1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 hs_ep->target_frame += hs_ep->interval; 119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 120 hs_ep->frame_overrun = true; 121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 122 } else { 123 hs_ep->frame_overrun = false; 124 } 125 } 126 127 /** 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 129 * by one. 130 * @hs_ep: The endpoint. 131 * 132 * This function used in service interval based scheduling flow to calculate 133 * descriptor frame number filed value. For service interval mode frame 134 * number in descriptor should point to last (u)frame in the interval. 135 * 136 */ 137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 138 { 139 if (hs_ep->target_frame) 140 hs_ep->target_frame -= 1; 141 else 142 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 143 } 144 145 /** 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 147 * @hsotg: The device state 148 * @ints: A bitmask of the interrupts to enable 149 */ 150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 151 { 152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 153 u32 new_gsintmsk; 154 155 new_gsintmsk = gsintmsk | ints; 156 157 if (new_gsintmsk != gsintmsk) { 158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 160 } 161 } 162 163 /** 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 165 * @hsotg: The device state 166 * @ints: A bitmask of the interrupts to enable 167 */ 168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 169 { 170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 171 u32 new_gsintmsk; 172 173 new_gsintmsk = gsintmsk & ~ints; 174 175 if (new_gsintmsk != gsintmsk) 176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 177 } 178 179 /** 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 181 * @hsotg: The device state 182 * @ep: The endpoint index 183 * @dir_in: True if direction is in. 184 * @en: The enable value, true to enable 185 * 186 * Set or clear the mask for an individual endpoint's interrupt 187 * request. 188 */ 189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 190 unsigned int ep, unsigned int dir_in, 191 unsigned int en) 192 { 193 unsigned long flags; 194 u32 bit = 1 << ep; 195 u32 daint; 196 197 if (!dir_in) 198 bit <<= 16; 199 200 local_irq_save(flags); 201 daint = dwc2_readl(hsotg, DAINTMSK); 202 if (en) 203 daint |= bit; 204 else 205 daint &= ~bit; 206 dwc2_writel(hsotg, daint, DAINTMSK); 207 local_irq_restore(flags); 208 } 209 210 /** 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 212 * 213 * @hsotg: Programming view of the DWC_otg controller 214 */ 215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 216 { 217 if (hsotg->hw_params.en_multiple_tx_fifo) 218 /* In dedicated FIFO mode we need count of IN EPs */ 219 return hsotg->hw_params.num_dev_in_eps; 220 else 221 /* In shared FIFO mode we need count of Periodic IN EPs */ 222 return hsotg->hw_params.num_dev_perio_in_ep; 223 } 224 225 /** 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 227 * device mode TX FIFOs 228 * 229 * @hsotg: Programming view of the DWC_otg controller 230 */ 231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 232 { 233 int addr; 234 int tx_addr_max; 235 u32 np_tx_fifo_size; 236 237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 238 hsotg->params.g_np_tx_fifo_size); 239 240 /* Get Endpoint Info Control block size in DWORDs. */ 241 tx_addr_max = hsotg->hw_params.total_fifo_size; 242 243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 244 if (tx_addr_max <= addr) 245 return 0; 246 247 return tx_addr_max - addr; 248 } 249 250 /** 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 252 * 253 * @hsotg: Programming view of the DWC_otg controller 254 * 255 */ 256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 257 { 258 u32 gintsts2; 259 u32 gintmsk2; 260 261 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 263 264 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 265 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 266 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 267 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 268 } 269 } 270 271 /** 272 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 273 * TX FIFOs 274 * 275 * @hsotg: Programming view of the DWC_otg controller 276 */ 277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 278 { 279 int tx_fifo_count; 280 int tx_fifo_depth; 281 282 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 283 284 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 285 286 if (!tx_fifo_count) 287 return tx_fifo_depth; 288 else 289 return tx_fifo_depth / tx_fifo_count; 290 } 291 292 /** 293 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 294 * @hsotg: The device instance. 295 */ 296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 297 { 298 unsigned int ep; 299 unsigned int addr; 300 int timeout; 301 302 u32 val; 303 u32 *txfsz = hsotg->params.g_tx_fifo_size; 304 305 /* Reset fifo map if not correctly cleared during previous session */ 306 WARN_ON(hsotg->fifo_map); 307 hsotg->fifo_map = 0; 308 309 /* set RX/NPTX FIFO sizes */ 310 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 311 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 312 FIFOSIZE_STARTADDR_SHIFT) | 313 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 314 GNPTXFSIZ); 315 316 /* 317 * arange all the rest of the TX FIFOs, as some versions of this 318 * block have overlapping default addresses. This also ensures 319 * that if the settings have been changed, then they are set to 320 * known values. 321 */ 322 323 /* start at the end of the GNPTXFSIZ, rounded up */ 324 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 325 326 /* 327 * Configure fifos sizes from provided configuration and assign 328 * them to endpoints dynamically according to maxpacket size value of 329 * given endpoint. 330 */ 331 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 332 if (!txfsz[ep]) 333 continue; 334 val = addr; 335 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 336 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 337 "insufficient fifo memory"); 338 addr += txfsz[ep]; 339 340 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 341 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 342 } 343 344 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 345 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 346 GDFIFOCFG); 347 /* 348 * according to p428 of the design guide, we need to ensure that 349 * all fifos are flushed before continuing 350 */ 351 352 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 353 GRSTCTL_RXFFLSH, GRSTCTL); 354 355 /* wait until the fifos are both flushed */ 356 timeout = 100; 357 while (1) { 358 val = dwc2_readl(hsotg, GRSTCTL); 359 360 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 361 break; 362 363 if (--timeout == 0) { 364 dev_err(hsotg->dev, 365 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 366 __func__, val); 367 break; 368 } 369 370 udelay(1); 371 } 372 373 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 374 } 375 376 /** 377 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 378 * @ep: USB endpoint to allocate request for. 379 * @flags: Allocation flags 380 * 381 * Allocate a new USB request structure appropriate for the specified endpoint 382 */ 383 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 384 gfp_t flags) 385 { 386 struct dwc2_hsotg_req *req; 387 388 req = kzalloc(sizeof(*req), flags); 389 if (!req) 390 return NULL; 391 392 INIT_LIST_HEAD(&req->queue); 393 394 return &req->req; 395 } 396 397 /** 398 * is_ep_periodic - return true if the endpoint is in periodic mode. 399 * @hs_ep: The endpoint to query. 400 * 401 * Returns true if the endpoint is in periodic mode, meaning it is being 402 * used for an Interrupt or ISO transfer. 403 */ 404 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 405 { 406 return hs_ep->periodic; 407 } 408 409 /** 410 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 411 * @hsotg: The device state. 412 * @hs_ep: The endpoint for the request 413 * @hs_req: The request being processed. 414 * 415 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 416 * of a request to ensure the buffer is ready for access by the caller. 417 */ 418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 419 struct dwc2_hsotg_ep *hs_ep, 420 struct dwc2_hsotg_req *hs_req) 421 { 422 struct usb_request *req = &hs_req->req; 423 424 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 425 } 426 427 /* 428 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 429 * for Control endpoint 430 * @hsotg: The device state. 431 * 432 * This function will allocate 4 descriptor chains for EP 0: 2 for 433 * Setup stage, per one for IN and OUT data/status transactions. 434 */ 435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 436 { 437 hsotg->setup_desc[0] = 438 dmam_alloc_coherent(hsotg->dev, 439 sizeof(struct dwc2_dma_desc), 440 &hsotg->setup_desc_dma[0], 441 GFP_KERNEL); 442 if (!hsotg->setup_desc[0]) 443 goto fail; 444 445 hsotg->setup_desc[1] = 446 dmam_alloc_coherent(hsotg->dev, 447 sizeof(struct dwc2_dma_desc), 448 &hsotg->setup_desc_dma[1], 449 GFP_KERNEL); 450 if (!hsotg->setup_desc[1]) 451 goto fail; 452 453 hsotg->ctrl_in_desc = 454 dmam_alloc_coherent(hsotg->dev, 455 sizeof(struct dwc2_dma_desc), 456 &hsotg->ctrl_in_desc_dma, 457 GFP_KERNEL); 458 if (!hsotg->ctrl_in_desc) 459 goto fail; 460 461 hsotg->ctrl_out_desc = 462 dmam_alloc_coherent(hsotg->dev, 463 sizeof(struct dwc2_dma_desc), 464 &hsotg->ctrl_out_desc_dma, 465 GFP_KERNEL); 466 if (!hsotg->ctrl_out_desc) 467 goto fail; 468 469 return 0; 470 471 fail: 472 return -ENOMEM; 473 } 474 475 /** 476 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 477 * @hsotg: The controller state. 478 * @hs_ep: The endpoint we're going to write for. 479 * @hs_req: The request to write data for. 480 * 481 * This is called when the TxFIFO has some space in it to hold a new 482 * transmission and we have something to give it. The actual setup of 483 * the data size is done elsewhere, so all we have to do is to actually 484 * write the data. 485 * 486 * The return value is zero if there is more space (or nothing was done) 487 * otherwise -ENOSPC is returned if the FIFO space was used up. 488 * 489 * This routine is only needed for PIO 490 */ 491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 492 struct dwc2_hsotg_ep *hs_ep, 493 struct dwc2_hsotg_req *hs_req) 494 { 495 bool periodic = is_ep_periodic(hs_ep); 496 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 497 int buf_pos = hs_req->req.actual; 498 int to_write = hs_ep->size_loaded; 499 void *data; 500 int can_write; 501 int pkt_round; 502 int max_transfer; 503 504 to_write -= (buf_pos - hs_ep->last_load); 505 506 /* if there's nothing to write, get out early */ 507 if (to_write == 0) 508 return 0; 509 510 if (periodic && !hsotg->dedicated_fifos) { 511 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 512 int size_left; 513 int size_done; 514 515 /* 516 * work out how much data was loaded so we can calculate 517 * how much data is left in the fifo. 518 */ 519 520 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 521 522 /* 523 * if shared fifo, we cannot write anything until the 524 * previous data has been completely sent. 525 */ 526 if (hs_ep->fifo_load != 0) { 527 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 528 return -ENOSPC; 529 } 530 531 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 532 __func__, size_left, 533 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 534 535 /* how much of the data has moved */ 536 size_done = hs_ep->size_loaded - size_left; 537 538 /* how much data is left in the fifo */ 539 can_write = hs_ep->fifo_load - size_done; 540 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 541 __func__, can_write); 542 543 can_write = hs_ep->fifo_size - can_write; 544 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 545 __func__, can_write); 546 547 if (can_write <= 0) { 548 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 549 return -ENOSPC; 550 } 551 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 552 can_write = dwc2_readl(hsotg, 553 DTXFSTS(hs_ep->fifo_index)); 554 555 can_write &= 0xffff; 556 can_write *= 4; 557 } else { 558 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 559 dev_dbg(hsotg->dev, 560 "%s: no queue slots available (0x%08x)\n", 561 __func__, gnptxsts); 562 563 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 564 return -ENOSPC; 565 } 566 567 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 568 can_write *= 4; /* fifo size is in 32bit quantities. */ 569 } 570 571 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 572 573 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 574 __func__, gnptxsts, can_write, to_write, max_transfer); 575 576 /* 577 * limit to 512 bytes of data, it seems at least on the non-periodic 578 * FIFO, requests of >512 cause the endpoint to get stuck with a 579 * fragment of the end of the transfer in it. 580 */ 581 if (can_write > 512 && !periodic) 582 can_write = 512; 583 584 /* 585 * limit the write to one max-packet size worth of data, but allow 586 * the transfer to return that it did not run out of fifo space 587 * doing it. 588 */ 589 if (to_write > max_transfer) { 590 to_write = max_transfer; 591 592 /* it's needed only when we do not use dedicated fifos */ 593 if (!hsotg->dedicated_fifos) 594 dwc2_hsotg_en_gsint(hsotg, 595 periodic ? GINTSTS_PTXFEMP : 596 GINTSTS_NPTXFEMP); 597 } 598 599 /* see if we can write data */ 600 601 if (to_write > can_write) { 602 to_write = can_write; 603 pkt_round = to_write % max_transfer; 604 605 /* 606 * Round the write down to an 607 * exact number of packets. 608 * 609 * Note, we do not currently check to see if we can ever 610 * write a full packet or not to the FIFO. 611 */ 612 613 if (pkt_round) 614 to_write -= pkt_round; 615 616 /* 617 * enable correct FIFO interrupt to alert us when there 618 * is more room left. 619 */ 620 621 /* it's needed only when we do not use dedicated fifos */ 622 if (!hsotg->dedicated_fifos) 623 dwc2_hsotg_en_gsint(hsotg, 624 periodic ? GINTSTS_PTXFEMP : 625 GINTSTS_NPTXFEMP); 626 } 627 628 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 629 to_write, hs_req->req.length, can_write, buf_pos); 630 631 if (to_write <= 0) 632 return -ENOSPC; 633 634 hs_req->req.actual = buf_pos + to_write; 635 hs_ep->total_data += to_write; 636 637 if (periodic) 638 hs_ep->fifo_load += to_write; 639 640 to_write = DIV_ROUND_UP(to_write, 4); 641 data = hs_req->req.buf + buf_pos; 642 643 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 644 645 return (to_write >= can_write) ? -ENOSPC : 0; 646 } 647 648 /** 649 * get_ep_limit - get the maximum data legnth for this endpoint 650 * @hs_ep: The endpoint 651 * 652 * Return the maximum data that can be queued in one go on a given endpoint 653 * so that transfers that are too long can be split. 654 */ 655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 656 { 657 int index = hs_ep->index; 658 unsigned int maxsize; 659 unsigned int maxpkt; 660 661 if (index != 0) { 662 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 663 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 664 } else { 665 maxsize = 64 + 64; 666 if (hs_ep->dir_in) 667 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 668 else 669 maxpkt = 2; 670 } 671 672 /* we made the constant loading easier above by using +1 */ 673 maxpkt--; 674 maxsize--; 675 676 /* 677 * constrain by packet count if maxpkts*pktsize is greater 678 * than the length register size. 679 */ 680 681 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 682 maxsize = maxpkt * hs_ep->ep.maxpacket; 683 684 return maxsize; 685 } 686 687 /** 688 * dwc2_hsotg_read_frameno - read current frame number 689 * @hsotg: The device instance 690 * 691 * Return the current frame number 692 */ 693 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 694 { 695 u32 dsts; 696 697 dsts = dwc2_readl(hsotg, DSTS); 698 dsts &= DSTS_SOFFN_MASK; 699 dsts >>= DSTS_SOFFN_SHIFT; 700 701 return dsts; 702 } 703 704 /** 705 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 706 * DMA descriptor chain prepared for specific endpoint 707 * @hs_ep: The endpoint 708 * 709 * Return the maximum data that can be queued in one go on a given endpoint 710 * depending on its descriptor chain capacity so that transfers that 711 * are too long can be split. 712 */ 713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 714 { 715 int is_isoc = hs_ep->isochronous; 716 unsigned int maxsize; 717 718 if (is_isoc) 719 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 720 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 721 MAX_DMA_DESC_NUM_HS_ISOC; 722 else 723 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 724 725 return maxsize; 726 } 727 728 /* 729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 730 * @hs_ep: The endpoint 731 * @mask: RX/TX bytes mask to be defined 732 * 733 * Returns maximum data payload for one descriptor after analyzing endpoint 734 * characteristics. 735 * DMA descriptor transfer bytes limit depends on EP type: 736 * Control out - MPS, 737 * Isochronous - descriptor rx/tx bytes bitfield limit, 738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 739 * have concatenations from various descriptors within one packet. 740 * 741 * Selects corresponding mask for RX/TX bytes as well. 742 */ 743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 744 { 745 u32 mps = hs_ep->ep.maxpacket; 746 int dir_in = hs_ep->dir_in; 747 u32 desc_size = 0; 748 749 if (!hs_ep->index && !dir_in) { 750 desc_size = mps; 751 *mask = DEV_DMA_NBYTES_MASK; 752 } else if (hs_ep->isochronous) { 753 if (dir_in) { 754 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 755 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 756 } else { 757 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 758 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 759 } 760 } else { 761 desc_size = DEV_DMA_NBYTES_LIMIT; 762 *mask = DEV_DMA_NBYTES_MASK; 763 764 /* Round down desc_size to be mps multiple */ 765 desc_size -= desc_size % mps; 766 } 767 768 return desc_size; 769 } 770 771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 772 struct dwc2_dma_desc **desc, 773 dma_addr_t dma_buff, 774 unsigned int len, 775 bool true_last) 776 { 777 int dir_in = hs_ep->dir_in; 778 u32 mps = hs_ep->ep.maxpacket; 779 u32 maxsize = 0; 780 u32 offset = 0; 781 u32 mask = 0; 782 int i; 783 784 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 785 786 hs_ep->desc_count = (len / maxsize) + 787 ((len % maxsize) ? 1 : 0); 788 if (len == 0) 789 hs_ep->desc_count = 1; 790 791 for (i = 0; i < hs_ep->desc_count; ++i) { 792 (*desc)->status = 0; 793 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 794 << DEV_DMA_BUFF_STS_SHIFT); 795 796 if (len > maxsize) { 797 if (!hs_ep->index && !dir_in) 798 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 799 800 (*desc)->status |= 801 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 802 (*desc)->buf = dma_buff + offset; 803 804 len -= maxsize; 805 offset += maxsize; 806 } else { 807 if (true_last) 808 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 809 810 if (dir_in) 811 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 812 ((hs_ep->send_zlp && true_last) ? 