xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 6774def6)
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/of_platform.h>
31 #include <linux/phy/phy.h>
32 
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37 
38 #include "core.h"
39 
40 /* conversion functions */
41 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
42 {
43 	return container_of(req, struct s3c_hsotg_req, req);
44 }
45 
46 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
47 {
48 	return container_of(ep, struct s3c_hsotg_ep, ep);
49 }
50 
51 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
52 {
53 	return container_of(gadget, struct s3c_hsotg, gadget);
54 }
55 
56 static inline void __orr32(void __iomem *ptr, u32 val)
57 {
58 	writel(readl(ptr) | val, ptr);
59 }
60 
61 static inline void __bic32(void __iomem *ptr, u32 val)
62 {
63 	writel(readl(ptr) & ~val, ptr);
64 }
65 
66 /* forward decleration of functions */
67 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
68 
69 /**
70  * using_dma - return the DMA status of the driver.
71  * @hsotg: The driver state.
72  *
73  * Return true if we're using DMA.
74  *
75  * Currently, we have the DMA support code worked into everywhere
76  * that needs it, but the AMBA DMA implementation in the hardware can
77  * only DMA from 32bit aligned addresses. This means that gadgets such
78  * as the CDC Ethernet cannot work as they often pass packets which are
79  * not 32bit aligned.
80  *
81  * Unfortunately the choice to use DMA or not is global to the controller
82  * and seems to be only settable when the controller is being put through
83  * a core reset. This means we either need to fix the gadgets to take
84  * account of DMA alignment, or add bounce buffers (yuerk).
85  *
86  * Until this issue is sorted out, we always return 'false'.
87  */
88 static inline bool using_dma(struct s3c_hsotg *hsotg)
89 {
90 	return false;	/* support is not complete */
91 }
92 
93 /**
94  * s3c_hsotg_en_gsint - enable one or more of the general interrupt
95  * @hsotg: The device state
96  * @ints: A bitmask of the interrupts to enable
97  */
98 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
99 {
100 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
101 	u32 new_gsintmsk;
102 
103 	new_gsintmsk = gsintmsk | ints;
104 
105 	if (new_gsintmsk != gsintmsk) {
106 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
107 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
108 	}
109 }
110 
111 /**
112  * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
113  * @hsotg: The device state
114  * @ints: A bitmask of the interrupts to enable
115  */
116 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
117 {
118 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
119 	u32 new_gsintmsk;
120 
121 	new_gsintmsk = gsintmsk & ~ints;
122 
123 	if (new_gsintmsk != gsintmsk)
124 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
125 }
126 
127 /**
128  * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
129  * @hsotg: The device state
130  * @ep: The endpoint index
131  * @dir_in: True if direction is in.
132  * @en: The enable value, true to enable
133  *
134  * Set or clear the mask for an individual endpoint's interrupt
135  * request.
136  */
137 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
138 				 unsigned int ep, unsigned int dir_in,
139 				 unsigned int en)
140 {
141 	unsigned long flags;
142 	u32 bit = 1 << ep;
143 	u32 daint;
144 
145 	if (!dir_in)
146 		bit <<= 16;
147 
148 	local_irq_save(flags);
149 	daint = readl(hsotg->regs + DAINTMSK);
150 	if (en)
151 		daint |= bit;
152 	else
153 		daint &= ~bit;
154 	writel(daint, hsotg->regs + DAINTMSK);
155 	local_irq_restore(flags);
156 }
157 
158 /**
159  * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
160  * @hsotg: The device instance.
161  */
162 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
163 {
164 	unsigned int ep;
165 	unsigned int addr;
166 	unsigned int size;
167 	int timeout;
168 	u32 val;
169 
170 	/* set FIFO sizes to 2048/1024 */
171 
172 	writel(2048, hsotg->regs + GRXFSIZ);
173 	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
174 		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
175 
176 	/*
177 	 * arange all the rest of the TX FIFOs, as some versions of this
178 	 * block have overlapping default addresses. This also ensures
179 	 * that if the settings have been changed, then they are set to
180 	 * known values.
181 	 */
182 
183 	/* start at the end of the GNPTXFSIZ, rounded up */
184 	addr = 2048 + 1024;
185 
186 	/*
187 	 * Because we have not enough memory to have each TX FIFO of size at
188 	 * least 3072 bytes (the maximum single packet size), we create four
189 	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
190 	 * them to endpoints dynamically according to maxpacket size value of
191 	 * given endpoint.
192 	 */
193 
194 	/* 256*4=1024 bytes FIFO length */
195 	size = 256;
196 	for (ep = 1; ep <= 4; ep++) {
197 		val = addr;
198 		val |= size << FIFOSIZE_DEPTH_SHIFT;
199 		WARN_ONCE(addr + size > hsotg->fifo_mem,
200 			  "insufficient fifo memory");
201 		addr += size;
202 
203 		writel(val, hsotg->regs + DPTXFSIZN(ep));
204 	}
205 	/* 768*4=3072 bytes FIFO length */
206 	size = 768;
207 	for (ep = 5; ep <= 8; ep++) {
208 		val = addr;
209 		val |= size << FIFOSIZE_DEPTH_SHIFT;
210 		WARN_ONCE(addr + size > hsotg->fifo_mem,
211 			  "insufficient fifo memory");
212 		addr += size;
213 
214 		writel(val, hsotg->regs + DPTXFSIZN(ep));
215 	}
216 
217 	/*
218 	 * according to p428 of the design guide, we need to ensure that
219 	 * all fifos are flushed before continuing
220 	 */
221 
222 	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
223 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
224 
225 	/* wait until the fifos are both flushed */
226 	timeout = 100;
227 	while (1) {
228 		val = readl(hsotg->regs + GRSTCTL);
229 
230 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
231 			break;
232 
233 		if (--timeout == 0) {
234 			dev_err(hsotg->dev,
235 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
236 				__func__, val);
237 		}
238 
239 		udelay(1);
240 	}
241 
242 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 }
244 
245 /**
246  * @ep: USB endpoint to allocate request for.
247  * @flags: Allocation flags
248  *
249  * Allocate a new USB request structure appropriate for the specified endpoint
250  */
251 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
252 						      gfp_t flags)
253 {
254 	struct s3c_hsotg_req *req;
255 
256 	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
257 	if (!req)
258 		return NULL;
259 
260 	INIT_LIST_HEAD(&req->queue);
261 
262 	return &req->req;
263 }
264 
265 /**
266  * is_ep_periodic - return true if the endpoint is in periodic mode.
267  * @hs_ep: The endpoint to query.
268  *
269  * Returns true if the endpoint is in periodic mode, meaning it is being
270  * used for an Interrupt or ISO transfer.
271  */
272 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
273 {
274 	return hs_ep->periodic;
275 }
276 
277 /**
278  * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
279  * @hsotg: The device state.
280  * @hs_ep: The endpoint for the request
281  * @hs_req: The request being processed.
282  *
283  * This is the reverse of s3c_hsotg_map_dma(), called for the completion
284  * of a request to ensure the buffer is ready for access by the caller.
285  */
286 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
287 				struct s3c_hsotg_ep *hs_ep,
288 				struct s3c_hsotg_req *hs_req)
289 {
290 	struct usb_request *req = &hs_req->req;
291 
292 	/* ignore this if we're not moving any data */
293 	if (hs_req->req.length == 0)
294 		return;
295 
296 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 }
298 
299 /**
300  * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
301  * @hsotg: The controller state.
302  * @hs_ep: The endpoint we're going to write for.
303  * @hs_req: The request to write data for.
304  *
305  * This is called when the TxFIFO has some space in it to hold a new
306  * transmission and we have something to give it. The actual setup of
307  * the data size is done elsewhere, so all we have to do is to actually
308  * write the data.
309  *
310  * The return value is zero if there is more space (or nothing was done)
311  * otherwise -ENOSPC is returned if the FIFO space was used up.
312  *
313  * This routine is only needed for PIO
314  */
315 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
316 				struct s3c_hsotg_ep *hs_ep,
317 				struct s3c_hsotg_req *hs_req)
318 {
319 	bool periodic = is_ep_periodic(hs_ep);
320 	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
321 	int buf_pos = hs_req->req.actual;
322 	int to_write = hs_ep->size_loaded;
323 	void *data;
324 	int can_write;
325 	int pkt_round;
326 	int max_transfer;
327 
328 	to_write -= (buf_pos - hs_ep->last_load);
329 
330 	/* if there's nothing to write, get out early */
331 	if (to_write == 0)
332 		return 0;
333 
334 	if (periodic && !hsotg->dedicated_fifos) {
335 		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336 		int size_left;
337 		int size_done;
338 
339 		/*
340 		 * work out how much data was loaded so we can calculate
341 		 * how much data is left in the fifo.
342 		 */
343 
344 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345 
346 		/*
347 		 * if shared fifo, we cannot write anything until the
348 		 * previous data has been completely sent.
349 		 */
350 		if (hs_ep->fifo_load != 0) {
351 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352 			return -ENOSPC;
353 		}
354 
355 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
356 			__func__, size_left,
357 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
358 
359 		/* how much of the data has moved */
360 		size_done = hs_ep->size_loaded - size_left;
361 
362 		/* how much data is left in the fifo */
363 		can_write = hs_ep->fifo_load - size_done;
364 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
365 			__func__, can_write);
366 
367 		can_write = hs_ep->fifo_size - can_write;
368 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
369 			__func__, can_write);
370 
371 		if (can_write <= 0) {
372 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373 			return -ENOSPC;
374 		}
375 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376 		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
377 
378 		can_write &= 0xffff;
379 		can_write *= 4;
380 	} else {
381 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382 			dev_dbg(hsotg->dev,
383 				"%s: no queue slots available (0x%08x)\n",
384 				__func__, gnptxsts);
385 
386 			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387 			return -ENOSPC;
388 		}
389 
390 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391 		can_write *= 4;	/* fifo size is in 32bit quantities. */
392 	}
393 
394 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
395 
396 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
397 		 __func__, gnptxsts, can_write, to_write, max_transfer);
398 
399 	/*
400 	 * limit to 512 bytes of data, it seems at least on the non-periodic
401 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
402 	 * fragment of the end of the transfer in it.
403 	 */
404 	if (can_write > 512 && !periodic)
405 		can_write = 512;
406 
407 	/*
408 	 * limit the write to one max-packet size worth of data, but allow
409 	 * the transfer to return that it did not run out of fifo space
410 	 * doing it.
411 	 */
412 	if (to_write > max_transfer) {
413 		to_write = max_transfer;
414 
415 		/* it's needed only when we do not use dedicated fifos */
416 		if (!hsotg->dedicated_fifos)
417 			s3c_hsotg_en_gsint(hsotg,
418 					   periodic ? GINTSTS_PTXFEMP :
419 					   GINTSTS_NPTXFEMP);
420 	}
421 
422 	/* see if we can write data */
423 
424 	if (to_write > can_write) {
425 		to_write = can_write;
426 		pkt_round = to_write % max_transfer;
427 
428 		/*
429 		 * Round the write down to an
430 		 * exact number of packets.
431 		 *
432 		 * Note, we do not currently check to see if we can ever
433 		 * write a full packet or not to the FIFO.
434 		 */
435 
436 		if (pkt_round)
437 			to_write -= pkt_round;
438 
439 		/*
440 		 * enable correct FIFO interrupt to alert us when there
441 		 * is more room left.
442 		 */
443 
444 		/* it's needed only when we do not use dedicated fifos */
445 		if (!hsotg->dedicated_fifos)
446 			s3c_hsotg_en_gsint(hsotg,
447 					   periodic ? GINTSTS_PTXFEMP :
448 					   GINTSTS_NPTXFEMP);
449 	}
450 
451 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
452 		 to_write, hs_req->req.length, can_write, buf_pos);
453 
454 	if (to_write <= 0)
455 		return -ENOSPC;
456 
457 	hs_req->req.actual = buf_pos + to_write;
458 	hs_ep->total_data += to_write;
459 
460 	if (periodic)
461 		hs_ep->fifo_load += to_write;
462 
463 	to_write = DIV_ROUND_UP(to_write, 4);
464 	data = hs_req->req.buf + buf_pos;
465 
466 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467 
468 	return (to_write >= can_write) ? -ENOSPC : 0;
469 }
470 
471 /**
472  * get_ep_limit - get the maximum data legnth for this endpoint
473  * @hs_ep: The endpoint
474  *
475  * Return the maximum data that can be queued in one go on a given endpoint
476  * so that transfers that are too long can be split.
477  */
478 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
479 {
480 	int index = hs_ep->index;
481 	unsigned maxsize;
482 	unsigned maxpkt;
483 
484 	if (index != 0) {
485 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
486 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487 	} else {
488 		maxsize = 64+64;
489 		if (hs_ep->dir_in)
490 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491 		else
492 			maxpkt = 2;
493 	}
494 
495 	/* we made the constant loading easier above by using +1 */
496 	maxpkt--;
497 	maxsize--;
498 
499 	/*
500 	 * constrain by packet count if maxpkts*pktsize is greater
501 	 * than the length register size.
502 	 */
503 
504 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
505 		maxsize = maxpkt * hs_ep->ep.maxpacket;
506 
507 	return maxsize;
508 }
509 
510 /**
511  * s3c_hsotg_start_req - start a USB request from an endpoint's queue
512  * @hsotg: The controller state.
