xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 62e59c4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
51 {
52 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
53 }
54 
55 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
56 {
57 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  *
111  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
112  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
113  */
114 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
115 {
116 	hs_ep->target_frame += hs_ep->interval;
117 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
118 		hs_ep->frame_overrun = true;
119 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
120 	} else {
121 		hs_ep->frame_overrun = false;
122 	}
123 }
124 
125 /**
126  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
127  *                                    by one.
128  * @hs_ep: The endpoint.
129  *
130  * This function used in service interval based scheduling flow to calculate
131  * descriptor frame number filed value. For service interval mode frame
132  * number in descriptor should point to last (u)frame in the interval.
133  *
134  */
135 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
136 {
137 	if (hs_ep->target_frame)
138 		hs_ep->target_frame -= 1;
139 	else
140 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
141 }
142 
143 /**
144  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
145  * @hsotg: The device state
146  * @ints: A bitmask of the interrupts to enable
147  */
148 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
149 {
150 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
151 	u32 new_gsintmsk;
152 
153 	new_gsintmsk = gsintmsk | ints;
154 
155 	if (new_gsintmsk != gsintmsk) {
156 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
157 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
158 	}
159 }
160 
161 /**
162  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
163  * @hsotg: The device state
164  * @ints: A bitmask of the interrupts to enable
165  */
166 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
167 {
168 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
169 	u32 new_gsintmsk;
170 
171 	new_gsintmsk = gsintmsk & ~ints;
172 
173 	if (new_gsintmsk != gsintmsk)
174 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
175 }
176 
177 /**
178  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
179  * @hsotg: The device state
180  * @ep: The endpoint index
181  * @dir_in: True if direction is in.
182  * @en: The enable value, true to enable
183  *
184  * Set or clear the mask for an individual endpoint's interrupt
185  * request.
186  */
187 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
188 				  unsigned int ep, unsigned int dir_in,
189 				 unsigned int en)
190 {
191 	unsigned long flags;
192 	u32 bit = 1 << ep;
193 	u32 daint;
194 
195 	if (!dir_in)
196 		bit <<= 16;
197 
198 	local_irq_save(flags);
199 	daint = dwc2_readl(hsotg, DAINTMSK);
200 	if (en)
201 		daint |= bit;
202 	else
203 		daint &= ~bit;
204 	dwc2_writel(hsotg, daint, DAINTMSK);
205 	local_irq_restore(flags);
206 }
207 
208 /**
209  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
210  *
211  * @hsotg: Programming view of the DWC_otg controller
212  */
213 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
214 {
215 	if (hsotg->hw_params.en_multiple_tx_fifo)
216 		/* In dedicated FIFO mode we need count of IN EPs */
217 		return hsotg->hw_params.num_dev_in_eps;
218 	else
219 		/* In shared FIFO mode we need count of Periodic IN EPs */
220 		return hsotg->hw_params.num_dev_perio_in_ep;
221 }
222 
223 /**
224  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
225  * device mode TX FIFOs
226  *
227  * @hsotg: Programming view of the DWC_otg controller
228  */
229 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
230 {
231 	int addr;
232 	int tx_addr_max;
233 	u32 np_tx_fifo_size;
234 
235 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
236 				hsotg->params.g_np_tx_fifo_size);
237 
238 	/* Get Endpoint Info Control block size in DWORDs. */
239 	tx_addr_max = hsotg->hw_params.total_fifo_size;
240 
241 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
242 	if (tx_addr_max <= addr)
243 		return 0;
244 
245 	return tx_addr_max - addr;
246 }
247 
248 /**
249  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
250  *
251  * @hsotg: Programming view of the DWC_otg controller
252  *
253  */
254 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
255 {
256 	u32 gintsts2;
257 	u32 gintmsk2;
258 
259 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
260 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
261 
262 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
263 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
264 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
265 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
266 	}
267 }
268 
269 /**
270  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
271  * TX FIFOs
272  *
273  * @hsotg: Programming view of the DWC_otg controller
274  */
275 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
276 {
277 	int tx_fifo_count;
278 	int tx_fifo_depth;
279 
280 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
281 
282 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
283 
284 	if (!tx_fifo_count)
285 		return tx_fifo_depth;
286 	else
287 		return tx_fifo_depth / tx_fifo_count;
288 }
289 
290 /**
291  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
292  * @hsotg: The device instance.
293  */
294 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
295 {
296 	unsigned int ep;
297 	unsigned int addr;
298 	int timeout;
299 
300 	u32 val;
301 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
302 
303 	/* Reset fifo map if not correctly cleared during previous session */
304 	WARN_ON(hsotg->fifo_map);
305 	hsotg->fifo_map = 0;
306 
307 	/* set RX/NPTX FIFO sizes */
308 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
309 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
310 		    FIFOSIZE_STARTADDR_SHIFT) |
311 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
312 		    GNPTXFSIZ);
313 
314 	/*
315 	 * arange all the rest of the TX FIFOs, as some versions of this
316 	 * block have overlapping default addresses. This also ensures
317 	 * that if the settings have been changed, then they are set to
318 	 * known values.
319 	 */
320 
321 	/* start at the end of the GNPTXFSIZ, rounded up */
322 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
323 
324 	/*
325 	 * Configure fifos sizes from provided configuration and assign
326 	 * them to endpoints dynamically according to maxpacket size value of
327 	 * given endpoint.
328 	 */
329 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
330 		if (!txfsz[ep])
331 			continue;
332 		val = addr;
333 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
334 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
335 			  "insufficient fifo memory");
336 		addr += txfsz[ep];
337 
338 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
339 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
340 	}
341 
342 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
343 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
344 		    GDFIFOCFG);
345 	/*
346 	 * according to p428 of the design guide, we need to ensure that
347 	 * all fifos are flushed before continuing
348 	 */
349 
350 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
351 	       GRSTCTL_RXFFLSH, GRSTCTL);
352 
353 	/* wait until the fifos are both flushed */
354 	timeout = 100;
355 	while (1) {
356 		val = dwc2_readl(hsotg, GRSTCTL);
357 
358 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
359 			break;
360 
361 		if (--timeout == 0) {
362 			dev_err(hsotg->dev,
363 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
364 				__func__, val);
365 			break;
366 		}
367 
368 		udelay(1);
369 	}
370 
371 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
372 }
373 
374 /**
375  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
376  * @ep: USB endpoint to allocate request for.
377  * @flags: Allocation flags
378  *
379  * Allocate a new USB request structure appropriate for the specified endpoint
380  */
381 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
382 						       gfp_t flags)
383 {
384 	struct dwc2_hsotg_req *req;
385 
386 	req = kzalloc(sizeof(*req), flags);
387 	if (!req)
388 		return NULL;
389 
390 	INIT_LIST_HEAD(&req->queue);
391 
392 	return &req->req;
393 }
394 
395 /**
396  * is_ep_periodic - return true if the endpoint is in periodic mode.
397  * @hs_ep: The endpoint to query.
398  *
399  * Returns true if the endpoint is in periodic mode, meaning it is being
400  * used for an Interrupt or ISO transfer.
401  */
402 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
403 {
404 	return hs_ep->periodic;
405 }
406 
407 /**
408  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
409  * @hsotg: The device state.
410  * @hs_ep: The endpoint for the request
411  * @hs_req: The request being processed.
412  *
413  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
414  * of a request to ensure the buffer is ready for access by the caller.
415  */
416 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
417 				 struct dwc2_hsotg_ep *hs_ep,
418 				struct dwc2_hsotg_req *hs_req)
419 {
420 	struct usb_request *req = &hs_req->req;
421 
422 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
423 }
424 
425 /*
426  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
427  * for Control endpoint
428  * @hsotg: The device state.
429  *
430  * This function will allocate 4 descriptor chains for EP 0: 2 for
431  * Setup stage, per one for IN and OUT data/status transactions.
432  */
433 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
434 {
435 	hsotg->setup_desc[0] =
436 		dmam_alloc_coherent(hsotg->dev,
437 				    sizeof(struct dwc2_dma_desc),
438 				    &hsotg->setup_desc_dma[0],
439 				    GFP_KERNEL);
440 	if (!hsotg->setup_desc[0])
441 		goto fail;
442 
443 	hsotg->setup_desc[1] =
444 		dmam_alloc_coherent(hsotg->dev,
445 				    sizeof(struct dwc2_dma_desc),
446 				    &hsotg->setup_desc_dma[1],
447 				    GFP_KERNEL);
448 	if (!hsotg->setup_desc[1])
449 		goto fail;
450 
451 	hsotg->ctrl_in_desc =
452 		dmam_alloc_coherent(hsotg->dev,
453 				    sizeof(struct dwc2_dma_desc),
454 				    &hsotg->ctrl_in_desc_dma,
455 				    GFP_KERNEL);
456 	if (!hsotg->ctrl_in_desc)
457 		goto fail;
458 
459 	hsotg->ctrl_out_desc =
460 		dmam_alloc_coherent(hsotg->dev,
461 				    sizeof(struct dwc2_dma_desc),
462 				    &hsotg->ctrl_out_desc_dma,
463 				    GFP_KERNEL);
464 	if (!hsotg->ctrl_out_desc)
465 		goto fail;
466 
467 	return 0;
468 
469 fail:
470 	return -ENOMEM;
471 }
472 
473 /**
474  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
475  * @hsotg: The controller state.
476  * @hs_ep: The endpoint we're going to write for.
477  * @hs_req: The request to write data for.
478  *
479  * This is called when the TxFIFO has some space in it to hold a new
480  * transmission and we have something to give it. The actual setup of
481  * the data size is done elsewhere, so all we have to do is to actually
482  * write the data.
483  *
484  * The return value is zero if there is more space (or nothing was done)
485  * otherwise -ENOSPC is returned if the FIFO space was used up.
486  *
487  * This routine is only needed for PIO
488  */
489 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
490 				 struct dwc2_hsotg_ep *hs_ep,
491 				struct dwc2_hsotg_req *hs_req)
492 {
493 	bool periodic = is_ep_periodic(hs_ep);
494 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
495 	int buf_pos = hs_req->req.actual;
496 	int to_write = hs_ep->size_loaded;
497 	void *data;
498 	int can_write;
499 	int pkt_round;
500 	int max_transfer;
501 
502 	to_write -= (buf_pos - hs_ep->last_load);
503 
504 	/* if there's nothing to write, get out early */
505 	if (to_write == 0)
506 		return 0;
507 
508 	if (periodic && !hsotg->dedicated_fifos) {
509 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
510 		int size_left;
511 		int size_done;
512 
513 		/*
514 		 * work out how much data was loaded so we can calculate
515 		 * how much data is left in the fifo.
516 		 */
517 
518 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
519 
520 		/*
521 		 * if shared fifo, we cannot write anything until the
522 		 * previous data has been completely sent.
523 		 */
524 		if (hs_ep->fifo_load != 0) {
525 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
526 			return -ENOSPC;
527 		}
528 
529 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
530 			__func__, size_left,
531 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
532 
533 		/* how much of the data has moved */
534 		size_done = hs_ep->size_loaded - size_left;
535 
536 		/* how much data is left in the fifo */
537 		can_write = hs_ep->fifo_load - size_done;
538 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
539 			__func__, can_write);
540 
541 		can_write = hs_ep->fifo_size - can_write;
542 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
543 			__func__, can_write);
544 
545 		if (can_write <= 0) {
546 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
547 			return -ENOSPC;
548 		}
549 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
550 		can_write = dwc2_readl(hsotg,
551 				       DTXFSTS(hs_ep->fifo_index));
552 
553 		can_write &= 0xffff;
554 		can_write *= 4;
555 	} else {
556 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
557 			dev_dbg(hsotg->dev,
558 				"%s: no queue slots available (0x%08x)\n",
559 				__func__, gnptxsts);
560 
561 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
562 			return -ENOSPC;
563 		}
564 
565 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
566 		can_write *= 4;	/* fifo size is in 32bit quantities. */
567 	}
568 
569 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
570 
571 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
572 		__func__, gnptxsts, can_write, to_write, max_transfer);
573 
574 	/*
575 	 * limit to 512 bytes of data, it seems at least on the non-periodic
576 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
577 	 * fragment of the end of the transfer in it.
578 	 */
579 	if (can_write > 512 && !periodic)
580 		can_write = 512;
581 
582 	/*
583 	 * limit the write to one max-packet size worth of data, but allow
584 	 * the transfer to return that it did not run out of fifo space
585 	 * doing it.
586 	 */
587 	if (to_write > max_transfer) {
588 		to_write = max_transfer;
589 
590 		/* it's needed only when we do not use dedicated fifos */
591 		if (!hsotg->dedicated_fifos)
592 			dwc2_hsotg_en_gsint(hsotg,
593 					    periodic ? GINTSTS_PTXFEMP :
594 					   GINTSTS_NPTXFEMP);
595 	}
596 
597 	/* see if we can write data */
598 
599 	if (to_write > can_write) {
600 		to_write = can_write;
601 		pkt_round = to_write % max_transfer;
602 
603 		/*
604 		 * Round the write down to an
605 		 * exact number of packets.
606 		 *
607 		 * Note, we do not currently check to see if we can ever
608 		 * write a full packet or not to the FIFO.
609 		 */
610 
611 		if (pkt_round)
612 			to_write -= pkt_round;
613 
614 		/*
615 		 * enable correct FIFO interrupt to alert us when there
616 		 * is more room left.
617 		 */
618 
619 		/* it's needed only when we do not use dedicated fifos */
620 		if (!hsotg->dedicated_fifos)
621 			dwc2_hsotg_en_gsint(hsotg,
622 					    periodic ? GINTSTS_PTXFEMP :
623 					   GINTSTS_NPTXFEMP);
624 	}
625 
626 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
627 		to_write, hs_req->req.length, can_write, buf_pos);
628 
629 	if (to_write <= 0)
630 		return -ENOSPC;
631 
632 	hs_req->req.actual = buf_pos + to_write;
633 	hs_ep->total_data += to_write;
634 
635 	if (periodic)
636 		hs_ep->fifo_load += to_write;
637 
638 	to_write = DIV_ROUND_UP(to_write, 4);
639 	data = hs_req->req.buf + buf_pos;
640 
641 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
642 
643 	return (to_write >= can_write) ? -ENOSPC : 0;
644 }
645 
646 /**
647  * get_ep_limit - get the maximum data legnth for this endpoint
648  * @hs_ep: The endpoint
649  *
650  * Return the maximum data that can be queued in one go on a given endpoint
651  * so that transfers that are too long can be split.
652  */
653 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
654 {
655 	int index = hs_ep->index;
656 	unsigned int maxsize;
657 	unsigned int maxpkt;
658 
659 	if (index != 0) {
660 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
661 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
662 	} else {
663 		maxsize = 64 + 64;
664 		if (hs_ep->dir_in)
665 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
666 		else
667 			maxpkt = 2;
668 	}
669 
670 	/* we made the constant loading easier above by using +1 */
671 	maxpkt--;
672 	maxsize--;
673 
674 	/*
675 	 * constrain by packet count if maxpkts*pktsize is greater
676 	 * than the length register size.
677 	 */
678 
679 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
680 		maxsize = maxpkt * hs_ep->ep.maxpacket;
681 
682 	return maxsize;
683 }
684 
685 /**
686  * dwc2_hsotg_read_frameno - read current frame number
687  * @hsotg: The device instance
688  *
689  * Return the current frame number
690  */
691 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
692 {
693 	u32 dsts;
694 
695 	dsts = dwc2_readl(hsotg, DSTS);
696 	dsts &= DSTS_SOFFN_MASK;
697 	dsts >>= DSTS_SOFFN_SHIFT;
698 
699 	return dsts;
700 }
701 
702 /**
703  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
704  * DMA descriptor chain prepared for specific endpoint
705  * @hs_ep: The endpoint
706  *
707  * Return the maximum data that can be queued in one go on a given endpoint
708  * depending on its descriptor chain capacity so that transfers that
709  * are too long can be split.
710  */
711 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
712 {
713 	int is_isoc = hs_ep->isochronous;
714 	unsigned int maxsize;
715 
716 	if (is_isoc)
717 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
718 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
719 	else
720 		maxsize = DEV_DMA_NBYTES_LIMIT;
721 
722 	/* Above size of one descriptor was chosen, multiple it */
723 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
724 
725 	return maxsize;
726 }
727 
728 /*
729  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
730  * @hs_ep: The endpoint
731  * @mask: RX/TX bytes mask to be defined
732  *
733  * Returns maximum data payload for one descriptor after analyzing endpoint
734  * characteristics.
735  * DMA descriptor transfer bytes limit depends on EP type:
736  * Control out - MPS,
737  * Isochronous - descriptor rx/tx bytes bitfield limit,
738  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
739  * have concatenations from various descriptors within one packet.
740  *
741  * Selects corresponding mask for RX/TX bytes as well.
