1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 hs_ep->target_frame += hs_ep->interval; 119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 120 hs_ep->frame_overrun = true; 121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 122 } else { 123 hs_ep->frame_overrun = false; 124 } 125 } 126 127 /** 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 129 * by one. 130 * @hs_ep: The endpoint. 131 * 132 * This function used in service interval based scheduling flow to calculate 133 * descriptor frame number filed value. For service interval mode frame 134 * number in descriptor should point to last (u)frame in the interval. 135 * 136 */ 137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 138 { 139 if (hs_ep->target_frame) 140 hs_ep->target_frame -= 1; 141 else 142 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 143 } 144 145 /** 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 147 * @hsotg: The device state 148 * @ints: A bitmask of the interrupts to enable 149 */ 150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 151 { 152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 153 u32 new_gsintmsk; 154 155 new_gsintmsk = gsintmsk | ints; 156 157 if (new_gsintmsk != gsintmsk) { 158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 160 } 161 } 162 163 /** 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 165 * @hsotg: The device state 166 * @ints: A bitmask of the interrupts to enable 167 */ 168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 169 { 170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 171 u32 new_gsintmsk; 172 173 new_gsintmsk = gsintmsk & ~ints; 174 175 if (new_gsintmsk != gsintmsk) 176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 177 } 178 179 /** 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 181 * @hsotg: The device state 182 * @ep: The endpoint index 183 * @dir_in: True if direction is in. 184 * @en: The enable value, true to enable 185 * 186 * Set or clear the mask for an individual endpoint's interrupt 187 * request. 188 */ 189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 190 unsigned int ep, unsigned int dir_in, 191 unsigned int en) 192 { 193 unsigned long flags; 194 u32 bit = 1 << ep; 195 u32 daint; 196 197 if (!dir_in) 198 bit <<= 16; 199 200 local_irq_save(flags); 201 daint = dwc2_readl(hsotg, DAINTMSK); 202 if (en) 203 daint |= bit; 204 else 205 daint &= ~bit; 206 dwc2_writel(hsotg, daint, DAINTMSK); 207 local_irq_restore(flags); 208 } 209 210 /** 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 212 * 213 * @hsotg: Programming view of the DWC_otg controller 214 */ 215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 216 { 217 if (hsotg->hw_params.en_multiple_tx_fifo) 218 /* In dedicated FIFO mode we need count of IN EPs */ 219 return hsotg->hw_params.num_dev_in_eps; 220 else 221 /* In shared FIFO mode we need count of Periodic IN EPs */ 222 return hsotg->hw_params.num_dev_perio_in_ep; 223 } 224 225 /** 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 227 * device mode TX FIFOs 228 * 229 * @hsotg: Programming view of the DWC_otg controller 230 */ 231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 232 { 233 int addr; 234 int tx_addr_max; 235 u32 np_tx_fifo_size; 236 237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 238 hsotg->params.g_np_tx_fifo_size); 239 240 /* Get Endpoint Info Control block size in DWORDs. */ 241 tx_addr_max = hsotg->hw_params.total_fifo_size; 242 243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 244 if (tx_addr_max <= addr) 245 return 0; 246 247 return tx_addr_max - addr; 248 } 249 250 /** 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 252 * 253 * @hsotg: Programming view of the DWC_otg controller 254 * 255 */ 256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 257 { 258 u32 gintsts2; 259 u32 gintmsk2; 260 261 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 263 264 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 265 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 266 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 267 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 268 } 269 } 270 271 /** 272 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 273 * TX FIFOs 274 * 275 * @hsotg: Programming view of the DWC_otg controller 276 */ 277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 278 { 279 int tx_fifo_count; 280 int tx_fifo_depth; 281 282 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 283 284 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 285 286 if (!tx_fifo_count) 287 return tx_fifo_depth; 288 else 289 return tx_fifo_depth / tx_fifo_count; 290 } 291 292 /** 293 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 294 * @hsotg: The device instance. 295 */ 296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 297 { 298 unsigned int ep; 299 unsigned int addr; 300 int timeout; 301 302 u32 val; 303 u32 *txfsz = hsotg->params.g_tx_fifo_size; 304 305 /* Reset fifo map if not correctly cleared during previous session */ 306 WARN_ON(hsotg->fifo_map); 307 hsotg->fifo_map = 0; 308 309 /* set RX/NPTX FIFO sizes */ 310 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 311 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 312 FIFOSIZE_STARTADDR_SHIFT) | 313 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 314 GNPTXFSIZ); 315 316 /* 317 * arange all the rest of the TX FIFOs, as some versions of this 318 * block have overlapping default addresses. This also ensures 319 * that if the settings have been changed, then they are set to 320 * known values. 321 */ 322 323 /* start at the end of the GNPTXFSIZ, rounded up */ 324 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 325 326 /* 327 * Configure fifos sizes from provided configuration and assign 328 * them to endpoints dynamically according to maxpacket size value of 329 * given endpoint. 330 */ 331 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 332 if (!txfsz[ep]) 333 continue; 334 val = addr; 335 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 336 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 337 "insufficient fifo memory"); 338 addr += txfsz[ep]; 339 340 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 341 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 342 } 343 344 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 345 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 346 GDFIFOCFG); 347 /* 348 * according to p428 of the design guide, we need to ensure that 349 * all fifos are flushed before continuing 350 */ 351 352 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 353 GRSTCTL_RXFFLSH, GRSTCTL); 354 355 /* wait until the fifos are both flushed */ 356 timeout = 100; 357 while (1) { 358 val = dwc2_readl(hsotg, GRSTCTL); 359 360 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 361 break; 362 363 if (--timeout == 0) { 364 dev_err(hsotg->dev, 365 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 366 __func__, val); 367 break; 368 } 369 370 udelay(1); 371 } 372 373 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 374 } 375 376 /** 377 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 378 * @ep: USB endpoint to allocate request for. 379 * @flags: Allocation flags 380 * 381 * Allocate a new USB request structure appropriate for the specified endpoint 382 */ 383 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 384 gfp_t flags) 385 { 386 struct dwc2_hsotg_req *req; 387 388 req = kzalloc(sizeof(*req), flags); 389 if (!req) 390 return NULL; 391 392 INIT_LIST_HEAD(&req->queue); 393 394 return &req->req; 395 } 396 397 /** 398 * is_ep_periodic - return true if the endpoint is in periodic mode. 399 * @hs_ep: The endpoint to query. 400 * 401 * Returns true if the endpoint is in periodic mode, meaning it is being 402 * used for an Interrupt or ISO transfer. 403 */ 404 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 405 { 406 return hs_ep->periodic; 407 } 408 409 /** 410 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 411 * @hsotg: The device state. 412 * @hs_ep: The endpoint for the request 413 * @hs_req: The request being processed. 414 * 415 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 416 * of a request to ensure the buffer is ready for access by the caller. 417 */ 418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 419 struct dwc2_hsotg_ep *hs_ep, 420 struct dwc2_hsotg_req *hs_req) 421 { 422 struct usb_request *req = &hs_req->req; 423 424 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 425 } 426 427 /* 428 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 429 * for Control endpoint 430 * @hsotg: The device state. 431 * 432 * This function will allocate 4 descriptor chains for EP 0: 2 for 433 * Setup stage, per one for IN and OUT data/status transactions. 434 */ 435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 436 { 437 hsotg->setup_desc[0] = 438 dmam_alloc_coherent(hsotg->dev, 439 sizeof(struct dwc2_dma_desc), 440 &hsotg->setup_desc_dma[0], 441 GFP_KERNEL); 442 if (!hsotg->setup_desc[0]) 443 goto fail; 444 445 hsotg->setup_desc[1] = 446 dmam_alloc_coherent(hsotg->dev, 447 sizeof(struct dwc2_dma_desc), 448 &hsotg->setup_desc_dma[1], 449 GFP_KERNEL); 450 if (!hsotg->setup_desc[1]) 451 goto fail; 452 453 hsotg->ctrl_in_desc = 454 dmam_alloc_coherent(hsotg->dev, 455 sizeof(struct dwc2_dma_desc), 456 &hsotg->ctrl_in_desc_dma, 457 GFP_KERNEL); 458 if (!hsotg->ctrl_in_desc) 459 goto fail; 460 461 hsotg->ctrl_out_desc = 462 dmam_alloc_coherent(hsotg->dev, 463 sizeof(struct dwc2_dma_desc), 464 &hsotg->ctrl_out_desc_dma, 465 GFP_KERNEL); 466 if (!hsotg->ctrl_out_desc) 467 goto fail; 468 469 return 0; 470 471 fail: 472 return -ENOMEM; 473 } 474 475 /** 476 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 477 * @hsotg: The controller state. 478 * @hs_ep: The endpoint we're going to write for. 479 * @hs_req: The request to write data for. 480 * 481 * This is called when the TxFIFO has some space in it to hold a new 482 * transmission and we have something to give it. The actual setup of 483 * the data size is done elsewhere, so all we have to do is to actually 484 * write the data. 485 * 486 * The return value is zero if there is more space (or nothing was done) 487 * otherwise -ENOSPC is returned if the FIFO space was used up. 488 * 489 * This routine is only needed for PIO 490 */ 491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 492 struct dwc2_hsotg_ep *hs_ep, 493 struct dwc2_hsotg_req *hs_req) 494 { 495 bool periodic = is_ep_periodic(hs_ep); 496 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 497 int buf_pos = hs_req->req.actual; 498 int to_write = hs_ep->size_loaded; 499 void *data; 500 int can_write; 501 int pkt_round; 502 int max_transfer; 503 504 to_write -= (buf_pos - hs_ep->last_load); 505 506 /* if there's nothing to write, get out early */ 507 if (to_write == 0) 508 return 0; 509 510 if (periodic && !hsotg->dedicated_fifos) { 511 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 512 int size_left; 513 int size_done; 514 515 /* 516 * work out how much data was loaded so we can calculate 517 * how much data is left in the fifo. 518 */ 519 520 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 521 522 /* 523 * if shared fifo, we cannot write anything until the 524 * previous data has been completely sent. 525 */ 526 if (hs_ep->fifo_load != 0) { 527 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 528 return -ENOSPC; 529 } 530 531 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 532 __func__, size_left, 533 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 534 535 /* how much of the data has moved */ 536 size_done = hs_ep->size_loaded - size_left; 537 538 /* how much data is left in the fifo */ 539 can_write = hs_ep->fifo_load - size_done; 540 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 541 __func__, can_write); 542 543 can_write = hs_ep->fifo_size - can_write; 544 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 545 __func__, can_write); 546 547 if (can_write <= 0) { 548 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 549 return -ENOSPC; 550 } 551 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 552 can_write = dwc2_readl(hsotg, 553 DTXFSTS(hs_ep->fifo_index)); 554 555 can_write &= 0xffff; 556 can_write *= 4; 557 } else { 558 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 559 dev_dbg(hsotg->dev, 560 "%s: no queue slots available (0x%08x)\n", 561 __func__, gnptxsts); 562 563 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 564 return -ENOSPC; 565 } 566 567 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 568 can_write *= 4; /* fifo size is in 32bit quantities. */ 569 } 570 571 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 572 573 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 574 __func__, gnptxsts, can_write, to_write, max_transfer); 575 576 /* 577 * limit to 512 bytes of data, it seems at least on the non-periodic 578 * FIFO, requests of >512 cause the endpoint to get stuck with a 579 * fragment of the end of the transfer in it. 580 */ 581 if (can_write > 512 && !periodic) 582 can_write = 512; 583 584 /* 585 * limit the write to one max-packet size worth of data, but allow 586 * the transfer to return that it did not run out of fifo space 587 * doing it. 588 */ 589 if (to_write > max_transfer) { 590 to_write = max_transfer; 591 592 /* it's needed only when we do not use dedicated fifos */ 593 if (!hsotg->dedicated_fifos) 594 dwc2_hsotg_en_gsint(hsotg, 595 periodic ? GINTSTS_PTXFEMP : 596 GINTSTS_NPTXFEMP); 597 } 598 599 /* see if we can write data */ 600 601 if (to_write > can_write) { 602 to_write = can_write; 603 pkt_round = to_write % max_transfer; 604 605 /* 606 * Round the write down to an 607 * exact number of packets. 608 * 609 * Note, we do not currently check to see if we can ever 610 * write a full packet or not to the FIFO. 611 */ 612 613 if (pkt_round) 614 to_write -= pkt_round; 615 616 /* 617 * enable correct FIFO interrupt to alert us when there 618 * is more room left. 619 */ 620 621 /* it's needed only when we do not use dedicated fifos */ 622 if (!hsotg->dedicated_fifos) 623 dwc2_hsotg_en_gsint(hsotg, 624 periodic ? GINTSTS_PTXFEMP : 625 GINTSTS_NPTXFEMP); 626 } 627 628 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 629 to_write, hs_req->req.length, can_write, buf_pos); 630 631 if (to_write <= 0) 632 return -ENOSPC; 633 634 hs_req->req.actual = buf_pos + to_write; 635 hs_ep->total_data += to_write; 636 637 if (periodic) 638 hs_ep->fifo_load += to_write; 639 640 to_write = DIV_ROUND_UP(to_write, 4); 641 data = hs_req->req.buf + buf_pos; 642 643 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 644 645 return (to_write >= can_write) ? -ENOSPC : 0; 646 } 647 648 /** 649 * get_ep_limit - get the maximum data legnth for this endpoint 650 * @hs_ep: The endpoint 651 * 652 * Return the maximum data that can be queued in one go on a given endpoint 653 * so that transfers that are too long can be split. 654 */ 655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 656 { 657 int index = hs_ep->index; 658 unsigned int maxsize; 659 unsigned int maxpkt; 660 661 if (index != 0) { 662 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 663 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 664 } else { 665 maxsize = 64 + 64; 666 if (hs_ep->dir_in) 667 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 668 else 669 maxpkt = 2; 670 } 671 672 /* we made the constant loading easier above by using +1 */ 673 maxpkt--; 674 maxsize--; 675 676 /* 677 * constrain by packet count if maxpkts*pktsize is greater 678 * than the length register size. 679 */ 680 681 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 682 maxsize = maxpkt * hs_ep->ep.maxpacket; 683 684 return maxsize; 685 } 686 687 /** 688 * dwc2_hsotg_read_frameno - read current frame number 689 * @hsotg: The device instance 690 * 691 * Return the current frame number 692 */ 693 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 694 { 695 u32 dsts; 696 697 dsts = dwc2_readl(hsotg, DSTS); 698 dsts &= DSTS_SOFFN_MASK; 699 dsts >>= DSTS_SOFFN_SHIFT; 700 701 return dsts; 702 } 703 704 /** 705 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 706 * DMA descriptor chain prepared for specific endpoint 707 * @hs_ep: The endpoint 708 * 709 * Return the maximum data that can be queued in one go on a given endpoint 710 * depending on its descriptor chain capacity so that transfers that 711 * are too long can be split. 712 */ 713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 714 { 715 int is_isoc = hs_ep->isochronous; 716 unsigned int maxsize; 717 718 if (is_isoc) 719 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 720 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 721 MAX_DMA_DESC_NUM_HS_ISOC; 722 else 723 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 724 725 return maxsize; 726 } 727 728 /* 729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 730 * @hs_ep: The endpoint 731 * @mask: RX/TX bytes mask to be defined 732 * 733 * Returns maximum data payload for one descriptor after analyzing endpoint 734 * characteristics. 735 * DMA descriptor transfer bytes limit depends on EP type: 736 * Control out - MPS, 737 * Isochronous - descriptor rx/tx bytes bitfield limit, 738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 739 * have concatenations from various descriptors within one packet. 740 * 741 * Selects corresponding mask for RX/TX bytes as well. 742 */ 743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 744 { 745 u32 mps = hs_ep->ep.maxpacket; 746 int dir_in = hs_ep->dir_in; 747 u32 desc_size = 0; 748 749 if (!hs_ep->index && !dir_in) { 750 desc_size = mps; 751 *mask = DEV_DMA_NBYTES_MASK; 752 } else if (hs_ep->isochronous) { 753 if (dir_in) { 754 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 755 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 756 } else { 757 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 758 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 759 } 760 } else { 761 desc_size = DEV_DMA_NBYTES_LIMIT; 762 *mask = DEV_DMA_NBYTES_MASK; 763 764 /* Round down desc_size to be mps multiple */ 765 desc_size -= desc_size % mps; 766 } 767 768 return desc_size; 769 } 770 771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 772 struct dwc2_dma_desc **desc, 773 dma_addr_t dma_buff, 774 unsigned int len, 775 bool true_last) 776 { 777 int dir_in = hs_ep->dir_in; 778 u32 mps = hs_ep->ep.maxpacket; 779 u32 maxsize = 0; 780 u32 offset = 0; 781 u32 mask = 0; 782 int i; 783 784 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 785 786 hs_ep->desc_count = (len / maxsize) + 787 ((len % maxsize) ? 1 : 0); 788 if (len == 0) 789 hs_ep->desc_count = 1; 790 791 for (i = 0; i < hs_ep->desc_count; ++i) { 792 (*desc)->status = 0; 793 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 794 << DEV_DMA_BUFF_STS_SHIFT); 795 796 if (len > maxsize) { 797 if (!hs_ep->index && !dir_in) 798 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 799 800 (*desc)->status |= 801 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 802 (*desc)->buf = dma_buff + offset; 803 804 len -= maxsize; 805 offset += maxsize; 806 } else { 807 if (true_last) 808 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 809 810 if (dir_in) 811 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 812 ((hs_ep->send_zlp && true_last) ? 