xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 680ef72a)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void __orr32(void __iomem *ptr, u32 val)
51 {
52 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54 
55 static inline void __bic32(void __iomem *ptr, u32 val)
56 {
57 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  * @increment: The value to increment by
111  *
112  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114  */
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 {
117 	hs_ep->target_frame += hs_ep->interval;
118 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 		hs_ep->frame_overrun = 1;
120 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
121 	} else {
122 		hs_ep->frame_overrun = 0;
123 	}
124 }
125 
126 /**
127  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128  * @hsotg: The device state
129  * @ints: A bitmask of the interrupts to enable
130  */
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132 {
133 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 	u32 new_gsintmsk;
135 
136 	new_gsintmsk = gsintmsk | ints;
137 
138 	if (new_gsintmsk != gsintmsk) {
139 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 	}
142 }
143 
144 /**
145  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146  * @hsotg: The device state
147  * @ints: A bitmask of the interrupts to enable
148  */
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150 {
151 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 	u32 new_gsintmsk;
153 
154 	new_gsintmsk = gsintmsk & ~ints;
155 
156 	if (new_gsintmsk != gsintmsk)
157 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 }
159 
160 /**
161  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162  * @hsotg: The device state
163  * @ep: The endpoint index
164  * @dir_in: True if direction is in.
165  * @en: The enable value, true to enable
166  *
167  * Set or clear the mask for an individual endpoint's interrupt
168  * request.
169  */
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 				  unsigned int ep, unsigned int dir_in,
172 				 unsigned int en)
173 {
174 	unsigned long flags;
175 	u32 bit = 1 << ep;
176 	u32 daint;
177 
178 	if (!dir_in)
179 		bit <<= 16;
180 
181 	local_irq_save(flags);
182 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 	if (en)
184 		daint |= bit;
185 	else
186 		daint &= ~bit;
187 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 	local_irq_restore(flags);
189 }
190 
191 /**
192  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
193  */
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
195 {
196 	if (hsotg->hw_params.en_multiple_tx_fifo)
197 		/* In dedicated FIFO mode we need count of IN EPs */
198 		return (dwc2_readl(hsotg->regs + GHWCFG4)  &
199 			GHWCFG4_NUM_IN_EPS_MASK) >> GHWCFG4_NUM_IN_EPS_SHIFT;
200 	else
201 		/* In shared FIFO mode we need count of Periodic IN EPs */
202 		return hsotg->hw_params.num_dev_perio_in_ep;
203 }
204 
205 /**
206  * dwc2_hsotg_ep_info_size - return Endpoint Info Control block size in DWORDs
207  */
208 static int dwc2_hsotg_ep_info_size(struct dwc2_hsotg *hsotg)
209 {
210 	int val = 0;
211 	int i;
212 	u32 ep_dirs;
213 
214 	/*
215 	 * Don't need additional space for ep info control registers in
216 	 * slave mode.
217 	 */
218 	if (!using_dma(hsotg)) {
219 		dev_dbg(hsotg->dev, "Buffer DMA ep info size 0\n");
220 		return 0;
221 	}
222 
223 	/*
224 	 * Buffer DMA mode - 1 location per endpoit
225 	 * Descriptor DMA mode - 4 locations per endpoint
226 	 */
227 	ep_dirs = hsotg->hw_params.dev_ep_dirs;
228 
229 	for (i = 0; i <= hsotg->hw_params.num_dev_ep; i++) {
230 		val += ep_dirs & 3 ? 1 : 2;
231 		ep_dirs >>= 2;
232 	}
233 
234 	if (using_desc_dma(hsotg))
235 		val = val * 4;
236 
237 	return val;
238 }
239 
240 /**
241  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
242  * device mode TX FIFOs
243  */
244 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
245 {
246 	int ep_info_size;
247 	int addr;
248 	int tx_addr_max;
249 	u32 np_tx_fifo_size;
250 
251 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
252 				hsotg->params.g_np_tx_fifo_size);
253 
254 	/* Get Endpoint Info Control block size in DWORDs. */
255 	ep_info_size = dwc2_hsotg_ep_info_size(hsotg);
256 	tx_addr_max = hsotg->hw_params.total_fifo_size - ep_info_size;
257 
258 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
259 	if (tx_addr_max <= addr)
260 		return 0;
261 
262 	return tx_addr_max - addr;
263 }
264 
265 /**
266  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
267  * TX FIFOs
268  */
269 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
270 {
271 	int tx_fifo_count;
272 	int tx_fifo_depth;
273 
274 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
275 
276 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
277 
278 	if (!tx_fifo_count)
279 		return tx_fifo_depth;
280 	else
281 		return tx_fifo_depth / tx_fifo_count;
282 }
283 
284 /**
285  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
286  * @hsotg: The device instance.
287  */
288 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
289 {
290 	unsigned int ep;
291 	unsigned int addr;
292 	int timeout;
293 	u32 val;
294 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
295 
296 	/* Reset fifo map if not correctly cleared during previous session */
297 	WARN_ON(hsotg->fifo_map);
298 	hsotg->fifo_map = 0;
299 
300 	/* set RX/NPTX FIFO sizes */
301 	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
302 	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
303 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
304 		    hsotg->regs + GNPTXFSIZ);
305 
306 	/*
307 	 * arange all the rest of the TX FIFOs, as some versions of this
308 	 * block have overlapping default addresses. This also ensures
309 	 * that if the settings have been changed, then they are set to
310 	 * known values.
311 	 */
312 
313 	/* start at the end of the GNPTXFSIZ, rounded up */
314 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
315 
316 	/*
317 	 * Configure fifos sizes from provided configuration and assign
318 	 * them to endpoints dynamically according to maxpacket size value of
319 	 * given endpoint.
320 	 */
321 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
322 		if (!txfsz[ep])
323 			continue;
324 		val = addr;
325 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
326 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
327 			  "insufficient fifo memory");
328 		addr += txfsz[ep];
329 
330 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
331 		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
332 	}
333 
334 	dwc2_writel(hsotg->hw_params.total_fifo_size |
335 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
336 		    hsotg->regs + GDFIFOCFG);
337 	/*
338 	 * according to p428 of the design guide, we need to ensure that
339 	 * all fifos are flushed before continuing
340 	 */
341 
342 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
343 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
344 
345 	/* wait until the fifos are both flushed */
346 	timeout = 100;
347 	while (1) {
348 		val = dwc2_readl(hsotg->regs + GRSTCTL);
349 
350 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
351 			break;
352 
353 		if (--timeout == 0) {
354 			dev_err(hsotg->dev,
355 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
356 				__func__, val);
357 			break;
358 		}
359 
360 		udelay(1);
361 	}
362 
363 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
364 }
365 
366 /**
367  * @ep: USB endpoint to allocate request for.
368  * @flags: Allocation flags
369  *
370  * Allocate a new USB request structure appropriate for the specified endpoint
371  */
372 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
373 						       gfp_t flags)
374 {
375 	struct dwc2_hsotg_req *req;
376 
377 	req = kzalloc(sizeof(*req), flags);
378 	if (!req)
379 		return NULL;
380 
381 	INIT_LIST_HEAD(&req->queue);
382 
383 	return &req->req;
384 }
385 
386 /**
387  * is_ep_periodic - return true if the endpoint is in periodic mode.
388  * @hs_ep: The endpoint to query.
389  *
390  * Returns true if the endpoint is in periodic mode, meaning it is being
391  * used for an Interrupt or ISO transfer.
392  */
393 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
394 {
395 	return hs_ep->periodic;
396 }
397 
398 /**
399  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
400  * @hsotg: The device state.
401  * @hs_ep: The endpoint for the request
402  * @hs_req: The request being processed.
403  *
404  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
405  * of a request to ensure the buffer is ready for access by the caller.
406  */
407 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
408 				 struct dwc2_hsotg_ep *hs_ep,
409 				struct dwc2_hsotg_req *hs_req)
410 {
411 	struct usb_request *req = &hs_req->req;
412 
413 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
414 }
415 
416 /*
417  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
418  * for Control endpoint
419  * @hsotg: The device state.
420  *
421  * This function will allocate 4 descriptor chains for EP 0: 2 for
422  * Setup stage, per one for IN and OUT data/status transactions.
423  */
424 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
425 {
426 	hsotg->setup_desc[0] =
427 		dmam_alloc_coherent(hsotg->dev,
428 				    sizeof(struct dwc2_dma_desc),
429 				    &hsotg->setup_desc_dma[0],
430 				    GFP_KERNEL);
431 	if (!hsotg->setup_desc[0])
432 		goto fail;
433 
434 	hsotg->setup_desc[1] =
435 		dmam_alloc_coherent(hsotg->dev,
436 				    sizeof(struct dwc2_dma_desc),
437 				    &hsotg->setup_desc_dma[1],
438 				    GFP_KERNEL);
439 	if (!hsotg->setup_desc[1])
440 		goto fail;
441 
442 	hsotg->ctrl_in_desc =
443 		dmam_alloc_coherent(hsotg->dev,
444 				    sizeof(struct dwc2_dma_desc),
445 				    &hsotg->ctrl_in_desc_dma,
446 				    GFP_KERNEL);
447 	if (!hsotg->ctrl_in_desc)
448 		goto fail;
449 
450 	hsotg->ctrl_out_desc =
451 		dmam_alloc_coherent(hsotg->dev,
452 				    sizeof(struct dwc2_dma_desc),
453 				    &hsotg->ctrl_out_desc_dma,
454 				    GFP_KERNEL);
455 	if (!hsotg->ctrl_out_desc)
456 		goto fail;
457 
458 	return 0;
459 
460 fail:
461 	return -ENOMEM;
462 }
463 
464 /**
465  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
466  * @hsotg: The controller state.
467  * @hs_ep: The endpoint we're going to write for.
468  * @hs_req: The request to write data for.
469  *
470  * This is called when the TxFIFO has some space in it to hold a new
471  * transmission and we have something to give it. The actual setup of
472  * the data size is done elsewhere, so all we have to do is to actually
473  * write the data.
474  *
475  * The return value is zero if there is more space (or nothing was done)
476  * otherwise -ENOSPC is returned if the FIFO space was used up.
477  *
478  * This routine is only needed for PIO
479  */
480 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
481 				 struct dwc2_hsotg_ep *hs_ep,
482 				struct dwc2_hsotg_req *hs_req)
483 {
484 	bool periodic = is_ep_periodic(hs_ep);
485 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
486 	int buf_pos = hs_req->req.actual;
487 	int to_write = hs_ep->size_loaded;
488 	void *data;
489 	int can_write;
490 	int pkt_round;
491 	int max_transfer;
492 
493 	to_write -= (buf_pos - hs_ep->last_load);
494 
495 	/* if there's nothing to write, get out early */
496 	if (to_write == 0)
497 		return 0;
498 
499 	if (periodic && !hsotg->dedicated_fifos) {
500 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
501 		int size_left;
502 		int size_done;
503 
504 		/*
505 		 * work out how much data was loaded so we can calculate
506 		 * how much data is left in the fifo.
507 		 */
508 
509 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
510 
511 		/*
512 		 * if shared fifo, we cannot write anything until the
513 		 * previous data has been completely sent.
514 		 */
515 		if (hs_ep->fifo_load != 0) {
516 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
517 			return -ENOSPC;
518 		}
519 
520 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
521 			__func__, size_left,
522 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
523 
524 		/* how much of the data has moved */
525 		size_done = hs_ep->size_loaded - size_left;
526 
527 		/* how much data is left in the fifo */
528 		can_write = hs_ep->fifo_load - size_done;
529 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
530 			__func__, can_write);
531 
532 		can_write = hs_ep->fifo_size - can_write;
533 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
534 			__func__, can_write);
535 
536 		if (can_write <= 0) {
537 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
538 			return -ENOSPC;
539 		}
540 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
541 		can_write = dwc2_readl(hsotg->regs +
542 				DTXFSTS(hs_ep->fifo_index));
543 
544 		can_write &= 0xffff;
545 		can_write *= 4;
546 	} else {
547 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
548 			dev_dbg(hsotg->dev,
549 				"%s: no queue slots available (0x%08x)\n",
550 				__func__, gnptxsts);
551 
552 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
553 			return -ENOSPC;
554 		}
555 
556 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
557 		can_write *= 4;	/* fifo size is in 32bit quantities. */
558 	}
559 
560 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
561 
562 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
563 		__func__, gnptxsts, can_write, to_write, max_transfer);
564 
565 	/*
566 	 * limit to 512 bytes of data, it seems at least on the non-periodic
567 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
568 	 * fragment of the end of the transfer in it.
569 	 */
570 	if (can_write > 512 && !periodic)
571 		can_write = 512;
572 
573 	/*
574 	 * limit the write to one max-packet size worth of data, but allow
575 	 * the transfer to return that it did not run out of fifo space
576 	 * doing it.
577 	 */
578 	if (to_write > max_transfer) {
579 		to_write = max_transfer;
580 
581 		/* it's needed only when we do not use dedicated fifos */
582 		if (!hsotg->dedicated_fifos)
583 			dwc2_hsotg_en_gsint(hsotg,
584 					    periodic ? GINTSTS_PTXFEMP :
585 					   GINTSTS_NPTXFEMP);
586 	}
587 
588 	/* see if we can write data */
589 
590 	if (to_write > can_write) {
591 		to_write = can_write;
592 		pkt_round = to_write % max_transfer;
593 
594 		/*
595 		 * Round the write down to an
596 		 * exact number of packets.
597 		 *
598 		 * Note, we do not currently check to see if we can ever
599 		 * write a full packet or not to the FIFO.
600 		 */
601 
602 		if (pkt_round)
603 			to_write -= pkt_round;
604 
605 		/*
606 		 * enable correct FIFO interrupt to alert us when there
607 		 * is more room left.
608 		 */
609 
610 		/* it's needed only when we do not use dedicated fifos */
611 		if (!hsotg->dedicated_fifos)
612 			dwc2_hsotg_en_gsint(hsotg,
613 					    periodic ? GINTSTS_PTXFEMP :
614 					   GINTSTS_NPTXFEMP);
615 	}
616 
617 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
618 		to_write, hs_req->req.length, can_write, buf_pos);
619 
620 	if (to_write <= 0)
621 		return -ENOSPC;
622 
623 	hs_req->req.actual = buf_pos + to_write;
624 	hs_ep->total_data += to_write;
625 
626 	if (periodic)
627 		hs_ep->fifo_load += to_write;
628 
629 	to_write = DIV_ROUND_UP(to_write, 4);
630 	data = hs_req->req.buf + buf_pos;
631 
632 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
633 
634 	return (to_write >= can_write) ? -ENOSPC : 0;
635 }
636 
637 /**
638  * get_ep_limit - get the maximum data legnth for this endpoint
639  * @hs_ep: The endpoint
640  *
641  * Return the maximum data that can be queued in one go on a given endpoint
642  * so that transfers that are too long can be split.
643  */
644 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
645 {
646 	int index = hs_ep->index;
647 	unsigned int maxsize;
648 	unsigned int maxpkt;
649 
650 	if (index != 0) {
651 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
652 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
653 	} else {
654 		maxsize = 64 + 64;
655 		if (hs_ep->dir_in)
656 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
657 		else
658 			maxpkt = 2;
659 	}
660 
661 	/* we made the constant loading easier above by using +1 */
662 	maxpkt--;
663 	maxsize--;
664 
665 	/*
666 	 * constrain by packet count if maxpkts*pktsize is greater
667 	 * than the length register size.
668 	 */
669 
670 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
671 		maxsize = maxpkt * hs_ep->ep.maxpacket;
672 
673 	return maxsize;
674 }
675 
676 /**
677  * dwc2_hsotg_read_frameno - read current frame number
678  * @hsotg: The device instance
679  *
680  * Return the current frame number
681  */
682 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
683 {
684 	u32 dsts;
685 
686 	dsts = dwc2_readl(hsotg->regs + DSTS);
687 	dsts &= DSTS_SOFFN_MASK;
688 	dsts >>= DSTS_SOFFN_SHIFT;
689 
690 	return dsts;
691 }
692 
693 /**
694  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
695  * DMA descriptor chain prepared for specific endpoint
696  * @hs_ep: The endpoint
697  *
698  * Return the maximum data that can be queued in one go on a given endpoint
699  * depending on its descriptor chain capacity so that transfers that
700  * are too long can be split.
