1 /** 2 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright 2008 Openmoko, Inc. 6 * Copyright 2008 Simtec Electronics 7 * Ben Dooks <ben@simtec.co.uk> 8 * http://armlinux.simtec.co.uk/ 9 * 10 * S3C USB2.0 High-speed / OtG driver 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/interrupt.h> 21 #include <linux/platform_device.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/delay.h> 26 #include <linux/io.h> 27 #include <linux/slab.h> 28 #include <linux/clk.h> 29 #include <linux/regulator/consumer.h> 30 #include <linux/of_platform.h> 31 #include <linux/phy/phy.h> 32 33 #include <linux/usb/ch9.h> 34 #include <linux/usb/gadget.h> 35 #include <linux/usb/phy.h> 36 #include <linux/platform_data/s3c-hsotg.h> 37 38 #include "core.h" 39 40 /* conversion functions */ 41 static inline struct s3c_hsotg_req *our_req(struct usb_request *req) 42 { 43 return container_of(req, struct s3c_hsotg_req, req); 44 } 45 46 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep) 47 { 48 return container_of(ep, struct s3c_hsotg_ep, ep); 49 } 50 51 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget) 52 { 53 return container_of(gadget, struct s3c_hsotg, gadget); 54 } 55 56 static inline void __orr32(void __iomem *ptr, u32 val) 57 { 58 writel(readl(ptr) | val, ptr); 59 } 60 61 static inline void __bic32(void __iomem *ptr, u32 val) 62 { 63 writel(readl(ptr) & ~val, ptr); 64 } 65 66 /* forward decleration of functions */ 67 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg); 68 69 /** 70 * using_dma - return the DMA status of the driver. 71 * @hsotg: The driver state. 72 * 73 * Return true if we're using DMA. 74 * 75 * Currently, we have the DMA support code worked into everywhere 76 * that needs it, but the AMBA DMA implementation in the hardware can 77 * only DMA from 32bit aligned addresses. This means that gadgets such 78 * as the CDC Ethernet cannot work as they often pass packets which are 79 * not 32bit aligned. 80 * 81 * Unfortunately the choice to use DMA or not is global to the controller 82 * and seems to be only settable when the controller is being put through 83 * a core reset. This means we either need to fix the gadgets to take 84 * account of DMA alignment, or add bounce buffers (yuerk). 85 * 86 * Until this issue is sorted out, we always return 'false'. 87 */ 88 static inline bool using_dma(struct s3c_hsotg *hsotg) 89 { 90 return false; /* support is not complete */ 91 } 92 93 /** 94 * s3c_hsotg_en_gsint - enable one or more of the general interrupt 95 * @hsotg: The device state 96 * @ints: A bitmask of the interrupts to enable 97 */ 98 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints) 99 { 100 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 101 u32 new_gsintmsk; 102 103 new_gsintmsk = gsintmsk | ints; 104 105 if (new_gsintmsk != gsintmsk) { 106 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 107 writel(new_gsintmsk, hsotg->regs + GINTMSK); 108 } 109 } 110 111 /** 112 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt 113 * @hsotg: The device state 114 * @ints: A bitmask of the interrupts to enable 115 */ 116 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints) 117 { 118 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 119 u32 new_gsintmsk; 120 121 new_gsintmsk = gsintmsk & ~ints; 122 123 if (new_gsintmsk != gsintmsk) 124 writel(new_gsintmsk, hsotg->regs + GINTMSK); 125 } 126 127 /** 128 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq 129 * @hsotg: The device state 130 * @ep: The endpoint index 131 * @dir_in: True if direction is in. 132 * @en: The enable value, true to enable 133 * 134 * Set or clear the mask for an individual endpoint's interrupt 135 * request. 136 */ 137 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg, 138 unsigned int ep, unsigned int dir_in, 139 unsigned int en) 140 { 141 unsigned long flags; 142 u32 bit = 1 << ep; 143 u32 daint; 144 145 if (!dir_in) 146 bit <<= 16; 147 148 local_irq_save(flags); 149 daint = readl(hsotg->regs + DAINTMSK); 150 if (en) 151 daint |= bit; 152 else 153 daint &= ~bit; 154 writel(daint, hsotg->regs + DAINTMSK); 155 local_irq_restore(flags); 156 } 157 158 /** 159 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs 160 * @hsotg: The device instance. 161 */ 162 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg) 163 { 164 unsigned int ep; 165 unsigned int addr; 166 unsigned int size; 167 int timeout; 168 u32 val; 169 170 /* set FIFO sizes to 2048/1024 */ 171 172 writel(2048, hsotg->regs + GRXFSIZ); 173 writel((2048 << FIFOSIZE_STARTADDR_SHIFT) | 174 (1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ); 175 176 /* 177 * arange all the rest of the TX FIFOs, as some versions of this 178 * block have overlapping default addresses. This also ensures 179 * that if the settings have been changed, then they are set to 180 * known values. 181 */ 182 183 /* start at the end of the GNPTXFSIZ, rounded up */ 184 addr = 2048 + 1024; 185 186 /* 187 * Because we have not enough memory to have each TX FIFO of size at 188 * least 3072 bytes (the maximum single packet size), we create four 189 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing 190 * them to endpoints dynamically according to maxpacket size value of 191 * given endpoint. 192 */ 193 194 /* 256*4=1024 bytes FIFO length */ 195 size = 256; 196 for (ep = 1; ep <= 4; ep++) { 197 val = addr; 198 val |= size << FIFOSIZE_DEPTH_SHIFT; 199 WARN_ONCE(addr + size > hsotg->fifo_mem, 200 "insufficient fifo memory"); 201 addr += size; 202 203 writel(val, hsotg->regs + DPTXFSIZN(ep)); 204 } 205 /* 768*4=3072 bytes FIFO length */ 206 size = 768; 207 for (ep = 5; ep <= 8; ep++) { 208 val = addr; 209 val |= size << FIFOSIZE_DEPTH_SHIFT; 210 WARN_ONCE(addr + size > hsotg->fifo_mem, 211 "insufficient fifo memory"); 212 addr += size; 213 214 writel(val, hsotg->regs + DPTXFSIZN(ep)); 215 } 216 217 /* 218 * according to p428 of the design guide, we need to ensure that 219 * all fifos are flushed before continuing 220 */ 221 222 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 223 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 224 225 /* wait until the fifos are both flushed */ 226 timeout = 100; 227 while (1) { 228 val = readl(hsotg->regs + GRSTCTL); 229 230 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 231 break; 232 233 if (--timeout == 0) { 234 dev_err(hsotg->dev, 235 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 236 __func__, val); 237 } 238 239 udelay(1); 240 } 241 242 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 243 } 244 245 /** 246 * @ep: USB endpoint to allocate request for. 247 * @flags: Allocation flags 248 * 249 * Allocate a new USB request structure appropriate for the specified endpoint 250 */ 251 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, 252 gfp_t flags) 253 { 254 struct s3c_hsotg_req *req; 255 256 req = kzalloc(sizeof(struct s3c_hsotg_req), flags); 257 if (!req) 258 return NULL; 259 260 INIT_LIST_HEAD(&req->queue); 261 262 return &req->req; 263 } 264 265 /** 266 * is_ep_periodic - return true if the endpoint is in periodic mode. 267 * @hs_ep: The endpoint to query. 268 * 269 * Returns true if the endpoint is in periodic mode, meaning it is being 270 * used for an Interrupt or ISO transfer. 271 */ 272 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep) 273 { 274 return hs_ep->periodic; 275 } 276 277 /** 278 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request 279 * @hsotg: The device state. 280 * @hs_ep: The endpoint for the request 281 * @hs_req: The request being processed. 282 * 283 * This is the reverse of s3c_hsotg_map_dma(), called for the completion 284 * of a request to ensure the buffer is ready for access by the caller. 285 */ 286 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg, 287 struct s3c_hsotg_ep *hs_ep, 288 struct s3c_hsotg_req *hs_req) 289 { 290 struct usb_request *req = &hs_req->req; 291 292 /* ignore this if we're not moving any data */ 293 if (hs_req->req.length == 0) 294 return; 295 296 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 297 } 298 299 /** 300 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO 301 * @hsotg: The controller state. 302 * @hs_ep: The endpoint we're going to write for. 303 * @hs_req: The request to write data for. 304 * 305 * This is called when the TxFIFO has some space in it to hold a new 306 * transmission and we have something to give it. The actual setup of 307 * the data size is done elsewhere, so all we have to do is to actually 308 * write the data. 309 * 310 * The return value is zero if there is more space (or nothing was done) 311 * otherwise -ENOSPC is returned if the FIFO space was used up. 312 * 313 * This routine is only needed for PIO 314 */ 315 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg, 316 struct s3c_hsotg_ep *hs_ep, 317 struct s3c_hsotg_req *hs_req) 318 { 319 bool periodic = is_ep_periodic(hs_ep); 320 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS); 321 int buf_pos = hs_req->req.actual; 322 int to_write = hs_ep->size_loaded; 323 void *data; 324 int can_write; 325 int pkt_round; 326 int max_transfer; 327 328 to_write -= (buf_pos - hs_ep->last_load); 329 330 /* if there's nothing to write, get out early */ 331 if (to_write == 0) 332 return 0; 333 334 if (periodic && !hsotg->dedicated_fifos) { 335 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 336 int size_left; 337 int size_done; 338 339 /* 340 * work out how much data was loaded so we can calculate 341 * how much data is left in the fifo. 342 */ 343 344 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 345 346 /* 347 * if shared fifo, we cannot write anything until the 348 * previous data has been completely sent. 349 */ 350 if (hs_ep->fifo_load != 0) { 351 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 352 return -ENOSPC; 353 } 354 355 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 356 __func__, size_left, 357 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 358 359 /* how much of the data has moved */ 360 size_done = hs_ep->size_loaded - size_left; 361 362 /* how much data is left in the fifo */ 363 can_write = hs_ep->fifo_load - size_done; 364 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 365 __func__, can_write); 366 367 can_write = hs_ep->fifo_size - can_write; 368 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 369 __func__, can_write); 370 371 if (can_write <= 0) { 372 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 373 return -ENOSPC; 374 } 375 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 376 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index)); 377 378 can_write &= 0xffff; 379 can_write *= 4; 380 } else { 381 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 382 dev_dbg(hsotg->dev, 383 "%s: no queue slots available (0x%08x)\n", 384 __func__, gnptxsts); 385 386 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 387 return -ENOSPC; 388 } 389 390 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 391 can_write *= 4; /* fifo size is in 32bit quantities. */ 392 } 393 394 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 395 396 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 397 __func__, gnptxsts, can_write, to_write, max_transfer); 398 399 /* 400 * limit to 512 bytes of data, it seems at least on the non-periodic 401 * FIFO, requests of >512 cause the endpoint to get stuck with a 402 * fragment of the end of the transfer in it. 403 */ 404 if (can_write > 512 && !periodic) 405 can_write = 512; 406 407 /* 408 * limit the write to one max-packet size worth of data, but allow 409 * the transfer to return that it did not run out of fifo space 410 * doing it. 411 */ 412 if (to_write > max_transfer) { 413 to_write = max_transfer; 414 415 /* it's needed only when we do not use dedicated fifos */ 416 if (!hsotg->dedicated_fifos) 417 s3c_hsotg_en_gsint(hsotg, 418 periodic ? GINTSTS_PTXFEMP : 419 GINTSTS_NPTXFEMP); 420 } 421 422 /* see if we can write data */ 423 424 if (to_write > can_write) { 425 to_write = can_write; 426 pkt_round = to_write % max_transfer; 427 428 /* 429 * Round the write down to an 430 * exact number of packets. 431 * 432 * Note, we do not currently check to see if we can ever 433 * write a full packet or not to the FIFO. 434 */ 435 436 if (pkt_round) 437 to_write -= pkt_round; 438 439 /* 440 * enable correct FIFO interrupt to alert us when there 441 * is more room left. 442 */ 443 444 /* it's needed only when we do not use dedicated fifos */ 445 if (!hsotg->dedicated_fifos) 446 s3c_hsotg_en_gsint(hsotg, 447 periodic ? GINTSTS_PTXFEMP : 448 GINTSTS_NPTXFEMP); 449 } 450 451 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 452 to_write, hs_req->req.length, can_write, buf_pos); 453 454 if (to_write <= 0) 455 return -ENOSPC; 456 457 hs_req->req.actual = buf_pos + to_write; 458 hs_ep->total_data += to_write; 459 460 if (periodic) 461 hs_ep->fifo_load += to_write; 462 463 to_write = DIV_ROUND_UP(to_write, 4); 464 data = hs_req->req.buf + buf_pos; 465 466 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 467 468 return (to_write >= can_write) ? -ENOSPC : 0; 469 } 470 471 /** 472 * get_ep_limit - get the maximum data legnth for this endpoint 473 * @hs_ep: The endpoint 474 * 475 * Return the maximum data that can be queued in one go on a given endpoint 476 * so that transfers that are too long can be split. 