742  */
743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
744 {
745 	u32 mps = hs_ep->ep.maxpacket;
746 	int dir_in = hs_ep->dir_in;
747 	u32 desc_size = 0;
748 
749 	if (!hs_ep->index && !dir_in) {
750 		desc_size = mps;
751 		*mask = DEV_DMA_NBYTES_MASK;
752 	} else if (hs_ep->isochronous) {
753 		if (dir_in) {
754 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
755 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
756 		} else {
757 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
758 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
759 		}
760 	} else {
761 		desc_size = DEV_DMA_NBYTES_LIMIT;
762 		*mask = DEV_DMA_NBYTES_MASK;
763 
764 		/* Round down desc_size to be mps multiple */
765 		desc_size -= desc_size % mps;
766 	}
767 
768 	return desc_size;
769 }
770 
771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
772 						 struct dwc2_dma_desc **desc,
773 						 dma_addr_t dma_buff,
774 						 unsigned int len,
775 						 bool true_last)
776 {
777 	int dir_in = hs_ep->dir_in;
778 	u32 mps = hs_ep->ep.maxpacket;
779 	u32 maxsize = 0;
780 	u32 offset = 0;
781 	u32 mask = 0;
782 	int i;
783 
784 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
785 
786 	hs_ep->desc_count = (len / maxsize) +
787 				((len % maxsize) ? 1 : 0);
788 	if (len == 0)
789 		hs_ep->desc_count = 1;
790 
791 	for (i = 0; i < hs_ep->desc_count; ++i) {
792 		(*desc)->status = 0;
793 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
794 				 << DEV_DMA_BUFF_STS_SHIFT);
795 
796 		if (len > maxsize) {
797 			if (!hs_ep->index && !dir_in)
798 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
799 
800 			(*desc)->status |=
801 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
802 			(*desc)->buf = dma_buff + offset;
803 
804 			len -= maxsize;
805 			offset += maxsize;
806 		} else {
807 			if (true_last)
808 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
809 
810 			if (dir_in)
811 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
812 					((hs_ep->send_zlp && true_last) ?
813 					DEV_DMA_SHORT : 0);
814 
815 			(*desc)->status |=
816 				len << DEV_DMA_NBYTES_SHIFT & mask;
817 			(*desc)->buf = dma_buff + offset;
818 		}
819 
820 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
821 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
822 				 << DEV_DMA_BUFF_STS_SHIFT);
823 		(*desc)++;
824 	}
825 }
826 
827 /*
828  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
829  * @hs_ep: The endpoint
830  * @ureq: Request to transfer
831  * @offset: offset in bytes
832  * @len: Length of the transfer
833  *
834  * This function will iterate over descriptor chain and fill its entries
835  * with corresponding information based on transfer data.
836  */
837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
838 						 struct usb_request *ureq,
839 						 unsigned int offset,
840 						 unsigned int len)
841 {
842 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
843 	struct scatterlist *sg;
844 	int i;
845 	u8 desc_count = 0;
846 
847 	/* non-DMA sg buffer */
848 	if (!ureq->num_sgs) {
849 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
850 			ureq->dma + offset, len, true);
851 		return;
852 	}
853 
854 	/* DMA sg buffer */
855 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
856 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
857 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
858 			sg_is_last(sg));
859 		desc_count += hs_ep->desc_count;
860 	}
861 
862 	hs_ep->desc_count = desc_count;
863 }
864 
865 /*
866  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
867  * @hs_ep: The isochronous endpoint.
868  * @dma_buff: usb requests dma buffer.
869  * @len: usb request transfer length.
870  *
871  * Fills next free descriptor with the data of the arrived usb request,
872  * frame info, sets Last and IOC bits increments next_desc. If filled
873  * descriptor is not the first one, removes L bit from the previous descriptor
874  * status.
875  */
876 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
877 				      dma_addr_t dma_buff, unsigned int len)
878 {
879 	struct dwc2_dma_desc *desc;
880 	struct dwc2_hsotg *hsotg = hs_ep->parent;
881 	u32 index;
882 	u32 maxsize = 0;
883 	u32 mask = 0;
884 	u8 pid = 0;
885 
886 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
887 
888 	index = hs_ep->next_desc;
889 	desc = &hs_ep->desc_list[index];
890 
891 	/* Check if descriptor chain full */
892 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
893 	    DEV_DMA_BUFF_STS_HREADY) {
894 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
895 		return 1;
896 	}
897 
898 	/* Clear L bit of previous desc if more than one entries in the chain */
899 	if (hs_ep->next_desc)
900 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
901 
902 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
903 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
904 
905 	desc->status = 0;
906 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
907 
908 	desc->buf = dma_buff;
909 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
910 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
911 
912 	if (hs_ep->dir_in) {
913 		if (len)
914 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
915 		else
916 			pid = 1;
917 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
918 				 DEV_DMA_ISOC_PID_MASK) |
919 				((len % hs_ep->ep.maxpacket) ?
920 				 DEV_DMA_SHORT : 0) |
921 				((hs_ep->target_frame <<
922 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
923 				 DEV_DMA_ISOC_FRNUM_MASK);
924 	}
925 
926 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
927 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
928 
929 	/* Increment frame number by interval for IN */
930 	if (hs_ep->dir_in)
931 		dwc2_gadget_incr_frame_num(hs_ep);
932 
933 	/* Update index of last configured entry in the chain */
934 	hs_ep->next_desc++;
935 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC)
936 		hs_ep->next_desc = 0;
937 
938 	return 0;
939 }
940 
941 /*
942  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
943  * @hs_ep: The isochronous endpoint.
944  *
945  * Prepare descriptor chain for isochronous endpoints. Afterwards
946  * write DMA address to HW and enable the endpoint.
947  */
948 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
949 {
950 	struct dwc2_hsotg *hsotg = hs_ep->parent;
951 	struct dwc2_hsotg_req *hs_req, *treq;
952 	int index = hs_ep->index;
953 	int ret;
954 	int i;
955 	u32 dma_reg;
956 	u32 depctl;
957 	u32 ctrl;
958 	struct dwc2_dma_desc *desc;
959 
960 	if (list_empty(&hs_ep->queue)) {
961 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
962 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
963 		return;
964 	}
965 
966 	/* Initialize descriptor chain by Host Busy status */
967 	for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) {
968 		desc = &hs_ep->desc_list[i];
969 		desc->status = 0;
970 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
971 				    << DEV_DMA_BUFF_STS_SHIFT);
972 	}
973 
974 	hs_ep->next_desc = 0;
975 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
976 		dma_addr_t dma_addr = hs_req->req.dma;
977 
978 		if (hs_req->req.num_sgs) {
979 			WARN_ON(hs_req->req.num_sgs > 1);
980 			dma_addr = sg_dma_address(hs_req->req.sg);
981 		}
982 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
983 						 hs_req->req.length);
984 		if (ret)
985 			break;
986 	}
987 
988 	hs_ep->compl_desc = 0;
989 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
990 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
991 
992 	/* write descriptor chain address to control register */
993 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
994 
995 	ctrl = dwc2_readl(hsotg, depctl);
996 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
997 	dwc2_writel(hsotg, ctrl, depctl);
998 }
999 
1000 /**
1001  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1002  * @hsotg: The controller state.
1003  * @hs_ep: The endpoint to process a request for
1004  * @hs_req: The request to start.
1005  * @continuing: True if we are doing more for the current request.
1006  *
1007  * Start the given request running by setting the endpoint registers
1008  * appropriately, and writing any data to the FIFOs.
1009  */
1010 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1011 				 struct dwc2_hsotg_ep *hs_ep,
1012 				struct dwc2_hsotg_req *hs_req,
1013 				bool continuing)
1014 {
1015 	struct usb_request *ureq = &hs_req->req;
1016 	int index = hs_ep->index;
1017 	int dir_in = hs_ep->dir_in;
1018 	u32 epctrl_reg;
1019 	u32 epsize_reg;
1020 	u32 epsize;
1021 	u32 ctrl;
1022 	unsigned int length;
1023 	unsigned int packets;
1024 	unsigned int maxreq;
1025 	unsigned int dma_reg;
1026 
1027 	if (index != 0) {
1028 		if (hs_ep->req && !continuing) {
1029 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1030 			WARN_ON(1);
1031 			return;
1032 		} else if (hs_ep->req != hs_req && continuing) {
1033 			dev_err(hsotg->dev,
1034 				"%s: continue different req\n", __func__);
1035 			WARN_ON(1);
1036 			return;
1037 		}
1038 	}
1039 
1040 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1041 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1042 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1043 
1044 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1045 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1046 		hs_ep->dir_in ? "in" : "out");
1047 
1048 	/* If endpoint is stalled, we will restart request later */
1049 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1050 
1051 	if (index && ctrl & DXEPCTL_STALL) {
1052 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1053 		return;
1054 	}
1055 
1056 	length = ureq->length - ureq->actual;
1057 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1058 		ureq->length, ureq->actual);
1059 
1060 	if (!using_desc_dma(hsotg))
1061 		maxreq = get_ep_limit(hs_ep);
1062 	else
1063 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1064 
1065 	if (length > maxreq) {
1066 		int round = maxreq % hs_ep->ep.maxpacket;
1067 
1068 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1069 			__func__, length, maxreq, round);
1070 
1071 		/* round down to multiple of packets */
1072 		if (round)
1073 			maxreq -= round;
1074 
1075 		length = maxreq;
1076 	}
1077 
1078 	if (length)
1079 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1080 	else
1081 		packets = 1;	/* send one packet if length is zero. */
1082 
1083 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1084 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1085 		return;
1086 	}
1087 
1088 	if (dir_in && index != 0)
1089 		if (hs_ep->isochronous)
1090 			epsize = DXEPTSIZ_MC(packets);
1091 		else
1092 			epsize = DXEPTSIZ_MC(1);
1093 	else
1094 		epsize = 0;
1095 
1096 	/*
1097 	 * zero length packet should be programmed on its own and should not
1098 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1099 	 */
1100 	if (dir_in && ureq->zero && !continuing) {
1101 		/* Test if zlp is actually required. */
1102 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1103 		    !(ureq->length % hs_ep->ep.maxpacket))
1104 			hs_ep->send_zlp = 1;
1105 	}
1106 
1107 	epsize |= DXEPTSIZ_PKTCNT(packets);
1108 	epsize |= DXEPTSIZ_XFERSIZE(length);
1109 
1110 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1111 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1112 
1113 	/* store the request as the current one we're doing */
1114 	hs_ep->req = hs_req;
1115 
1116 	if (using_desc_dma(hsotg)) {
1117 		u32 offset = 0;
1118 		u32 mps = hs_ep->ep.maxpacket;
1119 
1120 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1121 		if (!dir_in) {
1122 			if (!index)
1123 				length = mps;
1124 			else if (length % mps)
1125 				length += (mps - (length % mps));
1126 		}
1127 
1128 		/*
1129 		 * If more data to send, adjust DMA for EP0 out data stage.
1130 		 * ureq->dma stays unchanged, hence increment it by already
1131 		 * passed passed data count before starting new transaction.
1132 		 */
1133 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1134 		    continuing)
1135 			offset = ureq->actual;
1136 
1137 		/* Fill DDMA chain entries */
1138 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq, offset,
1139 						     length);
1140 
1141 		/* write descriptor chain address to control register */
1142 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1143 
1144 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1145 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1146 	} else {
1147 		/* write size / packets */
1148 		dwc2_writel(hsotg, epsize, epsize_reg);
1149 
1150 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1151 			/*
1152 			 * write DMA address to control register, buffer
1153 			 * already synced by dwc2_hsotg_ep_queue().
1154 			 */
1155 
1156 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1157 
1158 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1159 				__func__, &ureq->dma, dma_reg);
1160 		}
1161 	}
1162 
1163 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1164 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1165 		dwc2_gadget_incr_frame_num(hs_ep);
1166 
1167 		if (hs_ep->target_frame & 0x1)
1168 			ctrl |= DXEPCTL_SETODDFR;
1169 		else
1170 			ctrl |= DXEPCTL_SETEVENFR;
1171 	}
1172 
1173 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1174 
1175 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1176 
1177 	/* For Setup request do not clear NAK */
1178 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1179 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1180 
1181 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1182 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1183 
1184 	/*
1185 	 * set these, it seems that DMA support increments past the end
1186 	 * of the packet buffer so we need to calculate the length from
1187 	 * this information.
1188 	 */
1189 	hs_ep->size_loaded = length;
1190 	hs_ep->last_load = ureq->actual;
1191 
1192 	if (dir_in && !using_dma(hsotg)) {
1193 		/* set these anyway, we may need them for non-periodic in */
1194 		hs_ep->fifo_load = 0;
1195 
1196 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1197 	}
1198 
1199 	/*
1200 	 * Note, trying to clear the NAK here causes problems with transmit
1201 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1202 	 */
1203 
1204 	/* check ep is enabled */
1205 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1206 		dev_dbg(hsotg->dev,
1207 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1208 			 index, dwc2_readl(hsotg, epctrl_reg));
1209 
1210 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1211 		__func__, dwc2_readl(hsotg, epctrl_reg));
1212 
1213 	/* enable ep interrupts */
1214 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1215 }
1216 
1217 /**
1218  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1219  * @hsotg: The device state.
1220  * @hs_ep: The endpoint the request is on.
1221  * @req: The request being processed.
1222  *
1223  * We've been asked to queue a request, so ensure that the memory buffer
1224  * is correctly setup for DMA. If we've been passed an extant DMA address
1225  * then ensure the buffer has been synced to memory. If our buffer has no
1226  * DMA memory, then we map the memory and mark our request to allow us to
1227  * cleanup on completion.
1228  */
1229 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1230 			      struct dwc2_hsotg_ep *hs_ep,
1231 			     struct usb_request *req)
1232 {
1233 	int ret;
1234 
1235 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1236 	if (ret)
1237 		goto dma_error;
1238 
1239 	return 0;
1240 
1241 dma_error:
1242 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1243 		__func__, req->buf, req->length);
1244 
1245 	return -EIO;
1246 }
1247 
1248 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1249 						 struct dwc2_hsotg_ep *hs_ep,
1250 						 struct dwc2_hsotg_req *hs_req)
1251 {
1252 	void *req_buf = hs_req->req.buf;
1253 
1254 	/* If dma is not being used or buffer is aligned */
1255 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1256 		return 0;
1257 
1258 	WARN_ON(hs_req->saved_req_buf);
1259 
1260 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1261 		hs_ep->ep.name, req_buf, hs_req->req.length);
1262 
1263 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1264 	if (!hs_req->req.buf) {
1265 		hs_req->req.buf = req_buf;
1266 		dev_err(hsotg->dev,
1267 			"%s: unable to allocate memory for bounce buffer\n",
1268 			__func__);
1269 		return -ENOMEM;
1270 	}
1271 
1272 	/* Save actual buffer */
1273 	hs_req->saved_req_buf = req_buf;
1274 
1275 	if (hs_ep->dir_in)
1276 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1277 	return 0;
1278 }
1279 
1280 static void
1281 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1282 					 struct dwc2_hsotg_ep *hs_ep,
1283 					 struct dwc2_hsotg_req *hs_req)
1284 {
1285 	/* If dma is not being used or buffer was aligned */
1286 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1287 		return;
1288 
1289 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1290 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1291 
1292 	/* Copy data from bounce buffer on successful out transfer */
1293 	if (!hs_ep->dir_in && !hs_req->req.status)
1294 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1295 		       hs_req->req.actual);
1296 
1297 	/* Free bounce buffer */
1298 	kfree(hs_req->req.buf);
1299 
1300 	hs_req->req.buf = hs_req->saved_req_buf;
1301 	hs_req->saved_req_buf = NULL;
1302 }
1303 
1304 /**
1305  * dwc2_gadget_target_frame_elapsed - Checks target frame
1306  * @hs_ep: The driver endpoint to check
1307  *
1308  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1309  * corresponding transfer.
1310  */
1311 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1312 {
1313 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1314 	u32 target_frame = hs_ep->target_frame;
1315 	u32 current_frame = hsotg->frame_number;
1316 	bool frame_overrun = hs_ep->frame_overrun;
1317 
1318 	if (!frame_overrun && current_frame >= target_frame)
1319 		return true;
1320 
1321 	if (frame_overrun && current_frame >= target_frame &&
1322 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1323 		return true;
1324 
1325 	return false;
1326 }
1327 
1328 /*
1329  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1330  * @hsotg: The driver state
1331  * @hs_ep: the ep descriptor chain is for
1332  *
1333  * Called to update EP0 structure's pointers depend on stage of
1334  * control transfer.
1335  */
1336 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1337 					  struct dwc2_hsotg_ep *hs_ep)
1338 {
1339 	switch (hsotg->ep0_state) {
1340 	case DWC2_EP0_SETUP:
1341 	case DWC2_EP0_STATUS_OUT:
1342 		hs_ep->desc_list = hsotg->setup_desc[0];
1343 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1344 		break;
1345 	case DWC2_EP0_DATA_IN:
1346 	case DWC2_EP0_STATUS_IN:
1347 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1348 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1349 		break;
1350 	case DWC2_EP0_DATA_OUT:
1351 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1352 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1353 		break;
1354 	default:
1355 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1356 			hsotg->ep0_state);
1357 		return -EINVAL;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1364 			       gfp_t gfp_flags)
1365 {
1366 	struct dwc2_hsotg_req *hs_req = our_req(req);
1367 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1368 	struct dwc2_hsotg *hs = hs_ep->parent;
1369 	bool first;
1370 	int ret;
1371 	u32 maxsize = 0;
1372 	u32 mask = 0;
1373 
1374 
1375 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1376 		ep->name, req, req->length, req->buf, req->no_interrupt,
1377 		req->zero, req->short_not_ok);
1378 
1379 	/* Prevent new request submission when controller is suspended */
1380 	if (hs->lx_state != DWC2_L0) {
1381 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1382 			__func__);
1383 		return -EAGAIN;
1384 	}
1385 
1386 	/* initialise status of the request */
1387 	INIT_LIST_HEAD(&hs_req->queue);
1388 	req->actual = 0;
1389 	req->status = -EINPROGRESS;
1390 
1391 	/* In DDMA mode for ISOC's don't queue request if length greater
1392 	 * than descriptor limits.