513  * @hs_ep: The endpoint to process a request for
514  * @hs_req: The request to start.
515  * @continuing: True if we are doing more for the current request.
516  *
517  * Start the given request running by setting the endpoint registers
518  * appropriately, and writing any data to the FIFOs.
519  */
520 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
521 				struct s3c_hsotg_ep *hs_ep,
522 				struct s3c_hsotg_req *hs_req,
523 				bool continuing)
524 {
525 	struct usb_request *ureq = &hs_req->req;
526 	int index = hs_ep->index;
527 	int dir_in = hs_ep->dir_in;
528 	u32 epctrl_reg;
529 	u32 epsize_reg;
530 	u32 epsize;
531 	u32 ctrl;
532 	unsigned length;
533 	unsigned packets;
534 	unsigned maxreq;
535 
536 	if (index != 0) {
537 		if (hs_ep->req && !continuing) {
538 			dev_err(hsotg->dev, "%s: active request\n", __func__);
539 			WARN_ON(1);
540 			return;
541 		} else if (hs_ep->req != hs_req && continuing) {
542 			dev_err(hsotg->dev,
543 				"%s: continue different req\n", __func__);
544 			WARN_ON(1);
545 			return;
546 		}
547 	}
548 
549 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
550 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551 
552 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553 		__func__, readl(hsotg->regs + epctrl_reg), index,
554 		hs_ep->dir_in ? "in" : "out");
555 
556 	/* If endpoint is stalled, we will restart request later */
557 	ctrl = readl(hsotg->regs + epctrl_reg);
558 
559 	if (ctrl & DXEPCTL_STALL) {
560 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
561 		return;
562 	}
563 
564 	length = ureq->length - ureq->actual;
565 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
566 		ureq->length, ureq->actual);
567 	if (0)
568 		dev_dbg(hsotg->dev,
569 			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
570 			ureq->buf, length, &ureq->dma,
571 			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
572 
573 	maxreq = get_ep_limit(hs_ep);
574 	if (length > maxreq) {
575 		int round = maxreq % hs_ep->ep.maxpacket;
576 
577 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
578 			__func__, length, maxreq, round);
579 
580 		/* round down to multiple of packets */
581 		if (round)
582 			maxreq -= round;
583 
584 		length = maxreq;
585 	}
586 
587 	if (length)
588 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
589 	else
590 		packets = 1;	/* send one packet if length is zero. */
591 
592 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
593 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
594 		return;
595 	}
596 
597 	if (dir_in && index != 0)
598 		if (hs_ep->isochronous)
599 			epsize = DXEPTSIZ_MC(packets);
600 		else
601 			epsize = DXEPTSIZ_MC(1);
602 	else
603 		epsize = 0;
604 
605 	if (index != 0 && ureq->zero) {
606 		/*
607 		 * test for the packets being exactly right for the
608 		 * transfer
609 		 */
610 
611 		if (length == (packets * hs_ep->ep.maxpacket))
612 			packets++;
613 	}
614 
615 	epsize |= DXEPTSIZ_PKTCNT(packets);
616 	epsize |= DXEPTSIZ_XFERSIZE(length);
617 
618 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
619 		__func__, packets, length, ureq->length, epsize, epsize_reg);
620 
621 	/* store the request as the current one we're doing */
622 	hs_ep->req = hs_req;
623 
624 	/* write size / packets */
625 	writel(epsize, hsotg->regs + epsize_reg);
626 
627 	if (using_dma(hsotg) && !continuing) {
628 		unsigned int dma_reg;
629 
630 		/*
631 		 * write DMA address to control register, buffer already
632 		 * synced by s3c_hsotg_ep_queue().
633 		 */
634 
635 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
636 		writel(ureq->dma, hsotg->regs + dma_reg);
637 
638 		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
639 			__func__, &ureq->dma, dma_reg);
640 	}
641 
642 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
643 	ctrl |= DXEPCTL_USBACTEP;
644 
645 	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
646 
647 	/* For Setup request do not clear NAK */
648 	if (hsotg->setup && index == 0)
649 		hsotg->setup = 0;
650 	else
651 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
652 
653 
654 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
655 	writel(ctrl, hsotg->regs + epctrl_reg);
656 
657 	/*
658 	 * set these, it seems that DMA support increments past the end
659 	 * of the packet buffer so we need to calculate the length from
660 	 * this information.
661 	 */
662 	hs_ep->size_loaded = length;
663 	hs_ep->last_load = ureq->actual;
664 
665 	if (dir_in && !using_dma(hsotg)) {
666 		/* set these anyway, we may need them for non-periodic in */
667 		hs_ep->fifo_load = 0;
668 
669 		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
670 	}
671 
672 	/*
673 	 * clear the INTknTXFEmpMsk when we start request, more as a aide
674 	 * to debugging to see what is going on.
675 	 */
676 	if (dir_in)
677 		writel(DIEPMSK_INTKNTXFEMPMSK,
678 		       hsotg->regs + DIEPINT(index));
679 
680 	/*
681 	 * Note, trying to clear the NAK here causes problems with transmit
682 	 * on the S3C6400 ending up with the TXFIFO becoming full.
683 	 */
684 
685 	/* check ep is enabled */
686 	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
687 		dev_warn(hsotg->dev,
688 			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
689 			 index, readl(hsotg->regs + epctrl_reg));
690 
691 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
692 		__func__, readl(hsotg->regs + epctrl_reg));
693 
694 	/* enable ep interrupts */
695 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
696 }
697 
698 /**
699  * s3c_hsotg_map_dma - map the DMA memory being used for the request
700  * @hsotg: The device state.
701  * @hs_ep: The endpoint the request is on.
702  * @req: The request being processed.
703  *
704  * We've been asked to queue a request, so ensure that the memory buffer
705  * is correctly setup for DMA. If we've been passed an extant DMA address
706  * then ensure the buffer has been synced to memory. If our buffer has no
707  * DMA memory, then we map the memory and mark our request to allow us to
708  * cleanup on completion.
709  */
710 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
711 			     struct s3c_hsotg_ep *hs_ep,
712 			     struct usb_request *req)
713 {
714 	struct s3c_hsotg_req *hs_req = our_req(req);
715 	int ret;
716 
717 	/* if the length is zero, ignore the DMA data */
718 	if (hs_req->req.length == 0)
719 		return 0;
720 
721 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
722 	if (ret)
723 		goto dma_error;
724 
725 	return 0;
726 
727 dma_error:
728 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
729 		__func__, req->buf, req->length);
730 
731 	return -EIO;
732 }
733 
734 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
735 			      gfp_t gfp_flags)
736 {
737 	struct s3c_hsotg_req *hs_req = our_req(req);
738 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
739 	struct s3c_hsotg *hs = hs_ep->parent;
740 	bool first;
741 
742 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
743 		ep->name, req, req->length, req->buf, req->no_interrupt,
744 		req->zero, req->short_not_ok);
745 
746 	/* initialise status of the request */
747 	INIT_LIST_HEAD(&hs_req->queue);
748 	req->actual = 0;
749 	req->status = -EINPROGRESS;
750 
751 	/* if we're using DMA, sync the buffers as necessary */
752 	if (using_dma(hs)) {
753 		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
754 		if (ret)
755 			return ret;
756 	}
757 
758 	first = list_empty(&hs_ep->queue);
759 	list_add_tail(&hs_req->queue, &hs_ep->queue);
760 
761 	if (first)
762 		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
763 
764 	return 0;
765 }
766 
767 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
768 			      gfp_t gfp_flags)
769 {
770 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
771 	struct s3c_hsotg *hs = hs_ep->parent;
772 	unsigned long flags = 0;
773 	int ret = 0;
774 
775 	spin_lock_irqsave(&hs->lock, flags);
776 	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
777 	spin_unlock_irqrestore(&hs->lock, flags);
778 
779 	return ret;
780 }
781 
782 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
783 				      struct usb_request *req)
784 {
785 	struct s3c_hsotg_req *hs_req = our_req(req);
786 
787 	kfree(hs_req);
788 }
789 
790 /**
791  * s3c_hsotg_complete_oursetup - setup completion callback
792  * @ep: The endpoint the request was on.
793  * @req: The request completed.
794  *
795  * Called on completion of any requests the driver itself
796  * submitted that need cleaning up.
797  */
798 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
799 					struct usb_request *req)
800 {
801 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
802 	struct s3c_hsotg *hsotg = hs_ep->parent;
803 
804 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
805 
806 	s3c_hsotg_ep_free_request(ep, req);
807 }
808 
809 /**
810  * ep_from_windex - convert control wIndex value to endpoint
811  * @hsotg: The driver state.
812  * @windex: The control request wIndex field (in host order).
813  *
814  * Convert the given wIndex into a pointer to an driver endpoint
815  * structure, or return NULL if it is not a valid endpoint.
816  */
817 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
818 					   u32 windex)
819 {
820 	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
821 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
822 	int idx = windex & 0x7F;
823 
824 	if (windex >= 0x100)
825 		return NULL;
826 
827 	if (idx > hsotg->num_of_eps)
828 		return NULL;
829 
830 	if (idx && ep->dir_in != dir)
831 		return NULL;
832 
833 	return ep;
834 }
835 
836 /**
837  * s3c_hsotg_send_reply - send reply to control request
838  * @hsotg: The device state
839  * @ep: Endpoint 0
840  * @buff: Buffer for request
841  * @length: Length of reply.
842  *
843  * Create a request and queue it on the given endpoint. This is useful as
844  * an internal method of sending replies to certain control requests, etc.
845  */
846 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
847 				struct s3c_hsotg_ep *ep,
848 				void *buff,
849 				int length)
850 {
851 	struct usb_request *req;
852 	int ret;
853 
854 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
855 
856 	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
857 	hsotg->ep0_reply = req;
858 	if (!req) {
859 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
860 		return -ENOMEM;
861 	}
862 
863 	req->buf = hsotg->ep0_buff;
864 	req->length = length;
865 	req->zero = 1; /* always do zero-length final transfer */
866 	req->complete = s3c_hsotg_complete_oursetup;
867 
868 	if (length)
869 		memcpy(req->buf, buff, length);
870 	else
871 		ep->sent_zlp = 1;
872 
873 	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
874 	if (ret) {
875 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
876 		return ret;
877 	}
878 
879 	return 0;
880 }
881 
882 /**
883  * s3c_hsotg_process_req_status - process request GET_STATUS
884  * @hsotg: The device state
885  * @ctrl: USB control request
886  */
887 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
888 					struct usb_ctrlrequest *ctrl)
889 {
890 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
891 	struct s3c_hsotg_ep *ep;
892 	__le16 reply;
893 	int ret;
894 
895 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
896 
897 	if (!ep0->dir_in) {
898 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
899 		return -EINVAL;
900 	}
901 
902 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
903 	case USB_RECIP_DEVICE:
904 		reply = cpu_to_le16(0); /* bit 0 => self powered,
905 					 * bit 1 => remote wakeup */
906 		break;
907 
908 	case USB_RECIP_INTERFACE:
909 		/* currently, the data result should be zero */
910 		reply = cpu_to_le16(0);
911 		break;
912 
913 	case USB_RECIP_ENDPOINT:
914 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
915 		if (!ep)
916 			return -ENOENT;
917 
918 		reply = cpu_to_le16(ep->halted ? 1 : 0);
919 		break;
920 
921 	default:
922 		return 0;
923 	}
924 
925 	if (le16_to_cpu(ctrl->wLength) != 2)
926 		return -EINVAL;
927 
928 	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
929 	if (ret) {
930 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
931 		return ret;
932 	}
933 
934 	return 1;
935 }
936 
937 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
938 
939 /**
940  * get_ep_head - return the first request on the endpoint
941  * @hs_ep: The controller endpoint to get
942  *
943  * Get the first request on the endpoint.
944  */
945 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
946 {
947 	if (list_empty(&hs_ep->queue))
948 		return NULL;
949 
950 	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
951 }
952 
953 /**
954  * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
955  * @hsotg: The device state
956  * @ctrl: USB control request
957  */
958 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
959 					 struct usb_ctrlrequest *ctrl)
960 {
961 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
962 	struct s3c_hsotg_req *hs_req;
963 	bool restart;
964 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
965 	struct s3c_hsotg_ep *ep;
966 	int ret;
967 	bool halted;
968 
969 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
970 		__func__, set ? "SET" : "CLEAR");
971 
972 	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
973 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
974 		if (!ep) {
975 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
976 				__func__, le16_to_cpu(ctrl->wIndex));
977 			return -ENOENT;
978 		}
979 
980 		switch (le16_to_cpu(ctrl->wValue)) {
981 		case USB_ENDPOINT_HALT:
982 			halted = ep->halted;
983 
984 			s3c_hsotg_ep_sethalt(&ep->ep, set);
985 
986 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
987 			if (ret) {
988 				dev_err(hsotg->dev,
989 					"%s: failed to send reply\n", __func__);
990 				return ret;
991 			}
992 
993 			/*
994 			 * we have to complete all requests for ep if it was
995 			 * halted, and the halt was cleared by CLEAR_FEATURE
996 			 */
997 
998 			if (!set && halted) {
999 				/*
1000 				 * If we have request in progress,
1001 				 * then complete it
1002 				 */
1003 				if (ep->req) {
1004 					hs_req = ep->req;
1005 					ep->req = NULL;
1006 					list_del_init(&hs_req->queue);
1007 					usb_gadget_giveback_request(&ep->ep,
1008 								    &hs_req->req);
1009 				}
1010 
1011 				/* If we have pending request, then start it */
1012 				restart = !list_empty(&ep->queue);
1013 				if (restart) {
1014 					hs_req = get_ep_head(ep);
1015 					s3c_hsotg_start_req(hsotg, ep,
1016 							    hs_req, false);
1017 				}
1018 			}
1019 
1020 			break;
1021 
1022 		default:
1023 			return -ENOENT;
1024 		}
1025 	} else
1026 		return -ENOENT;  /* currently only deal with endpoint */
1027 
1028 	return 1;
1029 }
1030 
1031 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1032 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1033 
1034 /**
1035  * s3c_hsotg_stall_ep0 - stall ep0
1036  * @hsotg: The device state
1037  *
1038  * Set stall for ep0 as response for setup request.
