */ 2725 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 2726 { 2727 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2728 struct dwc2_hsotg *hs = hs_ep->parent; 2729 unsigned long flags = 0; 2730 int ret = 0; 2731 2732 spin_lock_irqsave(&hs->lock, flags); 2733 ret = s3c_hsotg_ep_sethalt(ep, value); 2734 spin_unlock_irqrestore(&hs->lock, flags); 2735 2736 return ret; 2737 } 2738 2739 static struct usb_ep_ops s3c_hsotg_ep_ops = { 2740 .enable = s3c_hsotg_ep_enable, 2741 .disable = s3c_hsotg_ep_disable, 2742 .alloc_request = s3c_hsotg_ep_alloc_request, 2743 .free_request = s3c_hsotg_ep_free_request, 2744 .queue = s3c_hsotg_ep_queue_lock, 2745 .dequeue = s3c_hsotg_ep_dequeue, 2746 .set_halt = s3c_hsotg_ep_sethalt_lock, 2747 /* note, don't believe we have any call for the fifo routines */ 2748 }; 2749 2750 /** 2751 * s3c_hsotg_phy_enable - enable platform phy dev 2752 * @hsotg: The driver state 2753 * 2754 * A wrapper for platform code responsible for controlling 2755 * low-level USB code 2756 */ 2757 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg) 2758 { 2759 struct platform_device *pdev = to_platform_device(hsotg->dev); 2760 2761 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev); 2762 2763 if (hsotg->uphy) 2764 usb_phy_init(hsotg->uphy); 2765 else if (hsotg->plat && hsotg->plat->phy_init) 2766 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type); 2767 else { 2768 phy_init(hsotg->phy); 2769 phy_power_on(hsotg->phy); 2770 } 2771 } 2772 2773 /** 2774 * s3c_hsotg_phy_disable - disable platform phy dev 2775 * @hsotg: The driver state 2776 * 2777 * A wrapper for platform code responsible for controlling 2778 * low-level USB code 2779 */ 2780 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg) 2781 { 2782 struct platform_device *pdev = to_platform_device(hsotg->dev); 2783 2784 if (hsotg->uphy) 2785 usb_phy_shutdown(hsotg->uphy); 2786 else if (hsotg->plat && hsotg->plat->phy_exit) 2787 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type); 2788 else { 2789 phy_power_off(hsotg->phy); 2790 phy_exit(hsotg->phy); 2791 } 2792 } 2793 2794 /** 2795 * s3c_hsotg_init - initalize the usb core 2796 * @hsotg: The driver state 2797 */ 2798 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg) 2799 { 2800 /* unmask subset of endpoint interrupts */ 2801 2802 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2803 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 2804 hsotg->regs + DIEPMSK); 2805 2806 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 2807 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 2808 hsotg->regs + DOEPMSK); 2809 2810 writel(0, hsotg->regs + DAINTMSK); 2811 2812 /* Be in disconnected state until gadget is registered */ 2813 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2814 2815 if (0) { 2816 /* post global nak until we're ready */ 2817 writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK, 2818 hsotg->regs + DCTL); 2819 } 2820 2821 /* setup fifos */ 2822 2823 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 2824 readl(hsotg->regs + GRXFSIZ), 2825 readl(hsotg->regs + GNPTXFSIZ)); 2826 2827 s3c_hsotg_init_fifo(hsotg); 2828 2829 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2830 writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10), 2831 hsotg->regs + GUSBCFG); 2832 2833 writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0, 2834 hsotg->regs + GAHBCFG); 2835 } 2836 2837 /** 2838 * s3c_hsotg_udc_start - prepare the udc for work 2839 * @gadget: The usb gadget state 2840 * @driver: The usb gadget driver 2841 * 2842 * Perform initialization to prepare udc device and driver 2843 * to work. 2844 */ 2845 static int s3c_hsotg_udc_start(struct usb_gadget *gadget, 2846 struct usb_gadget_driver *driver) 2847 { 2848 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 2849 unsigned long flags; 2850 int ret; 2851 2852 if (!hsotg) { 2853 pr_err("%s: called with no device\n", __func__); 2854 return -ENODEV; 2855 } 2856 2857 if (!driver) { 2858 dev_err(hsotg->dev, "%s: no driver\n", __func__); 2859 return -EINVAL; 2860 } 2861 2862 if (driver->max_speed < USB_SPEED_FULL) 2863 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 2864 2865 if (!driver->setup) { 2866 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 2867 return -EINVAL; 2868 } 2869 2870 mutex_lock(&hsotg->init_mutex); 2871 WARN_ON(hsotg->driver); 2872 2873 driver->driver.bus = NULL; 2874 hsotg->driver = driver; 2875 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 2876 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2877 2878 clk_enable(hsotg->clk); 2879 2880 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 2881 hsotg->supplies); 2882 if (ret) { 2883 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret); 2884 goto err; 2885 } 2886 2887 s3c_hsotg_phy_enable(hsotg); 2888 2889 spin_lock_irqsave(&hsotg->lock, flags); 2890 s3c_hsotg_init(hsotg); 2891 s3c_hsotg_core_init_disconnected(hsotg); 2892 hsotg->enabled = 0; 2893 spin_unlock_irqrestore(&hsotg->lock, flags); 2894 2895 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 2896 2897 mutex_unlock(&hsotg->init_mutex); 2898 2899 return 0; 2900 2901 err: 2902 mutex_unlock(&hsotg->init_mutex); 2903 hsotg->driver = NULL; 2904 return ret; 2905 } 2906 2907 /** 2908 * s3c_hsotg_udc_stop - stop the udc 2909 * @gadget: The usb gadget state 2910 * @driver: The usb gadget driver 2911 * 2912 * Stop udc hw block and stay tunned for future transmissions 2913 */ 2914 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget) 2915 { 2916 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 2917 unsigned long flags = 0; 2918 int ep; 2919 2920 if (!hsotg) 2921 return -ENODEV; 2922 2923 mutex_lock(&hsotg->init_mutex); 2924 2925 /* all endpoints should be shutdown */ 2926 for (ep = 1; ep < hsotg->num_of_eps; ep++) 2927 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); 2928 2929 spin_lock_irqsave(&hsotg->lock, flags); 2930 2931 hsotg->driver = NULL; 2932 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2933 hsotg->enabled = 0; 2934 2935 spin_unlock_irqrestore(&hsotg->lock, flags); 2936 2937 s3c_hsotg_phy_disable(hsotg); 2938 2939 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies); 2940 2941 clk_disable(hsotg->clk); 2942 2943 mutex_unlock(&hsotg->init_mutex); 2944 2945 return 0; 2946 } 2947 2948 /** 2949 * s3c_hsotg_gadget_getframe - read the frame number 2950 * @gadget: The usb gadget state 2951 * 2952 * Read the {micro} frame number 2953 */ 2954 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget) 2955 { 2956 return s3c_hsotg_read_frameno(to_hsotg(gadget)); 2957 } 2958 2959 /** 2960 * s3c_hsotg_pullup - connect/disconnect the USB PHY 2961 * @gadget: The usb gadget state 2962 * @is_on: Current state of the USB PHY 2963 * 2964 * Connect/Disconnect the USB PHY pullup 2965 */ 2966 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on) 2967 { 2968 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 2969 unsigned long flags = 0; 2970 2971 dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on); 2972 2973 mutex_lock(&hsotg->init_mutex); 2974 spin_lock_irqsave(&hsotg->lock, flags); 2975 if (is_on) { 2976 clk_enable(hsotg->clk); 2977 hsotg->enabled = 1; 2978 s3c_hsotg_core_connect(hsotg); 2979 } else { 2980 s3c_hsotg_core_disconnect(hsotg); 2981 hsotg->enabled = 0; 2982 clk_disable(hsotg->clk); 2983 } 2984 2985 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2986 spin_unlock_irqrestore(&hsotg->lock, flags); 2987 mutex_unlock(&hsotg->init_mutex); 2988 2989 return 0; 2990 } 2991 2992 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = { 2993 .get_frame = s3c_hsotg_gadget_getframe, 2994 .udc_start = s3c_hsotg_udc_start, 2995 .udc_stop = s3c_hsotg_udc_stop, 2996 .pullup = s3c_hsotg_pullup, 2997 }; 2998 2999 /** 3000 * s3c_hsotg_initep - initialise a single endpoint 3001 * @hsotg: The device state. 