701  */
702 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
703 {
704 	int is_isoc = hs_ep->isochronous;
705 	unsigned int maxsize;
706 
707 	if (is_isoc)
708 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
709 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
710 	else
711 		maxsize = DEV_DMA_NBYTES_LIMIT;
712 
713 	/* Above size of one descriptor was chosen, multiple it */
714 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
715 
716 	return maxsize;
717 }
718 
719 /*
720  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
721  * @hs_ep: The endpoint
722  * @mask: RX/TX bytes mask to be defined
723  *
724  * Returns maximum data payload for one descriptor after analyzing endpoint
725  * characteristics.
726  * DMA descriptor transfer bytes limit depends on EP type:
727  * Control out - MPS,
728  * Isochronous - descriptor rx/tx bytes bitfield limit,
729  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
730  * have concatenations from various descriptors within one packet.
731  *
732  * Selects corresponding mask for RX/TX bytes as well.
733  */
734 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
735 {
736 	u32 mps = hs_ep->ep.maxpacket;
737 	int dir_in = hs_ep->dir_in;
738 	u32 desc_size = 0;
739 
740 	if (!hs_ep->index && !dir_in) {
741 		desc_size = mps;
742 		*mask = DEV_DMA_NBYTES_MASK;
743 	} else if (hs_ep->isochronous) {
744 		if (dir_in) {
745 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
746 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
747 		} else {
748 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
749 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
750 		}
751 	} else {
752 		desc_size = DEV_DMA_NBYTES_LIMIT;
753 		*mask = DEV_DMA_NBYTES_MASK;
754 
755 		/* Round down desc_size to be mps multiple */
756 		desc_size -= desc_size % mps;
757 	}
758 
759 	return desc_size;
760 }
761 
762 /*
763  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
764  * @hs_ep: The endpoint
765  * @dma_buff: DMA address to use
766  * @len: Length of the transfer
767  *
768  * This function will iterate over descriptor chain and fill its entries
769  * with corresponding information based on transfer data.
770  */
771 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
772 						 dma_addr_t dma_buff,
773 						 unsigned int len)
774 {
775 	struct dwc2_hsotg *hsotg = hs_ep->parent;
776 	int dir_in = hs_ep->dir_in;
777 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
778 	u32 mps = hs_ep->ep.maxpacket;
779 	u32 maxsize = 0;
780 	u32 offset = 0;
781 	u32 mask = 0;
782 	int i;
783 
784 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
785 
786 	hs_ep->desc_count = (len / maxsize) +
787 				((len % maxsize) ? 1 : 0);
788 	if (len == 0)
789 		hs_ep->desc_count = 1;
790 
791 	for (i = 0; i < hs_ep->desc_count; ++i) {
792 		desc->status = 0;
793 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
794 				 << DEV_DMA_BUFF_STS_SHIFT);
795 
796 		if (len > maxsize) {
797 			if (!hs_ep->index && !dir_in)
798 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
799 
800 			desc->status |= (maxsize <<
801 						DEV_DMA_NBYTES_SHIFT & mask);
802 			desc->buf = dma_buff + offset;
803 
804 			len -= maxsize;
805 			offset += maxsize;
806 		} else {
807 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
808 
809 			if (dir_in)
810 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
811 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
812 			if (len > maxsize)
813 				dev_err(hsotg->dev, "wrong len %d\n", len);
814 
815 			desc->status |=
816 				len << DEV_DMA_NBYTES_SHIFT & mask;
817 			desc->buf = dma_buff + offset;
818 		}
819 
820 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
821 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
822 				 << DEV_DMA_BUFF_STS_SHIFT);
823 		desc++;
824 	}
825 }
826 
827 /*
828  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
829  * @hs_ep: The isochronous endpoint.
830  * @dma_buff: usb requests dma buffer.
831  * @len: usb request transfer length.
832  *
833  * Finds out index of first free entry either in the bottom or up half of
834  * descriptor chain depend on which is under SW control and not processed
835  * by HW. Then fills that descriptor with the data of the arrived usb request,
836  * frame info, sets Last and IOC bits increments next_desc. If filled
837  * descriptor is not the first one, removes L bit from the previous descriptor
838  * status.
839  */
840 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
841 				      dma_addr_t dma_buff, unsigned int len)
842 {
843 	struct dwc2_dma_desc *desc;
844 	struct dwc2_hsotg *hsotg = hs_ep->parent;
845 	u32 index;
846 	u32 maxsize = 0;
847 	u32 mask = 0;
848 
849 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
850 	if (len > maxsize) {
851 		dev_err(hsotg->dev, "wrong len %d\n", len);
852 		return -EINVAL;
853 	}
854 
855 	/*
856 	 * If SW has already filled half of chain, then return and wait for
857 	 * the other chain to be processed by HW.
858 	 */
859 	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
860 		return -EBUSY;
861 
862 	/* Increment frame number by interval for IN */
863 	if (hs_ep->dir_in)
864 		dwc2_gadget_incr_frame_num(hs_ep);
865 
866 	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
867 		 hs_ep->next_desc;
868 
869 	/* Sanity check of calculated index */
870 	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
871 	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
872 		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
873 		return -EINVAL;
874 	}
875 
876 	desc = &hs_ep->desc_list[index];
877 
878 	/* Clear L bit of previous desc if more than one entries in the chain */
879 	if (hs_ep->next_desc)
880 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
881 
882 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
883 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
884 
885 	desc->status = 0;
886 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
887 
888 	desc->buf = dma_buff;
889 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
890 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
891 
892 	if (hs_ep->dir_in) {
893 		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
894 				 DEV_DMA_ISOC_PID_MASK) |
895 				((len % hs_ep->ep.maxpacket) ?
896 				 DEV_DMA_SHORT : 0) |
897 				((hs_ep->target_frame <<
898 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
899 				 DEV_DMA_ISOC_FRNUM_MASK);
900 	}
901 
902 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
903 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
904 
905 	/* Update index of last configured entry in the chain */
906 	hs_ep->next_desc++;
907 
908 	return 0;
909 }
910 
911 /*
912  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
913  * @hs_ep: The isochronous endpoint.
914  *
915  * Prepare first descriptor chain for isochronous endpoints. Afterwards
916  * write DMA address to HW and enable the endpoint.
917  *
918  * Switch between descriptor chains via isoc_chain_num to give SW opportunity
919  * to prepare second descriptor chain while first one is being processed by HW.
920  */
921 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
922 {
923 	struct dwc2_hsotg *hsotg = hs_ep->parent;
924 	struct dwc2_hsotg_req *hs_req, *treq;
925 	int index = hs_ep->index;
926 	int ret;
927 	u32 dma_reg;
928 	u32 depctl;
929 	u32 ctrl;
930 
931 	if (list_empty(&hs_ep->queue)) {
932 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
933 		return;
934 	}
935 
936 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
937 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
938 						 hs_req->req.length);
939 		if (ret) {
940 			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
941 			break;
942 		}
943 	}
944 
945 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
946 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
947 
948 	/* write descriptor chain address to control register */
949 	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
950 
951 	ctrl = dwc2_readl(hsotg->regs + depctl);
952 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
953 	dwc2_writel(ctrl, hsotg->regs + depctl);
954 
955 	/* Switch ISOC descriptor chain number being processed by SW*/
956 	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
957 	hs_ep->next_desc = 0;
958 }
959 
960 /**
961  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
962  * @hsotg: The controller state.
963  * @hs_ep: The endpoint to process a request for
964  * @hs_req: The request to start.
965  * @continuing: True if we are doing more for the current request.
966  *
967  * Start the given request running by setting the endpoint registers
968  * appropriately, and writing any data to the FIFOs.
969  */
970 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
971 				 struct dwc2_hsotg_ep *hs_ep,
972 				struct dwc2_hsotg_req *hs_req,
973 				bool continuing)
974 {
975 	struct usb_request *ureq = &hs_req->req;
976 	int index = hs_ep->index;
977 	int dir_in = hs_ep->dir_in;
978 	u32 epctrl_reg;
979 	u32 epsize_reg;
980 	u32 epsize;
981 	u32 ctrl;
982 	unsigned int length;
983 	unsigned int packets;
984 	unsigned int maxreq;
985 	unsigned int dma_reg;
986 
987 	if (index != 0) {
988 		if (hs_ep->req && !continuing) {
989 			dev_err(hsotg->dev, "%s: active request\n", __func__);
990 			WARN_ON(1);
991 			return;
992 		} else if (hs_ep->req != hs_req && continuing) {
993 			dev_err(hsotg->dev,
994 				"%s: continue different req\n", __func__);
995 			WARN_ON(1);
996 			return;
997 		}
998 	}
999 
1000 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1001 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1002 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1003 
1004 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1005 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
1006 		hs_ep->dir_in ? "in" : "out");
1007 
1008 	/* If endpoint is stalled, we will restart request later */
1009 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
1010 
1011 	if (index && ctrl & DXEPCTL_STALL) {
1012 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1013 		return;
1014 	}
1015 
1016 	length = ureq->length - ureq->actual;
1017 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1018 		ureq->length, ureq->actual);
1019 
1020 	if (!using_desc_dma(hsotg))
1021 		maxreq = get_ep_limit(hs_ep);
1022 	else
1023 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1024 
1025 	if (length > maxreq) {
1026 		int round = maxreq % hs_ep->ep.maxpacket;
1027 
1028 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1029 			__func__, length, maxreq, round);
1030 
1031 		/* round down to multiple of packets */
1032 		if (round)
1033 			maxreq -= round;
1034 
1035 		length = maxreq;
1036 	}
1037 
1038 	if (length)
1039 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1040 	else
1041 		packets = 1;	/* send one packet if length is zero. */
1042 
1043 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1044 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1045 		return;
1046 	}
1047 
1048 	if (dir_in && index != 0)
1049 		if (hs_ep->isochronous)
1050 			epsize = DXEPTSIZ_MC(packets);
1051 		else
1052 			epsize = DXEPTSIZ_MC(1);
1053 	else
1054 		epsize = 0;
1055 
1056 	/*
1057 	 * zero length packet should be programmed on its own and should not
1058 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1059 	 */
1060 	if (dir_in && ureq->zero && !continuing) {
1061 		/* Test if zlp is actually required. */
1062 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1063 		    !(ureq->length % hs_ep->ep.maxpacket))
1064 			hs_ep->send_zlp = 1;
1065 	}
1066 
1067 	epsize |= DXEPTSIZ_PKTCNT(packets);
1068 	epsize |= DXEPTSIZ_XFERSIZE(length);
1069 
1070 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1071 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1072 
1073 	/* store the request as the current one we're doing */
1074 	hs_ep->req = hs_req;
1075 
1076 	if (using_desc_dma(hsotg)) {
1077 		u32 offset = 0;
1078 		u32 mps = hs_ep->ep.maxpacket;
1079 
1080 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1081 		if (!dir_in) {
1082 			if (!index)
1083 				length = mps;
1084 			else if (length % mps)
1085 				length += (mps - (length % mps));
1086 		}
1087 
1088 		/*
1089 		 * If more data to send, adjust DMA for EP0 out data stage.
1090 		 * ureq->dma stays unchanged, hence increment it by already
1091 		 * passed passed data count before starting new transaction.
1092 		 */
1093 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1094 		    continuing)
1095 			offset = ureq->actual;
1096 
1097 		/* Fill DDMA chain entries */
1098 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1099 						     length);
1100 
1101 		/* write descriptor chain address to control register */
1102 		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1103 
1104 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1105 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1106 	} else {
1107 		/* write size / packets */
1108 		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1109 
1110 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1111 			/*
1112 			 * write DMA address to control register, buffer
1113 			 * already synced by dwc2_hsotg_ep_queue().
1114 			 */
1115 
1116 			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1117 
1118 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1119 				__func__, &ureq->dma, dma_reg);
1120 		}
1121 	}
1122 
1123 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1124 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1125 		dwc2_gadget_incr_frame_num(hs_ep);
1126 
1127 		if (hs_ep->target_frame & 0x1)
1128 			ctrl |= DXEPCTL_SETODDFR;
1129 		else
1130 			ctrl |= DXEPCTL_SETEVENFR;
1131 	}
1132 
1133 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1134 
1135 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1136 
1137 	/* For Setup request do not clear NAK */
1138 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1139 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1140 
1141 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1142 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1143 
1144 	/*
1145 	 * set these, it seems that DMA support increments past the end
1146 	 * of the packet buffer so we need to calculate the length from
1147 	 * this information.
1148 	 */
1149 	hs_ep->size_loaded = length;
1150 	hs_ep->last_load = ureq->actual;
1151 
1152 	if (dir_in && !using_dma(hsotg)) {
1153 		/* set these anyway, we may need them for non-periodic in */
1154 		hs_ep->fifo_load = 0;
1155 
1156 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1157 	}
1158 
1159 	/*
1160 	 * Note, trying to clear the NAK here causes problems with transmit
1161 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1162 	 */
1163 
1164 	/* check ep is enabled */
1165 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1166 		dev_dbg(hsotg->dev,
1167 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1168 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1169 
1170 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1171 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1172 
1173 	/* enable ep interrupts */
1174 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1175 }
1176 
1177 /**
1178  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1179  * @hsotg: The device state.
1180  * @hs_ep: The endpoint the request is on.
1181  * @req: The request being processed.
1182  *
1183  * We've been asked to queue a request, so ensure that the memory buffer
1184  * is correctly setup for DMA. If we've been passed an extant DMA address
1185  * then ensure the buffer has been synced to memory. If our buffer has no
1186  * DMA memory, then we map the memory and mark our request to allow us to
1187  * cleanup on completion.
1188  */
1189 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1190 			      struct dwc2_hsotg_ep *hs_ep,
1191 			     struct usb_request *req)
1192 {
1193 	int ret;
1194 
1195 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1196 	if (ret)
1197 		goto dma_error;
1198 
1199 	return 0;
1200 
1201 dma_error:
1202 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1203 		__func__, req->buf, req->length);
1204 
1205 	return -EIO;
1206 }
1207 
1208 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1209 						 struct dwc2_hsotg_ep *hs_ep,
1210 						 struct dwc2_hsotg_req *hs_req)
1211 {
1212 	void *req_buf = hs_req->req.buf;
1213 
1214 	/* If dma is not being used or buffer is aligned */
1215 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1216 		return 0;
1217 
1218 	WARN_ON(hs_req->saved_req_buf);
1219 
1220 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1221 		hs_ep->ep.name, req_buf, hs_req->req.length);
1222 
1223 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1224 	if (!hs_req->req.buf) {
1225 		hs_req->req.buf = req_buf;
1226 		dev_err(hsotg->dev,
1227 			"%s: unable to allocate memory for bounce buffer\n",
1228 			__func__);
1229 		return -ENOMEM;
1230 	}
1231 
1232 	/* Save actual buffer */
1233 	hs_req->saved_req_buf = req_buf;
1234 
1235 	if (hs_ep->dir_in)
1236 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1237 	return 0;
1238 }
1239 
1240 static void
1241 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1242 					 struct dwc2_hsotg_ep *hs_ep,
1243 					 struct dwc2_hsotg_req *hs_req)
1244 {
1245 	/* If dma is not being used or buffer was aligned */
1246 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1247 		return;
1248 
1249 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1250 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1251 
1252 	/* Copy data from bounce buffer on successful out transfer */
1253 	if (!hs_ep->dir_in && !hs_req->req.status)
1254 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1255 		       hs_req->req.actual);
1256 
1257 	/* Free bounce buffer */
1258 	kfree(hs_req->req.buf);
1259 
1260 	hs_req->req.buf = hs_req->saved_req_buf;
1261 	hs_req->saved_req_buf = NULL;
1262 }
1263 
1264 /**
1265  * dwc2_gadget_target_frame_elapsed - Checks target frame
1266  * @hs_ep: The driver endpoint to check
1267  *
1268  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1269  * corresponding transfer.
1270  */
1271 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1272 {
1273 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1274 	u32 target_frame = hs_ep->target_frame;
1275 	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1276 	bool frame_overrun = hs_ep->frame_overrun;
1277 
1278 	if (!frame_overrun && current_frame >= target_frame)
1279 		return true;
1280 
1281 	if (frame_overrun && current_frame >= target_frame &&
1282 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1283 		return true;
1284 
1285 	return false;
1286 }
1287 
1288 /*
1289  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1290  * @hsotg: The driver state
1291  * @hs_ep: the ep descriptor chain is for
1292  *
1293  * Called to update EP0 structure's pointers depend on stage of
1294  * control transfer.