813 DEV_DMA_SHORT : 0); 814 815 (*desc)->status |= 816 len << DEV_DMA_NBYTES_SHIFT & mask; 817 (*desc)->buf = dma_buff + offset; 818 } 819 820 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 821 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 822 << DEV_DMA_BUFF_STS_SHIFT); 823 (*desc)++; 824 } 825 } 826 827 /* 828 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 829 * @hs_ep: The endpoint 830 * @ureq: Request to transfer 831 * @offset: offset in bytes 832 * @len: Length of the transfer 833 * 834 * This function will iterate over descriptor chain and fill its entries 835 * with corresponding information based on transfer data. 836 */ 837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 838 dma_addr_t dma_buff, 839 unsigned int len) 840 { 841 struct usb_request *ureq = NULL; 842 struct dwc2_dma_desc *desc = hs_ep->desc_list; 843 struct scatterlist *sg; 844 int i; 845 u8 desc_count = 0; 846 847 if (hs_ep->req) 848 ureq = &hs_ep->req->req; 849 850 /* non-DMA sg buffer */ 851 if (!ureq || !ureq->num_sgs) { 852 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 853 dma_buff, len, true); 854 return; 855 } 856 857 /* DMA sg buffer */ 858 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 859 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 860 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 861 sg_is_last(sg)); 862 desc_count += hs_ep->desc_count; 863 } 864 865 hs_ep->desc_count = desc_count; 866 } 867 868 /* 869 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 870 * @hs_ep: The isochronous endpoint. 871 * @dma_buff: usb requests dma buffer. 872 * @len: usb request transfer length. 873 * 874 * Fills next free descriptor with the data of the arrived usb request, 875 * frame info, sets Last and IOC bits increments next_desc. If filled 876 * descriptor is not the first one, removes L bit from the previous descriptor 877 * status. 878 */ 879 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 880 dma_addr_t dma_buff, unsigned int len) 881 { 882 struct dwc2_dma_desc *desc; 883 struct dwc2_hsotg *hsotg = hs_ep->parent; 884 u32 index; 885 u32 maxsize = 0; 886 u32 mask = 0; 887 u8 pid = 0; 888 889 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 890 891 index = hs_ep->next_desc; 892 desc = &hs_ep->desc_list[index]; 893 894 /* Check if descriptor chain full */ 895 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 896 DEV_DMA_BUFF_STS_HREADY) { 897 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 898 return 1; 899 } 900 901 /* Clear L bit of previous desc if more than one entries in the chain */ 902 if (hs_ep->next_desc) 903 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 904 905 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 906 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 907 908 desc->status = 0; 909 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 910 911 desc->buf = dma_buff; 912 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 913 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 914 915 if (hs_ep->dir_in) { 916 if (len) 917 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 918 else 919 pid = 1; 920 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 921 DEV_DMA_ISOC_PID_MASK) | 922 ((len % hs_ep->ep.maxpacket) ? 923 DEV_DMA_SHORT : 0) | 924 ((hs_ep->target_frame << 925 DEV_DMA_ISOC_FRNUM_SHIFT) & 926 DEV_DMA_ISOC_FRNUM_MASK); 927 } 928 929 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 930 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 931 932 /* Increment frame number by interval for IN */ 933 if (hs_ep->dir_in) 934 dwc2_gadget_incr_frame_num(hs_ep); 935 936 /* Update index of last configured entry in the chain */ 937 hs_ep->next_desc++; 938 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 939 hs_ep->next_desc = 0; 940 941 return 0; 942 } 943 944 /* 945 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 946 * @hs_ep: The isochronous endpoint. 947 * 948 * Prepare descriptor chain for isochronous endpoints. Afterwards 949 * write DMA address to HW and enable the endpoint. 950 */ 951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 952 { 953 struct dwc2_hsotg *hsotg = hs_ep->parent; 954 struct dwc2_hsotg_req *hs_req, *treq; 955 int index = hs_ep->index; 956 int ret; 957 int i; 958 u32 dma_reg; 959 u32 depctl; 960 u32 ctrl; 961 struct dwc2_dma_desc *desc; 962 963 if (list_empty(&hs_ep->queue)) { 964 hs_ep->target_frame = TARGET_FRAME_INITIAL; 965 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 966 return; 967 } 968 969 /* Initialize descriptor chain by Host Busy status */ 970 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 971 desc = &hs_ep->desc_list[i]; 972 desc->status = 0; 973 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 974 << DEV_DMA_BUFF_STS_SHIFT); 975 } 976 977 hs_ep->next_desc = 0; 978 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 979 dma_addr_t dma_addr = hs_req->req.dma; 980 981 if (hs_req->req.num_sgs) { 982 WARN_ON(hs_req->req.num_sgs > 1); 983 dma_addr = sg_dma_address(hs_req->req.sg); 984 } 985 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 986 hs_req->req.length); 987 if (ret) 988 break; 989 } 990 991 hs_ep->compl_desc = 0; 992 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 993 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 994 995 /* write descriptor chain address to control register */ 996 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 997 998 ctrl = dwc2_readl(hsotg, depctl); 999 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1000 dwc2_writel(hsotg, ctrl, depctl); 1001 } 1002 1003 /** 1004 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1005 * @hsotg: The controller state. 1006 * @hs_ep: The endpoint to process a request for 1007 * @hs_req: The request to start. 1008 * @continuing: True if we are doing more for the current request. 1009 * 1010 * Start the given request running by setting the endpoint registers 1011 * appropriately, and writing any data to the FIFOs. 1012 */ 1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1014 struct dwc2_hsotg_ep *hs_ep, 1015 struct dwc2_hsotg_req *hs_req, 1016 bool continuing) 1017 { 1018 struct usb_request *ureq = &hs_req->req; 1019 int index = hs_ep->index; 1020 int dir_in = hs_ep->dir_in; 1021 u32 epctrl_reg; 1022 u32 epsize_reg; 1023 u32 epsize; 1024 u32 ctrl; 1025 unsigned int length; 1026 unsigned int packets; 1027 unsigned int maxreq; 1028 unsigned int dma_reg; 1029 1030 if (index != 0) { 1031 if (hs_ep->req && !continuing) { 1032 dev_err(hsotg->dev, "%s: active request\n", __func__); 1033 WARN_ON(1); 1034 return; 1035 } else if (hs_ep->req != hs_req && continuing) { 1036 dev_err(hsotg->dev, 1037 "%s: continue different req\n", __func__); 1038 WARN_ON(1); 1039 return; 1040 } 1041 } 1042 1043 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1044 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1045 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1046 1047 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1048 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1049 hs_ep->dir_in ? "in" : "out"); 1050 1051 /* If endpoint is stalled, we will restart request later */ 1052 ctrl = dwc2_readl(hsotg, epctrl_reg); 1053 1054 if (index && ctrl & DXEPCTL_STALL) { 1055 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1056 return; 1057 } 1058 1059 length = ureq->length - ureq->actual; 1060 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1061 ureq->length, ureq->actual); 1062 1063 if (!using_desc_dma(hsotg)) 1064 maxreq = get_ep_limit(hs_ep); 1065 else 1066 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1067 1068 if (length > maxreq) { 1069 int round = maxreq % hs_ep->ep.maxpacket; 1070 1071 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1072 __func__, length, maxreq, round); 1073 1074 /* round down to multiple of packets */ 1075 if (round) 1076 maxreq -= round; 1077 1078 length = maxreq; 1079 } 1080 1081 if (length) 1082 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1083 else 1084 packets = 1; /* send one packet if length is zero. */ 1085 1086 if (dir_in && index != 0) 1087 if (hs_ep->isochronous) 1088 epsize = DXEPTSIZ_MC(packets); 1089 else 1090 epsize = DXEPTSIZ_MC(1); 1091 else 1092 epsize = 0; 1093 1094 /* 1095 * zero length packet should be programmed on its own and should not 1096 * be counted in DIEPTSIZ.PktCnt with other packets. 1097 */ 1098 if (dir_in && ureq->zero && !continuing) { 1099 /* Test if zlp is actually required. */ 1100 if ((ureq->length >= hs_ep->ep.maxpacket) && 1101 !(ureq->length % hs_ep->ep.maxpacket)) 1102 hs_ep->send_zlp = 1; 1103 } 1104 1105 epsize |= DXEPTSIZ_PKTCNT(packets); 1106 epsize |= DXEPTSIZ_XFERSIZE(length); 1107 1108 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1109 __func__, packets, length, ureq->length, epsize, epsize_reg); 1110 1111 /* store the request as the current one we're doing */ 1112 hs_ep->req = hs_req; 1113 1114 if (using_desc_dma(hsotg)) { 1115 u32 offset = 0; 1116 u32 mps = hs_ep->ep.maxpacket; 1117 1118 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1119 if (!dir_in) { 1120 if (!index) 1121 length = mps; 1122 else if (length % mps) 1123 length += (mps - (length % mps)); 1124 } 1125 1126 /* 1127 * If more data to send, adjust DMA for EP0 out data stage. 1128 * ureq->dma stays unchanged, hence increment it by already 1129 * passed passed data count before starting new transaction. 1130 */ 1131 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1132 continuing) 1133 offset = ureq->actual; 1134 1135 /* Fill DDMA chain entries */ 1136 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1137 length); 1138 1139 /* write descriptor chain address to control register */ 1140 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1141 1142 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1143 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1144 } else { 1145 /* write size / packets */ 1146 dwc2_writel(hsotg, epsize, epsize_reg); 1147 1148 if (using_dma(hsotg) && !continuing && (length != 0)) { 1149 /* 1150 * write DMA address to control register, buffer 1151 * already synced by dwc2_hsotg_ep_queue(). 1152 */ 1153 1154 dwc2_writel(hsotg, ureq->dma, dma_reg); 1155 1156 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1157 __func__, &ureq->dma, dma_reg); 1158 } 1159 } 1160 1161 if (hs_ep->isochronous && hs_ep->interval == 1) { 1162 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1163 dwc2_gadget_incr_frame_num(hs_ep); 1164 1165 if (hs_ep->target_frame & 0x1) 1166 ctrl |= DXEPCTL_SETODDFR; 1167 else 1168 ctrl |= DXEPCTL_SETEVENFR; 1169 } 1170 1171 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1172 1173 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1174 1175 /* For Setup request do not clear NAK */ 1176 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1177 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1178 1179 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1180 dwc2_writel(hsotg, ctrl, epctrl_reg); 1181 1182 /* 1183 * set these, it seems that DMA support increments past the end 1184 * of the packet buffer so we need to calculate the length from 1185 * this information. 1186 */ 1187 hs_ep->size_loaded = length; 1188 hs_ep->last_load = ureq->actual; 1189 1190 if (dir_in && !using_dma(hsotg)) { 1191 /* set these anyway, we may need them for non-periodic in */ 1192 hs_ep->fifo_load = 0; 1193 1194 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1195 } 1196 1197 /* 1198 * Note, trying to clear the NAK here causes problems with transmit 1199 * on the S3C6400 ending up with the TXFIFO becoming full. 1200 */ 1201 1202 /* check ep is enabled */ 1203 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1204 dev_dbg(hsotg->dev, 1205 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1206 index, dwc2_readl(hsotg, epctrl_reg)); 1207 1208 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1209 __func__, dwc2_readl(hsotg, epctrl_reg)); 1210 1211 /* enable ep interrupts */ 1212 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1213 } 1214 1215 /** 1216 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1217 * @hsotg: The device state. 1218 * @hs_ep: The endpoint the request is on. 1219 * @req: The request being processed. 1220 * 1221 * We've been asked to queue a request, so ensure that the memory buffer 1222 * is correctly setup for DMA. If we've been passed an extant DMA address 1223 * then ensure the buffer has been synced to memory. If our buffer has no 1224 * DMA memory, then we map the memory and mark our request to allow us to 1225 * cleanup on completion. 1226 */ 1227 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1228 struct dwc2_hsotg_ep *hs_ep, 1229 struct usb_request *req) 1230 { 1231 int ret; 1232 1233 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1234 if (ret) 1235 goto dma_error; 1236 1237 return 0; 1238 1239 dma_error: 1240 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1241 __func__, req->buf, req->length); 1242 1243 return -EIO; 1244 } 1245 1246 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1247 struct dwc2_hsotg_ep *hs_ep, 1248 struct dwc2_hsotg_req *hs_req) 1249 { 1250 void *req_buf = hs_req->req.buf; 1251 1252 /* If dma is not being used or buffer is aligned */ 1253 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1254 return 0; 1255 1256 WARN_ON(hs_req->saved_req_buf); 1257 1258 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1259 hs_ep->ep.name, req_buf, hs_req->req.length); 1260 1261 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1262 if (!hs_req->req.buf) { 1263 hs_req->req.buf = req_buf; 1264 dev_err(hsotg->dev, 1265 "%s: unable to allocate memory for bounce buffer\n", 1266 __func__); 1267 return -ENOMEM; 1268 } 1269 1270 /* Save actual buffer */ 1271 hs_req->saved_req_buf = req_buf; 1272 1273 if (hs_ep->dir_in) 1274 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1275 return 0; 1276 } 1277 1278 static void 1279 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1280 struct dwc2_hsotg_ep *hs_ep, 1281 struct dwc2_hsotg_req *hs_req) 1282 { 1283 /* If dma is not being used or buffer was aligned */ 1284 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1285 return; 1286 1287 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1288 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1289 1290 /* Copy data from bounce buffer on successful out transfer */ 1291 if (!hs_ep->dir_in && !hs_req->req.status) 1292 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1293 hs_req->req.actual); 1294 1295 /* Free bounce buffer */ 1296 kfree(hs_req->req.buf); 1297 1298 hs_req->req.buf = hs_req->saved_req_buf; 1299 hs_req->saved_req_buf = NULL; 1300 } 1301 1302 /** 1303 * dwc2_gadget_target_frame_elapsed - Checks target frame 1304 * @hs_ep: The driver endpoint to check 1305 * 1306 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1307 * corresponding transfer. 1308 */ 1309 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1310 { 1311 struct dwc2_hsotg *hsotg = hs_ep->parent; 1312 u32 target_frame = hs_ep->target_frame; 1313 u32 current_frame = hsotg->frame_number; 1314 bool frame_overrun = hs_ep->frame_overrun; 1315 1316 if (!frame_overrun && current_frame >= target_frame) 1317 return true; 1318 1319 if (frame_overrun && current_frame >= target_frame && 1320 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1321 return true; 1322 1323 return false; 1324 } 1325 1326 /* 1327 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1328 * @hsotg: The driver state 1329 * @hs_ep: the ep descriptor chain is for 1330 * 1331 * Called to update EP0 structure's pointers depend on stage of 1332 * control transfer. 1333 */ 1334 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1335 struct dwc2_hsotg_ep *hs_ep) 1336 { 1337 switch (hsotg->ep0_state) { 1338 case DWC2_EP0_SETUP: 1339 case DWC2_EP0_STATUS_OUT: 1340 hs_ep->desc_list = hsotg->setup_desc[0]; 1341 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1342 break; 1343 case DWC2_EP0_DATA_IN: 1344 case DWC2_EP0_STATUS_IN: 1345 hs_ep->desc_list = hsotg->ctrl_in_desc; 1346 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1347 break; 1348 case DWC2_EP0_DATA_OUT: 1349 hs_ep->desc_list = hsotg->ctrl_out_desc; 1350 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1351 break; 1352 default: 1353 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1354 hsotg->ep0_state); 1355 return -EINVAL; 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1362 gfp_t gfp_flags) 1363 { 1364 struct dwc2_hsotg_req *hs_req = our_req(req); 1365 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1366 struct dwc2_hsotg *hs = hs_ep->parent; 1367 bool first; 1368 int ret; 1369 u32 maxsize = 0; 1370 u32 mask = 0; 1371 1372 1373 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1374 ep->name, req, req->length, req->buf, req->no_interrupt, 1375 req->zero, req->short_not_ok); 1376 1377 /* Prevent new request submission when controller is suspended */ 1378 if (hs->lx_state != DWC2_L0) { 1379 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1380 __func__); 1381 return -EAGAIN; 1382 } 1383 1384 /* initialise status of the request */ 1385 INIT_LIST_HEAD(&hs_req->queue); 1386 req->actual = 0; 1387 req->status = -EINPROGRESS; 1388 1389 /* Don't queue ISOC request if length greater than mps*mc */ 1390 if (hs_ep->isochronous && 1391 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1392 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1393 return -EINVAL; 1394 } 1395 1396 /* In DDMA mode for ISOC's don't queue request if length greater 1397 * than descriptor limits. 1398 */ 1399 if (using_desc_dma(hs) && hs_ep->isochronous) { 1400 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1401 if (hs_ep->dir_in && req->length > maxsize) { 1402 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1403 req->length, maxsize); 1404 return -EINVAL; 1405 } 1406 1407 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1408 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1409 req->length, hs_ep->ep.maxpacket); 1410 return -EINVAL; 1411 } 1412 } 1413 1414 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1415 if (ret) 1416 return ret; 1417 1418 /* if we're using DMA, sync the buffers as necessary */ 1419 if (using_dma(hs)) { 1420 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1421 if (ret) 1422 return ret; 1423 } 1424 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1425 if (using_desc_dma(hs) && !hs_ep->index) { 1426 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1427 if (ret) 1428 return ret; 1429 } 1430 1431 first = list_empty(&hs_ep->queue); 1432 list_add_tail(&hs_req->queue, &hs_ep->queue); 1433 1434 /* 1435 * Handle DDMA isochronous transfers separately - just add new entry 1436 * to the descriptor chain. 1437 * Transfer will be started once SW gets either one of NAK or 1438 * OutTknEpDis interrupts. 