3002 * @hs_ep: The endpoint to be initialised. 3003 * @epnum: The endpoint number 3004 * 3005 * Initialise the given endpoint (as part of the probe and device state 3006 * creation) to give to the gadget driver. Setup the endpoint name, any 3007 * direction information and other state that may be required. 3008 */ 3009 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg, 3010 struct s3c_hsotg_ep *hs_ep, 3011 int epnum) 3012 { 3013 char *dir; 3014 3015 if (epnum == 0) 3016 dir = ""; 3017 else if ((epnum % 2) == 0) { 3018 dir = "out"; 3019 } else { 3020 dir = "in"; 3021 hs_ep->dir_in = 1; 3022 } 3023 3024 hs_ep->index = epnum; 3025 3026 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 3027 3028 INIT_LIST_HEAD(&hs_ep->queue); 3029 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 3030 3031 /* add to the list of endpoints known by the gadget driver */ 3032 if (epnum) 3033 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 3034 3035 hs_ep->parent = hsotg; 3036 hs_ep->ep.name = hs_ep->name; 3037 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT); 3038 hs_ep->ep.ops = &s3c_hsotg_ep_ops; 3039 3040 /* 3041 * if we're using dma, we need to set the next-endpoint pointer 3042 * to be something valid. 3043 */ 3044 3045 if (using_dma(hsotg)) { 3046 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 3047 writel(next, hsotg->regs + DIEPCTL(epnum)); 3048 writel(next, hsotg->regs + DOEPCTL(epnum)); 3049 } 3050 } 3051 3052 /** 3053 * s3c_hsotg_hw_cfg - read HW configuration registers 3054 * @param: The device state 3055 * 3056 * Read the USB core HW configuration registers 3057 */ 3058 static void s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 3059 { 3060 u32 cfg2, cfg3, cfg4; 3061 /* check hardware configuration */ 3062 3063 cfg2 = readl(hsotg->regs + 0x48); 3064 hsotg->num_of_eps = (cfg2 >> 10) & 0xF; 3065 3066 cfg3 = readl(hsotg->regs + 0x4C); 3067 hsotg->fifo_mem = (cfg3 >> 16); 3068 3069 cfg4 = readl(hsotg->regs + 0x50); 3070 hsotg->dedicated_fifos = (cfg4 >> 25) & 1; 3071 3072 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 3073 hsotg->num_of_eps, 3074 hsotg->dedicated_fifos ? "dedicated" : "shared", 3075 hsotg->fifo_mem); 3076 } 3077 3078 /** 3079 * s3c_hsotg_dump - dump state of the udc 3080 * @param: The device state 3081 */ 3082 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg) 3083 { 3084 #ifdef DEBUG 3085 struct device *dev = hsotg->dev; 3086 void __iomem *regs = hsotg->regs; 3087 u32 val; 3088 int idx; 3089 3090 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 3091 readl(regs + DCFG), readl(regs + DCTL), 3092 readl(regs + DIEPMSK)); 3093 3094 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n", 3095 readl(regs + GAHBCFG), readl(regs + 0x44)); 3096 3097 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 3098 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ)); 3099 3100 /* show periodic fifo settings */ 3101 3102 for (idx = 1; idx <= 15; idx++) { 3103 val = readl(regs + DPTXFSIZN(idx)); 3104 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 3105 val >> FIFOSIZE_DEPTH_SHIFT, 3106 val & FIFOSIZE_STARTADDR_MASK); 3107 } 3108 3109 for (idx = 0; idx < 15; idx++) { 3110 dev_info(dev, 3111 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 3112 readl(regs + DIEPCTL(idx)), 3113 readl(regs + DIEPTSIZ(idx)), 3114 readl(regs + DIEPDMA(idx))); 3115 3116 val = readl(regs + DOEPCTL(idx)); 3117 dev_info(dev, 3118 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 3119 idx, readl(regs + DOEPCTL(idx)), 3120 readl(regs + DOEPTSIZ(idx)), 3121 readl(regs + DOEPDMA(idx))); 3122 3123 } 3124 3125 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 3126 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE)); 3127 #endif 3128 } 3129 3130 /** 3131 * state_show - debugfs: show overall driver and device state. 