1295  */
1296 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1297 					  struct dwc2_hsotg_ep *hs_ep)
1298 {
1299 	switch (hsotg->ep0_state) {
1300 	case DWC2_EP0_SETUP:
1301 	case DWC2_EP0_STATUS_OUT:
1302 		hs_ep->desc_list = hsotg->setup_desc[0];
1303 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1304 		break;
1305 	case DWC2_EP0_DATA_IN:
1306 	case DWC2_EP0_STATUS_IN:
1307 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1308 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1309 		break;
1310 	case DWC2_EP0_DATA_OUT:
1311 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1312 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1313 		break;
1314 	default:
1315 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1316 			hsotg->ep0_state);
1317 		return -EINVAL;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1324 			       gfp_t gfp_flags)
1325 {
1326 	struct dwc2_hsotg_req *hs_req = our_req(req);
1327 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1328 	struct dwc2_hsotg *hs = hs_ep->parent;
1329 	bool first;
1330 	int ret;
1331 
1332 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1333 		ep->name, req, req->length, req->buf, req->no_interrupt,
1334 		req->zero, req->short_not_ok);
1335 
1336 	/* Prevent new request submission when controller is suspended */
1337 	if (hs->lx_state == DWC2_L2) {
1338 		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1339 			__func__);
1340 		return -EAGAIN;
1341 	}
1342 
1343 	/* initialise status of the request */
1344 	INIT_LIST_HEAD(&hs_req->queue);
1345 	req->actual = 0;
1346 	req->status = -EINPROGRESS;
1347 
1348 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1349 	if (ret)
1350 		return ret;
1351 
1352 	/* if we're using DMA, sync the buffers as necessary */
1353 	if (using_dma(hs)) {
1354 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1355 		if (ret)
1356 			return ret;
1357 	}
1358 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1359 	if (using_desc_dma(hs) && !hs_ep->index) {
1360 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1361 		if (ret)
1362 			return ret;
1363 	}
1364 
1365 	first = list_empty(&hs_ep->queue);
1366 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1367 
1368 	/*
1369 	 * Handle DDMA isochronous transfers separately - just add new entry
1370 	 * to the half of descriptor chain that is not processed by HW.
1371 	 * Transfer will be started once SW gets either one of NAK or
1372 	 * OutTknEpDis interrupts.
1373 	 */
1374 	if (using_desc_dma(hs) && hs_ep->isochronous &&
1375 	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1376 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1377 						 hs_req->req.length);
1378 		if (ret)
1379 			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1380 
1381 		return 0;
1382 	}
1383 
1384 	if (first) {
1385 		if (!hs_ep->isochronous) {
1386 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1387 			return 0;
1388 		}
1389 
1390 		while (dwc2_gadget_target_frame_elapsed(hs_ep))
1391 			dwc2_gadget_incr_frame_num(hs_ep);
1392 
1393 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1394 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1395 	}
1396 	return 0;
1397 }
1398 
1399 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1400 				    gfp_t gfp_flags)
1401 {
1402 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1403 	struct dwc2_hsotg *hs = hs_ep->parent;
1404 	unsigned long flags = 0;
1405 	int ret = 0;
1406 
1407 	spin_lock_irqsave(&hs->lock, flags);
1408 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1409 	spin_unlock_irqrestore(&hs->lock, flags);
1410 
1411 	return ret;
1412 }
1413 
1414 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1415 				       struct usb_request *req)
1416 {
1417 	struct dwc2_hsotg_req *hs_req = our_req(req);
1418 
1419 	kfree(hs_req);
1420 }
1421 
1422 /**
1423  * dwc2_hsotg_complete_oursetup - setup completion callback
1424  * @ep: The endpoint the request was on.
1425  * @req: The request completed.
1426  *
1427  * Called on completion of any requests the driver itself
1428  * submitted that need cleaning up.
1429  */
1430 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1431 					 struct usb_request *req)
1432 {
1433 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1434 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1435 
1436 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1437 
1438 	dwc2_hsotg_ep_free_request(ep, req);
1439 }
1440 
1441 /**
1442  * ep_from_windex - convert control wIndex value to endpoint
1443  * @hsotg: The driver state.
1444  * @windex: The control request wIndex field (in host order).
1445  *
1446  * Convert the given wIndex into a pointer to an driver endpoint
1447  * structure, or return NULL if it is not a valid endpoint.
1448  */
1449 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1450 					    u32 windex)
1451 {
1452 	struct dwc2_hsotg_ep *ep;
1453 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1454 	int idx = windex & 0x7F;
1455 
1456 	if (windex >= 0x100)
1457 		return NULL;
1458 
1459 	if (idx > hsotg->num_of_eps)
1460 		return NULL;
1461 
1462 	ep = index_to_ep(hsotg, idx, dir);
1463 
1464 	if (idx && ep->dir_in != dir)
1465 		return NULL;
1466 
1467 	return ep;
1468 }
1469 
1470 /**
1471  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1472  * @hsotg: The driver state.
1473  * @testmode: requested usb test mode
1474  * Enable usb Test Mode requested by the Host.
1475  */
1476 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1477 {
1478 	int dctl = dwc2_readl(hsotg->regs + DCTL);
1479 
1480 	dctl &= ~DCTL_TSTCTL_MASK;
1481 	switch (testmode) {
1482 	case TEST_J:
1483 	case TEST_K:
1484 	case TEST_SE0_NAK:
1485 	case TEST_PACKET:
1486 	case TEST_FORCE_EN:
1487 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1488 		break;
1489 	default:
1490 		return -EINVAL;
1491 	}
1492 	dwc2_writel(dctl, hsotg->regs + DCTL);
1493 	return 0;
1494 }
1495 
1496 /**
1497  * dwc2_hsotg_send_reply - send reply to control request
1498  * @hsotg: The device state
1499  * @ep: Endpoint 0
1500  * @buff: Buffer for request
1501  * @length: Length of reply.
1502  *
1503  * Create a request and queue it on the given endpoint. This is useful as
1504  * an internal method of sending replies to certain control requests, etc.
1505  */
1506 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1507 				 struct dwc2_hsotg_ep *ep,
1508 				void *buff,
1509 				int length)
1510 {
1511 	struct usb_request *req;
1512 	int ret;
1513 
1514 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1515 
1516 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1517 	hsotg->ep0_reply = req;
1518 	if (!req) {
1519 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1520 		return -ENOMEM;
1521 	}
1522 
1523 	req->buf = hsotg->ep0_buff;
1524 	req->length = length;
1525 	/*
1526 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1527 	 * STATUS stage.
1528 	 */
1529 	req->zero = 0;
1530 	req->complete = dwc2_hsotg_complete_oursetup;
1531 
1532 	if (length)
1533 		memcpy(req->buf, buff, length);
1534 
1535 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1536 	if (ret) {
1537 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1538 		return ret;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 /**
1545  * dwc2_hsotg_process_req_status - process request GET_STATUS
1546  * @hsotg: The device state
1547  * @ctrl: USB control request
1548  */
1549 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1550 					 struct usb_ctrlrequest *ctrl)
1551 {
1552 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1553 	struct dwc2_hsotg_ep *ep;
1554 	__le16 reply;
1555 	int ret;
1556 
1557 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1558 
1559 	if (!ep0->dir_in) {
1560 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1561 		return -EINVAL;
1562 	}
1563 
1564 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1565 	case USB_RECIP_DEVICE:
1566 		/*
1567 		 * bit 0 => self powered
1568 		 * bit 1 => remote wakeup
1569 		 */
1570 		reply = cpu_to_le16(0);
1571 		break;
1572 
1573 	case USB_RECIP_INTERFACE:
1574 		/* currently, the data result should be zero */
1575 		reply = cpu_to_le16(0);
1576 		break;
1577 
1578 	case USB_RECIP_ENDPOINT:
1579 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1580 		if (!ep)
1581 			return -ENOENT;
1582 
1583 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1584 		break;
1585 
1586 	default:
1587 		return 0;
1588 	}
1589 
1590 	if (le16_to_cpu(ctrl->wLength) != 2)
1591 		return -EINVAL;
1592 
1593 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1594 	if (ret) {
1595 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1596 		return ret;
1597 	}
1598 
1599 	return 1;
1600 }
1601 
1602 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1603 
1604 /**
1605  * get_ep_head - return the first request on the endpoint
1606  * @hs_ep: The controller endpoint to get
1607  *
1608  * Get the first request on the endpoint.
1609  */
1610 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1611 {
1612 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1613 					queue);
1614 }
1615 
1616 /**
1617  * dwc2_gadget_start_next_request - Starts next request from ep queue
1618  * @hs_ep: Endpoint structure
1619  *
1620  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1621  * in its handler. Hence we need to unmask it here to be able to do
1622  * resynchronization.
1623  */
1624 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1625 {
1626 	u32 mask;
1627 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1628 	int dir_in = hs_ep->dir_in;
1629 	struct dwc2_hsotg_req *hs_req;
1630 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1631 
1632 	if (!list_empty(&hs_ep->queue)) {
1633 		hs_req = get_ep_head(hs_ep);
1634 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1635 		return;
1636 	}
1637 	if (!hs_ep->isochronous)
1638 		return;
1639 
1640 	if (dir_in) {
1641 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1642 			__func__);
1643 	} else {
1644 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1645 			__func__);
1646 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1647 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1648 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1649 	}
1650 }
1651 
1652 /**
1653  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1654  * @hsotg: The device state
1655  * @ctrl: USB control request
1656  */
1657 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1658 					  struct usb_ctrlrequest *ctrl)
1659 {
1660 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1661 	struct dwc2_hsotg_req *hs_req;
1662 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1663 	struct dwc2_hsotg_ep *ep;
1664 	int ret;
1665 	bool halted;
1666 	u32 recip;
1667 	u32 wValue;
1668 	u32 wIndex;
1669 
1670 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1671 		__func__, set ? "SET" : "CLEAR");
1672 
1673 	wValue = le16_to_cpu(ctrl->wValue);
1674 	wIndex = le16_to_cpu(ctrl->wIndex);
1675 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1676 
1677 	switch (recip) {
1678 	case USB_RECIP_DEVICE:
1679 		switch (wValue) {
1680 		case USB_DEVICE_TEST_MODE:
1681 			if ((wIndex & 0xff) != 0)
1682 				return -EINVAL;
1683 			if (!set)
1684 				return -EINVAL;
1685 
1686 			hsotg->test_mode = wIndex >> 8;
1687 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1688 			if (ret) {
1689 				dev_err(hsotg->dev,
1690 					"%s: failed to send reply\n", __func__);
1691 				return ret;
1692 			}
1693 			break;
1694 		default:
1695 			return -ENOENT;
1696 		}
1697 		break;
1698 
1699 	case USB_RECIP_ENDPOINT:
1700 		ep = ep_from_windex(hsotg, wIndex);
1701 		if (!ep) {
1702 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1703 				__func__, wIndex);
1704 			return -ENOENT;
1705 		}
1706 
1707 		switch (wValue) {
1708 		case USB_ENDPOINT_HALT:
1709 			halted = ep->halted;
1710 
1711 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1712 
1713 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1714 			if (ret) {
1715 				dev_err(hsotg->dev,
1716 					"%s: failed to send reply\n", __func__);
1717 				return ret;
1718 			}
1719 
1720 			/*
1721 			 * we have to complete all requests for ep if it was
1722 			 * halted, and the halt was cleared by CLEAR_FEATURE
1723 			 */
1724 
1725 			if (!set && halted) {
1726 				/*
1727 				 * If we have request in progress,
1728 				 * then complete it
1729 				 */
1730 				if (ep->req) {
1731 					hs_req = ep->req;
1732 					ep->req = NULL;
1733 					list_del_init(&hs_req->queue);
1734 					if (hs_req->req.complete) {
1735 						spin_unlock(&hsotg->lock);
1736 						usb_gadget_giveback_request(
1737 							&ep->ep, &hs_req->req);
1738 						spin_lock(&hsotg->lock);
1739 					}
1740 				}
1741 
1742 				/* If we have pending request, then start it */
1743 				if (!ep->req)
1744 					dwc2_gadget_start_next_request(ep);
1745 			}
1746 
1747 			break;
1748 
1749 		default:
1750 			return -ENOENT;
1751 		}
1752 		break;
1753 	default:
1754 		return -ENOENT;
1755 	}
1756 	return 1;
1757 }
1758 
1759 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1760 
1761 /**
1762  * dwc2_hsotg_stall_ep0 - stall ep0
1763  * @hsotg: The device state
1764  *
1765  * Set stall for ep0 as response for setup request.
1766  */
1767 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1768 {
1769 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1770 	u32 reg;
1771 	u32 ctrl;
1772 
1773 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1774 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1775 
1776 	/*
1777 	 * DxEPCTL_Stall will be cleared by EP once it has
1778 	 * taken effect, so no need to clear later.
1779 	 */
1780 
1781 	ctrl = dwc2_readl(hsotg->regs + reg);
1782 	ctrl |= DXEPCTL_STALL;
1783 	ctrl |= DXEPCTL_CNAK;
1784 	dwc2_writel(ctrl, hsotg->regs + reg);
1785 
1786 	dev_dbg(hsotg->dev,
1787 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1788 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1789 
1790 	 /*
1791 	  * complete won't be called, so we enqueue
1792 	  * setup request here
1793 	  */
1794 	 dwc2_hsotg_enqueue_setup(hsotg);
1795 }
1796 
1797 /**
1798  * dwc2_hsotg_process_control - process a control request
1799  * @hsotg: The device state
1800  * @ctrl: The control request received
1801  *
1802  * The controller has received the SETUP phase of a control request, and
1803  * needs to work out what to do next (and whether to pass it on to the
1804  * gadget driver).
1805  */
1806 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1807 				       struct usb_ctrlrequest *ctrl)
1808 {
1809 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1810 	int ret = 0;
1811 	u32 dcfg;
1812 
1813 	dev_dbg(hsotg->dev,
1814 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1815 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1816 		ctrl->wIndex, ctrl->wLength);
1817 
1818 	if (ctrl->wLength == 0) {
1819 		ep0->dir_in = 1;
1820 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1821 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1822 		ep0->dir_in = 1;
1823 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1824 	} else {
1825 		ep0->dir_in = 0;
1826 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1827 	}
1828 
1829 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1830 		switch (ctrl->bRequest) {
1831 		case USB_REQ_SET_ADDRESS:
1832 			hsotg->connected = 1;
1833 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1834 			dcfg &= ~DCFG_DEVADDR_MASK;
1835 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1836 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1837 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1838 
1839 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1840 
1841 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1842 			return;
1843 
1844 		case USB_REQ_GET_STATUS:
1845 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1846 			break;
1847 
1848 		case USB_REQ_CLEAR_FEATURE:
1849 		case USB_REQ_SET_FEATURE:
1850 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1851 			break;
1852 		}
1853 	}
1854 
1855 	/* as a fallback, try delivering it to the driver to deal with */
1856 
1857 	if (ret == 0 && hsotg->driver) {
1858 		spin_unlock(&hsotg->lock);
1859 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1860 		spin_lock(&hsotg->lock);
1861 		if (ret < 0)
1862 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1863 	}
1864 
1865 	/*
1866 	 * the request is either unhandlable, or is not formatted correctly
1867 	 * so respond with a STALL for the status stage to indicate failure.
1868 	 */
1869 
1870 	if (ret < 0)
1871 		dwc2_hsotg_stall_ep0(hsotg);
1872 }
1873 
1874 /**
1875  * dwc2_hsotg_complete_setup - completion of a setup transfer
1876  * @ep: The endpoint the request was on.
1877  * @req: The request completed.
1878  *
1879  * Called on completion of any requests the driver itself submitted for
1880  * EP0 setup packets
1881  */
1882 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1883 				      struct usb_request *req)
1884 {
1885 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1886 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1887 
1888 	if (req->status < 0) {
1889 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1890 		return;
1891 	}
1892 
1893 	spin_lock(&hsotg->lock);
1894 	if (req->actual == 0)
1895 		dwc2_hsotg_enqueue_setup(hsotg);
1896 	else
1897 		dwc2_hsotg_process_control(hsotg, req->buf);
1898 	spin_unlock(&hsotg->lock);
1899 }
1900 
1901 /**
1902  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1903  * @hsotg: The device state.
1904  *
1905  * Enqueue a request on EP0 if necessary to received any SETUP packets
1906  * received from the host.