1439 */ 1440 if (using_desc_dma(hs) && hs_ep->isochronous) { 1441 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1442 dma_addr_t dma_addr = hs_req->req.dma; 1443 1444 if (hs_req->req.num_sgs) { 1445 WARN_ON(hs_req->req.num_sgs > 1); 1446 dma_addr = sg_dma_address(hs_req->req.sg); 1447 } 1448 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1449 hs_req->req.length); 1450 } 1451 return 0; 1452 } 1453 1454 /* Change EP direction if status phase request is after data out */ 1455 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1456 hs->ep0_state == DWC2_EP0_DATA_OUT) 1457 hs_ep->dir_in = 1; 1458 1459 if (first) { 1460 if (!hs_ep->isochronous) { 1461 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1462 return 0; 1463 } 1464 1465 /* Update current frame number value. */ 1466 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1467 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1468 dwc2_gadget_incr_frame_num(hs_ep); 1469 /* Update current frame number value once more as it 1470 * changes here. 1471 */ 1472 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1473 } 1474 1475 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1476 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1477 } 1478 return 0; 1479 } 1480 1481 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1482 gfp_t gfp_flags) 1483 { 1484 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1485 struct dwc2_hsotg *hs = hs_ep->parent; 1486 unsigned long flags = 0; 1487 int ret = 0; 1488 1489 spin_lock_irqsave(&hs->lock, flags); 1490 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1491 spin_unlock_irqrestore(&hs->lock, flags); 1492 1493 return ret; 1494 } 1495 1496 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1497 struct usb_request *req) 1498 { 1499 struct dwc2_hsotg_req *hs_req = our_req(req); 1500 1501 kfree(hs_req); 1502 } 1503 1504 /** 1505 * dwc2_hsotg_complete_oursetup - setup completion callback 1506 * @ep: The endpoint the request was on. 1507 * @req: The request completed. 1508 * 1509 * Called on completion of any requests the driver itself 1510 * submitted that need cleaning up. 1511 */ 1512 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1513 struct usb_request *req) 1514 { 1515 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1516 struct dwc2_hsotg *hsotg = hs_ep->parent; 1517 1518 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1519 1520 dwc2_hsotg_ep_free_request(ep, req); 1521 } 1522 1523 /** 1524 * ep_from_windex - convert control wIndex value to endpoint 1525 * @hsotg: The driver state. 1526 * @windex: The control request wIndex field (in host order). 1527 * 1528 * Convert the given wIndex into a pointer to an driver endpoint 1529 * structure, or return NULL if it is not a valid endpoint. 1530 */ 1531 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1532 u32 windex) 1533 { 1534 struct dwc2_hsotg_ep *ep; 1535 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1536 int idx = windex & 0x7F; 1537 1538 if (windex >= 0x100) 1539 return NULL; 1540 1541 if (idx > hsotg->num_of_eps) 1542 return NULL; 1543 1544 ep = index_to_ep(hsotg, idx, dir); 1545 1546 if (idx && ep->dir_in != dir) 1547 return NULL; 1548 1549 return ep; 1550 } 1551 1552 /** 1553 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1554 * @hsotg: The driver state. 1555 * @testmode: requested usb test mode 1556 * Enable usb Test Mode requested by the Host. 1557 */ 1558 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1559 { 1560 int dctl = dwc2_readl(hsotg, DCTL); 1561 1562 dctl &= ~DCTL_TSTCTL_MASK; 1563 switch (testmode) { 1564 case TEST_J: 1565 case TEST_K: 1566 case TEST_SE0_NAK: 1567 case TEST_PACKET: 1568 case TEST_FORCE_EN: 1569 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1570 break; 1571 default: 1572 return -EINVAL; 1573 } 1574 dwc2_writel(hsotg, dctl, DCTL); 1575 return 0; 1576 } 1577 1578 /** 1579 * dwc2_hsotg_send_reply - send reply to control request 1580 * @hsotg: The device state 1581 * @ep: Endpoint 0 1582 * @buff: Buffer for request 1583 * @length: Length of reply. 1584 * 1585 * Create a request and queue it on the given endpoint. This is useful as 1586 * an internal method of sending replies to certain control requests, etc. 1587 */ 1588 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1589 struct dwc2_hsotg_ep *ep, 1590 void *buff, 1591 int length) 1592 { 1593 struct usb_request *req; 1594 int ret; 1595 1596 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1597 1598 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1599 hsotg->ep0_reply = req; 1600 if (!req) { 1601 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1602 return -ENOMEM; 1603 } 1604 1605 req->buf = hsotg->ep0_buff; 1606 req->length = length; 1607 /* 1608 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1609 * STATUS stage. 1610 */ 1611 req->zero = 0; 1612 req->complete = dwc2_hsotg_complete_oursetup; 1613 1614 if (length) 1615 memcpy(req->buf, buff, length); 1616 1617 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1618 if (ret) { 1619 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1620 return ret; 1621 } 1622 1623 return 0; 1624 } 1625 1626 /** 1627 * dwc2_hsotg_process_req_status - process request GET_STATUS 1628 * @hsotg: The device state 1629 * @ctrl: USB control request 1630 */ 1631 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1632 struct usb_ctrlrequest *ctrl) 1633 { 1634 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1635 struct dwc2_hsotg_ep *ep; 1636 __le16 reply; 1637 u16 status; 1638 int ret; 1639 1640 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1641 1642 if (!ep0->dir_in) { 1643 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1644 return -EINVAL; 1645 } 1646 1647 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1648 case USB_RECIP_DEVICE: 1649 status = 1 << USB_DEVICE_SELF_POWERED; 1650 status |= hsotg->remote_wakeup_allowed << 1651 USB_DEVICE_REMOTE_WAKEUP; 1652 reply = cpu_to_le16(status); 1653 break; 1654 1655 case USB_RECIP_INTERFACE: 1656 /* currently, the data result should be zero */ 1657 reply = cpu_to_le16(0); 1658 break; 1659 1660 case USB_RECIP_ENDPOINT: 1661 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1662 if (!ep) 1663 return -ENOENT; 1664 1665 reply = cpu_to_le16(ep->halted ? 1 : 0); 1666 break; 1667 1668 default: 1669 return 0; 1670 } 1671 1672 if (le16_to_cpu(ctrl->wLength) != 2) 1673 return -EINVAL; 1674 1675 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1676 if (ret) { 1677 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1678 return ret; 1679 } 1680 1681 return 1; 1682 } 1683 1684 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1685 1686 /** 1687 * get_ep_head - return the first request on the endpoint 1688 * @hs_ep: The controller endpoint to get 1689 * 1690 * Get the first request on the endpoint. 1691 */ 1692 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1693 { 1694 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1695 queue); 1696 } 1697 1698 /** 1699 * dwc2_gadget_start_next_request - Starts next request from ep queue 1700 * @hs_ep: Endpoint structure 1701 * 1702 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1703 * in its handler. Hence we need to unmask it here to be able to do 1704 * resynchronization. 1705 */ 1706 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1707 { 1708 u32 mask; 1709 struct dwc2_hsotg *hsotg = hs_ep->parent; 1710 int dir_in = hs_ep->dir_in; 1711 struct dwc2_hsotg_req *hs_req; 1712 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1713 1714 if (!list_empty(&hs_ep->queue)) { 1715 hs_req = get_ep_head(hs_ep); 1716 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1717 return; 1718 } 1719 if (!hs_ep->isochronous) 1720 return; 1721 1722 if (dir_in) { 1723 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1724 __func__); 1725 } else { 1726 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1727 __func__); 1728 mask = dwc2_readl(hsotg, epmsk_reg); 1729 mask |= DOEPMSK_OUTTKNEPDISMSK; 1730 dwc2_writel(hsotg, mask, epmsk_reg); 1731 } 1732 } 1733 1734 /** 1735 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1736 * @hsotg: The device state 1737 * @ctrl: USB control request 1738 */ 1739 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1740 struct usb_ctrlrequest *ctrl) 1741 { 1742 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1743 struct dwc2_hsotg_req *hs_req; 1744 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1745 struct dwc2_hsotg_ep *ep; 1746 int ret; 1747 bool halted; 1748 u32 recip; 1749 u32 wValue; 1750 u32 wIndex; 1751 1752 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1753 __func__, set ? "SET" : "CLEAR"); 1754 1755 wValue = le16_to_cpu(ctrl->wValue); 1756 wIndex = le16_to_cpu(ctrl->wIndex); 1757 recip = ctrl->bRequestType & USB_RECIP_MASK; 1758 1759 switch (recip) { 1760 case USB_RECIP_DEVICE: 1761 switch (wValue) { 1762 case USB_DEVICE_REMOTE_WAKEUP: 1763 if (set) 1764 hsotg->remote_wakeup_allowed = 1; 1765 else 1766 hsotg->remote_wakeup_allowed = 0; 1767 break; 1768 1769 case USB_DEVICE_TEST_MODE: 1770 if ((wIndex & 0xff) != 0) 1771 return -EINVAL; 1772 if (!set) 1773 return -EINVAL; 1774 1775 hsotg->test_mode = wIndex >> 8; 1776 break; 1777 default: 1778 return -ENOENT; 1779 } 1780 1781 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1782 if (ret) { 1783 dev_err(hsotg->dev, 1784 "%s: failed to send reply\n", __func__); 1785 return ret; 1786 } 1787 break; 1788 1789 case USB_RECIP_ENDPOINT: 1790 ep = ep_from_windex(hsotg, wIndex); 1791 if (!ep) { 1792 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1793 __func__, wIndex); 1794 return -ENOENT; 1795 } 1796 1797 switch (wValue) { 1798 case USB_ENDPOINT_HALT: 1799 halted = ep->halted; 1800 1801 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1802 1803 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1804 if (ret) { 1805 dev_err(hsotg->dev, 1806 "%s: failed to send reply\n", __func__); 1807 return ret; 1808 } 1809 1810 /* 1811 * we have to complete all requests for ep if it was 1812 * halted, and the halt was cleared by CLEAR_FEATURE 1813 */ 1814 1815 if (!set && halted) { 1816 /* 1817 * If we have request in progress, 1818 * then complete it 1819 */ 1820 if (ep->req) { 1821 hs_req = ep->req; 1822 ep->req = NULL; 1823 list_del_init(&hs_req->queue); 1824 if (hs_req->req.complete) { 1825 spin_unlock(&hsotg->lock); 1826 usb_gadget_giveback_request( 1827 &ep->ep, &hs_req->req); 1828 spin_lock(&hsotg->lock); 1829 } 1830 } 1831 1832 /* If we have pending request, then start it */ 1833 if (!ep->req) 1834 dwc2_gadget_start_next_request(ep); 1835 } 1836 1837 break; 1838 1839 default: 1840 return -ENOENT; 1841 } 1842 break; 1843 default: 1844 return -ENOENT; 1845 } 1846 return 1; 1847 } 1848 1849 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1850 1851 /** 1852 * dwc2_hsotg_stall_ep0 - stall ep0 1853 * @hsotg: The device state 1854 * 1855 * Set stall for ep0 as response for setup request. 1856 */ 1857 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1858 { 1859 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1860 u32 reg; 1861 u32 ctrl; 1862 1863 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1864 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1865 1866 /* 1867 * DxEPCTL_Stall will be cleared by EP once it has 1868 * taken effect, so no need to clear later. 1869 */ 1870 1871 ctrl = dwc2_readl(hsotg, reg); 1872 ctrl |= DXEPCTL_STALL; 1873 ctrl |= DXEPCTL_CNAK; 1874 dwc2_writel(hsotg, ctrl, reg); 1875 1876 dev_dbg(hsotg->dev, 1877 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1878 ctrl, reg, dwc2_readl(hsotg, reg)); 1879 1880 /* 1881 * complete won't be called, so we enqueue 1882 * setup request here 1883 */ 1884 dwc2_hsotg_enqueue_setup(hsotg); 1885 } 1886 1887 /** 1888 * dwc2_hsotg_process_control - process a control request 1889 * @hsotg: The device state 1890 * @ctrl: The control request received 1891 * 1892 * The controller has received the SETUP phase of a control request, and 1893 * needs to work out what to do next (and whether to pass it on to the 1894 * gadget driver). 1895 */ 1896 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1897 struct usb_ctrlrequest *ctrl) 1898 { 1899 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1900 int ret = 0; 1901 u32 dcfg; 1902 1903 dev_dbg(hsotg->dev, 1904 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1905 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1906 ctrl->wIndex, ctrl->wLength); 1907 1908 if (ctrl->wLength == 0) { 1909 ep0->dir_in = 1; 1910 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1911 } else if (ctrl->bRequestType & USB_DIR_IN) { 1912 ep0->dir_in = 1; 1913 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1914 } else { 1915 ep0->dir_in = 0; 1916 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1917 } 1918 1919 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1920 switch (ctrl->bRequest) { 1921 case USB_REQ_SET_ADDRESS: 1922 hsotg->connected = 1; 1923 dcfg = dwc2_readl(hsotg, DCFG); 1924 dcfg &= ~DCFG_DEVADDR_MASK; 1925 dcfg |= (le16_to_cpu(ctrl->wValue) << 1926 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1927 dwc2_writel(hsotg, dcfg, DCFG); 1928 1929 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1930 1931 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1932 return; 1933 1934 case USB_REQ_GET_STATUS: 1935 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1936 break; 1937 1938 case USB_REQ_CLEAR_FEATURE: 1939 case USB_REQ_SET_FEATURE: 1940 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1941 break; 1942 } 1943 } 1944 1945 /* as a fallback, try delivering it to the driver to deal with */ 1946 1947 if (ret == 0 && hsotg->driver) { 1948 spin_unlock(&hsotg->lock); 1949 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1950 spin_lock(&hsotg->lock); 1951 if (ret < 0) 1952 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1953 } 1954 1955 hsotg->delayed_status = false; 1956 if (ret == USB_GADGET_DELAYED_STATUS) 1957 hsotg->delayed_status = true; 1958 1959 /* 1960 * the request is either unhandlable, or is not formatted correctly 1961 * so respond with a STALL for the status stage to indicate failure. 1962 */ 1963 1964 if (ret < 0) 1965 dwc2_hsotg_stall_ep0(hsotg); 1966 } 1967 1968 /** 1969 * dwc2_hsotg_complete_setup - completion of a setup transfer 1970 * @ep: The endpoint the request was on. 1971 * @req: The request completed. 1972 * 1973 * Called on completion of any requests the driver itself submitted for 1974 * EP0 setup packets 1975 */ 1976 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1977 struct usb_request *req) 1978 { 1979 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1980 struct dwc2_hsotg *hsotg = hs_ep->parent; 1981 1982 if (req->status < 0) { 1983 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1984 return; 1985 } 1986 1987 spin_lock(&hsotg->lock); 1988 if (req->actual == 0) 1989 dwc2_hsotg_enqueue_setup(hsotg); 1990 else 1991 dwc2_hsotg_process_control(hsotg, req->buf); 1992 spin_unlock(&hsotg->lock); 1993 } 1994 1995 /** 1996 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1997 * @hsotg: The device state. 1998 * 1999 * Enqueue a request on EP0 if necessary to received any SETUP packets 2000 * received from the host. 2001 */ 2002 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2003 { 2004 struct usb_request *req = hsotg->ctrl_req; 2005 struct dwc2_hsotg_req *hs_req = our_req(req); 2006 int ret; 2007 2008 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2009 2010 req->zero = 0; 2011 req->length = 8; 2012 req->buf = hsotg->ctrl_buff; 2013 req->complete = dwc2_hsotg_complete_setup; 2014 2015 if (!list_empty(&hs_req->queue)) { 2016 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2017 return; 2018 } 2019 2020 hsotg->eps_out[0]->dir_in = 0; 2021 hsotg->eps_out[0]->send_zlp = 0; 2022 hsotg->ep0_state = DWC2_EP0_SETUP; 2023 2024 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2025 if (ret < 0) { 2026 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2027 /* 2028 * Don't think there's much we can do other than watch the 2029 * driver fail. 2030 */ 2031 } 2032 } 2033 2034 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2035 struct dwc2_hsotg_ep *hs_ep) 2036 { 2037 u32 ctrl; 2038 u8 index = hs_ep->index; 2039 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2040 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2041 2042 if (hs_ep->dir_in) 2043 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2044 index); 2045 else 2046 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2047 index); 2048 if (using_desc_dma(hsotg)) { 2049 /* Not specific buffer needed for ep0 ZLP */ 2050 dma_addr_t dma = hs_ep->desc_list_dma; 2051 2052 if (!index) 2053 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2054 2055 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2056 } else { 2057 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2058 DXEPTSIZ_XFERSIZE(0), 2059 epsiz_reg); 2060 } 2061 2062 ctrl = dwc2_readl(hsotg, epctl_reg); 2063 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2064 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2065 ctrl |= DXEPCTL_USBACTEP; 2066 dwc2_writel(hsotg, ctrl, epctl_reg); 2067 } 2068 2069 /** 2070 * dwc2_hsotg_complete_request - complete a request given to us 2071 * @hsotg: The device state. 2072 * @hs_ep: The endpoint the request was on. 2073 * @hs_req: The request to complete. 2074 * @result: The result code (0 => Ok, otherwise errno) 2075 * 2076 * The given request has finished, so call the necessary completion 2077 * if it has one and then look to see if we can start a new request 2078 * on the endpoint. 2079 * 2080 * Note, expects the ep to already be locked as appropriate. 2081 */ 2082 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2083 struct dwc2_hsotg_ep *hs_ep, 2084 struct dwc2_hsotg_req *hs_req, 2085 int result) 2086 { 2087 if (!hs_req) { 2088 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2089 return; 2090 } 2091 2092 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2093 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2094 2095 /* 2096 * only replace the status if we've not already set an error 2097 * from a previous transaction 2098 */ 2099 2100 if (hs_req->req.status == -EINPROGRESS) 2101 hs_req->req.status = result; 2102 2103 if (using_dma(hsotg)) 2104 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2105 2106 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2107 2108 hs_ep->req = NULL; 2109 list_del_init(&hs_req->queue); 2110 2111 /* 2112 * call the complete request with the locks off, just in case the 2113 * request tries to queue more work for this endpoint. 2114 */ 2115 2116 if (hs_req->req.complete) { 2117 spin_unlock(&hsotg->lock); 2118 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2119 spin_lock(&hsotg->lock); 2120 } 2121 2122 /* In DDMA don't need to proceed to starting of next ISOC request */ 2123 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2124 return; 2125 2126 /* 2127 * Look to see if there is anything else to do. Note, the completion 2128 * of the previous request may have caused a new request to be started 2129 * so be careful when doing this. 2130 */ 2131 2132 if (!hs_ep->req && result >= 0) 2133 dwc2_gadget_start_next_request(hs_ep); 2134 } 2135 2136 /* 2137 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2138 * @hs_ep: The endpoint the request was on. 2139 * 2140 * Get first request from the ep queue, determine descriptor on which complete 2141 * happened. SW discovers which descriptor currently in use by HW, adjusts 2142 * dma_address and calculates index of completed descriptor based on the value 2143 * of DEPDMA register. Update actual length of request, giveback to gadget. 