1393 	 */
1394 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1395 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1396 		if (hs_ep->dir_in && req->length > maxsize) {
1397 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1398 				req->length, maxsize);
1399 			return -EINVAL;
1400 		}
1401 
1402 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1403 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1404 				req->length, hs_ep->ep.maxpacket);
1405 			return -EINVAL;
1406 		}
1407 	}
1408 
1409 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1410 	if (ret)
1411 		return ret;
1412 
1413 	/* if we're using DMA, sync the buffers as necessary */
1414 	if (using_dma(hs)) {
1415 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1416 		if (ret)
1417 			return ret;
1418 	}
1419 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1420 	if (using_desc_dma(hs) && !hs_ep->index) {
1421 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1422 		if (ret)
1423 			return ret;
1424 	}
1425 
1426 	first = list_empty(&hs_ep->queue);
1427 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1428 
1429 	/*
1430 	 * Handle DDMA isochronous transfers separately - just add new entry
1431 	 * to the descriptor chain.
1432 	 * Transfer will be started once SW gets either one of NAK or
1433 	 * OutTknEpDis interrupts.
1434 	 */
1435 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1436 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1437 			dma_addr_t dma_addr = hs_req->req.dma;
1438 
1439 			if (hs_req->req.num_sgs) {
1440 				WARN_ON(hs_req->req.num_sgs > 1);
1441 				dma_addr = sg_dma_address(hs_req->req.sg);
1442 			}
1443 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1444 						   hs_req->req.length);
1445 		}
1446 		return 0;
1447 	}
1448 
1449 	if (first) {
1450 		if (!hs_ep->isochronous) {
1451 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1452 			return 0;
1453 		}
1454 
1455 		/* Update current frame number value. */
1456 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1457 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1458 			dwc2_gadget_incr_frame_num(hs_ep);
1459 			/* Update current frame number value once more as it
1460 			 * changes here.
1461 			 */
1462 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1463 		}
1464 
1465 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1466 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1467 	}
1468 	return 0;
1469 }
1470 
1471 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1472 				    gfp_t gfp_flags)
1473 {
1474 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1475 	struct dwc2_hsotg *hs = hs_ep->parent;
1476 	unsigned long flags = 0;
1477 	int ret = 0;
1478 
1479 	spin_lock_irqsave(&hs->lock, flags);
1480 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1481 	spin_unlock_irqrestore(&hs->lock, flags);
1482 
1483 	return ret;
1484 }
1485 
1486 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1487 				       struct usb_request *req)
1488 {
1489 	struct dwc2_hsotg_req *hs_req = our_req(req);
1490 
1491 	kfree(hs_req);
1492 }
1493 
1494 /**
1495  * dwc2_hsotg_complete_oursetup - setup completion callback
1496  * @ep: The endpoint the request was on.
1497  * @req: The request completed.
1498  *
1499  * Called on completion of any requests the driver itself
1500  * submitted that need cleaning up.
1501  */
1502 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1503 					 struct usb_request *req)
1504 {
1505 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1506 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1507 
1508 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1509 
1510 	dwc2_hsotg_ep_free_request(ep, req);
1511 }
1512 
1513 /**
1514  * ep_from_windex - convert control wIndex value to endpoint
1515  * @hsotg: The driver state.
1516  * @windex: The control request wIndex field (in host order).
1517  *
1518  * Convert the given wIndex into a pointer to an driver endpoint
1519  * structure, or return NULL if it is not a valid endpoint.
1520  */
1521 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1522 					    u32 windex)
1523 {
1524 	struct dwc2_hsotg_ep *ep;
1525 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1526 	int idx = windex & 0x7F;
1527 
1528 	if (windex >= 0x100)
1529 		return NULL;
1530 
1531 	if (idx > hsotg->num_of_eps)
1532 		return NULL;
1533 
1534 	ep = index_to_ep(hsotg, idx, dir);
1535 
1536 	if (idx && ep->dir_in != dir)
1537 		return NULL;
1538 
1539 	return ep;
1540 }
1541 
1542 /**
1543  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1544  * @hsotg: The driver state.
1545  * @testmode: requested usb test mode
1546  * Enable usb Test Mode requested by the Host.
1547  */
1548 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1549 {
1550 	int dctl = dwc2_readl(hsotg, DCTL);
1551 
1552 	dctl &= ~DCTL_TSTCTL_MASK;
1553 	switch (testmode) {
1554 	case TEST_J:
1555 	case TEST_K:
1556 	case TEST_SE0_NAK:
1557 	case TEST_PACKET:
1558 	case TEST_FORCE_EN:
1559 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1560 		break;
1561 	default:
1562 		return -EINVAL;
1563 	}
1564 	dwc2_writel(hsotg, dctl, DCTL);
1565 	return 0;
1566 }
1567 
1568 /**
1569  * dwc2_hsotg_send_reply - send reply to control request
1570  * @hsotg: The device state
1571  * @ep: Endpoint 0
1572  * @buff: Buffer for request
1573  * @length: Length of reply.
1574  *
1575  * Create a request and queue it on the given endpoint. This is useful as
1576  * an internal method of sending replies to certain control requests, etc.
1577  */
1578 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1579 				 struct dwc2_hsotg_ep *ep,
1580 				void *buff,
1581 				int length)
1582 {
1583 	struct usb_request *req;
1584 	int ret;
1585 
1586 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1587 
1588 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1589 	hsotg->ep0_reply = req;
1590 	if (!req) {
1591 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1592 		return -ENOMEM;
1593 	}
1594 
1595 	req->buf = hsotg->ep0_buff;
1596 	req->length = length;
1597 	/*
1598 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1599 	 * STATUS stage.
1600 	 */
1601 	req->zero = 0;
1602 	req->complete = dwc2_hsotg_complete_oursetup;
1603 
1604 	if (length)
1605 		memcpy(req->buf, buff, length);
1606 
1607 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1608 	if (ret) {
1609 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1610 		return ret;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 /**
1617  * dwc2_hsotg_process_req_status - process request GET_STATUS
1618  * @hsotg: The device state
1619  * @ctrl: USB control request
1620  */
1621 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1622 					 struct usb_ctrlrequest *ctrl)
1623 {
1624 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1625 	struct dwc2_hsotg_ep *ep;
1626 	__le16 reply;
1627 	int ret;
1628 
1629 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1630 
1631 	if (!ep0->dir_in) {
1632 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1633 		return -EINVAL;
1634 	}
1635 
1636 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1637 	case USB_RECIP_DEVICE:
1638 		/*
1639 		 * bit 0 => self powered
1640 		 * bit 1 => remote wakeup
1641 		 */
1642 		reply = cpu_to_le16(0);
1643 		break;
1644 
1645 	case USB_RECIP_INTERFACE:
1646 		/* currently, the data result should be zero */
1647 		reply = cpu_to_le16(0);
1648 		break;
1649 
1650 	case USB_RECIP_ENDPOINT:
1651 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1652 		if (!ep)
1653 			return -ENOENT;
1654 
1655 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1656 		break;
1657 
1658 	default:
1659 		return 0;
1660 	}
1661 
1662 	if (le16_to_cpu(ctrl->wLength) != 2)
1663 		return -EINVAL;
1664 
1665 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1666 	if (ret) {
1667 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1668 		return ret;
1669 	}
1670 
1671 	return 1;
1672 }
1673 
1674 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1675 
1676 /**
1677  * get_ep_head - return the first request on the endpoint
1678  * @hs_ep: The controller endpoint to get
1679  *
1680  * Get the first request on the endpoint.
1681  */
1682 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1683 {
1684 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1685 					queue);
1686 }
1687 
1688 /**
1689  * dwc2_gadget_start_next_request - Starts next request from ep queue
1690  * @hs_ep: Endpoint structure
1691  *
1692  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1693  * in its handler. Hence we need to unmask it here to be able to do
1694  * resynchronization.
1695  */
1696 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1697 {
1698 	u32 mask;
1699 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1700 	int dir_in = hs_ep->dir_in;
1701 	struct dwc2_hsotg_req *hs_req;
1702 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1703 
1704 	if (!list_empty(&hs_ep->queue)) {
1705 		hs_req = get_ep_head(hs_ep);
1706 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1707 		return;
1708 	}
1709 	if (!hs_ep->isochronous)
1710 		return;
1711 
1712 	if (dir_in) {
1713 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1714 			__func__);
1715 	} else {
1716 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1717 			__func__);
1718 		mask = dwc2_readl(hsotg, epmsk_reg);
1719 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1720 		dwc2_writel(hsotg, mask, epmsk_reg);
1721 	}
1722 }
1723 
1724 /**
1725  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1726  * @hsotg: The device state
1727  * @ctrl: USB control request
1728  */
1729 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1730 					  struct usb_ctrlrequest *ctrl)
1731 {
1732 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1733 	struct dwc2_hsotg_req *hs_req;
1734 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1735 	struct dwc2_hsotg_ep *ep;
1736 	int ret;
1737 	bool halted;
1738 	u32 recip;
1739 	u32 wValue;
1740 	u32 wIndex;
1741 
1742 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1743 		__func__, set ? "SET" : "CLEAR");
1744 
1745 	wValue = le16_to_cpu(ctrl->wValue);
1746 	wIndex = le16_to_cpu(ctrl->wIndex);
1747 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1748 
1749 	switch (recip) {
1750 	case USB_RECIP_DEVICE:
1751 		switch (wValue) {
1752 		case USB_DEVICE_REMOTE_WAKEUP:
1753 			hsotg->remote_wakeup_allowed = 1;
1754 			break;
1755 
1756 		case USB_DEVICE_TEST_MODE:
1757 			if ((wIndex & 0xff) != 0)
1758 				return -EINVAL;
1759 			if (!set)
1760 				return -EINVAL;
1761 
1762 			hsotg->test_mode = wIndex >> 8;
1763 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1764 			if (ret) {
1765 				dev_err(hsotg->dev,
1766 					"%s: failed to send reply\n", __func__);
1767 				return ret;
1768 			}
1769 			break;
1770 		default:
1771 			return -ENOENT;
1772 		}
1773 		break;
1774 
1775 	case USB_RECIP_ENDPOINT:
1776 		ep = ep_from_windex(hsotg, wIndex);
1777 		if (!ep) {
1778 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1779 				__func__, wIndex);
1780 			return -ENOENT;
1781 		}
1782 
1783 		switch (wValue) {
1784 		case USB_ENDPOINT_HALT:
1785 			halted = ep->halted;
1786 
1787 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1788 
1789 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1790 			if (ret) {
1791 				dev_err(hsotg->dev,
1792 					"%s: failed to send reply\n", __func__);
1793 				return ret;
1794 			}
1795 
1796 			/*
1797 			 * we have to complete all requests for ep if it was
1798 			 * halted, and the halt was cleared by CLEAR_FEATURE
1799 			 */
1800 
1801 			if (!set && halted) {
1802 				/*
1803 				 * If we have request in progress,
1804 				 * then complete it
1805 				 */
1806 				if (ep->req) {
1807 					hs_req = ep->req;
1808 					ep->req = NULL;
1809 					list_del_init(&hs_req->queue);
1810 					if (hs_req->req.complete) {
1811 						spin_unlock(&hsotg->lock);
1812 						usb_gadget_giveback_request(
1813 							&ep->ep, &hs_req->req);
1814 						spin_lock(&hsotg->lock);
1815 					}
1816 				}
1817 
1818 				/* If we have pending request, then start it */
1819 				if (!ep->req)
1820 					dwc2_gadget_start_next_request(ep);
1821 			}
1822 
1823 			break;
1824 
1825 		default:
1826 			return -ENOENT;
1827 		}
1828 		break;
1829 	default:
1830 		return -ENOENT;
1831 	}
1832 	return 1;
1833 }
1834 
1835 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1836 
1837 /**
1838  * dwc2_hsotg_stall_ep0 - stall ep0
1839  * @hsotg: The device state
1840  *
1841  * Set stall for ep0 as response for setup request.
1842  */
1843 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1844 {
1845 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1846 	u32 reg;
1847 	u32 ctrl;
1848 
1849 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1850 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1851 
1852 	/*
1853 	 * DxEPCTL_Stall will be cleared by EP once it has
1854 	 * taken effect, so no need to clear later.
1855 	 */
1856 
1857 	ctrl = dwc2_readl(hsotg, reg);
1858 	ctrl |= DXEPCTL_STALL;
1859 	ctrl |= DXEPCTL_CNAK;
1860 	dwc2_writel(hsotg, ctrl, reg);
1861 
1862 	dev_dbg(hsotg->dev,
1863 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1864 		ctrl, reg, dwc2_readl(hsotg, reg));
1865 
1866 	 /*
1867 	  * complete won't be called, so we enqueue
1868 	  * setup request here
1869 	  */
1870 	 dwc2_hsotg_enqueue_setup(hsotg);
1871 }
1872 
1873 /**
1874  * dwc2_hsotg_process_control - process a control request
1875  * @hsotg: The device state
1876  * @ctrl: The control request received
1877  *
1878  * The controller has received the SETUP phase of a control request, and
1879  * needs to work out what to do next (and whether to pass it on to the
1880  * gadget driver).
1881  */
1882 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1883 				       struct usb_ctrlrequest *ctrl)
1884 {
1885 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1886 	int ret = 0;
1887 	u32 dcfg;
1888 
1889 	dev_dbg(hsotg->dev,
1890 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1891 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1892 		ctrl->wIndex, ctrl->wLength);
1893 
1894 	if (ctrl->wLength == 0) {
1895 		ep0->dir_in = 1;
1896 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1897 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1898 		ep0->dir_in = 1;
1899 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1900 	} else {
1901 		ep0->dir_in = 0;
1902 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1903 	}
1904 
1905 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1906 		switch (ctrl->bRequest) {
1907 		case USB_REQ_SET_ADDRESS:
1908 			hsotg->connected = 1;
1909 			dcfg = dwc2_readl(hsotg, DCFG);
1910 			dcfg &= ~DCFG_DEVADDR_MASK;
1911 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1912 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1913 			dwc2_writel(hsotg, dcfg, DCFG);
1914 
1915 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1916 
1917 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1918 			return;
1919 
1920 		case USB_REQ_GET_STATUS:
1921 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1922 			break;
1923 
1924 		case USB_REQ_CLEAR_FEATURE:
1925 		case USB_REQ_SET_FEATURE:
1926 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1927 			break;
1928 		}
1929 	}
1930 
1931 	/* as a fallback, try delivering it to the driver to deal with */
1932 
1933 	if (ret == 0 && hsotg->driver) {
1934 		spin_unlock(&hsotg->lock);
1935 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1936 		spin_lock(&hsotg->lock);
1937 		if (ret < 0)
1938 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1939 	}
1940 
1941 	/*
1942 	 * the request is either unhandlable, or is not formatted correctly
1943 	 * so respond with a STALL for the status stage to indicate failure.
1944 	 */
1945 
1946 	if (ret < 0)
1947 		dwc2_hsotg_stall_ep0(hsotg);
1948 }
1949 
1950 /**
1951  * dwc2_hsotg_complete_setup - completion of a setup transfer
1952  * @ep: The endpoint the request was on.
1953  * @req: The request completed.
1954  *
1955  * Called on completion of any requests the driver itself submitted for
1956  * EP0 setup packets
1957  */
1958 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1959 				      struct usb_request *req)
1960 {
1961 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1962 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1963 
1964 	if (req->status < 0) {
1965 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1966 		return;
1967 	}
1968 
1969 	spin_lock(&hsotg->lock);
1970 	if (req->actual == 0)
1971 		dwc2_hsotg_enqueue_setup(hsotg);
1972 	else
1973 		dwc2_hsotg_process_control(hsotg, req->buf);
1974 	spin_unlock(&hsotg->lock);
1975 }
1976 
1977 /**
1978  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1979  * @hsotg: The device state.
1980  *
1981  * Enqueue a request on EP0 if necessary to received any SETUP packets
1982  * received from the host.
1983  */
1984 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1985 {
1986 	struct usb_request *req = hsotg->ctrl_req;
1987 	struct dwc2_hsotg_req *hs_req = our_req(req);
1988 	int ret;
1989 
1990 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1991 
1992 	req->zero = 0;
1993 	req->length = 8;
1994 	req->buf = hsotg->ctrl_buff;
1995 	req->complete = dwc2_hsotg_complete_setup;
1996 
1997 	if (!list_empty(&hs_req->queue)) {
1998 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1999 		return;
2000 	}
2001 
2002 	hsotg->eps_out[0]->dir_in = 0;
2003 	hsotg->eps_out[0]->send_zlp = 0;
2004 	hsotg->ep0_state = DWC2_EP0_SETUP;
2005 
2006 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2007 	if (ret < 0) {
2008 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2009 		/*
2010 		 * Don't think there's much we can do other than watch the
2011 		 * driver fail.