813 DEV_DMA_SHORT : 0); 814 815 (*desc)->status |= 816 len << DEV_DMA_NBYTES_SHIFT & mask; 817 (*desc)->buf = dma_buff + offset; 818 } 819 820 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 821 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 822 << DEV_DMA_BUFF_STS_SHIFT); 823 (*desc)++; 824 } 825 } 826 827 /* 828 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 829 * @hs_ep: The endpoint 830 * @ureq: Request to transfer 831 * @offset: offset in bytes 832 * @len: Length of the transfer 833 * 834 * This function will iterate over descriptor chain and fill its entries 835 * with corresponding information based on transfer data. 836 */ 837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 838 dma_addr_t dma_buff, 839 unsigned int len) 840 { 841 struct usb_request *ureq = NULL; 842 struct dwc2_dma_desc *desc = hs_ep->desc_list; 843 struct scatterlist *sg; 844 int i; 845 u8 desc_count = 0; 846 847 if (hs_ep->req) 848 ureq = &hs_ep->req->req; 849 850 /* non-DMA sg buffer */ 851 if (!ureq || !ureq->num_sgs) { 852 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 853 dma_buff, len, true); 854 return; 855 } 856 857 /* DMA sg buffer */ 858 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 859 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 860 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 861 sg_is_last(sg)); 862 desc_count += hs_ep->desc_count; 863 } 864 865 hs_ep->desc_count = desc_count; 866 } 867 868 /* 869 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 870 * @hs_ep: The isochronous endpoint. 871 * @dma_buff: usb requests dma buffer. 872 * @len: usb request transfer length. 873 * 874 * Fills next free descriptor with the data of the arrived usb request, 875 * frame info, sets Last and IOC bits increments next_desc. If filled 876 * descriptor is not the first one, removes L bit from the previous descriptor 877 * status. 878 */ 879 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 880 dma_addr_t dma_buff, unsigned int len) 881 { 882 struct dwc2_dma_desc *desc; 883 struct dwc2_hsotg *hsotg = hs_ep->parent; 884 u32 index; 885 u32 maxsize = 0; 886 u32 mask = 0; 887 u8 pid = 0; 888 889 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 890 891 index = hs_ep->next_desc; 892 desc = &hs_ep->desc_list[index]; 893 894 /* Check if descriptor chain full */ 895 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 896 DEV_DMA_BUFF_STS_HREADY) { 897 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 898 return 1; 899 } 900 901 /* Clear L bit of previous desc if more than one entries in the chain */ 902 if (hs_ep->next_desc) 903 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 904 905 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 906 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 907 908 desc->status = 0; 909 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 910 911 desc->buf = dma_buff; 912 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 913 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 914 915 if (hs_ep->dir_in) { 916 if (len) 917 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 918 else 919 pid = 1; 920 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 921 DEV_DMA_ISOC_PID_MASK) | 922 ((len % hs_ep->ep.maxpacket) ? 923 DEV_DMA_SHORT : 0) | 924 ((hs_ep->target_frame << 925 DEV_DMA_ISOC_FRNUM_SHIFT) & 926 DEV_DMA_ISOC_FRNUM_MASK); 927 } 928 929 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 930 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 931 932 /* Increment frame number by interval for IN */ 933 if (hs_ep->dir_in) 934 dwc2_gadget_incr_frame_num(hs_ep); 935 936 /* Update index of last configured entry in the chain */ 937 hs_ep->next_desc++; 938 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 939 hs_ep->next_desc = 0; 940 941 return 0; 942 } 943 944 /* 945 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 946 * @hs_ep: The isochronous endpoint. 947 * 948 * Prepare descriptor chain for isochronous endpoints. Afterwards 949 * write DMA address to HW and enable the endpoint. 950 */ 951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 952 { 953 struct dwc2_hsotg *hsotg = hs_ep->parent; 954 struct dwc2_hsotg_req *hs_req, *treq; 955 int index = hs_ep->index; 956 int ret; 957 int i; 958 u32 dma_reg; 959 u32 depctl; 960 u32 ctrl; 961 struct dwc2_dma_desc *desc; 962 963 if (list_empty(&hs_ep->queue)) { 964 hs_ep->target_frame = TARGET_FRAME_INITIAL; 965 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 966 return; 967 } 968 969 /* Initialize descriptor chain by Host Busy status */ 970 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 971 desc = &hs_ep->desc_list[i]; 972 desc->status = 0; 973 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 974 << DEV_DMA_BUFF_STS_SHIFT); 975 } 976 977 hs_ep->next_desc = 0; 978 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 979 dma_addr_t dma_addr = hs_req->req.dma; 980 981 if (hs_req->req.num_sgs) { 982 WARN_ON(hs_req->req.num_sgs > 1); 983 dma_addr = sg_dma_address(hs_req->req.sg); 984 } 985 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 986 hs_req->req.length); 987 if (ret) 988 break; 989 } 990 991 hs_ep->compl_desc = 0; 992 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 993 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 994 995 /* write descriptor chain address to control register */ 996 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 997 998 ctrl = dwc2_readl(hsotg, depctl); 999 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1000 dwc2_writel(hsotg, ctrl, depctl); 1001 } 1002 1003 /** 1004 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1005 * @hsotg: The controller state. 1006 * @hs_ep: The endpoint to process a request for 1007 * @hs_req: The request to start. 1008 * @continuing: True if we are doing more for the current request. 1009 * 1010 * Start the given request running by setting the endpoint registers 1011 * appropriately, and writing any data to the FIFOs. 1012 */ 1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1014 struct dwc2_hsotg_ep *hs_ep, 1015 struct dwc2_hsotg_req *hs_req, 1016 bool continuing) 1017 { 1018 struct usb_request *ureq = &hs_req->req; 1019 int index = hs_ep->index; 1020 int dir_in = hs_ep->dir_in; 1021 u32 epctrl_reg; 1022 u32 epsize_reg; 1023 u32 epsize; 1024 u32 ctrl; 1025 unsigned int length; 1026 unsigned int packets; 1027 unsigned int maxreq; 1028 unsigned int dma_reg; 1029 1030 if (index != 0) { 1031 if (hs_ep->req && !continuing) { 1032 dev_err(hsotg->dev, "%s: active request\n", __func__); 1033 WARN_ON(1); 1034 return; 1035 } else if (hs_ep->req != hs_req && continuing) { 1036 dev_err(hsotg->dev, 1037 "%s: continue different req\n", __func__); 1038 WARN_ON(1); 1039 return; 1040 } 1041 } 1042 1043 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1044 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1045 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1046 1047 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1048 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1049 hs_ep->dir_in ? "in" : "out"); 1050 1051 /* If endpoint is stalled, we will restart request later */ 1052 ctrl = dwc2_readl(hsotg, epctrl_reg); 1053 1054 if (index && ctrl & DXEPCTL_STALL) { 1055 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1056 return; 1057 } 1058 1059 length = ureq->length - ureq->actual; 1060 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1061 ureq->length, ureq->actual); 1062 1063 if (!using_desc_dma(hsotg)) 1064 maxreq = get_ep_limit(hs_ep); 1065 else 1066 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1067 1068 if (length > maxreq) { 1069 int round = maxreq % hs_ep->ep.maxpacket; 1070 1071 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1072 __func__, length, maxreq, round); 1073 1074 /* round down to multiple of packets */ 1075 if (round) 1076 maxreq -= round; 1077 1078 length = maxreq; 1079 } 1080 1081 if (length) 1082 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1083 else 1084 packets = 1; /* send one packet if length is zero. */ 1085 1086 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1087 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 1088 return; 1089 } 1090 1091 if (dir_in && index != 0) 1092 if (hs_ep->isochronous) 1093 epsize = DXEPTSIZ_MC(packets); 1094 else 1095 epsize = DXEPTSIZ_MC(1); 1096 else 1097 epsize = 0; 1098 1099 /* 1100 * zero length packet should be programmed on its own and should not 1101 * be counted in DIEPTSIZ.PktCnt with other packets. 1102 */ 1103 if (dir_in && ureq->zero && !continuing) { 1104 /* Test if zlp is actually required. */ 1105 if ((ureq->length >= hs_ep->ep.maxpacket) && 1106 !(ureq->length % hs_ep->ep.maxpacket)) 1107 hs_ep->send_zlp = 1; 1108 } 1109 1110 epsize |= DXEPTSIZ_PKTCNT(packets); 1111 epsize |= DXEPTSIZ_XFERSIZE(length); 1112 1113 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1114 __func__, packets, length, ureq->length, epsize, epsize_reg); 1115 1116 /* store the request as the current one we're doing */ 1117 hs_ep->req = hs_req; 1118 1119 if (using_desc_dma(hsotg)) { 1120 u32 offset = 0; 1121 u32 mps = hs_ep->ep.maxpacket; 1122 1123 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1124 if (!dir_in) { 1125 if (!index) 1126 length = mps; 1127 else if (length % mps) 1128 length += (mps - (length % mps)); 1129 } 1130 1131 /* 1132 * If more data to send, adjust DMA for EP0 out data stage. 1133 * ureq->dma stays unchanged, hence increment it by already 1134 * passed passed data count before starting new transaction. 1135 */ 1136 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1137 continuing) 1138 offset = ureq->actual; 1139 1140 /* Fill DDMA chain entries */ 1141 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1142 length); 1143 1144 /* write descriptor chain address to control register */ 1145 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1146 1147 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1148 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1149 } else { 1150 /* write size / packets */ 1151 dwc2_writel(hsotg, epsize, epsize_reg); 1152 1153 if (using_dma(hsotg) && !continuing && (length != 0)) { 1154 /* 1155 * write DMA address to control register, buffer 1156 * already synced by dwc2_hsotg_ep_queue(). 1157 */ 1158 1159 dwc2_writel(hsotg, ureq->dma, dma_reg); 1160 1161 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1162 __func__, &ureq->dma, dma_reg); 1163 } 1164 } 1165 1166 if (hs_ep->isochronous && hs_ep->interval == 1) { 1167 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1168 dwc2_gadget_incr_frame_num(hs_ep); 1169 1170 if (hs_ep->target_frame & 0x1) 1171 ctrl |= DXEPCTL_SETODDFR; 1172 else 1173 ctrl |= DXEPCTL_SETEVENFR; 1174 } 1175 1176 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1177 1178 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1179 1180 /* For Setup request do not clear NAK */ 1181 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1182 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1183 1184 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1185 dwc2_writel(hsotg, ctrl, epctrl_reg); 1186 1187 /* 1188 * set these, it seems that DMA support increments past the end 1189 * of the packet buffer so we need to calculate the length from 1190 * this information. 1191 */ 1192 hs_ep->size_loaded = length; 1193 hs_ep->last_load = ureq->actual; 1194 1195 if (dir_in && !using_dma(hsotg)) { 1196 /* set these anyway, we may need them for non-periodic in */ 1197 hs_ep->fifo_load = 0; 1198 1199 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1200 } 1201 1202 /* 1203 * Note, trying to clear the NAK here causes problems with transmit 1204 * on the S3C6400 ending up with the TXFIFO becoming full. 1205 */ 1206 1207 /* check ep is enabled */ 1208 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1209 dev_dbg(hsotg->dev, 1210 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1211 index, dwc2_readl(hsotg, epctrl_reg)); 1212 1213 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1214 __func__, dwc2_readl(hsotg, epctrl_reg)); 1215 1216 /* enable ep interrupts */ 1217 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1218 } 1219 1220 /** 1221 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1222 * @hsotg: The device state. 1223 * @hs_ep: The endpoint the request is on. 1224 * @req: The request being processed. 1225 * 1226 * We've been asked to queue a request, so ensure that the memory buffer 1227 * is correctly setup for DMA. If we've been passed an extant DMA address 1228 * then ensure the buffer has been synced to memory. If our buffer has no 1229 * DMA memory, then we map the memory and mark our request to allow us to 1230 * cleanup on completion. 1231 */ 1232 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1233 struct dwc2_hsotg_ep *hs_ep, 1234 struct usb_request *req) 1235 { 1236 int ret; 1237 1238 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1239 if (ret) 1240 goto dma_error; 1241 1242 return 0; 1243 1244 dma_error: 1245 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1246 __func__, req->buf, req->length); 1247 1248 return -EIO; 1249 } 1250 1251 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1252 struct dwc2_hsotg_ep *hs_ep, 1253 struct dwc2_hsotg_req *hs_req) 1254 { 1255 void *req_buf = hs_req->req.buf; 1256 1257 /* If dma is not being used or buffer is aligned */ 1258 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1259 return 0; 1260 1261 WARN_ON(hs_req->saved_req_buf); 1262 1263 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1264 hs_ep->ep.name, req_buf, hs_req->req.length); 1265 1266 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1267 if (!hs_req->req.buf) { 1268 hs_req->req.buf = req_buf; 1269 dev_err(hsotg->dev, 1270 "%s: unable to allocate memory for bounce buffer\n", 1271 __func__); 1272 return -ENOMEM; 1273 } 1274 1275 /* Save actual buffer */ 1276 hs_req->saved_req_buf = req_buf; 1277 1278 if (hs_ep->dir_in) 1279 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1280 return 0; 1281 } 1282 1283 static void 1284 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1285 struct dwc2_hsotg_ep *hs_ep, 1286 struct dwc2_hsotg_req *hs_req) 1287 { 1288 /* If dma is not being used or buffer was aligned */ 1289 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1290 return; 1291 1292 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1293 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1294 1295 /* Copy data from bounce buffer on successful out transfer */ 1296 if (!hs_ep->dir_in && !hs_req->req.status) 1297 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1298 hs_req->req.actual); 1299 1300 /* Free bounce buffer */ 1301 kfree(hs_req->req.buf); 1302 1303 hs_req->req.buf = hs_req->saved_req_buf; 1304 hs_req->saved_req_buf = NULL; 1305 } 1306 1307 /** 1308 * dwc2_gadget_target_frame_elapsed - Checks target frame 1309 * @hs_ep: The driver endpoint to check 1310 * 1311 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1312 * corresponding transfer. 1313 */ 1314 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1315 { 1316 struct dwc2_hsotg *hsotg = hs_ep->parent; 1317 u32 target_frame = hs_ep->target_frame; 1318 u32 current_frame = hsotg->frame_number; 1319 bool frame_overrun = hs_ep->frame_overrun; 1320 1321 if (!frame_overrun && current_frame >= target_frame) 1322 return true; 1323 1324 if (frame_overrun && current_frame >= target_frame && 1325 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1326 return true; 1327 1328 return false; 1329 } 1330 1331 /* 1332 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1333 * @hsotg: The driver state 1334 * @hs_ep: the ep descriptor chain is for 1335 * 1336 * Called to update EP0 structure's pointers depend on stage of 1337 * control transfer. 1338 */ 1339 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1340 struct dwc2_hsotg_ep *hs_ep) 1341 { 1342 switch (hsotg->ep0_state) { 1343 case DWC2_EP0_SETUP: 1344 case DWC2_EP0_STATUS_OUT: 1345 hs_ep->desc_list = hsotg->setup_desc[0]; 1346 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1347 break; 1348 case DWC2_EP0_DATA_IN: 1349 case DWC2_EP0_STATUS_IN: 1350 hs_ep->desc_list = hsotg->ctrl_in_desc; 1351 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1352 break; 1353 case DWC2_EP0_DATA_OUT: 1354 hs_ep->desc_list = hsotg->ctrl_out_desc; 1355 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1356 break; 1357 default: 1358 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1359 hsotg->ep0_state); 1360 return -EINVAL; 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1367 gfp_t gfp_flags) 1368 { 1369 struct dwc2_hsotg_req *hs_req = our_req(req); 1370 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1371 struct dwc2_hsotg *hs = hs_ep->parent; 1372 bool first; 1373 int ret; 1374 u32 maxsize = 0; 1375 u32 mask = 0; 1376 1377 1378 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1379 ep->name, req, req->length, req->buf, req->no_interrupt, 1380 req->zero, req->short_not_ok); 1381 1382 /* Prevent new request submission when controller is suspended */ 1383 if (hs->lx_state != DWC2_L0) { 1384 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1385 __func__); 1386 return -EAGAIN; 1387 } 1388 1389 /* initialise status of the request */ 1390 INIT_LIST_HEAD(&hs_req->queue); 1391 req->actual = 0; 1392 req->status = -EINPROGRESS; 1393 1394 /* In DDMA mode for ISOC's don't queue request if length greater 1395 * than descriptor limits. 1396 */ 1397 if (using_desc_dma(hs) && hs_ep->isochronous) { 1398 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1399 if (hs_ep->dir_in && req->length > maxsize) { 1400 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1401 req->length, maxsize); 1402 return -EINVAL; 1403 } 1404 1405 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1406 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1407 req->length, hs_ep->ep.maxpacket); 1408 return -EINVAL; 1409 } 1410 } 1411 1412 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1413 if (ret) 1414 return ret; 1415 1416 /* if we're using DMA, sync the buffers as necessary */ 1417 if (using_dma(hs)) { 1418 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1419 if (ret) 1420 return ret; 1421 } 1422 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1423 if (using_desc_dma(hs) && !hs_ep->index) { 1424 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1425 if (ret) 1426 return ret; 1427 } 1428 1429 first = list_empty(&hs_ep->queue); 1430 list_add_tail(&hs_req->queue, &hs_ep->queue); 1431 1432 /* 1433 * Handle DDMA isochronous transfers separately - just add new entry 1434 * to the descriptor chain. 1435 * Transfer will be started once SW gets either one of NAK or 1436 * OutTknEpDis interrupts. 