2144 */ 2145 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2146 { 2147 struct dwc2_hsotg *hsotg = hs_ep->parent; 2148 struct dwc2_hsotg_req *hs_req; 2149 struct usb_request *ureq; 2150 u32 desc_sts; 2151 u32 mask; 2152 2153 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2154 2155 /* Process only descriptors with buffer status set to DMA done */ 2156 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2157 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2158 2159 hs_req = get_ep_head(hs_ep); 2160 if (!hs_req) { 2161 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2162 return; 2163 } 2164 ureq = &hs_req->req; 2165 2166 /* Check completion status */ 2167 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2168 DEV_DMA_STS_SUCC) { 2169 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2170 DEV_DMA_ISOC_RX_NBYTES_MASK; 2171 ureq->actual = ureq->length - ((desc_sts & mask) >> 2172 DEV_DMA_ISOC_NBYTES_SHIFT); 2173 2174 /* Adjust actual len for ISOC Out if len is 2175 * not align of 4 2176 */ 2177 if (!hs_ep->dir_in && ureq->length & 0x3) 2178 ureq->actual += 4 - (ureq->length & 0x3); 2179 2180 /* Set actual frame number for completed transfers */ 2181 ureq->frame_number = 2182 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2183 DEV_DMA_ISOC_FRNUM_SHIFT; 2184 } 2185 2186 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2187 2188 hs_ep->compl_desc++; 2189 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2190 hs_ep->compl_desc = 0; 2191 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2192 } 2193 } 2194 2195 /* 2196 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2197 * @hs_ep: The isochronous endpoint. 2198 * 2199 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2200 * interrupt. Reset target frame and next_desc to allow to start 2201 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2202 * interrupt for OUT direction. 2203 */ 2204 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2205 { 2206 struct dwc2_hsotg *hsotg = hs_ep->parent; 2207 2208 if (!hs_ep->dir_in) 2209 dwc2_flush_rx_fifo(hsotg); 2210 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2211 2212 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2213 hs_ep->next_desc = 0; 2214 hs_ep->compl_desc = 0; 2215 } 2216 2217 /** 2218 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2219 * @hsotg: The device state. 2220 * @ep_idx: The endpoint index for the data 2221 * @size: The size of data in the fifo, in bytes 2222 * 2223 * The FIFO status shows there is data to read from the FIFO for a given 2224 * endpoint, so sort out whether we need to read the data into a request 2225 * that has been made for that endpoint. 2226 */ 2227 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2228 { 2229 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2230 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2231 int to_read; 2232 int max_req; 2233 int read_ptr; 2234 2235 if (!hs_req) { 2236 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2237 int ptr; 2238 2239 dev_dbg(hsotg->dev, 2240 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2241 __func__, size, ep_idx, epctl); 2242 2243 /* dump the data from the FIFO, we've nothing we can do */ 2244 for (ptr = 0; ptr < size; ptr += 4) 2245 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2246 2247 return; 2248 } 2249 2250 to_read = size; 2251 read_ptr = hs_req->req.actual; 2252 max_req = hs_req->req.length - read_ptr; 2253 2254 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2255 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2256 2257 if (to_read > max_req) { 2258 /* 2259 * more data appeared than we where willing 2260 * to deal with in this request. 2261 */ 2262 2263 /* currently we don't deal this */ 2264 WARN_ON_ONCE(1); 2265 } 2266 2267 hs_ep->total_data += to_read; 2268 hs_req->req.actual += to_read; 2269 to_read = DIV_ROUND_UP(to_read, 4); 2270 2271 /* 2272 * note, we might over-write the buffer end by 3 bytes depending on 2273 * alignment of the data. 2274 */ 2275 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2276 hs_req->req.buf + read_ptr, to_read); 2277 } 2278 2279 /** 2280 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2281 * @hsotg: The device instance 2282 * @dir_in: If IN zlp 2283 * 2284 * Generate a zero-length IN packet request for terminating a SETUP 2285 * transaction. 2286 * 2287 * Note, since we don't write any data to the TxFIFO, then it is 2288 * currently believed that we do not need to wait for any space in 2289 * the TxFIFO. 2290 */ 2291 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2292 { 2293 /* eps_out[0] is used in both directions */ 2294 hsotg->eps_out[0]->dir_in = dir_in; 2295 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2296 2297 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2298 } 2299 2300 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2301 u32 epctl_reg) 2302 { 2303 u32 ctrl; 2304 2305 ctrl = dwc2_readl(hsotg, epctl_reg); 2306 if (ctrl & DXEPCTL_EOFRNUM) 2307 ctrl |= DXEPCTL_SETEVENFR; 2308 else 2309 ctrl |= DXEPCTL_SETODDFR; 2310 dwc2_writel(hsotg, ctrl, epctl_reg); 2311 } 2312 2313 /* 2314 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2315 * @hs_ep - The endpoint on which transfer went 2316 * 2317 * Iterate over endpoints descriptor chain and get info on bytes remained 2318 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2319 */ 2320 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2321 { 2322 struct dwc2_hsotg *hsotg = hs_ep->parent; 2323 unsigned int bytes_rem = 0; 2324 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2325 int i; 2326 u32 status; 2327 2328 if (!desc) 2329 return -EINVAL; 2330 2331 for (i = 0; i < hs_ep->desc_count; ++i) { 2332 status = desc->status; 2333 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2334 2335 if (status & DEV_DMA_STS_MASK) 2336 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2337 i, status & DEV_DMA_STS_MASK); 2338 desc++; 2339 } 2340 2341 return bytes_rem; 2342 } 2343 2344 /** 2345 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2346 * @hsotg: The device instance 2347 * @epnum: The endpoint received from 2348 * 2349 * The RXFIFO has delivered an OutDone event, which means that the data 2350 * transfer for an OUT endpoint has been completed, either by a short 2351 * packet or by the finish of a transfer. 2352 */ 2353 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2354 { 2355 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2356 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2357 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2358 struct usb_request *req = &hs_req->req; 2359 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2360 int result = 0; 2361 2362 if (!hs_req) { 2363 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2364 return; 2365 } 2366 2367 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2368 dev_dbg(hsotg->dev, "zlp packet received\n"); 2369 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2370 dwc2_hsotg_enqueue_setup(hsotg); 2371 return; 2372 } 2373 2374 if (using_desc_dma(hsotg)) 2375 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2376 2377 if (using_dma(hsotg)) { 2378 unsigned int size_done; 2379 2380 /* 2381 * Calculate the size of the transfer by checking how much 2382 * is left in the endpoint size register and then working it 2383 * out from the amount we loaded for the transfer. 2384 * 2385 * We need to do this as DMA pointers are always 32bit aligned 2386 * so may overshoot/undershoot the transfer. 2387 */ 2388 2389 size_done = hs_ep->size_loaded - size_left; 2390 size_done += hs_ep->last_load; 2391 2392 req->actual = size_done; 2393 } 2394 2395 /* if there is more request to do, schedule new transfer */ 2396 if (req->actual < req->length && size_left == 0) { 2397 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2398 return; 2399 } 2400 2401 if (req->actual < req->length && req->short_not_ok) { 2402 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2403 __func__, req->actual, req->length); 2404 2405 /* 2406 * todo - what should we return here? there's no one else 2407 * even bothering to check the status. 2408 */ 2409 } 2410 2411 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2412 if (!using_desc_dma(hsotg) && epnum == 0 && 2413 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2414 /* Move to STATUS IN */ 2415 if (!hsotg->delayed_status) 2416 dwc2_hsotg_ep0_zlp(hsotg, true); 2417 } 2418 2419 /* 2420 * Slave mode OUT transfers do not go through XferComplete so 2421 * adjust the ISOC parity here. 2422 */ 2423 if (!using_dma(hsotg)) { 2424 if (hs_ep->isochronous && hs_ep->interval == 1) 2425 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2426 else if (hs_ep->isochronous && hs_ep->interval > 1) 2427 dwc2_gadget_incr_frame_num(hs_ep); 2428 } 2429 2430 /* Set actual frame number for completed transfers */ 2431 if (!using_desc_dma(hsotg) && hs_ep->isochronous) 2432 req->frame_number = hsotg->frame_number; 2433 2434 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2435 } 2436 2437 /** 2438 * dwc2_hsotg_handle_rx - RX FIFO has data 2439 * @hsotg: The device instance 2440 * 2441 * The IRQ handler has detected that the RX FIFO has some data in it 2442 * that requires processing, so find out what is in there and do the 2443 * appropriate read. 2444 * 2445 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2446 * chunks, so if you have x packets received on an endpoint you'll get x 2447 * FIFO events delivered, each with a packet's worth of data in it. 2448 * 2449 * When using DMA, we should not be processing events from the RXFIFO 2450 * as the actual data should be sent to the memory directly and we turn 2451 * on the completion interrupts to get notifications of transfer completion. 2452 */ 2453 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2454 { 2455 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2456 u32 epnum, status, size; 2457 2458 WARN_ON(using_dma(hsotg)); 2459 2460 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2461 status = grxstsr & GRXSTS_PKTSTS_MASK; 2462 2463 size = grxstsr & GRXSTS_BYTECNT_MASK; 2464 size >>= GRXSTS_BYTECNT_SHIFT; 2465 2466 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2467 __func__, grxstsr, size, epnum); 2468 2469 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2470 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2471 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2472 break; 2473 2474 case GRXSTS_PKTSTS_OUTDONE: 2475 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2476 dwc2_hsotg_read_frameno(hsotg)); 2477 2478 if (!using_dma(hsotg)) 2479 dwc2_hsotg_handle_outdone(hsotg, epnum); 2480 break; 2481 2482 case GRXSTS_PKTSTS_SETUPDONE: 2483 dev_dbg(hsotg->dev, 2484 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2485 dwc2_hsotg_read_frameno(hsotg), 2486 dwc2_readl(hsotg, DOEPCTL(0))); 2487 /* 2488 * Call dwc2_hsotg_handle_outdone here if it was not called from 2489 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2490 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2491 */ 2492 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2493 dwc2_hsotg_handle_outdone(hsotg, epnum); 2494 break; 2495 2496 case GRXSTS_PKTSTS_OUTRX: 2497 dwc2_hsotg_rx_data(hsotg, epnum, size); 2498 break; 2499 2500 case GRXSTS_PKTSTS_SETUPRX: 2501 dev_dbg(hsotg->dev, 2502 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2503 dwc2_hsotg_read_frameno(hsotg), 2504 dwc2_readl(hsotg, DOEPCTL(0))); 2505 2506 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2507 2508 dwc2_hsotg_rx_data(hsotg, epnum, size); 2509 break; 2510 2511 default: 2512 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2513 __func__, grxstsr); 2514 2515 dwc2_hsotg_dump(hsotg); 2516 break; 2517 } 2518 } 2519 2520 /** 2521 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2522 * @mps: The maximum packet size in bytes. 2523 */ 2524 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2525 { 2526 switch (mps) { 2527 case 64: 2528 return D0EPCTL_MPS_64; 2529 case 32: 2530 return D0EPCTL_MPS_32; 2531 case 16: 2532 return D0EPCTL_MPS_16; 2533 case 8: 2534 return D0EPCTL_MPS_8; 2535 } 2536 2537 /* bad max packet size, warn and return invalid result */ 2538 WARN_ON(1); 2539 return (u32)-1; 2540 } 2541 2542 /** 2543 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2544 * @hsotg: The driver state. 2545 * @ep: The index number of the endpoint 2546 * @mps: The maximum packet size in bytes 2547 * @mc: The multicount value 2548 * @dir_in: True if direction is in. 2549 * 2550 * Configure the maximum packet size for the given endpoint, updating 2551 * the hardware control registers to reflect this. 2552 */ 2553 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2554 unsigned int ep, unsigned int mps, 2555 unsigned int mc, unsigned int dir_in) 2556 { 2557 struct dwc2_hsotg_ep *hs_ep; 2558 u32 reg; 2559 2560 hs_ep = index_to_ep(hsotg, ep, dir_in); 2561 if (!hs_ep) 2562 return; 2563 2564 if (ep == 0) { 2565 u32 mps_bytes = mps; 2566 2567 /* EP0 is a special case */ 2568 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2569 if (mps > 3) 2570 goto bad_mps; 2571 hs_ep->ep.maxpacket = mps_bytes; 2572 hs_ep->mc = 1; 2573 } else { 2574 if (mps > 1024) 2575 goto bad_mps; 2576 hs_ep->mc = mc; 2577 if (mc > 3) 2578 goto bad_mps; 2579 hs_ep->ep.maxpacket = mps; 2580 } 2581 2582 if (dir_in) { 2583 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2584 reg &= ~DXEPCTL_MPS_MASK; 2585 reg |= mps; 2586 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2587 } else { 2588 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2589 reg &= ~DXEPCTL_MPS_MASK; 2590 reg |= mps; 2591 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2592 } 2593 2594 return; 2595 2596 bad_mps: 2597 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2598 } 2599 2600 /** 2601 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2602 * @hsotg: The driver state 2603 * @idx: The index for the endpoint (0..15) 2604 */ 2605 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2606 { 2607 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2608 GRSTCTL); 2609 2610 /* wait until the fifo is flushed */ 2611 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2612 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2613 __func__); 2614 } 2615 2616 /** 2617 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2618 * @hsotg: The driver state 2619 * @hs_ep: The driver endpoint to check. 2620 * 2621 * Check to see if there is a request that has data to send, and if so 2622 * make an attempt to write data into the FIFO. 2623 */ 2624 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2625 struct dwc2_hsotg_ep *hs_ep) 2626 { 2627 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2628 2629 if (!hs_ep->dir_in || !hs_req) { 2630 /** 2631 * if request is not enqueued, we disable interrupts 2632 * for endpoints, excepting ep0 2633 */ 2634 if (hs_ep->index != 0) 2635 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2636 hs_ep->dir_in, 0); 2637 return 0; 2638 } 2639 2640 if (hs_req->req.actual < hs_req->req.length) { 2641 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2642 hs_ep->index); 2643 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2644 } 2645 2646 return 0; 2647 } 2648 2649 /** 2650 * dwc2_hsotg_complete_in - complete IN transfer 2651 * @hsotg: The device state. 2652 * @hs_ep: The endpoint that has just completed. 2653 * 2654 * An IN transfer has been completed, update the transfer's state and then 2655 * call the relevant completion routines. 2656 */ 2657 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2658 struct dwc2_hsotg_ep *hs_ep) 2659 { 2660 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2661 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2662 int size_left, size_done; 2663 2664 if (!hs_req) { 2665 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2666 return; 2667 } 2668 2669 /* Finish ZLP handling for IN EP0 transactions */ 2670 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2671 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2672 2673 /* 2674 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2675 * changed to IN. Change back to complete OUT transfer request 2676 */ 2677 hs_ep->dir_in = 0; 2678 2679 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2680 if (hsotg->test_mode) { 2681 int ret; 2682 2683 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2684 if (ret < 0) { 2685 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2686 hsotg->test_mode); 2687 dwc2_hsotg_stall_ep0(hsotg); 2688 return; 2689 } 2690 } 2691 dwc2_hsotg_enqueue_setup(hsotg); 2692 return; 2693 } 2694 2695 /* 2696 * Calculate the size of the transfer by checking how much is left 2697 * in the endpoint size register and then working it out from 2698 * the amount we loaded for the transfer. 2699 * 2700 * We do this even for DMA, as the transfer may have incremented 2701 * past the end of the buffer (DMA transfers are always 32bit 2702 * aligned). 2703 */ 2704 if (using_desc_dma(hsotg)) { 2705 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2706 if (size_left < 0) 2707 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2708 size_left); 2709 } else { 2710 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2711 } 2712 2713 size_done = hs_ep->size_loaded - size_left; 2714 size_done += hs_ep->last_load; 2715 2716 if (hs_req->req.actual != size_done) 2717 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2718 __func__, hs_req->req.actual, size_done); 2719 2720 hs_req->req.actual = size_done; 2721 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2722 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2723 2724 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2725 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2726 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2727 return; 2728 } 2729 2730 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2731 if (hs_ep->send_zlp) { 2732 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2733 hs_ep->send_zlp = 0; 2734 /* transfer will be completed on next complete interrupt */ 2735 return; 2736 } 2737 2738 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2739 /* Move to STATUS OUT */ 2740 dwc2_hsotg_ep0_zlp(hsotg, false); 2741 return; 2742 } 2743 2744 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2745 } 2746 2747 /** 2748 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2749 * @hsotg: The device state. 2750 * @idx: Index of ep. 2751 * @dir_in: Endpoint direction 1-in 0-out. 2752 * 2753 * Reads for endpoint with given index and direction, by masking 2754 * epint_reg with coresponding mask. 2755 */ 2756 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2757 unsigned int idx, int dir_in) 2758 { 2759 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2760 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2761 u32 ints; 2762 u32 mask; 2763 u32 diepempmsk; 2764 2765 mask = dwc2_readl(hsotg, epmsk_reg); 2766 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2767 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2768 mask |= DXEPINT_SETUP_RCVD; 2769 2770 ints = dwc2_readl(hsotg, epint_reg); 2771 ints &= mask; 2772 return ints; 2773 } 2774 2775 /** 2776 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2777 * @hs_ep: The endpoint on which interrupt is asserted. 