477 */ 478 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep) 479 { 480 int index = hs_ep->index; 481 unsigned maxsize; 482 unsigned maxpkt; 483 484 if (index != 0) { 485 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 486 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 487 } else { 488 maxsize = 64+64; 489 if (hs_ep->dir_in) 490 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 491 else 492 maxpkt = 2; 493 } 494 495 /* we made the constant loading easier above by using +1 */ 496 maxpkt--; 497 maxsize--; 498 499 /* 500 * constrain by packet count if maxpkts*pktsize is greater 501 * than the length register size. 502 */ 503 504 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 505 maxsize = maxpkt * hs_ep->ep.maxpacket; 506 507 return maxsize; 508 } 509 510 /** 511 * s3c_hsotg_start_req - start a USB request from an endpoint's queue 512 * @hsotg: The controller state. 513 * @hs_ep: The endpoint to process a request for 514 * @hs_req: The request to start. 515 * @continuing: True if we are doing more for the current request. 516 * 517 * Start the given request running by setting the endpoint registers 518 * appropriately, and writing any data to the FIFOs. 519 */ 520 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg, 521 struct s3c_hsotg_ep *hs_ep, 522 struct s3c_hsotg_req *hs_req, 523 bool continuing) 524 { 525 struct usb_request *ureq = &hs_req->req; 526 int index = hs_ep->index; 527 int dir_in = hs_ep->dir_in; 528 u32 epctrl_reg; 529 u32 epsize_reg; 530 u32 epsize; 531 u32 ctrl; 532 unsigned length; 533 unsigned packets; 534 unsigned maxreq; 535 536 if (index != 0) { 537 if (hs_ep->req && !continuing) { 538 dev_err(hsotg->dev, "%s: active request\n", __func__); 539 WARN_ON(1); 540 return; 541 } else if (hs_ep->req != hs_req && continuing) { 542 dev_err(hsotg->dev, 543 "%s: continue different req\n", __func__); 544 WARN_ON(1); 545 return; 546 } 547 } 548 549 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 550 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 551 552 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 553 __func__, readl(hsotg->regs + epctrl_reg), index, 554 hs_ep->dir_in ? "in" : "out"); 555 556 /* If endpoint is stalled, we will restart request later */ 557 ctrl = readl(hsotg->regs + epctrl_reg); 558 559 if (ctrl & DXEPCTL_STALL) { 560 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 561 return; 562 } 563 564 length = ureq->length - ureq->actual; 565 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 566 ureq->length, ureq->actual); 567 if (0) 568 dev_dbg(hsotg->dev, 569 "REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n", 570 ureq->buf, length, &ureq->dma, 571 ureq->no_interrupt, ureq->zero, ureq->short_not_ok); 572 573 maxreq = get_ep_limit(hs_ep); 574 if (length > maxreq) { 575 int round = maxreq % hs_ep->ep.maxpacket; 576 577 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 578 __func__, length, maxreq, round); 579 580 /* round down to multiple of packets */ 581 if (round) 582 maxreq -= round; 583 584 length = maxreq; 585 } 586 587 if (length) 588 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 589 else 590 packets = 1; /* send one packet if length is zero. */ 591 592 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 593 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 594 return; 595 } 596 597 if (dir_in && index != 0) 598 if (hs_ep->isochronous) 599 epsize = DXEPTSIZ_MC(packets); 600 else 601 epsize = DXEPTSIZ_MC(1); 602 else 603 epsize = 0; 604 605 if (index != 0 && ureq->zero) { 606 /* 607 * test for the packets being exactly right for the 608 * transfer 609 */ 610 611 if (length == (packets * hs_ep->ep.maxpacket)) 612 packets++; 613 } 614 615 epsize |= DXEPTSIZ_PKTCNT(packets); 616 epsize |= DXEPTSIZ_XFERSIZE(length); 617 618 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 619 __func__, packets, length, ureq->length, epsize, epsize_reg); 620 621 /* store the request as the current one we're doing */ 622 hs_ep->req = hs_req; 623 624 /* write size / packets */ 625 writel(epsize, hsotg->regs + epsize_reg); 626 627 if (using_dma(hsotg) && !continuing) { 628 unsigned int dma_reg; 629 630 /* 631 * write DMA address to control register, buffer already 632 * synced by s3c_hsotg_ep_queue(). 633 */ 634 635 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 636 writel(ureq->dma, hsotg->regs + dma_reg); 637 638 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 639 __func__, &ureq->dma, dma_reg); 640 } 641 642 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 643 ctrl |= DXEPCTL_USBACTEP; 644 645 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup); 646 647 /* For Setup request do not clear NAK */ 648 if (hsotg->setup && index == 0) 649 hsotg->setup = 0; 650 else 651 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 652 653 654 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 655 writel(ctrl, hsotg->regs + epctrl_reg); 656 657 /* 658 * set these, it seems that DMA support increments past the end 659 * of the packet buffer so we need to calculate the length from 660 * this information. 661 */ 662 hs_ep->size_loaded = length; 663 hs_ep->last_load = ureq->actual; 664 665 if (dir_in && !using_dma(hsotg)) { 666 /* set these anyway, we may need them for non-periodic in */ 667 hs_ep->fifo_load = 0; 668 669 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 670 } 671 672 /* 673 * clear the INTknTXFEmpMsk when we start request, more as a aide 674 * to debugging to see what is going on. 675 */ 676 if (dir_in) 677 writel(DIEPMSK_INTKNTXFEMPMSK, 678 hsotg->regs + DIEPINT(index)); 679 680 /* 681 * Note, trying to clear the NAK here causes problems with transmit 682 * on the S3C6400 ending up with the TXFIFO becoming full. 683 */ 684 685 /* check ep is enabled */ 686 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 687 dev_warn(hsotg->dev, 688 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 689 index, readl(hsotg->regs + epctrl_reg)); 690 691 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 692 __func__, readl(hsotg->regs + epctrl_reg)); 693 694 /* enable ep interrupts */ 695 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 696 } 697 698 /** 699 * s3c_hsotg_map_dma - map the DMA memory being used for the request 700 * @hsotg: The device state. 701 * @hs_ep: The endpoint the request is on. 702 * @req: The request being processed. 703 * 704 * We've been asked to queue a request, so ensure that the memory buffer 705 * is correctly setup for DMA. If we've been passed an extant DMA address 706 * then ensure the buffer has been synced to memory. If our buffer has no 707 * DMA memory, then we map the memory and mark our request to allow us to 708 * cleanup on completion. 709 */ 710 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg, 711 struct s3c_hsotg_ep *hs_ep, 712 struct usb_request *req) 713 { 714 struct s3c_hsotg_req *hs_req = our_req(req); 715 int ret; 716 717 /* if the length is zero, ignore the DMA data */ 718 if (hs_req->req.length == 0) 719 return 0; 720 721 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 722 if (ret) 723 goto dma_error; 724 725 return 0; 726 727 dma_error: 728 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 729 __func__, req->buf, req->length); 730 731 return -EIO; 732 } 733 734 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 735 gfp_t gfp_flags) 736 { 737 struct s3c_hsotg_req *hs_req = our_req(req); 738 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 739 struct s3c_hsotg *hs = hs_ep->parent; 740 bool first; 741 742 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 743 ep->name, req, req->length, req->buf, req->no_interrupt, 744 req->zero, req->short_not_ok); 745 746 /* initialise status of the request */ 747 INIT_LIST_HEAD(&hs_req->queue); 748 req->actual = 0; 749 req->status = -EINPROGRESS; 750 751 /* if we're using DMA, sync the buffers as necessary */ 752 if (using_dma(hs)) { 753 int ret = s3c_hsotg_map_dma(hs, hs_ep, req); 754 if (ret) 755 return ret; 756 } 757 758 first = list_empty(&hs_ep->queue); 759 list_add_tail(&hs_req->queue, &hs_ep->queue); 760 761 if (first) 762 s3c_hsotg_start_req(hs, hs_ep, hs_req, false); 763 764 return 0; 765 } 766 767 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 768 gfp_t gfp_flags) 769 { 770 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 771 struct s3c_hsotg *hs = hs_ep->parent; 772 unsigned long flags = 0; 773 int ret = 0; 774 775 spin_lock_irqsave(&hs->lock, flags); 776 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags); 777 spin_unlock_irqrestore(&hs->lock, flags); 778 779 return ret; 780 } 781 782 static void s3c_hsotg_ep_free_request(struct usb_ep *ep, 783 struct usb_request *req) 784 { 785 struct s3c_hsotg_req *hs_req = our_req(req); 786 787 kfree(hs_req); 788 } 789 790 /** 791 * s3c_hsotg_complete_oursetup - setup completion callback 792 * @ep: The endpoint the request was on. 793 * @req: The request completed. 794 * 795 * Called on completion of any requests the driver itself 796 * submitted that need cleaning up. 797 */ 798 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep, 799 struct usb_request *req) 800 { 801 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 802 struct s3c_hsotg *hsotg = hs_ep->parent; 803 804 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 805 806 s3c_hsotg_ep_free_request(ep, req); 807 } 808 809 /** 810 * ep_from_windex - convert control wIndex value to endpoint 811 * @hsotg: The driver state. 812 * @windex: The control request wIndex field (in host order). 813 * 814 * Convert the given wIndex into a pointer to an driver endpoint 815 * structure, or return NULL if it is not a valid endpoint. 816 */ 817 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg, 818 u32 windex) 819 { 820 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F]; 821 int dir = (windex & USB_DIR_IN) ? 1 : 0; 822 int idx = windex & 0x7F; 823 824 if (windex >= 0x100) 825 return NULL; 826 827 if (idx > hsotg->num_of_eps) 828 return NULL; 829 830 if (idx && ep->dir_in != dir) 831 return NULL; 832 833 return ep; 834 } 835 836 /** 837 * s3c_hsotg_send_reply - send reply to control request 838 * @hsotg: The device state 839 * @ep: Endpoint 0 840 * @buff: Buffer for request 841 * @length: Length of reply. 842 * 843 * Create a request and queue it on the given endpoint. This is useful as 844 * an internal method of sending replies to certain control requests, etc. 845 */ 846 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg, 847 struct s3c_hsotg_ep *ep, 848 void *buff, 849 int length) 850 { 851 struct usb_request *req; 852 int ret; 853 854 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 855 856 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 857 hsotg->ep0_reply = req; 858 if (!req) { 859 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 860 return -ENOMEM; 861 } 862 863 req->buf = hsotg->ep0_buff; 864 req->length = length; 865 req->zero = 1; /* always do zero-length final transfer */ 866 req->complete = s3c_hsotg_complete_oursetup; 867 868 if (length) 869 memcpy(req->buf, buff, length); 870 else 871 ep->sent_zlp = 1; 872 873 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 874 if (ret) { 875 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 876 return ret; 877 } 878 879 return 0; 880 } 881 882 /** 883 * s3c_hsotg_process_req_status - process request GET_STATUS 884 * @hsotg: The device state 885 * @ctrl: USB control request 886 */ 887 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg, 888 struct usb_ctrlrequest *ctrl) 889 { 890 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 891 struct s3c_hsotg_ep *ep; 892 __le16 reply; 893 int ret; 894 895 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 896 897 if (!ep0->dir_in) { 898 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 899 return -EINVAL; 900 } 901 902 switch (ctrl->bRequestType & USB_RECIP_MASK) { 903 case USB_RECIP_DEVICE: 904 reply = cpu_to_le16(0); /* bit 0 => self powered, 905 * bit 1 => remote wakeup */ 906 break; 907 908 case USB_RECIP_INTERFACE: 909 /* currently, the data result should be zero */ 910 reply = cpu_to_le16(0); 911 break; 912 913 case USB_RECIP_ENDPOINT: 914 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 915 if (!ep) 916 return -ENOENT; 917 918 reply = cpu_to_le16(ep->halted ? 1 : 0); 919 break; 920 921 default: 922 return 0; 923 } 924 925 if (le16_to_cpu(ctrl->wLength) != 2) 926 return -EINVAL; 927 928 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2); 929 if (ret) { 930 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 931 return ret; 932 } 933 934 return 1; 935 } 936 937 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value); 938 939 /** 940 * get_ep_head - return the first request on the endpoint 941 * @hs_ep: The controller endpoint to get 942 * 943 * Get the first request on the endpoint. 