2012 		 */
2013 	}
2014 }
2015 
2016 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2017 				   struct dwc2_hsotg_ep *hs_ep)
2018 {
2019 	u32 ctrl;
2020 	u8 index = hs_ep->index;
2021 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2022 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2023 
2024 	if (hs_ep->dir_in)
2025 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2026 			index);
2027 	else
2028 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2029 			index);
2030 	if (using_desc_dma(hsotg)) {
2031 		if (!index)
2032 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2033 
2034 		/* Not specific buffer needed for ep0 ZLP */
2035 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &hs_ep->desc_list,
2036 			hs_ep->desc_list_dma, 0, true);
2037 	} else {
2038 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2039 			    DXEPTSIZ_XFERSIZE(0),
2040 			    epsiz_reg);
2041 	}
2042 
2043 	ctrl = dwc2_readl(hsotg, epctl_reg);
2044 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2045 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2046 	ctrl |= DXEPCTL_USBACTEP;
2047 	dwc2_writel(hsotg, ctrl, epctl_reg);
2048 }
2049 
2050 /**
2051  * dwc2_hsotg_complete_request - complete a request given to us
2052  * @hsotg: The device state.
2053  * @hs_ep: The endpoint the request was on.
2054  * @hs_req: The request to complete.
2055  * @result: The result code (0 => Ok, otherwise errno)
2056  *
2057  * The given request has finished, so call the necessary completion
2058  * if it has one and then look to see if we can start a new request
2059  * on the endpoint.
2060  *
2061  * Note, expects the ep to already be locked as appropriate.
2062  */
2063 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2064 					struct dwc2_hsotg_ep *hs_ep,
2065 				       struct dwc2_hsotg_req *hs_req,
2066 				       int result)
2067 {
2068 	if (!hs_req) {
2069 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2070 		return;
2071 	}
2072 
2073 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2074 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2075 
2076 	/*
2077 	 * only replace the status if we've not already set an error
2078 	 * from a previous transaction
2079 	 */
2080 
2081 	if (hs_req->req.status == -EINPROGRESS)
2082 		hs_req->req.status = result;
2083 
2084 	if (using_dma(hsotg))
2085 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2086 
2087 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2088 
2089 	hs_ep->req = NULL;
2090 	list_del_init(&hs_req->queue);
2091 
2092 	/*
2093 	 * call the complete request with the locks off, just in case the
2094 	 * request tries to queue more work for this endpoint.
2095 	 */
2096 
2097 	if (hs_req->req.complete) {
2098 		spin_unlock(&hsotg->lock);
2099 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2100 		spin_lock(&hsotg->lock);
2101 	}
2102 
2103 	/* In DDMA don't need to proceed to starting of next ISOC request */
2104 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2105 		return;
2106 
2107 	/*
2108 	 * Look to see if there is anything else to do. Note, the completion
2109 	 * of the previous request may have caused a new request to be started
2110 	 * so be careful when doing this.
2111 	 */
2112 
2113 	if (!hs_ep->req && result >= 0)
2114 		dwc2_gadget_start_next_request(hs_ep);
2115 }
2116 
2117 /*
2118  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2119  * @hs_ep: The endpoint the request was on.
2120  *
2121  * Get first request from the ep queue, determine descriptor on which complete
2122  * happened. SW discovers which descriptor currently in use by HW, adjusts
2123  * dma_address and calculates index of completed descriptor based on the value
2124  * of DEPDMA register. Update actual length of request, giveback to gadget.
2125  */
2126 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2127 {
2128 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2129 	struct dwc2_hsotg_req *hs_req;
2130 	struct usb_request *ureq;
2131 	u32 desc_sts;
2132 	u32 mask;
2133 
2134 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2135 
2136 	/* Process only descriptors with buffer status set to DMA done */
2137 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2138 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2139 
2140 		hs_req = get_ep_head(hs_ep);
2141 		if (!hs_req) {
2142 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2143 			return;
2144 		}
2145 		ureq = &hs_req->req;
2146 
2147 		/* Check completion status */
2148 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2149 			DEV_DMA_STS_SUCC) {
2150 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2151 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2152 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2153 				DEV_DMA_ISOC_NBYTES_SHIFT);
2154 
2155 			/* Adjust actual len for ISOC Out if len is
2156 			 * not align of 4
2157 			 */
2158 			if (!hs_ep->dir_in && ureq->length & 0x3)
2159 				ureq->actual += 4 - (ureq->length & 0x3);
2160 		}
2161 
2162 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2163 
2164 		hs_ep->compl_desc++;
2165 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1))
2166 			hs_ep->compl_desc = 0;
2167 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2168 	}
2169 }
2170 
2171 /*
2172  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2173  * @hs_ep: The isochronous endpoint.
2174  *
2175  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2176  * interrupt. Reset target frame and next_desc to allow to start
2177  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2178  * interrupt for OUT direction.
2179  */
2180 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2181 {
2182 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2183 
2184 	if (!hs_ep->dir_in)
2185 		dwc2_flush_rx_fifo(hsotg);
2186 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2187 
2188 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2189 	hs_ep->next_desc = 0;
2190 	hs_ep->compl_desc = 0;
2191 }
2192 
2193 /**
2194  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2195  * @hsotg: The device state.
2196  * @ep_idx: The endpoint index for the data
2197  * @size: The size of data in the fifo, in bytes
2198  *
2199  * The FIFO status shows there is data to read from the FIFO for a given
2200  * endpoint, so sort out whether we need to read the data into a request
2201  * that has been made for that endpoint.
2202  */
2203 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2204 {
2205 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2206 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2207 	int to_read;
2208 	int max_req;
2209 	int read_ptr;
2210 
2211 	if (!hs_req) {
2212 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2213 		int ptr;
2214 
2215 		dev_dbg(hsotg->dev,
2216 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2217 			 __func__, size, ep_idx, epctl);
2218 
2219 		/* dump the data from the FIFO, we've nothing we can do */
2220 		for (ptr = 0; ptr < size; ptr += 4)
2221 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2222 
2223 		return;
2224 	}
2225 
2226 	to_read = size;
2227 	read_ptr = hs_req->req.actual;
2228 	max_req = hs_req->req.length - read_ptr;
2229 
2230 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2231 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2232 
2233 	if (to_read > max_req) {
2234 		/*
2235 		 * more data appeared than we where willing
2236 		 * to deal with in this request.
2237 		 */
2238 
2239 		/* currently we don't deal this */
2240 		WARN_ON_ONCE(1);
2241 	}
2242 
2243 	hs_ep->total_data += to_read;
2244 	hs_req->req.actual += to_read;
2245 	to_read = DIV_ROUND_UP(to_read, 4);
2246 
2247 	/*
2248 	 * note, we might over-write the buffer end by 3 bytes depending on
2249 	 * alignment of the data.
2250 	 */
2251 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2252 		       hs_req->req.buf + read_ptr, to_read);
2253 }
2254 
2255 /**
2256  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2257  * @hsotg: The device instance
2258  * @dir_in: If IN zlp
2259  *
2260  * Generate a zero-length IN packet request for terminating a SETUP
2261  * transaction.
2262  *
2263  * Note, since we don't write any data to the TxFIFO, then it is
2264  * currently believed that we do not need to wait for any space in
2265  * the TxFIFO.
2266  */
2267 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2268 {
2269 	/* eps_out[0] is used in both directions */
2270 	hsotg->eps_out[0]->dir_in = dir_in;
2271 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2272 
2273 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2274 }
2275 
2276 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2277 					    u32 epctl_reg)
2278 {
2279 	u32 ctrl;
2280 
2281 	ctrl = dwc2_readl(hsotg, epctl_reg);
2282 	if (ctrl & DXEPCTL_EOFRNUM)
2283 		ctrl |= DXEPCTL_SETEVENFR;
2284 	else
2285 		ctrl |= DXEPCTL_SETODDFR;
2286 	dwc2_writel(hsotg, ctrl, epctl_reg);
2287 }
2288 
2289 /*
2290  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2291  * @hs_ep - The endpoint on which transfer went
2292  *
2293  * Iterate over endpoints descriptor chain and get info on bytes remained
2294  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2295  */
2296 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2297 {
2298 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2299 	unsigned int bytes_rem = 0;
2300 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2301 	int i;
2302 	u32 status;
2303 
2304 	if (!desc)
2305 		return -EINVAL;
2306 
2307 	for (i = 0; i < hs_ep->desc_count; ++i) {
2308 		status = desc->status;
2309 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2310 
2311 		if (status & DEV_DMA_STS_MASK)
2312 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2313 				i, status & DEV_DMA_STS_MASK);
2314 	}
2315 
2316 	return bytes_rem;
2317 }
2318 
2319 /**
2320  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2321  * @hsotg: The device instance
2322  * @epnum: The endpoint received from
2323  *
2324  * The RXFIFO has delivered an OutDone event, which means that the data
2325  * transfer for an OUT endpoint has been completed, either by a short
2326  * packet or by the finish of a transfer.
2327  */
2328 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2329 {
2330 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2331 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2332 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2333 	struct usb_request *req = &hs_req->req;
2334 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2335 	int result = 0;
2336 
2337 	if (!hs_req) {
2338 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2339 		return;
2340 	}
2341 
2342 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2343 		dev_dbg(hsotg->dev, "zlp packet received\n");
2344 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2345 		dwc2_hsotg_enqueue_setup(hsotg);
2346 		return;
2347 	}
2348 
2349 	if (using_desc_dma(hsotg))
2350 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2351 
2352 	if (using_dma(hsotg)) {
2353 		unsigned int size_done;
2354 
2355 		/*
2356 		 * Calculate the size of the transfer by checking how much
2357 		 * is left in the endpoint size register and then working it
2358 		 * out from the amount we loaded for the transfer.
2359 		 *
2360 		 * We need to do this as DMA pointers are always 32bit aligned
2361 		 * so may overshoot/undershoot the transfer.
2362 		 */
2363 
2364 		size_done = hs_ep->size_loaded - size_left;
2365 		size_done += hs_ep->last_load;
2366 
2367 		req->actual = size_done;
2368 	}
2369 
2370 	/* if there is more request to do, schedule new transfer */
2371 	if (req->actual < req->length && size_left == 0) {
2372 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2373 		return;
2374 	}
2375 
2376 	if (req->actual < req->length && req->short_not_ok) {
2377 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2378 			__func__, req->actual, req->length);
2379 
2380 		/*
2381 		 * todo - what should we return here? there's no one else
2382 		 * even bothering to check the status.
2383 		 */
2384 	}
2385 
2386 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2387 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2388 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2389 		/* Move to STATUS IN */
2390 		dwc2_hsotg_ep0_zlp(hsotg, true);
2391 		return;
2392 	}
2393 
2394 	/*
2395 	 * Slave mode OUT transfers do not go through XferComplete so
2396 	 * adjust the ISOC parity here.
2397 	 */
2398 	if (!using_dma(hsotg)) {
2399 		if (hs_ep->isochronous && hs_ep->interval == 1)
2400 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2401 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2402 			dwc2_gadget_incr_frame_num(hs_ep);
2403 	}
2404 
2405 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2406 }
2407 
2408 /**
2409  * dwc2_hsotg_handle_rx - RX FIFO has data
2410  * @hsotg: The device instance
2411  *
2412  * The IRQ handler has detected that the RX FIFO has some data in it
2413  * that requires processing, so find out what is in there and do the
2414  * appropriate read.
2415  *
2416  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2417  * chunks, so if you have x packets received on an endpoint you'll get x
2418  * FIFO events delivered, each with a packet's worth of data in it.
2419  *
2420  * When using DMA, we should not be processing events from the RXFIFO
2421  * as the actual data should be sent to the memory directly and we turn
2422  * on the completion interrupts to get notifications of transfer completion.
2423  */
2424 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2425 {
2426 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2427 	u32 epnum, status, size;
2428 
2429 	WARN_ON(using_dma(hsotg));
2430 
2431 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2432 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2433 
2434 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2435 	size >>= GRXSTS_BYTECNT_SHIFT;
2436 
2437 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2438 		__func__, grxstsr, size, epnum);
2439 
2440 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2441 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2442 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2443 		break;
2444 
2445 	case GRXSTS_PKTSTS_OUTDONE:
2446 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2447 			dwc2_hsotg_read_frameno(hsotg));
2448 
2449 		if (!using_dma(hsotg))
2450 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2451 		break;
2452 
2453 	case GRXSTS_PKTSTS_SETUPDONE:
2454 		dev_dbg(hsotg->dev,
2455 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2456 			dwc2_hsotg_read_frameno(hsotg),
2457 			dwc2_readl(hsotg, DOEPCTL(0)));
2458 		/*
2459 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2460 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2461 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2462 		 */
2463 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2464 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2465 		break;
2466 
2467 	case GRXSTS_PKTSTS_OUTRX:
2468 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2469 		break;
2470 
2471 	case GRXSTS_PKTSTS_SETUPRX:
2472 		dev_dbg(hsotg->dev,
2473 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2474 			dwc2_hsotg_read_frameno(hsotg),
2475 			dwc2_readl(hsotg, DOEPCTL(0)));
2476 
2477 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2478 
2479 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2480 		break;
2481 
2482 	default:
2483 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2484 			 __func__, grxstsr);
2485 
2486 		dwc2_hsotg_dump(hsotg);
2487 		break;
2488 	}
2489 }
2490 
2491 /**
2492  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2493  * @mps: The maximum packet size in bytes.
2494  */
2495 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2496 {
2497 	switch (mps) {
2498 	case 64:
2499 		return D0EPCTL_MPS_64;
2500 	case 32:
2501 		return D0EPCTL_MPS_32;
2502 	case 16:
2503 		return D0EPCTL_MPS_16;
2504 	case 8:
2505 		return D0EPCTL_MPS_8;
2506 	}
2507 
2508 	/* bad max packet size, warn and return invalid result */
2509 	WARN_ON(1);
2510 	return (u32)-1;
2511 }
2512 
2513 /**
2514  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2515  * @hsotg: The driver state.
2516  * @ep: The index number of the endpoint
2517  * @mps: The maximum packet size in bytes
2518  * @mc: The multicount value
2519  * @dir_in: True if direction is in.
2520  *
2521  * Configure the maximum packet size for the given endpoint, updating
2522  * the hardware control registers to reflect this.
2523  */
2524 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2525 					unsigned int ep, unsigned int mps,
2526 					unsigned int mc, unsigned int dir_in)
2527 {
2528 	struct dwc2_hsotg_ep *hs_ep;
2529 	u32 reg;
2530 
2531 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2532 	if (!hs_ep)
2533 		return;
2534 
2535 	if (ep == 0) {
2536 		u32 mps_bytes = mps;
2537 
2538 		/* EP0 is a special case */
2539 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2540 		if (mps > 3)
2541 			goto bad_mps;
2542 		hs_ep->ep.maxpacket = mps_bytes;
2543 		hs_ep->mc = 1;
2544 	} else {
2545 		if (mps > 1024)
2546 			goto bad_mps;
2547 		hs_ep->mc = mc;
2548 		if (mc > 3)
2549 			goto bad_mps;
2550 		hs_ep->ep.maxpacket = mps;
2551 	}
2552 
2553 	if (dir_in) {
2554 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2555 		reg &= ~DXEPCTL_MPS_MASK;
2556 		reg |= mps;
2557 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2558 	} else {
2559 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2560 		reg &= ~DXEPCTL_MPS_MASK;
2561 		reg |= mps;
2562 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2563 	}
2564 
2565 	return;
2566 
2567 bad_mps:
2568 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2569 }
2570 
2571 /**
2572  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2573  * @hsotg: The driver state
2574  * @idx: The index for the endpoint (0..15)
2575  */
2576 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2577 {
2578 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2579 		    GRSTCTL);
2580 
2581 	/* wait until the fifo is flushed */
2582 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2583 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2584 			 __func__);
2585 }
2586 
2587 /**
2588  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2589  * @hsotg: The driver state
2590  * @hs_ep: The driver endpoint to check.
2591  *
2592  * Check to see if there is a request that has data to send, and if so
2593  * make an attempt to write data into the FIFO.
2594  */
2595 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2596 			    struct dwc2_hsotg_ep *hs_ep)
2597 {
2598 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2599 
2600 	if (!hs_ep->dir_in || !hs_req) {
2601 		/**
2602 		 * if request is not enqueued, we disable interrupts
2603 		 * for endpoints, excepting ep0
2604 		 */
2605 		if (hs_ep->index != 0)
2606 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2607 					      hs_ep->dir_in, 0);
2608 		return 0;
2609 	}
2610 
2611 	if (hs_req->req.actual < hs_req->req.length) {
2612 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2613 			hs_ep->index);
2614 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 /**
2621  * dwc2_hsotg_complete_in - complete IN transfer
2622  * @hsotg: The device state.
2623  * @hs_ep: The endpoint that has just completed.
2624  *
2625  * An IN transfer has been completed, update the transfer's state and then
2626  * call the relevant completion routines.