2778 * 2779 * This interrupt indicates that the endpoint has been disabled per the 2780 * application's request. 2781 * 2782 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2783 * in case of ISOC completes current request. 2784 * 2785 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2786 * request starts it. 2787 */ 2788 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2789 { 2790 struct dwc2_hsotg *hsotg = hs_ep->parent; 2791 struct dwc2_hsotg_req *hs_req; 2792 unsigned char idx = hs_ep->index; 2793 int dir_in = hs_ep->dir_in; 2794 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2795 int dctl = dwc2_readl(hsotg, DCTL); 2796 2797 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2798 2799 if (dir_in) { 2800 int epctl = dwc2_readl(hsotg, epctl_reg); 2801 2802 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2803 2804 if (hs_ep->isochronous) { 2805 dwc2_hsotg_complete_in(hsotg, hs_ep); 2806 return; 2807 } 2808 2809 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2810 int dctl = dwc2_readl(hsotg, DCTL); 2811 2812 dctl |= DCTL_CGNPINNAK; 2813 dwc2_writel(hsotg, dctl, DCTL); 2814 } 2815 return; 2816 } 2817 2818 if (dctl & DCTL_GOUTNAKSTS) { 2819 dctl |= DCTL_CGOUTNAK; 2820 dwc2_writel(hsotg, dctl, DCTL); 2821 } 2822 2823 if (!hs_ep->isochronous) 2824 return; 2825 2826 if (list_empty(&hs_ep->queue)) { 2827 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2828 __func__, hs_ep); 2829 return; 2830 } 2831 2832 do { 2833 hs_req = get_ep_head(hs_ep); 2834 if (hs_req) 2835 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2836 -ENODATA); 2837 dwc2_gadget_incr_frame_num(hs_ep); 2838 /* Update current frame number value. */ 2839 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2840 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2841 2842 dwc2_gadget_start_next_request(hs_ep); 2843 } 2844 2845 /** 2846 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2847 * @ep: The endpoint on which interrupt is asserted. 2848 * 2849 * This is starting point for ISOC-OUT transfer, synchronization done with 2850 * first out token received from host while corresponding EP is disabled. 2851 * 2852 * Device does not know initial frame in which out token will come. For this 2853 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2854 * getting this interrupt SW starts calculation for next transfer frame. 2855 */ 2856 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2857 { 2858 struct dwc2_hsotg *hsotg = ep->parent; 2859 int dir_in = ep->dir_in; 2860 u32 doepmsk; 2861 2862 if (dir_in || !ep->isochronous) 2863 return; 2864 2865 if (using_desc_dma(hsotg)) { 2866 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2867 /* Start first ISO Out */ 2868 ep->target_frame = hsotg->frame_number; 2869 dwc2_gadget_start_isoc_ddma(ep); 2870 } 2871 return; 2872 } 2873 2874 if (ep->interval > 1 && 2875 ep->target_frame == TARGET_FRAME_INITIAL) { 2876 u32 ctrl; 2877 2878 ep->target_frame = hsotg->frame_number; 2879 dwc2_gadget_incr_frame_num(ep); 2880 2881 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2882 if (ep->target_frame & 0x1) 2883 ctrl |= DXEPCTL_SETODDFR; 2884 else 2885 ctrl |= DXEPCTL_SETEVENFR; 2886 2887 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2888 } 2889 2890 dwc2_gadget_start_next_request(ep); 2891 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2892 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2893 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2894 } 2895 2896 /** 2897 * dwc2_gadget_handle_nak - handle NAK interrupt 2898 * @hs_ep: The endpoint on which interrupt is asserted. 2899 * 2900 * This is starting point for ISOC-IN transfer, synchronization done with 2901 * first IN token received from host while corresponding EP is disabled. 2902 * 2903 * Device does not know when first one token will arrive from host. On first 2904 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2905 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2906 * sent in response to that as there was no data in FIFO. SW is basing on this 2907 * interrupt to obtain frame in which token has come and then based on the 2908 * interval calculates next frame for transfer. 2909 */ 2910 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2911 { 2912 struct dwc2_hsotg *hsotg = hs_ep->parent; 2913 int dir_in = hs_ep->dir_in; 2914 2915 if (!dir_in || !hs_ep->isochronous) 2916 return; 2917 2918 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2919 2920 if (using_desc_dma(hsotg)) { 2921 hs_ep->target_frame = hsotg->frame_number; 2922 dwc2_gadget_incr_frame_num(hs_ep); 2923 2924 /* In service interval mode target_frame must 2925 * be set to last (u)frame of the service interval. 2926 */ 2927 if (hsotg->params.service_interval) { 2928 /* Set target_frame to the first (u)frame of 2929 * the service interval 2930 */ 2931 hs_ep->target_frame &= ~hs_ep->interval + 1; 2932 2933 /* Set target_frame to the last (u)frame of 2934 * the service interval 2935 */ 2936 dwc2_gadget_incr_frame_num(hs_ep); 2937 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2938 } 2939 2940 dwc2_gadget_start_isoc_ddma(hs_ep); 2941 return; 2942 } 2943 2944 hs_ep->target_frame = hsotg->frame_number; 2945 if (hs_ep->interval > 1) { 2946 u32 ctrl = dwc2_readl(hsotg, 2947 DIEPCTL(hs_ep->index)); 2948 if (hs_ep->target_frame & 0x1) 2949 ctrl |= DXEPCTL_SETODDFR; 2950 else 2951 ctrl |= DXEPCTL_SETEVENFR; 2952 2953 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2954 } 2955 2956 dwc2_hsotg_complete_request(hsotg, hs_ep, 2957 get_ep_head(hs_ep), 0); 2958 } 2959 2960 if (!using_desc_dma(hsotg)) 2961 dwc2_gadget_incr_frame_num(hs_ep); 2962 } 2963 2964 /** 2965 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2966 * @hsotg: The driver state 2967 * @idx: The index for the endpoint (0..15) 2968 * @dir_in: Set if this is an IN endpoint 2969 * 2970 * Process and clear any interrupt pending for an individual endpoint 2971 */ 2972 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2973 int dir_in) 2974 { 2975 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2976 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2977 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2978 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2979 u32 ints; 2980 u32 ctrl; 2981 2982 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2983 ctrl = dwc2_readl(hsotg, epctl_reg); 2984 2985 /* Clear endpoint interrupts */ 2986 dwc2_writel(hsotg, ints, epint_reg); 2987 2988 if (!hs_ep) { 2989 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2990 __func__, idx, dir_in ? "in" : "out"); 2991 return; 2992 } 2993 2994 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2995 __func__, idx, dir_in ? "in" : "out", ints); 2996 2997 /* Don't process XferCompl interrupt if it is a setup packet */ 2998 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2999 ints &= ~DXEPINT_XFERCOMPL; 3000 3001 /* 3002 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3003 * stage and xfercomplete was generated without SETUP phase done 3004 * interrupt. SW should parse received setup packet only after host's 3005 * exit from setup phase of control transfer. 3006 */ 3007 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3008 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3009 ints &= ~DXEPINT_XFERCOMPL; 3010 3011 if (ints & DXEPINT_XFERCOMPL) { 3012 dev_dbg(hsotg->dev, 3013 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3014 __func__, dwc2_readl(hsotg, epctl_reg), 3015 dwc2_readl(hsotg, epsiz_reg)); 3016 3017 /* In DDMA handle isochronous requests separately */ 3018 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3019 /* XferCompl set along with BNA */ 3020 if (!(ints & DXEPINT_BNAINTR)) 3021 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3022 } else if (dir_in) { 3023 /* 3024 * We get OutDone from the FIFO, so we only 3025 * need to look at completing IN requests here 3026 * if operating slave mode 3027 */ 3028 if (hs_ep->isochronous && hs_ep->interval > 1) 3029 dwc2_gadget_incr_frame_num(hs_ep); 3030 3031 dwc2_hsotg_complete_in(hsotg, hs_ep); 3032 if (ints & DXEPINT_NAKINTRPT) 3033 ints &= ~DXEPINT_NAKINTRPT; 3034 3035 if (idx == 0 && !hs_ep->req) 3036 dwc2_hsotg_enqueue_setup(hsotg); 3037 } else if (using_dma(hsotg)) { 3038 /* 3039 * We're using DMA, we need to fire an OutDone here 3040 * as we ignore the RXFIFO. 3041 */ 3042 if (hs_ep->isochronous && hs_ep->interval > 1) 3043 dwc2_gadget_incr_frame_num(hs_ep); 3044 3045 dwc2_hsotg_handle_outdone(hsotg, idx); 3046 } 3047 } 3048 3049 if (ints & DXEPINT_EPDISBLD) 3050 dwc2_gadget_handle_ep_disabled(hs_ep); 3051 3052 if (ints & DXEPINT_OUTTKNEPDIS) 3053 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3054 3055 if (ints & DXEPINT_NAKINTRPT) 3056 dwc2_gadget_handle_nak(hs_ep); 3057 3058 if (ints & DXEPINT_AHBERR) 3059 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3060 3061 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3062 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3063 3064 if (using_dma(hsotg) && idx == 0) { 3065 /* 3066 * this is the notification we've received a 3067 * setup packet. In non-DMA mode we'd get this 3068 * from the RXFIFO, instead we need to process 3069 * the setup here. 3070 */ 3071 3072 if (dir_in) 3073 WARN_ON_ONCE(1); 3074 else 3075 dwc2_hsotg_handle_outdone(hsotg, 0); 3076 } 3077 } 3078 3079 if (ints & DXEPINT_STSPHSERCVD) { 3080 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3081 3082 /* Safety check EP0 state when STSPHSERCVD asserted */ 3083 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3084 /* Move to STATUS IN for DDMA */ 3085 if (using_desc_dma(hsotg)) { 3086 if (!hsotg->delayed_status) 3087 dwc2_hsotg_ep0_zlp(hsotg, true); 3088 else 3089 /* In case of 3 stage Control Write with delayed 3090 * status, when Status IN transfer started 3091 * before STSPHSERCVD asserted, NAKSTS bit not 3092 * cleared by CNAK in dwc2_hsotg_start_req() 3093 * function. Clear now NAKSTS to allow complete 3094 * transfer. 3095 */ 3096 dwc2_set_bit(hsotg, DIEPCTL(0), 3097 DXEPCTL_CNAK); 3098 } 3099 } 3100 3101 } 3102 3103 if (ints & DXEPINT_BACK2BACKSETUP) 3104 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3105 3106 if (ints & DXEPINT_BNAINTR) { 3107 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3108 if (hs_ep->isochronous) 3109 dwc2_gadget_handle_isoc_bna(hs_ep); 3110 } 3111 3112 if (dir_in && !hs_ep->isochronous) { 3113 /* not sure if this is important, but we'll clear it anyway */ 3114 if (ints & DXEPINT_INTKNTXFEMP) { 3115 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3116 __func__, idx); 3117 } 3118 3119 /* this probably means something bad is happening */ 3120 if (ints & DXEPINT_INTKNEPMIS) { 3121 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3122 __func__, idx); 3123 } 3124 3125 /* FIFO has space or is empty (see GAHBCFG) */ 3126 if (hsotg->dedicated_fifos && 3127 ints & DXEPINT_TXFEMP) { 3128 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3129 __func__, idx); 3130 if (!using_dma(hsotg)) 3131 dwc2_hsotg_trytx(hsotg, hs_ep); 3132 } 3133 } 3134 } 3135 3136 /** 3137 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3138 * @hsotg: The device state. 3139 * 3140 * Handle updating the device settings after the enumeration phase has 3141 * been completed. 3142 */ 3143 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3144 { 3145 u32 dsts = dwc2_readl(hsotg, DSTS); 3146 int ep0_mps = 0, ep_mps = 8; 3147 3148 /* 3149 * This should signal the finish of the enumeration phase 3150 * of the USB handshaking, so we should now know what rate 3151 * we connected at. 3152 */ 3153 3154 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3155 3156 /* 3157 * note, since we're limited by the size of transfer on EP0, and 3158 * it seems IN transfers must be a even number of packets we do 3159 * not advertise a 64byte MPS on EP0. 3160 */ 3161 3162 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3163 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3164 case DSTS_ENUMSPD_FS: 3165 case DSTS_ENUMSPD_FS48: 3166 hsotg->gadget.speed = USB_SPEED_FULL; 3167 ep0_mps = EP0_MPS_LIMIT; 3168 ep_mps = 1023; 3169 break; 3170 3171 case DSTS_ENUMSPD_HS: 3172 hsotg->gadget.speed = USB_SPEED_HIGH; 3173 ep0_mps = EP0_MPS_LIMIT; 3174 ep_mps = 1024; 3175 break; 3176 3177 case DSTS_ENUMSPD_LS: 3178 hsotg->gadget.speed = USB_SPEED_LOW; 3179 ep0_mps = 8; 3180 ep_mps = 8; 3181 /* 3182 * note, we don't actually support LS in this driver at the 3183 * moment, and the documentation seems to imply that it isn't 3184 * supported by the PHYs on some of the devices. 3185 */ 3186 break; 3187 } 3188 dev_info(hsotg->dev, "new device is %s\n", 3189 usb_speed_string(hsotg->gadget.speed)); 3190 3191 /* 3192 * we should now know the maximum packet size for an 3193 * endpoint, so set the endpoints to a default value. 3194 */ 3195 3196 if (ep0_mps) { 3197 int i; 3198 /* Initialize ep0 for both in and out directions */ 3199 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3200 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3201 for (i = 1; i < hsotg->num_of_eps; i++) { 3202 if (hsotg->eps_in[i]) 3203 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3204 0, 1); 3205 if (hsotg->eps_out[i]) 3206 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3207 0, 0); 3208 } 3209 } 3210 3211 /* ensure after enumeration our EP0 is active */ 3212 3213 dwc2_hsotg_enqueue_setup(hsotg); 3214 3215 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3216 dwc2_readl(hsotg, DIEPCTL0), 3217 dwc2_readl(hsotg, DOEPCTL0)); 3218 } 3219 3220 /** 3221 * kill_all_requests - remove all requests from the endpoint's queue 3222 * @hsotg: The device state. 3223 * @ep: The endpoint the requests may be on. 3224 * @result: The result code to use. 3225 * 3226 * Go through the requests on the given endpoint and mark them 3227 * completed with the given result code. 3228 */ 3229 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3230 struct dwc2_hsotg_ep *ep, 3231 int result) 3232 { 3233 unsigned int size; 3234 3235 ep->req = NULL; 3236 3237 while (!list_empty(&ep->queue)) { 3238 struct dwc2_hsotg_req *req = get_ep_head(ep); 3239 3240 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3241 } 3242 3243 if (!hsotg->dedicated_fifos) 3244 return; 3245 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3246 if (size < ep->fifo_size) 3247 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3248 } 3249 3250 /** 3251 * dwc2_hsotg_disconnect - disconnect service 3252 * @hsotg: The device state. 3253 * 3254 * The device has been disconnected. Remove all current 3255 * transactions and signal the gadget driver that this 3256 * has happened. 3257 */ 3258 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3259 { 3260 unsigned int ep; 3261 3262 if (!hsotg->connected) 3263 return; 3264 3265 hsotg->connected = 0; 3266 hsotg->test_mode = 0; 3267 3268 /* all endpoints should be shutdown */ 3269 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3270 if (hsotg->eps_in[ep]) 3271 kill_all_requests(hsotg, hsotg->eps_in[ep], 3272 -ESHUTDOWN); 3273 if (hsotg->eps_out[ep]) 3274 kill_all_requests(hsotg, hsotg->eps_out[ep], 3275 -ESHUTDOWN); 3276 } 3277 3278 call_gadget(hsotg, disconnect); 3279 hsotg->lx_state = DWC2_L3; 3280 3281 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3282 } 3283 3284 /** 3285 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3286 * @hsotg: The device state: 3287 * @periodic: True if this is a periodic FIFO interrupt 3288 */ 3289 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3290 { 3291 struct dwc2_hsotg_ep *ep; 3292 int epno, ret; 3293 3294 /* look through for any more data to transmit */ 3295 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3296 ep = index_to_ep(hsotg, epno, 1); 3297 3298 if (!ep) 3299 continue; 3300 3301 if (!ep->dir_in) 3302 continue; 3303 3304 if ((periodic && !ep->periodic) || 3305 (!periodic && ep->periodic)) 3306 continue; 3307 3308 ret = dwc2_hsotg_trytx(hsotg, ep); 3309 if (ret < 0) 3310 break; 3311 } 3312 } 3313 3314 /* IRQ flags which will trigger a retry around the IRQ loop */ 3315 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3316 GINTSTS_PTXFEMP | \ 3317 GINTSTS_RXFLVL) 3318 3319 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3320 /** 3321 * dwc2_hsotg_core_init - issue softreset to the core 3322 * @hsotg: The device state 3323 * @is_usb_reset: Usb resetting flag 3324 * 3325 * Issue a soft reset to the core, and await the core finishing it. 3326 */ 3327 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3328 bool is_usb_reset) 3329 { 3330 u32 intmsk; 3331 u32 val; 3332 u32 usbcfg; 3333 u32 dcfg = 0; 3334 int ep; 3335 3336 /* Kill any ep0 requests as controller will be reinitialized */ 3337 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3338 3339 if (!is_usb_reset) { 3340 if (dwc2_core_reset(hsotg, true)) 3341 return; 3342 } else { 3343 /* all endpoints should be shutdown */ 3344 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3345 if (hsotg->eps_in[ep]) 3346 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3347 if (hsotg->eps_out[ep]) 3348 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3349 } 3350 } 3351 3352 /* 3353 * we must now enable ep0 ready for host detection and then 3354 * set configuration. 3355 */ 3356 3357 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3358 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3359 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3360 usbcfg |= GUSBCFG_TOUTCAL(7); 3361 3362 /* remove the HNP/SRP and set the PHY */ 3363 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3364 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3365 3366 dwc2_phy_init(hsotg, true); 3367 3368 dwc2_hsotg_init_fifo(hsotg); 3369 3370 if (!is_usb_reset) 3371 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3372 3373 dcfg |= DCFG_EPMISCNT(1); 3374 3375 switch (hsotg->params.speed) { 3376 case DWC2_SPEED_PARAM_LOW: 3377 dcfg |= DCFG_DEVSPD_LS; 3378 break; 3379 case DWC2_SPEED_PARAM_FULL: 3380 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3381 dcfg |= DCFG_DEVSPD_FS48; 3382 else 3383 dcfg |= DCFG_DEVSPD_FS; 3384 break; 3385 default: 3386 dcfg |= DCFG_DEVSPD_HS; 3387 } 3388 3389 if (hsotg->params.ipg_isoc_en) 3390 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3391 3392 dwc2_writel(hsotg, dcfg, DCFG); 3393 3394 /* Clear any pending OTG interrupts */ 3395 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3396 3397 /* Clear any pending interrupts */ 3398 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3399 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3400 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3401 GINTSTS_USBRST | GINTSTS_RESETDET | 3402 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3403 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3404 GINTSTS_LPMTRANRCVD; 3405 3406 if (!using_desc_dma(hsotg)) 3407 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3408 3409 if (!hsotg->params.external_id_pin_ctl) 3410 intmsk |= GINTSTS_CONIDSTSCHNG; 3411 3412 dwc2_writel(hsotg, intmsk, GINTMSK); 3413 3414 if (using_dma(hsotg)) { 3415 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3416 hsotg->params.ahbcfg, 3417 GAHBCFG); 3418 3419 /* Set DDMA mode support in the core if needed */ 3420 if (using_desc_dma(hsotg)) 3421 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3422 3423 } else { 3424 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3425 (GAHBCFG_NP_TXF_EMP_LVL | 3426 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3427 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3428 } 3429 3430 /* 3431 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3432 * when we have no data to transfer. Otherwise we get being flooded by 3433 * interrupts. 