944 */ 945 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep) 946 { 947 if (list_empty(&hs_ep->queue)) 948 return NULL; 949 950 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue); 951 } 952 953 /** 954 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE 955 * @hsotg: The device state 956 * @ctrl: USB control request 957 */ 958 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg, 959 struct usb_ctrlrequest *ctrl) 960 { 961 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 962 struct s3c_hsotg_req *hs_req; 963 bool restart; 964 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 965 struct s3c_hsotg_ep *ep; 966 int ret; 967 bool halted; 968 969 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 970 __func__, set ? "SET" : "CLEAR"); 971 972 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) { 973 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 974 if (!ep) { 975 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 976 __func__, le16_to_cpu(ctrl->wIndex)); 977 return -ENOENT; 978 } 979 980 switch (le16_to_cpu(ctrl->wValue)) { 981 case USB_ENDPOINT_HALT: 982 halted = ep->halted; 983 984 s3c_hsotg_ep_sethalt(&ep->ep, set); 985 986 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 987 if (ret) { 988 dev_err(hsotg->dev, 989 "%s: failed to send reply\n", __func__); 990 return ret; 991 } 992 993 /* 994 * we have to complete all requests for ep if it was 995 * halted, and the halt was cleared by CLEAR_FEATURE 996 */ 997 998 if (!set && halted) { 999 /* 1000 * If we have request in progress, 1001 * then complete it 1002 */ 1003 if (ep->req) { 1004 hs_req = ep->req; 1005 ep->req = NULL; 1006 list_del_init(&hs_req->queue); 1007 usb_gadget_giveback_request(&ep->ep, 1008 &hs_req->req); 1009 } 1010 1011 /* If we have pending request, then start it */ 1012 restart = !list_empty(&ep->queue); 1013 if (restart) { 1014 hs_req = get_ep_head(ep); 1015 s3c_hsotg_start_req(hsotg, ep, 1016 hs_req, false); 1017 } 1018 } 1019 1020 break; 1021 1022 default: 1023 return -ENOENT; 1024 } 1025 } else 1026 return -ENOENT; /* currently only deal with endpoint */ 1027 1028 return 1; 1029 } 1030 1031 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg); 1032 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg); 1033 1034 /** 1035 * s3c_hsotg_stall_ep0 - stall ep0 1036 * @hsotg: The device state 1037 * 1038 * Set stall for ep0 as response for setup request. 1039 */ 1040 static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg) 1041 { 1042 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 1043 u32 reg; 1044 u32 ctrl; 1045 1046 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1047 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1048 1049 /* 1050 * DxEPCTL_Stall will be cleared by EP once it has 1051 * taken effect, so no need to clear later. 1052 */ 1053 1054 ctrl = readl(hsotg->regs + reg); 1055 ctrl |= DXEPCTL_STALL; 1056 ctrl |= DXEPCTL_CNAK; 1057 writel(ctrl, hsotg->regs + reg); 1058 1059 dev_dbg(hsotg->dev, 1060 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1061 ctrl, reg, readl(hsotg->regs + reg)); 1062 1063 /* 1064 * complete won't be called, so we enqueue 1065 * setup request here 1066 */ 1067 s3c_hsotg_enqueue_setup(hsotg); 1068 } 1069 1070 /** 1071 * s3c_hsotg_process_control - process a control request 1072 * @hsotg: The device state 1073 * @ctrl: The control request received 1074 * 1075 * The controller has received the SETUP phase of a control request, and 1076 * needs to work out what to do next (and whether to pass it on to the 1077 * gadget driver). 1078 */ 1079 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg, 1080 struct usb_ctrlrequest *ctrl) 1081 { 1082 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 1083 int ret = 0; 1084 u32 dcfg; 1085 1086 ep0->sent_zlp = 0; 1087 1088 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n", 1089 ctrl->bRequest, ctrl->bRequestType, 1090 ctrl->wValue, ctrl->wLength); 1091 1092 /* 1093 * record the direction of the request, for later use when enquing 1094 * packets onto EP0. 1095 */ 1096 1097 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0; 1098 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in); 1099 1100 /* 1101 * if we've no data with this request, then the last part of the 1102 * transaction is going to implicitly be IN. 1103 */ 1104 if (ctrl->wLength == 0) 1105 ep0->dir_in = 1; 1106 1107 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1108 switch (ctrl->bRequest) { 1109 case USB_REQ_SET_ADDRESS: 1110 s3c_hsotg_disconnect(hsotg); 1111 dcfg = readl(hsotg->regs + DCFG); 1112 dcfg &= ~DCFG_DEVADDR_MASK; 1113 dcfg |= (le16_to_cpu(ctrl->wValue) << 1114 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1115 writel(dcfg, hsotg->regs + DCFG); 1116 1117 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1118 1119 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 1120 return; 1121 1122 case USB_REQ_GET_STATUS: 1123 ret = s3c_hsotg_process_req_status(hsotg, ctrl); 1124 break; 1125 1126 case USB_REQ_CLEAR_FEATURE: 1127 case USB_REQ_SET_FEATURE: 1128 ret = s3c_hsotg_process_req_feature(hsotg, ctrl); 1129 break; 1130 } 1131 } 1132 1133 /* as a fallback, try delivering it to the driver to deal with */ 1134 1135 if (ret == 0 && hsotg->driver) { 1136 spin_unlock(&hsotg->lock); 1137 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1138 spin_lock(&hsotg->lock); 1139 if (ret < 0) 1140 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1141 } 1142 1143 /* 1144 * the request is either unhandlable, or is not formatted correctly 1145 * so respond with a STALL for the status stage to indicate failure. 1146 */ 1147 1148 if (ret < 0) 1149 s3c_hsotg_stall_ep0(hsotg); 1150 } 1151 1152 /** 1153 * s3c_hsotg_complete_setup - completion of a setup transfer 1154 * @ep: The endpoint the request was on. 1155 * @req: The request completed. 1156 * 1157 * Called on completion of any requests the driver itself submitted for 1158 * EP0 setup packets 1159 */ 1160 static void s3c_hsotg_complete_setup(struct usb_ep *ep, 1161 struct usb_request *req) 1162 { 1163 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 1164 struct s3c_hsotg *hsotg = hs_ep->parent; 1165 1166 if (req->status < 0) { 1167 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1168 return; 1169 } 1170 1171 spin_lock(&hsotg->lock); 1172 if (req->actual == 0) 1173 s3c_hsotg_enqueue_setup(hsotg); 1174 else 1175 s3c_hsotg_process_control(hsotg, req->buf); 1176 spin_unlock(&hsotg->lock); 1177 } 1178 1179 /** 1180 * s3c_hsotg_enqueue_setup - start a request for EP0 packets 1181 * @hsotg: The device state. 1182 * 1183 * Enqueue a request on EP0 if necessary to received any SETUP packets 1184 * received from the host. 1185 */ 1186 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg) 1187 { 1188 struct usb_request *req = hsotg->ctrl_req; 1189 struct s3c_hsotg_req *hs_req = our_req(req); 1190 int ret; 1191 1192 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1193 1194 req->zero = 0; 1195 req->length = 8; 1196 req->buf = hsotg->ctrl_buff; 1197 req->complete = s3c_hsotg_complete_setup; 1198 1199 if (!list_empty(&hs_req->queue)) { 1200 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1201 return; 1202 } 1203 1204 hsotg->eps[0].dir_in = 0; 1205 1206 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC); 1207 if (ret < 0) { 1208 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1209 /* 1210 * Don't think there's much we can do other than watch the 1211 * driver fail. 1212 */ 1213 } 1214 } 1215 1216 /** 1217 * s3c_hsotg_complete_request - complete a request given to us 1218 * @hsotg: The device state. 1219 * @hs_ep: The endpoint the request was on. 1220 * @hs_req: The request to complete. 1221 * @result: The result code (0 => Ok, otherwise errno) 1222 * 1223 * The given request has finished, so call the necessary completion 1224 * if it has one and then look to see if we can start a new request 1225 * on the endpoint. 1226 * 1227 * Note, expects the ep to already be locked as appropriate. 1228 */ 1229 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg, 1230 struct s3c_hsotg_ep *hs_ep, 1231 struct s3c_hsotg_req *hs_req, 1232 int result) 1233 { 1234 bool restart; 1235 1236 if (!hs_req) { 1237 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1238 return; 1239 } 1240 1241 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1242 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1243 1244 /* 1245 * only replace the status if we've not already set an error 1246 * from a previous transaction 1247 */ 1248 1249 if (hs_req->req.status == -EINPROGRESS) 1250 hs_req->req.status = result; 1251 1252 hs_ep->req = NULL; 1253 list_del_init(&hs_req->queue); 1254 1255 if (using_dma(hsotg)) 1256 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1257 1258 /* 1259 * call the complete request with the locks off, just in case the 1260 * request tries to queue more work for this endpoint. 1261 */ 1262 1263 if (hs_req->req.complete) { 1264 spin_unlock(&hsotg->lock); 1265 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 1266 spin_lock(&hsotg->lock); 1267 } 1268 1269 /* 1270 * Look to see if there is anything else to do. Note, the completion 1271 * of the previous request may have caused a new request to be started 1272 * so be careful when doing this. 1273 */ 1274 1275 if (!hs_ep->req && result >= 0) { 1276 restart = !list_empty(&hs_ep->queue); 1277 if (restart) { 1278 hs_req = get_ep_head(hs_ep); 1279 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1280 } 1281 } 1282 } 1283 1284 /** 1285 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint 1286 * @hsotg: The device state. 1287 * @ep_idx: The endpoint index for the data 1288 * @size: The size of data in the fifo, in bytes 1289 * 1290 * The FIFO status shows there is data to read from the FIFO for a given 1291 * endpoint, so sort out whether we need to read the data into a request 1292 * that has been made for that endpoint. 1293 */ 1294 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size) 1295 { 1296 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx]; 1297 struct s3c_hsotg_req *hs_req = hs_ep->req; 1298 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 1299 int to_read; 1300 int max_req; 1301 int read_ptr; 1302 1303 1304 if (!hs_req) { 1305 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx)); 1306 int ptr; 1307 1308 dev_warn(hsotg->dev, 1309 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 1310 __func__, size, ep_idx, epctl); 1311 1312 /* dump the data from the FIFO, we've nothing we can do */ 1313 for (ptr = 0; ptr < size; ptr += 4) 1314 (void)readl(fifo); 1315 1316 return; 1317 } 1318 1319 to_read = size; 1320 read_ptr = hs_req->req.actual; 1321 max_req = hs_req->req.length - read_ptr; 1322 1323 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 1324 __func__, to_read, max_req, read_ptr, hs_req->req.length); 1325 1326 if (to_read > max_req) { 1327 /* 1328 * more data appeared than we where willing 1329 * to deal with in this request. 1330 */ 1331 1332 /* currently we don't deal this */ 1333 WARN_ON_ONCE(1); 1334 } 1335 1336 hs_ep->total_data += to_read; 1337 hs_req->req.actual += to_read; 1338 to_read = DIV_ROUND_UP(to_read, 4); 1339 1340 /* 1341 * note, we might over-write the buffer end by 3 bytes depending on 1342 * alignment of the data. 1343 */ 1344 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 1345 } 1346 1347 /** 1348 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint 1349 * @hsotg: The device instance 1350 * @req: The request currently on this endpoint 1351 * 1352 * Generate a zero-length IN packet request for terminating a SETUP 1353 * transaction. 1354 * 1355 * Note, since we don't write any data to the TxFIFO, then it is 1356 * currently believed that we do not need to wait for any space in 1357 * the TxFIFO. 1358 */ 1359 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg, 1360 struct s3c_hsotg_req *req) 1361 { 1362 u32 ctrl; 1363 1364 if (!req) { 1365 dev_warn(hsotg->dev, "%s: no request?\n", __func__); 1366 return; 1367 } 1368 1369 if (req->req.length == 0) { 1370 hsotg->eps[0].sent_zlp = 1; 1371 s3c_hsotg_enqueue_setup(hsotg); 1372 return; 1373 } 1374 1375 hsotg->eps[0].dir_in = 1; 1376 hsotg->eps[0].sent_zlp = 1; 1377 1378 dev_dbg(hsotg->dev, "sending zero-length packet\n"); 1379 1380 /* issue a zero-sized packet to terminate this */ 1381 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1382 DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0)); 1383 1384 ctrl = readl(hsotg->regs + DIEPCTL0); 1385 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1386 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1387 ctrl |= DXEPCTL_USBACTEP; 1388 writel(ctrl, hsotg->regs + DIEPCTL0); 1389 } 1390 1391 /** 1392 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 1393 * @hsotg: The device instance 1394 * @epnum: The endpoint received from 1395 * @was_setup: Set if processing a SetupDone event. 1396 * 1397 * The RXFIFO has delivered an OutDone event, which means that the data 1398 * transfer for an OUT endpoint has been completed, either by a short 1399 * packet or by the finish of a transfer. 