2627  */
2628 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2629 				   struct dwc2_hsotg_ep *hs_ep)
2630 {
2631 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2632 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2633 	int size_left, size_done;
2634 
2635 	if (!hs_req) {
2636 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2637 		return;
2638 	}
2639 
2640 	/* Finish ZLP handling for IN EP0 transactions */
2641 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2642 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2643 
2644 		/*
2645 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2646 		 * changed to IN. Change back to complete OUT transfer request
2647 		 */
2648 		hs_ep->dir_in = 0;
2649 
2650 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2651 		if (hsotg->test_mode) {
2652 			int ret;
2653 
2654 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2655 			if (ret < 0) {
2656 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2657 					hsotg->test_mode);
2658 				dwc2_hsotg_stall_ep0(hsotg);
2659 				return;
2660 			}
2661 		}
2662 		dwc2_hsotg_enqueue_setup(hsotg);
2663 		return;
2664 	}
2665 
2666 	/*
2667 	 * Calculate the size of the transfer by checking how much is left
2668 	 * in the endpoint size register and then working it out from
2669 	 * the amount we loaded for the transfer.
2670 	 *
2671 	 * We do this even for DMA, as the transfer may have incremented
2672 	 * past the end of the buffer (DMA transfers are always 32bit
2673 	 * aligned).
2674 	 */
2675 	if (using_desc_dma(hsotg)) {
2676 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2677 		if (size_left < 0)
2678 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2679 				size_left);
2680 	} else {
2681 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2682 	}
2683 
2684 	size_done = hs_ep->size_loaded - size_left;
2685 	size_done += hs_ep->last_load;
2686 
2687 	if (hs_req->req.actual != size_done)
2688 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2689 			__func__, hs_req->req.actual, size_done);
2690 
2691 	hs_req->req.actual = size_done;
2692 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2693 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2694 
2695 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2696 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2697 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2698 		return;
2699 	}
2700 
2701 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2702 	if (hs_ep->send_zlp) {
2703 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2704 		hs_ep->send_zlp = 0;
2705 		/* transfer will be completed on next complete interrupt */
2706 		return;
2707 	}
2708 
2709 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2710 		/* Move to STATUS OUT */
2711 		dwc2_hsotg_ep0_zlp(hsotg, false);
2712 		return;
2713 	}
2714 
2715 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2716 }
2717 
2718 /**
2719  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2720  * @hsotg: The device state.
2721  * @idx: Index of ep.
2722  * @dir_in: Endpoint direction 1-in 0-out.
2723  *
2724  * Reads for endpoint with given index and direction, by masking
2725  * epint_reg with coresponding mask.
2726  */
2727 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2728 					  unsigned int idx, int dir_in)
2729 {
2730 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2731 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2732 	u32 ints;
2733 	u32 mask;
2734 	u32 diepempmsk;
2735 
2736 	mask = dwc2_readl(hsotg, epmsk_reg);
2737 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2738 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2739 	mask |= DXEPINT_SETUP_RCVD;
2740 
2741 	ints = dwc2_readl(hsotg, epint_reg);
2742 	ints &= mask;
2743 	return ints;
2744 }
2745 
2746 /**
2747  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2748  * @hs_ep: The endpoint on which interrupt is asserted.
2749  *
2750  * This interrupt indicates that the endpoint has been disabled per the
2751  * application's request.
2752  *
2753  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2754  * in case of ISOC completes current request.
2755  *
2756  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2757  * request starts it.
2758  */
2759 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2760 {
2761 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2762 	struct dwc2_hsotg_req *hs_req;
2763 	unsigned char idx = hs_ep->index;
2764 	int dir_in = hs_ep->dir_in;
2765 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2766 	int dctl = dwc2_readl(hsotg, DCTL);
2767 
2768 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2769 
2770 	if (dir_in) {
2771 		int epctl = dwc2_readl(hsotg, epctl_reg);
2772 
2773 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2774 
2775 		if (hs_ep->isochronous) {
2776 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2777 			return;
2778 		}
2779 
2780 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2781 			int dctl = dwc2_readl(hsotg, DCTL);
2782 
2783 			dctl |= DCTL_CGNPINNAK;
2784 			dwc2_writel(hsotg, dctl, DCTL);
2785 		}
2786 		return;
2787 	}
2788 
2789 	if (dctl & DCTL_GOUTNAKSTS) {
2790 		dctl |= DCTL_CGOUTNAK;
2791 		dwc2_writel(hsotg, dctl, DCTL);
2792 	}
2793 
2794 	if (!hs_ep->isochronous)
2795 		return;
2796 
2797 	if (list_empty(&hs_ep->queue)) {
2798 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2799 			__func__, hs_ep);
2800 		return;
2801 	}
2802 
2803 	do {
2804 		hs_req = get_ep_head(hs_ep);
2805 		if (hs_req)
2806 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2807 						    -ENODATA);
2808 		dwc2_gadget_incr_frame_num(hs_ep);
2809 		/* Update current frame number value. */
2810 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2811 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2812 
2813 	dwc2_gadget_start_next_request(hs_ep);
2814 }
2815 
2816 /**
2817  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2818  * @ep: The endpoint on which interrupt is asserted.
2819  *
2820  * This is starting point for ISOC-OUT transfer, synchronization done with
2821  * first out token received from host while corresponding EP is disabled.
2822  *
2823  * Device does not know initial frame in which out token will come. For this
2824  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2825  * getting this interrupt SW starts calculation for next transfer frame.
2826  */
2827 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2828 {
2829 	struct dwc2_hsotg *hsotg = ep->parent;
2830 	int dir_in = ep->dir_in;
2831 	u32 doepmsk;
2832 
2833 	if (dir_in || !ep->isochronous)
2834 		return;
2835 
2836 	if (using_desc_dma(hsotg)) {
2837 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2838 			/* Start first ISO Out */
2839 			ep->target_frame = hsotg->frame_number;
2840 			dwc2_gadget_start_isoc_ddma(ep);
2841 		}
2842 		return;
2843 	}
2844 
2845 	if (ep->interval > 1 &&
2846 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2847 		u32 ctrl;
2848 
2849 		ep->target_frame = hsotg->frame_number;
2850 		dwc2_gadget_incr_frame_num(ep);
2851 
2852 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2853 		if (ep->target_frame & 0x1)
2854 			ctrl |= DXEPCTL_SETODDFR;
2855 		else
2856 			ctrl |= DXEPCTL_SETEVENFR;
2857 
2858 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2859 	}
2860 
2861 	dwc2_gadget_start_next_request(ep);
2862 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2863 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2864 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2865 }
2866 
2867 /**
2868  * dwc2_gadget_handle_nak - handle NAK interrupt
2869  * @hs_ep: The endpoint on which interrupt is asserted.
2870  *
2871  * This is starting point for ISOC-IN transfer, synchronization done with
2872  * first IN token received from host while corresponding EP is disabled.
2873  *
2874  * Device does not know when first one token will arrive from host. On first
2875  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2876  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2877  * sent in response to that as there was no data in FIFO. SW is basing on this
2878  * interrupt to obtain frame in which token has come and then based on the
2879  * interval calculates next frame for transfer.
2880  */
2881 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2882 {
2883 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2884 	int dir_in = hs_ep->dir_in;
2885 
2886 	if (!dir_in || !hs_ep->isochronous)
2887 		return;
2888 
2889 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2890 
2891 		if (using_desc_dma(hsotg)) {
2892 			hs_ep->target_frame = hsotg->frame_number;
2893 			dwc2_gadget_incr_frame_num(hs_ep);
2894 
2895 			/* In service interval mode target_frame must
2896 			 * be set to last (u)frame of the service interval.
2897 			 */
2898 			if (hsotg->params.service_interval) {
2899 				/* Set target_frame to the first (u)frame of
2900 				 * the service interval
2901 				 */
2902 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2903 
2904 				/* Set target_frame to the last (u)frame of
2905 				 * the service interval
2906 				 */
2907 				dwc2_gadget_incr_frame_num(hs_ep);
2908 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2909 			}
2910 
2911 			dwc2_gadget_start_isoc_ddma(hs_ep);
2912 			return;
2913 		}
2914 
2915 		hs_ep->target_frame = hsotg->frame_number;
2916 		if (hs_ep->interval > 1) {
2917 			u32 ctrl = dwc2_readl(hsotg,
2918 					      DIEPCTL(hs_ep->index));
2919 			if (hs_ep->target_frame & 0x1)
2920 				ctrl |= DXEPCTL_SETODDFR;
2921 			else
2922 				ctrl |= DXEPCTL_SETEVENFR;
2923 
2924 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2925 		}
2926 
2927 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2928 					    get_ep_head(hs_ep), 0);
2929 	}
2930 
2931 	if (!using_desc_dma(hsotg))
2932 		dwc2_gadget_incr_frame_num(hs_ep);
2933 }
2934 
2935 /**
2936  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2937  * @hsotg: The driver state
2938  * @idx: The index for the endpoint (0..15)
2939  * @dir_in: Set if this is an IN endpoint
2940  *
2941  * Process and clear any interrupt pending for an individual endpoint
2942  */
2943 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2944 			     int dir_in)
2945 {
2946 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2947 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2948 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2949 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2950 	u32 ints;
2951 	u32 ctrl;
2952 
2953 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2954 	ctrl = dwc2_readl(hsotg, epctl_reg);
2955 
2956 	/* Clear endpoint interrupts */
2957 	dwc2_writel(hsotg, ints, epint_reg);
2958 
2959 	if (!hs_ep) {
2960 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2961 			__func__, idx, dir_in ? "in" : "out");
2962 		return;
2963 	}
2964 
2965 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2966 		__func__, idx, dir_in ? "in" : "out", ints);
2967 
2968 	/* Don't process XferCompl interrupt if it is a setup packet */
2969 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2970 		ints &= ~DXEPINT_XFERCOMPL;
2971 
2972 	/*
2973 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2974 	 * stage and xfercomplete was generated without SETUP phase done
2975 	 * interrupt. SW should parse received setup packet only after host's
2976 	 * exit from setup phase of control transfer.
2977 	 */
2978 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2979 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2980 		ints &= ~DXEPINT_XFERCOMPL;
2981 
2982 	if (ints & DXEPINT_XFERCOMPL) {
2983 		dev_dbg(hsotg->dev,
2984 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2985 			__func__, dwc2_readl(hsotg, epctl_reg),
2986 			dwc2_readl(hsotg, epsiz_reg));
2987 
2988 		/* In DDMA handle isochronous requests separately */
2989 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2990 			/* XferCompl set along with BNA */
2991 			if (!(ints & DXEPINT_BNAINTR))
2992 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2993 		} else if (dir_in) {
2994 			/*
2995 			 * We get OutDone from the FIFO, so we only
2996 			 * need to look at completing IN requests here
2997 			 * if operating slave mode
2998 			 */
2999 			if (hs_ep->isochronous && hs_ep->interval > 1)
3000 				dwc2_gadget_incr_frame_num(hs_ep);
3001 
3002 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3003 			if (ints & DXEPINT_NAKINTRPT)
3004 				ints &= ~DXEPINT_NAKINTRPT;
3005 
3006 			if (idx == 0 && !hs_ep->req)
3007 				dwc2_hsotg_enqueue_setup(hsotg);
3008 		} else if (using_dma(hsotg)) {
3009 			/*
3010 			 * We're using DMA, we need to fire an OutDone here
3011 			 * as we ignore the RXFIFO.
3012 			 */
3013 			if (hs_ep->isochronous && hs_ep->interval > 1)
3014 				dwc2_gadget_incr_frame_num(hs_ep);
3015 
3016 			dwc2_hsotg_handle_outdone(hsotg, idx);
3017 		}
3018 	}
3019 
3020 	if (ints & DXEPINT_EPDISBLD)
3021 		dwc2_gadget_handle_ep_disabled(hs_ep);
3022 
3023 	if (ints & DXEPINT_OUTTKNEPDIS)
3024 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3025 
3026 	if (ints & DXEPINT_NAKINTRPT)
3027 		dwc2_gadget_handle_nak(hs_ep);
3028 
3029 	if (ints & DXEPINT_AHBERR)
3030 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3031 
3032 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3033 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3034 
3035 		if (using_dma(hsotg) && idx == 0) {
3036 			/*
3037 			 * this is the notification we've received a
3038 			 * setup packet. In non-DMA mode we'd get this
3039 			 * from the RXFIFO, instead we need to process
3040 			 * the setup here.
3041 			 */
3042 
3043 			if (dir_in)
3044 				WARN_ON_ONCE(1);
3045 			else
3046 				dwc2_hsotg_handle_outdone(hsotg, 0);
3047 		}
3048 	}
3049 
3050 	if (ints & DXEPINT_STSPHSERCVD) {
3051 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3052 
3053 		/* Safety check EP0 state when STSPHSERCVD asserted */
3054 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3055 			/* Move to STATUS IN for DDMA */
3056 			if (using_desc_dma(hsotg))
3057 				dwc2_hsotg_ep0_zlp(hsotg, true);
3058 		}
3059 
3060 	}
3061 
3062 	if (ints & DXEPINT_BACK2BACKSETUP)
3063 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3064 
3065 	if (ints & DXEPINT_BNAINTR) {
3066 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3067 		if (hs_ep->isochronous)
3068 			dwc2_gadget_handle_isoc_bna(hs_ep);
3069 	}
3070 
3071 	if (dir_in && !hs_ep->isochronous) {
3072 		/* not sure if this is important, but we'll clear it anyway */
3073 		if (ints & DXEPINT_INTKNTXFEMP) {
3074 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3075 				__func__, idx);
3076 		}
3077 
3078 		/* this probably means something bad is happening */
3079 		if (ints & DXEPINT_INTKNEPMIS) {
3080 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3081 				 __func__, idx);
3082 		}
3083 
3084 		/* FIFO has space or is empty (see GAHBCFG) */
3085 		if (hsotg->dedicated_fifos &&
3086 		    ints & DXEPINT_TXFEMP) {
3087 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3088 				__func__, idx);
3089 			if (!using_dma(hsotg))
3090 				dwc2_hsotg_trytx(hsotg, hs_ep);
3091 		}
3092 	}
3093 }
3094 
3095 /**
3096  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3097  * @hsotg: The device state.
3098  *
3099  * Handle updating the device settings after the enumeration phase has
3100  * been completed.
3101  */
3102 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3103 {
3104 	u32 dsts = dwc2_readl(hsotg, DSTS);
3105 	int ep0_mps = 0, ep_mps = 8;
3106 
3107 	/*
3108 	 * This should signal the finish of the enumeration phase
3109 	 * of the USB handshaking, so we should now know what rate
3110 	 * we connected at.
3111 	 */
3112 
3113 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3114 
3115 	/*
3116 	 * note, since we're limited by the size of transfer on EP0, and
3117 	 * it seems IN transfers must be a even number of packets we do
3118 	 * not advertise a 64byte MPS on EP0.
3119 	 */
3120 
3121 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3122 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3123 	case DSTS_ENUMSPD_FS:
3124 	case DSTS_ENUMSPD_FS48:
3125 		hsotg->gadget.speed = USB_SPEED_FULL;
3126 		ep0_mps = EP0_MPS_LIMIT;
3127 		ep_mps = 1023;
3128 		break;
3129 
3130 	case DSTS_ENUMSPD_HS:
3131 		hsotg->gadget.speed = USB_SPEED_HIGH;
3132 		ep0_mps = EP0_MPS_LIMIT;
3133 		ep_mps = 1024;
3134 		break;
3135 
3136 	case DSTS_ENUMSPD_LS:
3137 		hsotg->gadget.speed = USB_SPEED_LOW;
3138 		ep0_mps = 8;
3139 		ep_mps = 8;
3140 		/*
3141 		 * note, we don't actually support LS in this driver at the
3142 		 * moment, and the documentation seems to imply that it isn't
3143 		 * supported by the PHYs on some of the devices.
3144 		 */
3145 		break;
3146 	}
3147 	dev_info(hsotg->dev, "new device is %s\n",
3148 		 usb_speed_string(hsotg->gadget.speed));
3149 
3150 	/*
3151 	 * we should now know the maximum packet size for an
3152 	 * endpoint, so set the endpoints to a default value.
3153 	 */
3154 
3155 	if (ep0_mps) {
3156 		int i;
3157 		/* Initialize ep0 for both in and out directions */
3158 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3159 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3160 		for (i = 1; i < hsotg->num_of_eps; i++) {
3161 			if (hsotg->eps_in[i])
3162 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3163 							    0, 1);
3164 			if (hsotg->eps_out[i])
3165 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3166 							    0, 0);
3167 		}
3168 	}
3169 
3170 	/* ensure after enumeration our EP0 is active */
3171 
3172 	dwc2_hsotg_enqueue_setup(hsotg);
3173 
3174 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3175 		dwc2_readl(hsotg, DIEPCTL0),
3176 		dwc2_readl(hsotg, DOEPCTL0));
3177 }
3178 
3179 /**
3180  * kill_all_requests - remove all requests from the endpoint's queue
3181  * @hsotg: The device state.
3182  * @ep: The endpoint the requests may be on.
3183  * @result: The result code to use.
3184  *
3185  * Go through the requests on the given endpoint and mark them
3186  * completed with the given result code.