1907  */
1908 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1909 {
1910 	struct usb_request *req = hsotg->ctrl_req;
1911 	struct dwc2_hsotg_req *hs_req = our_req(req);
1912 	int ret;
1913 
1914 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1915 
1916 	req->zero = 0;
1917 	req->length = 8;
1918 	req->buf = hsotg->ctrl_buff;
1919 	req->complete = dwc2_hsotg_complete_setup;
1920 
1921 	if (!list_empty(&hs_req->queue)) {
1922 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1923 		return;
1924 	}
1925 
1926 	hsotg->eps_out[0]->dir_in = 0;
1927 	hsotg->eps_out[0]->send_zlp = 0;
1928 	hsotg->ep0_state = DWC2_EP0_SETUP;
1929 
1930 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1931 	if (ret < 0) {
1932 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1933 		/*
1934 		 * Don't think there's much we can do other than watch the
1935 		 * driver fail.
1936 		 */
1937 	}
1938 }
1939 
1940 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1941 				   struct dwc2_hsotg_ep *hs_ep)
1942 {
1943 	u32 ctrl;
1944 	u8 index = hs_ep->index;
1945 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1946 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1947 
1948 	if (hs_ep->dir_in)
1949 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1950 			index);
1951 	else
1952 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1953 			index);
1954 	if (using_desc_dma(hsotg)) {
1955 		/* Not specific buffer needed for ep0 ZLP */
1956 		dma_addr_t dma = hs_ep->desc_list_dma;
1957 
1958 		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1959 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1960 	} else {
1961 		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1962 			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1963 			    epsiz_reg);
1964 	}
1965 
1966 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1967 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1968 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1969 	ctrl |= DXEPCTL_USBACTEP;
1970 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1971 }
1972 
1973 /**
1974  * dwc2_hsotg_complete_request - complete a request given to us
1975  * @hsotg: The device state.
1976  * @hs_ep: The endpoint the request was on.
1977  * @hs_req: The request to complete.
1978  * @result: The result code (0 => Ok, otherwise errno)
1979  *
1980  * The given request has finished, so call the necessary completion
1981  * if it has one and then look to see if we can start a new request
1982  * on the endpoint.
1983  *
1984  * Note, expects the ep to already be locked as appropriate.
1985  */
1986 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1987 					struct dwc2_hsotg_ep *hs_ep,
1988 				       struct dwc2_hsotg_req *hs_req,
1989 				       int result)
1990 {
1991 	if (!hs_req) {
1992 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1993 		return;
1994 	}
1995 
1996 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1997 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1998 
1999 	/*
2000 	 * only replace the status if we've not already set an error
2001 	 * from a previous transaction
2002 	 */
2003 
2004 	if (hs_req->req.status == -EINPROGRESS)
2005 		hs_req->req.status = result;
2006 
2007 	if (using_dma(hsotg))
2008 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2009 
2010 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2011 
2012 	hs_ep->req = NULL;
2013 	list_del_init(&hs_req->queue);
2014 
2015 	/*
2016 	 * call the complete request with the locks off, just in case the
2017 	 * request tries to queue more work for this endpoint.
2018 	 */
2019 
2020 	if (hs_req->req.complete) {
2021 		spin_unlock(&hsotg->lock);
2022 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2023 		spin_lock(&hsotg->lock);
2024 	}
2025 
2026 	/* In DDMA don't need to proceed to starting of next ISOC request */
2027 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2028 		return;
2029 
2030 	/*
2031 	 * Look to see if there is anything else to do. Note, the completion
2032 	 * of the previous request may have caused a new request to be started
2033 	 * so be careful when doing this.
2034 	 */
2035 
2036 	if (!hs_ep->req && result >= 0)
2037 		dwc2_gadget_start_next_request(hs_ep);
2038 }
2039 
2040 /*
2041  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2042  * @hs_ep: The endpoint the request was on.
2043  *
2044  * Get first request from the ep queue, determine descriptor on which complete
2045  * happened. SW based on isoc_chain_num discovers which half of the descriptor
2046  * chain is currently in use by HW, adjusts dma_address and calculates index
2047  * of completed descriptor based on the value of DEPDMA register. Update actual
2048  * length of request, giveback to gadget.
2049  */
2050 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2051 {
2052 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2053 	struct dwc2_hsotg_req *hs_req;
2054 	struct usb_request *ureq;
2055 	int index;
2056 	dma_addr_t dma_addr;
2057 	u32 dma_reg;
2058 	u32 depdma;
2059 	u32 desc_sts;
2060 	u32 mask;
2061 
2062 	hs_req = get_ep_head(hs_ep);
2063 	if (!hs_req) {
2064 		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2065 		return;
2066 	}
2067 	ureq = &hs_req->req;
2068 
2069 	dma_addr = hs_ep->desc_list_dma;
2070 
2071 	/*
2072 	 * If lower half of  descriptor chain is currently use by SW,
2073 	 * that means higher half is being processed by HW, so shift
2074 	 * DMA address to higher half of descriptor chain.
2075 	 */
2076 	if (!hs_ep->isoc_chain_num)
2077 		dma_addr += sizeof(struct dwc2_dma_desc) *
2078 			    (MAX_DMA_DESC_NUM_GENERIC / 2);
2079 
2080 	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2081 	depdma = dwc2_readl(hsotg->regs + dma_reg);
2082 
2083 	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2084 	desc_sts = hs_ep->desc_list[index].status;
2085 
2086 	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2087 	       DEV_DMA_ISOC_RX_NBYTES_MASK;
2088 	ureq->actual = ureq->length -
2089 		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2090 
2091 	/* Adjust actual length for ISOC Out if length is not align of 4 */
2092 	if (!hs_ep->dir_in && ureq->length & 0x3)
2093 		ureq->actual += 4 - (ureq->length & 0x3);
2094 
2095 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2096 }
2097 
2098 /*
2099  * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2100  * @hs_ep: The isochronous endpoint to be re-enabled.
2101  *
2102  * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2103  * BNA (OUT endpoint) check the status of other half of descriptor chain that
2104  * was under SW control till HW was busy and restart the endpoint if needed.
2105  */
2106 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2107 {
2108 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2109 	u32 depctl;
2110 	u32 dma_reg;
2111 	u32 ctrl;
2112 	u32 dma_addr = hs_ep->desc_list_dma;
2113 	unsigned char index = hs_ep->index;
2114 
2115 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2116 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2117 
2118 	ctrl = dwc2_readl(hsotg->regs + depctl);
2119 
2120 	/*
2121 	 * EP was disabled if HW has processed last descriptor or BNA was set.
2122 	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2123 	 * routine while HW was busy.
2124 	 */
2125 	if (!(ctrl & DXEPCTL_EPENA)) {
2126 		if (!hs_ep->next_desc) {
2127 			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2128 				__func__);
2129 			return;
2130 		}
2131 
2132 		dma_addr += sizeof(struct dwc2_dma_desc) *
2133 			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2134 			    hs_ep->isoc_chain_num;
2135 		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2136 
2137 		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2138 		dwc2_writel(ctrl, hsotg->regs + depctl);
2139 
2140 		/* Switch ISOC descriptor chain number being processed by SW*/
2141 		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2142 		hs_ep->next_desc = 0;
2143 
2144 		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2145 			__func__);
2146 	}
2147 }
2148 
2149 /**
2150  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2151  * @hsotg: The device state.
2152  * @ep_idx: The endpoint index for the data
2153  * @size: The size of data in the fifo, in bytes
2154  *
2155  * The FIFO status shows there is data to read from the FIFO for a given
2156  * endpoint, so sort out whether we need to read the data into a request
2157  * that has been made for that endpoint.
2158  */
2159 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2160 {
2161 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2162 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2163 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2164 	int to_read;
2165 	int max_req;
2166 	int read_ptr;
2167 
2168 	if (!hs_req) {
2169 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2170 		int ptr;
2171 
2172 		dev_dbg(hsotg->dev,
2173 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2174 			 __func__, size, ep_idx, epctl);
2175 
2176 		/* dump the data from the FIFO, we've nothing we can do */
2177 		for (ptr = 0; ptr < size; ptr += 4)
2178 			(void)dwc2_readl(fifo);
2179 
2180 		return;
2181 	}
2182 
2183 	to_read = size;
2184 	read_ptr = hs_req->req.actual;
2185 	max_req = hs_req->req.length - read_ptr;
2186 
2187 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2188 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2189 
2190 	if (to_read > max_req) {
2191 		/*
2192 		 * more data appeared than we where willing
2193 		 * to deal with in this request.
2194 		 */
2195 
2196 		/* currently we don't deal this */
2197 		WARN_ON_ONCE(1);
2198 	}
2199 
2200 	hs_ep->total_data += to_read;
2201 	hs_req->req.actual += to_read;
2202 	to_read = DIV_ROUND_UP(to_read, 4);
2203 
2204 	/*
2205 	 * note, we might over-write the buffer end by 3 bytes depending on
2206 	 * alignment of the data.
2207 	 */
2208 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2209 }
2210 
2211 /**
2212  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2213  * @hsotg: The device instance
2214  * @dir_in: If IN zlp
2215  *
2216  * Generate a zero-length IN packet request for terminating a SETUP
2217  * transaction.
2218  *
2219  * Note, since we don't write any data to the TxFIFO, then it is
2220  * currently believed that we do not need to wait for any space in
2221  * the TxFIFO.
2222  */
2223 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2224 {
2225 	/* eps_out[0] is used in both directions */
2226 	hsotg->eps_out[0]->dir_in = dir_in;
2227 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2228 
2229 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2230 }
2231 
2232 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2233 					    u32 epctl_reg)
2234 {
2235 	u32 ctrl;
2236 
2237 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2238 	if (ctrl & DXEPCTL_EOFRNUM)
2239 		ctrl |= DXEPCTL_SETEVENFR;
2240 	else
2241 		ctrl |= DXEPCTL_SETODDFR;
2242 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2243 }
2244 
2245 /*
2246  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2247  * @hs_ep - The endpoint on which transfer went
2248  *
2249  * Iterate over endpoints descriptor chain and get info on bytes remained
2250  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2251  */
2252 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2253 {
2254 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2255 	unsigned int bytes_rem = 0;
2256 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2257 	int i;
2258 	u32 status;
2259 
2260 	if (!desc)
2261 		return -EINVAL;
2262 
2263 	for (i = 0; i < hs_ep->desc_count; ++i) {
2264 		status = desc->status;
2265 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2266 
2267 		if (status & DEV_DMA_STS_MASK)
2268 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2269 				i, status & DEV_DMA_STS_MASK);
2270 	}
2271 
2272 	return bytes_rem;
2273 }
2274 
2275 /**
2276  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2277  * @hsotg: The device instance
2278  * @epnum: The endpoint received from
2279  *
2280  * The RXFIFO has delivered an OutDone event, which means that the data
2281  * transfer for an OUT endpoint has been completed, either by a short
2282  * packet or by the finish of a transfer.
2283  */
2284 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2285 {
2286 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2287 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2288 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2289 	struct usb_request *req = &hs_req->req;
2290 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2291 	int result = 0;
2292 
2293 	if (!hs_req) {
2294 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2295 		return;
2296 	}
2297 
2298 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2299 		dev_dbg(hsotg->dev, "zlp packet received\n");
2300 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2301 		dwc2_hsotg_enqueue_setup(hsotg);
2302 		return;
2303 	}
2304 
2305 	if (using_desc_dma(hsotg))
2306 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2307 
2308 	if (using_dma(hsotg)) {
2309 		unsigned int size_done;
2310 
2311 		/*
2312 		 * Calculate the size of the transfer by checking how much
2313 		 * is left in the endpoint size register and then working it
2314 		 * out from the amount we loaded for the transfer.
2315 		 *
2316 		 * We need to do this as DMA pointers are always 32bit aligned
2317 		 * so may overshoot/undershoot the transfer.
2318 		 */
2319 
2320 		size_done = hs_ep->size_loaded - size_left;
2321 		size_done += hs_ep->last_load;
2322 
2323 		req->actual = size_done;
2324 	}
2325 
2326 	/* if there is more request to do, schedule new transfer */
2327 	if (req->actual < req->length && size_left == 0) {
2328 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2329 		return;
2330 	}
2331 
2332 	if (req->actual < req->length && req->short_not_ok) {
2333 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2334 			__func__, req->actual, req->length);
2335 
2336 		/*
2337 		 * todo - what should we return here? there's no one else
2338 		 * even bothering to check the status.
2339 		 */
2340 	}
2341 
2342 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2343 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2344 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2345 		/* Move to STATUS IN */
2346 		dwc2_hsotg_ep0_zlp(hsotg, true);
2347 		return;
2348 	}
2349 
2350 	/*
2351 	 * Slave mode OUT transfers do not go through XferComplete so
2352 	 * adjust the ISOC parity here.
2353 	 */
2354 	if (!using_dma(hsotg)) {
2355 		if (hs_ep->isochronous && hs_ep->interval == 1)
2356 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2357 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2358 			dwc2_gadget_incr_frame_num(hs_ep);
2359 	}
2360 
2361 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2362 }
2363 
2364 /**
2365  * dwc2_hsotg_handle_rx - RX FIFO has data
2366  * @hsotg: The device instance
2367  *
2368  * The IRQ handler has detected that the RX FIFO has some data in it
2369  * that requires processing, so find out what is in there and do the
2370  * appropriate read.
2371  *
2372  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2373  * chunks, so if you have x packets received on an endpoint you'll get x
2374  * FIFO events delivered, each with a packet's worth of data in it.
2375  *
2376  * When using DMA, we should not be processing events from the RXFIFO
2377  * as the actual data should be sent to the memory directly and we turn
2378  * on the completion interrupts to get notifications of transfer completion.
2379  */
2380 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2381 {
2382 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2383 	u32 epnum, status, size;
2384 
2385 	WARN_ON(using_dma(hsotg));
2386 
2387 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2388 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2389 
2390 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2391 	size >>= GRXSTS_BYTECNT_SHIFT;
2392 
2393 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2394 		__func__, grxstsr, size, epnum);
2395 
2396 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2397 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2398 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2399 		break;
2400 
2401 	case GRXSTS_PKTSTS_OUTDONE:
2402 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2403 			dwc2_hsotg_read_frameno(hsotg));
2404 
2405 		if (!using_dma(hsotg))
2406 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2407 		break;
2408 
2409 	case GRXSTS_PKTSTS_SETUPDONE:
2410 		dev_dbg(hsotg->dev,
2411 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2412 			dwc2_hsotg_read_frameno(hsotg),
2413 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2414 		/*
2415 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2416 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2417 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2418 		 */
2419 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2420 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2421 		break;
2422 
2423 	case GRXSTS_PKTSTS_OUTRX:
2424 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2425 		break;
2426 
2427 	case GRXSTS_PKTSTS_SETUPRX:
2428 		dev_dbg(hsotg->dev,
2429 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2430 			dwc2_hsotg_read_frameno(hsotg),
2431 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2432 
2433 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2434 
2435 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2436 		break;
2437 
2438 	default:
2439 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2440 			 __func__, grxstsr);
2441 
2442 		dwc2_hsotg_dump(hsotg);
2443 		break;
2444 	}
2445 }
2446 
2447 /**
2448  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2449  * @mps: The maximum packet size in bytes.
2450  */
2451 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2452 {
2453 	switch (mps) {
2454 	case 64:
2455 		return D0EPCTL_MPS_64;
2456 	case 32:
2457 		return D0EPCTL_MPS_32;
2458 	case 16:
2459 		return D0EPCTL_MPS_16;
2460 	case 8:
2461 		return D0EPCTL_MPS_8;
2462 	}
2463 
2464 	/* bad max packet size, warn and return invalid result */
2465 	WARN_ON(1);
2466 	return (u32)-1;
2467 }
2468 
2469 /**
2470  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2471  * @hsotg: The driver state.
2472  * @ep: The index number of the endpoint
2473  * @mps: The maximum packet size in bytes
2474  * @mc: The multicount value
2475  *
2476  * Configure the maximum packet size for the given endpoint, updating
2477  * the hardware control registers to reflect this.