3434 */ 3435 3436 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3437 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3438 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3439 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3440 DIEPMSK); 3441 3442 /* 3443 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3444 * DMA mode we may need this and StsPhseRcvd. 3445 */ 3446 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3447 DOEPMSK_STSPHSERCVDMSK) : 0) | 3448 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3449 DOEPMSK_SETUPMSK, 3450 DOEPMSK); 3451 3452 /* Enable BNA interrupt for DDMA */ 3453 if (using_desc_dma(hsotg)) { 3454 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3455 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3456 } 3457 3458 /* Enable Service Interval mode if supported */ 3459 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3460 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3461 3462 dwc2_writel(hsotg, 0, DAINTMSK); 3463 3464 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3465 dwc2_readl(hsotg, DIEPCTL0), 3466 dwc2_readl(hsotg, DOEPCTL0)); 3467 3468 /* enable in and out endpoint interrupts */ 3469 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3470 3471 /* 3472 * Enable the RXFIFO when in slave mode, as this is how we collect 3473 * the data. In DMA mode, we get events from the FIFO but also 3474 * things we cannot process, so do not use it. 3475 */ 3476 if (!using_dma(hsotg)) 3477 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3478 3479 /* Enable interrupts for EP0 in and out */ 3480 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3481 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3482 3483 if (!is_usb_reset) { 3484 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3485 udelay(10); /* see openiboot */ 3486 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3487 } 3488 3489 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3490 3491 /* 3492 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3493 * writing to the EPCTL register.. 3494 */ 3495 3496 /* set to read 1 8byte packet */ 3497 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3498 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3499 3500 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3501 DXEPCTL_CNAK | DXEPCTL_EPENA | 3502 DXEPCTL_USBACTEP, 3503 DOEPCTL0); 3504 3505 /* enable, but don't activate EP0in */ 3506 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3507 DXEPCTL_USBACTEP, DIEPCTL0); 3508 3509 /* clear global NAKs */ 3510 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3511 if (!is_usb_reset) 3512 val |= DCTL_SFTDISCON; 3513 dwc2_set_bit(hsotg, DCTL, val); 3514 3515 /* configure the core to support LPM */ 3516 dwc2_gadget_init_lpm(hsotg); 3517 3518 /* program GREFCLK register if needed */ 3519 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3520 dwc2_gadget_program_ref_clk(hsotg); 3521 3522 /* must be at-least 3ms to allow bus to see disconnect */ 3523 mdelay(3); 3524 3525 hsotg->lx_state = DWC2_L0; 3526 3527 dwc2_hsotg_enqueue_setup(hsotg); 3528 3529 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3530 dwc2_readl(hsotg, DIEPCTL0), 3531 dwc2_readl(hsotg, DOEPCTL0)); 3532 } 3533 3534 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3535 { 3536 /* set the soft-disconnect bit */ 3537 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3538 } 3539 3540 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3541 { 3542 /* remove the soft-disconnect and let's go */ 3543 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3544 } 3545 3546 /** 3547 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3548 * @hsotg: The device state: 3549 * 3550 * This interrupt indicates one of the following conditions occurred while 3551 * transmitting an ISOC transaction. 3552 * - Corrupted IN Token for ISOC EP. 3553 * - Packet not complete in FIFO. 3554 * 3555 * The following actions will be taken: 3556 * - Determine the EP 3557 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3558 */ 3559 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3560 { 3561 struct dwc2_hsotg_ep *hs_ep; 3562 u32 epctrl; 3563 u32 daintmsk; 3564 u32 idx; 3565 3566 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3567 3568 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3569 3570 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3571 hs_ep = hsotg->eps_in[idx]; 3572 /* Proceed only unmasked ISOC EPs */ 3573 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3574 continue; 3575 3576 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3577 if ((epctrl & DXEPCTL_EPENA) && 3578 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3579 epctrl |= DXEPCTL_SNAK; 3580 epctrl |= DXEPCTL_EPDIS; 3581 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3582 } 3583 } 3584 3585 /* Clear interrupt */ 3586 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3587 } 3588 3589 /** 3590 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3591 * @hsotg: The device state: 3592 * 3593 * This interrupt indicates one of the following conditions occurred while 3594 * transmitting an ISOC transaction. 3595 * - Corrupted OUT Token for ISOC EP. 3596 * - Packet not complete in FIFO. 3597 * 3598 * The following actions will be taken: 3599 * - Determine the EP 3600 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3601 */ 3602 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3603 { 3604 u32 gintsts; 3605 u32 gintmsk; 3606 u32 daintmsk; 3607 u32 epctrl; 3608 struct dwc2_hsotg_ep *hs_ep; 3609 int idx; 3610 3611 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3612 3613 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3614 daintmsk >>= DAINT_OUTEP_SHIFT; 3615 3616 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3617 hs_ep = hsotg->eps_out[idx]; 3618 /* Proceed only unmasked ISOC EPs */ 3619 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3620 continue; 3621 3622 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3623 if ((epctrl & DXEPCTL_EPENA) && 3624 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3625 /* Unmask GOUTNAKEFF interrupt */ 3626 gintmsk = dwc2_readl(hsotg, GINTMSK); 3627 gintmsk |= GINTSTS_GOUTNAKEFF; 3628 dwc2_writel(hsotg, gintmsk, GINTMSK); 3629 3630 gintsts = dwc2_readl(hsotg, GINTSTS); 3631 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3632 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3633 break; 3634 } 3635 } 3636 } 3637 3638 /* Clear interrupt */ 3639 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3640 } 3641 3642 /** 3643 * dwc2_hsotg_irq - handle device interrupt 3644 * @irq: The IRQ number triggered 3645 * @pw: The pw value when registered the handler. 3646 */ 3647 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3648 { 3649 struct dwc2_hsotg *hsotg = pw; 3650 int retry_count = 8; 3651 u32 gintsts; 3652 u32 gintmsk; 3653 3654 if (!dwc2_is_device_mode(hsotg)) 3655 return IRQ_NONE; 3656 3657 spin_lock(&hsotg->lock); 3658 irq_retry: 3659 gintsts = dwc2_readl(hsotg, GINTSTS); 3660 gintmsk = dwc2_readl(hsotg, GINTMSK); 3661 3662 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3663 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3664 3665 gintsts &= gintmsk; 3666 3667 if (gintsts & GINTSTS_RESETDET) { 3668 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3669 3670 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3671 3672 /* This event must be used only if controller is suspended */ 3673 if (hsotg->lx_state == DWC2_L2) { 3674 dwc2_exit_partial_power_down(hsotg, true); 3675 hsotg->lx_state = DWC2_L0; 3676 } 3677 } 3678 3679 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3680 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3681 u32 connected = hsotg->connected; 3682 3683 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3684 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3685 dwc2_readl(hsotg, GNPTXSTS)); 3686 3687 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3688 3689 /* Report disconnection if it is not already done. */ 3690 dwc2_hsotg_disconnect(hsotg); 3691 3692 /* Reset device address to zero */ 3693 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3694 3695 if (usb_status & GOTGCTL_BSESVLD && connected) 3696 dwc2_hsotg_core_init_disconnected(hsotg, true); 3697 } 3698 3699 if (gintsts & GINTSTS_ENUMDONE) { 3700 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3701 3702 dwc2_hsotg_irq_enumdone(hsotg); 3703 } 3704 3705 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3706 u32 daint = dwc2_readl(hsotg, DAINT); 3707 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3708 u32 daint_out, daint_in; 3709 int ep; 3710 3711 daint &= daintmsk; 3712 daint_out = daint >> DAINT_OUTEP_SHIFT; 3713 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3714 3715 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3716 3717 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3718 ep++, daint_out >>= 1) { 3719 if (daint_out & 1) 3720 dwc2_hsotg_epint(hsotg, ep, 0); 3721 } 3722 3723 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3724 ep++, daint_in >>= 1) { 3725 if (daint_in & 1) 3726 dwc2_hsotg_epint(hsotg, ep, 1); 3727 } 3728 } 3729 3730 /* check both FIFOs */ 3731 3732 if (gintsts & GINTSTS_NPTXFEMP) { 3733 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3734 3735 /* 3736 * Disable the interrupt to stop it happening again 3737 * unless one of these endpoint routines decides that 3738 * it needs re-enabling 3739 */ 3740 3741 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3742 dwc2_hsotg_irq_fifoempty(hsotg, false); 3743 } 3744 3745 if (gintsts & GINTSTS_PTXFEMP) { 3746 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3747 3748 /* See note in GINTSTS_NPTxFEmp */ 3749 3750 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3751 dwc2_hsotg_irq_fifoempty(hsotg, true); 3752 } 3753 3754 if (gintsts & GINTSTS_RXFLVL) { 3755 /* 3756 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3757 * we need to retry dwc2_hsotg_handle_rx if this is still 3758 * set. 3759 */ 3760 3761 dwc2_hsotg_handle_rx(hsotg); 3762 } 3763 3764 if (gintsts & GINTSTS_ERLYSUSP) { 3765 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3766 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3767 } 3768 3769 /* 3770 * these next two seem to crop-up occasionally causing the core 3771 * to shutdown the USB transfer, so try clearing them and logging 3772 * the occurrence. 3773 */ 3774 3775 if (gintsts & GINTSTS_GOUTNAKEFF) { 3776 u8 idx; 3777 u32 epctrl; 3778 u32 gintmsk; 3779 u32 daintmsk; 3780 struct dwc2_hsotg_ep *hs_ep; 3781 3782 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3783 daintmsk >>= DAINT_OUTEP_SHIFT; 3784 /* Mask this interrupt */ 3785 gintmsk = dwc2_readl(hsotg, GINTMSK); 3786 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3787 dwc2_writel(hsotg, gintmsk, GINTMSK); 3788 3789 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3790 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3791 hs_ep = hsotg->eps_out[idx]; 3792 /* Proceed only unmasked ISOC EPs */ 3793 if (BIT(idx) & ~daintmsk) 3794 continue; 3795 3796 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3797 3798 //ISOC Ep's only 3799 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3800 epctrl |= DXEPCTL_SNAK; 3801 epctrl |= DXEPCTL_EPDIS; 3802 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3803 continue; 3804 } 3805 3806 //Non-ISOC EP's 3807 if (hs_ep->halted) { 3808 if (!(epctrl & DXEPCTL_EPENA)) 3809 epctrl |= DXEPCTL_EPENA; 3810 epctrl |= DXEPCTL_EPDIS; 3811 epctrl |= DXEPCTL_STALL; 3812 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3813 } 3814 } 3815 3816 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3817 } 3818 3819 if (gintsts & GINTSTS_GINNAKEFF) { 3820 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3821 3822 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3823 3824 dwc2_hsotg_dump(hsotg); 3825 } 3826 3827 if (gintsts & GINTSTS_INCOMPL_SOIN) 3828 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3829 3830 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3831 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3832 3833 /* 3834 * if we've had fifo events, we should try and go around the 3835 * loop again to see if there's any point in returning yet. 3836 */ 3837 3838 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3839 goto irq_retry; 3840 3841 /* Check WKUP_ALERT interrupt*/ 3842 if (hsotg->params.service_interval) 3843 dwc2_gadget_wkup_alert_handler(hsotg); 3844 3845 spin_unlock(&hsotg->lock); 3846 3847 return IRQ_HANDLED; 3848 } 3849 3850 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3851 struct dwc2_hsotg_ep *hs_ep) 3852 { 3853 u32 epctrl_reg; 3854 u32 epint_reg; 3855 3856 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3857 DOEPCTL(hs_ep->index); 3858 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3859 DOEPINT(hs_ep->index); 3860 3861 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3862 hs_ep->name); 3863 3864 if (hs_ep->dir_in) { 3865 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3866 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3867 /* Wait for Nak effect */ 3868 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3869 DXEPINT_INEPNAKEFF, 100)) 3870 dev_warn(hsotg->dev, 3871 "%s: timeout DIEPINT.NAKEFF\n", 3872 __func__); 3873 } else { 3874 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3875 /* Wait for Nak effect */ 3876 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3877 GINTSTS_GINNAKEFF, 100)) 3878 dev_warn(hsotg->dev, 3879 "%s: timeout GINTSTS.GINNAKEFF\n", 3880 __func__); 3881 } 3882 } else { 3883 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3884 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3885 3886 /* Wait for global nak to take effect */ 3887 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3888 GINTSTS_GOUTNAKEFF, 100)) 3889 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3890 __func__); 3891 } 3892 3893 /* Disable ep */ 3894 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3895 3896 /* Wait for ep to be disabled */ 3897 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3898 dev_warn(hsotg->dev, 3899 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3900 3901 /* Clear EPDISBLD interrupt */ 3902 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3903 3904 if (hs_ep->dir_in) { 3905 unsigned short fifo_index; 3906 3907 if (hsotg->dedicated_fifos || hs_ep->periodic) 3908 fifo_index = hs_ep->fifo_index; 3909 else 3910 fifo_index = 0; 3911 3912 /* Flush TX FIFO */ 3913 dwc2_flush_tx_fifo(hsotg, fifo_index); 3914 3915 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3916 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3917 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3918 3919 } else { 3920 /* Remove global NAKs */ 3921 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3922 } 3923 } 3924 3925 /** 3926 * dwc2_hsotg_ep_enable - enable the given endpoint 3927 * @ep: The USB endpint to configure 3928 * @desc: The USB endpoint descriptor to configure with. 3929 * 3930 * This is called from the USB gadget code's usb_ep_enable(). 3931 */ 3932 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3933 const struct usb_endpoint_descriptor *desc) 3934 { 3935 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3936 struct dwc2_hsotg *hsotg = hs_ep->parent; 3937 unsigned long flags; 3938 unsigned int index = hs_ep->index; 3939 u32 epctrl_reg; 3940 u32 epctrl; 3941 u32 mps; 3942 u32 mc; 3943 u32 mask; 3944 unsigned int dir_in; 3945 unsigned int i, val, size; 3946 int ret = 0; 3947 unsigned char ep_type; 3948 int desc_num; 3949 3950 dev_dbg(hsotg->dev, 3951 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3952 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3953 desc->wMaxPacketSize, desc->bInterval); 3954 3955 /* not to be called for EP0 */ 3956 if (index == 0) { 3957 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3958 return -EINVAL; 3959 } 3960 3961 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3962 if (dir_in != hs_ep->dir_in) { 3963 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3964 return -EINVAL; 3965 } 3966 3967 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 3968 mps = usb_endpoint_maxp(desc); 3969 mc = usb_endpoint_maxp_mult(desc); 3970 3971 /* ISOC IN in DDMA supported bInterval up to 10 */ 3972 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3973 dir_in && desc->bInterval > 10) { 3974 dev_err(hsotg->dev, 3975 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 3976 return -EINVAL; 3977 } 3978 3979 /* High bandwidth ISOC OUT in DDMA not supported */ 3980 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3981 !dir_in && mc > 1) { 3982 dev_err(hsotg->dev, 3983 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 3984 return -EINVAL; 3985 } 3986 3987 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3988 3989 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3990 epctrl = dwc2_readl(hsotg, epctrl_reg); 3991 3992 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3993 __func__, epctrl, epctrl_reg); 3994 3995 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 3996 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 3997 else 3998 desc_num = MAX_DMA_DESC_NUM_GENERIC; 3999 4000 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4001 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4002 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4003 desc_num * sizeof(struct dwc2_dma_desc), 4004 &hs_ep->desc_list_dma, GFP_ATOMIC); 4005 if (!hs_ep->desc_list) { 4006 ret = -ENOMEM; 4007 goto error2; 4008 } 4009 } 4010 4011 spin_lock_irqsave(&hsotg->lock, flags); 4012 4013 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4014 epctrl |= DXEPCTL_MPS(mps); 4015 4016 /* 4017 * mark the endpoint as active, otherwise the core may ignore 4018 * transactions entirely for this endpoint 4019 */ 4020 epctrl |= DXEPCTL_USBACTEP; 4021 4022 /* update the endpoint state */ 4023 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4024 4025 /* default, set to non-periodic */ 4026 hs_ep->isochronous = 0; 4027 hs_ep->periodic = 0; 4028 hs_ep->halted = 0; 4029 hs_ep->interval = desc->bInterval; 4030 4031 switch (ep_type) { 4032 case USB_ENDPOINT_XFER_ISOC: 4033 epctrl |= DXEPCTL_EPTYPE_ISO; 4034 epctrl |= DXEPCTL_SETEVENFR; 4035 hs_ep->isochronous = 1; 4036 hs_ep->interval = 1 << (desc->bInterval - 1); 4037 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4038 hs_ep->next_desc = 0; 4039 hs_ep->compl_desc = 0; 4040 if (dir_in) { 4041 hs_ep->periodic = 1; 4042 mask = dwc2_readl(hsotg, DIEPMSK); 4043 mask |= DIEPMSK_NAKMSK; 4044 dwc2_writel(hsotg, mask, DIEPMSK); 4045 } else { 4046 mask = dwc2_readl(hsotg, DOEPMSK); 4047 mask |= DOEPMSK_OUTTKNEPDISMSK; 4048 dwc2_writel(hsotg, mask, DOEPMSK); 4049 } 4050 break; 4051 4052 case USB_ENDPOINT_XFER_BULK: 4053 epctrl |= DXEPCTL_EPTYPE_BULK; 4054 break; 4055 4056 case USB_ENDPOINT_XFER_INT: 4057 if (dir_in) 4058 hs_ep->periodic = 1; 4059 4060 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4061 hs_ep->interval = 1 << (desc->bInterval - 1); 4062 4063 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4064 break; 4065 4066 case USB_ENDPOINT_XFER_CONTROL: 4067 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4068 break; 4069 } 4070 4071 /* 4072 * if the hardware has dedicated fifos, we must give each IN EP 4073 * a unique tx-fifo even if it is non-periodic. 