3187  */
3188 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3189 			      struct dwc2_hsotg_ep *ep,
3190 			      int result)
3191 {
3192 	struct dwc2_hsotg_req *req, *treq;
3193 	unsigned int size;
3194 
3195 	ep->req = NULL;
3196 
3197 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3198 		dwc2_hsotg_complete_request(hsotg, ep, req,
3199 					    result);
3200 
3201 	if (!hsotg->dedicated_fifos)
3202 		return;
3203 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3204 	if (size < ep->fifo_size)
3205 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3206 }
3207 
3208 /**
3209  * dwc2_hsotg_disconnect - disconnect service
3210  * @hsotg: The device state.
3211  *
3212  * The device has been disconnected. Remove all current
3213  * transactions and signal the gadget driver that this
3214  * has happened.
3215  */
3216 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3217 {
3218 	unsigned int ep;
3219 
3220 	if (!hsotg->connected)
3221 		return;
3222 
3223 	hsotg->connected = 0;
3224 	hsotg->test_mode = 0;
3225 
3226 	/* all endpoints should be shutdown */
3227 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3228 		if (hsotg->eps_in[ep])
3229 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3230 					  -ESHUTDOWN);
3231 		if (hsotg->eps_out[ep])
3232 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3233 					  -ESHUTDOWN);
3234 	}
3235 
3236 	call_gadget(hsotg, disconnect);
3237 	hsotg->lx_state = DWC2_L3;
3238 
3239 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3240 }
3241 
3242 /**
3243  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3244  * @hsotg: The device state:
3245  * @periodic: True if this is a periodic FIFO interrupt
3246  */
3247 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3248 {
3249 	struct dwc2_hsotg_ep *ep;
3250 	int epno, ret;
3251 
3252 	/* look through for any more data to transmit */
3253 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3254 		ep = index_to_ep(hsotg, epno, 1);
3255 
3256 		if (!ep)
3257 			continue;
3258 
3259 		if (!ep->dir_in)
3260 			continue;
3261 
3262 		if ((periodic && !ep->periodic) ||
3263 		    (!periodic && ep->periodic))
3264 			continue;
3265 
3266 		ret = dwc2_hsotg_trytx(hsotg, ep);
3267 		if (ret < 0)
3268 			break;
3269 	}
3270 }
3271 
3272 /* IRQ flags which will trigger a retry around the IRQ loop */
3273 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3274 			GINTSTS_PTXFEMP |  \
3275 			GINTSTS_RXFLVL)
3276 
3277 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3278 /**
3279  * dwc2_hsotg_core_init - issue softreset to the core
3280  * @hsotg: The device state
3281  * @is_usb_reset: Usb resetting flag
3282  *
3283  * Issue a soft reset to the core, and await the core finishing it.
3284  */
3285 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3286 				       bool is_usb_reset)
3287 {
3288 	u32 intmsk;
3289 	u32 val;
3290 	u32 usbcfg;
3291 	u32 dcfg = 0;
3292 	int ep;
3293 
3294 	/* Kill any ep0 requests as controller will be reinitialized */
3295 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3296 
3297 	if (!is_usb_reset) {
3298 		if (dwc2_core_reset(hsotg, true))
3299 			return;
3300 	} else {
3301 		/* all endpoints should be shutdown */
3302 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3303 			if (hsotg->eps_in[ep])
3304 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3305 			if (hsotg->eps_out[ep])
3306 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3307 		}
3308 	}
3309 
3310 	/*
3311 	 * we must now enable ep0 ready for host detection and then
3312 	 * set configuration.
3313 	 */
3314 
3315 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3316 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3317 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3318 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3319 
3320 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3321 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3322 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3323 		/* FS/LS Dedicated Transceiver Interface */
3324 		usbcfg |= GUSBCFG_PHYSEL;
3325 	} else {
3326 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3327 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3328 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3329 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3330 	}
3331 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
3332 
3333 	dwc2_hsotg_init_fifo(hsotg);
3334 
3335 	if (!is_usb_reset)
3336 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3337 
3338 	dcfg |= DCFG_EPMISCNT(1);
3339 
3340 	switch (hsotg->params.speed) {
3341 	case DWC2_SPEED_PARAM_LOW:
3342 		dcfg |= DCFG_DEVSPD_LS;
3343 		break;
3344 	case DWC2_SPEED_PARAM_FULL:
3345 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3346 			dcfg |= DCFG_DEVSPD_FS48;
3347 		else
3348 			dcfg |= DCFG_DEVSPD_FS;
3349 		break;
3350 	default:
3351 		dcfg |= DCFG_DEVSPD_HS;
3352 	}
3353 
3354 	if (hsotg->params.ipg_isoc_en)
3355 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3356 
3357 	dwc2_writel(hsotg, dcfg,  DCFG);
3358 
3359 	/* Clear any pending OTG interrupts */
3360 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3361 
3362 	/* Clear any pending interrupts */
3363 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3364 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3365 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3366 		GINTSTS_USBRST | GINTSTS_RESETDET |
3367 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3368 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3369 		GINTSTS_LPMTRANRCVD;
3370 
3371 	if (!using_desc_dma(hsotg))
3372 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3373 
3374 	if (!hsotg->params.external_id_pin_ctl)
3375 		intmsk |= GINTSTS_CONIDSTSCHNG;
3376 
3377 	dwc2_writel(hsotg, intmsk, GINTMSK);
3378 
3379 	if (using_dma(hsotg)) {
3380 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3381 			    hsotg->params.ahbcfg,
3382 			    GAHBCFG);
3383 
3384 		/* Set DDMA mode support in the core if needed */
3385 		if (using_desc_dma(hsotg))
3386 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3387 
3388 	} else {
3389 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3390 						(GAHBCFG_NP_TXF_EMP_LVL |
3391 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3392 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3393 	}
3394 
3395 	/*
3396 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3397 	 * when we have no data to transfer. Otherwise we get being flooded by
3398 	 * interrupts.
3399 	 */
3400 
3401 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3402 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3403 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3404 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3405 		DIEPMSK);
3406 
3407 	/*
3408 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3409 	 * DMA mode we may need this and StsPhseRcvd.
3410 	 */
3411 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3412 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3413 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3414 		DOEPMSK_SETUPMSK,
3415 		DOEPMSK);
3416 
3417 	/* Enable BNA interrupt for DDMA */
3418 	if (using_desc_dma(hsotg)) {
3419 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3420 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3421 	}
3422 
3423 	/* Enable Service Interval mode if supported */
3424 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3425 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3426 
3427 	dwc2_writel(hsotg, 0, DAINTMSK);
3428 
3429 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3430 		dwc2_readl(hsotg, DIEPCTL0),
3431 		dwc2_readl(hsotg, DOEPCTL0));
3432 
3433 	/* enable in and out endpoint interrupts */
3434 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3435 
3436 	/*
3437 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3438 	 * the data. In DMA mode, we get events from the FIFO but also
3439 	 * things we cannot process, so do not use it.
3440 	 */
3441 	if (!using_dma(hsotg))
3442 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3443 
3444 	/* Enable interrupts for EP0 in and out */
3445 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3446 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3447 
3448 	if (!is_usb_reset) {
3449 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3450 		udelay(10);  /* see openiboot */
3451 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3452 	}
3453 
3454 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3455 
3456 	/*
3457 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3458 	 * writing to the EPCTL register..
3459 	 */
3460 
3461 	/* set to read 1 8byte packet */
3462 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3463 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3464 
3465 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3466 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3467 	       DXEPCTL_USBACTEP,
3468 	       DOEPCTL0);
3469 
3470 	/* enable, but don't activate EP0in */
3471 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3472 	       DXEPCTL_USBACTEP, DIEPCTL0);
3473 
3474 	/* clear global NAKs */
3475 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3476 	if (!is_usb_reset)
3477 		val |= DCTL_SFTDISCON;
3478 	dwc2_set_bit(hsotg, DCTL, val);
3479 
3480 	/* configure the core to support LPM */
3481 	dwc2_gadget_init_lpm(hsotg);
3482 
3483 	/* program GREFCLK register if needed */
3484 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3485 		dwc2_gadget_program_ref_clk(hsotg);
3486 
3487 	/* must be at-least 3ms to allow bus to see disconnect */
3488 	mdelay(3);
3489 
3490 	hsotg->lx_state = DWC2_L0;
3491 
3492 	dwc2_hsotg_enqueue_setup(hsotg);
3493 
3494 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3495 		dwc2_readl(hsotg, DIEPCTL0),
3496 		dwc2_readl(hsotg, DOEPCTL0));
3497 }
3498 
3499 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3500 {
3501 	/* set the soft-disconnect bit */
3502 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3503 }
3504 
3505 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3506 {
3507 	/* remove the soft-disconnect and let's go */
3508 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3509 }
3510 
3511 /**
3512  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3513  * @hsotg: The device state:
3514  *
3515  * This interrupt indicates one of the following conditions occurred while
3516  * transmitting an ISOC transaction.
3517  * - Corrupted IN Token for ISOC EP.
3518  * - Packet not complete in FIFO.
3519  *
3520  * The following actions will be taken:
3521  * - Determine the EP
3522  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3523  */
3524 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3525 {
3526 	struct dwc2_hsotg_ep *hs_ep;
3527 	u32 epctrl;
3528 	u32 daintmsk;
3529 	u32 idx;
3530 
3531 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3532 
3533 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3534 
3535 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3536 		hs_ep = hsotg->eps_in[idx];
3537 		/* Proceed only unmasked ISOC EPs */
3538 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3539 			continue;
3540 
3541 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3542 		if ((epctrl & DXEPCTL_EPENA) &&
3543 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3544 			epctrl |= DXEPCTL_SNAK;
3545 			epctrl |= DXEPCTL_EPDIS;
3546 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3547 		}
3548 	}
3549 
3550 	/* Clear interrupt */
3551 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3552 }
3553 
3554 /**
3555  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3556  * @hsotg: The device state:
3557  *
3558  * This interrupt indicates one of the following conditions occurred while
3559  * transmitting an ISOC transaction.
3560  * - Corrupted OUT Token for ISOC EP.
3561  * - Packet not complete in FIFO.
3562  *
3563  * The following actions will be taken:
3564  * - Determine the EP
3565  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3566  */
3567 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3568 {
3569 	u32 gintsts;
3570 	u32 gintmsk;
3571 	u32 daintmsk;
3572 	u32 epctrl;
3573 	struct dwc2_hsotg_ep *hs_ep;
3574 	int idx;
3575 
3576 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3577 
3578 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3579 	daintmsk >>= DAINT_OUTEP_SHIFT;
3580 
3581 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3582 		hs_ep = hsotg->eps_out[idx];
3583 		/* Proceed only unmasked ISOC EPs */
3584 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3585 			continue;
3586 
3587 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3588 		if ((epctrl & DXEPCTL_EPENA) &&
3589 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3590 			/* Unmask GOUTNAKEFF interrupt */
3591 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3592 			gintmsk |= GINTSTS_GOUTNAKEFF;
3593 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3594 
3595 			gintsts = dwc2_readl(hsotg, GINTSTS);
3596 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3597 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3598 				break;
3599 			}
3600 		}
3601 	}
3602 
3603 	/* Clear interrupt */
3604 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3605 }
3606 
3607 /**
3608  * dwc2_hsotg_irq - handle device interrupt
3609  * @irq: The IRQ number triggered
3610  * @pw: The pw value when registered the handler.
3611  */
3612 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3613 {
3614 	struct dwc2_hsotg *hsotg = pw;
3615 	int retry_count = 8;
3616 	u32 gintsts;
3617 	u32 gintmsk;
3618 
3619 	if (!dwc2_is_device_mode(hsotg))
3620 		return IRQ_NONE;
3621 
3622 	spin_lock(&hsotg->lock);
3623 irq_retry:
3624 	gintsts = dwc2_readl(hsotg, GINTSTS);
3625 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3626 
3627 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3628 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3629 
3630 	gintsts &= gintmsk;
3631 
3632 	if (gintsts & GINTSTS_RESETDET) {
3633 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3634 
3635 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3636 
3637 		/* This event must be used only if controller is suspended */
3638 		if (hsotg->lx_state == DWC2_L2) {
3639 			dwc2_exit_partial_power_down(hsotg, true);
3640 			hsotg->lx_state = DWC2_L0;
3641 		}
3642 	}
3643 
3644 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3645 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3646 		u32 connected = hsotg->connected;
3647 
3648 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3649 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3650 			dwc2_readl(hsotg, GNPTXSTS));
3651 
3652 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3653 
3654 		/* Report disconnection if it is not already done. */
3655 		dwc2_hsotg_disconnect(hsotg);
3656 
3657 		/* Reset device address to zero */
3658 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3659 
3660 		if (usb_status & GOTGCTL_BSESVLD && connected)
3661 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3662 	}
3663 
3664 	if (gintsts & GINTSTS_ENUMDONE) {
3665 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3666 
3667 		dwc2_hsotg_irq_enumdone(hsotg);
3668 	}
3669 
3670 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3671 		u32 daint = dwc2_readl(hsotg, DAINT);
3672 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3673 		u32 daint_out, daint_in;
3674 		int ep;
3675 
3676 		daint &= daintmsk;
3677 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3678 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3679 
3680 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3681 
3682 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3683 						ep++, daint_out >>= 1) {
3684 			if (daint_out & 1)
3685 				dwc2_hsotg_epint(hsotg, ep, 0);
3686 		}
3687 
3688 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3689 						ep++, daint_in >>= 1) {
3690 			if (daint_in & 1)
3691 				dwc2_hsotg_epint(hsotg, ep, 1);
3692 		}
3693 	}
3694 
3695 	/* check both FIFOs */
3696 
3697 	if (gintsts & GINTSTS_NPTXFEMP) {
3698 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3699 
3700 		/*
3701 		 * Disable the interrupt to stop it happening again
3702 		 * unless one of these endpoint routines decides that
3703 		 * it needs re-enabling
3704 		 */
3705 
3706 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3707 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3708 	}
3709 
3710 	if (gintsts & GINTSTS_PTXFEMP) {
3711 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3712 
3713 		/* See note in GINTSTS_NPTxFEmp */
3714 
3715 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3716 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3717 	}
3718 
3719 	if (gintsts & GINTSTS_RXFLVL) {
3720 		/*
3721 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3722 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3723 		 * set.
3724 		 */
3725 
3726 		dwc2_hsotg_handle_rx(hsotg);
3727 	}
3728 
3729 	if (gintsts & GINTSTS_ERLYSUSP) {
3730 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3731 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3732 	}
3733 
3734 	/*
3735 	 * these next two seem to crop-up occasionally causing the core
3736 	 * to shutdown the USB transfer, so try clearing them and logging
3737 	 * the occurrence.
3738 	 */
3739 
3740 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3741 		u8 idx;
3742 		u32 epctrl;
3743 		u32 gintmsk;
3744 		u32 daintmsk;
3745 		struct dwc2_hsotg_ep *hs_ep;
3746 
3747 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3748 		daintmsk >>= DAINT_OUTEP_SHIFT;
3749 		/* Mask this interrupt */
3750 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3751 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3752 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3753 
3754 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3755 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3756 			hs_ep = hsotg->eps_out[idx];
3757 			/* Proceed only unmasked ISOC EPs */
3758 			if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3759 				continue;
3760 
3761 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3762 
3763 			if (epctrl & DXEPCTL_EPENA) {
3764 				epctrl |= DXEPCTL_SNAK;
3765 				epctrl |= DXEPCTL_EPDIS;
3766 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3767 			}
3768 		}
3769 
3770 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3771 	}
3772 
3773 	if (gintsts & GINTSTS_GINNAKEFF) {
3774 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3775 
3776 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3777 
3778 		dwc2_hsotg_dump(hsotg);
3779 	}
3780 
3781 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3782 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3783 
3784 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3785 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3786 
3787 	/*
3788 	 * if we've had fifo events, we should try and go around the
3789 	 * loop again to see if there's any point in returning yet.
3790 	 */
3791 
3792 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3793 		goto irq_retry;
3794 
3795 	/* Check WKUP_ALERT interrupt*/
3796 	if (hsotg->params.service_interval)
3797 		dwc2_gadget_wkup_alert_handler(hsotg);
3798 
3799 	spin_unlock(&hsotg->lock);
3800 
3801 	return IRQ_HANDLED;
3802 }
3803 
3804 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3805 				   struct dwc2_hsotg_ep *hs_ep)
3806 {
3807 	u32 epctrl_reg;
3808 	u32 epint_reg;
3809 
3810 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3811 		DOEPCTL(hs_ep->index);
3812 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3813 		DOEPINT(hs_ep->index);
3814 
3815 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3816 		hs_ep->name);
3817 
3818 	if (hs_ep->dir_in) {
3819 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3820 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3821 			/* Wait for Nak effect */
3822 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3823 						    DXEPINT_INEPNAKEFF, 100))
3824 				dev_warn(hsotg->dev,
3825 					 "%s: timeout DIEPINT.NAKEFF\n",
3826 					 __func__);
3827 		} else {
3828 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3829 			/* Wait for Nak effect */
3830 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3831 						    GINTSTS_GINNAKEFF, 100))
3832 				dev_warn(hsotg->dev,
3833 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3834 					 __func__);
3835 		}
3836 	} else {
3837 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3838 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3839 
3840 		/* Wait for global nak to take effect */
3841 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3842 					    GINTSTS_GOUTNAKEFF, 100))
3843 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3844 				 __func__);
3845 	}
3846 
3847 	/* Disable ep */
3848 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3849 
3850 	/* Wait for ep to be disabled */
3851 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3852 		dev_warn(hsotg->dev,
3853 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3854 
3855 	/* Clear EPDISBLD interrupt */
3856 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3857 
3858 	if (hs_ep->dir_in) {
3859 		unsigned short fifo_index;
3860 
3861 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3862 			fifo_index = hs_ep->fifo_index;
3863 		else
3864 			fifo_index = 0;
3865 
3866 		/* Flush TX FIFO */
3867 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3868 
3869 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3870 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3871 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3872 
3873 	} else {
3874 		/* Remove global NAKs */
3875 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3876 	}
3877 }
3878 
3879 /**
3880  * dwc2_hsotg_ep_enable - enable the given endpoint
3881  * @ep: The USB endpint to configure
3882  * @desc: The USB endpoint descriptor to configure with.