1039  */
1040 static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg)
1041 {
1042 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1043 	u32 reg;
1044 	u32 ctrl;
1045 
1046 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1047 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1048 
1049 	/*
1050 	 * DxEPCTL_Stall will be cleared by EP once it has
1051 	 * taken effect, so no need to clear later.
1052 	 */
1053 
1054 	ctrl = readl(hsotg->regs + reg);
1055 	ctrl |= DXEPCTL_STALL;
1056 	ctrl |= DXEPCTL_CNAK;
1057 	writel(ctrl, hsotg->regs + reg);
1058 
1059 	dev_dbg(hsotg->dev,
1060 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1061 		ctrl, reg, readl(hsotg->regs + reg));
1062 
1063 	 /*
1064 	  * complete won't be called, so we enqueue
1065 	  * setup request here
1066 	  */
1067 	 s3c_hsotg_enqueue_setup(hsotg);
1068 }
1069 
1070 /**
1071  * s3c_hsotg_process_control - process a control request
1072  * @hsotg: The device state
1073  * @ctrl: The control request received
1074  *
1075  * The controller has received the SETUP phase of a control request, and
1076  * needs to work out what to do next (and whether to pass it on to the
1077  * gadget driver).
1078  */
1079 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1080 				      struct usb_ctrlrequest *ctrl)
1081 {
1082 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1083 	int ret = 0;
1084 	u32 dcfg;
1085 
1086 	ep0->sent_zlp = 0;
1087 
1088 	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1089 		 ctrl->bRequest, ctrl->bRequestType,
1090 		 ctrl->wValue, ctrl->wLength);
1091 
1092 	/*
1093 	 * record the direction of the request, for later use when enquing
1094 	 * packets onto EP0.
1095 	 */
1096 
1097 	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1098 	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1099 
1100 	/*
1101 	 * if we've no data with this request, then the last part of the
1102 	 * transaction is going to implicitly be IN.
1103 	 */
1104 	if (ctrl->wLength == 0)
1105 		ep0->dir_in = 1;
1106 
1107 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1108 		switch (ctrl->bRequest) {
1109 		case USB_REQ_SET_ADDRESS:
1110 			s3c_hsotg_disconnect(hsotg);
1111 			dcfg = readl(hsotg->regs + DCFG);
1112 			dcfg &= ~DCFG_DEVADDR_MASK;
1113 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1114 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1115 			writel(dcfg, hsotg->regs + DCFG);
1116 
1117 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1118 
1119 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1120 			return;
1121 
1122 		case USB_REQ_GET_STATUS:
1123 			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1124 			break;
1125 
1126 		case USB_REQ_CLEAR_FEATURE:
1127 		case USB_REQ_SET_FEATURE:
1128 			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1129 			break;
1130 		}
1131 	}
1132 
1133 	/* as a fallback, try delivering it to the driver to deal with */
1134 
1135 	if (ret == 0 && hsotg->driver) {
1136 		spin_unlock(&hsotg->lock);
1137 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1138 		spin_lock(&hsotg->lock);
1139 		if (ret < 0)
1140 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1141 	}
1142 
1143 	/*
1144 	 * the request is either unhandlable, or is not formatted correctly
1145 	 * so respond with a STALL for the status stage to indicate failure.
1146 	 */
1147 
1148 	if (ret < 0)
1149 		s3c_hsotg_stall_ep0(hsotg);
1150 }
1151 
1152 /**
1153  * s3c_hsotg_complete_setup - completion of a setup transfer
1154  * @ep: The endpoint the request was on.
1155  * @req: The request completed.
1156  *
1157  * Called on completion of any requests the driver itself submitted for
1158  * EP0 setup packets
1159  */
1160 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1161 				     struct usb_request *req)
1162 {
1163 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1164 	struct s3c_hsotg *hsotg = hs_ep->parent;
1165 
1166 	if (req->status < 0) {
1167 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1168 		return;
1169 	}
1170 
1171 	spin_lock(&hsotg->lock);
1172 	if (req->actual == 0)
1173 		s3c_hsotg_enqueue_setup(hsotg);
1174 	else
1175 		s3c_hsotg_process_control(hsotg, req->buf);
1176 	spin_unlock(&hsotg->lock);
1177 }
1178 
1179 /**
1180  * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1181  * @hsotg: The device state.
1182  *
1183  * Enqueue a request on EP0 if necessary to received any SETUP packets
1184  * received from the host.
1185  */
1186 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1187 {
1188 	struct usb_request *req = hsotg->ctrl_req;
1189 	struct s3c_hsotg_req *hs_req = our_req(req);
1190 	int ret;
1191 
1192 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1193 
1194 	req->zero = 0;
1195 	req->length = 8;
1196 	req->buf = hsotg->ctrl_buff;
1197 	req->complete = s3c_hsotg_complete_setup;
1198 
1199 	if (!list_empty(&hs_req->queue)) {
1200 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1201 		return;
1202 	}
1203 
1204 	hsotg->eps[0].dir_in = 0;
1205 
1206 	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1207 	if (ret < 0) {
1208 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1209 		/*
1210 		 * Don't think there's much we can do other than watch the
1211 		 * driver fail.
1212 		 */
1213 	}
1214 }
1215 
1216 /**
1217  * s3c_hsotg_complete_request - complete a request given to us
1218  * @hsotg: The device state.
1219  * @hs_ep: The endpoint the request was on.
1220  * @hs_req: The request to complete.
1221  * @result: The result code (0 => Ok, otherwise errno)
1222  *
1223  * The given request has finished, so call the necessary completion
1224  * if it has one and then look to see if we can start a new request
1225  * on the endpoint.
1226  *
1227  * Note, expects the ep to already be locked as appropriate.
1228  */
1229 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1230 				       struct s3c_hsotg_ep *hs_ep,
1231 				       struct s3c_hsotg_req *hs_req,
1232 				       int result)
1233 {
1234 	bool restart;
1235 
1236 	if (!hs_req) {
1237 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1238 		return;
1239 	}
1240 
1241 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1242 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1243 
1244 	/*
1245 	 * only replace the status if we've not already set an error
1246 	 * from a previous transaction
1247 	 */
1248 
1249 	if (hs_req->req.status == -EINPROGRESS)
1250 		hs_req->req.status = result;
1251 
1252 	hs_ep->req = NULL;
1253 	list_del_init(&hs_req->queue);
1254 
1255 	if (using_dma(hsotg))
1256 		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1257 
1258 	/*
1259 	 * call the complete request with the locks off, just in case the
1260 	 * request tries to queue more work for this endpoint.
1261 	 */
1262 
1263 	if (hs_req->req.complete) {
1264 		spin_unlock(&hsotg->lock);
1265 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1266 		spin_lock(&hsotg->lock);
1267 	}
1268 
1269 	/*
1270 	 * Look to see if there is anything else to do. Note, the completion
1271 	 * of the previous request may have caused a new request to be started
1272 	 * so be careful when doing this.
1273 	 */
1274 
1275 	if (!hs_ep->req && result >= 0) {
1276 		restart = !list_empty(&hs_ep->queue);
1277 		if (restart) {
1278 			hs_req = get_ep_head(hs_ep);
1279 			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1280 		}
1281 	}
1282 }
1283 
1284 /**
1285  * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1286  * @hsotg: The device state.
1287  * @ep_idx: The endpoint index for the data
1288  * @size: The size of data in the fifo, in bytes
1289  *
1290  * The FIFO status shows there is data to read from the FIFO for a given
1291  * endpoint, so sort out whether we need to read the data into a request
1292  * that has been made for that endpoint.
1293  */
1294 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1295 {
1296 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1297 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1298 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1299 	int to_read;
1300 	int max_req;
1301 	int read_ptr;
1302 
1303 
1304 	if (!hs_req) {
1305 		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1306 		int ptr;
1307 
1308 		dev_warn(hsotg->dev,
1309 			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1310 			 __func__, size, ep_idx, epctl);
1311 
1312 		/* dump the data from the FIFO, we've nothing we can do */
1313 		for (ptr = 0; ptr < size; ptr += 4)
1314 			(void)readl(fifo);
1315 
1316 		return;
1317 	}
1318 
1319 	to_read = size;
1320 	read_ptr = hs_req->req.actual;
1321 	max_req = hs_req->req.length - read_ptr;
1322 
1323 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1324 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1325 
1326 	if (to_read > max_req) {
1327 		/*
1328 		 * more data appeared than we where willing
1329 		 * to deal with in this request.
1330 		 */
1331 
1332 		/* currently we don't deal this */
1333 		WARN_ON_ONCE(1);
1334 	}
1335 
1336 	hs_ep->total_data += to_read;
1337 	hs_req->req.actual += to_read;
1338 	to_read = DIV_ROUND_UP(to_read, 4);
1339 
1340 	/*
1341 	 * note, we might over-write the buffer end by 3 bytes depending on
1342 	 * alignment of the data.
1343 	 */
1344 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1345 }
1346 
1347 /**
1348  * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1349  * @hsotg: The device instance
1350  * @req: The request currently on this endpoint
1351  *
1352  * Generate a zero-length IN packet request for terminating a SETUP
1353  * transaction.
1354  *
1355  * Note, since we don't write any data to the TxFIFO, then it is
1356  * currently believed that we do not need to wait for any space in
1357  * the TxFIFO.
1358  */
1359 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1360 			       struct s3c_hsotg_req *req)
1361 {
1362 	u32 ctrl;
1363 
1364 	if (!req) {
1365 		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1366 		return;
1367 	}
1368 
1369 	if (req->req.length == 0) {
1370 		hsotg->eps[0].sent_zlp = 1;
1371 		s3c_hsotg_enqueue_setup(hsotg);
1372 		return;
1373 	}
1374 
1375 	hsotg->eps[0].dir_in = 1;
1376 	hsotg->eps[0].sent_zlp = 1;
1377 
1378 	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1379 
1380 	/* issue a zero-sized packet to terminate this */
1381 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1382 	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1383 
1384 	ctrl = readl(hsotg->regs + DIEPCTL0);
1385 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1386 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1387 	ctrl |= DXEPCTL_USBACTEP;
1388 	writel(ctrl, hsotg->regs + DIEPCTL0);
1389 }
1390 
1391 /**
1392  * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1393  * @hsotg: The device instance
1394  * @epnum: The endpoint received from
1395  * @was_setup: Set if processing a SetupDone event.
1396  *
1397  * The RXFIFO has delivered an OutDone event, which means that the data
1398  * transfer for an OUT endpoint has been completed, either by a short
1399  * packet or by the finish of a transfer.
1400  */
1401 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1402 				     int epnum, bool was_setup)
1403 {
1404 	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1405 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1406 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1407 	struct usb_request *req = &hs_req->req;
1408 	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1409 	int result = 0;
1410 
1411 	if (!hs_req) {
1412 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1413 		return;
1414 	}
1415 
1416 	if (using_dma(hsotg)) {
1417 		unsigned size_done;
1418 
1419 		/*
1420 		 * Calculate the size of the transfer by checking how much
1421 		 * is left in the endpoint size register and then working it
1422 		 * out from the amount we loaded for the transfer.
1423 		 *
1424 		 * We need to do this as DMA pointers are always 32bit aligned
1425 		 * so may overshoot/undershoot the transfer.
1426 		 */
1427 
1428 		size_done = hs_ep->size_loaded - size_left;
1429 		size_done += hs_ep->last_load;
1430 
1431 		req->actual = size_done;
1432 	}
1433 
1434 	/* if there is more request to do, schedule new transfer */
1435 	if (req->actual < req->length && size_left == 0) {
1436 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1437 		return;
1438 	} else if (epnum == 0) {
1439 		/*
1440 		 * After was_setup = 1 =>
1441 		 * set CNAK for non Setup requests
1442 		 */
1443 		hsotg->setup = was_setup ? 0 : 1;
1444 	}
1445 
1446 	if (req->actual < req->length && req->short_not_ok) {
1447 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1448 			__func__, req->actual, req->length);
1449 
1450 		/*
1451 		 * todo - what should we return here? there's no one else
1452 		 * even bothering to check the status.