3132 * @seq: The seq file to write to. 3133 * @v: Unused parameter. 3134 * 3135 * This debugfs entry shows the overall state of the hardware and 3136 * some general information about each of the endpoints available 3137 * to the system. 3138 */ 3139 static int state_show(struct seq_file *seq, void *v) 3140 { 3141 struct dwc2_hsotg *hsotg = seq->private; 3142 void __iomem *regs = hsotg->regs; 3143 int idx; 3144 3145 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n", 3146 readl(regs + DCFG), 3147 readl(regs + DCTL), 3148 readl(regs + DSTS)); 3149 3150 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n", 3151 readl(regs + DIEPMSK), readl(regs + DOEPMSK)); 3152 3153 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n", 3154 readl(regs + GINTMSK), 3155 readl(regs + GINTSTS)); 3156 3157 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n", 3158 readl(regs + DAINTMSK), 3159 readl(regs + DAINT)); 3160 3161 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n", 3162 readl(regs + GNPTXSTS), 3163 readl(regs + GRXSTSR)); 3164 3165 seq_puts(seq, "\nEndpoint status:\n"); 3166 3167 for (idx = 0; idx < 15; idx++) { 3168 u32 in, out; 3169 3170 in = readl(regs + DIEPCTL(idx)); 3171 out = readl(regs + DOEPCTL(idx)); 3172 3173 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x", 3174 idx, in, out); 3175 3176 in = readl(regs + DIEPTSIZ(idx)); 3177 out = readl(regs + DOEPTSIZ(idx)); 3178 3179 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x", 3180 in, out); 3181 3182 seq_puts(seq, "\n"); 3183 } 3184 3185 return 0; 3186 } 3187 3188 static int state_open(struct inode *inode, struct file *file) 3189 { 3190 return single_open(file, state_show, inode->i_private); 3191 } 3192 3193 static const struct file_operations state_fops = { 3194 .owner = THIS_MODULE, 3195 .open = state_open, 3196 .read = seq_read, 3197 .llseek = seq_lseek, 3198 .release = single_release, 3199 }; 3200 3201 /** 3202 * fifo_show - debugfs: show the fifo information 3203 * @seq: The seq_file to write data to. 3204 * @v: Unused parameter. 3205 * 3206 * Show the FIFO information for the overall fifo and all the 3207 * periodic transmission FIFOs. 3208 */ 3209 static int fifo_show(struct seq_file *seq, void *v) 3210 { 3211 struct dwc2_hsotg *hsotg = seq->private; 3212 void __iomem *regs = hsotg->regs; 3213 u32 val; 3214 int idx; 3215 3216 seq_puts(seq, "Non-periodic FIFOs:\n"); 3217 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ)); 3218 3219 val = readl(regs + GNPTXFSIZ); 3220 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n", 3221 val >> FIFOSIZE_DEPTH_SHIFT, 3222 val & FIFOSIZE_DEPTH_MASK); 3223 3224 seq_puts(seq, "\nPeriodic TXFIFOs:\n"); 3225 3226 for (idx = 1; idx <= 15; idx++) { 3227 val = readl(regs + DPTXFSIZN(idx)); 3228 3229 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx, 3230 val >> FIFOSIZE_DEPTH_SHIFT, 3231 val & FIFOSIZE_STARTADDR_MASK); 3232 } 3233 3234 return 0; 3235 } 3236 3237 static int fifo_open(struct inode *inode, struct file *file) 3238 { 3239 return single_open(file, fifo_show, inode->i_private); 3240 } 3241 3242 static const struct file_operations fifo_fops = { 3243 .owner = THIS_MODULE, 3244 .open = fifo_open, 3245 .read = seq_read, 3246 .llseek = seq_lseek, 3247 .release = single_release, 3248 }; 3249 3250 3251 static const char *decode_direction(int is_in) 3252 { 3253 return is_in ? "in" : "out"; 3254 } 3255 3256 /** 3257 * ep_show - debugfs: show the state of an endpoint. 