2478  */
2479 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2480 					unsigned int ep, unsigned int mps,
2481 					unsigned int mc, unsigned int dir_in)
2482 {
2483 	struct dwc2_hsotg_ep *hs_ep;
2484 	void __iomem *regs = hsotg->regs;
2485 	u32 reg;
2486 
2487 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2488 	if (!hs_ep)
2489 		return;
2490 
2491 	if (ep == 0) {
2492 		u32 mps_bytes = mps;
2493 
2494 		/* EP0 is a special case */
2495 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2496 		if (mps > 3)
2497 			goto bad_mps;
2498 		hs_ep->ep.maxpacket = mps_bytes;
2499 		hs_ep->mc = 1;
2500 	} else {
2501 		if (mps > 1024)
2502 			goto bad_mps;
2503 		hs_ep->mc = mc;
2504 		if (mc > 3)
2505 			goto bad_mps;
2506 		hs_ep->ep.maxpacket = mps;
2507 	}
2508 
2509 	if (dir_in) {
2510 		reg = dwc2_readl(regs + DIEPCTL(ep));
2511 		reg &= ~DXEPCTL_MPS_MASK;
2512 		reg |= mps;
2513 		dwc2_writel(reg, regs + DIEPCTL(ep));
2514 	} else {
2515 		reg = dwc2_readl(regs + DOEPCTL(ep));
2516 		reg &= ~DXEPCTL_MPS_MASK;
2517 		reg |= mps;
2518 		dwc2_writel(reg, regs + DOEPCTL(ep));
2519 	}
2520 
2521 	return;
2522 
2523 bad_mps:
2524 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2525 }
2526 
2527 /**
2528  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2529  * @hsotg: The driver state
2530  * @idx: The index for the endpoint (0..15)
2531  */
2532 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2533 {
2534 	int timeout;
2535 	int val;
2536 
2537 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2538 		    hsotg->regs + GRSTCTL);
2539 
2540 	/* wait until the fifo is flushed */
2541 	timeout = 100;
2542 
2543 	while (1) {
2544 		val = dwc2_readl(hsotg->regs + GRSTCTL);
2545 
2546 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2547 			break;
2548 
2549 		if (--timeout == 0) {
2550 			dev_err(hsotg->dev,
2551 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2552 				__func__, val);
2553 			break;
2554 		}
2555 
2556 		udelay(1);
2557 	}
2558 }
2559 
2560 /**
2561  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2562  * @hsotg: The driver state
2563  * @hs_ep: The driver endpoint to check.
2564  *
2565  * Check to see if there is a request that has data to send, and if so
2566  * make an attempt to write data into the FIFO.
2567  */
2568 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2569 			    struct dwc2_hsotg_ep *hs_ep)
2570 {
2571 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2572 
2573 	if (!hs_ep->dir_in || !hs_req) {
2574 		/**
2575 		 * if request is not enqueued, we disable interrupts
2576 		 * for endpoints, excepting ep0
2577 		 */
2578 		if (hs_ep->index != 0)
2579 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2580 					      hs_ep->dir_in, 0);
2581 		return 0;
2582 	}
2583 
2584 	if (hs_req->req.actual < hs_req->req.length) {
2585 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2586 			hs_ep->index);
2587 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 /**
2594  * dwc2_hsotg_complete_in - complete IN transfer
2595  * @hsotg: The device state.
2596  * @hs_ep: The endpoint that has just completed.
2597  *
2598  * An IN transfer has been completed, update the transfer's state and then
2599  * call the relevant completion routines.
2600  */
2601 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2602 				   struct dwc2_hsotg_ep *hs_ep)
2603 {
2604 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2605 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2606 	int size_left, size_done;
2607 
2608 	if (!hs_req) {
2609 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2610 		return;
2611 	}
2612 
2613 	/* Finish ZLP handling for IN EP0 transactions */
2614 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2615 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2616 
2617 		/*
2618 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2619 		 * changed to IN. Change back to complete OUT transfer request
2620 		 */
2621 		hs_ep->dir_in = 0;
2622 
2623 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2624 		if (hsotg->test_mode) {
2625 			int ret;
2626 
2627 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2628 			if (ret < 0) {
2629 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2630 					hsotg->test_mode);
2631 				dwc2_hsotg_stall_ep0(hsotg);
2632 				return;
2633 			}
2634 		}
2635 		dwc2_hsotg_enqueue_setup(hsotg);
2636 		return;
2637 	}
2638 
2639 	/*
2640 	 * Calculate the size of the transfer by checking how much is left
2641 	 * in the endpoint size register and then working it out from
2642 	 * the amount we loaded for the transfer.
2643 	 *
2644 	 * We do this even for DMA, as the transfer may have incremented
2645 	 * past the end of the buffer (DMA transfers are always 32bit
2646 	 * aligned).
2647 	 */
2648 	if (using_desc_dma(hsotg)) {
2649 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2650 		if (size_left < 0)
2651 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2652 				size_left);
2653 	} else {
2654 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2655 	}
2656 
2657 	size_done = hs_ep->size_loaded - size_left;
2658 	size_done += hs_ep->last_load;
2659 
2660 	if (hs_req->req.actual != size_done)
2661 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2662 			__func__, hs_req->req.actual, size_done);
2663 
2664 	hs_req->req.actual = size_done;
2665 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2666 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2667 
2668 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2669 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2670 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2671 		return;
2672 	}
2673 
2674 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2675 	if (hs_ep->send_zlp) {
2676 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2677 		hs_ep->send_zlp = 0;
2678 		/* transfer will be completed on next complete interrupt */
2679 		return;
2680 	}
2681 
2682 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2683 		/* Move to STATUS OUT */
2684 		dwc2_hsotg_ep0_zlp(hsotg, false);
2685 		return;
2686 	}
2687 
2688 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2689 }
2690 
2691 /**
2692  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2693  * @hsotg: The device state.
2694  * @idx: Index of ep.
2695  * @dir_in: Endpoint direction 1-in 0-out.
2696  *
2697  * Reads for endpoint with given index and direction, by masking
2698  * epint_reg with coresponding mask.
2699  */
2700 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2701 					  unsigned int idx, int dir_in)
2702 {
2703 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2704 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2705 	u32 ints;
2706 	u32 mask;
2707 	u32 diepempmsk;
2708 
2709 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2710 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2711 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2712 	mask |= DXEPINT_SETUP_RCVD;
2713 
2714 	ints = dwc2_readl(hsotg->regs + epint_reg);
2715 	ints &= mask;
2716 	return ints;
2717 }
2718 
2719 /**
2720  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2721  * @hs_ep: The endpoint on which interrupt is asserted.
2722  *
2723  * This interrupt indicates that the endpoint has been disabled per the
2724  * application's request.
2725  *
2726  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2727  * in case of ISOC completes current request.
2728  *
2729  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2730  * request starts it.
2731  */
2732 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2733 {
2734 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2735 	struct dwc2_hsotg_req *hs_req;
2736 	unsigned char idx = hs_ep->index;
2737 	int dir_in = hs_ep->dir_in;
2738 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2739 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2740 
2741 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2742 
2743 	if (dir_in) {
2744 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2745 
2746 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2747 
2748 		if (hs_ep->isochronous) {
2749 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2750 			return;
2751 		}
2752 
2753 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2754 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2755 
2756 			dctl |= DCTL_CGNPINNAK;
2757 			dwc2_writel(dctl, hsotg->regs + DCTL);
2758 		}
2759 		return;
2760 	}
2761 
2762 	if (dctl & DCTL_GOUTNAKSTS) {
2763 		dctl |= DCTL_CGOUTNAK;
2764 		dwc2_writel(dctl, hsotg->regs + DCTL);
2765 	}
2766 
2767 	if (!hs_ep->isochronous)
2768 		return;
2769 
2770 	if (list_empty(&hs_ep->queue)) {
2771 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2772 			__func__, hs_ep);
2773 		return;
2774 	}
2775 
2776 	do {
2777 		hs_req = get_ep_head(hs_ep);
2778 		if (hs_req)
2779 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2780 						    -ENODATA);
2781 		dwc2_gadget_incr_frame_num(hs_ep);
2782 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2783 
2784 	dwc2_gadget_start_next_request(hs_ep);
2785 }
2786 
2787 /**
2788  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2789  * @hs_ep: The endpoint on which interrupt is asserted.
2790  *
2791  * This is starting point for ISOC-OUT transfer, synchronization done with
2792  * first out token received from host while corresponding EP is disabled.
2793  *
2794  * Device does not know initial frame in which out token will come. For this
2795  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2796  * getting this interrupt SW starts calculation for next transfer frame.
2797  */
2798 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2799 {
2800 	struct dwc2_hsotg *hsotg = ep->parent;
2801 	int dir_in = ep->dir_in;
2802 	u32 doepmsk;
2803 	u32 tmp;
2804 
2805 	if (dir_in || !ep->isochronous)
2806 		return;
2807 
2808 	/*
2809 	 * Store frame in which irq was asserted here, as
2810 	 * it can change while completing request below.
2811 	 */
2812 	tmp = dwc2_hsotg_read_frameno(hsotg);
2813 
2814 	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2815 
2816 	if (using_desc_dma(hsotg)) {
2817 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2818 			/* Start first ISO Out */
2819 			ep->target_frame = tmp;
2820 			dwc2_gadget_start_isoc_ddma(ep);
2821 		}
2822 		return;
2823 	}
2824 
2825 	if (ep->interval > 1 &&
2826 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2827 		u32 dsts;
2828 		u32 ctrl;
2829 
2830 		dsts = dwc2_readl(hsotg->regs + DSTS);
2831 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2832 		dwc2_gadget_incr_frame_num(ep);
2833 
2834 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2835 		if (ep->target_frame & 0x1)
2836 			ctrl |= DXEPCTL_SETODDFR;
2837 		else
2838 			ctrl |= DXEPCTL_SETEVENFR;
2839 
2840 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2841 	}
2842 
2843 	dwc2_gadget_start_next_request(ep);
2844 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2845 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2846 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2847 }
2848 
2849 /**
2850  * dwc2_gadget_handle_nak - handle NAK interrupt
2851  * @hs_ep: The endpoint on which interrupt is asserted.
2852  *
2853  * This is starting point for ISOC-IN transfer, synchronization done with
2854  * first IN token received from host while corresponding EP is disabled.
2855  *
2856  * Device does not know when first one token will arrive from host. On first
2857  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2858  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2859  * sent in response to that as there was no data in FIFO. SW is basing on this
2860  * interrupt to obtain frame in which token has come and then based on the
2861  * interval calculates next frame for transfer.
2862  */
2863 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2864 {
2865 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2866 	int dir_in = hs_ep->dir_in;
2867 
2868 	if (!dir_in || !hs_ep->isochronous)
2869 		return;
2870 
2871 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2872 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2873 
2874 		if (using_desc_dma(hsotg)) {
2875 			dwc2_gadget_start_isoc_ddma(hs_ep);
2876 			return;
2877 		}
2878 
2879 		if (hs_ep->interval > 1) {
2880 			u32 ctrl = dwc2_readl(hsotg->regs +
2881 					      DIEPCTL(hs_ep->index));
2882 			if (hs_ep->target_frame & 0x1)
2883 				ctrl |= DXEPCTL_SETODDFR;
2884 			else
2885 				ctrl |= DXEPCTL_SETEVENFR;
2886 
2887 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2888 		}
2889 
2890 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2891 					    get_ep_head(hs_ep), 0);
2892 	}
2893 
2894 	dwc2_gadget_incr_frame_num(hs_ep);
2895 }
2896 
2897 /**
2898  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2899  * @hsotg: The driver state
2900  * @idx: The index for the endpoint (0..15)
2901  * @dir_in: Set if this is an IN endpoint
2902  *
2903  * Process and clear any interrupt pending for an individual endpoint
2904  */
2905 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2906 			     int dir_in)
2907 {
2908 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2909 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2910 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2911 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2912 	u32 ints;
2913 	u32 ctrl;
2914 
2915 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2916 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2917 
2918 	/* Clear endpoint interrupts */
2919 	dwc2_writel(ints, hsotg->regs + epint_reg);
2920 
2921 	if (!hs_ep) {
2922 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2923 			__func__, idx, dir_in ? "in" : "out");
2924 		return;
2925 	}
2926 
2927 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2928 		__func__, idx, dir_in ? "in" : "out", ints);
2929 
2930 	/* Don't process XferCompl interrupt if it is a setup packet */
2931 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2932 		ints &= ~DXEPINT_XFERCOMPL;
2933 
2934 	/*
2935 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2936 	 * stage and xfercomplete was generated without SETUP phase done
2937 	 * interrupt. SW should parse received setup packet only after host's
2938 	 * exit from setup phase of control transfer.
2939 	 */
2940 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2941 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2942 		ints &= ~DXEPINT_XFERCOMPL;
2943 
2944 	if (ints & DXEPINT_XFERCOMPL) {
2945 		dev_dbg(hsotg->dev,
2946 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2947 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2948 			dwc2_readl(hsotg->regs + epsiz_reg));
2949 
2950 		/* In DDMA handle isochronous requests separately */
2951 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2952 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2953 			/* Try to start next isoc request */
2954 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2955 		} else if (dir_in) {
2956 			/*
2957 			 * We get OutDone from the FIFO, so we only
2958 			 * need to look at completing IN requests here
2959 			 * if operating slave mode
2960 			 */
2961 			if (hs_ep->isochronous && hs_ep->interval > 1)
2962 				dwc2_gadget_incr_frame_num(hs_ep);
2963 
2964 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2965 			if (ints & DXEPINT_NAKINTRPT)
2966 				ints &= ~DXEPINT_NAKINTRPT;
2967 
2968 			if (idx == 0 && !hs_ep->req)
2969 				dwc2_hsotg_enqueue_setup(hsotg);
2970 		} else if (using_dma(hsotg)) {
2971 			/*
2972 			 * We're using DMA, we need to fire an OutDone here
2973 			 * as we ignore the RXFIFO.
2974 			 */
2975 			if (hs_ep->isochronous && hs_ep->interval > 1)
2976 				dwc2_gadget_incr_frame_num(hs_ep);
2977 
2978 			dwc2_hsotg_handle_outdone(hsotg, idx);
2979 		}
2980 	}
2981 
2982 	if (ints & DXEPINT_EPDISBLD)
2983 		dwc2_gadget_handle_ep_disabled(hs_ep);
2984 
2985 	if (ints & DXEPINT_OUTTKNEPDIS)
2986 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2987 
2988 	if (ints & DXEPINT_NAKINTRPT)
2989 		dwc2_gadget_handle_nak(hs_ep);
2990 
2991 	if (ints & DXEPINT_AHBERR)
2992 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2993 
2994 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2995 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2996 
2997 		if (using_dma(hsotg) && idx == 0) {
2998 			/*
2999 			 * this is the notification we've received a
3000 			 * setup packet. In non-DMA mode we'd get this
3001 			 * from the RXFIFO, instead we need to process
3002 			 * the setup here.
3003 			 */
3004 
3005 			if (dir_in)
3006 				WARN_ON_ONCE(1);
3007 			else
3008 				dwc2_hsotg_handle_outdone(hsotg, 0);
3009 		}
3010 	}
3011 
3012 	if (ints & DXEPINT_STSPHSERCVD) {
3013 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3014 
3015 		/* Move to STATUS IN for DDMA */
3016 		if (using_desc_dma(hsotg))
3017 			dwc2_hsotg_ep0_zlp(hsotg, true);
3018 	}
3019 
3020 	if (ints & DXEPINT_BACK2BACKSETUP)
3021 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3022 
3023 	if (ints & DXEPINT_BNAINTR) {
3024 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3025 
3026 		/*
3027 		 * Try to start next isoc request, if any.
3028 		 * Sometimes the endpoint remains enabled after BNA interrupt
3029 		 * assertion, which is not expected, hence we can enter here
3030 		 * couple of times.
3031 		 */
3032 		if (hs_ep->isochronous)
3033 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
3034 	}
3035 
3036 	if (dir_in && !hs_ep->isochronous) {
3037 		/* not sure if this is important, but we'll clear it anyway */
3038 		if (ints & DXEPINT_INTKNTXFEMP) {
3039 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3040 				__func__, idx);
3041 		}
3042 
3043 		/* this probably means something bad is happening */
3044 		if (ints & DXEPINT_INTKNEPMIS) {
3045 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3046 				 __func__, idx);
3047 		}
3048 
3049 		/* FIFO has space or is empty (see GAHBCFG) */
3050 		if (hsotg->dedicated_fifos &&
3051 		    ints & DXEPINT_TXFEMP) {
3052 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3053 				__func__, idx);
3054 			if (!using_dma(hsotg))
3055 				dwc2_hsotg_trytx(hsotg, hs_ep);
3056 		}
3057 	}
3058 }
3059 
3060 /**
3061  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3062  * @hsotg: The device state.
3063  *
3064  * Handle updating the device settings after the enumeration phase has
3065  * been completed.