1437 */ 1438 if (using_desc_dma(hs) && hs_ep->isochronous) { 1439 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1440 dma_addr_t dma_addr = hs_req->req.dma; 1441 1442 if (hs_req->req.num_sgs) { 1443 WARN_ON(hs_req->req.num_sgs > 1); 1444 dma_addr = sg_dma_address(hs_req->req.sg); 1445 } 1446 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1447 hs_req->req.length); 1448 } 1449 return 0; 1450 } 1451 1452 /* Change EP direction if status phase request is after data out */ 1453 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1454 hs->ep0_state == DWC2_EP0_DATA_OUT) 1455 hs_ep->dir_in = 1; 1456 1457 if (first) { 1458 if (!hs_ep->isochronous) { 1459 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1460 return 0; 1461 } 1462 1463 /* Update current frame number value. */ 1464 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1465 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1466 dwc2_gadget_incr_frame_num(hs_ep); 1467 /* Update current frame number value once more as it 1468 * changes here. 1469 */ 1470 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1471 } 1472 1473 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1474 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1475 } 1476 return 0; 1477 } 1478 1479 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1480 gfp_t gfp_flags) 1481 { 1482 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1483 struct dwc2_hsotg *hs = hs_ep->parent; 1484 unsigned long flags = 0; 1485 int ret = 0; 1486 1487 spin_lock_irqsave(&hs->lock, flags); 1488 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1489 spin_unlock_irqrestore(&hs->lock, flags); 1490 1491 return ret; 1492 } 1493 1494 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1495 struct usb_request *req) 1496 { 1497 struct dwc2_hsotg_req *hs_req = our_req(req); 1498 1499 kfree(hs_req); 1500 } 1501 1502 /** 1503 * dwc2_hsotg_complete_oursetup - setup completion callback 1504 * @ep: The endpoint the request was on. 1505 * @req: The request completed. 1506 * 1507 * Called on completion of any requests the driver itself 1508 * submitted that need cleaning up. 1509 */ 1510 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1511 struct usb_request *req) 1512 { 1513 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1514 struct dwc2_hsotg *hsotg = hs_ep->parent; 1515 1516 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1517 1518 dwc2_hsotg_ep_free_request(ep, req); 1519 } 1520 1521 /** 1522 * ep_from_windex - convert control wIndex value to endpoint 1523 * @hsotg: The driver state. 1524 * @windex: The control request wIndex field (in host order). 1525 * 1526 * Convert the given wIndex into a pointer to an driver endpoint 1527 * structure, or return NULL if it is not a valid endpoint. 1528 */ 1529 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1530 u32 windex) 1531 { 1532 struct dwc2_hsotg_ep *ep; 1533 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1534 int idx = windex & 0x7F; 1535 1536 if (windex >= 0x100) 1537 return NULL; 1538 1539 if (idx > hsotg->num_of_eps) 1540 return NULL; 1541 1542 ep = index_to_ep(hsotg, idx, dir); 1543 1544 if (idx && ep->dir_in != dir) 1545 return NULL; 1546 1547 return ep; 1548 } 1549 1550 /** 1551 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1552 * @hsotg: The driver state. 1553 * @testmode: requested usb test mode 1554 * Enable usb Test Mode requested by the Host. 1555 */ 1556 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1557 { 1558 int dctl = dwc2_readl(hsotg, DCTL); 1559 1560 dctl &= ~DCTL_TSTCTL_MASK; 1561 switch (testmode) { 1562 case TEST_J: 1563 case TEST_K: 1564 case TEST_SE0_NAK: 1565 case TEST_PACKET: 1566 case TEST_FORCE_EN: 1567 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1568 break; 1569 default: 1570 return -EINVAL; 1571 } 1572 dwc2_writel(hsotg, dctl, DCTL); 1573 return 0; 1574 } 1575 1576 /** 1577 * dwc2_hsotg_send_reply - send reply to control request 1578 * @hsotg: The device state 1579 * @ep: Endpoint 0 1580 * @buff: Buffer for request 1581 * @length: Length of reply. 1582 * 1583 * Create a request and queue it on the given endpoint. This is useful as 1584 * an internal method of sending replies to certain control requests, etc. 1585 */ 1586 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1587 struct dwc2_hsotg_ep *ep, 1588 void *buff, 1589 int length) 1590 { 1591 struct usb_request *req; 1592 int ret; 1593 1594 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1595 1596 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1597 hsotg->ep0_reply = req; 1598 if (!req) { 1599 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1600 return -ENOMEM; 1601 } 1602 1603 req->buf = hsotg->ep0_buff; 1604 req->length = length; 1605 /* 1606 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1607 * STATUS stage. 1608 */ 1609 req->zero = 0; 1610 req->complete = dwc2_hsotg_complete_oursetup; 1611 1612 if (length) 1613 memcpy(req->buf, buff, length); 1614 1615 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1616 if (ret) { 1617 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1618 return ret; 1619 } 1620 1621 return 0; 1622 } 1623 1624 /** 1625 * dwc2_hsotg_process_req_status - process request GET_STATUS 1626 * @hsotg: The device state 1627 * @ctrl: USB control request 1628 */ 1629 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1630 struct usb_ctrlrequest *ctrl) 1631 { 1632 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1633 struct dwc2_hsotg_ep *ep; 1634 __le16 reply; 1635 int ret; 1636 1637 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1638 1639 if (!ep0->dir_in) { 1640 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1641 return -EINVAL; 1642 } 1643 1644 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1645 case USB_RECIP_DEVICE: 1646 /* 1647 * bit 0 => self powered 1648 * bit 1 => remote wakeup 1649 */ 1650 reply = cpu_to_le16(0); 1651 break; 1652 1653 case USB_RECIP_INTERFACE: 1654 /* currently, the data result should be zero */ 1655 reply = cpu_to_le16(0); 1656 break; 1657 1658 case USB_RECIP_ENDPOINT: 1659 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1660 if (!ep) 1661 return -ENOENT; 1662 1663 reply = cpu_to_le16(ep->halted ? 1 : 0); 1664 break; 1665 1666 default: 1667 return 0; 1668 } 1669 1670 if (le16_to_cpu(ctrl->wLength) != 2) 1671 return -EINVAL; 1672 1673 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1674 if (ret) { 1675 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1676 return ret; 1677 } 1678 1679 return 1; 1680 } 1681 1682 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1683 1684 /** 1685 * get_ep_head - return the first request on the endpoint 1686 * @hs_ep: The controller endpoint to get 1687 * 1688 * Get the first request on the endpoint. 1689 */ 1690 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1691 { 1692 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1693 queue); 1694 } 1695 1696 /** 1697 * dwc2_gadget_start_next_request - Starts next request from ep queue 1698 * @hs_ep: Endpoint structure 1699 * 1700 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1701 * in its handler. Hence we need to unmask it here to be able to do 1702 * resynchronization. 1703 */ 1704 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1705 { 1706 u32 mask; 1707 struct dwc2_hsotg *hsotg = hs_ep->parent; 1708 int dir_in = hs_ep->dir_in; 1709 struct dwc2_hsotg_req *hs_req; 1710 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1711 1712 if (!list_empty(&hs_ep->queue)) { 1713 hs_req = get_ep_head(hs_ep); 1714 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1715 return; 1716 } 1717 if (!hs_ep->isochronous) 1718 return; 1719 1720 if (dir_in) { 1721 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1722 __func__); 1723 } else { 1724 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1725 __func__); 1726 mask = dwc2_readl(hsotg, epmsk_reg); 1727 mask |= DOEPMSK_OUTTKNEPDISMSK; 1728 dwc2_writel(hsotg, mask, epmsk_reg); 1729 } 1730 } 1731 1732 /** 1733 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1734 * @hsotg: The device state 1735 * @ctrl: USB control request 1736 */ 1737 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1738 struct usb_ctrlrequest *ctrl) 1739 { 1740 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1741 struct dwc2_hsotg_req *hs_req; 1742 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1743 struct dwc2_hsotg_ep *ep; 1744 int ret; 1745 bool halted; 1746 u32 recip; 1747 u32 wValue; 1748 u32 wIndex; 1749 1750 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1751 __func__, set ? "SET" : "CLEAR"); 1752 1753 wValue = le16_to_cpu(ctrl->wValue); 1754 wIndex = le16_to_cpu(ctrl->wIndex); 1755 recip = ctrl->bRequestType & USB_RECIP_MASK; 1756 1757 switch (recip) { 1758 case USB_RECIP_DEVICE: 1759 switch (wValue) { 1760 case USB_DEVICE_REMOTE_WAKEUP: 1761 hsotg->remote_wakeup_allowed = 1; 1762 break; 1763 1764 case USB_DEVICE_TEST_MODE: 1765 if ((wIndex & 0xff) != 0) 1766 return -EINVAL; 1767 if (!set) 1768 return -EINVAL; 1769 1770 hsotg->test_mode = wIndex >> 8; 1771 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1772 if (ret) { 1773 dev_err(hsotg->dev, 1774 "%s: failed to send reply\n", __func__); 1775 return ret; 1776 } 1777 break; 1778 default: 1779 return -ENOENT; 1780 } 1781 break; 1782 1783 case USB_RECIP_ENDPOINT: 1784 ep = ep_from_windex(hsotg, wIndex); 1785 if (!ep) { 1786 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1787 __func__, wIndex); 1788 return -ENOENT; 1789 } 1790 1791 switch (wValue) { 1792 case USB_ENDPOINT_HALT: 1793 halted = ep->halted; 1794 1795 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1796 1797 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1798 if (ret) { 1799 dev_err(hsotg->dev, 1800 "%s: failed to send reply\n", __func__); 1801 return ret; 1802 } 1803 1804 /* 1805 * we have to complete all requests for ep if it was 1806 * halted, and the halt was cleared by CLEAR_FEATURE 1807 */ 1808 1809 if (!set && halted) { 1810 /* 1811 * If we have request in progress, 1812 * then complete it 1813 */ 1814 if (ep->req) { 1815 hs_req = ep->req; 1816 ep->req = NULL; 1817 list_del_init(&hs_req->queue); 1818 if (hs_req->req.complete) { 1819 spin_unlock(&hsotg->lock); 1820 usb_gadget_giveback_request( 1821 &ep->ep, &hs_req->req); 1822 spin_lock(&hsotg->lock); 1823 } 1824 } 1825 1826 /* If we have pending request, then start it */ 1827 if (!ep->req) 1828 dwc2_gadget_start_next_request(ep); 1829 } 1830 1831 break; 1832 1833 default: 1834 return -ENOENT; 1835 } 1836 break; 1837 default: 1838 return -ENOENT; 1839 } 1840 return 1; 1841 } 1842 1843 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1844 1845 /** 1846 * dwc2_hsotg_stall_ep0 - stall ep0 1847 * @hsotg: The device state 1848 * 1849 * Set stall for ep0 as response for setup request. 1850 */ 1851 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1852 { 1853 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1854 u32 reg; 1855 u32 ctrl; 1856 1857 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1858 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1859 1860 /* 1861 * DxEPCTL_Stall will be cleared by EP once it has 1862 * taken effect, so no need to clear later. 1863 */ 1864 1865 ctrl = dwc2_readl(hsotg, reg); 1866 ctrl |= DXEPCTL_STALL; 1867 ctrl |= DXEPCTL_CNAK; 1868 dwc2_writel(hsotg, ctrl, reg); 1869 1870 dev_dbg(hsotg->dev, 1871 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1872 ctrl, reg, dwc2_readl(hsotg, reg)); 1873 1874 /* 1875 * complete won't be called, so we enqueue 1876 * setup request here 1877 */ 1878 dwc2_hsotg_enqueue_setup(hsotg); 1879 } 1880 1881 /** 1882 * dwc2_hsotg_process_control - process a control request 1883 * @hsotg: The device state 1884 * @ctrl: The control request received 1885 * 1886 * The controller has received the SETUP phase of a control request, and 1887 * needs to work out what to do next (and whether to pass it on to the 1888 * gadget driver). 1889 */ 1890 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1891 struct usb_ctrlrequest *ctrl) 1892 { 1893 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1894 int ret = 0; 1895 u32 dcfg; 1896 1897 dev_dbg(hsotg->dev, 1898 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1899 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1900 ctrl->wIndex, ctrl->wLength); 1901 1902 if (ctrl->wLength == 0) { 1903 ep0->dir_in = 1; 1904 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1905 } else if (ctrl->bRequestType & USB_DIR_IN) { 1906 ep0->dir_in = 1; 1907 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1908 } else { 1909 ep0->dir_in = 0; 1910 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1911 } 1912 1913 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1914 switch (ctrl->bRequest) { 1915 case USB_REQ_SET_ADDRESS: 1916 hsotg->connected = 1; 1917 dcfg = dwc2_readl(hsotg, DCFG); 1918 dcfg &= ~DCFG_DEVADDR_MASK; 1919 dcfg |= (le16_to_cpu(ctrl->wValue) << 1920 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1921 dwc2_writel(hsotg, dcfg, DCFG); 1922 1923 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1924 1925 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1926 return; 1927 1928 case USB_REQ_GET_STATUS: 1929 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1930 break; 1931 1932 case USB_REQ_CLEAR_FEATURE: 1933 case USB_REQ_SET_FEATURE: 1934 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1935 break; 1936 } 1937 } 1938 1939 /* as a fallback, try delivering it to the driver to deal with */ 1940 1941 if (ret == 0 && hsotg->driver) { 1942 spin_unlock(&hsotg->lock); 1943 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1944 spin_lock(&hsotg->lock); 1945 if (ret < 0) 1946 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1947 } 1948 1949 hsotg->delayed_status = false; 1950 if (ret == USB_GADGET_DELAYED_STATUS) 1951 hsotg->delayed_status = true; 1952 1953 /* 1954 * the request is either unhandlable, or is not formatted correctly 1955 * so respond with a STALL for the status stage to indicate failure. 1956 */ 1957 1958 if (ret < 0) 1959 dwc2_hsotg_stall_ep0(hsotg); 1960 } 1961 1962 /** 1963 * dwc2_hsotg_complete_setup - completion of a setup transfer 1964 * @ep: The endpoint the request was on. 1965 * @req: The request completed. 1966 * 1967 * Called on completion of any requests the driver itself submitted for 1968 * EP0 setup packets 1969 */ 1970 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1971 struct usb_request *req) 1972 { 1973 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1974 struct dwc2_hsotg *hsotg = hs_ep->parent; 1975 1976 if (req->status < 0) { 1977 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1978 return; 1979 } 1980 1981 spin_lock(&hsotg->lock); 1982 if (req->actual == 0) 1983 dwc2_hsotg_enqueue_setup(hsotg); 1984 else 1985 dwc2_hsotg_process_control(hsotg, req->buf); 1986 spin_unlock(&hsotg->lock); 1987 } 1988 1989 /** 1990 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1991 * @hsotg: The device state. 1992 * 1993 * Enqueue a request on EP0 if necessary to received any SETUP packets 1994 * received from the host. 1995 */ 1996 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1997 { 1998 struct usb_request *req = hsotg->ctrl_req; 1999 struct dwc2_hsotg_req *hs_req = our_req(req); 2000 int ret; 2001 2002 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2003 2004 req->zero = 0; 2005 req->length = 8; 2006 req->buf = hsotg->ctrl_buff; 2007 req->complete = dwc2_hsotg_complete_setup; 2008 2009 if (!list_empty(&hs_req->queue)) { 2010 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2011 return; 2012 } 2013 2014 hsotg->eps_out[0]->dir_in = 0; 2015 hsotg->eps_out[0]->send_zlp = 0; 2016 hsotg->ep0_state = DWC2_EP0_SETUP; 2017 2018 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2019 if (ret < 0) { 2020 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2021 /* 2022 * Don't think there's much we can do other than watch the 2023 * driver fail. 2024 */ 2025 } 2026 } 2027 2028 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2029 struct dwc2_hsotg_ep *hs_ep) 2030 { 2031 u32 ctrl; 2032 u8 index = hs_ep->index; 2033 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2034 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2035 2036 if (hs_ep->dir_in) 2037 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2038 index); 2039 else 2040 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2041 index); 2042 if (using_desc_dma(hsotg)) { 2043 /* Not specific buffer needed for ep0 ZLP */ 2044 dma_addr_t dma = hs_ep->desc_list_dma; 2045 2046 if (!index) 2047 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2048 2049 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2050 } else { 2051 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2052 DXEPTSIZ_XFERSIZE(0), 2053 epsiz_reg); 2054 } 2055 2056 ctrl = dwc2_readl(hsotg, epctl_reg); 2057 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2058 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2059 ctrl |= DXEPCTL_USBACTEP; 2060 dwc2_writel(hsotg, ctrl, epctl_reg); 2061 } 2062 2063 /** 2064 * dwc2_hsotg_complete_request - complete a request given to us 2065 * @hsotg: The device state. 2066 * @hs_ep: The endpoint the request was on. 2067 * @hs_req: The request to complete. 2068 * @result: The result code (0 => Ok, otherwise errno) 2069 * 2070 * The given request has finished, so call the necessary completion 2071 * if it has one and then look to see if we can start a new request 2072 * on the endpoint. 2073 * 2074 * Note, expects the ep to already be locked as appropriate. 2075 */ 2076 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2077 struct dwc2_hsotg_ep *hs_ep, 2078 struct dwc2_hsotg_req *hs_req, 2079 int result) 2080 { 2081 if (!hs_req) { 2082 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2083 return; 2084 } 2085 2086 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2087 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2088 2089 /* 2090 * only replace the status if we've not already set an error 2091 * from a previous transaction 2092 */ 2093 2094 if (hs_req->req.status == -EINPROGRESS) 2095 hs_req->req.status = result; 2096 2097 if (using_dma(hsotg)) 2098 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2099 2100 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2101 2102 hs_ep->req = NULL; 2103 list_del_init(&hs_req->queue); 2104 2105 /* 2106 * call the complete request with the locks off, just in case the 2107 * request tries to queue more work for this endpoint. 2108 */ 2109 2110 if (hs_req->req.complete) { 2111 spin_unlock(&hsotg->lock); 2112 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2113 spin_lock(&hsotg->lock); 2114 } 2115 2116 /* In DDMA don't need to proceed to starting of next ISOC request */ 2117 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2118 return; 2119 2120 /* 2121 * Look to see if there is anything else to do. Note, the completion 2122 * of the previous request may have caused a new request to be started 2123 * so be careful when doing this. 2124 */ 2125 2126 if (!hs_ep->req && result >= 0) 2127 dwc2_gadget_start_next_request(hs_ep); 2128 } 2129 2130 /* 2131 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2132 * @hs_ep: The endpoint the request was on. 2133 * 2134 * Get first request from the ep queue, determine descriptor on which complete 2135 * happened. SW discovers which descriptor currently in use by HW, adjusts 2136 * dma_address and calculates index of completed descriptor based on the value 2137 * of DEPDMA register. Update actual length of request, giveback to gadget. 