3258 * @seq: The seq_file to write data to. 3259 * @v: Unused parameter. 3260 * 3261 * This debugfs entry shows the state of the given endpoint (one is 3262 * registered for each available). 3263 */ 3264 static int ep_show(struct seq_file *seq, void *v) 3265 { 3266 struct s3c_hsotg_ep *ep = seq->private; 3267 struct dwc2_hsotg *hsotg = ep->parent; 3268 struct s3c_hsotg_req *req; 3269 void __iomem *regs = hsotg->regs; 3270 int index = ep->index; 3271 int show_limit = 15; 3272 unsigned long flags; 3273 3274 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n", 3275 ep->index, ep->ep.name, decode_direction(ep->dir_in)); 3276 3277 /* first show the register state */ 3278 3279 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n", 3280 readl(regs + DIEPCTL(index)), 3281 readl(regs + DOEPCTL(index))); 3282 3283 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n", 3284 readl(regs + DIEPDMA(index)), 3285 readl(regs + DOEPDMA(index))); 3286 3287 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n", 3288 readl(regs + DIEPINT(index)), 3289 readl(regs + DOEPINT(index))); 3290 3291 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n", 3292 readl(regs + DIEPTSIZ(index)), 3293 readl(regs + DOEPTSIZ(index))); 3294 3295 seq_puts(seq, "\n"); 3296 seq_printf(seq, "mps %d\n", ep->ep.maxpacket); 3297 seq_printf(seq, "total_data=%ld\n", ep->total_data); 3298 3299 seq_printf(seq, "request list (%p,%p):\n", 3300 ep->queue.next, ep->queue.prev); 3301 3302 spin_lock_irqsave(&hsotg->lock, flags); 3303 3304 list_for_each_entry(req, &ep->queue, queue) { 3305 if (--show_limit < 0) { 3306 seq_puts(seq, "not showing more requests...\n"); 3307 break; 3308 } 3309 3310 seq_printf(seq, "%c req %p: %d bytes @%p, ", 3311 req == ep->req ? '*' : ' ', 3312 req, req->req.length, req->req.buf); 3313 seq_printf(seq, "%d done, res %d\n", 3314 req->req.actual, req->req.status); 3315 } 3316 3317 spin_unlock_irqrestore(&hsotg->lock, flags); 3318 3319 return 0; 3320 } 3321 3322 static int ep_open(struct inode *inode, struct file *file) 3323 { 3324 return single_open(file, ep_show, inode->i_private); 3325 } 3326 3327 static const struct file_operations ep_fops = { 3328 .owner = THIS_MODULE, 3329 .open = ep_open, 3330 .read = seq_read, 3331 .llseek = seq_lseek, 3332 .release = single_release, 3333 }; 3334 3335 /** 3336 * s3c_hsotg_create_debug - create debugfs directory and files 3337 * @hsotg: The driver state 3338 * 3339 * Create the debugfs files to allow the user to get information 3340 * about the state of the system. The directory name is created 3341 * with the same name as the device itself, in case we end up 3342 * with multiple blocks in future systems. 3343 */ 3344 static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg) 3345 { 3346 struct dentry *root; 3347 unsigned epidx; 3348 3349 root = debugfs_create_dir(dev_name(hsotg->dev), NULL); 3350 hsotg->debug_root = root; 3351 if (IS_ERR(root)) { 3352 dev_err(hsotg->dev, "cannot create debug root\n"); 3353 return; 3354 } 3355 3356 /* create general state file */ 3357 3358 hsotg->debug_file = debugfs_create_file("state", 0444, root, 3359 hsotg, &state_fops); 3360 3361 if (IS_ERR(hsotg->debug_file)) 3362 dev_err(hsotg->dev, "%s: failed to create state\n", __func__); 3363 3364 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root, 3365 hsotg, &fifo_fops); 3366 3367 if (IS_ERR(hsotg->debug_fifo)) 3368 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__); 3369 3370 /* create one file for each endpoint */ 3371 3372 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3373 