3883  *
3884  * This is called from the USB gadget code's usb_ep_enable().
3885  */
3886 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3887 				const struct usb_endpoint_descriptor *desc)
3888 {
3889 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3890 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3891 	unsigned long flags;
3892 	unsigned int index = hs_ep->index;
3893 	u32 epctrl_reg;
3894 	u32 epctrl;
3895 	u32 mps;
3896 	u32 mc;
3897 	u32 mask;
3898 	unsigned int dir_in;
3899 	unsigned int i, val, size;
3900 	int ret = 0;
3901 	unsigned char ep_type;
3902 
3903 	dev_dbg(hsotg->dev,
3904 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3905 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3906 		desc->wMaxPacketSize, desc->bInterval);
3907 
3908 	/* not to be called for EP0 */
3909 	if (index == 0) {
3910 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3911 		return -EINVAL;
3912 	}
3913 
3914 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3915 	if (dir_in != hs_ep->dir_in) {
3916 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3917 		return -EINVAL;
3918 	}
3919 
3920 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3921 	mps = usb_endpoint_maxp(desc);
3922 	mc = usb_endpoint_maxp_mult(desc);
3923 
3924 	/* ISOC IN in DDMA supported bInterval up to 10 */
3925 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3926 	    dir_in && desc->bInterval > 10) {
3927 		dev_err(hsotg->dev,
3928 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3929 		return -EINVAL;
3930 	}
3931 
3932 	/* High bandwidth ISOC OUT in DDMA not supported */
3933 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3934 	    !dir_in && mc > 1) {
3935 		dev_err(hsotg->dev,
3936 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3937 		return -EINVAL;
3938 	}
3939 
3940 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3941 
3942 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3943 	epctrl = dwc2_readl(hsotg, epctrl_reg);
3944 
3945 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3946 		__func__, epctrl, epctrl_reg);
3947 
3948 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3949 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3950 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3951 			MAX_DMA_DESC_NUM_GENERIC *
3952 			sizeof(struct dwc2_dma_desc),
3953 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3954 		if (!hs_ep->desc_list) {
3955 			ret = -ENOMEM;
3956 			goto error2;
3957 		}
3958 	}
3959 
3960 	spin_lock_irqsave(&hsotg->lock, flags);
3961 
3962 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3963 	epctrl |= DXEPCTL_MPS(mps);
3964 
3965 	/*
3966 	 * mark the endpoint as active, otherwise the core may ignore
3967 	 * transactions entirely for this endpoint
3968 	 */
3969 	epctrl |= DXEPCTL_USBACTEP;
3970 
3971 	/* update the endpoint state */
3972 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3973 
3974 	/* default, set to non-periodic */
3975 	hs_ep->isochronous = 0;
3976 	hs_ep->periodic = 0;
3977 	hs_ep->halted = 0;
3978 	hs_ep->interval = desc->bInterval;
3979 
3980 	switch (ep_type) {
3981 	case USB_ENDPOINT_XFER_ISOC:
3982 		epctrl |= DXEPCTL_EPTYPE_ISO;
3983 		epctrl |= DXEPCTL_SETEVENFR;
3984 		hs_ep->isochronous = 1;
3985 		hs_ep->interval = 1 << (desc->bInterval - 1);
3986 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3987 		hs_ep->next_desc = 0;
3988 		hs_ep->compl_desc = 0;
3989 		if (dir_in) {
3990 			hs_ep->periodic = 1;
3991 			mask = dwc2_readl(hsotg, DIEPMSK);
3992 			mask |= DIEPMSK_NAKMSK;
3993 			dwc2_writel(hsotg, mask, DIEPMSK);
3994 		} else {
3995 			mask = dwc2_readl(hsotg, DOEPMSK);
3996 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3997 			dwc2_writel(hsotg, mask, DOEPMSK);
3998 		}
3999 		break;
4000 
4001 	case USB_ENDPOINT_XFER_BULK:
4002 		epctrl |= DXEPCTL_EPTYPE_BULK;
4003 		break;
4004 
4005 	case USB_ENDPOINT_XFER_INT:
4006 		if (dir_in)
4007 			hs_ep->periodic = 1;
4008 
4009 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4010 			hs_ep->interval = 1 << (desc->bInterval - 1);
4011 
4012 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4013 		break;
4014 
4015 	case USB_ENDPOINT_XFER_CONTROL:
4016 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4017 		break;
4018 	}
4019 
4020 	/*
4021 	 * if the hardware has dedicated fifos, we must give each IN EP
4022 	 * a unique tx-fifo even if it is non-periodic.
4023 	 */
4024 	if (dir_in && hsotg->dedicated_fifos) {
4025 		u32 fifo_index = 0;
4026 		u32 fifo_size = UINT_MAX;
4027 
4028 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4029 		for (i = 1; i < hsotg->num_of_eps; ++i) {
4030 			if (hsotg->fifo_map & (1 << i))
4031 				continue;
4032 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4033 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4034 			if (val < size)
4035 				continue;
4036 			/* Search for smallest acceptable fifo */
4037 			if (val < fifo_size) {
4038 				fifo_size = val;
4039 				fifo_index = i;
4040 			}
4041 		}
4042 		if (!fifo_index) {
4043 			dev_err(hsotg->dev,
4044 				"%s: No suitable fifo found\n", __func__);
4045 			ret = -ENOMEM;
4046 			goto error1;
4047 		}
4048 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4049 		hsotg->fifo_map |= 1 << fifo_index;
4050 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4051 		hs_ep->fifo_index = fifo_index;
4052 		hs_ep->fifo_size = fifo_size;
4053 	}
4054 
4055 	/* for non control endpoints, set PID to D0 */
4056 	if (index && !hs_ep->isochronous)
4057 		epctrl |= DXEPCTL_SETD0PID;
4058 
4059 	/* WA for Full speed ISOC IN in DDMA mode.
4060 	 * By Clear NAK status of EP, core will send ZLP
4061 	 * to IN token and assert NAK interrupt relying
4062 	 * on TxFIFO status only
4063 	 */
4064 
4065 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4066 	    hs_ep->isochronous && dir_in) {
4067 		/* The WA applies only to core versions from 2.72a
4068 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4069 		 * and HS_IOT_1.00a.
4070 		 */
4071 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4072 
4073 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4074 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4075 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4076 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4077 			epctrl |= DXEPCTL_CNAK;
4078 	}
4079 
4080 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4081 		__func__, epctrl);
4082 
4083 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4084 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4085 		__func__, dwc2_readl(hsotg, epctrl_reg));
4086 
4087 	/* enable the endpoint interrupt */
4088 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4089 
4090 error1:
4091 	spin_unlock_irqrestore(&hsotg->lock, flags);
4092 
4093 error2:
4094 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4095 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
4096 			sizeof(struct dwc2_dma_desc),
4097 			hs_ep->desc_list, hs_ep->desc_list_dma);
4098 		hs_ep->desc_list = NULL;
4099 	}
4100 
4101 	return ret;
4102 }
4103 
4104 /**
4105  * dwc2_hsotg_ep_disable - disable given endpoint
4106  * @ep: The endpoint to disable.
4107  */
4108 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4109 {
4110 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4111 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4112 	int dir_in = hs_ep->dir_in;
4113 	int index = hs_ep->index;
4114 	u32 epctrl_reg;
4115 	u32 ctrl;
4116 
4117 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4118 
4119 	if (ep == &hsotg->eps_out[0]->ep) {
4120 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4121 		return -EINVAL;
4122 	}
4123 
4124 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4125 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4126 		return -EINVAL;
4127 	}
4128 
4129 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4130 
4131 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4132 
4133 	if (ctrl & DXEPCTL_EPENA)
4134 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4135 
4136 	ctrl &= ~DXEPCTL_EPENA;
4137 	ctrl &= ~DXEPCTL_USBACTEP;
4138 	ctrl |= DXEPCTL_SNAK;
4139 
4140 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4141 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4142 
4143 	/* disable endpoint interrupts */
4144 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4145 
4146 	/* terminate all requests with shutdown */
4147 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4148 
4149 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4150 	hs_ep->fifo_index = 0;
4151 	hs_ep->fifo_size = 0;
4152 
4153 	return 0;
4154 }
4155 
4156 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4157 {
4158 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4159 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4160 	unsigned long flags;
4161 	int ret;
4162 
4163 	spin_lock_irqsave(&hsotg->lock, flags);
4164 	ret = dwc2_hsotg_ep_disable(ep);
4165 	spin_unlock_irqrestore(&hsotg->lock, flags);
4166 	return ret;
4167 }
4168 
4169 /**
4170  * on_list - check request is on the given endpoint
4171  * @ep: The endpoint to check.
4172  * @test: The request to test if it is on the endpoint.
4173  */
4174 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4175 {
4176 	struct dwc2_hsotg_req *req, *treq;
4177 
4178 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4179 		if (req == test)
4180 			return true;
4181 	}
4182 
4183 	return false;
4184 }
4185 
4186 /**
4187  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4188  * @ep: The endpoint to dequeue.
4189  * @req: The request to be removed from a queue.
4190  */
4191 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4192 {
4193 	struct dwc2_hsotg_req *hs_req = our_req(req);
4194 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4195 	struct dwc2_hsotg *hs = hs_ep->parent;
4196 	unsigned long flags;
4197 
4198 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4199 
4200 	spin_lock_irqsave(&hs->lock, flags);
4201 
4202 	if (!on_list(hs_ep, hs_req)) {
4203 		spin_unlock_irqrestore(&hs->lock, flags);
4204 		return -EINVAL;
4205 	}
4206 
4207 	/* Dequeue already started request */
4208 	if (req == &hs_ep->req->req)
4209 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4210 
4211 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4212 	spin_unlock_irqrestore(&hs->lock, flags);
4213 
4214 	return 0;
4215 }
4216 
4217 /**
4218  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4219  * @ep: The endpoint to set halt.
4220  * @value: Set or unset the halt.
4221  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4222  *       the endpoint is busy processing requests.
4223  *
4224  * We need to stall the endpoint immediately if request comes from set_feature
4225  * protocol command handler.
4226  */
4227 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4228 {
4229 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4230 	struct dwc2_hsotg *hs = hs_ep->parent;
4231 	int index = hs_ep->index;
4232 	u32 epreg;
4233 	u32 epctl;
4234 	u32 xfertype;
4235 
4236 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4237 
4238 	if (index == 0) {
4239 		if (value)
4240 			dwc2_hsotg_stall_ep0(hs);
4241 		else
4242 			dev_warn(hs->dev,
4243 				 "%s: can't clear halt on ep0\n", __func__);
4244 		return 0;
4245 	}
4246 
4247 	if (hs_ep->isochronous) {
4248 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4249 		return -EINVAL;
4250 	}
4251 
4252 	if (!now && value && !list_empty(&hs_ep->queue)) {
4253 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4254 			ep->name);
4255 		return -EAGAIN;
4256 	}
4257 
4258 	if (hs_ep->dir_in) {
4259 		epreg = DIEPCTL(index);
4260 		epctl = dwc2_readl(hs, epreg);
4261 
4262 		if (value) {
4263 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4264 			if (epctl & DXEPCTL_EPENA)
4265 				epctl |= DXEPCTL_EPDIS;
4266 		} else {
4267 			epctl &= ~DXEPCTL_STALL;
4268 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4269 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4270 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4271 				epctl |= DXEPCTL_SETD0PID;
4272 		}
4273 		dwc2_writel(hs, epctl, epreg);
4274 	} else {
4275 		epreg = DOEPCTL(index);
4276 		epctl = dwc2_readl(hs, epreg);
4277 
4278 		if (value) {
4279 			epctl |= DXEPCTL_STALL;
4280 		} else {
4281 			epctl &= ~DXEPCTL_STALL;
4282 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4283 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4284 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4285 				epctl |= DXEPCTL_SETD0PID;
4286 		}
4287 		dwc2_writel(hs, epctl, epreg);
4288 	}
4289 
4290 	hs_ep->halted = value;
4291 
4292 	return 0;
4293 }
4294 
4295 /**
4296  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4297  * @ep: The endpoint to set halt.
4298  * @value: Set or unset the halt.
4299  */
4300 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4301 {
4302 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4303 	struct dwc2_hsotg *hs = hs_ep->parent;
4304 	unsigned long flags = 0;
4305 	int ret = 0;
4306 
4307 	spin_lock_irqsave(&hs->lock, flags);
4308 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4309 	spin_unlock_irqrestore(&hs->lock, flags);
4310 
4311 	return ret;
4312 }
4313 
4314 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4315 	.enable		= dwc2_hsotg_ep_enable,
4316 	.disable	= dwc2_hsotg_ep_disable_lock,
4317 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4318 	.free_request	= dwc2_hsotg_ep_free_request,
4319 	.queue		= dwc2_hsotg_ep_queue_lock,
4320 	.dequeue	= dwc2_hsotg_ep_dequeue,
4321 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4322 	/* note, don't believe we have any call for the fifo routines */
4323 };
4324 
4325 /**
4326  * dwc2_hsotg_init - initialize the usb core
4327  * @hsotg: The driver state
4328  */
4329 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4330 {
4331 	u32 trdtim;
4332 	u32 usbcfg;
4333 	/* unmask subset of endpoint interrupts */
4334 
4335 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4336 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4337 		    DIEPMSK);
4338 
4339 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4340 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4341 		    DOEPMSK);
4342 
4343 	dwc2_writel(hsotg, 0, DAINTMSK);
4344 
4345 	/* Be in disconnected state until gadget is registered */
4346 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4347 
4348 	/* setup fifos */
4349 
4350 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4351 		dwc2_readl(hsotg, GRXFSIZ),
4352 		dwc2_readl(hsotg, GNPTXFSIZ));
4353 
4354 	dwc2_hsotg_init_fifo(hsotg);
4355 
4356 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4357 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
4358 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4359 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4360 
4361 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4362 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4363 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4364 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4365 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
4366 
4367 	if (using_dma(hsotg))
4368 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4369 }
4370 
4371 /**
4372  * dwc2_hsotg_udc_start - prepare the udc for work
4373  * @gadget: The usb gadget state
4374  * @driver: The usb gadget driver
4375  *
4376  * Perform initialization to prepare udc device and driver
4377  * to work.