1400 */ 1401 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg, 1402 int epnum, bool was_setup) 1403 { 1404 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum)); 1405 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum]; 1406 struct s3c_hsotg_req *hs_req = hs_ep->req; 1407 struct usb_request *req = &hs_req->req; 1408 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1409 int result = 0; 1410 1411 if (!hs_req) { 1412 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 1413 return; 1414 } 1415 1416 if (using_dma(hsotg)) { 1417 unsigned size_done; 1418 1419 /* 1420 * Calculate the size of the transfer by checking how much 1421 * is left in the endpoint size register and then working it 1422 * out from the amount we loaded for the transfer. 1423 * 1424 * We need to do this as DMA pointers are always 32bit aligned 1425 * so may overshoot/undershoot the transfer. 1426 */ 1427 1428 size_done = hs_ep->size_loaded - size_left; 1429 size_done += hs_ep->last_load; 1430 1431 req->actual = size_done; 1432 } 1433 1434 /* if there is more request to do, schedule new transfer */ 1435 if (req->actual < req->length && size_left == 0) { 1436 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1437 return; 1438 } else if (epnum == 0) { 1439 /* 1440 * After was_setup = 1 => 1441 * set CNAK for non Setup requests 1442 */ 1443 hsotg->setup = was_setup ? 0 : 1; 1444 } 1445 1446 if (req->actual < req->length && req->short_not_ok) { 1447 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 1448 __func__, req->actual, req->length); 1449 1450 /* 1451 * todo - what should we return here? there's no one else 1452 * even bothering to check the status. 1453 */ 1454 } 1455 1456 if (epnum == 0) { 1457 /* 1458 * Condition req->complete != s3c_hsotg_complete_setup says: 1459 * send ZLP when we have an asynchronous request from gadget 1460 */ 1461 if (!was_setup && req->complete != s3c_hsotg_complete_setup) 1462 s3c_hsotg_send_zlp(hsotg, hs_req); 1463 } 1464 1465 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 1466 } 1467 1468 /** 1469 * s3c_hsotg_read_frameno - read current frame number 1470 * @hsotg: The device instance 1471 * 1472 * Return the current frame number 1473 */ 1474 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg) 1475 { 1476 u32 dsts; 1477 1478 dsts = readl(hsotg->regs + DSTS); 1479 dsts &= DSTS_SOFFN_MASK; 1480 dsts >>= DSTS_SOFFN_SHIFT; 1481 1482 return dsts; 1483 } 1484 1485 /** 1486 * s3c_hsotg_handle_rx - RX FIFO has data 1487 * @hsotg: The device instance 1488 * 1489 * The IRQ handler has detected that the RX FIFO has some data in it 1490 * that requires processing, so find out what is in there and do the 1491 * appropriate read. 1492 * 1493 * The RXFIFO is a true FIFO, the packets coming out are still in packet 1494 * chunks, so if you have x packets received on an endpoint you'll get x 1495 * FIFO events delivered, each with a packet's worth of data in it. 1496 * 1497 * When using DMA, we should not be processing events from the RXFIFO 1498 * as the actual data should be sent to the memory directly and we turn 1499 * on the completion interrupts to get notifications of transfer completion. 1500 */ 1501 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg) 1502 { 1503 u32 grxstsr = readl(hsotg->regs + GRXSTSP); 1504 u32 epnum, status, size; 1505 1506 WARN_ON(using_dma(hsotg)); 1507 1508 epnum = grxstsr & GRXSTS_EPNUM_MASK; 1509 status = grxstsr & GRXSTS_PKTSTS_MASK; 1510 1511 size = grxstsr & GRXSTS_BYTECNT_MASK; 1512 size >>= GRXSTS_BYTECNT_SHIFT; 1513 1514 if (1) 1515 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 1516 __func__, grxstsr, size, epnum); 1517 1518 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 1519 case GRXSTS_PKTSTS_GLOBALOUTNAK: 1520 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 1521 break; 1522 1523 case GRXSTS_PKTSTS_OUTDONE: 1524 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 1525 s3c_hsotg_read_frameno(hsotg)); 1526 1527 if (!using_dma(hsotg)) 1528 s3c_hsotg_handle_outdone(hsotg, epnum, false); 1529 break; 1530 1531 case GRXSTS_PKTSTS_SETUPDONE: 1532 dev_dbg(hsotg->dev, 1533 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1534 s3c_hsotg_read_frameno(hsotg), 1535 readl(hsotg->regs + DOEPCTL(0))); 1536 1537 s3c_hsotg_handle_outdone(hsotg, epnum, true); 1538 break; 1539 1540 case GRXSTS_PKTSTS_OUTRX: 1541 s3c_hsotg_rx_data(hsotg, epnum, size); 1542 break; 1543 1544 case GRXSTS_PKTSTS_SETUPRX: 1545 dev_dbg(hsotg->dev, 1546 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1547 s3c_hsotg_read_frameno(hsotg), 1548 readl(hsotg->regs + DOEPCTL(0))); 1549 1550 s3c_hsotg_rx_data(hsotg, epnum, size); 1551 break; 1552 1553 default: 1554 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 1555 __func__, grxstsr); 1556 1557 s3c_hsotg_dump(hsotg); 1558 break; 1559 } 1560 } 1561 1562 /** 1563 * s3c_hsotg_ep0_mps - turn max packet size into register setting 1564 * @mps: The maximum packet size in bytes. 1565 */ 1566 static u32 s3c_hsotg_ep0_mps(unsigned int mps) 1567 { 1568 switch (mps) { 1569 case 64: 1570 return D0EPCTL_MPS_64; 1571 case 32: 1572 return D0EPCTL_MPS_32; 1573 case 16: 1574 return D0EPCTL_MPS_16; 1575 case 8: 1576 return D0EPCTL_MPS_8; 1577 } 1578 1579 /* bad max packet size, warn and return invalid result */ 1580 WARN_ON(1); 1581 return (u32)-1; 1582 } 1583 1584 /** 1585 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field 1586 * @hsotg: The driver state. 1587 * @ep: The index number of the endpoint 1588 * @mps: The maximum packet size in bytes 1589 * 1590 * Configure the maximum packet size for the given endpoint, updating 1591 * the hardware control registers to reflect this. 1592 */ 1593 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg, 1594 unsigned int ep, unsigned int mps) 1595 { 1596 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep]; 1597 void __iomem *regs = hsotg->regs; 1598 u32 mpsval; 1599 u32 mcval; 1600 u32 reg; 1601 1602 if (ep == 0) { 1603 /* EP0 is a special case */ 1604 mpsval = s3c_hsotg_ep0_mps(mps); 1605 if (mpsval > 3) 1606 goto bad_mps; 1607 hs_ep->ep.maxpacket = mps; 1608 hs_ep->mc = 1; 1609 } else { 1610 mpsval = mps & DXEPCTL_MPS_MASK; 1611 if (mpsval > 1024) 1612 goto bad_mps; 1613 mcval = ((mps >> 11) & 0x3) + 1; 1614 hs_ep->mc = mcval; 1615 if (mcval > 3) 1616 goto bad_mps; 1617 hs_ep->ep.maxpacket = mpsval; 1618 } 1619 1620 /* 1621 * update both the in and out endpoint controldir_ registers, even 1622 * if one of the directions may not be in use. 1623 */ 1624 1625 reg = readl(regs + DIEPCTL(ep)); 1626 reg &= ~DXEPCTL_MPS_MASK; 1627 reg |= mpsval; 1628 writel(reg, regs + DIEPCTL(ep)); 1629 1630 if (ep) { 1631 reg = readl(regs + DOEPCTL(ep)); 1632 reg &= ~DXEPCTL_MPS_MASK; 1633 reg |= mpsval; 1634 writel(reg, regs + DOEPCTL(ep)); 1635 } 1636 1637 return; 1638 1639 bad_mps: 1640 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 1641 } 1642 1643 /** 1644 * s3c_hsotg_txfifo_flush - flush Tx FIFO 1645 * @hsotg: The driver state 1646 * @idx: The index for the endpoint (0..15) 1647 */ 1648 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx) 1649 { 1650 int timeout; 1651 int val; 1652 1653 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 1654 hsotg->regs + GRSTCTL); 1655 1656 /* wait until the fifo is flushed */ 1657 timeout = 100; 1658 1659 while (1) { 1660 val = readl(hsotg->regs + GRSTCTL); 1661 1662 if ((val & (GRSTCTL_TXFFLSH)) == 0) 1663 break; 1664 1665 if (--timeout == 0) { 1666 dev_err(hsotg->dev, 1667 "%s: timeout flushing fifo (GRSTCTL=%08x)\n", 1668 __func__, val); 1669 break; 1670 } 1671 1672 udelay(1); 1673 } 1674 } 1675 1676 /** 1677 * s3c_hsotg_trytx - check to see if anything needs transmitting 1678 * @hsotg: The driver state 1679 * @hs_ep: The driver endpoint to check. 1680 * 1681 * Check to see if there is a request that has data to send, and if so 1682 * make an attempt to write data into the FIFO. 1683 */ 1684 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg, 1685 struct s3c_hsotg_ep *hs_ep) 1686 { 1687 struct s3c_hsotg_req *hs_req = hs_ep->req; 1688 1689 if (!hs_ep->dir_in || !hs_req) { 1690 /** 1691 * if request is not enqueued, we disable interrupts 1692 * for endpoints, excepting ep0 1693 */ 1694 if (hs_ep->index != 0) 1695 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, 1696 hs_ep->dir_in, 0); 1697 return 0; 1698 } 1699 1700 if (hs_req->req.actual < hs_req->req.length) { 1701 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 1702 hs_ep->index); 1703 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1704 } 1705 1706 return 0; 1707 } 1708 1709 /** 1710 * s3c_hsotg_complete_in - complete IN transfer 1711 * @hsotg: The device state. 1712 * @hs_ep: The endpoint that has just completed. 1713 * 1714 * An IN transfer has been completed, update the transfer's state and then 1715 * call the relevant completion routines. 1716 */ 1717 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg, 1718 struct s3c_hsotg_ep *hs_ep) 1719 { 1720 struct s3c_hsotg_req *hs_req = hs_ep->req; 1721 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 1722 int size_left, size_done; 1723 1724 if (!hs_req) { 1725 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 1726 return; 1727 } 1728 1729 /* Finish ZLP handling for IN EP0 transactions */ 1730 if (hsotg->eps[0].sent_zlp) { 1731 dev_dbg(hsotg->dev, "zlp packet received\n"); 1732 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1733 return; 1734 } 1735 1736 /* 1737 * Calculate the size of the transfer by checking how much is left 1738 * in the endpoint size register and then working it out from 1739 * the amount we loaded for the transfer. 1740 * 1741 * We do this even for DMA, as the transfer may have incremented 1742 * past the end of the buffer (DMA transfers are always 32bit 1743 * aligned). 1744 */ 1745 1746 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1747 1748 size_done = hs_ep->size_loaded - size_left; 1749 size_done += hs_ep->last_load; 1750 1751 if (hs_req->req.actual != size_done) 1752 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 1753 __func__, hs_req->req.actual, size_done); 1754 1755 hs_req->req.actual = size_done; 1756 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 1757 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 1758 1759 /* 1760 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0 1761 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B 1762 * ,256B ... ), after last MPS sized packet send IN ZLP packet to 1763 * inform the host that no more data is available. 1764 * The state of req.zero member is checked to be sure that the value to 1765 * send is smaller than wValue expected from host. 1766 * Check req.length to NOT send another ZLP when the current one is 1767 * under completion (the one for which this completion has been called). 1768 */ 1769 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero && 1770 hs_req->req.length == hs_req->req.actual && 1771 !(hs_req->req.length % hs_ep->ep.maxpacket)) { 1772 1773 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n"); 1774 s3c_hsotg_send_zlp(hsotg, hs_req); 1775 1776 return; 1777 } 1778 1779 if (!size_left && hs_req->req.actual < hs_req->req.length) { 1780 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 1781 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1782 } else 1783 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1784 } 1785 1786 /** 1787 * s3c_hsotg_epint - handle an in/out endpoint interrupt 1788 * @hsotg: The driver state 1789 * @idx: The index for the endpoint (0..15) 1790 * @dir_in: Set if this is an IN endpoint 1791 * 1792 * Process and clear any interrupt pending for an individual endpoint 1793 */ 1794 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx, 1795 int dir_in) 1796 { 1797 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx]; 1798 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 1799 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 1800 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 1801 u32 ints; 1802 u32 ctrl; 1803 1804 ints = readl(hsotg->regs + epint_reg); 1805 ctrl = readl(hsotg->regs + epctl_reg); 1806 1807 /* Clear endpoint interrupts */ 1808 writel(ints, hsotg->regs + epint_reg); 1809 1810 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 1811 __func__, idx, dir_in ? "in" : "out", ints); 1812 1813 if (ints & DXEPINT_XFERCOMPL) { 1814 if (hs_ep->isochronous && hs_ep->interval == 1) { 1815 if (ctrl & DXEPCTL_EOFRNUM) 1816 ctrl |= DXEPCTL_SETEVENFR; 1817 else 1818 ctrl |= DXEPCTL_SETODDFR; 1819 writel(ctrl, hsotg->regs + epctl_reg); 1820 } 1821 1822 dev_dbg(hsotg->dev, 1823 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 1824 __func__, readl(hsotg->regs + epctl_reg), 1825 readl(hsotg->regs + epsiz_reg)); 1826 1827 /* 1828 * we get OutDone from the FIFO, so we only need to look 1829 * at completing IN requests here 1830 */ 1831 if (dir_in) { 1832 s3c_hsotg_complete_in(hsotg, hs_ep); 1833 1834 if (idx == 0 && !hs_ep->req) 1835 s3c_hsotg_enqueue_setup(hsotg); 1836 } else if (using_dma(hsotg)) { 1837 /* 1838 * We're using DMA, we need to fire an OutDone here 1839 * as we ignore the RXFIFO. 