3066  */
3067 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3068 {
3069 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3070 	int ep0_mps = 0, ep_mps = 8;
3071 
3072 	/*
3073 	 * This should signal the finish of the enumeration phase
3074 	 * of the USB handshaking, so we should now know what rate
3075 	 * we connected at.
3076 	 */
3077 
3078 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3079 
3080 	/*
3081 	 * note, since we're limited by the size of transfer on EP0, and
3082 	 * it seems IN transfers must be a even number of packets we do
3083 	 * not advertise a 64byte MPS on EP0.
3084 	 */
3085 
3086 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3087 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3088 	case DSTS_ENUMSPD_FS:
3089 	case DSTS_ENUMSPD_FS48:
3090 		hsotg->gadget.speed = USB_SPEED_FULL;
3091 		ep0_mps = EP0_MPS_LIMIT;
3092 		ep_mps = 1023;
3093 		break;
3094 
3095 	case DSTS_ENUMSPD_HS:
3096 		hsotg->gadget.speed = USB_SPEED_HIGH;
3097 		ep0_mps = EP0_MPS_LIMIT;
3098 		ep_mps = 1024;
3099 		break;
3100 
3101 	case DSTS_ENUMSPD_LS:
3102 		hsotg->gadget.speed = USB_SPEED_LOW;
3103 		ep0_mps = 8;
3104 		ep_mps = 8;
3105 		/*
3106 		 * note, we don't actually support LS in this driver at the
3107 		 * moment, and the documentation seems to imply that it isn't
3108 		 * supported by the PHYs on some of the devices.
3109 		 */
3110 		break;
3111 	}
3112 	dev_info(hsotg->dev, "new device is %s\n",
3113 		 usb_speed_string(hsotg->gadget.speed));
3114 
3115 	/*
3116 	 * we should now know the maximum packet size for an
3117 	 * endpoint, so set the endpoints to a default value.
3118 	 */
3119 
3120 	if (ep0_mps) {
3121 		int i;
3122 		/* Initialize ep0 for both in and out directions */
3123 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3124 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3125 		for (i = 1; i < hsotg->num_of_eps; i++) {
3126 			if (hsotg->eps_in[i])
3127 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3128 							    0, 1);
3129 			if (hsotg->eps_out[i])
3130 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3131 							    0, 0);
3132 		}
3133 	}
3134 
3135 	/* ensure after enumeration our EP0 is active */
3136 
3137 	dwc2_hsotg_enqueue_setup(hsotg);
3138 
3139 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3140 		dwc2_readl(hsotg->regs + DIEPCTL0),
3141 		dwc2_readl(hsotg->regs + DOEPCTL0));
3142 }
3143 
3144 /**
3145  * kill_all_requests - remove all requests from the endpoint's queue
3146  * @hsotg: The device state.
3147  * @ep: The endpoint the requests may be on.
3148  * @result: The result code to use.
3149  *
3150  * Go through the requests on the given endpoint and mark them
3151  * completed with the given result code.
3152  */
3153 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3154 			      struct dwc2_hsotg_ep *ep,
3155 			      int result)
3156 {
3157 	struct dwc2_hsotg_req *req, *treq;
3158 	unsigned int size;
3159 
3160 	ep->req = NULL;
3161 
3162 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3163 		dwc2_hsotg_complete_request(hsotg, ep, req,
3164 					    result);
3165 
3166 	if (!hsotg->dedicated_fifos)
3167 		return;
3168 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3169 	if (size < ep->fifo_size)
3170 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3171 }
3172 
3173 /**
3174  * dwc2_hsotg_disconnect - disconnect service
3175  * @hsotg: The device state.
3176  *
3177  * The device has been disconnected. Remove all current
3178  * transactions and signal the gadget driver that this
3179  * has happened.
3180  */
3181 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3182 {
3183 	unsigned int ep;
3184 
3185 	if (!hsotg->connected)
3186 		return;
3187 
3188 	hsotg->connected = 0;
3189 	hsotg->test_mode = 0;
3190 
3191 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3192 		if (hsotg->eps_in[ep])
3193 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3194 					  -ESHUTDOWN);
3195 		if (hsotg->eps_out[ep])
3196 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3197 					  -ESHUTDOWN);
3198 	}
3199 
3200 	call_gadget(hsotg, disconnect);
3201 	hsotg->lx_state = DWC2_L3;
3202 
3203 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3204 }
3205 
3206 /**
3207  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3208  * @hsotg: The device state:
3209  * @periodic: True if this is a periodic FIFO interrupt
3210  */
3211 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3212 {
3213 	struct dwc2_hsotg_ep *ep;
3214 	int epno, ret;
3215 
3216 	/* look through for any more data to transmit */
3217 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3218 		ep = index_to_ep(hsotg, epno, 1);
3219 
3220 		if (!ep)
3221 			continue;
3222 
3223 		if (!ep->dir_in)
3224 			continue;
3225 
3226 		if ((periodic && !ep->periodic) ||
3227 		    (!periodic && ep->periodic))
3228 			continue;
3229 
3230 		ret = dwc2_hsotg_trytx(hsotg, ep);
3231 		if (ret < 0)
3232 			break;
3233 	}
3234 }
3235 
3236 /* IRQ flags which will trigger a retry around the IRQ loop */
3237 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3238 			GINTSTS_PTXFEMP |  \
3239 			GINTSTS_RXFLVL)
3240 
3241 /**
3242  * dwc2_hsotg_core_init - issue softreset to the core
3243  * @hsotg: The device state
3244  *
3245  * Issue a soft reset to the core, and await the core finishing it.
3246  */
3247 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3248 				       bool is_usb_reset)
3249 {
3250 	u32 intmsk;
3251 	u32 val;
3252 	u32 usbcfg;
3253 	u32 dcfg = 0;
3254 
3255 	/* Kill any ep0 requests as controller will be reinitialized */
3256 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3257 
3258 	if (!is_usb_reset)
3259 		if (dwc2_core_reset(hsotg, true))
3260 			return;
3261 
3262 	/*
3263 	 * we must now enable ep0 ready for host detection and then
3264 	 * set configuration.
3265 	 */
3266 
3267 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3268 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3269 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3270 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3271 
3272 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3273 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3274 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3275 		/* FS/LS Dedicated Transceiver Interface */
3276 		usbcfg |= GUSBCFG_PHYSEL;
3277 	} else {
3278 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3279 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3280 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3281 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3282 	}
3283 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3284 
3285 	dwc2_hsotg_init_fifo(hsotg);
3286 
3287 	if (!is_usb_reset)
3288 		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3289 
3290 	dcfg |= DCFG_EPMISCNT(1);
3291 
3292 	switch (hsotg->params.speed) {
3293 	case DWC2_SPEED_PARAM_LOW:
3294 		dcfg |= DCFG_DEVSPD_LS;
3295 		break;
3296 	case DWC2_SPEED_PARAM_FULL:
3297 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3298 			dcfg |= DCFG_DEVSPD_FS48;
3299 		else
3300 			dcfg |= DCFG_DEVSPD_FS;
3301 		break;
3302 	default:
3303 		dcfg |= DCFG_DEVSPD_HS;
3304 	}
3305 
3306 	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3307 
3308 	/* Clear any pending OTG interrupts */
3309 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3310 
3311 	/* Clear any pending interrupts */
3312 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3313 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3314 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3315 		GINTSTS_USBRST | GINTSTS_RESETDET |
3316 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3317 		GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3318 
3319 	if (!using_desc_dma(hsotg))
3320 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3321 
3322 	if (!hsotg->params.external_id_pin_ctl)
3323 		intmsk |= GINTSTS_CONIDSTSCHNG;
3324 
3325 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3326 
3327 	if (using_dma(hsotg)) {
3328 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3329 			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3330 			    hsotg->regs + GAHBCFG);
3331 
3332 		/* Set DDMA mode support in the core if needed */
3333 		if (using_desc_dma(hsotg))
3334 			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3335 
3336 	} else {
3337 		dwc2_writel(((hsotg->dedicated_fifos) ?
3338 						(GAHBCFG_NP_TXF_EMP_LVL |
3339 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3340 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3341 	}
3342 
3343 	/*
3344 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3345 	 * when we have no data to transfer. Otherwise we get being flooded by
3346 	 * interrupts.
3347 	 */
3348 
3349 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3350 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3351 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3352 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3353 		hsotg->regs + DIEPMSK);
3354 
3355 	/*
3356 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3357 	 * DMA mode we may need this and StsPhseRcvd.
3358 	 */
3359 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3360 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3361 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3362 		DOEPMSK_SETUPMSK,
3363 		hsotg->regs + DOEPMSK);
3364 
3365 	/* Enable BNA interrupt for DDMA */
3366 	if (using_desc_dma(hsotg))
3367 		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3368 
3369 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3370 
3371 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3372 		dwc2_readl(hsotg->regs + DIEPCTL0),
3373 		dwc2_readl(hsotg->regs + DOEPCTL0));
3374 
3375 	/* enable in and out endpoint interrupts */
3376 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3377 
3378 	/*
3379 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3380 	 * the data. In DMA mode, we get events from the FIFO but also
3381 	 * things we cannot process, so do not use it.
3382 	 */
3383 	if (!using_dma(hsotg))
3384 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3385 
3386 	/* Enable interrupts for EP0 in and out */
3387 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3388 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3389 
3390 	if (!is_usb_reset) {
3391 		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3392 		udelay(10);  /* see openiboot */
3393 		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3394 	}
3395 
3396 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3397 
3398 	/*
3399 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3400 	 * writing to the EPCTL register..
3401 	 */
3402 
3403 	/* set to read 1 8byte packet */
3404 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3405 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3406 
3407 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3408 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3409 	       DXEPCTL_USBACTEP,
3410 	       hsotg->regs + DOEPCTL0);
3411 
3412 	/* enable, but don't activate EP0in */
3413 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3414 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3415 
3416 	dwc2_hsotg_enqueue_setup(hsotg);
3417 
3418 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3419 		dwc2_readl(hsotg->regs + DIEPCTL0),
3420 		dwc2_readl(hsotg->regs + DOEPCTL0));
3421 
3422 	/* clear global NAKs */
3423 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3424 	if (!is_usb_reset)
3425 		val |= DCTL_SFTDISCON;
3426 	__orr32(hsotg->regs + DCTL, val);
3427 
3428 	/* must be at-least 3ms to allow bus to see disconnect */
3429 	mdelay(3);
3430 
3431 	hsotg->lx_state = DWC2_L0;
3432 }
3433 
3434 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3435 {
3436 	/* set the soft-disconnect bit */
3437 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3438 }
3439 
3440 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3441 {
3442 	/* remove the soft-disconnect and let's go */
3443 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3444 }
3445 
3446 /**
3447  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3448  * @hsotg: The device state:
3449  *
3450  * This interrupt indicates one of the following conditions occurred while
3451  * transmitting an ISOC transaction.
3452  * - Corrupted IN Token for ISOC EP.
3453  * - Packet not complete in FIFO.
3454  *
3455  * The following actions will be taken:
3456  * - Determine the EP
3457  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3458  */
3459 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3460 {
3461 	struct dwc2_hsotg_ep *hs_ep;
3462 	u32 epctrl;
3463 	u32 idx;
3464 
3465 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3466 
3467 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3468 		hs_ep = hsotg->eps_in[idx];
3469 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3470 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3471 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3472 			epctrl |= DXEPCTL_SNAK;
3473 			epctrl |= DXEPCTL_EPDIS;
3474 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3475 		}
3476 	}
3477 
3478 	/* Clear interrupt */
3479 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3480 }
3481 
3482 /**
3483  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3484  * @hsotg: The device state:
3485  *
3486  * This interrupt indicates one of the following conditions occurred while
3487  * transmitting an ISOC transaction.
3488  * - Corrupted OUT Token for ISOC EP.
3489  * - Packet not complete in FIFO.
3490  *
3491  * The following actions will be taken:
3492  * - Determine the EP
3493  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3494  */
3495 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3496 {
3497 	u32 gintsts;
3498 	u32 gintmsk;
3499 	u32 epctrl;
3500 	struct dwc2_hsotg_ep *hs_ep;
3501 	int idx;
3502 
3503 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3504 
3505 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3506 		hs_ep = hsotg->eps_out[idx];
3507 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3508 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3509 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3510 			/* Unmask GOUTNAKEFF interrupt */
3511 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3512 			gintmsk |= GINTSTS_GOUTNAKEFF;
3513 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3514 
3515 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3516 			if (!(gintsts & GINTSTS_GOUTNAKEFF))
3517 				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3518 		}
3519 	}
3520 
3521 	/* Clear interrupt */
3522 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3523 }
3524 
3525 /**
3526  * dwc2_hsotg_irq - handle device interrupt
3527  * @irq: The IRQ number triggered
3528  * @pw: The pw value when registered the handler.
3529  */
3530 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3531 {
3532 	struct dwc2_hsotg *hsotg = pw;
3533 	int retry_count = 8;
3534 	u32 gintsts;
3535 	u32 gintmsk;
3536 
3537 	if (!dwc2_is_device_mode(hsotg))
3538 		return IRQ_NONE;
3539 
3540 	spin_lock(&hsotg->lock);
3541 irq_retry:
3542 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3543 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3544 
3545 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3546 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3547 
3548 	gintsts &= gintmsk;
3549 
3550 	if (gintsts & GINTSTS_RESETDET) {
3551 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3552 
3553 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3554 
3555 		/* This event must be used only if controller is suspended */
3556 		if (hsotg->lx_state == DWC2_L2) {
3557 			dwc2_exit_hibernation(hsotg, true);
3558 			hsotg->lx_state = DWC2_L0;
3559 		}
3560 	}
3561 
3562 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3563 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3564 		u32 connected = hsotg->connected;
3565 
3566 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3567 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3568 			dwc2_readl(hsotg->regs + GNPTXSTS));
3569 
3570 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3571 
3572 		/* Report disconnection if it is not already done. */
3573 		dwc2_hsotg_disconnect(hsotg);
3574 
3575 		/* Reset device address to zero */
3576 		__bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3577 
3578 		if (usb_status & GOTGCTL_BSESVLD && connected)
3579 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3580 	}
3581 
3582 	if (gintsts & GINTSTS_ENUMDONE) {
3583 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3584 
3585 		dwc2_hsotg_irq_enumdone(hsotg);
3586 	}
3587 
3588 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3589 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3590 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3591 		u32 daint_out, daint_in;
3592 		int ep;
3593 
3594 		daint &= daintmsk;
3595 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3596 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3597 
3598 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3599 
3600 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3601 						ep++, daint_out >>= 1) {
3602 			if (daint_out & 1)
3603 				dwc2_hsotg_epint(hsotg, ep, 0);
3604 		}
3605 
3606 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3607 						ep++, daint_in >>= 1) {
3608 			if (daint_in & 1)
3609 				dwc2_hsotg_epint(hsotg, ep, 1);
3610 		}
3611 	}
3612 
3613 	/* check both FIFOs */
3614 
3615 	if (gintsts & GINTSTS_NPTXFEMP) {
3616 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3617 
3618 		/*
3619 		 * Disable the interrupt to stop it happening again
3620 		 * unless one of these endpoint routines decides that
3621 		 * it needs re-enabling
3622 		 */
3623 
3624 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3625 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3626 	}
3627 
3628 	if (gintsts & GINTSTS_PTXFEMP) {
3629 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3630 
3631 		/* See note in GINTSTS_NPTxFEmp */
3632 
3633 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3634 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3635 	}
3636 
3637 	if (gintsts & GINTSTS_RXFLVL) {
3638 		/*
3639 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3640 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3641 		 * set.
3642 		 */
3643 
3644 		dwc2_hsotg_handle_rx(hsotg);
3645 	}
3646 
3647 	if (gintsts & GINTSTS_ERLYSUSP) {
3648 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3649 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3650 	}
3651 
3652 	/*
3653 	 * these next two seem to crop-up occasionally causing the core
3654 	 * to shutdown the USB transfer, so try clearing them and logging
3655 	 * the occurrence.