2138 */ 2139 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2140 { 2141 struct dwc2_hsotg *hsotg = hs_ep->parent; 2142 struct dwc2_hsotg_req *hs_req; 2143 struct usb_request *ureq; 2144 u32 desc_sts; 2145 u32 mask; 2146 2147 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2148 2149 /* Process only descriptors with buffer status set to DMA done */ 2150 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2151 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2152 2153 hs_req = get_ep_head(hs_ep); 2154 if (!hs_req) { 2155 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2156 return; 2157 } 2158 ureq = &hs_req->req; 2159 2160 /* Check completion status */ 2161 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2162 DEV_DMA_STS_SUCC) { 2163 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2164 DEV_DMA_ISOC_RX_NBYTES_MASK; 2165 ureq->actual = ureq->length - ((desc_sts & mask) >> 2166 DEV_DMA_ISOC_NBYTES_SHIFT); 2167 2168 /* Adjust actual len for ISOC Out if len is 2169 * not align of 4 2170 */ 2171 if (!hs_ep->dir_in && ureq->length & 0x3) 2172 ureq->actual += 4 - (ureq->length & 0x3); 2173 2174 /* Set actual frame number for completed transfers */ 2175 ureq->frame_number = 2176 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2177 DEV_DMA_ISOC_FRNUM_SHIFT; 2178 } 2179 2180 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2181 2182 hs_ep->compl_desc++; 2183 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2184 hs_ep->compl_desc = 0; 2185 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2186 } 2187 } 2188 2189 /* 2190 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2191 * @hs_ep: The isochronous endpoint. 2192 * 2193 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2194 * interrupt. Reset target frame and next_desc to allow to start 2195 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2196 * interrupt for OUT direction. 2197 */ 2198 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2199 { 2200 struct dwc2_hsotg *hsotg = hs_ep->parent; 2201 2202 if (!hs_ep->dir_in) 2203 dwc2_flush_rx_fifo(hsotg); 2204 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2205 2206 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2207 hs_ep->next_desc = 0; 2208 hs_ep->compl_desc = 0; 2209 } 2210 2211 /** 2212 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2213 * @hsotg: The device state. 2214 * @ep_idx: The endpoint index for the data 2215 * @size: The size of data in the fifo, in bytes 2216 * 2217 * The FIFO status shows there is data to read from the FIFO for a given 2218 * endpoint, so sort out whether we need to read the data into a request 2219 * that has been made for that endpoint. 2220 */ 2221 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2222 { 2223 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2224 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2225 int to_read; 2226 int max_req; 2227 int read_ptr; 2228 2229 if (!hs_req) { 2230 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2231 int ptr; 2232 2233 dev_dbg(hsotg->dev, 2234 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2235 __func__, size, ep_idx, epctl); 2236 2237 /* dump the data from the FIFO, we've nothing we can do */ 2238 for (ptr = 0; ptr < size; ptr += 4) 2239 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2240 2241 return; 2242 } 2243 2244 to_read = size; 2245 read_ptr = hs_req->req.actual; 2246 max_req = hs_req->req.length - read_ptr; 2247 2248 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2249 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2250 2251 if (to_read > max_req) { 2252 /* 2253 * more data appeared than we where willing 2254 * to deal with in this request. 2255 */ 2256 2257 /* currently we don't deal this */ 2258 WARN_ON_ONCE(1); 2259 } 2260 2261 hs_ep->total_data += to_read; 2262 hs_req->req.actual += to_read; 2263 to_read = DIV_ROUND_UP(to_read, 4); 2264 2265 /* 2266 * note, we might over-write the buffer end by 3 bytes depending on 2267 * alignment of the data. 2268 */ 2269 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2270 hs_req->req.buf + read_ptr, to_read); 2271 } 2272 2273 /** 2274 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2275 * @hsotg: The device instance 2276 * @dir_in: If IN zlp 2277 * 2278 * Generate a zero-length IN packet request for terminating a SETUP 2279 * transaction. 2280 * 2281 * Note, since we don't write any data to the TxFIFO, then it is 2282 * currently believed that we do not need to wait for any space in 2283 * the TxFIFO. 2284 */ 2285 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2286 { 2287 /* eps_out[0] is used in both directions */ 2288 hsotg->eps_out[0]->dir_in = dir_in; 2289 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2290 2291 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2292 } 2293 2294 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2295 u32 epctl_reg) 2296 { 2297 u32 ctrl; 2298 2299 ctrl = dwc2_readl(hsotg, epctl_reg); 2300 if (ctrl & DXEPCTL_EOFRNUM) 2301 ctrl |= DXEPCTL_SETEVENFR; 2302 else 2303 ctrl |= DXEPCTL_SETODDFR; 2304 dwc2_writel(hsotg, ctrl, epctl_reg); 2305 } 2306 2307 /* 2308 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2309 * @hs_ep - The endpoint on which transfer went 2310 * 2311 * Iterate over endpoints descriptor chain and get info on bytes remained 2312 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2313 */ 2314 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2315 { 2316 struct dwc2_hsotg *hsotg = hs_ep->parent; 2317 unsigned int bytes_rem = 0; 2318 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2319 int i; 2320 u32 status; 2321 2322 if (!desc) 2323 return -EINVAL; 2324 2325 for (i = 0; i < hs_ep->desc_count; ++i) { 2326 status = desc->status; 2327 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2328 2329 if (status & DEV_DMA_STS_MASK) 2330 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2331 i, status & DEV_DMA_STS_MASK); 2332 desc++; 2333 } 2334 2335 return bytes_rem; 2336 } 2337 2338 /** 2339 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2340 * @hsotg: The device instance 2341 * @epnum: The endpoint received from 2342 * 2343 * The RXFIFO has delivered an OutDone event, which means that the data 2344 * transfer for an OUT endpoint has been completed, either by a short 2345 * packet or by the finish of a transfer. 2346 */ 2347 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2348 { 2349 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2350 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2351 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2352 struct usb_request *req = &hs_req->req; 2353 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2354 int result = 0; 2355 2356 if (!hs_req) { 2357 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2358 return; 2359 } 2360 2361 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2362 dev_dbg(hsotg->dev, "zlp packet received\n"); 2363 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2364 dwc2_hsotg_enqueue_setup(hsotg); 2365 return; 2366 } 2367 2368 if (using_desc_dma(hsotg)) 2369 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2370 2371 if (using_dma(hsotg)) { 2372 unsigned int size_done; 2373 2374 /* 2375 * Calculate the size of the transfer by checking how much 2376 * is left in the endpoint size register and then working it 2377 * out from the amount we loaded for the transfer. 2378 * 2379 * We need to do this as DMA pointers are always 32bit aligned 2380 * so may overshoot/undershoot the transfer. 2381 */ 2382 2383 size_done = hs_ep->size_loaded - size_left; 2384 size_done += hs_ep->last_load; 2385 2386 req->actual = size_done; 2387 } 2388 2389 /* if there is more request to do, schedule new transfer */ 2390 if (req->actual < req->length && size_left == 0) { 2391 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2392 return; 2393 } 2394 2395 if (req->actual < req->length && req->short_not_ok) { 2396 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2397 __func__, req->actual, req->length); 2398 2399 /* 2400 * todo - what should we return here? there's no one else 2401 * even bothering to check the status. 2402 */ 2403 } 2404 2405 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2406 if (!using_desc_dma(hsotg) && epnum == 0 && 2407 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2408 /* Move to STATUS IN */ 2409 if (!hsotg->delayed_status) 2410 dwc2_hsotg_ep0_zlp(hsotg, true); 2411 } 2412 2413 /* 2414 * Slave mode OUT transfers do not go through XferComplete so 2415 * adjust the ISOC parity here. 2416 */ 2417 if (!using_dma(hsotg)) { 2418 if (hs_ep->isochronous && hs_ep->interval == 1) 2419 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2420 else if (hs_ep->isochronous && hs_ep->interval > 1) 2421 dwc2_gadget_incr_frame_num(hs_ep); 2422 } 2423 2424 /* Set actual frame number for completed transfers */ 2425 if (!using_desc_dma(hsotg) && hs_ep->isochronous) 2426 req->frame_number = hsotg->frame_number; 2427 2428 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2429 } 2430 2431 /** 2432 * dwc2_hsotg_handle_rx - RX FIFO has data 2433 * @hsotg: The device instance 2434 * 2435 * The IRQ handler has detected that the RX FIFO has some data in it 2436 * that requires processing, so find out what is in there and do the 2437 * appropriate read. 2438 * 2439 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2440 * chunks, so if you have x packets received on an endpoint you'll get x 2441 * FIFO events delivered, each with a packet's worth of data in it. 2442 * 2443 * When using DMA, we should not be processing events from the RXFIFO 2444 * as the actual data should be sent to the memory directly and we turn 2445 * on the completion interrupts to get notifications of transfer completion. 2446 */ 2447 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2448 { 2449 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2450 u32 epnum, status, size; 2451 2452 WARN_ON(using_dma(hsotg)); 2453 2454 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2455 status = grxstsr & GRXSTS_PKTSTS_MASK; 2456 2457 size = grxstsr & GRXSTS_BYTECNT_MASK; 2458 size >>= GRXSTS_BYTECNT_SHIFT; 2459 2460 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2461 __func__, grxstsr, size, epnum); 2462 2463 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2464 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2465 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2466 break; 2467 2468 case GRXSTS_PKTSTS_OUTDONE: 2469 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2470 dwc2_hsotg_read_frameno(hsotg)); 2471 2472 if (!using_dma(hsotg)) 2473 dwc2_hsotg_handle_outdone(hsotg, epnum); 2474 break; 2475 2476 case GRXSTS_PKTSTS_SETUPDONE: 2477 dev_dbg(hsotg->dev, 2478 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2479 dwc2_hsotg_read_frameno(hsotg), 2480 dwc2_readl(hsotg, DOEPCTL(0))); 2481 /* 2482 * Call dwc2_hsotg_handle_outdone here if it was not called from 2483 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2484 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2485 */ 2486 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2487 dwc2_hsotg_handle_outdone(hsotg, epnum); 2488 break; 2489 2490 case GRXSTS_PKTSTS_OUTRX: 2491 dwc2_hsotg_rx_data(hsotg, epnum, size); 2492 break; 2493 2494 case GRXSTS_PKTSTS_SETUPRX: 2495 dev_dbg(hsotg->dev, 2496 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2497 dwc2_hsotg_read_frameno(hsotg), 2498 dwc2_readl(hsotg, DOEPCTL(0))); 2499 2500 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2501 2502 dwc2_hsotg_rx_data(hsotg, epnum, size); 2503 break; 2504 2505 default: 2506 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2507 __func__, grxstsr); 2508 2509 dwc2_hsotg_dump(hsotg); 2510 break; 2511 } 2512 } 2513 2514 /** 2515 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2516 * @mps: The maximum packet size in bytes. 2517 */ 2518 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2519 { 2520 switch (mps) { 2521 case 64: 2522 return D0EPCTL_MPS_64; 2523 case 32: 2524 return D0EPCTL_MPS_32; 2525 case 16: 2526 return D0EPCTL_MPS_16; 2527 case 8: 2528 return D0EPCTL_MPS_8; 2529 } 2530 2531 /* bad max packet size, warn and return invalid result */ 2532 WARN_ON(1); 2533 return (u32)-1; 2534 } 2535 2536 /** 2537 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2538 * @hsotg: The driver state. 2539 * @ep: The index number of the endpoint 2540 * @mps: The maximum packet size in bytes 2541 * @mc: The multicount value 2542 * @dir_in: True if direction is in. 2543 * 2544 * Configure the maximum packet size for the given endpoint, updating 2545 * the hardware control registers to reflect this. 2546 */ 2547 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2548 unsigned int ep, unsigned int mps, 2549 unsigned int mc, unsigned int dir_in) 2550 { 2551 struct dwc2_hsotg_ep *hs_ep; 2552 u32 reg; 2553 2554 hs_ep = index_to_ep(hsotg, ep, dir_in); 2555 if (!hs_ep) 2556 return; 2557 2558 if (ep == 0) { 2559 u32 mps_bytes = mps; 2560 2561 /* EP0 is a special case */ 2562 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2563 if (mps > 3) 2564 goto bad_mps; 2565 hs_ep->ep.maxpacket = mps_bytes; 2566 hs_ep->mc = 1; 2567 } else { 2568 if (mps > 1024) 2569 goto bad_mps; 2570 hs_ep->mc = mc; 2571 if (mc > 3) 2572 goto bad_mps; 2573 hs_ep->ep.maxpacket = mps; 2574 } 2575 2576 if (dir_in) { 2577 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2578 reg &= ~DXEPCTL_MPS_MASK; 2579 reg |= mps; 2580 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2581 } else { 2582 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2583 reg &= ~DXEPCTL_MPS_MASK; 2584 reg |= mps; 2585 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2586 } 2587 2588 return; 2589 2590 bad_mps: 2591 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2592 } 2593 2594 /** 2595 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2596 * @hsotg: The driver state 2597 * @idx: The index for the endpoint (0..15) 2598 */ 2599 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2600 { 2601 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2602 GRSTCTL); 2603 2604 /* wait until the fifo is flushed */ 2605 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2606 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2607 __func__); 2608 } 2609 2610 /** 2611 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2612 * @hsotg: The driver state 2613 * @hs_ep: The driver endpoint to check. 2614 * 2615 * Check to see if there is a request that has data to send, and if so 2616 * make an attempt to write data into the FIFO. 2617 */ 2618 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2619 struct dwc2_hsotg_ep *hs_ep) 2620 { 2621 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2622 2623 if (!hs_ep->dir_in || !hs_req) { 2624 /** 2625 * if request is not enqueued, we disable interrupts 2626 * for endpoints, excepting ep0 2627 */ 2628 if (hs_ep->index != 0) 2629 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2630 hs_ep->dir_in, 0); 2631 return 0; 2632 } 2633 2634 if (hs_req->req.actual < hs_req->req.length) { 2635 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2636 hs_ep->index); 2637 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2638 } 2639 2640 return 0; 2641 } 2642 2643 /** 2644 * dwc2_hsotg_complete_in - complete IN transfer 2645 * @hsotg: The device state. 2646 * @hs_ep: The endpoint that has just completed. 2647 * 2648 * An IN transfer has been completed, update the transfer's state and then 2649 * call the relevant completion routines. 2650 */ 2651 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2652 struct dwc2_hsotg_ep *hs_ep) 2653 { 2654 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2655 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2656 int size_left, size_done; 2657 2658 if (!hs_req) { 2659 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2660 return; 2661 } 2662 2663 /* Finish ZLP handling for IN EP0 transactions */ 2664 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2665 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2666 2667 /* 2668 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2669 * changed to IN. Change back to complete OUT transfer request 2670 */ 2671 hs_ep->dir_in = 0; 2672 2673 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2674 if (hsotg->test_mode) { 2675 int ret; 2676 2677 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2678 if (ret < 0) { 2679 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2680 hsotg->test_mode); 2681 dwc2_hsotg_stall_ep0(hsotg); 2682 return; 2683 } 2684 } 2685 dwc2_hsotg_enqueue_setup(hsotg); 2686 return; 2687 } 2688 2689 /* 2690 * Calculate the size of the transfer by checking how much is left 2691 * in the endpoint size register and then working it out from 2692 * the amount we loaded for the transfer. 2693 * 2694 * We do this even for DMA, as the transfer may have incremented 2695 * past the end of the buffer (DMA transfers are always 32bit 2696 * aligned). 2697 */ 2698 if (using_desc_dma(hsotg)) { 2699 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2700 if (size_left < 0) 2701 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2702 size_left); 2703 } else { 2704 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2705 } 2706 2707 size_done = hs_ep->size_loaded - size_left; 2708 size_done += hs_ep->last_load; 2709 2710 if (hs_req->req.actual != size_done) 2711 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2712 __func__, hs_req->req.actual, size_done); 2713 2714 hs_req->req.actual = size_done; 2715 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2716 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2717 2718 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2719 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2720 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2721 return; 2722 } 2723 2724 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2725 if (hs_ep->send_zlp) { 2726 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2727 hs_ep->send_zlp = 0; 2728 /* transfer will be completed on next complete interrupt */ 2729 return; 2730 } 2731 2732 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2733 /* Move to STATUS OUT */ 2734 dwc2_hsotg_ep0_zlp(hsotg, false); 2735 return; 2736 } 2737 2738 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2739 } 2740 2741 /** 2742 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2743 * @hsotg: The device state. 