4074 */ 4075 if (dir_in && hsotg->dedicated_fifos) { 4076 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4077 u32 fifo_index = 0; 4078 u32 fifo_size = UINT_MAX; 4079 4080 size = hs_ep->ep.maxpacket * hs_ep->mc; 4081 for (i = 1; i <= fifo_count; ++i) { 4082 if (hsotg->fifo_map & (1 << i)) 4083 continue; 4084 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4085 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4086 if (val < size) 4087 continue; 4088 /* Search for smallest acceptable fifo */ 4089 if (val < fifo_size) { 4090 fifo_size = val; 4091 fifo_index = i; 4092 } 4093 } 4094 if (!fifo_index) { 4095 dev_err(hsotg->dev, 4096 "%s: No suitable fifo found\n", __func__); 4097 ret = -ENOMEM; 4098 goto error1; 4099 } 4100 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4101 hsotg->fifo_map |= 1 << fifo_index; 4102 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4103 hs_ep->fifo_index = fifo_index; 4104 hs_ep->fifo_size = fifo_size; 4105 } 4106 4107 /* for non control endpoints, set PID to D0 */ 4108 if (index && !hs_ep->isochronous) 4109 epctrl |= DXEPCTL_SETD0PID; 4110 4111 /* WA for Full speed ISOC IN in DDMA mode. 4112 * By Clear NAK status of EP, core will send ZLP 4113 * to IN token and assert NAK interrupt relying 4114 * on TxFIFO status only 4115 */ 4116 4117 if (hsotg->gadget.speed == USB_SPEED_FULL && 4118 hs_ep->isochronous && dir_in) { 4119 /* The WA applies only to core versions from 2.72a 4120 * to 4.00a (including both). Also for FS_IOT_1.00a 4121 * and HS_IOT_1.00a. 4122 */ 4123 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4124 4125 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4126 gsnpsid <= DWC2_CORE_REV_4_00a) || 4127 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4128 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4129 epctrl |= DXEPCTL_CNAK; 4130 } 4131 4132 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4133 __func__, epctrl); 4134 4135 dwc2_writel(hsotg, epctrl, epctrl_reg); 4136 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4137 __func__, dwc2_readl(hsotg, epctrl_reg)); 4138 4139 /* enable the endpoint interrupt */ 4140 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4141 4142 error1: 4143 spin_unlock_irqrestore(&hsotg->lock, flags); 4144 4145 error2: 4146 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4147 dmam_free_coherent(hsotg->dev, desc_num * 4148 sizeof(struct dwc2_dma_desc), 4149 hs_ep->desc_list, hs_ep->desc_list_dma); 4150 hs_ep->desc_list = NULL; 4151 } 4152 4153 return ret; 4154 } 4155 4156 /** 4157 * dwc2_hsotg_ep_disable - disable given endpoint 4158 * @ep: The endpoint to disable. 4159 */ 4160 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4161 { 4162 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4163 struct dwc2_hsotg *hsotg = hs_ep->parent; 4164 int dir_in = hs_ep->dir_in; 4165 int index = hs_ep->index; 4166 u32 epctrl_reg; 4167 u32 ctrl; 4168 4169 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4170 4171 if (ep == &hsotg->eps_out[0]->ep) { 4172 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4173 return -EINVAL; 4174 } 4175 4176 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4177 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4178 return -EINVAL; 4179 } 4180 4181 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4182 4183 ctrl = dwc2_readl(hsotg, epctrl_reg); 4184 4185 if (ctrl & DXEPCTL_EPENA) 4186 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4187 4188 ctrl &= ~DXEPCTL_EPENA; 4189 ctrl &= ~DXEPCTL_USBACTEP; 4190 ctrl |= DXEPCTL_SNAK; 4191 4192 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4193 dwc2_writel(hsotg, ctrl, epctrl_reg); 4194 4195 /* disable endpoint interrupts */ 4196 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4197 4198 /* terminate all requests with shutdown */ 4199 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4200 4201 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4202 hs_ep->fifo_index = 0; 4203 hs_ep->fifo_size = 0; 4204 4205 return 0; 4206 } 4207 4208 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4209 { 4210 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4211 struct dwc2_hsotg *hsotg = hs_ep->parent; 4212 unsigned long flags; 4213 int ret; 4214 4215 spin_lock_irqsave(&hsotg->lock, flags); 4216 ret = dwc2_hsotg_ep_disable(ep); 4217 spin_unlock_irqrestore(&hsotg->lock, flags); 4218 return ret; 4219 } 4220 4221 /** 4222 * on_list - check request is on the given endpoint 4223 * @ep: The endpoint to check. 4224 * @test: The request to test if it is on the endpoint. 4225 */ 4226 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4227 { 4228 struct dwc2_hsotg_req *req, *treq; 4229 4230 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4231 if (req == test) 4232 return true; 4233 } 4234 4235 return false; 4236 } 4237 4238 /** 4239 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4240 * @ep: The endpoint to dequeue. 4241 * @req: The request to be removed from a queue. 4242 */ 4243 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4244 { 4245 struct dwc2_hsotg_req *hs_req = our_req(req); 4246 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4247 struct dwc2_hsotg *hs = hs_ep->parent; 4248 unsigned long flags; 4249 4250 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4251 4252 spin_lock_irqsave(&hs->lock, flags); 4253 4254 if (!on_list(hs_ep, hs_req)) { 4255 spin_unlock_irqrestore(&hs->lock, flags); 4256 return -EINVAL; 4257 } 4258 4259 /* Dequeue already started request */ 4260 if (req == &hs_ep->req->req) 4261 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4262 4263 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4264 spin_unlock_irqrestore(&hs->lock, flags); 4265 4266 return 0; 4267 } 4268 4269 /** 4270 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4271 * @ep: The endpoint to set halt. 4272 * @value: Set or unset the halt. 4273 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4274 * the endpoint is busy processing requests. 4275 * 4276 * We need to stall the endpoint immediately if request comes from set_feature 4277 * protocol command handler. 4278 */ 4279 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4280 { 4281 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4282 struct dwc2_hsotg *hs = hs_ep->parent; 4283 int index = hs_ep->index; 4284 u32 epreg; 4285 u32 epctl; 4286 u32 xfertype; 4287 4288 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4289 4290 if (index == 0) { 4291 if (value) 4292 dwc2_hsotg_stall_ep0(hs); 4293 else 4294 dev_warn(hs->dev, 4295 "%s: can't clear halt on ep0\n", __func__); 4296 return 0; 4297 } 4298 4299 if (hs_ep->isochronous) { 4300 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4301 return -EINVAL; 4302 } 4303 4304 if (!now && value && !list_empty(&hs_ep->queue)) { 4305 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4306 ep->name); 4307 return -EAGAIN; 4308 } 4309 4310 if (hs_ep->dir_in) { 4311 epreg = DIEPCTL(index); 4312 epctl = dwc2_readl(hs, epreg); 4313 4314 if (value) { 4315 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4316 if (epctl & DXEPCTL_EPENA) 4317 epctl |= DXEPCTL_EPDIS; 4318 } else { 4319 epctl &= ~DXEPCTL_STALL; 4320 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4321 if (xfertype == DXEPCTL_EPTYPE_BULK || 4322 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4323 epctl |= DXEPCTL_SETD0PID; 4324 } 4325 dwc2_writel(hs, epctl, epreg); 4326 } else { 4327 epreg = DOEPCTL(index); 4328 epctl = dwc2_readl(hs, epreg); 4329 4330 if (value) { 4331 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4332 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4333 // STALL bit will be set in GOUTNAKEFF interrupt handler 4334 } else { 4335 epctl &= ~DXEPCTL_STALL; 4336 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4337 if (xfertype == DXEPCTL_EPTYPE_BULK || 4338 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4339 epctl |= DXEPCTL_SETD0PID; 4340 dwc2_writel(hs, epctl, epreg); 4341 } 4342 } 4343 4344 hs_ep->halted = value; 4345 return 0; 4346 } 4347 4348 /** 4349 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4350 * @ep: The endpoint to set halt. 4351 * @value: Set or unset the halt. 4352 */ 4353 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4354 { 4355 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4356 struct dwc2_hsotg *hs = hs_ep->parent; 4357 unsigned long flags = 0; 4358 int ret = 0; 4359 4360 spin_lock_irqsave(&hs->lock, flags); 4361 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4362 spin_unlock_irqrestore(&hs->lock, flags); 4363 4364 return ret; 4365 } 4366 4367 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4368 .enable = dwc2_hsotg_ep_enable, 4369 .disable = dwc2_hsotg_ep_disable_lock, 4370 .alloc_request = dwc2_hsotg_ep_alloc_request, 4371 .free_request = dwc2_hsotg_ep_free_request, 4372 .queue = dwc2_hsotg_ep_queue_lock, 4373 .dequeue = dwc2_hsotg_ep_dequeue, 4374 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4375 /* note, don't believe we have any call for the fifo routines */ 4376 }; 4377 4378 /** 4379 * dwc2_hsotg_init - initialize the usb core 4380 * @hsotg: The driver state 4381 */ 4382 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4383 { 4384 /* unmask subset of endpoint interrupts */ 4385 4386 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4387 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4388 DIEPMSK); 4389 4390 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4391 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4392 DOEPMSK); 4393 4394 dwc2_writel(hsotg, 0, DAINTMSK); 4395 4396 /* Be in disconnected state until gadget is registered */ 4397 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4398 4399 /* setup fifos */ 4400 4401 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4402 dwc2_readl(hsotg, GRXFSIZ), 4403 dwc2_readl(hsotg, GNPTXFSIZ)); 4404 4405 dwc2_hsotg_init_fifo(hsotg); 4406 4407 if (using_dma(hsotg)) 4408 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4409 } 4410 4411 /** 4412 * dwc2_hsotg_udc_start - prepare the udc for work 4413 * @gadget: The usb gadget state 4414 * @driver: The usb gadget driver 4415 * 4416 * Perform initialization to prepare udc device and driver 4417 * to work. 4418 */ 4419 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4420 struct usb_gadget_driver *driver) 4421 { 4422 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4423 unsigned long flags; 4424 int ret; 4425 4426 if (!hsotg) { 4427 pr_err("%s: called with no device\n", __func__); 4428 return -ENODEV; 4429 } 4430 4431 if (!driver) { 4432 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4433 return -EINVAL; 4434 } 4435 4436 if (driver->max_speed < USB_SPEED_FULL) 4437 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4438 4439 if (!driver->setup) { 4440 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4441 return -EINVAL; 4442 } 4443 4444 WARN_ON(hsotg->driver); 4445 4446 driver->driver.bus = NULL; 4447 hsotg->driver = driver; 4448 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4449 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4450 4451 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4452 ret = dwc2_lowlevel_hw_enable(hsotg); 4453 if (ret) 4454 goto err; 4455 } 4456 4457 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4458 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4459 4460 spin_lock_irqsave(&hsotg->lock, flags); 4461 if (dwc2_hw_is_device(hsotg)) { 4462 dwc2_hsotg_init(hsotg); 4463 dwc2_hsotg_core_init_disconnected(hsotg, false); 4464 } 4465 4466 hsotg->enabled = 0; 4467 spin_unlock_irqrestore(&hsotg->lock, flags); 4468 4469 gadget->sg_supported = using_desc_dma(hsotg); 4470 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4471 4472 return 0; 4473 4474 err: 4475 hsotg->driver = NULL; 4476 return ret; 4477 } 4478 4479 /** 4480 * dwc2_hsotg_udc_stop - stop the udc 4481 * @gadget: The usb gadget state 4482 * 4483 * Stop udc hw block and stay tunned for future transmissions 4484 */ 4485 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4486 { 4487 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4488 unsigned long flags = 0; 4489 int ep; 4490 4491 if (!hsotg) 4492 return -ENODEV; 4493 4494 /* all endpoints should be shutdown */ 4495 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4496 if (hsotg->eps_in[ep]) 4497 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4498 if (hsotg->eps_out[ep]) 4499 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4500 } 4501 4502 spin_lock_irqsave(&hsotg->lock, flags); 4503 4504 hsotg->driver = NULL; 4505 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4506 hsotg->enabled = 0; 4507 4508 spin_unlock_irqrestore(&hsotg->lock, flags); 4509 4510 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4511 otg_set_peripheral(hsotg->uphy->otg, NULL); 4512 4513 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4514 dwc2_lowlevel_hw_disable(hsotg); 4515 4516 return 0; 4517 } 4518 4519 /** 4520 * dwc2_hsotg_gadget_getframe - read the frame number 4521 * @gadget: The usb gadget state 4522 * 4523 * Read the {micro} frame number 4524 */ 4525 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4526 { 4527 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4528 } 4529 4530 /** 4531 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4532 * @gadget: The usb gadget state 4533 * @is_on: Current state of the USB PHY 4534 * 4535 * Connect/Disconnect the USB PHY pullup 4536 */ 4537 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4538 { 4539 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4540 unsigned long flags = 0; 4541 4542 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4543 hsotg->op_state); 4544 4545 /* Don't modify pullup state while in host mode */ 4546 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4547 hsotg->enabled = is_on; 4548 return 0; 4549 } 4550 4551 spin_lock_irqsave(&hsotg->lock, flags); 4552 if (is_on) { 4553 hsotg->enabled = 1; 4554 dwc2_hsotg_core_init_disconnected(hsotg, false); 4555 /* Enable ACG feature in device mode,if supported */ 4556 dwc2_enable_acg(hsotg); 4557 dwc2_hsotg_core_connect(hsotg); 4558 } else { 4559 dwc2_hsotg_core_disconnect(hsotg); 4560 dwc2_hsotg_disconnect(hsotg); 4561 hsotg->enabled = 0; 4562 } 4563 4564 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4565 spin_unlock_irqrestore(&hsotg->lock, flags); 4566 4567 return 0; 4568 } 4569 4570 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4571 { 4572 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4573 unsigned long flags; 4574 4575 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4576 spin_lock_irqsave(&hsotg->lock, flags); 4577 4578 /* 4579 * If controller is hibernated, it must exit from power_down 4580 * before being initialized / de-initialized 4581 */ 4582 if (hsotg->lx_state == DWC2_L2) 4583 dwc2_exit_partial_power_down(hsotg, false); 4584 4585 if (is_active) { 4586 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4587 4588 dwc2_hsotg_core_init_disconnected(hsotg, false); 4589 if (hsotg->enabled) { 4590 /* Enable ACG feature in device mode,if supported */ 4591 dwc2_enable_acg(hsotg); 4592 dwc2_hsotg_core_connect(hsotg); 4593 } 4594 } else { 4595 dwc2_hsotg_core_disconnect(hsotg); 4596 dwc2_hsotg_disconnect(hsotg); 4597 } 4598 4599 spin_unlock_irqrestore(&hsotg->lock, flags); 4600 return 0; 4601 } 4602 4603 /** 4604 * dwc2_hsotg_vbus_draw - report bMaxPower field 4605 * @gadget: The usb gadget state 4606 * @mA: Amount of current 4607 * 4608 * Report how much power the device may consume to the phy. 4609 */ 4610 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4611 { 4612 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4613 4614 if (IS_ERR_OR_NULL(hsotg->uphy)) 4615 return -ENOTSUPP; 4616 return usb_phy_set_power(hsotg->uphy, mA); 4617 } 4618 4619 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4620 .get_frame = dwc2_hsotg_gadget_getframe, 4621 .udc_start = dwc2_hsotg_udc_start, 4622 .udc_stop = dwc2_hsotg_udc_stop, 4623 .pullup = dwc2_hsotg_pullup, 4624 .vbus_session = dwc2_hsotg_vbus_session, 4625 .vbus_draw = dwc2_hsotg_vbus_draw, 4626 }; 4627 4628 /** 4629 * dwc2_hsotg_initep - initialise a single endpoint 4630 * @hsotg: The device state. 4631 * @hs_ep: The endpoint to be initialised. 4632 * @epnum: The endpoint number 4633 * @dir_in: True if direction is in. 4634 * 4635 * Initialise the given endpoint (as part of the probe and device state 4636 * creation) to give to the gadget driver. Setup the endpoint name, any 4637 * direction information and other state that may be required. 4638 */ 4639 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4640 struct dwc2_hsotg_ep *hs_ep, 4641 int epnum, 4642 bool dir_in) 4643 { 4644 char *dir; 4645 4646 if (epnum == 0) 4647 dir = ""; 4648 else if (dir_in) 4649 dir = "in"; 4650 else 4651 dir = "out"; 4652 4653 hs_ep->dir_in = dir_in; 4654 hs_ep->index = epnum; 4655 4656 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4657 4658 INIT_LIST_HEAD(&hs_ep->queue); 4659 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4660 4661 /* add to the list of endpoints known by the gadget driver */ 4662 if (epnum) 4663 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4664 4665 hs_ep->parent = hsotg; 4666 hs_ep->ep.name = hs_ep->name; 4667 4668 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4669 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4670 else 4671 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4672 epnum ? 1024 : EP0_MPS_LIMIT); 4673 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4674 4675 if (epnum == 0) { 4676 hs_ep->ep.caps.type_control = true; 4677 } else { 4678 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4679 hs_ep->ep.caps.type_iso = true; 4680 hs_ep->ep.caps.type_bulk = true; 4681 } 4682 hs_ep->ep.caps.type_int = true; 4683 } 4684 4685 if (dir_in) 4686 hs_ep->ep.caps.dir_in = true; 4687 else 4688 hs_ep->ep.caps.dir_out = true; 4689 4690 /* 4691 * if we're using dma, we need to set the next-endpoint pointer 4692 * to be something valid. 