1840 */ 1841 1842 s3c_hsotg_handle_outdone(hsotg, idx, false); 1843 } 1844 } 1845 1846 if (ints & DXEPINT_EPDISBLD) { 1847 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 1848 1849 if (dir_in) { 1850 int epctl = readl(hsotg->regs + epctl_reg); 1851 1852 s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 1853 1854 if ((epctl & DXEPCTL_STALL) && 1855 (epctl & DXEPCTL_EPTYPE_BULK)) { 1856 int dctl = readl(hsotg->regs + DCTL); 1857 1858 dctl |= DCTL_CGNPINNAK; 1859 writel(dctl, hsotg->regs + DCTL); 1860 } 1861 } 1862 } 1863 1864 if (ints & DXEPINT_AHBERR) 1865 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 1866 1867 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 1868 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 1869 1870 if (using_dma(hsotg) && idx == 0) { 1871 /* 1872 * this is the notification we've received a 1873 * setup packet. In non-DMA mode we'd get this 1874 * from the RXFIFO, instead we need to process 1875 * the setup here. 1876 */ 1877 1878 if (dir_in) 1879 WARN_ON_ONCE(1); 1880 else 1881 s3c_hsotg_handle_outdone(hsotg, 0, true); 1882 } 1883 } 1884 1885 if (ints & DXEPINT_BACK2BACKSETUP) 1886 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 1887 1888 if (dir_in && !hs_ep->isochronous) { 1889 /* not sure if this is important, but we'll clear it anyway */ 1890 if (ints & DIEPMSK_INTKNTXFEMPMSK) { 1891 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 1892 __func__, idx); 1893 } 1894 1895 /* this probably means something bad is happening */ 1896 if (ints & DIEPMSK_INTKNEPMISMSK) { 1897 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 1898 __func__, idx); 1899 } 1900 1901 /* FIFO has space or is empty (see GAHBCFG) */ 1902 if (hsotg->dedicated_fifos && 1903 ints & DIEPMSK_TXFIFOEMPTY) { 1904 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 1905 __func__, idx); 1906 if (!using_dma(hsotg)) 1907 s3c_hsotg_trytx(hsotg, hs_ep); 1908 } 1909 } 1910 } 1911 1912 /** 1913 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 1914 * @hsotg: The device state. 1915 * 1916 * Handle updating the device settings after the enumeration phase has 1917 * been completed. 1918 */ 1919 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg) 1920 { 1921 u32 dsts = readl(hsotg->regs + DSTS); 1922 int ep0_mps = 0, ep_mps = 8; 1923 1924 /* 1925 * This should signal the finish of the enumeration phase 1926 * of the USB handshaking, so we should now know what rate 1927 * we connected at. 1928 */ 1929 1930 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 1931 1932 /* 1933 * note, since we're limited by the size of transfer on EP0, and 1934 * it seems IN transfers must be a even number of packets we do 1935 * not advertise a 64byte MPS on EP0. 1936 */ 1937 1938 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 1939 switch (dsts & DSTS_ENUMSPD_MASK) { 1940 case DSTS_ENUMSPD_FS: 1941 case DSTS_ENUMSPD_FS48: 1942 hsotg->gadget.speed = USB_SPEED_FULL; 1943 ep0_mps = EP0_MPS_LIMIT; 1944 ep_mps = 1023; 1945 break; 1946 1947 case DSTS_ENUMSPD_HS: 1948 hsotg->gadget.speed = USB_SPEED_HIGH; 1949 ep0_mps = EP0_MPS_LIMIT; 1950 ep_mps = 1024; 1951 break; 1952 1953 case DSTS_ENUMSPD_LS: 1954 hsotg->gadget.speed = USB_SPEED_LOW; 1955 /* 1956 * note, we don't actually support LS in this driver at the 1957 * moment, and the documentation seems to imply that it isn't 1958 * supported by the PHYs on some of the devices. 1959 */ 1960 break; 1961 } 1962 dev_info(hsotg->dev, "new device is %s\n", 1963 usb_speed_string(hsotg->gadget.speed)); 1964 1965 /* 1966 * we should now know the maximum packet size for an 1967 * endpoint, so set the endpoints to a default value. 1968 */ 1969 1970 if (ep0_mps) { 1971 int i; 1972 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps); 1973 for (i = 1; i < hsotg->num_of_eps; i++) 1974 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps); 1975 } 1976 1977 /* ensure after enumeration our EP0 is active */ 1978 1979 s3c_hsotg_enqueue_setup(hsotg); 1980 1981 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 1982 readl(hsotg->regs + DIEPCTL0), 1983 readl(hsotg->regs + DOEPCTL0)); 1984 } 1985 1986 /** 1987 * kill_all_requests - remove all requests from the endpoint's queue 1988 * @hsotg: The device state. 1989 * @ep: The endpoint the requests may be on. 1990 * @result: The result code to use. 1991 * @force: Force removal of any current requests 1992 * 1993 * Go through the requests on the given endpoint and mark them 1994 * completed with the given result code. 1995 */ 1996 static void kill_all_requests(struct s3c_hsotg *hsotg, 1997 struct s3c_hsotg_ep *ep, 1998 int result, bool force) 1999 { 2000 struct s3c_hsotg_req *req, *treq; 2001 unsigned size; 2002 2003 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 2004 /* 2005 * currently, we can't do much about an already 2006 * running request on an in endpoint 2007 */ 2008 2009 if (ep->req == req && ep->dir_in && !force) 2010 continue; 2011 2012 s3c_hsotg_complete_request(hsotg, ep, req, 2013 result); 2014 } 2015 if (!hsotg->dedicated_fifos) 2016 return; 2017 size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4; 2018 if (size < ep->fifo_size) 2019 s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index); 2020 } 2021 2022 /** 2023 * s3c_hsotg_disconnect - disconnect service 2024 * @hsotg: The device state. 2025 * 2026 * The device has been disconnected. Remove all current 2027 * transactions and signal the gadget driver that this 2028 * has happened. 2029 */ 2030 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg) 2031 { 2032 unsigned ep; 2033 2034 for (ep = 0; ep < hsotg->num_of_eps; ep++) 2035 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true); 2036 2037 call_gadget(hsotg, disconnect); 2038 } 2039 2040 /** 2041 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 2042 * @hsotg: The device state: 2043 * @periodic: True if this is a periodic FIFO interrupt 2044 */ 2045 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic) 2046 { 2047 struct s3c_hsotg_ep *ep; 2048 int epno, ret; 2049 2050 /* look through for any more data to transmit */ 2051 2052 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 2053 ep = &hsotg->eps[epno]; 2054 2055 if (!ep->dir_in) 2056 continue; 2057 2058 if ((periodic && !ep->periodic) || 2059 (!periodic && ep->periodic)) 2060 continue; 2061 2062 ret = s3c_hsotg_trytx(hsotg, ep); 2063 if (ret < 0) 2064 break; 2065 } 2066 } 2067 2068 /* IRQ flags which will trigger a retry around the IRQ loop */ 2069 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 2070 GINTSTS_PTXFEMP | \ 2071 GINTSTS_RXFLVL) 2072 2073 /** 2074 * s3c_hsotg_corereset - issue softreset to the core 2075 * @hsotg: The device state 2076 * 2077 * Issue a soft reset to the core, and await the core finishing it. 2078 */ 2079 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg) 2080 { 2081 int timeout; 2082 u32 grstctl; 2083 2084 dev_dbg(hsotg->dev, "resetting core\n"); 2085 2086 /* issue soft reset */ 2087 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL); 2088 2089 timeout = 10000; 2090 do { 2091 grstctl = readl(hsotg->regs + GRSTCTL); 2092 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0); 2093 2094 if (grstctl & GRSTCTL_CSFTRST) { 2095 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n"); 2096 return -EINVAL; 2097 } 2098 2099 timeout = 10000; 2100 2101 while (1) { 2102 u32 grstctl = readl(hsotg->regs + GRSTCTL); 2103 2104 if (timeout-- < 0) { 2105 dev_info(hsotg->dev, 2106 "%s: reset failed, GRSTCTL=%08x\n", 2107 __func__, grstctl); 2108 return -ETIMEDOUT; 2109 } 2110 2111 if (!(grstctl & GRSTCTL_AHBIDLE)) 2112 continue; 2113 2114 break; /* reset done */ 2115 } 2116 2117 dev_dbg(hsotg->dev, "reset successful\n"); 2118 return 0; 2119 } 2120 2121 /** 2122 * s3c_hsotg_core_init - issue softreset to the core 2123 * @hsotg: The device state 2124 * 2125 * Issue a soft reset to the core, and await the core finishing it. 2126 */ 2127 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg) 2128 { 2129 s3c_hsotg_corereset(hsotg); 2130 2131 /* 2132 * we must now enable ep0 ready for host detection and then 2133 * set configuration. 2134 */ 2135 2136 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2137 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) | 2138 (0x5 << 10), hsotg->regs + GUSBCFG); 2139 2140 s3c_hsotg_init_fifo(hsotg); 2141 2142 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2143 2144 writel(1 << 18 | DCFG_DEVSPD_HS, hsotg->regs + DCFG); 2145 2146 /* Clear any pending OTG interrupts */ 2147 writel(0xffffffff, hsotg->regs + GOTGINT); 2148 2149 /* Clear any pending interrupts */ 2150 writel(0xffffffff, hsotg->regs + GINTSTS); 2151 2152 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 2153 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 2154 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST | 2155 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 2156 GINTSTS_USBSUSP | GINTSTS_WKUPINT, 2157 hsotg->regs + GINTMSK); 2158 2159 if (using_dma(hsotg)) 2160 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 2161 GAHBCFG_HBSTLEN_INCR4, 2162 hsotg->regs + GAHBCFG); 2163 else 2164 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL | 2165 GAHBCFG_P_TXF_EMP_LVL) : 0) | 2166 GAHBCFG_GLBL_INTR_EN, 2167 hsotg->regs + GAHBCFG); 2168 2169 /* 2170 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 2171 * when we have no data to transfer. Otherwise we get being flooded by 2172 * interrupts. 2173 */ 2174 2175 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY | 2176 DIEPMSK_INTKNTXFEMPMSK : 0) | 2177 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 2178 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2179 DIEPMSK_INTKNEPMISMSK, 2180 hsotg->regs + DIEPMSK); 2181 2182 /* 2183 * don't need XferCompl, we get that from RXFIFO in slave mode. In 2184 * DMA mode we may need this. 2185 */ 2186 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 2187 DIEPMSK_TIMEOUTMSK) : 0) | 2188 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 2189 DOEPMSK_SETUPMSK, 2190 hsotg->regs + DOEPMSK); 2191 2192 writel(0, hsotg->regs + DAINTMSK); 2193 2194 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2195 readl(hsotg->regs + DIEPCTL0), 2196 readl(hsotg->regs + DOEPCTL0)); 2197 2198 /* enable in and out endpoint interrupts */ 2199 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 2200 2201 /* 2202 * Enable the RXFIFO when in slave mode, as this is how we collect 2203 * the data. In DMA mode, we get events from the FIFO but also 2204 * things we cannot process, so do not use it. 2205 */ 2206 if (!using_dma(hsotg)) 2207 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 2208 2209 /* Enable interrupts for EP0 in and out */ 2210 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1); 2211 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1); 2212 2213 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2214 udelay(10); /* see openiboot */ 2215 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2216 2217 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL)); 2218 2219 /* 2220 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 2221 * writing to the EPCTL register.. 2222 */ 2223 2224 /* set to read 1 8byte packet */ 2225 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2226 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 2227 2228 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | 2229 DXEPCTL_CNAK | DXEPCTL_EPENA | 2230 DXEPCTL_USBACTEP, 2231 hsotg->regs + DOEPCTL0); 2232 2233 /* enable, but don't activate EP0in */ 2234 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | 2235 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 2236 2237 s3c_hsotg_enqueue_setup(hsotg); 2238 2239 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2240 readl(hsotg->regs + DIEPCTL0), 2241 readl(hsotg->regs + DOEPCTL0)); 2242 2243 /* clear global NAKs */ 2244 writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK, 2245 hsotg->regs + DCTL); 2246 2247 /* must be at-least 3ms to allow bus to see disconnect */ 2248 mdelay(3); 2249 2250 /* remove the soft-disconnect and let's go */ 2251 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2252 } 2253 2254 /** 2255 * s3c_hsotg_irq - handle device interrupt 2256 * @irq: The IRQ number triggered 2257 * @pw: The pw value when registered the handler. 