1453 		 */
1454 	}
1455 
1456 	if (epnum == 0) {
1457 		/*
1458 		 * Condition req->complete != s3c_hsotg_complete_setup says:
1459 		 * send ZLP when we have an asynchronous request from gadget
1460 		 */
1461 		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1462 			s3c_hsotg_send_zlp(hsotg, hs_req);
1463 	}
1464 
1465 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1466 }
1467 
1468 /**
1469  * s3c_hsotg_read_frameno - read current frame number
1470  * @hsotg: The device instance
1471  *
1472  * Return the current frame number
1473  */
1474 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1475 {
1476 	u32 dsts;
1477 
1478 	dsts = readl(hsotg->regs + DSTS);
1479 	dsts &= DSTS_SOFFN_MASK;
1480 	dsts >>= DSTS_SOFFN_SHIFT;
1481 
1482 	return dsts;
1483 }
1484 
1485 /**
1486  * s3c_hsotg_handle_rx - RX FIFO has data
1487  * @hsotg: The device instance
1488  *
1489  * The IRQ handler has detected that the RX FIFO has some data in it
1490  * that requires processing, so find out what is in there and do the
1491  * appropriate read.
1492  *
1493  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1494  * chunks, so if you have x packets received on an endpoint you'll get x
1495  * FIFO events delivered, each with a packet's worth of data in it.
1496  *
1497  * When using DMA, we should not be processing events from the RXFIFO
1498  * as the actual data should be sent to the memory directly and we turn
1499  * on the completion interrupts to get notifications of transfer completion.
1500  */
1501 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1502 {
1503 	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1504 	u32 epnum, status, size;
1505 
1506 	WARN_ON(using_dma(hsotg));
1507 
1508 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1509 	status = grxstsr & GRXSTS_PKTSTS_MASK;
1510 
1511 	size = grxstsr & GRXSTS_BYTECNT_MASK;
1512 	size >>= GRXSTS_BYTECNT_SHIFT;
1513 
1514 	if (1)
1515 		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1516 			__func__, grxstsr, size, epnum);
1517 
1518 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1519 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1520 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1521 		break;
1522 
1523 	case GRXSTS_PKTSTS_OUTDONE:
1524 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1525 			s3c_hsotg_read_frameno(hsotg));
1526 
1527 		if (!using_dma(hsotg))
1528 			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1529 		break;
1530 
1531 	case GRXSTS_PKTSTS_SETUPDONE:
1532 		dev_dbg(hsotg->dev,
1533 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1534 			s3c_hsotg_read_frameno(hsotg),
1535 			readl(hsotg->regs + DOEPCTL(0)));
1536 
1537 		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1538 		break;
1539 
1540 	case GRXSTS_PKTSTS_OUTRX:
1541 		s3c_hsotg_rx_data(hsotg, epnum, size);
1542 		break;
1543 
1544 	case GRXSTS_PKTSTS_SETUPRX:
1545 		dev_dbg(hsotg->dev,
1546 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1547 			s3c_hsotg_read_frameno(hsotg),
1548 			readl(hsotg->regs + DOEPCTL(0)));
1549 
1550 		s3c_hsotg_rx_data(hsotg, epnum, size);
1551 		break;
1552 
1553 	default:
1554 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1555 			 __func__, grxstsr);
1556 
1557 		s3c_hsotg_dump(hsotg);
1558 		break;
1559 	}
1560 }
1561 
1562 /**
1563  * s3c_hsotg_ep0_mps - turn max packet size into register setting
1564  * @mps: The maximum packet size in bytes.
1565  */
1566 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1567 {
1568 	switch (mps) {
1569 	case 64:
1570 		return D0EPCTL_MPS_64;
1571 	case 32:
1572 		return D0EPCTL_MPS_32;
1573 	case 16:
1574 		return D0EPCTL_MPS_16;
1575 	case 8:
1576 		return D0EPCTL_MPS_8;
1577 	}
1578 
1579 	/* bad max packet size, warn and return invalid result */
1580 	WARN_ON(1);
1581 	return (u32)-1;
1582 }
1583 
1584 /**
1585  * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1586  * @hsotg: The driver state.
1587  * @ep: The index number of the endpoint
1588  * @mps: The maximum packet size in bytes
1589  *
1590  * Configure the maximum packet size for the given endpoint, updating
1591  * the hardware control registers to reflect this.
1592  */
1593 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1594 				       unsigned int ep, unsigned int mps)
1595 {
1596 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1597 	void __iomem *regs = hsotg->regs;
1598 	u32 mpsval;
1599 	u32 mcval;
1600 	u32 reg;
1601 
1602 	if (ep == 0) {
1603 		/* EP0 is a special case */
1604 		mpsval = s3c_hsotg_ep0_mps(mps);
1605 		if (mpsval > 3)
1606 			goto bad_mps;
1607 		hs_ep->ep.maxpacket = mps;
1608 		hs_ep->mc = 1;
1609 	} else {
1610 		mpsval = mps & DXEPCTL_MPS_MASK;
1611 		if (mpsval > 1024)
1612 			goto bad_mps;
1613 		mcval = ((mps >> 11) & 0x3) + 1;
1614 		hs_ep->mc = mcval;
1615 		if (mcval > 3)
1616 			goto bad_mps;
1617 		hs_ep->ep.maxpacket = mpsval;
1618 	}
1619 
1620 	/*
1621 	 * update both the in and out endpoint controldir_ registers, even
1622 	 * if one of the directions may not be in use.
1623 	 */
1624 
1625 	reg = readl(regs + DIEPCTL(ep));
1626 	reg &= ~DXEPCTL_MPS_MASK;
1627 	reg |= mpsval;
1628 	writel(reg, regs + DIEPCTL(ep));
1629 
1630 	if (ep) {
1631 		reg = readl(regs + DOEPCTL(ep));
1632 		reg &= ~DXEPCTL_MPS_MASK;
1633 		reg |= mpsval;
1634 		writel(reg, regs + DOEPCTL(ep));
1635 	}
1636 
1637 	return;
1638 
1639 bad_mps:
1640 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1641 }
1642 
1643 /**
1644  * s3c_hsotg_txfifo_flush - flush Tx FIFO
1645  * @hsotg: The driver state
1646  * @idx: The index for the endpoint (0..15)
1647  */
1648 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1649 {
1650 	int timeout;
1651 	int val;
1652 
1653 	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1654 		hsotg->regs + GRSTCTL);
1655 
1656 	/* wait until the fifo is flushed */
1657 	timeout = 100;
1658 
1659 	while (1) {
1660 		val = readl(hsotg->regs + GRSTCTL);
1661 
1662 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1663 			break;
1664 
1665 		if (--timeout == 0) {
1666 			dev_err(hsotg->dev,
1667 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1668 				__func__, val);
1669 			break;
1670 		}
1671 
1672 		udelay(1);
1673 	}
1674 }
1675 
1676 /**
1677  * s3c_hsotg_trytx - check to see if anything needs transmitting
1678  * @hsotg: The driver state
1679  * @hs_ep: The driver endpoint to check.
1680  *
1681  * Check to see if there is a request that has data to send, and if so
1682  * make an attempt to write data into the FIFO.
1683  */
1684 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1685 			   struct s3c_hsotg_ep *hs_ep)
1686 {
1687 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1688 
1689 	if (!hs_ep->dir_in || !hs_req) {
1690 		/**
1691 		 * if request is not enqueued, we disable interrupts
1692 		 * for endpoints, excepting ep0
1693 		 */
1694 		if (hs_ep->index != 0)
1695 			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1696 					     hs_ep->dir_in, 0);
1697 		return 0;
1698 	}
1699 
1700 	if (hs_req->req.actual < hs_req->req.length) {
1701 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1702 			hs_ep->index);
1703 		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 /**
1710  * s3c_hsotg_complete_in - complete IN transfer
1711  * @hsotg: The device state.
1712  * @hs_ep: The endpoint that has just completed.
1713  *
1714  * An IN transfer has been completed, update the transfer's state and then
1715  * call the relevant completion routines.
1716  */
1717 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1718 				  struct s3c_hsotg_ep *hs_ep)
1719 {
1720 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1721 	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1722 	int size_left, size_done;
1723 
1724 	if (!hs_req) {
1725 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1726 		return;
1727 	}
1728 
1729 	/* Finish ZLP handling for IN EP0 transactions */
1730 	if (hsotg->eps[0].sent_zlp) {
1731 		dev_dbg(hsotg->dev, "zlp packet received\n");
1732 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1733 		return;
1734 	}
1735 
1736 	/*
1737 	 * Calculate the size of the transfer by checking how much is left
1738 	 * in the endpoint size register and then working it out from
1739 	 * the amount we loaded for the transfer.
1740 	 *
1741 	 * We do this even for DMA, as the transfer may have incremented
1742 	 * past the end of the buffer (DMA transfers are always 32bit
1743 	 * aligned).
1744 	 */
1745 
1746 	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1747 
1748 	size_done = hs_ep->size_loaded - size_left;
1749 	size_done += hs_ep->last_load;
1750 
1751 	if (hs_req->req.actual != size_done)
1752 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1753 			__func__, hs_req->req.actual, size_done);
1754 
1755 	hs_req->req.actual = size_done;
1756 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1757 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1758 
1759 	/*
1760 	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1761 	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1762 	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1763 	 * inform the host that no more data is available.
1764 	 * The state of req.zero member is checked to be sure that the value to
1765 	 * send is smaller than wValue expected from host.
1766 	 * Check req.length to NOT send another ZLP when the current one is
1767 	 * under completion (the one for which this completion has been called).
1768 	 */
1769 	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1770 	    hs_req->req.length == hs_req->req.actual &&
1771 	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1772 
1773 		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1774 		s3c_hsotg_send_zlp(hsotg, hs_req);
1775 
1776 		return;
1777 	}
1778 
1779 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1780 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1781 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1782 	} else
1783 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1784 }
1785 
1786 /**
1787  * s3c_hsotg_epint - handle an in/out endpoint interrupt
1788  * @hsotg: The driver state
1789  * @idx: The index for the endpoint (0..15)
1790  * @dir_in: Set if this is an IN endpoint
1791  *
1792  * Process and clear any interrupt pending for an individual endpoint
1793  */
1794 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1795 			    int dir_in)
1796 {
1797 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1798 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1799 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1800 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1801 	u32 ints;
1802 	u32 ctrl;
1803 
1804 	ints = readl(hsotg->regs + epint_reg);
1805 	ctrl = readl(hsotg->regs + epctl_reg);
1806 
1807 	/* Clear endpoint interrupts */
1808 	writel(ints, hsotg->regs + epint_reg);
1809 
1810 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1811 		__func__, idx, dir_in ? "in" : "out", ints);
1812 
1813 	if (ints & DXEPINT_XFERCOMPL) {
1814 		if (hs_ep->isochronous && hs_ep->interval == 1) {
1815 			if (ctrl & DXEPCTL_EOFRNUM)
1816 				ctrl |= DXEPCTL_SETEVENFR;
1817 			else
1818 				ctrl |= DXEPCTL_SETODDFR;
1819 			writel(ctrl, hsotg->regs + epctl_reg);
1820 		}
1821 
1822 		dev_dbg(hsotg->dev,
1823 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1824 			__func__, readl(hsotg->regs + epctl_reg),
1825 			readl(hsotg->regs + epsiz_reg));
1826 
1827 		/*
1828 		 * we get OutDone from the FIFO, so we only need to look
1829 		 * at completing IN requests here
1830 		 */
1831 		if (dir_in) {
1832 			s3c_hsotg_complete_in(hsotg, hs_ep);
1833 
1834 			if (idx == 0 && !hs_ep->req)
1835 				s3c_hsotg_enqueue_setup(hsotg);
1836 		} else if (using_dma(hsotg)) {
1837 			/*
1838 			 * We're using DMA, we need to fire an OutDone here
1839 			 * as we ignore the RXFIFO.
1840 			 */
1841 
1842 			s3c_hsotg_handle_outdone(hsotg, idx, false);
1843 		}
1844 	}
1845 
1846 	if (ints & DXEPINT_EPDISBLD) {
1847 		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1848 
1849 		if (dir_in) {
1850 			int epctl = readl(hsotg->regs + epctl_reg);
1851 
1852 			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1853 
1854 			if ((epctl & DXEPCTL_STALL) &&
1855 				(epctl & DXEPCTL_EPTYPE_BULK)) {
1856 				int dctl = readl(hsotg->regs + DCTL);
1857 
1858 				dctl |= DCTL_CGNPINNAK;
1859 				writel(dctl, hsotg->regs + DCTL);
1860 			}
1861 		}
1862 	}
1863 
1864 	if (ints & DXEPINT_AHBERR)
1865 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1866 
1867 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1868 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1869 
1870 		if (using_dma(hsotg) && idx == 0) {
1871 			/*
1872 			 * this is the notification we've received a
1873 			 * setup packet. In non-DMA mode we'd get this
1874 			 * from the RXFIFO, instead we need to process
1875 			 * the setup here.
1876 			 */
1877 
1878 			if (dir_in)
1879 				WARN_ON_ONCE(1);
1880 			else
1881 				s3c_hsotg_handle_outdone(hsotg, 0, true);
1882 		}
1883 	}
1884 
1885 	if (ints & DXEPINT_BACK2BACKSETUP)
1886 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1887 
1888 	if (dir_in && !hs_ep->isochronous) {
1889 		/* not sure if this is important, but we'll clear it anyway */
1890 		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1891 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1892 				__func__, idx);
1893 		}
1894 
1895 		/* this probably means something bad is happening */
1896 		if (ints & DIEPMSK_INTKNEPMISMSK) {
1897 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1898 				 __func__, idx);
1899 		}
1900 
1901 		/* FIFO has space or is empty (see GAHBCFG) */
1902 		if (hsotg->dedicated_fifos &&
1903 		    ints & DIEPMSK_TXFIFOEMPTY) {
1904 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1905 				__func__, idx);
1906 			if (!using_dma(hsotg))
1907 				s3c_hsotg_trytx(hsotg, hs_ep);
1908 		}
1909 	}
1910 }
1911 
1912 /**
1913  * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1914  * @hsotg: The device state.