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; 3374 3375 ep->debugfs = debugfs_create_file(ep->name, 0444, 3376 root, ep, &ep_fops); 3377 3378 if (IS_ERR(ep->debugfs)) 3379 dev_err(hsotg->dev, "failed to create %s debug file\n", 3380 ep->name); 3381 } 3382 } 3383 3384 /** 3385 * s3c_hsotg_delete_debug - cleanup debugfs entries 3386 * @hsotg: The driver state 3387 * 3388 * Cleanup (remove) the debugfs files for use on module exit. 3389 */ 3390 static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg) 3391 { 3392 unsigned epidx; 3393 3394 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3395 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; 3396 debugfs_remove(ep->debugfs); 3397 } 3398 3399 debugfs_remove(hsotg->debug_file); 3400 debugfs_remove(hsotg->debug_fifo); 3401 debugfs_remove(hsotg->debug_root); 3402 } 3403 3404 /** 3405 * dwc2_gadget_init - init function for gadget 3406 * @dwc2: The data structure for the DWC2 driver. 3407 * @irq: The IRQ number for the controller. 3408 */ 3409 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq) 3410 { 3411 struct device *dev = hsotg->dev; 3412 struct s3c_hsotg_plat *plat = dev->platform_data; 3413 struct phy *phy; 3414 struct usb_phy *uphy; 3415 struct s3c_hsotg_ep *eps; 3416 int epnum; 3417 int ret; 3418 int i; 3419 3420 /* Set default UTMI width */ 3421 hsotg->phyif = GUSBCFG_PHYIF16; 3422 3423 /* 3424 * Attempt to find a generic PHY, then look for an old style 3425 * USB PHY, finally fall back to pdata 3426 */ 3427 phy = devm_phy_get(dev, "usb2-phy"); 3428 if (IS_ERR(phy)) { 3429 uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); 3430 if (IS_ERR(uphy)) { 3431 /* Fallback for pdata */ 3432 plat = dev_get_platdata(dev); 3433 if (!plat) { 3434 dev_err(dev, 3435 "no platform data or transceiver defined\n"); 3436 return -EPROBE_DEFER; 3437 } 3438 hsotg->plat = plat; 3439 } else 3440 hsotg->uphy = uphy; 3441 } else { 3442 hsotg->phy = phy; 3443 /* 3444 * If using the generic PHY framework, check if the PHY bus 3445 * width is 8-bit and set the phyif appropriately. 3446 */ 3447 if (phy_get_bus_width(phy) == 8) 3448 hsotg->phyif = GUSBCFG_PHYIF8; 3449 } 3450 3451 hsotg->clk = devm_clk_get(dev, "otg"); 3452 if (IS_ERR(hsotg->clk)) { 3453 hsotg->clk = NULL; 3454 dev_dbg(dev, "cannot get otg clock\n"); 3455 } 3456 3457 hsotg->gadget.max_speed = USB_SPEED_HIGH; 3458 hsotg->gadget.ops = &s3c_hsotg_gadget_ops; 3459 hsotg->gadget.name = dev_name(dev); 3460 3461 /* reset the system */ 3462 3463 ret = clk_prepare_enable(hsotg->clk); 3464 if (ret) { 3465 dev_err(dev, "failed to enable otg clk\n"); 3466 goto err_clk; 3467 } 3468 3469 3470 /* regulators */ 3471 3472 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++) 3473 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i]; 3474 3475 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies), 3476 hsotg->supplies); 3477 if (ret) { 3478 dev_err(dev, "failed to request supplies: %d\n", ret); 3479 goto err_clk; 3480 } 3481 3482 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3483 hsotg->supplies); 3484 3485 if (ret) { 3486 dev_err(dev, "failed to enable supplies: %d\n", ret); 3487 goto err_supplies; 3488 } 3489 3490 /* usb phy enable */ 3491 s3c_hsotg_phy_enable(hsotg); 3492 3493 s3c_hsotg_corereset(hsotg); 3494 s3c_hsotg_hw_cfg(hsotg); 3495 s3c_hsotg_init(hsotg); 3496 3497 ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED, 3498 dev_name(hsotg->dev), hsotg); 3499 if (ret < 0) { 3500 s3c_hsotg_phy_disable(hsotg); 3501 clk_disable_unprepare(hsotg->clk); 3502 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3503 hsotg->supplies); 3504 dev_err(dev, "cannot claim IRQ for gadget\n"); 3505 goto err_clk; 3506 } 3507 3508 