2258 */ 2259 static irqreturn_t s3c_hsotg_irq(int irq, void *pw) 2260 { 2261 struct s3c_hsotg *hsotg = pw; 2262 int retry_count = 8; 2263 u32 gintsts; 2264 u32 gintmsk; 2265 2266 spin_lock(&hsotg->lock); 2267 irq_retry: 2268 gintsts = readl(hsotg->regs + GINTSTS); 2269 gintmsk = readl(hsotg->regs + GINTMSK); 2270 2271 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 2272 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 2273 2274 gintsts &= gintmsk; 2275 2276 if (gintsts & GINTSTS_OTGINT) { 2277 u32 otgint = readl(hsotg->regs + GOTGINT); 2278 2279 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint); 2280 2281 writel(otgint, hsotg->regs + GOTGINT); 2282 } 2283 2284 if (gintsts & GINTSTS_SESSREQINT) { 2285 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__); 2286 writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS); 2287 } 2288 2289 if (gintsts & GINTSTS_ENUMDONE) { 2290 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 2291 2292 s3c_hsotg_irq_enumdone(hsotg); 2293 } 2294 2295 if (gintsts & GINTSTS_CONIDSTSCHNG) { 2296 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n", 2297 readl(hsotg->regs + DSTS), 2298 readl(hsotg->regs + GOTGCTL)); 2299 2300 writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS); 2301 } 2302 2303 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 2304 u32 daint = readl(hsotg->regs + DAINT); 2305 u32 daintmsk = readl(hsotg->regs + DAINTMSK); 2306 u32 daint_out, daint_in; 2307 int ep; 2308 2309 daint &= daintmsk; 2310 daint_out = daint >> DAINT_OUTEP_SHIFT; 2311 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 2312 2313 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 2314 2315 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) { 2316 if (daint_out & 1) 2317 s3c_hsotg_epint(hsotg, ep, 0); 2318 } 2319 2320 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) { 2321 if (daint_in & 1) 2322 s3c_hsotg_epint(hsotg, ep, 1); 2323 } 2324 } 2325 2326 if (gintsts & GINTSTS_USBRST) { 2327 2328 u32 usb_status = readl(hsotg->regs + GOTGCTL); 2329 2330 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 2331 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 2332 readl(hsotg->regs + GNPTXSTS)); 2333 2334 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 2335 2336 if (usb_status & GOTGCTL_BSESVLD) { 2337 if (time_after(jiffies, hsotg->last_rst + 2338 msecs_to_jiffies(200))) { 2339 2340 kill_all_requests(hsotg, &hsotg->eps[0], 2341 -ECONNRESET, true); 2342 2343 s3c_hsotg_core_init(hsotg); 2344 hsotg->last_rst = jiffies; 2345 } 2346 } 2347 } 2348 2349 /* check both FIFOs */ 2350 2351 if (gintsts & GINTSTS_NPTXFEMP) { 2352 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 2353 2354 /* 2355 * Disable the interrupt to stop it happening again 2356 * unless one of these endpoint routines decides that 2357 * it needs re-enabling 2358 */ 2359 2360 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 2361 s3c_hsotg_irq_fifoempty(hsotg, false); 2362 } 2363 2364 if (gintsts & GINTSTS_PTXFEMP) { 2365 dev_dbg(hsotg->dev, "PTxFEmp\n"); 2366 2367 /* See note in GINTSTS_NPTxFEmp */ 2368 2369 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 2370 s3c_hsotg_irq_fifoempty(hsotg, true); 2371 } 2372 2373 if (gintsts & GINTSTS_RXFLVL) { 2374 /* 2375 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 2376 * we need to retry s3c_hsotg_handle_rx if this is still 2377 * set. 2378 */ 2379 2380 s3c_hsotg_handle_rx(hsotg); 2381 } 2382 2383 if (gintsts & GINTSTS_MODEMIS) { 2384 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n"); 2385 writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS); 2386 } 2387 2388 if (gintsts & GINTSTS_USBSUSP) { 2389 dev_info(hsotg->dev, "GINTSTS_USBSusp\n"); 2390 writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS); 2391 2392 call_gadget(hsotg, suspend); 2393 } 2394 2395 if (gintsts & GINTSTS_WKUPINT) { 2396 dev_info(hsotg->dev, "GINTSTS_WkUpIn\n"); 2397 writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS); 2398 2399 call_gadget(hsotg, resume); 2400 } 2401 2402 if (gintsts & GINTSTS_ERLYSUSP) { 2403 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 2404 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 2405 } 2406 2407 /* 2408 * these next two seem to crop-up occasionally causing the core 2409 * to shutdown the USB transfer, so try clearing them and logging 2410 * the occurrence. 2411 */ 2412 2413 if (gintsts & GINTSTS_GOUTNAKEFF) { 2414 dev_info(hsotg->dev, "GOUTNakEff triggered\n"); 2415 2416 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL); 2417 2418 s3c_hsotg_dump(hsotg); 2419 } 2420 2421 if (gintsts & GINTSTS_GINNAKEFF) { 2422 dev_info(hsotg->dev, "GINNakEff triggered\n"); 2423 2424 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL); 2425 2426 s3c_hsotg_dump(hsotg); 2427 } 2428 2429 /* 2430 * if we've had fifo events, we should try and go around the 2431 * loop again to see if there's any point in returning yet. 2432 */ 2433 2434 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 2435 goto irq_retry; 2436 2437 spin_unlock(&hsotg->lock); 2438 2439 return IRQ_HANDLED; 2440 } 2441 2442 /** 2443 * s3c_hsotg_ep_enable - enable the given endpoint 2444 * @ep: The USB endpint to configure 2445 * @desc: The USB endpoint descriptor to configure with. 2446 * 2447 * This is called from the USB gadget code's usb_ep_enable(). 2448 */ 2449 static int s3c_hsotg_ep_enable(struct usb_ep *ep, 2450 const struct usb_endpoint_descriptor *desc) 2451 { 2452 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2453 struct s3c_hsotg *hsotg = hs_ep->parent; 2454 unsigned long flags; 2455 int index = hs_ep->index; 2456 u32 epctrl_reg; 2457 u32 epctrl; 2458 u32 mps; 2459 int dir_in; 2460 int i, val, size; 2461 int ret = 0; 2462 2463 dev_dbg(hsotg->dev, 2464 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 2465 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 2466 desc->wMaxPacketSize, desc->bInterval); 2467 2468 /* not to be called for EP0 */ 2469 WARN_ON(index == 0); 2470 2471 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 2472 if (dir_in != hs_ep->dir_in) { 2473 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 2474 return -EINVAL; 2475 } 2476 2477 mps = usb_endpoint_maxp(desc); 2478 2479 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */ 2480 2481 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2482 epctrl = readl(hsotg->regs + epctrl_reg); 2483 2484 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 2485 __func__, epctrl, epctrl_reg); 2486 2487 spin_lock_irqsave(&hsotg->lock, flags); 2488 2489 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 2490 epctrl |= DXEPCTL_MPS(mps); 2491 2492 /* 2493 * mark the endpoint as active, otherwise the core may ignore 2494 * transactions entirely for this endpoint 2495 */ 2496 epctrl |= DXEPCTL_USBACTEP; 2497 2498 /* 2499 * set the NAK status on the endpoint, otherwise we might try and 2500 * do something with data that we've yet got a request to process 2501 * since the RXFIFO will take data for an endpoint even if the 2502 * size register hasn't been set. 2503 */ 2504 2505 epctrl |= DXEPCTL_SNAK; 2506 2507 /* update the endpoint state */ 2508 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps); 2509 2510 /* default, set to non-periodic */ 2511 hs_ep->isochronous = 0; 2512 hs_ep->periodic = 0; 2513 hs_ep->halted = 0; 2514 hs_ep->interval = desc->bInterval; 2515 2516 if (hs_ep->interval > 1 && hs_ep->mc > 1) 2517 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n"); 2518 2519 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 2520 case USB_ENDPOINT_XFER_ISOC: 2521 epctrl |= DXEPCTL_EPTYPE_ISO; 2522 epctrl |= DXEPCTL_SETEVENFR; 2523 hs_ep->isochronous = 1; 2524 if (dir_in) 2525 hs_ep->periodic = 1; 2526 break; 2527 2528 case USB_ENDPOINT_XFER_BULK: 2529 epctrl |= DXEPCTL_EPTYPE_BULK; 2530 break; 2531 2532 case USB_ENDPOINT_XFER_INT: 2533 if (dir_in) 2534 hs_ep->periodic = 1; 2535 2536 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 2537 break; 2538 2539 case USB_ENDPOINT_XFER_CONTROL: 2540 epctrl |= DXEPCTL_EPTYPE_CONTROL; 2541 break; 2542 } 2543 2544 /* 2545 * if the hardware has dedicated fifos, we must give each IN EP 2546 * a unique tx-fifo even if it is non-periodic. 2547 */ 2548 if (dir_in && hsotg->dedicated_fifos) { 2549 size = hs_ep->ep.maxpacket*hs_ep->mc; 2550 for (i = 1; i <= 8; ++i) { 2551 if (hsotg->fifo_map & (1<<i)) 2552 continue; 2553 val = readl(hsotg->regs + DPTXFSIZN(i)); 2554 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4; 2555 if (val < size) 2556 continue; 2557 hsotg->fifo_map |= 1<<i; 2558 2559 epctrl |= DXEPCTL_TXFNUM(i); 2560 hs_ep->fifo_index = i; 2561 hs_ep->fifo_size = val; 2562 break; 2563 } 2564 if (i == 8) { 2565 ret = -ENOMEM; 2566 goto error; 2567 } 2568 } 2569 2570 /* for non control endpoints, set PID to D0 */ 2571 if (index) 2572 epctrl |= DXEPCTL_SETD0PID; 2573 2574 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 2575 __func__, epctrl); 2576 2577 writel(epctrl, hsotg->regs + epctrl_reg); 2578 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 2579 __func__, readl(hsotg->regs + epctrl_reg)); 2580 2581 /* enable the endpoint interrupt */ 2582 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 2583 2584 error: 2585 spin_unlock_irqrestore(&hsotg->lock, flags); 2586 return ret; 2587 } 2588 2589 /** 2590 * s3c_hsotg_ep_disable - disable given endpoint 2591 * @ep: The endpoint to disable. 2592 */ 2593 static int s3c_hsotg_ep_disable(struct usb_ep *ep) 2594 { 2595 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2596 struct s3c_hsotg *hsotg = hs_ep->parent; 2597 int dir_in = hs_ep->dir_in; 2598 int index = hs_ep->index; 2599 unsigned long flags; 2600 u32 epctrl_reg; 2601 u32 ctrl; 2602 2603 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 2604 2605 if (ep == &hsotg->eps[0].ep) { 2606 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 2607 return -EINVAL; 2608 } 2609 2610 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2611 2612 spin_lock_irqsave(&hsotg->lock, flags); 2613 /* terminate all requests with shutdown */ 2614 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false); 2615 2616 hsotg->fifo_map &= ~(1<<hs_ep->fifo_index); 2617 hs_ep->fifo_index = 0; 2618 hs_ep->fifo_size = 0; 2619 2620 ctrl = readl(hsotg->regs + epctrl_reg); 2621 ctrl &= ~DXEPCTL_EPENA; 2622 ctrl &= ~DXEPCTL_USBACTEP; 2623 ctrl |= DXEPCTL_SNAK; 2624 2625 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 2626 writel(ctrl, hsotg->regs + epctrl_reg); 2627 2628 /* disable endpoint interrupts */ 2629 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 2630 2631 spin_unlock_irqrestore(&hsotg->lock, flags); 2632 return 0; 2633 } 2634 2635 /** 2636 * on_list - check request is on the given endpoint 2637 * @ep: The endpoint to check. 2638 * @test: The request to test if it is on the endpoint. 2639 */ 2640 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test) 2641 { 2642 struct s3c_hsotg_req *req, *treq; 2643 2644 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 2645 if (req == test) 2646 return true; 2647 } 2648 2649 return false; 2650 } 2651 2652 /** 2653 * s3c_hsotg_ep_dequeue - dequeue given endpoint 2654 * @ep: The endpoint to dequeue. 2655 * @req: The request to be removed from a queue. 2656 */ 2657 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 2658 { 2659 struct s3c_hsotg_req *hs_req = our_req(req); 2660 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2661 struct s3c_hsotg *hs = hs_ep->parent; 2662 unsigned long flags; 2663 2664 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 2665 2666 spin_lock_irqsave(&hs->lock, flags); 2667 2668 if (!on_list(hs_ep, hs_req)) { 2669 spin_unlock_irqrestore(&hs->lock, flags); 2670 return -EINVAL; 2671 } 2672 2673 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 2674 spin_unlock_irqrestore(&hs->lock, flags); 2675 2676 return 0; 2677 } 2678 2679 /** 2680 * s3c_hsotg_ep_sethalt - set halt on a given endpoint 2681 * @ep: The endpoint to set halt. 2682 * @value: Set or unset the halt. 2683 */ 2684 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value) 2685 { 2686 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2687 struct s3c_hsotg *hs = hs_ep->parent; 2688 int index = hs_ep->index; 2689 u32 epreg; 2690 u32 epctl; 2691 u32 xfertype; 2692 2693 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 2694 2695 if (index == 0) { 2696 if (value) 2697 s3c_hsotg_stall_ep0(hs); 2698 else 2699 dev_warn(hs->dev, 2700 "%s: can't clear halt on ep0\n", __func__); 2701 return 0; 2702 } 2703 2704 /* write both IN and OUT control registers */ 2705 2706 epreg = DIEPCTL(index); 2707 epctl = readl(hs->regs + epreg); 2708 2709 if (value) { 2710 epctl |= DXEPCTL_STALL + DXEPCTL_SNAK; 2711 if (epctl & DXEPCTL_EPENA) 2712 epctl |= DXEPCTL_EPDIS; 2713 } else { 2714 epctl &= ~DXEPCTL_STALL; 2715 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2716 if (xfertype == DXEPCTL_EPTYPE_BULK || 2717 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2718 epctl |= DXEPCTL_SETD0PID; 2719 } 2720 2721 writel(epctl, hs->regs + epreg); 2722 2723 epreg = DOEPCTL(index); 2724 epctl = readl(hs->regs + epreg); 2725 2726 if (value) 2727 epctl |= DXEPCTL_STALL; 2728 else { 2729 epctl &= ~DXEPCTL_STALL; 2730 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2731 if (xfertype == DXEPCTL_EPTYPE_BULK || 2732 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2733 epctl |= DXEPCTL_SETD0PID; 2734 } 2735 2736 writel(epctl, hs->regs + epreg); 2737 2738 hs_ep->halted = value; 2739 2740 return 0; 2741 } 2742 2743 /** 2744 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 2745 * @ep: The endpoint to set halt. 2746 * @value: Set or unset the halt. 2747 */ 2748 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 2749 { 2750 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2751 struct s3c_hsotg *hs = hs_ep->parent; 2752 unsigned long flags = 0; 2753 int ret = 0; 2754 2755 spin_lock_irqsave(&hs->lock, flags); 2756 ret = s3c_hsotg_ep_sethalt(ep, value); 2757 spin_unlock_irqrestore(&hs->lock, flags); 2758 2759 return ret; 2760 } 2761 2762 static struct usb_ep_ops s3c_hsotg_ep_ops = { 2763 .enable = s3c_hsotg_ep_enable, 2764 .disable = s3c_hsotg_ep_disable, 2765 .alloc_request = s3c_hsotg_ep_alloc_request, 2766 .free_request = s3c_hsotg_ep_free_request, 2767 .queue = s3c_hsotg_ep_queue_lock, 2768 .dequeue = s3c_hsotg_ep_dequeue, 2769 .set_halt = s3c_hsotg_ep_sethalt_lock, 2770 /* note, don't believe we have any call for the fifo routines */ 2771 }; 2772 2773 /** 2774 * s3c_hsotg_phy_enable - enable platform phy dev 2775 * @hsotg: The driver state 2776 * 2777 * A wrapper for platform code responsible for controlling 2778 * low-level USB code 2779 */ 2780 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg) 2781 { 2782 struct platform_device *pdev = to_platform_device(hsotg->dev); 2783 2784 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev); 2785 2786 if (hsotg->uphy) 2787 usb_phy_init(hsotg->uphy); 2788 else if (hsotg->plat && hsotg->plat->phy_init) 2789 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type); 2790 else { 2791 phy_init(hsotg->phy); 2792 phy_power_on(hsotg->phy); 2793 } 2794 } 2795 2796 /** 2797 * s3c_hsotg_phy_disable - disable platform phy dev 2798 * @hsotg: The driver state 2799 * 2800 * A wrapper for platform code responsible for controlling 2801 * low-level USB code 2802 */ 2803 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg) 2804 { 2805 struct platform_device *pdev = to_platform_device(hsotg->dev); 2806 2807 if (hsotg->uphy) 2808 usb_phy_shutdown(hsotg->uphy); 2809 else if (hsotg->plat && hsotg->plat->phy_exit) 2810 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type); 2811 else { 2812 phy_power_off(hsotg->phy); 2813 phy_exit(hsotg->phy); 2814 } 2815 } 2816 2817 /** 2818 * s3c_hsotg_init - initalize the usb core 2819 * @hsotg: The driver state 2820 */ 2821 static void s3c_hsotg_init(struct s3c_hsotg *hsotg) 2822 { 2823 /* unmask subset of endpoint interrupts */ 2824 2825 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2826 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 2827 hsotg->regs + DIEPMSK); 2828 2829 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 2830 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 2831 hsotg->regs + DOEPMSK); 2832 2833 writel(0, hsotg->regs + DAINTMSK); 2834 2835 /* Be in disconnected state until gadget is registered */ 2836 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2837 2838 if (0) { 2839 /* post global nak until we're ready */ 2840 writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK, 2841 hsotg->regs + DCTL); 2842 } 2843 2844 /* setup fifos */ 2845 2846 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 2847 readl(hsotg->regs + GRXFSIZ), 2848 readl(hsotg->regs + GNPTXFSIZ)); 2849 2850 s3c_hsotg_init_fifo(hsotg); 2851 2852 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2853 writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10), 2854 hsotg->regs + GUSBCFG); 2855 2856 writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0, 2857 hsotg->regs + GAHBCFG); 2858 } 2859 2860 /** 2861 * s3c_hsotg_udc_start - prepare the udc for work 2862 * @gadget: The usb gadget state 2863 * @driver: The usb gadget driver 2864 * 2865 * Perform initialization to prepare udc device and driver 2866 * to work. 2867 */ 2868 static int s3c_hsotg_udc_start(struct usb_gadget *gadget, 2869 struct usb_gadget_driver *driver) 2870 { 2871 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2872 int ret; 2873 2874 if (!hsotg) { 2875 pr_err("%s: called with no device\n", __func__); 2876 return -ENODEV; 2877 } 2878 2879 if (!driver) { 2880 dev_err(hsotg->dev, "%s: no driver\n", __func__); 2881 return -EINVAL; 2882 } 2883 2884 if (driver->max_speed < USB_SPEED_FULL) 2885 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 2886 2887 if (!driver->setup) { 2888 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 2889 return -EINVAL; 2890 } 2891 2892 WARN_ON(hsotg->driver); 2893 2894 driver->driver.bus = NULL; 2895 hsotg->driver = driver; 2896 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 2897 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2898 2899 clk_enable(hsotg->clk); 2900 2901 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 2902 hsotg->supplies); 2903 if (ret) { 2904 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret); 2905 goto err; 2906 } 2907 2908 hsotg->last_rst = jiffies; 2909 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 2910 return 0; 2911 2912 err: 2913 hsotg->driver = NULL; 2914 return ret; 2915 } 2916 2917 /** 2918 * s3c_hsotg_udc_stop - stop the udc 2919 * @gadget: The usb gadget state 2920 * @driver: The usb gadget driver 2921 * 2922 * Stop udc hw block and stay tunned for future transmissions 2923 */ 2924 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget, 2925 struct usb_gadget_driver *driver) 2926 { 2927 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2928 unsigned long flags = 0; 2929 int ep; 2930 2931 if (!hsotg) 2932 return -ENODEV; 2933 2934 /* all endpoints should be shutdown */ 2935 for (ep = 1; ep < hsotg->num_of_eps; ep++) 2936 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); 2937 2938 spin_lock_irqsave(&hsotg->lock, flags); 2939 2940 hsotg->driver = NULL; 2941 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2942 2943 spin_unlock_irqrestore(&hsotg->lock, flags); 2944 2945 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies); 2946 2947 clk_disable(hsotg->clk); 2948 2949 return 0; 2950 } 2951 2952 /** 2953 * s3c_hsotg_gadget_getframe - read the frame number 2954 * @gadget: The usb gadget state 2955 * 2956 * Read the {micro} frame number 2957 */ 2958 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget) 2959 { 2960 return s3c_hsotg_read_frameno(to_hsotg(gadget)); 2961 } 2962 2963 /** 2964 * s3c_hsotg_pullup - connect/disconnect the USB PHY 2965 * @gadget: The usb gadget state 2966 * @is_on: Current state of the USB PHY 2967 * 2968 * Connect/Disconnect the USB PHY pullup 2969 */ 2970 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on) 2971 { 2972 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2973 unsigned long flags = 0; 2974 2975 dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on); 2976 2977 spin_lock_irqsave(&hsotg->lock, flags); 2978 if (is_on) { 2979 s3c_hsotg_phy_enable(hsotg); 2980 clk_enable(hsotg->clk); 2981 s3c_hsotg_core_init(hsotg); 2982 } else { 2983 clk_disable(hsotg->clk); 2984 s3c_hsotg_phy_disable(hsotg); 2985 } 2986 2987 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2988 spin_unlock_irqrestore(&hsotg->lock, flags); 2989 2990 return 0; 2991 } 2992 2993 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = { 2994 .get_frame = s3c_hsotg_gadget_getframe, 2995 .udc_start = s3c_hsotg_udc_start, 2996 .udc_stop = s3c_hsotg_udc_stop, 2997 .pullup = s3c_hsotg_pullup, 2998 }; 2999 3000 /** 3001 * s3c_hsotg_initep - initialise a single endpoint 3002 * @hsotg: The device state. 3003 * @hs_ep: The endpoint to be initialised. 3004 * @epnum: The endpoint number 3005 * 3006 * Initialise the given endpoint (as part of the probe and device state 3007 * creation) to give to the gadget driver. Setup the endpoint name, any 3008 * direction information and other state that may be required. 3009 */ 3010 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg, 3011 struct s3c_hsotg_ep *hs_ep, 3012 int epnum) 3013 { 3014 char *dir; 3015 3016 if (epnum == 0) 3017 dir = ""; 3018 else if ((epnum % 2) == 0) { 3019 dir = "out"; 3020 } else { 3021 dir = "in"; 3022 hs_ep->dir_in = 1; 3023 } 3024 3025 hs_ep->index = epnum; 3026 3027 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 3028 3029 INIT_LIST_HEAD(&hs_ep->queue); 3030 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 3031 3032 /* add to the list of endpoints known by the gadget driver */ 3033 if (epnum) 3034 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 3035 3036 hs_ep->parent = hsotg; 3037 hs_ep->ep.name = hs_ep->name; 3038 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT); 3039 hs_ep->ep.ops = &s3c_hsotg_ep_ops; 3040 3041 /* 3042 * if we're using dma, we need to set the next-endpoint pointer 3043 * to be something valid. 3044 */ 3045 3046 if (using_dma(hsotg)) { 3047 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 3048 writel(next, hsotg->regs + DIEPCTL(epnum)); 3049 writel(next, hsotg->regs + DOEPCTL(epnum)); 3050 } 3051 } 3052 3053 /** 3054 * s3c_hsotg_hw_cfg - read HW configuration registers 3055 * @param: The device state 3056 * 3057 * Read the USB core HW configuration registers 3058 */ 3059 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg) 3060 { 3061 u32 cfg2, cfg3, cfg4; 3062 /* check hardware configuration */ 3063 3064 cfg2 = readl(hsotg->regs + 0x48); 3065 hsotg->num_of_eps = (cfg2 >> 10) & 0xF; 3066 3067 cfg3 = readl(hsotg->regs + 0x4C); 3068 hsotg->fifo_mem = (cfg3 >> 16); 3069 3070 cfg4 = readl(hsotg->regs + 0x50); 3071 hsotg->dedicated_fifos = (cfg4 >> 25) & 1; 3072 3073 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 3074 hsotg->num_of_eps, 3075 hsotg->dedicated_fifos ? "dedicated" : "shared", 3076 hsotg->fifo_mem); 3077 } 3078 3079 /** 3080 * s3c_hsotg_dump - dump state of the udc 3081 * @param: The device state 3082 */ 3083 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg) 3084 { 3085 #ifdef DEBUG 3086 struct device *dev = hsotg->dev; 3087 void __iomem *regs = hsotg->regs; 3088 u32 val; 3089 int idx; 3090 3091 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 3092 readl(regs + DCFG), readl(regs + DCTL), 3093 readl(regs + DIEPMSK)); 3094 3095 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n", 3096 readl(regs + GAHBCFG), readl(regs + 0x44)); 3097 3098 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 3099 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ)); 3100 3101 /* show periodic fifo settings */ 3102 3103 for (idx = 1; idx <= 15; idx++) { 3104 val = readl(regs + DPTXFSIZN(idx)); 3105 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 3106 val >> FIFOSIZE_DEPTH_SHIFT, 3107 val & FIFOSIZE_STARTADDR_MASK); 3108 } 3109 3110 for (idx = 0; idx < 15; idx++) { 3111 dev_info(dev, 3112 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 3113 readl(regs + DIEPCTL(idx)), 3114 readl(regs + DIEPTSIZ(idx)), 3115 readl(regs + DIEPDMA(idx))); 3116 3117 val = readl(regs + DOEPCTL(idx)); 3118 dev_info(dev, 3119 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 3120 idx, readl(regs + DOEPCTL(idx)), 3121 readl(regs + DOEPTSIZ(idx)), 3122 readl(regs + DOEPDMA(idx))); 3123 3124 } 3125 3126 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 3127 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE)); 3128 #endif 3129 } 3130 3131 /** 3132 * state_show - debugfs: show overall driver and device state. 3133 * @seq: The seq file to write to. 3134 * @v: Unused parameter. 3135 * 3136 * This debugfs entry shows the overall state of the hardware and 3137 * some general information about each of the endpoints available 3138 * to the system. 3139 */ 3140 static int state_show(struct seq_file *seq, void *v) 3141 { 3142 struct s3c_hsotg *hsotg = seq->private; 3143 void __iomem *regs = hsotg->regs; 3144 int idx; 3145 3146 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n", 3147 readl(regs + DCFG), 3148 readl(regs + DCTL), 3149 readl(regs + DSTS)); 3150 3151 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n", 3152 readl(regs + DIEPMSK), readl(regs + DOEPMSK)); 3153 3154 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n", 3155 readl(regs + GINTMSK), 3156 readl(regs + GINTSTS)); 3157 3158 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n", 3159 readl(regs + DAINTMSK), 3160 readl(regs + DAINT)); 3161 3162 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n", 3163 readl(regs + GNPTXSTS), 3164 readl(regs + GRXSTSR)); 3165 3166 seq_puts(seq, "\nEndpoint status:\n"); 3167 3168 for (idx = 0; idx < 15; idx++) { 3169 u32 in, out; 3170 3171 in = readl(regs + DIEPCTL(idx)); 3172 out = readl(regs + DOEPCTL(idx)); 3173 3174 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x", 3175 idx, in, out); 3176 3177 in = readl(regs + DIEPTSIZ(idx)); 3178 out = readl(regs + DOEPTSIZ(idx)); 3179 3180 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x", 3181 in, out); 3182 3183 seq_puts(seq, "\n"); 3184 } 3185 3186 return 0; 3187 } 3188 3189 static int state_open(struct inode *inode, struct file *file) 3190 { 3191 return single_open(file, state_show, inode->i_private); 3192 } 3193 3194 static const struct file_operations state_fops = { 3195 .owner = THIS_MODULE, 3196 .open = state_open, 3197 .read = seq_read, 3198 .llseek = seq_lseek, 3199 .release = single_release, 3200 }; 3201 3202 /** 3203 * fifo_show - debugfs: show the fifo information 3204 * @seq: The seq_file to write data to. 3205 * @v: Unused parameter. 3206 * 3207 * Show the FIFO information for the overall fifo and all the 3208 * periodic transmission FIFOs. 