1915  *
1916  * Handle updating the device settings after the enumeration phase has
1917  * been completed.
1918  */
1919 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1920 {
1921 	u32 dsts = readl(hsotg->regs + DSTS);
1922 	int ep0_mps = 0, ep_mps = 8;
1923 
1924 	/*
1925 	 * This should signal the finish of the enumeration phase
1926 	 * of the USB handshaking, so we should now know what rate
1927 	 * we connected at.
1928 	 */
1929 
1930 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1931 
1932 	/*
1933 	 * note, since we're limited by the size of transfer on EP0, and
1934 	 * it seems IN transfers must be a even number of packets we do
1935 	 * not advertise a 64byte MPS on EP0.
1936 	 */
1937 
1938 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1939 	switch (dsts & DSTS_ENUMSPD_MASK) {
1940 	case DSTS_ENUMSPD_FS:
1941 	case DSTS_ENUMSPD_FS48:
1942 		hsotg->gadget.speed = USB_SPEED_FULL;
1943 		ep0_mps = EP0_MPS_LIMIT;
1944 		ep_mps = 1023;
1945 		break;
1946 
1947 	case DSTS_ENUMSPD_HS:
1948 		hsotg->gadget.speed = USB_SPEED_HIGH;
1949 		ep0_mps = EP0_MPS_LIMIT;
1950 		ep_mps = 1024;
1951 		break;
1952 
1953 	case DSTS_ENUMSPD_LS:
1954 		hsotg->gadget.speed = USB_SPEED_LOW;
1955 		/*
1956 		 * note, we don't actually support LS in this driver at the
1957 		 * moment, and the documentation seems to imply that it isn't
1958 		 * supported by the PHYs on some of the devices.
1959 		 */
1960 		break;
1961 	}
1962 	dev_info(hsotg->dev, "new device is %s\n",
1963 		 usb_speed_string(hsotg->gadget.speed));
1964 
1965 	/*
1966 	 * we should now know the maximum packet size for an
1967 	 * endpoint, so set the endpoints to a default value.
1968 	 */
1969 
1970 	if (ep0_mps) {
1971 		int i;
1972 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1973 		for (i = 1; i < hsotg->num_of_eps; i++)
1974 			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1975 	}
1976 
1977 	/* ensure after enumeration our EP0 is active */
1978 
1979 	s3c_hsotg_enqueue_setup(hsotg);
1980 
1981 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1982 		readl(hsotg->regs + DIEPCTL0),
1983 		readl(hsotg->regs + DOEPCTL0));
1984 }
1985 
1986 /**
1987  * kill_all_requests - remove all requests from the endpoint's queue
1988  * @hsotg: The device state.
1989  * @ep: The endpoint the requests may be on.
1990  * @result: The result code to use.
1991  * @force: Force removal of any current requests
1992  *
1993  * Go through the requests on the given endpoint and mark them
1994  * completed with the given result code.
1995  */
1996 static void kill_all_requests(struct s3c_hsotg *hsotg,
1997 			      struct s3c_hsotg_ep *ep,
1998 			      int result, bool force)
1999 {
2000 	struct s3c_hsotg_req *req, *treq;
2001 	unsigned size;
2002 
2003 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2004 		/*
2005 		 * currently, we can't do much about an already
2006 		 * running request on an in endpoint
2007 		 */
2008 
2009 		if (ep->req == req && ep->dir_in && !force)
2010 			continue;
2011 
2012 		s3c_hsotg_complete_request(hsotg, ep, req,
2013 					   result);
2014 	}
2015 	if (!hsotg->dedicated_fifos)
2016 		return;
2017 	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2018 	if (size < ep->fifo_size)
2019 		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2020 }
2021 
2022 /**
2023  * s3c_hsotg_disconnect - disconnect service
2024  * @hsotg: The device state.
2025  *
2026  * The device has been disconnected. Remove all current
2027  * transactions and signal the gadget driver that this
2028  * has happened.
2029  */
2030 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2031 {
2032 	unsigned ep;
2033 
2034 	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2035 		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2036 
2037 	call_gadget(hsotg, disconnect);
2038 }
2039 
2040 /**
2041  * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2042  * @hsotg: The device state:
2043  * @periodic: True if this is a periodic FIFO interrupt
2044  */
2045 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2046 {
2047 	struct s3c_hsotg_ep *ep;
2048 	int epno, ret;
2049 
2050 	/* look through for any more data to transmit */
2051 
2052 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2053 		ep = &hsotg->eps[epno];
2054 
2055 		if (!ep->dir_in)
2056 			continue;
2057 
2058 		if ((periodic && !ep->periodic) ||
2059 		    (!periodic && ep->periodic))
2060 			continue;
2061 
2062 		ret = s3c_hsotg_trytx(hsotg, ep);
2063 		if (ret < 0)
2064 			break;
2065 	}
2066 }
2067 
2068 /* IRQ flags which will trigger a retry around the IRQ loop */
2069 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2070 			GINTSTS_PTXFEMP |  \
2071 			GINTSTS_RXFLVL)
2072 
2073 /**
2074  * s3c_hsotg_corereset - issue softreset to the core
2075  * @hsotg: The device state
2076  *
2077  * Issue a soft reset to the core, and await the core finishing it.
2078  */
2079 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2080 {
2081 	int timeout;
2082 	u32 grstctl;
2083 
2084 	dev_dbg(hsotg->dev, "resetting core\n");
2085 
2086 	/* issue soft reset */
2087 	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2088 
2089 	timeout = 10000;
2090 	do {
2091 		grstctl = readl(hsotg->regs + GRSTCTL);
2092 	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2093 
2094 	if (grstctl & GRSTCTL_CSFTRST) {
2095 		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2096 		return -EINVAL;
2097 	}
2098 
2099 	timeout = 10000;
2100 
2101 	while (1) {
2102 		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2103 
2104 		if (timeout-- < 0) {
2105 			dev_info(hsotg->dev,
2106 				 "%s: reset failed, GRSTCTL=%08x\n",
2107 				 __func__, grstctl);
2108 			return -ETIMEDOUT;
2109 		}
2110 
2111 		if (!(grstctl & GRSTCTL_AHBIDLE))
2112 			continue;
2113 
2114 		break;		/* reset done */
2115 	}
2116 
2117 	dev_dbg(hsotg->dev, "reset successful\n");
2118 	return 0;
2119 }
2120 
2121 /**
2122  * s3c_hsotg_core_init - issue softreset to the core
2123  * @hsotg: The device state
2124  *
2125  * Issue a soft reset to the core, and await the core finishing it.
2126  */
2127 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2128 {
2129 	s3c_hsotg_corereset(hsotg);
2130 
2131 	/*
2132 	 * we must now enable ep0 ready for host detection and then
2133 	 * set configuration.
2134 	 */
2135 
2136 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2137 	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2138 	       (0x5 << 10), hsotg->regs + GUSBCFG);
2139 
2140 	s3c_hsotg_init_fifo(hsotg);
2141 
2142 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2143 
2144 	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2145 
2146 	/* Clear any pending OTG interrupts */
2147 	writel(0xffffffff, hsotg->regs + GOTGINT);
2148 
2149 	/* Clear any pending interrupts */
2150 	writel(0xffffffff, hsotg->regs + GINTSTS);
2151 
2152 	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2153 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2154 		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2155 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2156 		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2157 		hsotg->regs + GINTMSK);
2158 
2159 	if (using_dma(hsotg))
2160 		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2161 		       GAHBCFG_HBSTLEN_INCR4,
2162 		       hsotg->regs + GAHBCFG);
2163 	else
2164 		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2165 						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2166 		       GAHBCFG_GLBL_INTR_EN,
2167 		       hsotg->regs + GAHBCFG);
2168 
2169 	/*
2170 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2171 	 * when we have no data to transfer. Otherwise we get being flooded by
2172 	 * interrupts.
2173 	 */
2174 
2175 	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
2176 		DIEPMSK_INTKNTXFEMPMSK : 0) |
2177 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2178 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2179 		DIEPMSK_INTKNEPMISMSK,
2180 		hsotg->regs + DIEPMSK);
2181 
2182 	/*
2183 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2184 	 * DMA mode we may need this.
2185 	 */
2186 	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2187 				    DIEPMSK_TIMEOUTMSK) : 0) |
2188 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2189 		DOEPMSK_SETUPMSK,
2190 		hsotg->regs + DOEPMSK);
2191 
2192 	writel(0, hsotg->regs + DAINTMSK);
2193 
2194 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2195 		readl(hsotg->regs + DIEPCTL0),
2196 		readl(hsotg->regs + DOEPCTL0));
2197 
2198 	/* enable in and out endpoint interrupts */
2199 	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2200 
2201 	/*
2202 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2203 	 * the data. In DMA mode, we get events from the FIFO but also
2204 	 * things we cannot process, so do not use it.
2205 	 */
2206 	if (!using_dma(hsotg))
2207 		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2208 
2209 	/* Enable interrupts for EP0 in and out */
2210 	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2211 	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2212 
2213 	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2214 	udelay(10);  /* see openiboot */
2215 	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2216 
2217 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2218 
2219 	/*
2220 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2221 	 * writing to the EPCTL register..
2222 	 */
2223 
2224 	/* set to read 1 8byte packet */
2225 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2226 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2227 
2228 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2229 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2230 	       DXEPCTL_USBACTEP,
2231 	       hsotg->regs + DOEPCTL0);
2232 
2233 	/* enable, but don't activate EP0in */
2234 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2235 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2236 
2237 	s3c_hsotg_enqueue_setup(hsotg);
2238 
2239 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2240 		readl(hsotg->regs + DIEPCTL0),
2241 		readl(hsotg->regs + DOEPCTL0));
2242 
2243 	/* clear global NAKs */
2244 	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2245 	       hsotg->regs + DCTL);
2246 
2247 	/* must be at-least 3ms to allow bus to see disconnect */
2248 	mdelay(3);
2249 
2250 	/* remove the soft-disconnect and let's go */
2251 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2252 }
2253 
2254 /**
2255  * s3c_hsotg_irq - handle device interrupt
2256  * @irq: The IRQ number triggered
2257  * @pw: The pw value when registered the handler.
2258  */
2259 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2260 {
2261 	struct s3c_hsotg *hsotg = pw;
2262 	int retry_count = 8;
2263 	u32 gintsts;
2264 	u32 gintmsk;
2265 
2266 	spin_lock(&hsotg->lock);
2267 irq_retry:
2268 	gintsts = readl(hsotg->regs + GINTSTS);
2269 	gintmsk = readl(hsotg->regs + GINTMSK);
2270 
2271 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2272 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2273 
2274 	gintsts &= gintmsk;
2275 
2276 	if (gintsts & GINTSTS_OTGINT) {
2277 		u32 otgint = readl(hsotg->regs + GOTGINT);
2278 
2279 		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2280 
2281 		writel(otgint, hsotg->regs + GOTGINT);
2282 	}
2283 
2284 	if (gintsts & GINTSTS_SESSREQINT) {
2285 		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2286 		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2287 	}
2288 
2289 	if (gintsts & GINTSTS_ENUMDONE) {
2290 		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2291 
2292 		s3c_hsotg_irq_enumdone(hsotg);
2293 	}
2294 
2295 	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2296 		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2297 			readl(hsotg->regs + DSTS),
2298 			readl(hsotg->regs + GOTGCTL));
2299 
2300 		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2301 	}
2302 
2303 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2304 		u32 daint = readl(hsotg->regs + DAINT);
2305 		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2306 		u32 daint_out, daint_in;
2307 		int ep;
2308 
2309 		daint &= daintmsk;
2310 		daint_out = daint >> DAINT_OUTEP_SHIFT;
2311 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2312 
2313 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2314 
2315 		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2316 			if (daint_out & 1)
2317 				s3c_hsotg_epint(hsotg, ep, 0);
2318 		}
2319 
2320 		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2321 			if (daint_in & 1)
2322 				s3c_hsotg_epint(hsotg, ep, 1);
2323 		}
2324 	}
2325 
2326 	if (gintsts & GINTSTS_USBRST) {
2327 
2328 		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2329 
2330 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2331 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2332 			readl(hsotg->regs + GNPTXSTS));
2333 
2334 		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2335 
2336 		if (usb_status & GOTGCTL_BSESVLD) {
2337 			if (time_after(jiffies, hsotg->last_rst +
2338 				       msecs_to_jiffies(200))) {
2339 
2340 				kill_all_requests(hsotg, &hsotg->eps[0],
2341 							  -ECONNRESET, true);
2342 
2343 				s3c_hsotg_core_init(hsotg);
2344 				hsotg->last_rst = jiffies;
2345 			}
2346 		}
2347 	}
2348 
2349 	/* check both FIFOs */
2350 
2351 	if (gintsts & GINTSTS_NPTXFEMP) {
2352 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2353 
2354 		/*
2355 		 * Disable the interrupt to stop it happening again
2356 		 * unless one of these endpoint routines decides that
2357 		 * it needs re-enabling
2358 		 */
2359 
2360 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2361 		s3c_hsotg_irq_fifoempty(hsotg, false);
2362 	}
2363 
2364 	if (gintsts & GINTSTS_PTXFEMP) {
2365 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2366 
2367 		/* See note in GINTSTS_NPTxFEmp */
2368 
2369 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2370 		s3c_hsotg_irq_fifoempty(hsotg, true);
2371 	}
2372 
2373 	if (gintsts & GINTSTS_RXFLVL) {
2374 		/*
2375 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2376 		 * we need to retry s3c_hsotg_handle_rx if this is still
2377 		 * set.