2744 * @idx: Index of ep. 2745 * @dir_in: Endpoint direction 1-in 0-out. 2746 * 2747 * Reads for endpoint with given index and direction, by masking 2748 * epint_reg with coresponding mask. 2749 */ 2750 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2751 unsigned int idx, int dir_in) 2752 { 2753 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2754 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2755 u32 ints; 2756 u32 mask; 2757 u32 diepempmsk; 2758 2759 mask = dwc2_readl(hsotg, epmsk_reg); 2760 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2761 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2762 mask |= DXEPINT_SETUP_RCVD; 2763 2764 ints = dwc2_readl(hsotg, epint_reg); 2765 ints &= mask; 2766 return ints; 2767 } 2768 2769 /** 2770 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2771 * @hs_ep: The endpoint on which interrupt is asserted. 2772 * 2773 * This interrupt indicates that the endpoint has been disabled per the 2774 * application's request. 2775 * 2776 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2777 * in case of ISOC completes current request. 2778 * 2779 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2780 * request starts it. 2781 */ 2782 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2783 { 2784 struct dwc2_hsotg *hsotg = hs_ep->parent; 2785 struct dwc2_hsotg_req *hs_req; 2786 unsigned char idx = hs_ep->index; 2787 int dir_in = hs_ep->dir_in; 2788 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2789 int dctl = dwc2_readl(hsotg, DCTL); 2790 2791 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2792 2793 if (dir_in) { 2794 int epctl = dwc2_readl(hsotg, epctl_reg); 2795 2796 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2797 2798 if (hs_ep->isochronous) { 2799 dwc2_hsotg_complete_in(hsotg, hs_ep); 2800 return; 2801 } 2802 2803 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2804 int dctl = dwc2_readl(hsotg, DCTL); 2805 2806 dctl |= DCTL_CGNPINNAK; 2807 dwc2_writel(hsotg, dctl, DCTL); 2808 } 2809 return; 2810 } 2811 2812 if (dctl & DCTL_GOUTNAKSTS) { 2813 dctl |= DCTL_CGOUTNAK; 2814 dwc2_writel(hsotg, dctl, DCTL); 2815 } 2816 2817 if (!hs_ep->isochronous) 2818 return; 2819 2820 if (list_empty(&hs_ep->queue)) { 2821 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2822 __func__, hs_ep); 2823 return; 2824 } 2825 2826 do { 2827 hs_req = get_ep_head(hs_ep); 2828 if (hs_req) 2829 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2830 -ENODATA); 2831 dwc2_gadget_incr_frame_num(hs_ep); 2832 /* Update current frame number value. */ 2833 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2834 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2835 2836 dwc2_gadget_start_next_request(hs_ep); 2837 } 2838 2839 /** 2840 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2841 * @ep: The endpoint on which interrupt is asserted. 2842 * 2843 * This is starting point for ISOC-OUT transfer, synchronization done with 2844 * first out token received from host while corresponding EP is disabled. 2845 * 2846 * Device does not know initial frame in which out token will come. For this 2847 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2848 * getting this interrupt SW starts calculation for next transfer frame. 2849 */ 2850 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2851 { 2852 struct dwc2_hsotg *hsotg = ep->parent; 2853 int dir_in = ep->dir_in; 2854 u32 doepmsk; 2855 2856 if (dir_in || !ep->isochronous) 2857 return; 2858 2859 if (using_desc_dma(hsotg)) { 2860 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2861 /* Start first ISO Out */ 2862 ep->target_frame = hsotg->frame_number; 2863 dwc2_gadget_start_isoc_ddma(ep); 2864 } 2865 return; 2866 } 2867 2868 if (ep->interval > 1 && 2869 ep->target_frame == TARGET_FRAME_INITIAL) { 2870 u32 ctrl; 2871 2872 ep->target_frame = hsotg->frame_number; 2873 dwc2_gadget_incr_frame_num(ep); 2874 2875 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2876 if (ep->target_frame & 0x1) 2877 ctrl |= DXEPCTL_SETODDFR; 2878 else 2879 ctrl |= DXEPCTL_SETEVENFR; 2880 2881 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2882 } 2883 2884 dwc2_gadget_start_next_request(ep); 2885 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2886 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2887 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2888 } 2889 2890 /** 2891 * dwc2_gadget_handle_nak - handle NAK interrupt 2892 * @hs_ep: The endpoint on which interrupt is asserted. 2893 * 2894 * This is starting point for ISOC-IN transfer, synchronization done with 2895 * first IN token received from host while corresponding EP is disabled. 2896 * 2897 * Device does not know when first one token will arrive from host. On first 2898 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2899 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2900 * sent in response to that as there was no data in FIFO. SW is basing on this 2901 * interrupt to obtain frame in which token has come and then based on the 2902 * interval calculates next frame for transfer. 2903 */ 2904 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2905 { 2906 struct dwc2_hsotg *hsotg = hs_ep->parent; 2907 int dir_in = hs_ep->dir_in; 2908 2909 if (!dir_in || !hs_ep->isochronous) 2910 return; 2911 2912 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2913 2914 if (using_desc_dma(hsotg)) { 2915 hs_ep->target_frame = hsotg->frame_number; 2916 dwc2_gadget_incr_frame_num(hs_ep); 2917 2918 /* In service interval mode target_frame must 2919 * be set to last (u)frame of the service interval. 2920 */ 2921 if (hsotg->params.service_interval) { 2922 /* Set target_frame to the first (u)frame of 2923 * the service interval 2924 */ 2925 hs_ep->target_frame &= ~hs_ep->interval + 1; 2926 2927 /* Set target_frame to the last (u)frame of 2928 * the service interval 2929 */ 2930 dwc2_gadget_incr_frame_num(hs_ep); 2931 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2932 } 2933 2934 dwc2_gadget_start_isoc_ddma(hs_ep); 2935 return; 2936 } 2937 2938 hs_ep->target_frame = hsotg->frame_number; 2939 if (hs_ep->interval > 1) { 2940 u32 ctrl = dwc2_readl(hsotg, 2941 DIEPCTL(hs_ep->index)); 2942 if (hs_ep->target_frame & 0x1) 2943 ctrl |= DXEPCTL_SETODDFR; 2944 else 2945 ctrl |= DXEPCTL_SETEVENFR; 2946 2947 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2948 } 2949 2950 dwc2_hsotg_complete_request(hsotg, hs_ep, 2951 get_ep_head(hs_ep), 0); 2952 } 2953 2954 if (!using_desc_dma(hsotg)) 2955 dwc2_gadget_incr_frame_num(hs_ep); 2956 } 2957 2958 /** 2959 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2960 * @hsotg: The driver state 2961 * @idx: The index for the endpoint (0..15) 2962 * @dir_in: Set if this is an IN endpoint 2963 * 2964 * Process and clear any interrupt pending for an individual endpoint 2965 */ 2966 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2967 int dir_in) 2968 { 2969 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2970 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2971 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2972 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2973 u32 ints; 2974 u32 ctrl; 2975 2976 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2977 ctrl = dwc2_readl(hsotg, epctl_reg); 2978 2979 /* Clear endpoint interrupts */ 2980 dwc2_writel(hsotg, ints, epint_reg); 2981 2982 if (!hs_ep) { 2983 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2984 __func__, idx, dir_in ? "in" : "out"); 2985 return; 2986 } 2987 2988 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2989 __func__, idx, dir_in ? "in" : "out", ints); 2990 2991 /* Don't process XferCompl interrupt if it is a setup packet */ 2992 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2993 ints &= ~DXEPINT_XFERCOMPL; 2994 2995 /* 2996 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 2997 * stage and xfercomplete was generated without SETUP phase done 2998 * interrupt. SW should parse received setup packet only after host's 2999 * exit from setup phase of control transfer. 3000 */ 3001 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3002 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3003 ints &= ~DXEPINT_XFERCOMPL; 3004 3005 if (ints & DXEPINT_XFERCOMPL) { 3006 dev_dbg(hsotg->dev, 3007 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3008 __func__, dwc2_readl(hsotg, epctl_reg), 3009 dwc2_readl(hsotg, epsiz_reg)); 3010 3011 /* In DDMA handle isochronous requests separately */ 3012 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3013 /* XferCompl set along with BNA */ 3014 if (!(ints & DXEPINT_BNAINTR)) 3015 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3016 } else if (dir_in) { 3017 /* 3018 * We get OutDone from the FIFO, so we only 3019 * need to look at completing IN requests here 3020 * if operating slave mode 3021 */ 3022 if (hs_ep->isochronous && hs_ep->interval > 1) 3023 dwc2_gadget_incr_frame_num(hs_ep); 3024 3025 dwc2_hsotg_complete_in(hsotg, hs_ep); 3026 if (ints & DXEPINT_NAKINTRPT) 3027 ints &= ~DXEPINT_NAKINTRPT; 3028 3029 if (idx == 0 && !hs_ep->req) 3030 dwc2_hsotg_enqueue_setup(hsotg); 3031 } else if (using_dma(hsotg)) { 3032 /* 3033 * We're using DMA, we need to fire an OutDone here 3034 * as we ignore the RXFIFO. 3035 */ 3036 if (hs_ep->isochronous && hs_ep->interval > 1) 3037 dwc2_gadget_incr_frame_num(hs_ep); 3038 3039 dwc2_hsotg_handle_outdone(hsotg, idx); 3040 } 3041 } 3042 3043 if (ints & DXEPINT_EPDISBLD) 3044 dwc2_gadget_handle_ep_disabled(hs_ep); 3045 3046 if (ints & DXEPINT_OUTTKNEPDIS) 3047 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3048 3049 if (ints & DXEPINT_NAKINTRPT) 3050 dwc2_gadget_handle_nak(hs_ep); 3051 3052 if (ints & DXEPINT_AHBERR) 3053 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3054 3055 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3056 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3057 3058 if (using_dma(hsotg) && idx == 0) { 3059 /* 3060 * this is the notification we've received a 3061 * setup packet. In non-DMA mode we'd get this 3062 * from the RXFIFO, instead we need to process 3063 * the setup here. 3064 */ 3065 3066 if (dir_in) 3067 WARN_ON_ONCE(1); 3068 else 3069 dwc2_hsotg_handle_outdone(hsotg, 0); 3070 } 3071 } 3072 3073 if (ints & DXEPINT_STSPHSERCVD) { 3074 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3075 3076 /* Safety check EP0 state when STSPHSERCVD asserted */ 3077 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3078 /* Move to STATUS IN for DDMA */ 3079 if (using_desc_dma(hsotg)) { 3080 if (!hsotg->delayed_status) 3081 dwc2_hsotg_ep0_zlp(hsotg, true); 3082 else 3083 /* In case of 3 stage Control Write with delayed 3084 * status, when Status IN transfer started 3085 * before STSPHSERCVD asserted, NAKSTS bit not 3086 * cleared by CNAK in dwc2_hsotg_start_req() 3087 * function. Clear now NAKSTS to allow complete 3088 * transfer. 3089 */ 3090 dwc2_set_bit(hsotg, DIEPCTL(0), 3091 DXEPCTL_CNAK); 3092 } 3093 } 3094 3095 } 3096 3097 if (ints & DXEPINT_BACK2BACKSETUP) 3098 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3099 3100 if (ints & DXEPINT_BNAINTR) { 3101 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3102 if (hs_ep->isochronous) 3103 dwc2_gadget_handle_isoc_bna(hs_ep); 3104 } 3105 3106 if (dir_in && !hs_ep->isochronous) { 3107 /* not sure if this is important, but we'll clear it anyway */ 3108 if (ints & DXEPINT_INTKNTXFEMP) { 3109 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3110 __func__, idx); 3111 } 3112 3113 /* this probably means something bad is happening */ 3114 if (ints & DXEPINT_INTKNEPMIS) { 3115 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3116 __func__, idx); 3117 } 3118 3119 /* FIFO has space or is empty (see GAHBCFG) */ 3120 if (hsotg->dedicated_fifos && 3121 ints & DXEPINT_TXFEMP) { 3122 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3123 __func__, idx); 3124 if (!using_dma(hsotg)) 3125 dwc2_hsotg_trytx(hsotg, hs_ep); 3126 } 3127 } 3128 } 3129 3130 /** 3131 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3132 * @hsotg: The device state. 3133 * 3134 * Handle updating the device settings after the enumeration phase has 3135 * been completed. 3136 */ 3137 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3138 { 3139 u32 dsts = dwc2_readl(hsotg, DSTS); 3140 int ep0_mps = 0, ep_mps = 8; 3141 3142 /* 3143 * This should signal the finish of the enumeration phase 3144 * of the USB handshaking, so we should now know what rate 3145 * we connected at. 3146 */ 3147 3148 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3149 3150 /* 3151 * note, since we're limited by the size of transfer on EP0, and 3152 * it seems IN transfers must be a even number of packets we do 3153 * not advertise a 64byte MPS on EP0. 3154 */ 3155 3156 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3157 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3158 case DSTS_ENUMSPD_FS: 3159 case DSTS_ENUMSPD_FS48: 3160 hsotg->gadget.speed = USB_SPEED_FULL; 3161 ep0_mps = EP0_MPS_LIMIT; 3162 ep_mps = 1023; 3163 break; 3164 3165 case DSTS_ENUMSPD_HS: 3166 hsotg->gadget.speed = USB_SPEED_HIGH; 3167 ep0_mps = EP0_MPS_LIMIT; 3168 ep_mps = 1024; 3169 break; 3170 3171 case DSTS_ENUMSPD_LS: 3172 hsotg->gadget.speed = USB_SPEED_LOW; 3173 ep0_mps = 8; 3174 ep_mps = 8; 3175 /* 3176 * note, we don't actually support LS in this driver at the 3177 * moment, and the documentation seems to imply that it isn't 3178 * supported by the PHYs on some of the devices. 3179 */ 3180 break; 3181 } 3182 dev_info(hsotg->dev, "new device is %s\n", 3183 usb_speed_string(hsotg->gadget.speed)); 3184 3185 /* 3186 * we should now know the maximum packet size for an 3187 * endpoint, so set the endpoints to a default value. 3188 */ 3189 3190 if (ep0_mps) { 3191 int i; 3192 /* Initialize ep0 for both in and out directions */ 3193 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3194 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3195 for (i = 1; i < hsotg->num_of_eps; i++) { 3196 if (hsotg->eps_in[i]) 3197 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3198 0, 1); 3199 if (hsotg->eps_out[i]) 3200 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3201 0, 0); 3202 } 3203 } 3204 3205 /* ensure after enumeration our EP0 is active */ 3206 3207 dwc2_hsotg_enqueue_setup(hsotg); 3208 3209 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3210 dwc2_readl(hsotg, DIEPCTL0), 3211 dwc2_readl(hsotg, DOEPCTL0)); 3212 } 3213 3214 /** 3215 * kill_all_requests - remove all requests from the endpoint's queue 3216 * @hsotg: The device state. 3217 * @ep: The endpoint the requests may be on. 3218 * @result: The result code to use. 3219 * 3220 * Go through the requests on the given endpoint and mark them 3221 * completed with the given result code. 3222 */ 3223 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3224 struct dwc2_hsotg_ep *ep, 3225 int result) 3226 { 3227 unsigned int size; 3228 3229 ep->req = NULL; 3230 3231 while (!list_empty(&ep->queue)) { 3232 struct dwc2_hsotg_req *req = get_ep_head(ep); 3233 3234 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3235 } 3236 3237 if (!hsotg->dedicated_fifos) 3238 return; 3239 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3240 if (size < ep->fifo_size) 3241 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3242 } 3243 3244 /** 3245 * dwc2_hsotg_disconnect - disconnect service 3246 * @hsotg: The device state. 3247 * 3248 * The device has been disconnected. Remove all current 3249 * transactions and signal the gadget driver that this 3250 * has happened. 3251 */ 3252 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3253 { 3254 unsigned int ep; 3255 3256 if (!hsotg->connected) 3257 return; 3258 3259 hsotg->connected = 0; 3260 hsotg->test_mode = 0; 3261 3262 /* all endpoints should be shutdown */ 3263 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3264 if (hsotg->eps_in[ep]) 3265 kill_all_requests(hsotg, hsotg->eps_in[ep], 3266 -ESHUTDOWN); 3267 if (hsotg->eps_out[ep]) 3268 kill_all_requests(hsotg, hsotg->eps_out[ep], 3269 -ESHUTDOWN); 3270 } 3271 3272 call_gadget(hsotg, disconnect); 3273 hsotg->lx_state = DWC2_L3; 3274 3275 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3276 } 3277 3278 /** 3279 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3280 * @hsotg: The device state: 3281 * @periodic: True if this is a periodic FIFO interrupt 3282 */ 3283 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3284 { 3285 struct dwc2_hsotg_ep *ep; 3286 int epno, ret; 3287 3288 /* look through for any more data to transmit */ 3289 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3290 ep = index_to_ep(hsotg, epno, 1); 3291 3292 if (!ep) 3293 continue; 3294 3295 if (!ep->dir_in) 3296 continue; 3297 3298 if ((periodic && !ep->periodic) || 3299 (!periodic && ep->periodic)) 3300 continue; 3301 3302 ret = dwc2_hsotg_trytx(hsotg, ep); 3303 if (ret < 0) 3304 break; 3305 } 3306 } 3307 3308 /* IRQ flags which will trigger a retry around the IRQ loop */ 3309 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3310 GINTSTS_PTXFEMP | \ 3311 GINTSTS_RXFLVL) 3312 3313 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3314 /** 3315 * dwc2_hsotg_core_init - issue softreset to the core 3316 * @hsotg: The device state 3317 * @is_usb_reset: Usb resetting flag 3318 * 3319 * Issue a soft reset to the core, and await the core finishing it. 3320 */ 3321 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3322 bool is_usb_reset) 3323 { 3324 u32 intmsk; 3325 u32 val; 3326 u32 usbcfg; 3327 u32 dcfg = 0; 3328 int ep; 3329 3330 /* Kill any ep0 requests as controller will be reinitialized */ 3331 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3332 3333 if (!is_usb_reset) { 3334 if (dwc2_core_reset(hsotg, true)) 3335 return; 3336 } else { 3337 /* all endpoints should be shutdown */ 3338 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3339 if (hsotg->eps_in[ep]) 3340 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3341 if (hsotg->eps_out[ep]) 3342 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3343 } 3344 } 3345 3346 /* 3347 * we must now enable ep0 ready for host detection and then 3348 * set configuration. 3349 */ 3350 3351 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3352 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3353 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3354 usbcfg |= GUSBCFG_TOUTCAL(7); 3355 3356 /* remove the HNP/SRP and set the PHY */ 3357 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3358 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3359 3360 dwc2_phy_init(hsotg, true); 3361 3362 dwc2_hsotg_init_fifo(hsotg); 3363 3364 if (!is_usb_reset) 3365 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3366 3367 dcfg |= DCFG_EPMISCNT(1); 3368 3369 switch (hsotg->params.speed) { 3370 case DWC2_SPEED_PARAM_LOW: 3371 dcfg |= DCFG_DEVSPD_LS; 3372 break; 3373 case DWC2_SPEED_PARAM_FULL: 3374 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3375 dcfg |= DCFG_DEVSPD_FS48; 3376 else 3377 dcfg |= DCFG_DEVSPD_FS; 3378 break; 3379 default: 3380 dcfg |= DCFG_DEVSPD_HS; 3381 } 3382 3383 if (hsotg->params.ipg_isoc_en) 3384 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3385 3386 dwc2_writel(hsotg, dcfg, DCFG); 3387 3388 /* Clear any pending OTG interrupts */ 3389 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3390 3391 /* Clear any pending interrupts */ 3392 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3393 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3394 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3395 GINTSTS_USBRST | GINTSTS_RESETDET | 3396 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3397 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3398 GINTSTS_LPMTRANRCVD; 3399 3400 if (!using_desc_dma(hsotg)) 3401 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3402 3403 if (!hsotg->params.external_id_pin_ctl) 3404 intmsk |= GINTSTS_CONIDSTSCHNG; 3405 3406 dwc2_writel(hsotg, intmsk, GINTMSK); 3407 3408 if (using_dma(hsotg)) { 3409 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3410 hsotg->params.ahbcfg, 3411 GAHBCFG); 3412 3413 /* Set DDMA mode support in the core if needed */ 3414 if (using_desc_dma(hsotg)) 3415 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3416 3417 } else { 3418 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3419 (GAHBCFG_NP_TXF_EMP_LVL | 3420 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3421 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3422 } 3423 3424 /* 3425 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3426 * when we have no data to transfer. Otherwise we get being flooded by 3427 * interrupts. 