4693 */ 4694 4695 if (using_dma(hsotg)) { 4696 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4697 4698 if (dir_in) 4699 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4700 else 4701 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4702 } 4703 } 4704 4705 /** 4706 * dwc2_hsotg_hw_cfg - read HW configuration registers 4707 * @hsotg: Programming view of the DWC_otg controller 4708 * 4709 * Read the USB core HW configuration registers 4710 */ 4711 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4712 { 4713 u32 cfg; 4714 u32 ep_type; 4715 u32 i; 4716 4717 /* check hardware configuration */ 4718 4719 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4720 4721 /* Add ep0 */ 4722 hsotg->num_of_eps++; 4723 4724 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4725 sizeof(struct dwc2_hsotg_ep), 4726 GFP_KERNEL); 4727 if (!hsotg->eps_in[0]) 4728 return -ENOMEM; 4729 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4730 hsotg->eps_out[0] = hsotg->eps_in[0]; 4731 4732 cfg = hsotg->hw_params.dev_ep_dirs; 4733 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4734 ep_type = cfg & 3; 4735 /* Direction in or both */ 4736 if (!(ep_type & 2)) { 4737 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4738 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4739 if (!hsotg->eps_in[i]) 4740 return -ENOMEM; 4741 } 4742 /* Direction out or both */ 4743 if (!(ep_type & 1)) { 4744 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4745 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4746 if (!hsotg->eps_out[i]) 4747 return -ENOMEM; 4748 } 4749 } 4750 4751 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4752 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4753 4754 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4755 hsotg->num_of_eps, 4756 hsotg->dedicated_fifos ? "dedicated" : "shared", 4757 hsotg->fifo_mem); 4758 return 0; 4759 } 4760 4761 /** 4762 * dwc2_hsotg_dump - dump state of the udc 4763 * @hsotg: Programming view of the DWC_otg controller 4764 * 4765 */ 4766 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4767 { 4768 #ifdef DEBUG 4769 struct device *dev = hsotg->dev; 4770 u32 val; 4771 int idx; 4772 4773 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4774 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4775 dwc2_readl(hsotg, DIEPMSK)); 4776 4777 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4778 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4779 4780 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4781 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4782 4783 /* show periodic fifo settings */ 4784 4785 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4786 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4787 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4788 val >> FIFOSIZE_DEPTH_SHIFT, 4789 val & FIFOSIZE_STARTADDR_MASK); 4790 } 4791 4792 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4793 dev_info(dev, 4794 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4795 dwc2_readl(hsotg, DIEPCTL(idx)), 4796 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4797 dwc2_readl(hsotg, DIEPDMA(idx))); 4798 4799 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4800 dev_info(dev, 4801 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4802 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4803 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4804 dwc2_readl(hsotg, DOEPDMA(idx))); 4805 } 4806 4807 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4808 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4809 #endif 4810 } 4811 4812 /** 4813 * dwc2_gadget_init - init function for gadget 4814 * @hsotg: Programming view of the DWC_otg controller 4815 * 4816 */ 4817 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4818 { 4819 struct device *dev = hsotg->dev; 4820 int epnum; 4821 int ret; 4822 4823 /* Dump fifo information */ 4824 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4825 hsotg->params.g_np_tx_fifo_size); 4826 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4827 4828 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4829 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4830 hsotg->gadget.name = dev_name(dev); 4831 hsotg->remote_wakeup_allowed = 0; 4832 4833 if (hsotg->params.lpm) 4834 hsotg->gadget.lpm_capable = true; 4835 4836 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4837 hsotg->gadget.is_otg = 1; 4838 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4839 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4840 4841 ret = dwc2_hsotg_hw_cfg(hsotg); 4842 if (ret) { 4843 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4844 return ret; 4845 } 4846 4847 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4848 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4849 if (!hsotg->ctrl_buff) 4850 return -ENOMEM; 4851 4852 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4853 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4854 if (!hsotg->ep0_buff) 4855 return -ENOMEM; 4856 4857 if (using_desc_dma(hsotg)) { 4858 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4859 if (ret < 0) 4860 return ret; 4861 } 4862 4863 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4864 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4865 if (ret < 0) { 4866 dev_err(dev, "cannot claim IRQ for gadget\n"); 4867 return ret; 4868 } 4869 4870 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4871 4872 if (hsotg->num_of_eps == 0) { 4873 dev_err(dev, "wrong number of EPs (zero)\n"); 4874 return -EINVAL; 4875 } 4876 4877 /* setup endpoint information */ 4878 4879 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4880 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4881 4882 /* allocate EP0 request */ 4883 4884 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4885 GFP_KERNEL); 4886 if (!hsotg->ctrl_req) { 4887 dev_err(dev, "failed to allocate ctrl req\n"); 4888 return -ENOMEM; 4889 } 4890 4891 /* initialise the endpoints now the core has been initialised */ 4892 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4893 if (hsotg->eps_in[epnum]) 4894 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4895 epnum, 1); 4896 if (hsotg->eps_out[epnum]) 4897 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4898 epnum, 0); 4899 } 4900 4901 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4902 if (ret) { 4903 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, 4904 hsotg->ctrl_req); 4905 return ret; 4906 } 4907 dwc2_hsotg_dump(hsotg); 4908 4909 return 0; 4910 } 4911 4912 /** 4913 * dwc2_hsotg_remove - remove function for hsotg driver 4914 * @hsotg: Programming view of the DWC_otg controller 4915 * 4916 */ 4917 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4918 { 4919 usb_del_gadget_udc(&hsotg->gadget); 4920 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4921 4922 return 0; 4923 } 4924 4925 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4926 { 4927 unsigned long flags; 4928 4929 if (hsotg->lx_state != DWC2_L0) 4930 return 0; 4931 4932 if (hsotg->driver) { 4933 int ep; 4934 4935 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4936 hsotg->driver->driver.name); 4937 4938 spin_lock_irqsave(&hsotg->lock, flags); 4939 if (hsotg->enabled) 4940 dwc2_hsotg_core_disconnect(hsotg); 4941 dwc2_hsotg_disconnect(hsotg); 4942 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4943 spin_unlock_irqrestore(&hsotg->lock, flags); 4944 4945 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4946 if (hsotg->eps_in[ep]) 4947 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4948 if (hsotg->eps_out[ep]) 4949 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4950 } 4951 } 4952 4953 return 0; 4954 } 4955 4956 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4957 { 4958 unsigned long flags; 4959 4960 if (hsotg->lx_state == DWC2_L2) 4961 return 0; 4962 4963 if (hsotg->driver) { 4964 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4965 hsotg->driver->driver.name); 4966 4967 spin_lock_irqsave(&hsotg->lock, flags); 4968 dwc2_hsotg_core_init_disconnected(hsotg, false); 4969 if (hsotg->enabled) { 4970 /* Enable ACG feature in device mode,if supported */ 4971 dwc2_enable_acg(hsotg); 4972 dwc2_hsotg_core_connect(hsotg); 4973 } 4974 spin_unlock_irqrestore(&hsotg->lock, flags); 4975 } 4976 4977 return 0; 4978 } 4979 4980 /** 4981 * dwc2_backup_device_registers() - Backup controller device registers. 4982 * When suspending usb bus, registers needs to be backuped 4983 * if controller power is disabled once suspended. 4984 * 4985 * @hsotg: Programming view of the DWC_otg controller 4986 */ 4987 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4988 { 4989 struct dwc2_dregs_backup *dr; 4990 int i; 4991 4992 dev_dbg(hsotg->dev, "%s\n", __func__); 4993 4994 /* Backup dev regs */ 4995 dr = &hsotg->dr_backup; 4996 4997 dr->dcfg = dwc2_readl(hsotg, DCFG); 4998 dr->dctl = dwc2_readl(hsotg, DCTL); 4999 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5000 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5001 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5002 5003 for (i = 0; i < hsotg->num_of_eps; i++) { 5004 /* Backup IN EPs */ 5005 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5006 5007 /* Ensure DATA PID is correctly configured */ 5008 if (dr->diepctl[i] & DXEPCTL_DPID) 5009 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5010 else 5011 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5012 5013 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5014 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5015 5016 /* Backup OUT EPs */ 5017 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5018 5019 /* Ensure DATA PID is correctly configured */ 5020 if (dr->doepctl[i] & DXEPCTL_DPID) 5021 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5022 else 5023 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5024 5025 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5026 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5027 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5028 } 5029 dr->valid = true; 5030 return 0; 5031 } 5032 5033 /** 5034 * dwc2_restore_device_registers() - Restore controller device registers. 5035 * When resuming usb bus, device registers needs to be restored 5036 * if controller power were disabled. 5037 * 5038 * @hsotg: Programming view of the DWC_otg controller 5039 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5040 * 5041 * Return: 0 if successful, negative error code otherwise 5042 */ 5043 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5044 { 5045 struct dwc2_dregs_backup *dr; 5046 int i; 5047 5048 dev_dbg(hsotg->dev, "%s\n", __func__); 5049 5050 /* Restore dev regs */ 5051 dr = &hsotg->dr_backup; 5052 if (!dr->valid) { 5053 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5054 __func__); 5055 return -EINVAL; 5056 } 5057 dr->valid = false; 5058 5059 if (!remote_wakeup) 5060 dwc2_writel(hsotg, dr->dctl, DCTL); 5061 5062 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5063 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5064 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5065 5066 for (i = 0; i < hsotg->num_of_eps; i++) { 5067 /* Restore IN EPs */ 5068 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5069 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5070 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5071 /** WA for enabled EPx's IN in DDMA mode. On entering to 5072 * hibernation wrong value read and saved from DIEPDMAx, 5073 * as result BNA interrupt asserted on hibernation exit 5074 * by restoring from saved area. 5075 */ 5076 if (hsotg->params.g_dma_desc && 5077 (dr->diepctl[i] & DXEPCTL_EPENA)) 5078 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5079 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5080 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5081 /* Restore OUT EPs */ 5082 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5083 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5084 * hibernation wrong value read and saved from DOEPDMAx, 5085 * as result BNA interrupt asserted on hibernation exit 5086 * by restoring from saved area. 5087 */ 5088 if (hsotg->params.g_dma_desc && 5089 (dr->doepctl[i] & DXEPCTL_EPENA)) 5090 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5091 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5092 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5093 } 5094 5095 return 0; 5096 } 5097 5098 /** 5099 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5100 * 5101 * @hsotg: Programming view of DWC_otg controller 5102 * 5103 */ 5104 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5105 { 5106 u32 val; 5107 5108 if (!hsotg->params.lpm) 5109 return; 5110 5111 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5112 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5113 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5114 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5115 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5116 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5117 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5118 dwc2_writel(hsotg, val, GLPMCFG); 5119 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5120 5121 /* Unmask WKUP_ALERT Interrupt */ 5122 if (hsotg->params.service_interval) 5123 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5124 } 5125 5126 /** 5127 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5128 * 5129 * @hsotg: Programming view of DWC_otg controller 5130 * 5131 */ 5132 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5133 { 5134 u32 val = 0; 5135 5136 val |= GREFCLK_REF_CLK_MODE; 5137 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5138 val |= hsotg->params.sof_cnt_wkup_alert << 5139 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5140 5141 dwc2_writel(hsotg, val, GREFCLK); 5142 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5143 } 5144 5145 /** 5146 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5147 * 5148 * @hsotg: Programming view of the DWC_otg controller 5149 * 5150 * Return non-zero if failed to enter to hibernation. 5151 */ 5152 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5153 { 5154 u32 gpwrdn; 5155 int ret = 0; 5156 5157 /* Change to L2(suspend) state */ 5158 hsotg->lx_state = DWC2_L2; 5159 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5160 ret = dwc2_backup_global_registers(hsotg); 5161 if (ret) { 5162 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5163 __func__); 5164 return ret; 5165 } 5166 ret = dwc2_backup_device_registers(hsotg); 5167 if (ret) { 5168 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5169 __func__); 5170 return ret; 5171 } 5172 5173 gpwrdn = GPWRDN_PWRDNRSTN; 5174 gpwrdn |= GPWRDN_PMUACTV; 5175 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5176 udelay(10); 5177 5178 /* Set flag to indicate that we are in hibernation */ 5179 hsotg->hibernated = 1; 5180 5181 /* Enable interrupts from wake up logic */ 5182 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5183 gpwrdn |= GPWRDN_PMUINTSEL; 5184 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5185 udelay(10); 5186 5187 /* Unmask device mode interrupts in GPWRDN */ 5188 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5189 gpwrdn |= GPWRDN_RST_DET_MSK; 5190 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5191 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5192 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5193 udelay(10); 5194 5195 /* Enable Power Down Clamp */ 5196 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5197 gpwrdn |= GPWRDN_PWRDNCLMP; 5198 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5199 udelay(10); 5200 5201 /* Switch off VDD */ 5202 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5203 gpwrdn |= GPWRDN_PWRDNSWTCH; 5204 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5205 udelay(10); 5206 5207 /* Save gpwrdn register for further usage if stschng interrupt */ 5208 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5209 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5210 5211 return ret; 5212 } 5213 5214 /** 5215 * dwc2_gadget_exit_hibernation() 5216 * This function is for exiting from Device mode hibernation by host initiated 5217 * resume/reset and device initiated remote-wakeup. 5218 * 5219 * @hsotg: Programming view of the DWC_otg controller 5220 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5221 * @reset: indicates whether resume is initiated by Reset. 5222 * 5223 * Return non-zero if failed to exit from hibernation. 5224 */ 5225 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5226 int rem_wakeup, int reset) 5227 { 5228 u32 pcgcctl; 5229 u32 gpwrdn; 5230 u32 dctl; 5231 int ret = 0; 5232 struct dwc2_gregs_backup *gr; 5233 struct dwc2_dregs_backup *dr; 5234 5235 gr = &hsotg->gr_backup; 5236 dr = &hsotg->dr_backup; 5237 5238 if (!hsotg->hibernated) { 5239 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5240 return 1; 5241 } 5242 dev_dbg(hsotg->dev, 5243 "%s: called with rem_wakeup = %d reset = %d\n", 5244 __func__, rem_wakeup, reset); 5245 5246 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5247 5248 if (!reset) { 5249 /* Clear all pending interupts */ 5250 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5251 } 5252 5253 /* De-assert Restore */ 5254 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5255 gpwrdn &= ~GPWRDN_RESTORE; 5256 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5257 udelay(10); 5258 5259 if (!rem_wakeup) { 5260 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5261 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5262 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5263 } 5264 5265 /* Restore GUSBCFG, DCFG and DCTL */ 5266 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5267 dwc2_writel(hsotg, dr->dcfg, DCFG); 5268 dwc2_writel(hsotg, dr->dctl, DCTL); 5269 5270 /* De-assert Wakeup Logic */ 5271 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5272 gpwrdn &= ~GPWRDN_PMUACTV; 5273 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5274 5275 if (rem_wakeup) { 5276 udelay(10); 5277 /* Start Remote Wakeup Signaling */ 5278 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5279 } else { 5280 udelay(50); 5281 /* Set Device programming done bit */ 5282 dctl = dwc2_readl(hsotg, DCTL); 5283 dctl |= DCTL_PWRONPRGDONE; 5284 dwc2_writel(hsotg, dctl, DCTL); 5285 } 5286 /* Wait for interrupts which must be cleared */ 5287 mdelay(2); 5288 /* Clear all pending interupts */ 5289 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5290 5291 /* Restore global registers */ 5292 ret = dwc2_restore_global_registers(hsotg); 5293 if (ret) { 5294 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5295 __func__); 5296 return ret; 5297 } 5298 5299 /* Restore device registers */ 5300 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5301 if (ret) { 5302 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5303 __func__); 5304 return ret; 5305 } 5306 5307 if (rem_wakeup) { 5308 mdelay(10); 5309 dctl = dwc2_readl(hsotg, DCTL); 5310 dctl &= ~DCTL_RMTWKUPSIG; 5311 dwc2_writel(hsotg, dctl, DCTL); 5312 } 5313 5314 hsotg->hibernated = 0; 5315 hsotg->lx_state = DWC2_L0; 5316 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5317 5318 return ret; 5319 } 5320