2378 		 */
2379 
2380 		s3c_hsotg_handle_rx(hsotg);
2381 	}
2382 
2383 	if (gintsts & GINTSTS_MODEMIS) {
2384 		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2385 		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2386 	}
2387 
2388 	if (gintsts & GINTSTS_USBSUSP) {
2389 		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2390 		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2391 
2392 		call_gadget(hsotg, suspend);
2393 	}
2394 
2395 	if (gintsts & GINTSTS_WKUPINT) {
2396 		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2397 		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2398 
2399 		call_gadget(hsotg, resume);
2400 	}
2401 
2402 	if (gintsts & GINTSTS_ERLYSUSP) {
2403 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2404 		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2405 	}
2406 
2407 	/*
2408 	 * these next two seem to crop-up occasionally causing the core
2409 	 * to shutdown the USB transfer, so try clearing them and logging
2410 	 * the occurrence.
2411 	 */
2412 
2413 	if (gintsts & GINTSTS_GOUTNAKEFF) {
2414 		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2415 
2416 		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2417 
2418 		s3c_hsotg_dump(hsotg);
2419 	}
2420 
2421 	if (gintsts & GINTSTS_GINNAKEFF) {
2422 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2423 
2424 		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2425 
2426 		s3c_hsotg_dump(hsotg);
2427 	}
2428 
2429 	/*
2430 	 * if we've had fifo events, we should try and go around the
2431 	 * loop again to see if there's any point in returning yet.
2432 	 */
2433 
2434 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2435 			goto irq_retry;
2436 
2437 	spin_unlock(&hsotg->lock);
2438 
2439 	return IRQ_HANDLED;
2440 }
2441 
2442 /**
2443  * s3c_hsotg_ep_enable - enable the given endpoint
2444  * @ep: The USB endpint to configure
2445  * @desc: The USB endpoint descriptor to configure with.
2446  *
2447  * This is called from the USB gadget code's usb_ep_enable().
2448  */
2449 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2450 			       const struct usb_endpoint_descriptor *desc)
2451 {
2452 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2453 	struct s3c_hsotg *hsotg = hs_ep->parent;
2454 	unsigned long flags;
2455 	int index = hs_ep->index;
2456 	u32 epctrl_reg;
2457 	u32 epctrl;
2458 	u32 mps;
2459 	int dir_in;
2460 	int i, val, size;
2461 	int ret = 0;
2462 
2463 	dev_dbg(hsotg->dev,
2464 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2465 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2466 		desc->wMaxPacketSize, desc->bInterval);
2467 
2468 	/* not to be called for EP0 */
2469 	WARN_ON(index == 0);
2470 
2471 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2472 	if (dir_in != hs_ep->dir_in) {
2473 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2474 		return -EINVAL;
2475 	}
2476 
2477 	mps = usb_endpoint_maxp(desc);
2478 
2479 	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2480 
2481 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2482 	epctrl = readl(hsotg->regs + epctrl_reg);
2483 
2484 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2485 		__func__, epctrl, epctrl_reg);
2486 
2487 	spin_lock_irqsave(&hsotg->lock, flags);
2488 
2489 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2490 	epctrl |= DXEPCTL_MPS(mps);
2491 
2492 	/*
2493 	 * mark the endpoint as active, otherwise the core may ignore
2494 	 * transactions entirely for this endpoint
2495 	 */
2496 	epctrl |= DXEPCTL_USBACTEP;
2497 
2498 	/*
2499 	 * set the NAK status on the endpoint, otherwise we might try and
2500 	 * do something with data that we've yet got a request to process
2501 	 * since the RXFIFO will take data for an endpoint even if the
2502 	 * size register hasn't been set.
2503 	 */
2504 
2505 	epctrl |= DXEPCTL_SNAK;
2506 
2507 	/* update the endpoint state */
2508 	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2509 
2510 	/* default, set to non-periodic */
2511 	hs_ep->isochronous = 0;
2512 	hs_ep->periodic = 0;
2513 	hs_ep->halted = 0;
2514 	hs_ep->interval = desc->bInterval;
2515 
2516 	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2517 		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2518 
2519 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2520 	case USB_ENDPOINT_XFER_ISOC:
2521 		epctrl |= DXEPCTL_EPTYPE_ISO;
2522 		epctrl |= DXEPCTL_SETEVENFR;
2523 		hs_ep->isochronous = 1;
2524 		if (dir_in)
2525 			hs_ep->periodic = 1;
2526 		break;
2527 
2528 	case USB_ENDPOINT_XFER_BULK:
2529 		epctrl |= DXEPCTL_EPTYPE_BULK;
2530 		break;
2531 
2532 	case USB_ENDPOINT_XFER_INT:
2533 		if (dir_in)
2534 			hs_ep->periodic = 1;
2535 
2536 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2537 		break;
2538 
2539 	case USB_ENDPOINT_XFER_CONTROL:
2540 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2541 		break;
2542 	}
2543 
2544 	/*
2545 	 * if the hardware has dedicated fifos, we must give each IN EP
2546 	 * a unique tx-fifo even if it is non-periodic.
2547 	 */
2548 	if (dir_in && hsotg->dedicated_fifos) {
2549 		size = hs_ep->ep.maxpacket*hs_ep->mc;
2550 		for (i = 1; i <= 8; ++i) {
2551 			if (hsotg->fifo_map & (1<<i))
2552 				continue;
2553 			val = readl(hsotg->regs + DPTXFSIZN(i));
2554 			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2555 			if (val < size)
2556 				continue;
2557 			hsotg->fifo_map |= 1<<i;
2558 
2559 			epctrl |= DXEPCTL_TXFNUM(i);
2560 			hs_ep->fifo_index = i;
2561 			hs_ep->fifo_size = val;
2562 			break;
2563 		}
2564 		if (i == 8) {
2565 			ret = -ENOMEM;
2566 			goto error;
2567 		}
2568 	}
2569 
2570 	/* for non control endpoints, set PID to D0 */
2571 	if (index)
2572 		epctrl |= DXEPCTL_SETD0PID;
2573 
2574 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2575 		__func__, epctrl);
2576 
2577 	writel(epctrl, hsotg->regs + epctrl_reg);
2578 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2579 		__func__, readl(hsotg->regs + epctrl_reg));
2580 
2581 	/* enable the endpoint interrupt */
2582 	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2583 
2584 error:
2585 	spin_unlock_irqrestore(&hsotg->lock, flags);
2586 	return ret;
2587 }
2588 
2589 /**
2590  * s3c_hsotg_ep_disable - disable given endpoint
2591  * @ep: The endpoint to disable.
2592  */
2593 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2594 {
2595 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2596 	struct s3c_hsotg *hsotg = hs_ep->parent;
2597 	int dir_in = hs_ep->dir_in;
2598 	int index = hs_ep->index;
2599 	unsigned long flags;
2600 	u32 epctrl_reg;
2601 	u32 ctrl;
2602 
2603 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2604 
2605 	if (ep == &hsotg->eps[0].ep) {
2606 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2607 		return -EINVAL;
2608 	}
2609 
2610 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2611 
2612 	spin_lock_irqsave(&hsotg->lock, flags);
2613 	/* terminate all requests with shutdown */
2614 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2615 
2616 	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2617 	hs_ep->fifo_index = 0;
2618 	hs_ep->fifo_size = 0;
2619 
2620 	ctrl = readl(hsotg->regs + epctrl_reg);
2621 	ctrl &= ~DXEPCTL_EPENA;
2622 	ctrl &= ~DXEPCTL_USBACTEP;
2623 	ctrl |= DXEPCTL_SNAK;
2624 
2625 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2626 	writel(ctrl, hsotg->regs + epctrl_reg);
2627 
2628 	/* disable endpoint interrupts */
2629 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2630 
2631 	spin_unlock_irqrestore(&hsotg->lock, flags);
2632 	return 0;
2633 }
2634 
2635 /**
2636  * on_list - check request is on the given endpoint
2637  * @ep: The endpoint to check.
2638  * @test: The request to test if it is on the endpoint.
2639  */
2640 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2641 {
2642 	struct s3c_hsotg_req *req, *treq;
2643 
2644 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2645 		if (req == test)
2646 			return true;
2647 	}
2648 
2649 	return false;
2650 }
2651 
2652 /**
2653  * s3c_hsotg_ep_dequeue - dequeue given endpoint
2654  * @ep: The endpoint to dequeue.
2655  * @req: The request to be removed from a queue.
2656  */
2657 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2658 {
2659 	struct s3c_hsotg_req *hs_req = our_req(req);
2660 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2661 	struct s3c_hsotg *hs = hs_ep->parent;
2662 	unsigned long flags;
2663 
2664 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2665 
2666 	spin_lock_irqsave(&hs->lock, flags);
2667 
2668 	if (!on_list(hs_ep, hs_req)) {
2669 		spin_unlock_irqrestore(&hs->lock, flags);
2670 		return -EINVAL;
2671 	}
2672 
2673 	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2674 	spin_unlock_irqrestore(&hs->lock, flags);
2675 
2676 	return 0;
2677 }
2678 
2679 /**
2680  * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2681  * @ep: The endpoint to set halt.
2682  * @value: Set or unset the halt.
2683  */
2684 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2685 {
2686 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2687 	struct s3c_hsotg *hs = hs_ep->parent;
2688 	int index = hs_ep->index;
2689 	u32 epreg;
2690 	u32 epctl;
2691 	u32 xfertype;
2692 
2693 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2694 
2695 	if (index == 0) {
2696 		if (value)
2697 			s3c_hsotg_stall_ep0(hs);
2698 		else
2699 			dev_warn(hs->dev,
2700 				 "%s: can't clear halt on ep0\n", __func__);
2701 		return 0;
2702 	}
2703 
2704 	/* write both IN and OUT control registers */
2705 
2706 	epreg = DIEPCTL(index);
2707 	epctl = readl(hs->regs + epreg);
2708 
2709 	if (value) {
2710 		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2711 		if (epctl & DXEPCTL_EPENA)
2712 			epctl |= DXEPCTL_EPDIS;
2713 	} else {
2714 		epctl &= ~DXEPCTL_STALL;
2715 		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2716 		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2717 			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2718 				epctl |= DXEPCTL_SETD0PID;
2719 	}
2720 
2721 	writel(epctl, hs->regs + epreg);
2722 
2723 	epreg = DOEPCTL(index);
2724 	epctl = readl(hs->regs + epreg);
2725 
2726 	if (value)
2727 		epctl |= DXEPCTL_STALL;
2728 	else {
2729 		epctl &= ~DXEPCTL_STALL;
2730 		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2731 		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2732 			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2733 				epctl |= DXEPCTL_SETD0PID;
2734 	}
2735 
2736 	writel(epctl, hs->regs + epreg);
2737 
2738 	hs_ep->halted = value;
2739 
2740 	return 0;
2741 }
2742 
2743 /**
2744  * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2745  * @ep: The endpoint to set halt.
2746  * @value: Set or unset the halt.