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 3509 3510 if (hsotg->num_of_eps == 0) { 3511 dev_err(dev, "wrong number of EPs (zero)\n"); 3512 ret = -EINVAL; 3513 goto err_supplies; 3514 } 3515 3516 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep), 3517 GFP_KERNEL); 3518 if (!eps) { 3519 ret = -ENOMEM; 3520 goto err_supplies; 3521 } 3522 3523 hsotg->eps = eps; 3524 3525 /* setup endpoint information */ 3526 3527 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 3528 hsotg->gadget.ep0 = &hsotg->eps[0].ep; 3529 3530 /* allocate EP0 request */ 3531 3532 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep, 3533 GFP_KERNEL); 3534 if (!hsotg->ctrl_req) { 3535 dev_err(dev, "failed to allocate ctrl req\n"); 3536 ret = -ENOMEM; 3537 goto err_ep_mem; 3538 } 3539 3540 /* initialise the endpoints now the core has been initialised */ 3541 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) 3542 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum); 3543 3544 /* disable power and clock */ 3545 s3c_hsotg_phy_disable(hsotg); 3546 3547 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3548 hsotg->supplies); 3549 if (ret) { 3550 dev_err(dev, "failed to disable supplies: %d\n", ret); 3551 goto err_ep_mem; 3552 } 3553 3554 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 3555 if (ret) 3556 goto err_ep_mem; 3557 3558 s3c_hsotg_create_debug(hsotg); 3559 3560 s3c_hsotg_dump(hsotg); 3561 3562 return 0; 3563 3564 err_ep_mem: 3565 kfree(eps); 3566 err_supplies: 3567 s3c_hsotg_phy_disable(hsotg); 3568 err_clk: 3569 clk_disable_unprepare(hsotg->clk); 3570 3571 return ret; 3572 } 3573 EXPORT_SYMBOL_GPL(dwc2_gadget_init); 3574 3575 /** 3576 * s3c_hsotg_remove - remove function for hsotg driver 3577 * @pdev: The platform information for the driver 3578 */ 3579 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg) 3580 { 3581 usb_del_gadget_udc(&hsotg->gadget); 3582 s3c_hsotg_delete_debug(hsotg); 3583 clk_disable_unprepare(hsotg->clk); 3584 3585 return 0; 3586 } 3587 EXPORT_SYMBOL_GPL(s3c_hsotg_remove); 3588 3589 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg) 3590 { 3591 unsigned long flags; 3592 int ret = 0; 3593 3594 mutex_lock(&hsotg->init_mutex); 3595 3596 if (hsotg->driver) { 3597 int ep; 3598 3599 dev_info(hsotg->dev, "suspending usb gadget %s\n", 3600 hsotg->driver->driver.name); 3601 3602 spin_lock_irqsave(&hsotg->lock, flags); 3603 if (hsotg->enabled) 3604 s3c_hsotg_core_disconnect(hsotg); 3605 s3c_hsotg_disconnect(hsotg); 3606 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 3607 spin_unlock_irqrestore(&hsotg->lock, flags); 3608 3609 s3c_hsotg_phy_disable(hsotg); 3610 3611 for (ep = 0; ep < hsotg->num_of_eps; ep++) 3612 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); 3613 3614 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3615 hsotg->supplies); 3616 clk_disable(hsotg->clk); 3617 } 3618 3619 mutex_unlock(&hsotg->init_mutex); 3620 3621 return ret; 3622 } 3623 EXPORT_SYMBOL_GPL(s3c_hsotg_suspend); 3624 3625 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg) 3626 { 3627 unsigned long flags; 3628 int ret = 0; 3629 3630 mutex_lock(&hsotg->init_mutex); 3631 3632 if (hsotg->driver) { 3633 dev_info(hsotg->dev, "resuming usb gadget %s\n", 3634 hsotg->driver->driver.name); 3635 3636 clk_enable(hsotg->clk); 3637 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3638 hsotg->supplies); 3639 3640 s3c_hsotg_phy_enable(hsotg); 3641 3642 spin_lock_irqsave(&hsotg->lock, flags); 3643 s3c_hsotg_core_init_disconnected(hsotg); 3644 if (hsotg->enabled) 3645 s3c_hsotg_core_connect(hsotg); 3646 spin_unlock_irqrestore(&hsotg->lock, flags); 3647 } 3648 mutex_unlock(&hsotg->init_mutex); 3649 3650 return ret; 3651 } 3652 EXPORT_SYMBOL_GPL(s3c_hsotg_resume); 3653