3656 	 */
3657 
3658 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3659 		u8 idx;
3660 		u32 epctrl;
3661 		u32 gintmsk;
3662 		struct dwc2_hsotg_ep *hs_ep;
3663 
3664 		/* Mask this interrupt */
3665 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3666 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3667 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3668 
3669 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3670 		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3671 			hs_ep = hsotg->eps_out[idx];
3672 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3673 
3674 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3675 				epctrl |= DXEPCTL_SNAK;
3676 				epctrl |= DXEPCTL_EPDIS;
3677 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3678 			}
3679 		}
3680 
3681 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3682 	}
3683 
3684 	if (gintsts & GINTSTS_GINNAKEFF) {
3685 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3686 
3687 		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3688 
3689 		dwc2_hsotg_dump(hsotg);
3690 	}
3691 
3692 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3693 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3694 
3695 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3696 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3697 
3698 	/*
3699 	 * if we've had fifo events, we should try and go around the
3700 	 * loop again to see if there's any point in returning yet.
3701 	 */
3702 
3703 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3704 		goto irq_retry;
3705 
3706 	spin_unlock(&hsotg->lock);
3707 
3708 	return IRQ_HANDLED;
3709 }
3710 
3711 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3712 				   u32 bit, u32 timeout)
3713 {
3714 	u32 i;
3715 
3716 	for (i = 0; i < timeout; i++) {
3717 		if (dwc2_readl(hs_otg->regs + reg) & bit)
3718 			return 0;
3719 		udelay(1);
3720 	}
3721 
3722 	return -ETIMEDOUT;
3723 }
3724 
3725 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3726 				   struct dwc2_hsotg_ep *hs_ep)
3727 {
3728 	u32 epctrl_reg;
3729 	u32 epint_reg;
3730 
3731 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3732 		DOEPCTL(hs_ep->index);
3733 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3734 		DOEPINT(hs_ep->index);
3735 
3736 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3737 		hs_ep->name);
3738 
3739 	if (hs_ep->dir_in) {
3740 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3741 			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3742 			/* Wait for Nak effect */
3743 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3744 						    DXEPINT_INEPNAKEFF, 100))
3745 				dev_warn(hsotg->dev,
3746 					 "%s: timeout DIEPINT.NAKEFF\n",
3747 					 __func__);
3748 		} else {
3749 			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3750 			/* Wait for Nak effect */
3751 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3752 						    GINTSTS_GINNAKEFF, 100))
3753 				dev_warn(hsotg->dev,
3754 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3755 					 __func__);
3756 		}
3757 	} else {
3758 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3759 			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3760 
3761 		/* Wait for global nak to take effect */
3762 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3763 					    GINTSTS_GOUTNAKEFF, 100))
3764 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3765 				 __func__);
3766 	}
3767 
3768 	/* Disable ep */
3769 	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3770 
3771 	/* Wait for ep to be disabled */
3772 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3773 		dev_warn(hsotg->dev,
3774 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3775 
3776 	/* Clear EPDISBLD interrupt */
3777 	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3778 
3779 	if (hs_ep->dir_in) {
3780 		unsigned short fifo_index;
3781 
3782 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3783 			fifo_index = hs_ep->fifo_index;
3784 		else
3785 			fifo_index = 0;
3786 
3787 		/* Flush TX FIFO */
3788 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3789 
3790 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3791 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3792 			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3793 
3794 	} else {
3795 		/* Remove global NAKs */
3796 		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3797 	}
3798 }
3799 
3800 /**
3801  * dwc2_hsotg_ep_enable - enable the given endpoint
3802  * @ep: The USB endpint to configure
3803  * @desc: The USB endpoint descriptor to configure with.
3804  *
3805  * This is called from the USB gadget code's usb_ep_enable().
3806  */
3807 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3808 				const struct usb_endpoint_descriptor *desc)
3809 {
3810 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3811 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3812 	unsigned long flags;
3813 	unsigned int index = hs_ep->index;
3814 	u32 epctrl_reg;
3815 	u32 epctrl;
3816 	u32 mps;
3817 	u32 mc;
3818 	u32 mask;
3819 	unsigned int dir_in;
3820 	unsigned int i, val, size;
3821 	int ret = 0;
3822 
3823 	dev_dbg(hsotg->dev,
3824 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3825 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3826 		desc->wMaxPacketSize, desc->bInterval);
3827 
3828 	/* not to be called for EP0 */
3829 	if (index == 0) {
3830 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3831 		return -EINVAL;
3832 	}
3833 
3834 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3835 	if (dir_in != hs_ep->dir_in) {
3836 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3837 		return -EINVAL;
3838 	}
3839 
3840 	mps = usb_endpoint_maxp(desc);
3841 	mc = usb_endpoint_maxp_mult(desc);
3842 
3843 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3844 
3845 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3846 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3847 
3848 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3849 		__func__, epctrl, epctrl_reg);
3850 
3851 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3852 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3853 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3854 			MAX_DMA_DESC_NUM_GENERIC *
3855 			sizeof(struct dwc2_dma_desc),
3856 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3857 		if (!hs_ep->desc_list) {
3858 			ret = -ENOMEM;
3859 			goto error2;
3860 		}
3861 	}
3862 
3863 	spin_lock_irqsave(&hsotg->lock, flags);
3864 
3865 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3866 	epctrl |= DXEPCTL_MPS(mps);
3867 
3868 	/*
3869 	 * mark the endpoint as active, otherwise the core may ignore
3870 	 * transactions entirely for this endpoint
3871 	 */
3872 	epctrl |= DXEPCTL_USBACTEP;
3873 
3874 	/* update the endpoint state */
3875 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3876 
3877 	/* default, set to non-periodic */
3878 	hs_ep->isochronous = 0;
3879 	hs_ep->periodic = 0;
3880 	hs_ep->halted = 0;
3881 	hs_ep->interval = desc->bInterval;
3882 
3883 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3884 	case USB_ENDPOINT_XFER_ISOC:
3885 		epctrl |= DXEPCTL_EPTYPE_ISO;
3886 		epctrl |= DXEPCTL_SETEVENFR;
3887 		hs_ep->isochronous = 1;
3888 		hs_ep->interval = 1 << (desc->bInterval - 1);
3889 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3890 		hs_ep->isoc_chain_num = 0;
3891 		hs_ep->next_desc = 0;
3892 		if (dir_in) {
3893 			hs_ep->periodic = 1;
3894 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3895 			mask |= DIEPMSK_NAKMSK;
3896 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3897 		} else {
3898 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3899 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3900 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3901 		}
3902 		break;
3903 
3904 	case USB_ENDPOINT_XFER_BULK:
3905 		epctrl |= DXEPCTL_EPTYPE_BULK;
3906 		break;
3907 
3908 	case USB_ENDPOINT_XFER_INT:
3909 		if (dir_in)
3910 			hs_ep->periodic = 1;
3911 
3912 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3913 			hs_ep->interval = 1 << (desc->bInterval - 1);
3914 
3915 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3916 		break;
3917 
3918 	case USB_ENDPOINT_XFER_CONTROL:
3919 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3920 		break;
3921 	}
3922 
3923 	/*
3924 	 * if the hardware has dedicated fifos, we must give each IN EP
3925 	 * a unique tx-fifo even if it is non-periodic.
3926 	 */
3927 	if (dir_in && hsotg->dedicated_fifos) {
3928 		u32 fifo_index = 0;
3929 		u32 fifo_size = UINT_MAX;
3930 
3931 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3932 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3933 			if (hsotg->fifo_map & (1 << i))
3934 				continue;
3935 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3936 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3937 			if (val < size)
3938 				continue;
3939 			/* Search for smallest acceptable fifo */
3940 			if (val < fifo_size) {
3941 				fifo_size = val;
3942 				fifo_index = i;
3943 			}
3944 		}
3945 		if (!fifo_index) {
3946 			dev_err(hsotg->dev,
3947 				"%s: No suitable fifo found\n", __func__);
3948 			ret = -ENOMEM;
3949 			goto error1;
3950 		}
3951 		hsotg->fifo_map |= 1 << fifo_index;
3952 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3953 		hs_ep->fifo_index = fifo_index;
3954 		hs_ep->fifo_size = fifo_size;
3955 	}
3956 
3957 	/* for non control endpoints, set PID to D0 */
3958 	if (index && !hs_ep->isochronous)
3959 		epctrl |= DXEPCTL_SETD0PID;
3960 
3961 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3962 		__func__, epctrl);
3963 
3964 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3965 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3966 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3967 
3968 	/* enable the endpoint interrupt */
3969 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3970 
3971 error1:
3972 	spin_unlock_irqrestore(&hsotg->lock, flags);
3973 
3974 error2:
3975 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3976 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3977 			sizeof(struct dwc2_dma_desc),
3978 			hs_ep->desc_list, hs_ep->desc_list_dma);
3979 		hs_ep->desc_list = NULL;
3980 	}
3981 
3982 	return ret;
3983 }
3984 
3985 /**
3986  * dwc2_hsotg_ep_disable - disable given endpoint
3987  * @ep: The endpoint to disable.
3988  */
3989 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3990 {
3991 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3992 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3993 	int dir_in = hs_ep->dir_in;
3994 	int index = hs_ep->index;
3995 	unsigned long flags;
3996 	u32 epctrl_reg;
3997 	u32 ctrl;
3998 
3999 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4000 
4001 	if (ep == &hsotg->eps_out[0]->ep) {
4002 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4003 		return -EINVAL;
4004 	}
4005 
4006 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4007 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4008 		return -EINVAL;
4009 	}
4010 
4011 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4012 
4013 	spin_lock_irqsave(&hsotg->lock, flags);
4014 
4015 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4016 
4017 	if (ctrl & DXEPCTL_EPENA)
4018 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4019 
4020 	ctrl &= ~DXEPCTL_EPENA;
4021 	ctrl &= ~DXEPCTL_USBACTEP;
4022 	ctrl |= DXEPCTL_SNAK;
4023 
4024 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4025 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4026 
4027 	/* disable endpoint interrupts */
4028 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4029 
4030 	/* terminate all requests with shutdown */
4031 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4032 
4033 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4034 	hs_ep->fifo_index = 0;
4035 	hs_ep->fifo_size = 0;
4036 
4037 	spin_unlock_irqrestore(&hsotg->lock, flags);
4038 	return 0;
4039 }
4040 
4041 /**
4042  * on_list - check request is on the given endpoint
4043  * @ep: The endpoint to check.
4044  * @test: The request to test if it is on the endpoint.
4045  */
4046 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4047 {
4048 	struct dwc2_hsotg_req *req, *treq;
4049 
4050 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4051 		if (req == test)
4052 			return true;
4053 	}
4054 
4055 	return false;
4056 }
4057 
4058 /**
4059  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4060  * @ep: The endpoint to dequeue.
4061  * @req: The request to be removed from a queue.
4062  */
4063 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4064 {
4065 	struct dwc2_hsotg_req *hs_req = our_req(req);
4066 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4067 	struct dwc2_hsotg *hs = hs_ep->parent;
4068 	unsigned long flags;
4069 
4070 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4071 
4072 	spin_lock_irqsave(&hs->lock, flags);
4073 
4074 	if (!on_list(hs_ep, hs_req)) {
4075 		spin_unlock_irqrestore(&hs->lock, flags);
4076 		return -EINVAL;
4077 	}
4078 
4079 	/* Dequeue already started request */
4080 	if (req == &hs_ep->req->req)
4081 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4082 
4083 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4084 	spin_unlock_irqrestore(&hs->lock, flags);
4085 
4086 	return 0;
4087 }
4088 
4089 /**
4090  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4091  * @ep: The endpoint to set halt.
4092  * @value: Set or unset the halt.
4093  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4094  *       the endpoint is busy processing requests.
4095  *
4096  * We need to stall the endpoint immediately if request comes from set_feature
4097  * protocol command handler.
4098  */
4099 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4100 {
4101 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4102 	struct dwc2_hsotg *hs = hs_ep->parent;
4103 	int index = hs_ep->index;
4104 	u32 epreg;
4105 	u32 epctl;
4106 	u32 xfertype;
4107 
4108 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4109 
4110 	if (index == 0) {
4111 		if (value)
4112 			dwc2_hsotg_stall_ep0(hs);
4113 		else
4114 			dev_warn(hs->dev,
4115 				 "%s: can't clear halt on ep0\n", __func__);
4116 		return 0;
4117 	}
4118 
4119 	if (hs_ep->isochronous) {
4120 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4121 		return -EINVAL;
4122 	}
4123 
4124 	if (!now && value && !list_empty(&hs_ep->queue)) {
4125 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4126 			ep->name);
4127 		return -EAGAIN;
4128 	}
4129 
4130 	if (hs_ep->dir_in) {
4131 		epreg = DIEPCTL(index);
4132 		epctl = dwc2_readl(hs->regs + epreg);
4133 
4134 		if (value) {
4135 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4136 			if (epctl & DXEPCTL_EPENA)
4137 				epctl |= DXEPCTL_EPDIS;
4138 		} else {
4139 			epctl &= ~DXEPCTL_STALL;
4140 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4141 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4142 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4143 				epctl |= DXEPCTL_SETD0PID;
4144 		}
4145 		dwc2_writel(epctl, hs->regs + epreg);
4146 	} else {
4147 		epreg = DOEPCTL(index);
4148 		epctl = dwc2_readl(hs->regs + epreg);
4149 
4150 		if (value) {
4151 			epctl |= DXEPCTL_STALL;
4152 		} else {
4153 			epctl &= ~DXEPCTL_STALL;
4154 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4155 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4156 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4157 				epctl |= DXEPCTL_SETD0PID;
4158 		}
4159 		dwc2_writel(epctl, hs->regs + epreg);
4160 	}
4161 
4162 	hs_ep->halted = value;
4163 
4164 	return 0;
4165 }
4166 
4167 /**
4168  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4169  * @ep: The endpoint to set halt.
4170  * @value: Set or unset the halt.
4171  */
4172 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4173 {
4174 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4175 	struct dwc2_hsotg *hs = hs_ep->parent;
4176 	unsigned long flags = 0;
4177 	int ret = 0;
4178 
4179 	spin_lock_irqsave(&hs->lock, flags);
4180 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4181 	spin_unlock_irqrestore(&hs->lock, flags);
4182 
4183 	return ret;
4184 }
4185 
4186 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4187 	.enable		= dwc2_hsotg_ep_enable,
4188 	.disable	= dwc2_hsotg_ep_disable,
4189 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4190 	.free_request	= dwc2_hsotg_ep_free_request,
4191 	.queue		= dwc2_hsotg_ep_queue_lock,
4192 	.dequeue	= dwc2_hsotg_ep_dequeue,
4193 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4194 	/* note, don't believe we have any call for the fifo routines */
4195 };
4196 
4197 /**
4198  * dwc2_hsotg_init - initialize the usb core
4199  * @hsotg: The driver state
4200  */
4201 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4202 {
4203 	u32 trdtim;
4204 	u32 usbcfg;
4205 	/* unmask subset of endpoint interrupts */
4206 
4207 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4208 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4209 		    hsotg->regs + DIEPMSK);
4210 
4211 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4212 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4213 		    hsotg->regs + DOEPMSK);
4214 
4215 	dwc2_writel(0, hsotg->regs + DAINTMSK);
4216 
4217 	/* Be in disconnected state until gadget is registered */
4218 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4219 
4220 	/* setup fifos */
4221 
4222 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4223 		dwc2_readl(hsotg->regs + GRXFSIZ),
4224 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4225 
4226 	dwc2_hsotg_init_fifo(hsotg);
4227 
4228 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4229 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4230 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4231 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4232 
4233 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4234 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4235 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4236 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4237 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4238 
4239 	if (using_dma(hsotg))
4240 		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4241 }
4242 
4243 /**
4244  * dwc2_hsotg_udc_start - prepare the udc for work
4245  * @gadget: The usb gadget state
4246  * @driver: The usb gadget driver
4247  *
4248  * Perform initialization to prepare udc device and driver
4249  * to work.