3209 */ 3210 static int fifo_show(struct seq_file *seq, void *v) 3211 { 3212 struct s3c_hsotg *hsotg = seq->private; 3213 void __iomem *regs = hsotg->regs; 3214 u32 val; 3215 int idx; 3216 3217 seq_puts(seq, "Non-periodic FIFOs:\n"); 3218 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ)); 3219 3220 val = readl(regs + GNPTXFSIZ); 3221 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n", 3222 val >> FIFOSIZE_DEPTH_SHIFT, 3223 val & FIFOSIZE_DEPTH_MASK); 3224 3225 seq_puts(seq, "\nPeriodic TXFIFOs:\n"); 3226 3227 for (idx = 1; idx <= 15; idx++) { 3228 val = readl(regs + DPTXFSIZN(idx)); 3229 3230 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx, 3231 val >> FIFOSIZE_DEPTH_SHIFT, 3232 val & FIFOSIZE_STARTADDR_MASK); 3233 } 3234 3235 return 0; 3236 } 3237 3238 static int fifo_open(struct inode *inode, struct file *file) 3239 { 3240 return single_open(file, fifo_show, inode->i_private); 3241 } 3242 3243 static const struct file_operations fifo_fops = { 3244 .owner = THIS_MODULE, 3245 .open = fifo_open, 3246 .read = seq_read, 3247 .llseek = seq_lseek, 3248 .release = single_release, 3249 }; 3250 3251 3252 static const char *decode_direction(int is_in) 3253 { 3254 return is_in ? "in" : "out"; 3255 } 3256 3257 /** 3258 * ep_show - debugfs: show the state of an endpoint. 3259 * @seq: The seq_file to write data to. 3260 * @v: Unused parameter. 3261 * 3262 * This debugfs entry shows the state of the given endpoint (one is 3263 * registered for each available). 3264 */ 3265 static int ep_show(struct seq_file *seq, void *v) 3266 { 3267 struct s3c_hsotg_ep *ep = seq->private; 3268 struct s3c_hsotg *hsotg = ep->parent; 3269 struct s3c_hsotg_req *req; 3270 void __iomem *regs = hsotg->regs; 3271 int index = ep->index; 3272 int show_limit = 15; 3273 unsigned long flags; 3274 3275 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n", 3276 ep->index, ep->ep.name, decode_direction(ep->dir_in)); 3277 3278 /* first show the register state */ 3279 3280 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n", 3281 readl(regs + DIEPCTL(index)), 3282 readl(regs + DOEPCTL(index))); 3283 3284 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n", 3285 readl(regs + DIEPDMA(index)), 3286 readl(regs + DOEPDMA(index))); 3287 3288 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n", 3289 readl(regs + DIEPINT(index)), 3290 readl(regs + DOEPINT(index))); 3291 3292 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n", 3293 readl(regs + DIEPTSIZ(index)), 3294 readl(regs + DOEPTSIZ(index))); 3295 3296 seq_puts(seq, "\n"); 3297 seq_printf(seq, "mps %d\n", ep->ep.maxpacket); 3298 seq_printf(seq, "total_data=%ld\n", ep->total_data); 3299 3300 seq_printf(seq, "request list (%p,%p):\n", 3301 ep->queue.next, ep->queue.prev); 3302 3303 spin_lock_irqsave(&hsotg->lock, flags); 3304 3305 list_for_each_entry(req, &ep->queue, queue) { 3306 if (--show_limit < 0) { 3307 seq_puts(seq, "not showing more requests...\n"); 3308 break; 3309 } 3310 3311 seq_printf(seq, "%c req %p: %d bytes @%p, ", 3312 req == ep->req ? '*' : ' ', 3313 req, req->req.length, req->req.buf); 3314 seq_printf(seq, "%d done, res %d\n", 3315 req->req.actual, req->req.status); 3316 } 3317 3318 spin_unlock_irqrestore(&hsotg->lock, flags); 3319 3320 return 0; 3321 } 3322 3323 static int ep_open(struct inode *inode, struct file *file) 3324 { 3325 return single_open(file, ep_show, inode->i_private); 3326 } 3327 3328 static const struct file_operations ep_fops = { 3329 .owner = THIS_MODULE, 3330 .open = ep_open, 3331 .read = seq_read, 3332 .llseek = seq_lseek, 3333 .release = single_release, 3334 }; 3335 3336 /** 3337 * s3c_hsotg_create_debug - create debugfs directory and files 3338 * @hsotg: The driver state 3339 * 3340 * Create the debugfs files to allow the user to get information 3341 * about the state of the system. The directory name is created 3342 * with the same name as the device itself, in case we end up 3343 * with multiple blocks in future systems. 3344 */ 3345 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg) 3346 { 3347 struct dentry *root; 3348 unsigned epidx; 3349 3350 root = debugfs_create_dir(dev_name(hsotg->dev), NULL); 3351 hsotg->debug_root = root; 3352 if (IS_ERR(root)) { 3353 dev_err(hsotg->dev, "cannot create debug root\n"); 3354 return; 3355 } 3356 3357 /* create general state file */ 3358 3359 hsotg->debug_file = debugfs_create_file("state", 0444, root, 3360 hsotg, &state_fops); 3361 3362 if (IS_ERR(hsotg->debug_file)) 3363 dev_err(hsotg->dev, "%s: failed to create state\n", __func__); 3364 3365 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root, 3366 hsotg, &fifo_fops); 3367 3368 if (IS_ERR(hsotg->debug_fifo)) 3369 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__); 3370 3371 /* create one file for each endpoint */ 3372 3373 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3374 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; 3375 3376 ep->debugfs = debugfs_create_file(ep->name, 0444, 3377 root, ep, &ep_fops); 3378 3379 if (IS_ERR(ep->debugfs)) 3380 dev_err(hsotg->dev, "failed to create %s debug file\n", 3381 ep->name); 3382 } 3383 } 3384 3385 /** 3386 * s3c_hsotg_delete_debug - cleanup debugfs entries 3387 * @hsotg: The driver state 3388 * 3389 * Cleanup (remove) the debugfs files for use on module exit. 3390 */ 3391 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg) 3392 { 3393 unsigned epidx; 3394 3395 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3396 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; 3397 debugfs_remove(ep->debugfs); 3398 } 3399 3400 debugfs_remove(hsotg->debug_file); 3401 debugfs_remove(hsotg->debug_fifo); 3402 debugfs_remove(hsotg->debug_root); 3403 } 3404 3405 /** 3406 * s3c_hsotg_probe - probe function for hsotg driver 3407 * @pdev: The platform information for the driver 3408 */ 3409 3410 static int s3c_hsotg_probe(struct platform_device *pdev) 3411 { 3412 struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev); 3413 struct phy *phy; 3414 struct usb_phy *uphy; 3415 struct device *dev = &pdev->dev; 3416 struct s3c_hsotg_ep *eps; 3417 struct s3c_hsotg *hsotg; 3418 struct resource *res; 3419 int epnum; 3420 int ret; 3421 int i; 3422 3423 hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL); 3424 if (!hsotg) 3425 return -ENOMEM; 3426 3427 /* Set default UTMI width */ 3428 hsotg->phyif = GUSBCFG_PHYIF16; 3429 3430 /* 3431 * Attempt to find a generic PHY, then look for an old style 3432 * USB PHY, finally fall back to pdata 3433 */ 3434 phy = devm_phy_get(&pdev->dev, "usb2-phy"); 3435 if (IS_ERR(phy)) { 3436 uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); 3437 if (IS_ERR(uphy)) { 3438 /* Fallback for pdata */ 3439 plat = dev_get_platdata(&pdev->dev); 3440 if (!plat) { 3441 dev_err(&pdev->dev, 3442 "no platform data or transceiver defined\n"); 3443 return -EPROBE_DEFER; 3444 } 3445 hsotg->plat = plat; 3446 } else 3447 hsotg->uphy = uphy; 3448 } else { 3449 hsotg->phy = phy; 3450 /* 3451 * If using the generic PHY framework, check if the PHY bus 3452 * width is 8-bit and set the phyif appropriately. 3453 */ 3454 if (phy_get_bus_width(phy) == 8) 3455 hsotg->phyif = GUSBCFG_PHYIF8; 3456 } 3457 3458 hsotg->dev = dev; 3459 3460 hsotg->clk = devm_clk_get(&pdev->dev, "otg"); 3461 if (IS_ERR(hsotg->clk)) { 3462 dev_err(dev, "cannot get otg clock\n"); 3463 return PTR_ERR(hsotg->clk); 3464 } 3465 3466 platform_set_drvdata(pdev, hsotg); 3467 3468 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3469 3470 hsotg->regs = devm_ioremap_resource(&pdev->dev, res); 3471 if (IS_ERR(hsotg->regs)) { 3472 ret = PTR_ERR(hsotg->regs); 3473 goto err_clk; 3474 } 3475 3476 ret = platform_get_irq(pdev, 0); 3477 if (ret < 0) { 3478 dev_err(dev, "cannot find IRQ\n"); 3479 goto err_clk; 3480 } 3481 3482 spin_lock_init(&hsotg->lock); 3483 3484 hsotg->irq = ret; 3485 3486 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq); 3487 3488 hsotg->gadget.max_speed = USB_SPEED_HIGH; 3489 hsotg->gadget.ops = &s3c_hsotg_gadget_ops; 3490 hsotg->gadget.name = dev_name(dev); 3491 3492 /* reset the system */ 3493 3494 clk_prepare_enable(hsotg->clk); 3495 3496 /* regulators */ 3497 3498 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++) 3499 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i]; 3500 3501 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies), 3502 hsotg->supplies); 3503 if (ret) { 3504 dev_err(dev, "failed to request supplies: %d\n", ret); 3505 goto err_clk; 3506 } 3507 3508 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3509 hsotg->supplies); 3510 3511 if (ret) { 3512 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret); 3513 goto err_supplies; 3514 } 3515 3516 /* usb phy enable */ 3517 s3c_hsotg_phy_enable(hsotg); 3518 3519 s3c_hsotg_corereset(hsotg); 3520 s3c_hsotg_hw_cfg(hsotg); 3521 s3c_hsotg_init(hsotg); 3522 3523 ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0, 3524 dev_name(dev), hsotg); 3525 if (ret < 0) { 3526 s3c_hsotg_phy_disable(hsotg); 3527 clk_disable_unprepare(hsotg->clk); 3528 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3529 hsotg->supplies); 3530 dev_err(dev, "cannot claim IRQ\n"); 3531 goto err_clk; 3532 } 3533 3534 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 3535 3536 if (hsotg->num_of_eps == 0) { 3537 dev_err(dev, "wrong number of EPs (zero)\n"); 3538 ret = -EINVAL; 3539 goto err_supplies; 3540 } 3541 3542 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep), 3543 GFP_KERNEL); 3544 if (!eps) { 3545 ret = -ENOMEM; 3546 goto err_supplies; 3547 } 3548 3549 hsotg->eps = eps; 3550 3551 /* setup endpoint information */ 3552 3553 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 3554 hsotg->gadget.ep0 = &hsotg->eps[0].ep; 3555 3556 /* allocate EP0 request */ 3557 3558 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep, 3559 GFP_KERNEL); 3560 if (!hsotg->ctrl_req) { 3561 dev_err(dev, "failed to allocate ctrl req\n"); 3562 ret = -ENOMEM; 3563 goto err_ep_mem; 3564 } 3565 3566 /* initialise the endpoints now the core has been initialised */ 3567 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) 3568 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum); 3569 3570 /* disable power and clock */ 3571 s3c_hsotg_phy_disable(hsotg); 3572 3573 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3574 hsotg->supplies); 3575 if (ret) { 3576 dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret); 3577 goto err_ep_mem; 3578 } 3579 3580 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget); 3581 if (ret) 3582 goto err_ep_mem; 3583 3584 s3c_hsotg_create_debug(hsotg); 3585 3586 s3c_hsotg_dump(hsotg); 3587 3588 return 0; 3589 3590 err_ep_mem: 3591 kfree(eps); 3592 err_supplies: 3593 s3c_hsotg_phy_disable(hsotg); 3594 err_clk: 3595 clk_disable_unprepare(hsotg->clk); 3596 3597 return ret; 3598 } 3599 3600 /** 3601 * s3c_hsotg_remove - remove function for hsotg driver 3602 * @pdev: The platform information for the driver 3603 */ 3604 static int s3c_hsotg_remove(struct platform_device *pdev) 3605 { 3606 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3607 3608 usb_del_gadget_udc(&hsotg->gadget); 3609 3610 s3c_hsotg_delete_debug(hsotg); 3611 3612 if (hsotg->driver) { 3613 /* should have been done already by driver model core */ 3614 usb_gadget_unregister_driver(hsotg->driver); 3615 } 3616 3617 clk_disable_unprepare(hsotg->clk); 3618 3619 return 0; 3620 } 3621 3622 static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state) 3623 { 3624 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3625 unsigned long flags; 3626 int ret = 0; 3627 3628 if (hsotg->driver) 3629 dev_info(hsotg->dev, "suspending usb gadget %s\n", 3630 hsotg->driver->driver.name); 3631 3632 spin_lock_irqsave(&hsotg->lock, flags); 3633 s3c_hsotg_disconnect(hsotg); 3634 s3c_hsotg_phy_disable(hsotg); 3635 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 3636 spin_unlock_irqrestore(&hsotg->lock, flags); 3637 3638 if (hsotg->driver) { 3639 int ep; 3640 for (ep = 0; ep < hsotg->num_of_eps; ep++) 3641 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); 3642 3643 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3644 hsotg->supplies); 3645 clk_disable(hsotg->clk); 3646 } 3647 3648 return ret; 3649 } 3650 3651 static int s3c_hsotg_resume(struct platform_device *pdev) 3652 { 3653 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3654 unsigned long flags; 3655 int ret = 0; 3656 3657 if (hsotg->driver) { 3658 dev_info(hsotg->dev, "resuming usb gadget %s\n", 3659 hsotg->driver->driver.name); 3660 3661 clk_enable(hsotg->clk); 3662 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3663 hsotg->supplies); 3664 } 3665 3666 spin_lock_irqsave(&hsotg->lock, flags); 3667 hsotg->last_rst = jiffies; 3668 s3c_hsotg_phy_enable(hsotg); 3669 s3c_hsotg_core_init(hsotg); 3670 spin_unlock_irqrestore(&hsotg->lock, flags); 3671 3672 return ret; 3673 } 3674 3675 #ifdef CONFIG_OF 3676 static const struct of_device_id s3c_hsotg_of_ids[] = { 3677 { .compatible = "samsung,s3c6400-hsotg", }, 3678 { .compatible = "snps,dwc2", }, 3679 { /* sentinel */ } 3680 }; 3681 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids); 3682 #endif 3683 3684 static struct platform_driver s3c_hsotg_driver = { 3685 .driver = { 3686 .name = "s3c-hsotg", 3687 .owner = THIS_MODULE, 3688 .of_match_table = of_match_ptr(s3c_hsotg_of_ids), 3689 }, 3690 .probe = s3c_hsotg_probe, 3691 .remove = s3c_hsotg_remove, 3692 .suspend = s3c_hsotg_suspend, 3693 .resume = s3c_hsotg_resume, 3694 }; 3695 3696 module_platform_driver(s3c_hsotg_driver); 3697 3698 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device"); 3699 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); 3700 MODULE_LICENSE("GPL"); 3701 MODULE_ALIAS("platform:s3c-hsotg"); 3702