2747  */
2748 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2749 {
2750 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2751 	struct s3c_hsotg *hs = hs_ep->parent;
2752 	unsigned long flags = 0;
2753 	int ret = 0;
2754 
2755 	spin_lock_irqsave(&hs->lock, flags);
2756 	ret = s3c_hsotg_ep_sethalt(ep, value);
2757 	spin_unlock_irqrestore(&hs->lock, flags);
2758 
2759 	return ret;
2760 }
2761 
2762 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2763 	.enable		= s3c_hsotg_ep_enable,
2764 	.disable	= s3c_hsotg_ep_disable,
2765 	.alloc_request	= s3c_hsotg_ep_alloc_request,
2766 	.free_request	= s3c_hsotg_ep_free_request,
2767 	.queue		= s3c_hsotg_ep_queue_lock,
2768 	.dequeue	= s3c_hsotg_ep_dequeue,
2769 	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2770 	/* note, don't believe we have any call for the fifo routines */
2771 };
2772 
2773 /**
2774  * s3c_hsotg_phy_enable - enable platform phy dev
2775  * @hsotg: The driver state
2776  *
2777  * A wrapper for platform code responsible for controlling
2778  * low-level USB code
2779  */
2780 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2781 {
2782 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2783 
2784 	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2785 
2786 	if (hsotg->uphy)
2787 		usb_phy_init(hsotg->uphy);
2788 	else if (hsotg->plat && hsotg->plat->phy_init)
2789 		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2790 	else {
2791 		phy_init(hsotg->phy);
2792 		phy_power_on(hsotg->phy);
2793 	}
2794 }
2795 
2796 /**
2797  * s3c_hsotg_phy_disable - disable platform phy dev
2798  * @hsotg: The driver state
2799  *
2800  * A wrapper for platform code responsible for controlling
2801  * low-level USB code
2802  */
2803 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2804 {
2805 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2806 
2807 	if (hsotg->uphy)
2808 		usb_phy_shutdown(hsotg->uphy);
2809 	else if (hsotg->plat && hsotg->plat->phy_exit)
2810 		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2811 	else {
2812 		phy_power_off(hsotg->phy);
2813 		phy_exit(hsotg->phy);
2814 	}
2815 }
2816 
2817 /**
2818  * s3c_hsotg_init - initalize the usb core
2819  * @hsotg: The driver state
2820  */
2821 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2822 {
2823 	/* unmask subset of endpoint interrupts */
2824 
2825 	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2826 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2827 		hsotg->regs + DIEPMSK);
2828 
2829 	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2830 		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2831 		hsotg->regs + DOEPMSK);
2832 
2833 	writel(0, hsotg->regs + DAINTMSK);
2834 
2835 	/* Be in disconnected state until gadget is registered */
2836 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2837 
2838 	if (0) {
2839 		/* post global nak until we're ready */
2840 		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2841 		       hsotg->regs + DCTL);
2842 	}
2843 
2844 	/* setup fifos */
2845 
2846 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2847 		readl(hsotg->regs + GRXFSIZ),
2848 		readl(hsotg->regs + GNPTXFSIZ));
2849 
2850 	s3c_hsotg_init_fifo(hsotg);
2851 
2852 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2853 	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2854 	       hsotg->regs + GUSBCFG);
2855 
2856 	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2857 	       hsotg->regs + GAHBCFG);
2858 }
2859 
2860 /**
2861  * s3c_hsotg_udc_start - prepare the udc for work
2862  * @gadget: The usb gadget state
2863  * @driver: The usb gadget driver
2864  *
2865  * Perform initialization to prepare udc device and driver
2866  * to work.
2867  */
2868 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2869 			   struct usb_gadget_driver *driver)
2870 {
2871 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2872 	int ret;
2873 
2874 	if (!hsotg) {
2875 		pr_err("%s: called with no device\n", __func__);
2876 		return -ENODEV;
2877 	}
2878 
2879 	if (!driver) {
2880 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2881 		return -EINVAL;
2882 	}
2883 
2884 	if (driver->max_speed < USB_SPEED_FULL)
2885 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2886 
2887 	if (!driver->setup) {
2888 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2889 		return -EINVAL;
2890 	}
2891 
2892 	WARN_ON(hsotg->driver);
2893 
2894 	driver->driver.bus = NULL;
2895 	hsotg->driver = driver;
2896 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2897 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2898 
2899 	clk_enable(hsotg->clk);
2900 
2901 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2902 				    hsotg->supplies);
2903 	if (ret) {
2904 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2905 		goto err;
2906 	}
2907 
2908 	hsotg->last_rst = jiffies;
2909 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2910 	return 0;
2911 
2912 err:
2913 	hsotg->driver = NULL;
2914 	return ret;
2915 }
2916 
2917 /**
2918  * s3c_hsotg_udc_stop - stop the udc
2919  * @gadget: The usb gadget state
2920  * @driver: The usb gadget driver
2921  *
2922  * Stop udc hw block and stay tunned for future transmissions
2923  */
2924 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2925 			  struct usb_gadget_driver *driver)
2926 {
2927 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2928 	unsigned long flags = 0;
2929 	int ep;
2930 
2931 	if (!hsotg)
2932 		return -ENODEV;
2933 
2934 	/* all endpoints should be shutdown */
2935 	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2936 		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2937 
2938 	spin_lock_irqsave(&hsotg->lock, flags);
2939 
2940 	hsotg->driver = NULL;
2941 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2942 
2943 	spin_unlock_irqrestore(&hsotg->lock, flags);
2944 
2945 	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2946 
2947 	clk_disable(hsotg->clk);
2948 
2949 	return 0;
2950 }
2951 
2952 /**
2953  * s3c_hsotg_gadget_getframe - read the frame number
2954  * @gadget: The usb gadget state
2955  *
2956  * Read the {micro} frame number
2957  */
2958 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2959 {
2960 	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2961 }
2962 
2963 /**
2964  * s3c_hsotg_pullup - connect/disconnect the USB PHY
2965  * @gadget: The usb gadget state
2966  * @is_on: Current state of the USB PHY
2967  *
2968  * Connect/Disconnect the USB PHY pullup
2969  */
2970 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
2971 {
2972 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2973 	unsigned long flags = 0;
2974 
2975 	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2976 
2977 	spin_lock_irqsave(&hsotg->lock, flags);
2978 	if (is_on) {
2979 		s3c_hsotg_phy_enable(hsotg);
2980 		clk_enable(hsotg->clk);
2981 		s3c_hsotg_core_init(hsotg);
2982 	} else {
2983 		clk_disable(hsotg->clk);
2984 		s3c_hsotg_phy_disable(hsotg);
2985 	}
2986 
2987 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2988 	spin_unlock_irqrestore(&hsotg->lock, flags);
2989 
2990 	return 0;
2991 }
2992 
2993 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2994 	.get_frame	= s3c_hsotg_gadget_getframe,
2995 	.udc_start		= s3c_hsotg_udc_start,
2996 	.udc_stop		= s3c_hsotg_udc_stop,
2997 	.pullup                 = s3c_hsotg_pullup,
2998 };
2999 
3000 /**
3001  * s3c_hsotg_initep - initialise a single endpoint
3002  * @hsotg: The device state.
3003  * @hs_ep: The endpoint to be initialised.
3004  * @epnum: The endpoint number
3005  *
3006  * Initialise the given endpoint (as part of the probe and device state
3007  * creation) to give to the gadget driver. Setup the endpoint name, any
3008  * direction information and other state that may be required.
3009  */
3010 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3011 				       struct s3c_hsotg_ep *hs_ep,
3012 				       int epnum)
3013 {
3014 	char *dir;
3015 
3016 	if (epnum == 0)
3017 		dir = "";
3018 	else if ((epnum % 2) == 0) {
3019 		dir = "out";
3020 	} else {
3021 		dir = "in";
3022 		hs_ep->dir_in = 1;
3023 	}
3024 
3025 	hs_ep->index = epnum;
3026 
3027 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3028 
3029 	INIT_LIST_HEAD(&hs_ep->queue);
3030 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3031 
3032 	/* add to the list of endpoints known by the gadget driver */
3033 	if (epnum)
3034 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3035 
3036 	hs_ep->parent = hsotg;
3037 	hs_ep->ep.name = hs_ep->name;
3038 	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3039 	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3040 
3041 	/*
3042 	 * if we're using dma, we need to set the next-endpoint pointer
3043 	 * to be something valid.
3044 	 */
3045 
3046 	if (using_dma(hsotg)) {
3047 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3048 		writel(next, hsotg->regs + DIEPCTL(epnum));
3049 		writel(next, hsotg->regs + DOEPCTL(epnum));
3050 	}
3051 }
3052 
3053 /**
3054  * s3c_hsotg_hw_cfg - read HW configuration registers
3055  * @param: The device state
3056  *
3057  * Read the USB core HW configuration registers
3058  */
3059 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3060 {
3061 	u32 cfg2, cfg3, cfg4;
3062 	/* check hardware configuration */
3063 
3064 	cfg2 = readl(hsotg->regs + 0x48);
3065 	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3066 
3067 	cfg3 = readl(hsotg->regs + 0x4C);
3068 	hsotg->fifo_mem = (cfg3 >> 16);
3069 
3070 	cfg4 = readl(hsotg->regs + 0x50);
3071 	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3072 
3073 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3074 		 hsotg->num_of_eps,
3075 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3076 		 hsotg->fifo_mem);
3077 }
3078 
3079 /**
3080  * s3c_hsotg_dump - dump state of the udc
3081  * @param: The device state
3082  */
3083 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3084 {
3085 #ifdef DEBUG
3086 	struct device *dev = hsotg->dev;
3087 	void __iomem *regs = hsotg->regs;
3088 	u32 val;
3089 	int idx;
3090 
3091 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3092 		 readl(regs + DCFG), readl(regs + DCTL),
3093 		 readl(regs + DIEPMSK));
3094 
3095 	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3096 		 readl(regs + GAHBCFG), readl(regs + 0x44));
3097 
3098 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3099 		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3100 
3101 	/* show periodic fifo settings */
3102 
3103 	for (idx = 1; idx <= 15; idx++) {
3104 		val = readl(regs + DPTXFSIZN(idx));
3105 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3106 			 val >> FIFOSIZE_DEPTH_SHIFT,
3107 			 val & FIFOSIZE_STARTADDR_MASK);
3108 	}
3109 
3110 	for (idx = 0; idx < 15; idx++) {
3111 		dev_info(dev,
3112 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3113 			 readl(regs + DIEPCTL(idx)),
3114 			 readl(regs + DIEPTSIZ(idx)),
3115 			 readl(regs + DIEPDMA(idx)));
3116 
3117 		val = readl(regs + DOEPCTL(idx));
3118 		dev_info(dev,
3119 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3120 			 idx, readl(regs + DOEPCTL(idx)),
3121 			 readl(regs + DOEPTSIZ(idx)),
3122 			 readl(regs + DOEPDMA(idx)));
3123 
3124 	}
3125 
3126 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3127 		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3128 #endif
3129 }
3130 
3131 /**
3132  * state_show - debugfs: show overall driver and device state.
3133  * @seq: The seq file to write to.
3134  * @v: Unused parameter.
3135  *
3136  * This debugfs entry shows the overall state of the hardware and
3137  * some general information about each of the endpoints available
3138  * to the system.
3139  */
3140 static int state_show(struct seq_file *seq, void *v)
3141 {
3142 	struct s3c_hsotg *hsotg = seq->private;
3143 	void __iomem *regs = hsotg->regs;
3144 	int idx;
3145 
3146 	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3147 		 readl(regs + DCFG),
3148 		 readl(regs + DCTL),
3149 		 readl(regs + DSTS));
3150 
3151 	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3152 		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3153 
3154 	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3155 		   readl(regs + GINTMSK),
3156 		   readl(regs + GINTSTS));
3157 
3158 	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3159 		   readl(regs + DAINTMSK),
3160 		   readl(regs + DAINT));
3161 
3162 	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3163 		   readl(regs + GNPTXSTS),
3164 		   readl(regs + GRXSTSR));
3165 
3166 	seq_puts(seq, "\nEndpoint status:\n");
3167 
3168 	for (idx = 0; idx < 15; idx++) {
3169 		u32 in, out;
3170 
3171 		in = readl(regs + DIEPCTL(idx));
3172 		out = readl(regs + DOEPCTL(idx));
3173 
3174 		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3175 			   idx, in, out);
3176 
3177 		in = readl(regs + DIEPTSIZ(idx));
3178 		out = readl(regs + DOEPTSIZ(idx));
3179 
3180 		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3181 			   in, out);
3182 
3183 		seq_puts(seq, "\n");
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 static int state_open(struct inode *inode, struct file *file)
3190 {
3191 	return single_open(file, state_show, inode->i_private);
3192 }
3193 
3194 static const struct file_operations state_fops = {
3195 	.owner		= THIS_MODULE,
3196 	.open		= state_open,
3197 	.read		= seq_read,
3198 	.llseek		= seq_lseek,
3199 	.release	= single_release,
3200 };
3201 
3202 /**
3203  * fifo_show - debugfs: show the fifo information
3204  * @seq: The seq_file to write data to.
3205  * @v: Unused parameter.
3206  *
3207  * Show the FIFO information for the overall fifo and all the
3208  * periodic transmission FIFOs.
3209  */
3210 static int fifo_show(struct seq_file *seq, void *v)
3211 {
3212 	struct s3c_hsotg *hsotg = seq->private;
3213 	void __iomem *regs = hsotg->regs;
3214 	u32 val;
3215 	int idx;
3216 
3217 	seq_puts(seq, "Non-periodic FIFOs:\n");
3218 	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3219 
3220 	val = readl(regs + GNPTXFSIZ);
3221 	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3222 		   val >> FIFOSIZE_DEPTH_SHIFT,
3223 		   val & FIFOSIZE_DEPTH_MASK);
3224 
3225 	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3226 
3227 	for (idx = 1; idx <= 15; idx++) {
3228 		val = readl(regs + DPTXFSIZN(idx));
3229 
3230 		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3231 			   val >> FIFOSIZE_DEPTH_SHIFT,
3232 			   val & FIFOSIZE_STARTADDR_MASK);
3233 	}
3234 
3235 	return 0;
3236 }
3237 
3238 static int fifo_open(struct inode *inode, struct file *file)
3239 {
3240 	return single_open(file, fifo_show, inode->i_private);
3241 }
3242 
3243 static const struct file_operations fifo_fops = {
3244 	.owner		= THIS_MODULE,
3245 	.open		= fifo_open,
3246 	.read		= seq_read,
3247 	.llseek		= seq_lseek,
3248 	.release	= single_release,
3249 };
3250 
3251 
3252 static const char *decode_direction(int is_in)
3253 {
3254 	return is_in ? "in" : "out";
3255 }
3256 
3257 /**
3258  * ep_show - debugfs: show the state of an endpoint.
3259  * @seq: The seq_file to write data to.
3260  * @v: Unused parameter.