4250  */
4251 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4252 				struct usb_gadget_driver *driver)
4253 {
4254 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4255 	unsigned long flags;
4256 	int ret;
4257 
4258 	if (!hsotg) {
4259 		pr_err("%s: called with no device\n", __func__);
4260 		return -ENODEV;
4261 	}
4262 
4263 	if (!driver) {
4264 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4265 		return -EINVAL;
4266 	}
4267 
4268 	if (driver->max_speed < USB_SPEED_FULL)
4269 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4270 
4271 	if (!driver->setup) {
4272 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4273 		return -EINVAL;
4274 	}
4275 
4276 	WARN_ON(hsotg->driver);
4277 
4278 	driver->driver.bus = NULL;
4279 	hsotg->driver = driver;
4280 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4281 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4282 
4283 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4284 		ret = dwc2_lowlevel_hw_enable(hsotg);
4285 		if (ret)
4286 			goto err;
4287 	}
4288 
4289 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4290 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4291 
4292 	spin_lock_irqsave(&hsotg->lock, flags);
4293 	if (dwc2_hw_is_device(hsotg)) {
4294 		dwc2_hsotg_init(hsotg);
4295 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4296 	}
4297 
4298 	hsotg->enabled = 0;
4299 	spin_unlock_irqrestore(&hsotg->lock, flags);
4300 
4301 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4302 
4303 	return 0;
4304 
4305 err:
4306 	hsotg->driver = NULL;
4307 	return ret;
4308 }
4309 
4310 /**
4311  * dwc2_hsotg_udc_stop - stop the udc
4312  * @gadget: The usb gadget state
4313  * @driver: The usb gadget driver
4314  *
4315  * Stop udc hw block and stay tunned for future transmissions
4316  */
4317 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4318 {
4319 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4320 	unsigned long flags = 0;
4321 	int ep;
4322 
4323 	if (!hsotg)
4324 		return -ENODEV;
4325 
4326 	/* all endpoints should be shutdown */
4327 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4328 		if (hsotg->eps_in[ep])
4329 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4330 		if (hsotg->eps_out[ep])
4331 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4332 	}
4333 
4334 	spin_lock_irqsave(&hsotg->lock, flags);
4335 
4336 	hsotg->driver = NULL;
4337 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4338 	hsotg->enabled = 0;
4339 
4340 	spin_unlock_irqrestore(&hsotg->lock, flags);
4341 
4342 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4343 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4344 
4345 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4346 		dwc2_lowlevel_hw_disable(hsotg);
4347 
4348 	return 0;
4349 }
4350 
4351 /**
4352  * dwc2_hsotg_gadget_getframe - read the frame number
4353  * @gadget: The usb gadget state
4354  *
4355  * Read the {micro} frame number
4356  */
4357 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4358 {
4359 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4360 }
4361 
4362 /**
4363  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4364  * @gadget: The usb gadget state
4365  * @is_on: Current state of the USB PHY
4366  *
4367  * Connect/Disconnect the USB PHY pullup
4368  */
4369 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4370 {
4371 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4372 	unsigned long flags = 0;
4373 
4374 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4375 		hsotg->op_state);
4376 
4377 	/* Don't modify pullup state while in host mode */
4378 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4379 		hsotg->enabled = is_on;
4380 		return 0;
4381 	}
4382 
4383 	spin_lock_irqsave(&hsotg->lock, flags);
4384 	if (is_on) {
4385 		hsotg->enabled = 1;
4386 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4387 		dwc2_hsotg_core_connect(hsotg);
4388 	} else {
4389 		dwc2_hsotg_core_disconnect(hsotg);
4390 		dwc2_hsotg_disconnect(hsotg);
4391 		hsotg->enabled = 0;
4392 	}
4393 
4394 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4395 	spin_unlock_irqrestore(&hsotg->lock, flags);
4396 
4397 	return 0;
4398 }
4399 
4400 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4401 {
4402 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4403 	unsigned long flags;
4404 
4405 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4406 	spin_lock_irqsave(&hsotg->lock, flags);
4407 
4408 	/*
4409 	 * If controller is hibernated, it must exit from hibernation
4410 	 * before being initialized / de-initialized
4411 	 */
4412 	if (hsotg->lx_state == DWC2_L2)
4413 		dwc2_exit_hibernation(hsotg, false);
4414 
4415 	if (is_active) {
4416 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4417 
4418 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4419 		if (hsotg->enabled)
4420 			dwc2_hsotg_core_connect(hsotg);
4421 	} else {
4422 		dwc2_hsotg_core_disconnect(hsotg);
4423 		dwc2_hsotg_disconnect(hsotg);
4424 	}
4425 
4426 	spin_unlock_irqrestore(&hsotg->lock, flags);
4427 	return 0;
4428 }
4429 
4430 /**
4431  * dwc2_hsotg_vbus_draw - report bMaxPower field
4432  * @gadget: The usb gadget state
4433  * @mA: Amount of current
4434  *
4435  * Report how much power the device may consume to the phy.
4436  */
4437 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4438 {
4439 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4440 
4441 	if (IS_ERR_OR_NULL(hsotg->uphy))
4442 		return -ENOTSUPP;
4443 	return usb_phy_set_power(hsotg->uphy, mA);
4444 }
4445 
4446 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4447 	.get_frame	= dwc2_hsotg_gadget_getframe,
4448 	.udc_start		= dwc2_hsotg_udc_start,
4449 	.udc_stop		= dwc2_hsotg_udc_stop,
4450 	.pullup                 = dwc2_hsotg_pullup,
4451 	.vbus_session		= dwc2_hsotg_vbus_session,
4452 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4453 };
4454 
4455 /**
4456  * dwc2_hsotg_initep - initialise a single endpoint
4457  * @hsotg: The device state.
4458  * @hs_ep: The endpoint to be initialised.
4459  * @epnum: The endpoint number
4460  *
4461  * Initialise the given endpoint (as part of the probe and device state
4462  * creation) to give to the gadget driver. Setup the endpoint name, any
4463  * direction information and other state that may be required.
4464  */
4465 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4466 			      struct dwc2_hsotg_ep *hs_ep,
4467 				       int epnum,
4468 				       bool dir_in)
4469 {
4470 	char *dir;
4471 
4472 	if (epnum == 0)
4473 		dir = "";
4474 	else if (dir_in)
4475 		dir = "in";
4476 	else
4477 		dir = "out";
4478 
4479 	hs_ep->dir_in = dir_in;
4480 	hs_ep->index = epnum;
4481 
4482 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4483 
4484 	INIT_LIST_HEAD(&hs_ep->queue);
4485 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4486 
4487 	/* add to the list of endpoints known by the gadget driver */
4488 	if (epnum)
4489 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4490 
4491 	hs_ep->parent = hsotg;
4492 	hs_ep->ep.name = hs_ep->name;
4493 
4494 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4495 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4496 	else
4497 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4498 					   epnum ? 1024 : EP0_MPS_LIMIT);
4499 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4500 
4501 	if (epnum == 0) {
4502 		hs_ep->ep.caps.type_control = true;
4503 	} else {
4504 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4505 			hs_ep->ep.caps.type_iso = true;
4506 			hs_ep->ep.caps.type_bulk = true;
4507 		}
4508 		hs_ep->ep.caps.type_int = true;
4509 	}
4510 
4511 	if (dir_in)
4512 		hs_ep->ep.caps.dir_in = true;
4513 	else
4514 		hs_ep->ep.caps.dir_out = true;
4515 
4516 	/*
4517 	 * if we're using dma, we need to set the next-endpoint pointer
4518 	 * to be something valid.
4519 	 */
4520 
4521 	if (using_dma(hsotg)) {
4522 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4523 
4524 		if (dir_in)
4525 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4526 		else
4527 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4528 	}
4529 }
4530 
4531 /**
4532  * dwc2_hsotg_hw_cfg - read HW configuration registers
4533  * @param: The device state
4534  *
4535  * Read the USB core HW configuration registers
4536  */
4537 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4538 {
4539 	u32 cfg;
4540 	u32 ep_type;
4541 	u32 i;
4542 
4543 	/* check hardware configuration */
4544 
4545 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4546 
4547 	/* Add ep0 */
4548 	hsotg->num_of_eps++;
4549 
4550 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4551 					sizeof(struct dwc2_hsotg_ep),
4552 					GFP_KERNEL);
4553 	if (!hsotg->eps_in[0])
4554 		return -ENOMEM;
4555 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4556 	hsotg->eps_out[0] = hsotg->eps_in[0];
4557 
4558 	cfg = hsotg->hw_params.dev_ep_dirs;
4559 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4560 		ep_type = cfg & 3;
4561 		/* Direction in or both */
4562 		if (!(ep_type & 2)) {
4563 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4564 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4565 			if (!hsotg->eps_in[i])
4566 				return -ENOMEM;
4567 		}
4568 		/* Direction out or both */
4569 		if (!(ep_type & 1)) {
4570 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4571 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4572 			if (!hsotg->eps_out[i])
4573 				return -ENOMEM;
4574 		}
4575 	}
4576 
4577 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4578 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4579 
4580 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4581 		 hsotg->num_of_eps,
4582 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4583 		 hsotg->fifo_mem);
4584 	return 0;
4585 }
4586 
4587 /**
4588  * dwc2_hsotg_dump - dump state of the udc
4589  * @param: The device state
4590  */
4591 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4592 {
4593 #ifdef DEBUG
4594 	struct device *dev = hsotg->dev;
4595 	void __iomem *regs = hsotg->regs;
4596 	u32 val;
4597 	int idx;
4598 
4599 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4600 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4601 		 dwc2_readl(regs + DIEPMSK));
4602 
4603 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4604 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4605 
4606 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4607 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4608 
4609 	/* show periodic fifo settings */
4610 
4611 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4612 		val = dwc2_readl(regs + DPTXFSIZN(idx));
4613 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4614 			 val >> FIFOSIZE_DEPTH_SHIFT,
4615 			 val & FIFOSIZE_STARTADDR_MASK);
4616 	}
4617 
4618 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4619 		dev_info(dev,
4620 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4621 			 dwc2_readl(regs + DIEPCTL(idx)),
4622 			 dwc2_readl(regs + DIEPTSIZ(idx)),
4623 			 dwc2_readl(regs + DIEPDMA(idx)));
4624 
4625 		val = dwc2_readl(regs + DOEPCTL(idx));
4626 		dev_info(dev,
4627 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4628 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4629 			 dwc2_readl(regs + DOEPTSIZ(idx)),
4630 			 dwc2_readl(regs + DOEPDMA(idx)));
4631 	}
4632 
4633 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4634 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4635 #endif
4636 }
4637 
4638 /**
4639  * dwc2_gadget_init - init function for gadget
4640  * @dwc2: The data structure for the DWC2 driver.
4641  * @irq: The IRQ number for the controller.
4642  */
4643 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4644 {
4645 	struct device *dev = hsotg->dev;
4646 	int epnum;
4647 	int ret;
4648 
4649 	/* Dump fifo information */
4650 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4651 		hsotg->params.g_np_tx_fifo_size);
4652 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4653 
4654 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4655 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4656 	hsotg->gadget.name = dev_name(dev);
4657 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4658 		hsotg->gadget.is_otg = 1;
4659 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4660 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4661 
4662 	ret = dwc2_hsotg_hw_cfg(hsotg);
4663 	if (ret) {
4664 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4665 		return ret;
4666 	}
4667 
4668 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4669 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4670 	if (!hsotg->ctrl_buff)
4671 		return -ENOMEM;
4672 
4673 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4674 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4675 	if (!hsotg->ep0_buff)
4676 		return -ENOMEM;
4677 
4678 	if (using_desc_dma(hsotg)) {
4679 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4680 		if (ret < 0)
4681 			return ret;
4682 	}
4683 
4684 	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4685 			       dev_name(hsotg->dev), hsotg);
4686 	if (ret < 0) {
4687 		dev_err(dev, "cannot claim IRQ for gadget\n");
4688 		return ret;
4689 	}
4690 
4691 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4692 
4693 	if (hsotg->num_of_eps == 0) {
4694 		dev_err(dev, "wrong number of EPs (zero)\n");
4695 		return -EINVAL;
4696 	}
4697 
4698 	/* setup endpoint information */
4699 
4700 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4701 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4702 
4703 	/* allocate EP0 request */
4704 
4705 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4706 						     GFP_KERNEL);
4707 	if (!hsotg->ctrl_req) {
4708 		dev_err(dev, "failed to allocate ctrl req\n");
4709 		return -ENOMEM;
4710 	}
4711 
4712 	/* initialise the endpoints now the core has been initialised */
4713 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4714 		if (hsotg->eps_in[epnum])
4715 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4716 					  epnum, 1);
4717 		if (hsotg->eps_out[epnum])
4718 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4719 					  epnum, 0);
4720 	}
4721 
4722 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4723 	if (ret)
4724 		return ret;
4725 
4726 	dwc2_hsotg_dump(hsotg);
4727 
4728 	return 0;
4729 }
4730 
4731 /**
4732  * dwc2_hsotg_remove - remove function for hsotg driver
4733  * @pdev: The platform information for the driver
4734  */
4735 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4736 {
4737 	usb_del_gadget_udc(&hsotg->gadget);
4738 
4739 	return 0;
4740 }
4741 
4742 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4743 {
4744 	unsigned long flags;
4745 
4746 	if (hsotg->lx_state != DWC2_L0)
4747 		return 0;
4748 
4749 	if (hsotg->driver) {
4750 		int ep;
4751 
4752 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4753 			 hsotg->driver->driver.name);
4754 
4755 		spin_lock_irqsave(&hsotg->lock, flags);
4756 		if (hsotg->enabled)
4757 			dwc2_hsotg_core_disconnect(hsotg);
4758 		dwc2_hsotg_disconnect(hsotg);
4759 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4760 		spin_unlock_irqrestore(&hsotg->lock, flags);
4761 
4762 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4763 			if (hsotg->eps_in[ep])
4764 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4765 			if (hsotg->eps_out[ep])
4766 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4767 		}
4768 	}
4769 
4770 	return 0;
4771 }
4772 
4773 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4774 {
4775 	unsigned long flags;
4776 
4777 	if (hsotg->lx_state == DWC2_L2)
4778 		return 0;
4779 
4780 	if (hsotg->driver) {
4781 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4782 			 hsotg->driver->driver.name);
4783 
4784 		spin_lock_irqsave(&hsotg->lock, flags);
4785 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4786 		if (hsotg->enabled)
4787 			dwc2_hsotg_core_connect(hsotg);
4788 		spin_unlock_irqrestore(&hsotg->lock, flags);
4789 	}
4790 
4791 	return 0;
4792 }
4793 
4794 /**
4795  * dwc2_backup_device_registers() - Backup controller device registers.
4796  * When suspending usb bus, registers needs to be backuped
4797  * if controller power is disabled once suspended.
4798  *
4799  * @hsotg: Programming view of the DWC_otg controller
4800  */
4801 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4802 {
4803 	struct dwc2_dregs_backup *dr;
4804 	int i;
4805 
4806 	dev_dbg(hsotg->dev, "%s\n", __func__);
4807 
4808 	/* Backup dev regs */
4809 	dr = &hsotg->dr_backup;
4810 
4811 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4812 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4813 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4814 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4815 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4816 
4817 	for (i = 0; i < hsotg->num_of_eps; i++) {
4818 		/* Backup IN EPs */
4819 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4820 
4821 		/* Ensure DATA PID is correctly configured */
4822 		if (dr->diepctl[i] & DXEPCTL_DPID)
4823 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4824 		else
4825 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4826 
4827 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4828 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4829 
4830 		/* Backup OUT EPs */
4831 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4832 
4833 		/* Ensure DATA PID is correctly configured */
4834 		if (dr->doepctl[i] & DXEPCTL_DPID)
4835 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4836 		else
4837 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4838 
4839 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4840 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4841 	}
4842 	dr->valid = true;
4843 	return 0;
4844 }
4845 
4846 /**
4847  * dwc2_restore_device_registers() - Restore controller device registers.
4848  * When resuming usb bus, device registers needs to be restored
4849  * if controller power were disabled.
4850  *
4851  * @hsotg: Programming view of the DWC_otg controller
4852  */
4853 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4854 {
4855 	struct dwc2_dregs_backup *dr;
4856 	u32 dctl;
4857 	int i;
4858 
4859 	dev_dbg(hsotg->dev, "%s\n", __func__);
4860 
4861 	/* Restore dev regs */
4862 	dr = &hsotg->dr_backup;
4863 	if (!dr->valid) {
4864 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4865 			__func__);
4866 		return -EINVAL;
4867 	}
4868 	dr->valid = false;
4869 
4870 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4871 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4872 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4873 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4874 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4875 
4876 	for (i = 0; i < hsotg->num_of_eps; i++) {
4877 		/* Restore IN EPs */
4878 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4879 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4880 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4881 
4882 		/* Restore OUT EPs */
4883 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4884 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4885 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4886 	}
4887 
4888 	/* Set the Power-On Programming done bit */
4889 	dctl = dwc2_readl(hsotg->regs + DCTL);
4890 	dctl |= DCTL_PWRONPRGDONE;
4891 	dwc2_writel(dctl, hsotg->regs + DCTL);
4892 
4893 	return 0;
4894 }
4895