3428 */ 3429 3430 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3431 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3432 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3433 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3434 DIEPMSK); 3435 3436 /* 3437 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3438 * DMA mode we may need this and StsPhseRcvd. 3439 */ 3440 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3441 DOEPMSK_STSPHSERCVDMSK) : 0) | 3442 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3443 DOEPMSK_SETUPMSK, 3444 DOEPMSK); 3445 3446 /* Enable BNA interrupt for DDMA */ 3447 if (using_desc_dma(hsotg)) { 3448 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3449 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3450 } 3451 3452 /* Enable Service Interval mode if supported */ 3453 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3454 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3455 3456 dwc2_writel(hsotg, 0, DAINTMSK); 3457 3458 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3459 dwc2_readl(hsotg, DIEPCTL0), 3460 dwc2_readl(hsotg, DOEPCTL0)); 3461 3462 /* enable in and out endpoint interrupts */ 3463 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3464 3465 /* 3466 * Enable the RXFIFO when in slave mode, as this is how we collect 3467 * the data. In DMA mode, we get events from the FIFO but also 3468 * things we cannot process, so do not use it. 3469 */ 3470 if (!using_dma(hsotg)) 3471 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3472 3473 /* Enable interrupts for EP0 in and out */ 3474 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3475 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3476 3477 if (!is_usb_reset) { 3478 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3479 udelay(10); /* see openiboot */ 3480 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3481 } 3482 3483 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3484 3485 /* 3486 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3487 * writing to the EPCTL register.. 3488 */ 3489 3490 /* set to read 1 8byte packet */ 3491 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3492 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3493 3494 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3495 DXEPCTL_CNAK | DXEPCTL_EPENA | 3496 DXEPCTL_USBACTEP, 3497 DOEPCTL0); 3498 3499 /* enable, but don't activate EP0in */ 3500 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3501 DXEPCTL_USBACTEP, DIEPCTL0); 3502 3503 /* clear global NAKs */ 3504 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3505 if (!is_usb_reset) 3506 val |= DCTL_SFTDISCON; 3507 dwc2_set_bit(hsotg, DCTL, val); 3508 3509 /* configure the core to support LPM */ 3510 dwc2_gadget_init_lpm(hsotg); 3511 3512 /* program GREFCLK register if needed */ 3513 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3514 dwc2_gadget_program_ref_clk(hsotg); 3515 3516 /* must be at-least 3ms to allow bus to see disconnect */ 3517 mdelay(3); 3518 3519 hsotg->lx_state = DWC2_L0; 3520 3521 dwc2_hsotg_enqueue_setup(hsotg); 3522 3523 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3524 dwc2_readl(hsotg, DIEPCTL0), 3525 dwc2_readl(hsotg, DOEPCTL0)); 3526 } 3527 3528 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3529 { 3530 /* set the soft-disconnect bit */ 3531 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3532 } 3533 3534 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3535 { 3536 /* remove the soft-disconnect and let's go */ 3537 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3538 } 3539 3540 /** 3541 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3542 * @hsotg: The device state: 3543 * 3544 * This interrupt indicates one of the following conditions occurred while 3545 * transmitting an ISOC transaction. 3546 * - Corrupted IN Token for ISOC EP. 3547 * - Packet not complete in FIFO. 3548 * 3549 * The following actions will be taken: 3550 * - Determine the EP 3551 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3552 */ 3553 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3554 { 3555 struct dwc2_hsotg_ep *hs_ep; 3556 u32 epctrl; 3557 u32 daintmsk; 3558 u32 idx; 3559 3560 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3561 3562 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3563 3564 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3565 hs_ep = hsotg->eps_in[idx]; 3566 /* Proceed only unmasked ISOC EPs */ 3567 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3568 continue; 3569 3570 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3571 if ((epctrl & DXEPCTL_EPENA) && 3572 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3573 epctrl |= DXEPCTL_SNAK; 3574 epctrl |= DXEPCTL_EPDIS; 3575 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3576 } 3577 } 3578 3579 /* Clear interrupt */ 3580 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3581 } 3582 3583 /** 3584 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3585 * @hsotg: The device state: 3586 * 3587 * This interrupt indicates one of the following conditions occurred while 3588 * transmitting an ISOC transaction. 3589 * - Corrupted OUT Token for ISOC EP. 3590 * - Packet not complete in FIFO. 3591 * 3592 * The following actions will be taken: 3593 * - Determine the EP 3594 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3595 */ 3596 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3597 { 3598 u32 gintsts; 3599 u32 gintmsk; 3600 u32 daintmsk; 3601 u32 epctrl; 3602 struct dwc2_hsotg_ep *hs_ep; 3603 int idx; 3604 3605 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3606 3607 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3608 daintmsk >>= DAINT_OUTEP_SHIFT; 3609 3610 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3611 hs_ep = hsotg->eps_out[idx]; 3612 /* Proceed only unmasked ISOC EPs */ 3613 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3614 continue; 3615 3616 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3617 if ((epctrl & DXEPCTL_EPENA) && 3618 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3619 /* Unmask GOUTNAKEFF interrupt */ 3620 gintmsk = dwc2_readl(hsotg, GINTMSK); 3621 gintmsk |= GINTSTS_GOUTNAKEFF; 3622 dwc2_writel(hsotg, gintmsk, GINTMSK); 3623 3624 gintsts = dwc2_readl(hsotg, GINTSTS); 3625 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3626 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3627 break; 3628 } 3629 } 3630 } 3631 3632 /* Clear interrupt */ 3633 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3634 } 3635 3636 /** 3637 * dwc2_hsotg_irq - handle device interrupt 3638 * @irq: The IRQ number triggered 3639 * @pw: The pw value when registered the handler. 3640 */ 3641 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3642 { 3643 struct dwc2_hsotg *hsotg = pw; 3644 int retry_count = 8; 3645 u32 gintsts; 3646 u32 gintmsk; 3647 3648 if (!dwc2_is_device_mode(hsotg)) 3649 return IRQ_NONE; 3650 3651 spin_lock(&hsotg->lock); 3652 irq_retry: 3653 gintsts = dwc2_readl(hsotg, GINTSTS); 3654 gintmsk = dwc2_readl(hsotg, GINTMSK); 3655 3656 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3657 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3658 3659 gintsts &= gintmsk; 3660 3661 if (gintsts & GINTSTS_RESETDET) { 3662 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3663 3664 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3665 3666 /* This event must be used only if controller is suspended */ 3667 if (hsotg->lx_state == DWC2_L2) { 3668 dwc2_exit_partial_power_down(hsotg, true); 3669 hsotg->lx_state = DWC2_L0; 3670 } 3671 } 3672 3673 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3674 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3675 u32 connected = hsotg->connected; 3676 3677 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3678 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3679 dwc2_readl(hsotg, GNPTXSTS)); 3680 3681 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3682 3683 /* Report disconnection if it is not already done. */ 3684 dwc2_hsotg_disconnect(hsotg); 3685 3686 /* Reset device address to zero */ 3687 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3688 3689 if (usb_status & GOTGCTL_BSESVLD && connected) 3690 dwc2_hsotg_core_init_disconnected(hsotg, true); 3691 } 3692 3693 if (gintsts & GINTSTS_ENUMDONE) { 3694 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3695 3696 dwc2_hsotg_irq_enumdone(hsotg); 3697 } 3698 3699 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3700 u32 daint = dwc2_readl(hsotg, DAINT); 3701 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3702 u32 daint_out, daint_in; 3703 int ep; 3704 3705 daint &= daintmsk; 3706 daint_out = daint >> DAINT_OUTEP_SHIFT; 3707 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3708 3709 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3710 3711 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3712 ep++, daint_out >>= 1) { 3713 if (daint_out & 1) 3714 dwc2_hsotg_epint(hsotg, ep, 0); 3715 } 3716 3717 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3718 ep++, daint_in >>= 1) { 3719 if (daint_in & 1) 3720 dwc2_hsotg_epint(hsotg, ep, 1); 3721 } 3722 } 3723 3724 /* check both FIFOs */ 3725 3726 if (gintsts & GINTSTS_NPTXFEMP) { 3727 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3728 3729 /* 3730 * Disable the interrupt to stop it happening again 3731 * unless one of these endpoint routines decides that 3732 * it needs re-enabling 3733 */ 3734 3735 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3736 dwc2_hsotg_irq_fifoempty(hsotg, false); 3737 } 3738 3739 if (gintsts & GINTSTS_PTXFEMP) { 3740 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3741 3742 /* See note in GINTSTS_NPTxFEmp */ 3743 3744 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3745 dwc2_hsotg_irq_fifoempty(hsotg, true); 3746 } 3747 3748 if (gintsts & GINTSTS_RXFLVL) { 3749 /* 3750 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3751 * we need to retry dwc2_hsotg_handle_rx if this is still 3752 * set. 3753 */ 3754 3755 dwc2_hsotg_handle_rx(hsotg); 3756 } 3757 3758 if (gintsts & GINTSTS_ERLYSUSP) { 3759 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3760 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3761 } 3762 3763 /* 3764 * these next two seem to crop-up occasionally causing the core 3765 * to shutdown the USB transfer, so try clearing them and logging 3766 * the occurrence. 3767 */ 3768 3769 if (gintsts & GINTSTS_GOUTNAKEFF) { 3770 u8 idx; 3771 u32 epctrl; 3772 u32 gintmsk; 3773 u32 daintmsk; 3774 struct dwc2_hsotg_ep *hs_ep; 3775 3776 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3777 daintmsk >>= DAINT_OUTEP_SHIFT; 3778 /* Mask this interrupt */ 3779 gintmsk = dwc2_readl(hsotg, GINTMSK); 3780 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3781 dwc2_writel(hsotg, gintmsk, GINTMSK); 3782 3783 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3784 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3785 hs_ep = hsotg->eps_out[idx]; 3786 /* Proceed only unmasked ISOC EPs */ 3787 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3788 continue; 3789 3790 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3791 3792 if (epctrl & DXEPCTL_EPENA) { 3793 epctrl |= DXEPCTL_SNAK; 3794 epctrl |= DXEPCTL_EPDIS; 3795 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3796 } 3797 } 3798 3799 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3800 } 3801 3802 if (gintsts & GINTSTS_GINNAKEFF) { 3803 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3804 3805 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3806 3807 dwc2_hsotg_dump(hsotg); 3808 } 3809 3810 if (gintsts & GINTSTS_INCOMPL_SOIN) 3811 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3812 3813 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3814 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3815 3816 /* 3817 * if we've had fifo events, we should try and go around the 3818 * loop again to see if there's any point in returning yet. 3819 */ 3820 3821 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3822 goto irq_retry; 3823 3824 /* Check WKUP_ALERT interrupt*/ 3825 if (hsotg->params.service_interval) 3826 dwc2_gadget_wkup_alert_handler(hsotg); 3827 3828 spin_unlock(&hsotg->lock); 3829 3830 return IRQ_HANDLED; 3831 } 3832 3833 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3834 struct dwc2_hsotg_ep *hs_ep) 3835 { 3836 u32 epctrl_reg; 3837 u32 epint_reg; 3838 3839 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3840 DOEPCTL(hs_ep->index); 3841 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3842 DOEPINT(hs_ep->index); 3843 3844 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3845 hs_ep->name); 3846 3847 if (hs_ep->dir_in) { 3848 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3849 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3850 /* Wait for Nak effect */ 3851 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3852 DXEPINT_INEPNAKEFF, 100)) 3853 dev_warn(hsotg->dev, 3854 "%s: timeout DIEPINT.NAKEFF\n", 3855 __func__); 3856 } else { 3857 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3858 /* Wait for Nak effect */ 3859 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3860 GINTSTS_GINNAKEFF, 100)) 3861 dev_warn(hsotg->dev, 3862 "%s: timeout GINTSTS.GINNAKEFF\n", 3863 __func__); 3864 } 3865 } else { 3866 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3867 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3868 3869 /* Wait for global nak to take effect */ 3870 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3871 GINTSTS_GOUTNAKEFF, 100)) 3872 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3873 __func__); 3874 } 3875 3876 /* Disable ep */ 3877 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3878 3879 /* Wait for ep to be disabled */ 3880 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3881 dev_warn(hsotg->dev, 3882 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3883 3884 /* Clear EPDISBLD interrupt */ 3885 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3886 3887 if (hs_ep->dir_in) { 3888 unsigned short fifo_index; 3889 3890 if (hsotg->dedicated_fifos || hs_ep->periodic) 3891 fifo_index = hs_ep->fifo_index; 3892 else 3893 fifo_index = 0; 3894 3895 /* Flush TX FIFO */ 3896 dwc2_flush_tx_fifo(hsotg, fifo_index); 3897 3898 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3899 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3900 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3901 3902 } else { 3903 /* Remove global NAKs */ 3904 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3905 } 3906 } 3907 3908 /** 3909 * dwc2_hsotg_ep_enable - enable the given endpoint 3910 * @ep: The USB endpint to configure 3911 * @desc: The USB endpoint descriptor to configure with. 3912 * 3913 * This is called from the USB gadget code's usb_ep_enable(). 3914 */ 3915 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3916 const struct usb_endpoint_descriptor *desc) 3917 { 3918 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3919 struct dwc2_hsotg *hsotg = hs_ep->parent; 3920 unsigned long flags; 3921 unsigned int index = hs_ep->index; 3922 u32 epctrl_reg; 3923 u32 epctrl; 3924 u32 mps; 3925 u32 mc; 3926 u32 mask; 3927 unsigned int dir_in; 3928 unsigned int i, val, size; 3929 int ret = 0; 3930 unsigned char ep_type; 3931 int desc_num; 3932 3933 dev_dbg(hsotg->dev, 3934 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3935 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3936 desc->wMaxPacketSize, desc->bInterval); 3937 3938 /* not to be called for EP0 */ 3939 if (index == 0) { 3940 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3941 return -EINVAL; 3942 } 3943 3944 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3945 if (dir_in != hs_ep->dir_in) { 3946 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3947 return -EINVAL; 3948 } 3949 3950 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 3951 mps = usb_endpoint_maxp(desc); 3952 mc = usb_endpoint_maxp_mult(desc); 3953 3954 /* ISOC IN in DDMA supported bInterval up to 10 */ 3955 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3956 dir_in && desc->bInterval > 10) { 3957 dev_err(hsotg->dev, 3958 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 3959 return -EINVAL; 3960 } 3961 3962 /* High bandwidth ISOC OUT in DDMA not supported */ 3963 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3964 !dir_in && mc > 1) { 3965 dev_err(hsotg->dev, 3966 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 3967 return -EINVAL; 3968 } 3969 3970 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3971 3972 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3973 epctrl = dwc2_readl(hsotg, epctrl_reg); 3974 3975 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3976 __func__, epctrl, epctrl_reg); 3977 3978 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 3979 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 3980 else 3981 desc_num = MAX_DMA_DESC_NUM_GENERIC; 3982 3983 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 3984 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 3985 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 3986 desc_num * sizeof(struct dwc2_dma_desc), 3987 &hs_ep->desc_list_dma, GFP_ATOMIC); 3988 if (!hs_ep->desc_list) { 3989 ret = -ENOMEM; 3990 goto error2; 3991 } 3992 } 3993 3994 spin_lock_irqsave(&hsotg->lock, flags); 3995 3996 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 3997 epctrl |= DXEPCTL_MPS(mps); 3998 3999 /* 4000 * mark the endpoint as active, otherwise the core may ignore 4001 * transactions entirely for this endpoint 4002 */ 4003 epctrl |= DXEPCTL_USBACTEP; 4004 4005 /* update the endpoint state */ 4006 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4007 4008 /* default, set to non-periodic */ 4009 hs_ep->isochronous = 0; 4010 hs_ep->periodic = 0; 4011 hs_ep->halted = 0; 4012 hs_ep->interval = desc->bInterval; 4013 4014 switch (ep_type) { 4015 case USB_ENDPOINT_XFER_ISOC: 4016 epctrl |= DXEPCTL_EPTYPE_ISO; 4017 epctrl |= DXEPCTL_SETEVENFR; 4018 hs_ep->isochronous = 1; 4019 hs_ep->interval = 1 << (desc->bInterval - 1); 4020 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4021 hs_ep->next_desc = 0; 4022 hs_ep->compl_desc = 0; 4023 if (dir_in) { 4024 hs_ep->periodic = 1; 4025 mask = dwc2_readl(hsotg, DIEPMSK); 4026 mask |= DIEPMSK_NAKMSK; 4027 dwc2_writel(hsotg, mask, DIEPMSK); 4028 } else { 4029 mask = dwc2_readl(hsotg, DOEPMSK); 4030 mask |= DOEPMSK_OUTTKNEPDISMSK; 4031 dwc2_writel(hsotg, mask, DOEPMSK); 4032 } 4033 break; 4034 4035 case USB_ENDPOINT_XFER_BULK: 4036 epctrl |= DXEPCTL_EPTYPE_BULK; 4037 break; 4038 4039 case USB_ENDPOINT_XFER_INT: 4040 if (dir_in) 4041 hs_ep->periodic = 1; 4042 4043 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4044 hs_ep->interval = 1 << (desc->bInterval - 1); 4045 4046 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4047 break; 4048 4049 case USB_ENDPOINT_XFER_CONTROL: 4050 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4051 break; 4052 } 4053 4054 /* 4055 * if the hardware has dedicated fifos, we must give each IN EP 4056 * a unique tx-fifo even if it is non-periodic. 