3261  *
3262  * This debugfs entry shows the state of the given endpoint (one is
3263  * registered for each available).
3264  */
3265 static int ep_show(struct seq_file *seq, void *v)
3266 {
3267 	struct s3c_hsotg_ep *ep = seq->private;
3268 	struct s3c_hsotg *hsotg = ep->parent;
3269 	struct s3c_hsotg_req *req;
3270 	void __iomem *regs = hsotg->regs;
3271 	int index = ep->index;
3272 	int show_limit = 15;
3273 	unsigned long flags;
3274 
3275 	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3276 		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3277 
3278 	/* first show the register state */
3279 
3280 	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3281 		   readl(regs + DIEPCTL(index)),
3282 		   readl(regs + DOEPCTL(index)));
3283 
3284 	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3285 		   readl(regs + DIEPDMA(index)),
3286 		   readl(regs + DOEPDMA(index)));
3287 
3288 	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3289 		   readl(regs + DIEPINT(index)),
3290 		   readl(regs + DOEPINT(index)));
3291 
3292 	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3293 		   readl(regs + DIEPTSIZ(index)),
3294 		   readl(regs + DOEPTSIZ(index)));
3295 
3296 	seq_puts(seq, "\n");
3297 	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3298 	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3299 
3300 	seq_printf(seq, "request list (%p,%p):\n",
3301 		   ep->queue.next, ep->queue.prev);
3302 
3303 	spin_lock_irqsave(&hsotg->lock, flags);
3304 
3305 	list_for_each_entry(req, &ep->queue, queue) {
3306 		if (--show_limit < 0) {
3307 			seq_puts(seq, "not showing more requests...\n");
3308 			break;
3309 		}
3310 
3311 		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3312 			   req == ep->req ? '*' : ' ',
3313 			   req, req->req.length, req->req.buf);
3314 		seq_printf(seq, "%d done, res %d\n",
3315 			   req->req.actual, req->req.status);
3316 	}
3317 
3318 	spin_unlock_irqrestore(&hsotg->lock, flags);
3319 
3320 	return 0;
3321 }
3322 
3323 static int ep_open(struct inode *inode, struct file *file)
3324 {
3325 	return single_open(file, ep_show, inode->i_private);
3326 }
3327 
3328 static const struct file_operations ep_fops = {
3329 	.owner		= THIS_MODULE,
3330 	.open		= ep_open,
3331 	.read		= seq_read,
3332 	.llseek		= seq_lseek,
3333 	.release	= single_release,
3334 };
3335 
3336 /**
3337  * s3c_hsotg_create_debug - create debugfs directory and files
3338  * @hsotg: The driver state
3339  *
3340  * Create the debugfs files to allow the user to get information
3341  * about the state of the system. The directory name is created
3342  * with the same name as the device itself, in case we end up
3343  * with multiple blocks in future systems.
3344  */
3345 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3346 {
3347 	struct dentry *root;
3348 	unsigned epidx;
3349 
3350 	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3351 	hsotg->debug_root = root;
3352 	if (IS_ERR(root)) {
3353 		dev_err(hsotg->dev, "cannot create debug root\n");
3354 		return;
3355 	}
3356 
3357 	/* create general state file */
3358 
3359 	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3360 						hsotg, &state_fops);
3361 
3362 	if (IS_ERR(hsotg->debug_file))
3363 		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3364 
3365 	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3366 						hsotg, &fifo_fops);
3367 
3368 	if (IS_ERR(hsotg->debug_fifo))
3369 		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3370 
3371 	/* create one file for each endpoint */
3372 
3373 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3374 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3375 
3376 		ep->debugfs = debugfs_create_file(ep->name, 0444,
3377 						  root, ep, &ep_fops);
3378 
3379 		if (IS_ERR(ep->debugfs))
3380 			dev_err(hsotg->dev, "failed to create %s debug file\n",
3381 				ep->name);
3382 	}
3383 }
3384 
3385 /**
3386  * s3c_hsotg_delete_debug - cleanup debugfs entries
3387  * @hsotg: The driver state
3388  *
3389  * Cleanup (remove) the debugfs files for use on module exit.
3390  */
3391 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3392 {
3393 	unsigned epidx;
3394 
3395 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3396 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3397 		debugfs_remove(ep->debugfs);
3398 	}
3399 
3400 	debugfs_remove(hsotg->debug_file);
3401 	debugfs_remove(hsotg->debug_fifo);
3402 	debugfs_remove(hsotg->debug_root);
3403 }
3404 
3405 /**
3406  * s3c_hsotg_probe - probe function for hsotg driver
3407  * @pdev: The platform information for the driver
3408  */
3409 
3410 static int s3c_hsotg_probe(struct platform_device *pdev)
3411 {
3412 	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3413 	struct phy *phy;
3414 	struct usb_phy *uphy;
3415 	struct device *dev = &pdev->dev;
3416 	struct s3c_hsotg_ep *eps;
3417 	struct s3c_hsotg *hsotg;
3418 	struct resource *res;
3419 	int epnum;
3420 	int ret;
3421 	int i;
3422 
3423 	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3424 	if (!hsotg)
3425 		return -ENOMEM;
3426 
3427 	/* Set default UTMI width */
3428 	hsotg->phyif = GUSBCFG_PHYIF16;
3429 
3430 	/*
3431 	 * Attempt to find a generic PHY, then look for an old style
3432 	 * USB PHY, finally fall back to pdata
3433 	 */
3434 	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3435 	if (IS_ERR(phy)) {
3436 		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3437 		if (IS_ERR(uphy)) {
3438 			/* Fallback for pdata */
3439 			plat = dev_get_platdata(&pdev->dev);
3440 			if (!plat) {
3441 				dev_err(&pdev->dev,
3442 				"no platform data or transceiver defined\n");
3443 				return -EPROBE_DEFER;
3444 			}
3445 			hsotg->plat = plat;
3446 		} else
3447 			hsotg->uphy = uphy;
3448 	} else {
3449 		hsotg->phy = phy;
3450 		/*
3451 		 * If using the generic PHY framework, check if the PHY bus
3452 		 * width is 8-bit and set the phyif appropriately.
3453 		 */
3454 		if (phy_get_bus_width(phy) == 8)
3455 			hsotg->phyif = GUSBCFG_PHYIF8;
3456 	}
3457 
3458 	hsotg->dev = dev;
3459 
3460 	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3461 	if (IS_ERR(hsotg->clk)) {
3462 		dev_err(dev, "cannot get otg clock\n");
3463 		return PTR_ERR(hsotg->clk);
3464 	}
3465 
3466 	platform_set_drvdata(pdev, hsotg);
3467 
3468 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3469 
3470 	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3471 	if (IS_ERR(hsotg->regs)) {
3472 		ret = PTR_ERR(hsotg->regs);
3473 		goto err_clk;
3474 	}
3475 
3476 	ret = platform_get_irq(pdev, 0);
3477 	if (ret < 0) {
3478 		dev_err(dev, "cannot find IRQ\n");
3479 		goto err_clk;
3480 	}
3481 
3482 	spin_lock_init(&hsotg->lock);
3483 
3484 	hsotg->irq = ret;
3485 
3486 	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3487 
3488 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3489 	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3490 	hsotg->gadget.name = dev_name(dev);
3491 
3492 	/* reset the system */
3493 
3494 	clk_prepare_enable(hsotg->clk);
3495 
3496 	/* regulators */
3497 
3498 	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3499 		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3500 
3501 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3502 				 hsotg->supplies);
3503 	if (ret) {
3504 		dev_err(dev, "failed to request supplies: %d\n", ret);
3505 		goto err_clk;
3506 	}
3507 
3508 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3509 				    hsotg->supplies);
3510 
3511 	if (ret) {
3512 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3513 		goto err_supplies;
3514 	}
3515 
3516 	/* usb phy enable */
3517 	s3c_hsotg_phy_enable(hsotg);
3518 
3519 	s3c_hsotg_corereset(hsotg);
3520 	s3c_hsotg_hw_cfg(hsotg);
3521 	s3c_hsotg_init(hsotg);
3522 
3523 	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3524 				dev_name(dev), hsotg);
3525 	if (ret < 0) {
3526 		s3c_hsotg_phy_disable(hsotg);
3527 		clk_disable_unprepare(hsotg->clk);
3528 		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3529 				       hsotg->supplies);
3530 		dev_err(dev, "cannot claim IRQ\n");
3531 		goto err_clk;
3532 	}
3533 
3534 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3535 
3536 	if (hsotg->num_of_eps == 0) {
3537 		dev_err(dev, "wrong number of EPs (zero)\n");
3538 		ret = -EINVAL;
3539 		goto err_supplies;
3540 	}
3541 
3542 	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3543 		      GFP_KERNEL);
3544 	if (!eps) {
3545 		ret = -ENOMEM;
3546 		goto err_supplies;
3547 	}
3548 
3549 	hsotg->eps = eps;
3550 
3551 	/* setup endpoint information */
3552 
3553 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3554 	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3555 
3556 	/* allocate EP0 request */
3557 
3558 	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3559 						     GFP_KERNEL);
3560 	if (!hsotg->ctrl_req) {
3561 		dev_err(dev, "failed to allocate ctrl req\n");
3562 		ret = -ENOMEM;
3563 		goto err_ep_mem;
3564 	}
3565 
3566 	/* initialise the endpoints now the core has been initialised */
3567 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3568 		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3569 
3570 	/* disable power and clock */
3571 	s3c_hsotg_phy_disable(hsotg);
3572 
3573 	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3574 				    hsotg->supplies);
3575 	if (ret) {
3576 		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3577 		goto err_ep_mem;
3578 	}
3579 
3580 	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3581 	if (ret)
3582 		goto err_ep_mem;
3583 
3584 	s3c_hsotg_create_debug(hsotg);
3585 
3586 	s3c_hsotg_dump(hsotg);
3587 
3588 	return 0;
3589 
3590 err_ep_mem:
3591 	kfree(eps);
3592 err_supplies:
3593 	s3c_hsotg_phy_disable(hsotg);
3594 err_clk:
3595 	clk_disable_unprepare(hsotg->clk);
3596 
3597 	return ret;
3598 }
3599 
3600 /**
3601  * s3c_hsotg_remove - remove function for hsotg driver
3602  * @pdev: The platform information for the driver
3603  */
3604 static int s3c_hsotg_remove(struct platform_device *pdev)
3605 {
3606 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3607 
3608 	usb_del_gadget_udc(&hsotg->gadget);
3609 
3610 	s3c_hsotg_delete_debug(hsotg);
3611 
3612 	if (hsotg->driver) {
3613 		/* should have been done already by driver model core */
3614 		usb_gadget_unregister_driver(hsotg->driver);
3615 	}
3616 
3617 	clk_disable_unprepare(hsotg->clk);
3618 
3619 	return 0;
3620 }
3621 
3622 static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
3623 {
3624 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3625 	unsigned long flags;
3626 	int ret = 0;
3627 
3628 	if (hsotg->driver)
3629 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3630 			 hsotg->driver->driver.name);
3631 
3632 	spin_lock_irqsave(&hsotg->lock, flags);
3633 	s3c_hsotg_disconnect(hsotg);
3634 	s3c_hsotg_phy_disable(hsotg);
3635 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3636 	spin_unlock_irqrestore(&hsotg->lock, flags);
3637 
3638 	if (hsotg->driver) {
3639 		int ep;
3640 		for (ep = 0; ep < hsotg->num_of_eps; ep++)
3641 			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3642 
3643 		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3644 					     hsotg->supplies);
3645 		clk_disable(hsotg->clk);
3646 	}
3647 
3648 	return ret;
3649 }
3650 
3651 static int s3c_hsotg_resume(struct platform_device *pdev)
3652 {
3653 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3654 	unsigned long flags;
3655 	int ret = 0;
3656 
3657 	if (hsotg->driver) {
3658 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3659 			 hsotg->driver->driver.name);
3660 
3661 		clk_enable(hsotg->clk);
3662 		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3663 				      hsotg->supplies);
3664 	}
3665 
3666 	spin_lock_irqsave(&hsotg->lock, flags);
3667 	hsotg->last_rst = jiffies;
3668 	s3c_hsotg_phy_enable(hsotg);
3669 	s3c_hsotg_core_init(hsotg);
3670 	spin_unlock_irqrestore(&hsotg->lock, flags);
3671 
3672 	return ret;
3673 }
3674 
3675 #ifdef CONFIG_OF
3676 static const struct of_device_id s3c_hsotg_of_ids[] = {
3677 	{ .compatible = "samsung,s3c6400-hsotg", },
3678 	{ .compatible = "snps,dwc2", },
3679 	{ /* sentinel */ }
3680 };
3681 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3682 #endif
3683 
3684 static struct platform_driver s3c_hsotg_driver = {
3685 	.driver		= {
3686 		.name	= "s3c-hsotg",
3687 		.owner	= THIS_MODULE,
3688 		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3689 	},
3690 	.probe		= s3c_hsotg_probe,
3691 	.remove		= s3c_hsotg_remove,
3692 	.suspend	= s3c_hsotg_suspend,
3693 	.resume		= s3c_hsotg_resume,
3694 };
3695 
3696 module_platform_driver(s3c_hsotg_driver);
3697 
3698 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3699 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3700 MODULE_LICENSE("GPL");
3701 MODULE_ALIAS("platform:s3c-hsotg");
3702