4057 */ 4058 if (dir_in && hsotg->dedicated_fifos) { 4059 u32 fifo_index = 0; 4060 u32 fifo_size = UINT_MAX; 4061 4062 size = hs_ep->ep.maxpacket * hs_ep->mc; 4063 for (i = 1; i < hsotg->num_of_eps; ++i) { 4064 if (hsotg->fifo_map & (1 << i)) 4065 continue; 4066 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4067 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4068 if (val < size) 4069 continue; 4070 /* Search for smallest acceptable fifo */ 4071 if (val < fifo_size) { 4072 fifo_size = val; 4073 fifo_index = i; 4074 } 4075 } 4076 if (!fifo_index) { 4077 dev_err(hsotg->dev, 4078 "%s: No suitable fifo found\n", __func__); 4079 ret = -ENOMEM; 4080 goto error1; 4081 } 4082 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4083 hsotg->fifo_map |= 1 << fifo_index; 4084 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4085 hs_ep->fifo_index = fifo_index; 4086 hs_ep->fifo_size = fifo_size; 4087 } 4088 4089 /* for non control endpoints, set PID to D0 */ 4090 if (index && !hs_ep->isochronous) 4091 epctrl |= DXEPCTL_SETD0PID; 4092 4093 /* WA for Full speed ISOC IN in DDMA mode. 4094 * By Clear NAK status of EP, core will send ZLP 4095 * to IN token and assert NAK interrupt relying 4096 * on TxFIFO status only 4097 */ 4098 4099 if (hsotg->gadget.speed == USB_SPEED_FULL && 4100 hs_ep->isochronous && dir_in) { 4101 /* The WA applies only to core versions from 2.72a 4102 * to 4.00a (including both). Also for FS_IOT_1.00a 4103 * and HS_IOT_1.00a. 4104 */ 4105 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4106 4107 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4108 gsnpsid <= DWC2_CORE_REV_4_00a) || 4109 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4110 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4111 epctrl |= DXEPCTL_CNAK; 4112 } 4113 4114 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4115 __func__, epctrl); 4116 4117 dwc2_writel(hsotg, epctrl, epctrl_reg); 4118 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4119 __func__, dwc2_readl(hsotg, epctrl_reg)); 4120 4121 /* enable the endpoint interrupt */ 4122 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4123 4124 error1: 4125 spin_unlock_irqrestore(&hsotg->lock, flags); 4126 4127 error2: 4128 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4129 dmam_free_coherent(hsotg->dev, desc_num * 4130 sizeof(struct dwc2_dma_desc), 4131 hs_ep->desc_list, hs_ep->desc_list_dma); 4132 hs_ep->desc_list = NULL; 4133 } 4134 4135 return ret; 4136 } 4137 4138 /** 4139 * dwc2_hsotg_ep_disable - disable given endpoint 4140 * @ep: The endpoint to disable. 4141 */ 4142 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4143 { 4144 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4145 struct dwc2_hsotg *hsotg = hs_ep->parent; 4146 int dir_in = hs_ep->dir_in; 4147 int index = hs_ep->index; 4148 u32 epctrl_reg; 4149 u32 ctrl; 4150 4151 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4152 4153 if (ep == &hsotg->eps_out[0]->ep) { 4154 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4155 return -EINVAL; 4156 } 4157 4158 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4159 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4160 return -EINVAL; 4161 } 4162 4163 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4164 4165 ctrl = dwc2_readl(hsotg, epctrl_reg); 4166 4167 if (ctrl & DXEPCTL_EPENA) 4168 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4169 4170 ctrl &= ~DXEPCTL_EPENA; 4171 ctrl &= ~DXEPCTL_USBACTEP; 4172 ctrl |= DXEPCTL_SNAK; 4173 4174 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4175 dwc2_writel(hsotg, ctrl, epctrl_reg); 4176 4177 /* disable endpoint interrupts */ 4178 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4179 4180 /* terminate all requests with shutdown */ 4181 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4182 4183 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4184 hs_ep->fifo_index = 0; 4185 hs_ep->fifo_size = 0; 4186 4187 return 0; 4188 } 4189 4190 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4191 { 4192 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4193 struct dwc2_hsotg *hsotg = hs_ep->parent; 4194 unsigned long flags; 4195 int ret; 4196 4197 spin_lock_irqsave(&hsotg->lock, flags); 4198 ret = dwc2_hsotg_ep_disable(ep); 4199 spin_unlock_irqrestore(&hsotg->lock, flags); 4200 return ret; 4201 } 4202 4203 /** 4204 * on_list - check request is on the given endpoint 4205 * @ep: The endpoint to check. 4206 * @test: The request to test if it is on the endpoint. 4207 */ 4208 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4209 { 4210 struct dwc2_hsotg_req *req, *treq; 4211 4212 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4213 if (req == test) 4214 return true; 4215 } 4216 4217 return false; 4218 } 4219 4220 /** 4221 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4222 * @ep: The endpoint to dequeue. 4223 * @req: The request to be removed from a queue. 4224 */ 4225 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4226 { 4227 struct dwc2_hsotg_req *hs_req = our_req(req); 4228 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4229 struct dwc2_hsotg *hs = hs_ep->parent; 4230 unsigned long flags; 4231 4232 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4233 4234 spin_lock_irqsave(&hs->lock, flags); 4235 4236 if (!on_list(hs_ep, hs_req)) { 4237 spin_unlock_irqrestore(&hs->lock, flags); 4238 return -EINVAL; 4239 } 4240 4241 /* Dequeue already started request */ 4242 if (req == &hs_ep->req->req) 4243 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4244 4245 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4246 spin_unlock_irqrestore(&hs->lock, flags); 4247 4248 return 0; 4249 } 4250 4251 /** 4252 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4253 * @ep: The endpoint to set halt. 4254 * @value: Set or unset the halt. 4255 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4256 * the endpoint is busy processing requests. 4257 * 4258 * We need to stall the endpoint immediately if request comes from set_feature 4259 * protocol command handler. 4260 */ 4261 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4262 { 4263 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4264 struct dwc2_hsotg *hs = hs_ep->parent; 4265 int index = hs_ep->index; 4266 u32 epreg; 4267 u32 epctl; 4268 u32 xfertype; 4269 4270 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4271 4272 if (index == 0) { 4273 if (value) 4274 dwc2_hsotg_stall_ep0(hs); 4275 else 4276 dev_warn(hs->dev, 4277 "%s: can't clear halt on ep0\n", __func__); 4278 return 0; 4279 } 4280 4281 if (hs_ep->isochronous) { 4282 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4283 return -EINVAL; 4284 } 4285 4286 if (!now && value && !list_empty(&hs_ep->queue)) { 4287 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4288 ep->name); 4289 return -EAGAIN; 4290 } 4291 4292 if (hs_ep->dir_in) { 4293 epreg = DIEPCTL(index); 4294 epctl = dwc2_readl(hs, epreg); 4295 4296 if (value) { 4297 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4298 if (epctl & DXEPCTL_EPENA) 4299 epctl |= DXEPCTL_EPDIS; 4300 } else { 4301 epctl &= ~DXEPCTL_STALL; 4302 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4303 if (xfertype == DXEPCTL_EPTYPE_BULK || 4304 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4305 epctl |= DXEPCTL_SETD0PID; 4306 } 4307 dwc2_writel(hs, epctl, epreg); 4308 } else { 4309 epreg = DOEPCTL(index); 4310 epctl = dwc2_readl(hs, epreg); 4311 4312 if (value) { 4313 epctl |= DXEPCTL_STALL; 4314 } else { 4315 epctl &= ~DXEPCTL_STALL; 4316 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4317 if (xfertype == DXEPCTL_EPTYPE_BULK || 4318 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4319 epctl |= DXEPCTL_SETD0PID; 4320 } 4321 dwc2_writel(hs, epctl, epreg); 4322 } 4323 4324 hs_ep->halted = value; 4325 4326 return 0; 4327 } 4328 4329 /** 4330 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4331 * @ep: The endpoint to set halt. 4332 * @value: Set or unset the halt. 4333 */ 4334 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4335 { 4336 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4337 struct dwc2_hsotg *hs = hs_ep->parent; 4338 unsigned long flags = 0; 4339 int ret = 0; 4340 4341 spin_lock_irqsave(&hs->lock, flags); 4342 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4343 spin_unlock_irqrestore(&hs->lock, flags); 4344 4345 return ret; 4346 } 4347 4348 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4349 .enable = dwc2_hsotg_ep_enable, 4350 .disable = dwc2_hsotg_ep_disable_lock, 4351 .alloc_request = dwc2_hsotg_ep_alloc_request, 4352 .free_request = dwc2_hsotg_ep_free_request, 4353 .queue = dwc2_hsotg_ep_queue_lock, 4354 .dequeue = dwc2_hsotg_ep_dequeue, 4355 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4356 /* note, don't believe we have any call for the fifo routines */ 4357 }; 4358 4359 /** 4360 * dwc2_hsotg_init - initialize the usb core 4361 * @hsotg: The driver state 4362 */ 4363 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4364 { 4365 /* unmask subset of endpoint interrupts */ 4366 4367 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4368 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4369 DIEPMSK); 4370 4371 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4372 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4373 DOEPMSK); 4374 4375 dwc2_writel(hsotg, 0, DAINTMSK); 4376 4377 /* Be in disconnected state until gadget is registered */ 4378 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4379 4380 /* setup fifos */ 4381 4382 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4383 dwc2_readl(hsotg, GRXFSIZ), 4384 dwc2_readl(hsotg, GNPTXFSIZ)); 4385 4386 dwc2_hsotg_init_fifo(hsotg); 4387 4388 if (using_dma(hsotg)) 4389 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4390 } 4391 4392 /** 4393 * dwc2_hsotg_udc_start - prepare the udc for work 4394 * @gadget: The usb gadget state 4395 * @driver: The usb gadget driver 4396 * 4397 * Perform initialization to prepare udc device and driver 4398 * to work. 4399 */ 4400 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4401 struct usb_gadget_driver *driver) 4402 { 4403 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4404 unsigned long flags; 4405 int ret; 4406 4407 if (!hsotg) { 4408 pr_err("%s: called with no device\n", __func__); 4409 return -ENODEV; 4410 } 4411 4412 if (!driver) { 4413 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4414 return -EINVAL; 4415 } 4416 4417 if (driver->max_speed < USB_SPEED_FULL) 4418 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4419 4420 if (!driver->setup) { 4421 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4422 return -EINVAL; 4423 } 4424 4425 WARN_ON(hsotg->driver); 4426 4427 driver->driver.bus = NULL; 4428 hsotg->driver = driver; 4429 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4430 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4431 4432 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4433 ret = dwc2_lowlevel_hw_enable(hsotg); 4434 if (ret) 4435 goto err; 4436 } 4437 4438 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4439 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4440 4441 spin_lock_irqsave(&hsotg->lock, flags); 4442 if (dwc2_hw_is_device(hsotg)) { 4443 dwc2_hsotg_init(hsotg); 4444 dwc2_hsotg_core_init_disconnected(hsotg, false); 4445 } 4446 4447 hsotg->enabled = 0; 4448 spin_unlock_irqrestore(&hsotg->lock, flags); 4449 4450 gadget->sg_supported = using_desc_dma(hsotg); 4451 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4452 4453 return 0; 4454 4455 err: 4456 hsotg->driver = NULL; 4457 return ret; 4458 } 4459 4460 /** 4461 * dwc2_hsotg_udc_stop - stop the udc 4462 * @gadget: The usb gadget state 4463 * 4464 * Stop udc hw block and stay tunned for future transmissions 4465 */ 4466 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4467 { 4468 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4469 unsigned long flags = 0; 4470 int ep; 4471 4472 if (!hsotg) 4473 return -ENODEV; 4474 4475 /* all endpoints should be shutdown */ 4476 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4477 if (hsotg->eps_in[ep]) 4478 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4479 if (hsotg->eps_out[ep]) 4480 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4481 } 4482 4483 spin_lock_irqsave(&hsotg->lock, flags); 4484 4485 hsotg->driver = NULL; 4486 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4487 hsotg->enabled = 0; 4488 4489 spin_unlock_irqrestore(&hsotg->lock, flags); 4490 4491 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4492 otg_set_peripheral(hsotg->uphy->otg, NULL); 4493 4494 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4495 dwc2_lowlevel_hw_disable(hsotg); 4496 4497 return 0; 4498 } 4499 4500 /** 4501 * dwc2_hsotg_gadget_getframe - read the frame number 4502 * @gadget: The usb gadget state 4503 * 4504 * Read the {micro} frame number 4505 */ 4506 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4507 { 4508 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4509 } 4510 4511 /** 4512 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4513 * @gadget: The usb gadget state 4514 * @is_on: Current state of the USB PHY 4515 * 4516 * Connect/Disconnect the USB PHY pullup 4517 */ 4518 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4519 { 4520 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4521 unsigned long flags = 0; 4522 4523 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4524 hsotg->op_state); 4525 4526 /* Don't modify pullup state while in host mode */ 4527 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4528 hsotg->enabled = is_on; 4529 return 0; 4530 } 4531 4532 spin_lock_irqsave(&hsotg->lock, flags); 4533 if (is_on) { 4534 hsotg->enabled = 1; 4535 dwc2_hsotg_core_init_disconnected(hsotg, false); 4536 /* Enable ACG feature in device mode,if supported */ 4537 dwc2_enable_acg(hsotg); 4538 dwc2_hsotg_core_connect(hsotg); 4539 } else { 4540 dwc2_hsotg_core_disconnect(hsotg); 4541 dwc2_hsotg_disconnect(hsotg); 4542 hsotg->enabled = 0; 4543 } 4544 4545 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4546 spin_unlock_irqrestore(&hsotg->lock, flags); 4547 4548 return 0; 4549 } 4550 4551 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4552 { 4553 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4554 unsigned long flags; 4555 4556 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4557 spin_lock_irqsave(&hsotg->lock, flags); 4558 4559 /* 4560 * If controller is hibernated, it must exit from power_down 4561 * before being initialized / de-initialized 4562 */ 4563 if (hsotg->lx_state == DWC2_L2) 4564 dwc2_exit_partial_power_down(hsotg, false); 4565 4566 if (is_active) { 4567 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4568 4569 dwc2_hsotg_core_init_disconnected(hsotg, false); 4570 if (hsotg->enabled) { 4571 /* Enable ACG feature in device mode,if supported */ 4572 dwc2_enable_acg(hsotg); 4573 dwc2_hsotg_core_connect(hsotg); 4574 } 4575 } else { 4576 dwc2_hsotg_core_disconnect(hsotg); 4577 dwc2_hsotg_disconnect(hsotg); 4578 } 4579 4580 spin_unlock_irqrestore(&hsotg->lock, flags); 4581 return 0; 4582 } 4583 4584 /** 4585 * dwc2_hsotg_vbus_draw - report bMaxPower field 4586 * @gadget: The usb gadget state 4587 * @mA: Amount of current 4588 * 4589 * Report how much power the device may consume to the phy. 4590 */ 4591 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4592 { 4593 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4594 4595 if (IS_ERR_OR_NULL(hsotg->uphy)) 4596 return -ENOTSUPP; 4597 return usb_phy_set_power(hsotg->uphy, mA); 4598 } 4599 4600 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4601 .get_frame = dwc2_hsotg_gadget_getframe, 4602 .udc_start = dwc2_hsotg_udc_start, 4603 .udc_stop = dwc2_hsotg_udc_stop, 4604 .pullup = dwc2_hsotg_pullup, 4605 .vbus_session = dwc2_hsotg_vbus_session, 4606 .vbus_draw = dwc2_hsotg_vbus_draw, 4607 }; 4608 4609 /** 4610 * dwc2_hsotg_initep - initialise a single endpoint 4611 * @hsotg: The device state. 4612 * @hs_ep: The endpoint to be initialised. 4613 * @epnum: The endpoint number 4614 * @dir_in: True if direction is in. 4615 * 4616 * Initialise the given endpoint (as part of the probe and device state 4617 * creation) to give to the gadget driver. Setup the endpoint name, any 4618 * direction information and other state that may be required. 4619 */ 4620 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4621 struct dwc2_hsotg_ep *hs_ep, 4622 int epnum, 4623 bool dir_in) 4624 { 4625 char *dir; 4626 4627 if (epnum == 0) 4628 dir = ""; 4629 else if (dir_in) 4630 dir = "in"; 4631 else 4632 dir = "out"; 4633 4634 hs_ep->dir_in = dir_in; 4635 hs_ep->index = epnum; 4636 4637 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4638 4639 INIT_LIST_HEAD(&hs_ep->queue); 4640 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4641 4642 /* add to the list of endpoints known by the gadget driver */ 4643 if (epnum) 4644 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4645 4646 hs_ep->parent = hsotg; 4647 hs_ep->ep.name = hs_ep->name; 4648 4649 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4650 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4651 else 4652 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4653 epnum ? 1024 : EP0_MPS_LIMIT); 4654 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4655 4656 if (epnum == 0) { 4657 hs_ep->ep.caps.type_control = true; 4658 } else { 4659 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4660 hs_ep->ep.caps.type_iso = true; 4661 hs_ep->ep.caps.type_bulk = true; 4662 } 4663 hs_ep->ep.caps.type_int = true; 4664 } 4665 4666 if (dir_in) 4667 hs_ep->ep.caps.dir_in = true; 4668 else 4669 hs_ep->ep.caps.dir_out = true; 4670 4671 /* 4672 * if we're using dma, we need to set the next-endpoint pointer 4673 * to be something valid. 4674 */ 4675 4676 if (using_dma(hsotg)) { 4677 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4678 4679 if (dir_in) 4680 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4681 else 4682 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4683 } 4684 } 4685 4686 /** 4687 * dwc2_hsotg_hw_cfg - read HW configuration registers 4688 * @hsotg: Programming view of the DWC_otg controller 4689 * 4690 * Read the USB core HW configuration registers 4691 */ 4692 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4693 { 4694 u32 cfg; 4695 u32 ep_type; 4696 u32 i; 4697 4698 /* check hardware configuration */ 4699 4700 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4701 4702 /* Add ep0 */ 4703 hsotg->num_of_eps++; 4704 4705 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4706 sizeof(struct dwc2_hsotg_ep), 4707 GFP_KERNEL); 4708 if (!hsotg->eps_in[0]) 4709 return -ENOMEM; 4710 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4711 hsotg->eps_out[0] = hsotg->eps_in[0]; 4712 4713 cfg = hsotg->hw_params.dev_ep_dirs; 4714 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4715 ep_type = cfg & 3; 4716 /* Direction in or both */ 4717 if (!(ep_type & 2)) { 4718 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4719 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4720 if (!hsotg->eps_in[i]) 4721 return -ENOMEM; 4722 } 4723 /* Direction out or both */ 4724 if (!(ep_type & 1)) { 4725 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4726 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4727 if (!hsotg->eps_out[i]) 4728 return -ENOMEM; 4729 } 4730 } 4731 4732 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4733 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4734 4735 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4736 hsotg->num_of_eps, 4737 hsotg->dedicated_fifos ? "dedicated" : "shared", 4738 hsotg->fifo_mem); 4739 return 0; 4740 } 4741 4742 /** 4743 * dwc2_hsotg_dump - dump state of the udc 4744 * @hsotg: Programming view of the DWC_otg controller 4745 * 4746 */ 4747 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4748 { 4749 #ifdef DEBUG 4750 struct device *dev = hsotg->dev; 4751 u32 val; 4752 int idx; 4753 4754 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4755 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4756 dwc2_readl(hsotg, DIEPMSK)); 4757 4758 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4759 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4760 4761 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4762 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4763 4764 /* show periodic fifo settings */ 4765 4766 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4767 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4768 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4769 val >> FIFOSIZE_DEPTH_SHIFT, 4770 val & FIFOSIZE_STARTADDR_MASK); 4771 } 4772 4773 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4774 dev_info(dev, 4775 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4776 dwc2_readl(hsotg, DIEPCTL(idx)), 4777 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4778 dwc2_readl(hsotg, DIEPDMA(idx))); 4779 4780 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4781 dev_info(dev, 4782 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4783 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4784 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4785 dwc2_readl(hsotg, DOEPDMA(idx))); 4786 } 4787 4788 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4789 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4790 #endif 4791 } 4792 4793 /** 4794 * dwc2_gadget_init - init function for gadget 4795 * @hsotg: Programming view of the DWC_otg controller 4796 * 4797 */ 4798 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4799 { 4800 struct device *dev = hsotg->dev; 4801 int epnum; 4802 int ret; 4803 4804 /* Dump fifo information */ 4805 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4806 hsotg->params.g_np_tx_fifo_size); 4807 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4808 4809 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4810 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4811 hsotg->gadget.name = dev_name(dev); 4812 hsotg->remote_wakeup_allowed = 0; 4813 4814 if (hsotg->params.lpm) 4815 hsotg->gadget.lpm_capable = true; 4816 4817 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4818 hsotg->gadget.is_otg = 1; 4819 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4820 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4821 4822 ret = dwc2_hsotg_hw_cfg(hsotg); 4823 if (ret) { 4824 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4825 return ret; 4826 } 4827 4828 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4829 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4830 if (!hsotg->ctrl_buff) 4831 return -ENOMEM; 4832 4833 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4834 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4835 if (!hsotg->ep0_buff) 4836 return -ENOMEM; 4837 4838 if (using_desc_dma(hsotg)) { 4839 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4840 if (ret < 0) 4841 return ret; 4842 } 4843 4844 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4845 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4846 if (ret < 0) { 4847 dev_err(dev, "cannot claim IRQ for gadget\n"); 4848 return ret; 4849 } 4850 4851 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4852 4853 if (hsotg->num_of_eps == 0) { 4854 dev_err(dev, "wrong number of EPs (zero)\n"); 4855 return -EINVAL; 4856 } 4857 4858 /* setup endpoint information */ 4859 4860 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4861 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4862 4863 /* allocate EP0 request */ 4864 4865 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4866 GFP_KERNEL); 4867 if (!hsotg->ctrl_req) { 4868 dev_err(dev, "failed to allocate ctrl req\n"); 4869 return -ENOMEM; 4870 } 4871 4872 /* initialise the endpoints now the core has been initialised */ 4873 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4874 if (hsotg->eps_in[epnum]) 4875 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4876 epnum, 1); 4877 if (hsotg->eps_out[epnum]) 4878 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4879 epnum, 0); 4880 } 4881 4882 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4883 if (ret) { 4884 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, 4885 hsotg->ctrl_req); 4886 return ret; 4887 } 4888 dwc2_hsotg_dump(hsotg); 4889 4890 return 0; 4891 } 4892 4893 /** 4894 * dwc2_hsotg_remove - remove function for hsotg driver 4895 * @hsotg: Programming view of the DWC_otg controller 4896 * 4897 */ 4898 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4899 { 4900 usb_del_gadget_udc(&hsotg->gadget); 4901 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4902 4903 return 0; 4904 } 4905 4906 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4907 { 4908 unsigned long flags; 4909 4910 if (hsotg->lx_state != DWC2_L0) 4911 return 0; 4912 4913 if (hsotg->driver) { 4914 int ep; 4915 4916 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4917 hsotg->driver->driver.name); 4918 4919 spin_lock_irqsave(&hsotg->lock, flags); 4920 if (hsotg->enabled) 4921 dwc2_hsotg_core_disconnect(hsotg); 4922 dwc2_hsotg_disconnect(hsotg); 4923 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4924 spin_unlock_irqrestore(&hsotg->lock, flags); 4925 4926 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4927 if (hsotg->eps_in[ep]) 4928 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4929 if (hsotg->eps_out[ep]) 4930 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4931 } 4932 } 4933 4934 return 0; 4935 } 4936 4937 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4938 { 4939 unsigned long flags; 4940 4941 if (hsotg->lx_state == DWC2_L2) 4942 return 0; 4943 4944 if (hsotg->driver) { 4945 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4946 hsotg->driver->driver.name); 4947 4948 spin_lock_irqsave(&hsotg->lock, flags); 4949 dwc2_hsotg_core_init_disconnected(hsotg, false); 4950 if (hsotg->enabled) { 4951 /* Enable ACG feature in device mode,if supported */ 4952 dwc2_enable_acg(hsotg); 4953 dwc2_hsotg_core_connect(hsotg); 4954 } 4955 spin_unlock_irqrestore(&hsotg->lock, flags); 4956 } 4957 4958 return 0; 4959 } 4960 4961 /** 4962 * dwc2_backup_device_registers() - Backup controller device registers. 4963 * When suspending usb bus, registers needs to be backuped 4964 * if controller power is disabled once suspended. 4965 * 4966 * @hsotg: Programming view of the DWC_otg controller 4967 */ 4968 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4969 { 4970 struct dwc2_dregs_backup *dr; 4971 int i; 4972 4973 dev_dbg(hsotg->dev, "%s\n", __func__); 4974 4975 /* Backup dev regs */ 4976 dr = &hsotg->dr_backup; 4977 4978 dr->dcfg = dwc2_readl(hsotg, DCFG); 4979 dr->dctl = dwc2_readl(hsotg, DCTL); 4980 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 4981 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 4982 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 4983 4984 for (i = 0; i < hsotg->num_of_eps; i++) { 4985 /* Backup IN EPs */ 4986 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 4987 4988 /* Ensure DATA PID is correctly configured */ 4989 if (dr->diepctl[i] & DXEPCTL_DPID) 4990 dr->diepctl[i] |= DXEPCTL_SETD1PID; 4991 else 4992 dr->diepctl[i] |= DXEPCTL_SETD0PID; 4993 4994 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 4995 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 4996 4997 /* Backup OUT EPs */ 4998 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 4999 5000 /* Ensure DATA PID is correctly configured */ 5001 if (dr->doepctl[i] & DXEPCTL_DPID) 5002 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5003 else 5004 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5005 5006 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5007 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5008 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5009 } 5010 dr->valid = true; 5011 return 0; 5012 } 5013 5014 /** 5015 * dwc2_restore_device_registers() - Restore controller device registers. 5016 * When resuming usb bus, device registers needs to be restored 5017 * if controller power were disabled. 5018 * 5019 * @hsotg: Programming view of the DWC_otg controller 5020 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5021 * 5022 * Return: 0 if successful, negative error code otherwise 5023 */ 5024 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5025 { 5026 struct dwc2_dregs_backup *dr; 5027 int i; 5028 5029 dev_dbg(hsotg->dev, "%s\n", __func__); 5030 5031 /* Restore dev regs */ 5032 dr = &hsotg->dr_backup; 5033 if (!dr->valid) { 5034 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5035 __func__); 5036 return -EINVAL; 5037 } 5038 dr->valid = false; 5039 5040 if (!remote_wakeup) 5041 dwc2_writel(hsotg, dr->dctl, DCTL); 5042 5043 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5044 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5045 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5046 5047 for (i = 0; i < hsotg->num_of_eps; i++) { 5048 /* Restore IN EPs */ 5049 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5050 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5051 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5052 /** WA for enabled EPx's IN in DDMA mode. On entering to 5053 * hibernation wrong value read and saved from DIEPDMAx, 5054 * as result BNA interrupt asserted on hibernation exit 5055 * by restoring from saved area. 5056 */ 5057 if (hsotg->params.g_dma_desc && 5058 (dr->diepctl[i] & DXEPCTL_EPENA)) 5059 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5060 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5061 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5062 /* Restore OUT EPs */ 5063 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5064 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5065 * hibernation wrong value read and saved from DOEPDMAx, 5066 * as result BNA interrupt asserted on hibernation exit 5067 * by restoring from saved area. 5068 */ 5069 if (hsotg->params.g_dma_desc && 5070 (dr->doepctl[i] & DXEPCTL_EPENA)) 5071 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5072 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5073 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5074 } 5075 5076 return 0; 5077 } 5078 5079 /** 5080 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5081 * 5082 * @hsotg: Programming view of DWC_otg controller 5083 * 5084 */ 5085 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5086 { 5087 u32 val; 5088 5089 if (!hsotg->params.lpm) 5090 return; 5091 5092 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5093 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5094 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5095 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5096 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5097 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5098 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5099 dwc2_writel(hsotg, val, GLPMCFG); 5100 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5101 5102 /* Unmask WKUP_ALERT Interrupt */ 5103 if (hsotg->params.service_interval) 5104 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5105 } 5106 5107 /** 5108 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5109 * 5110 * @hsotg: Programming view of DWC_otg controller 5111 * 5112 */ 5113 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5114 { 5115 u32 val = 0; 5116 5117 val |= GREFCLK_REF_CLK_MODE; 5118 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5119 val |= hsotg->params.sof_cnt_wkup_alert << 5120 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5121 5122 dwc2_writel(hsotg, val, GREFCLK); 5123 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5124 } 5125 5126 /** 5127 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5128 * 5129 * @hsotg: Programming view of the DWC_otg controller 5130 * 5131 * Return non-zero if failed to enter to hibernation. 5132 */ 5133 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5134 { 5135 u32 gpwrdn; 5136 int ret = 0; 5137 5138 /* Change to L2(suspend) state */ 5139 hsotg->lx_state = DWC2_L2; 5140 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5141 ret = dwc2_backup_global_registers(hsotg); 5142 if (ret) { 5143 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5144 __func__); 5145 return ret; 5146 } 5147 ret = dwc2_backup_device_registers(hsotg); 5148 if (ret) { 5149 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5150 __func__); 5151 return ret; 5152 } 5153 5154 gpwrdn = GPWRDN_PWRDNRSTN; 5155 gpwrdn |= GPWRDN_PMUACTV; 5156 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5157 udelay(10); 5158 5159 /* Set flag to indicate that we are in hibernation */ 5160 hsotg->hibernated = 1; 5161 5162 /* Enable interrupts from wake up logic */ 5163 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5164 gpwrdn |= GPWRDN_PMUINTSEL; 5165 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5166 udelay(10); 5167 5168 /* Unmask device mode interrupts in GPWRDN */ 5169 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5170 gpwrdn |= GPWRDN_RST_DET_MSK; 5171 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5172 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5173 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5174 udelay(10); 5175 5176 /* Enable Power Down Clamp */ 5177 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5178 gpwrdn |= GPWRDN_PWRDNCLMP; 5179 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5180 udelay(10); 5181 5182 /* Switch off VDD */ 5183 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5184 gpwrdn |= GPWRDN_PWRDNSWTCH; 5185 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5186 udelay(10); 5187 5188 /* Save gpwrdn register for further usage if stschng interrupt */ 5189 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5190 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5191 5192 return ret; 5193 } 5194 5195 /** 5196 * dwc2_gadget_exit_hibernation() 5197 * This function is for exiting from Device mode hibernation by host initiated 5198 * resume/reset and device initiated remote-wakeup. 5199 * 5200 * @hsotg: Programming view of the DWC_otg controller 5201 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5202 * @reset: indicates whether resume is initiated by Reset. 5203 * 5204 * Return non-zero if failed to exit from hibernation. 5205 */ 5206 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5207 int rem_wakeup, int reset) 5208 { 5209 u32 pcgcctl; 5210 u32 gpwrdn; 5211 u32 dctl; 5212 int ret = 0; 5213 struct dwc2_gregs_backup *gr; 5214 struct dwc2_dregs_backup *dr; 5215 5216 gr = &hsotg->gr_backup; 5217 dr = &hsotg->dr_backup; 5218 5219 if (!hsotg->hibernated) { 5220 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5221 return 1; 5222 } 5223 dev_dbg(hsotg->dev, 5224 "%s: called with rem_wakeup = %d reset = %d\n", 5225 __func__, rem_wakeup, reset); 5226 5227 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5228 5229 if (!reset) { 5230 /* Clear all pending interupts */ 5231 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5232 } 5233 5234 /* De-assert Restore */ 5235 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5236 gpwrdn &= ~GPWRDN_RESTORE; 5237 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5238 udelay(10); 5239 5240 if (!rem_wakeup) { 5241 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5242 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5243 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5244 } 5245 5246 /* Restore GUSBCFG, DCFG and DCTL */ 5247 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5248 dwc2_writel(hsotg, dr->dcfg, DCFG); 5249 dwc2_writel(hsotg, dr->dctl, DCTL); 5250 5251 /* De-assert Wakeup Logic */ 5252 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5253 gpwrdn &= ~GPWRDN_PMUACTV; 5254 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5255 5256 if (rem_wakeup) { 5257 udelay(10); 5258 /* Start Remote Wakeup Signaling */ 5259 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5260 } else { 5261 udelay(50); 5262 /* Set Device programming done bit */ 5263 dctl = dwc2_readl(hsotg, DCTL); 5264 dctl |= DCTL_PWRONPRGDONE; 5265 dwc2_writel(hsotg, dctl, DCTL); 5266 } 5267 /* Wait for interrupts which must be cleared */ 5268 mdelay(2); 5269 /* Clear all pending interupts */ 5270 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5271 5272 /* Restore global registers */ 5273 ret = dwc2_restore_global_registers(hsotg); 5274 if (ret) { 5275 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5276 __func__); 5277 return ret; 5278 } 5279 5280 /* Restore device registers */ 5281 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5282 if (ret) { 5283 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5284 __func__); 5285 return ret; 5286 } 5287 5288 if (rem_wakeup) { 5289 mdelay(10); 5290 dctl = dwc2_readl(hsotg, DCTL); 5291 dctl &= ~DCTL_RMTWKUPSIG; 5292 dwc2_writel(hsotg, dctl, DCTL); 5293 } 5294 5295 hsotg->hibernated = 0; 5296 hsotg->lx_state = DWC2_L0; 5297 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5298 5299 return ret; 5300 } 5301