4378  */
4379 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4380 				struct usb_gadget_driver *driver)
4381 {
4382 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4383 	unsigned long flags;
4384 	int ret;
4385 
4386 	if (!hsotg) {
4387 		pr_err("%s: called with no device\n", __func__);
4388 		return -ENODEV;
4389 	}
4390 
4391 	if (!driver) {
4392 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4393 		return -EINVAL;
4394 	}
4395 
4396 	if (driver->max_speed < USB_SPEED_FULL)
4397 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4398 
4399 	if (!driver->setup) {
4400 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4401 		return -EINVAL;
4402 	}
4403 
4404 	WARN_ON(hsotg->driver);
4405 
4406 	driver->driver.bus = NULL;
4407 	hsotg->driver = driver;
4408 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4409 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4410 
4411 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4412 		ret = dwc2_lowlevel_hw_enable(hsotg);
4413 		if (ret)
4414 			goto err;
4415 	}
4416 
4417 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4418 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4419 
4420 	spin_lock_irqsave(&hsotg->lock, flags);
4421 	if (dwc2_hw_is_device(hsotg)) {
4422 		dwc2_hsotg_init(hsotg);
4423 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4424 	}
4425 
4426 	hsotg->enabled = 0;
4427 	spin_unlock_irqrestore(&hsotg->lock, flags);
4428 
4429 	gadget->sg_supported = using_desc_dma(hsotg);
4430 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4431 
4432 	return 0;
4433 
4434 err:
4435 	hsotg->driver = NULL;
4436 	return ret;
4437 }
4438 
4439 /**
4440  * dwc2_hsotg_udc_stop - stop the udc
4441  * @gadget: The usb gadget state
4442  *
4443  * Stop udc hw block and stay tunned for future transmissions
4444  */
4445 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4446 {
4447 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4448 	unsigned long flags = 0;
4449 	int ep;
4450 
4451 	if (!hsotg)
4452 		return -ENODEV;
4453 
4454 	/* all endpoints should be shutdown */
4455 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4456 		if (hsotg->eps_in[ep])
4457 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4458 		if (hsotg->eps_out[ep])
4459 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4460 	}
4461 
4462 	spin_lock_irqsave(&hsotg->lock, flags);
4463 
4464 	hsotg->driver = NULL;
4465 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4466 	hsotg->enabled = 0;
4467 
4468 	spin_unlock_irqrestore(&hsotg->lock, flags);
4469 
4470 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4471 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4472 
4473 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4474 		dwc2_lowlevel_hw_disable(hsotg);
4475 
4476 	return 0;
4477 }
4478 
4479 /**
4480  * dwc2_hsotg_gadget_getframe - read the frame number
4481  * @gadget: The usb gadget state
4482  *
4483  * Read the {micro} frame number
4484  */
4485 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4486 {
4487 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4488 }
4489 
4490 /**
4491  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4492  * @gadget: The usb gadget state
4493  * @is_on: Current state of the USB PHY
4494  *
4495  * Connect/Disconnect the USB PHY pullup
4496  */
4497 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4498 {
4499 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4500 	unsigned long flags = 0;
4501 
4502 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4503 		hsotg->op_state);
4504 
4505 	/* Don't modify pullup state while in host mode */
4506 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4507 		hsotg->enabled = is_on;
4508 		return 0;
4509 	}
4510 
4511 	spin_lock_irqsave(&hsotg->lock, flags);
4512 	if (is_on) {
4513 		hsotg->enabled = 1;
4514 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4515 		/* Enable ACG feature in device mode,if supported */
4516 		dwc2_enable_acg(hsotg);
4517 		dwc2_hsotg_core_connect(hsotg);
4518 	} else {
4519 		dwc2_hsotg_core_disconnect(hsotg);
4520 		dwc2_hsotg_disconnect(hsotg);
4521 		hsotg->enabled = 0;
4522 	}
4523 
4524 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4525 	spin_unlock_irqrestore(&hsotg->lock, flags);
4526 
4527 	return 0;
4528 }
4529 
4530 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4531 {
4532 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4533 	unsigned long flags;
4534 
4535 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4536 	spin_lock_irqsave(&hsotg->lock, flags);
4537 
4538 	/*
4539 	 * If controller is hibernated, it must exit from power_down
4540 	 * before being initialized / de-initialized
4541 	 */
4542 	if (hsotg->lx_state == DWC2_L2)
4543 		dwc2_exit_partial_power_down(hsotg, false);
4544 
4545 	if (is_active) {
4546 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4547 
4548 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4549 		if (hsotg->enabled) {
4550 			/* Enable ACG feature in device mode,if supported */
4551 			dwc2_enable_acg(hsotg);
4552 			dwc2_hsotg_core_connect(hsotg);
4553 		}
4554 	} else {
4555 		dwc2_hsotg_core_disconnect(hsotg);
4556 		dwc2_hsotg_disconnect(hsotg);
4557 	}
4558 
4559 	spin_unlock_irqrestore(&hsotg->lock, flags);
4560 	return 0;
4561 }
4562 
4563 /**
4564  * dwc2_hsotg_vbus_draw - report bMaxPower field
4565  * @gadget: The usb gadget state
4566  * @mA: Amount of current
4567  *
4568  * Report how much power the device may consume to the phy.
4569  */
4570 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4571 {
4572 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4573 
4574 	if (IS_ERR_OR_NULL(hsotg->uphy))
4575 		return -ENOTSUPP;
4576 	return usb_phy_set_power(hsotg->uphy, mA);
4577 }
4578 
4579 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4580 	.get_frame	= dwc2_hsotg_gadget_getframe,
4581 	.udc_start		= dwc2_hsotg_udc_start,
4582 	.udc_stop		= dwc2_hsotg_udc_stop,
4583 	.pullup                 = dwc2_hsotg_pullup,
4584 	.vbus_session		= dwc2_hsotg_vbus_session,
4585 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4586 };
4587 
4588 /**
4589  * dwc2_hsotg_initep - initialise a single endpoint
4590  * @hsotg: The device state.
4591  * @hs_ep: The endpoint to be initialised.
4592  * @epnum: The endpoint number
4593  * @dir_in: True if direction is in.
4594  *
4595  * Initialise the given endpoint (as part of the probe and device state
4596  * creation) to give to the gadget driver. Setup the endpoint name, any
4597  * direction information and other state that may be required.
4598  */
4599 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4600 			      struct dwc2_hsotg_ep *hs_ep,
4601 				       int epnum,
4602 				       bool dir_in)
4603 {
4604 	char *dir;
4605 
4606 	if (epnum == 0)
4607 		dir = "";
4608 	else if (dir_in)
4609 		dir = "in";
4610 	else
4611 		dir = "out";
4612 
4613 	hs_ep->dir_in = dir_in;
4614 	hs_ep->index = epnum;
4615 
4616 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4617 
4618 	INIT_LIST_HEAD(&hs_ep->queue);
4619 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4620 
4621 	/* add to the list of endpoints known by the gadget driver */
4622 	if (epnum)
4623 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4624 
4625 	hs_ep->parent = hsotg;
4626 	hs_ep->ep.name = hs_ep->name;
4627 
4628 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4629 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4630 	else
4631 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4632 					   epnum ? 1024 : EP0_MPS_LIMIT);
4633 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4634 
4635 	if (epnum == 0) {
4636 		hs_ep->ep.caps.type_control = true;
4637 	} else {
4638 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4639 			hs_ep->ep.caps.type_iso = true;
4640 			hs_ep->ep.caps.type_bulk = true;
4641 		}
4642 		hs_ep->ep.caps.type_int = true;
4643 	}
4644 
4645 	if (dir_in)
4646 		hs_ep->ep.caps.dir_in = true;
4647 	else
4648 		hs_ep->ep.caps.dir_out = true;
4649 
4650 	/*
4651 	 * if we're using dma, we need to set the next-endpoint pointer
4652 	 * to be something valid.
4653 	 */
4654 
4655 	if (using_dma(hsotg)) {
4656 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4657 
4658 		if (dir_in)
4659 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4660 		else
4661 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4662 	}
4663 }
4664 
4665 /**
4666  * dwc2_hsotg_hw_cfg - read HW configuration registers
4667  * @hsotg: Programming view of the DWC_otg controller
4668  *
4669  * Read the USB core HW configuration registers
4670  */
4671 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4672 {
4673 	u32 cfg;
4674 	u32 ep_type;
4675 	u32 i;
4676 
4677 	/* check hardware configuration */
4678 
4679 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4680 
4681 	/* Add ep0 */
4682 	hsotg->num_of_eps++;
4683 
4684 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4685 					sizeof(struct dwc2_hsotg_ep),
4686 					GFP_KERNEL);
4687 	if (!hsotg->eps_in[0])
4688 		return -ENOMEM;
4689 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4690 	hsotg->eps_out[0] = hsotg->eps_in[0];
4691 
4692 	cfg = hsotg->hw_params.dev_ep_dirs;
4693 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4694 		ep_type = cfg & 3;
4695 		/* Direction in or both */
4696 		if (!(ep_type & 2)) {
4697 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4698 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4699 			if (!hsotg->eps_in[i])
4700 				return -ENOMEM;
4701 		}
4702 		/* Direction out or both */
4703 		if (!(ep_type & 1)) {
4704 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4705 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4706 			if (!hsotg->eps_out[i])
4707 				return -ENOMEM;
4708 		}
4709 	}
4710 
4711 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4712 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4713 
4714 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4715 		 hsotg->num_of_eps,
4716 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4717 		 hsotg->fifo_mem);
4718 	return 0;
4719 }
4720 
4721 /**
4722  * dwc2_hsotg_dump - dump state of the udc
4723  * @hsotg: Programming view of the DWC_otg controller
4724  *
4725  */
4726 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4727 {
4728 #ifdef DEBUG
4729 	struct device *dev = hsotg->dev;
4730 	u32 val;
4731 	int idx;
4732 
4733 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4734 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4735 		 dwc2_readl(hsotg, DIEPMSK));
4736 
4737 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4738 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4739 
4740 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4741 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4742 
4743 	/* show periodic fifo settings */
4744 
4745 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4746 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4747 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4748 			 val >> FIFOSIZE_DEPTH_SHIFT,
4749 			 val & FIFOSIZE_STARTADDR_MASK);
4750 	}
4751 
4752 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4753 		dev_info(dev,
4754 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4755 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4756 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4757 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4758 
4759 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4760 		dev_info(dev,
4761 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4762 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4763 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4764 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4765 	}
4766 
4767 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4768 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4769 #endif
4770 }
4771 
4772 /**
4773  * dwc2_gadget_init - init function for gadget
4774  * @hsotg: Programming view of the DWC_otg controller
4775  *
4776  */
4777 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4778 {
4779 	struct device *dev = hsotg->dev;
4780 	int epnum;
4781 	int ret;
4782 
4783 	/* Dump fifo information */
4784 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4785 		hsotg->params.g_np_tx_fifo_size);
4786 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4787 
4788 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4789 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4790 	hsotg->gadget.name = dev_name(dev);
4791 	hsotg->remote_wakeup_allowed = 0;
4792 
4793 	if (hsotg->params.lpm)
4794 		hsotg->gadget.lpm_capable = true;
4795 
4796 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4797 		hsotg->gadget.is_otg = 1;
4798 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4799 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4800 
4801 	ret = dwc2_hsotg_hw_cfg(hsotg);
4802 	if (ret) {
4803 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4804 		return ret;
4805 	}
4806 
4807 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4808 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4809 	if (!hsotg->ctrl_buff)
4810 		return -ENOMEM;
4811 
4812 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4813 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4814 	if (!hsotg->ep0_buff)
4815 		return -ENOMEM;
4816 
4817 	if (using_desc_dma(hsotg)) {
4818 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4819 		if (ret < 0)
4820 			return ret;
4821 	}
4822 
4823 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4824 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4825 	if (ret < 0) {
4826 		dev_err(dev, "cannot claim IRQ for gadget\n");
4827 		return ret;
4828 	}
4829 
4830 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4831 
4832 	if (hsotg->num_of_eps == 0) {
4833 		dev_err(dev, "wrong number of EPs (zero)\n");
4834 		return -EINVAL;
4835 	}
4836 
4837 	/* setup endpoint information */
4838 
4839 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4840 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4841 
4842 	/* allocate EP0 request */
4843 
4844 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4845 						     GFP_KERNEL);
4846 	if (!hsotg->ctrl_req) {
4847 		dev_err(dev, "failed to allocate ctrl req\n");
4848 		return -ENOMEM;
4849 	}
4850 
4851 	/* initialise the endpoints now the core has been initialised */
4852 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4853 		if (hsotg->eps_in[epnum])
4854 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4855 					  epnum, 1);
4856 		if (hsotg->eps_out[epnum])
4857 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4858 					  epnum, 0);
4859 	}
4860 
4861 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4862 	if (ret) {
4863 		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4864 					   hsotg->ctrl_req);
4865 		return ret;
4866 	}
4867 	dwc2_hsotg_dump(hsotg);
4868 
4869 	return 0;
4870 }
4871 
4872 /**
4873  * dwc2_hsotg_remove - remove function for hsotg driver
4874  * @hsotg: Programming view of the DWC_otg controller
4875  *
4876  */
4877 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4878 {
4879 	usb_del_gadget_udc(&hsotg->gadget);
4880 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4881 
4882 	return 0;
4883 }
4884 
4885 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4886 {
4887 	unsigned long flags;
4888 
4889 	if (hsotg->lx_state != DWC2_L0)
4890 		return 0;
4891 
4892 	if (hsotg->driver) {
4893 		int ep;
4894 
4895 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4896 			 hsotg->driver->driver.name);
4897 
4898 		spin_lock_irqsave(&hsotg->lock, flags);
4899 		if (hsotg->enabled)
4900 			dwc2_hsotg_core_disconnect(hsotg);
4901 		dwc2_hsotg_disconnect(hsotg);
4902 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4903 		spin_unlock_irqrestore(&hsotg->lock, flags);
4904 
4905 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4906 			if (hsotg->eps_in[ep])
4907 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4908 			if (hsotg->eps_out[ep])
4909 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4910 		}
4911 	}
4912 
4913 	return 0;
4914 }
4915 
4916 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4917 {
4918 	unsigned long flags;
4919 
4920 	if (hsotg->lx_state == DWC2_L2)
4921 		return 0;
4922 
4923 	if (hsotg->driver) {
4924 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4925 			 hsotg->driver->driver.name);
4926 
4927 		spin_lock_irqsave(&hsotg->lock, flags);
4928 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4929 		if (hsotg->enabled) {
4930 			/* Enable ACG feature in device mode,if supported */
4931 			dwc2_enable_acg(hsotg);
4932 			dwc2_hsotg_core_connect(hsotg);
4933 		}
4934 		spin_unlock_irqrestore(&hsotg->lock, flags);
4935 	}
4936 
4937 	return 0;
4938 }
4939 
4940 /**
4941  * dwc2_backup_device_registers() - Backup controller device registers.
4942  * When suspending usb bus, registers needs to be backuped
4943  * if controller power is disabled once suspended.
4944  *
4945  * @hsotg: Programming view of the DWC_otg controller
4946  */
4947 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4948 {
4949 	struct dwc2_dregs_backup *dr;
4950 	int i;
4951 
4952 	dev_dbg(hsotg->dev, "%s\n", __func__);
4953 
4954 	/* Backup dev regs */
4955 	dr = &hsotg->dr_backup;
4956 
4957 	dr->dcfg = dwc2_readl(hsotg, DCFG);
4958 	dr->dctl = dwc2_readl(hsotg, DCTL);
4959 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4960 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4961 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4962 
4963 	for (i = 0; i < hsotg->num_of_eps; i++) {
4964 		/* Backup IN EPs */
4965 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4966 
4967 		/* Ensure DATA PID is correctly configured */
4968 		if (dr->diepctl[i] & DXEPCTL_DPID)
4969 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4970 		else
4971 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4972 
4973 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4974 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4975 
4976 		/* Backup OUT EPs */
4977 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4978 
4979 		/* Ensure DATA PID is correctly configured */
4980 		if (dr->doepctl[i] & DXEPCTL_DPID)
4981 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4982 		else
4983 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4984 
4985 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
4986 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
4987 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
4988 	}
4989 	dr->valid = true;
4990 	return 0;
4991 }
4992 
4993 /**
4994  * dwc2_restore_device_registers() - Restore controller device registers.
4995  * When resuming usb bus, device registers needs to be restored
4996  * if controller power were disabled.
4997  *
4998  * @hsotg: Programming view of the DWC_otg controller
4999  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5000  *
5001  * Return: 0 if successful, negative error code otherwise
5002  */
5003 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5004 {
5005 	struct dwc2_dregs_backup *dr;
5006 	int i;
5007 
5008 	dev_dbg(hsotg->dev, "%s\n", __func__);
5009 
5010 	/* Restore dev regs */
5011 	dr = &hsotg->dr_backup;
5012 	if (!dr->valid) {
5013 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5014 			__func__);
5015 		return -EINVAL;
5016 	}
5017 	dr->valid = false;
5018 
5019 	if (!remote_wakeup)
5020 		dwc2_writel(hsotg, dr->dctl, DCTL);
5021 
5022 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5023 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5024 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5025 
5026 	for (i = 0; i < hsotg->num_of_eps; i++) {
5027 		/* Restore IN EPs */
5028 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5029 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5030 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5031 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5032 		 * hibernation wrong value read and saved from DIEPDMAx,
5033 		 * as result BNA interrupt asserted on hibernation exit
5034 		 * by restoring from saved area.
5035 		 */
5036 		if (hsotg->params.g_dma_desc &&
5037 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5038 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5039 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5040 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5041 		/* Restore OUT EPs */
5042 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5043 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5044 		 * hibernation wrong value read and saved from DOEPDMAx,
5045 		 * as result BNA interrupt asserted on hibernation exit
5046 		 * by restoring from saved area.
5047 		 */
5048 		if (hsotg->params.g_dma_desc &&
5049 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5050 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5051 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5052 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5053 	}
5054 
5055 	return 0;
5056 }
5057 
5058 /**
5059  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5060  *
5061  * @hsotg: Programming view of DWC_otg controller
5062  *
5063  */
5064 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5065 {
5066 	u32 val;
5067 
5068 	if (!hsotg->params.lpm)
5069 		return;
5070 
5071 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5072 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5073 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5074 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5075 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5076 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5077 	dwc2_writel(hsotg, val, GLPMCFG);
5078 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5079 
5080 	/* Unmask WKUP_ALERT Interrupt */
5081 	if (hsotg->params.service_interval)
5082 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5083 }
5084 
5085 /**
5086  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5087  *
5088  * @hsotg: Programming view of DWC_otg controller
5089  *
5090  */
5091 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5092 {
5093 	u32 val = 0;
5094 
5095 	val |= GREFCLK_REF_CLK_MODE;
5096 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5097 	val |= hsotg->params.sof_cnt_wkup_alert <<
5098 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5099 
5100 	dwc2_writel(hsotg, val, GREFCLK);
5101 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5102 }
5103 
5104 /**
5105  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5106  *
5107  * @hsotg: Programming view of the DWC_otg controller
5108  *
5109  * Return non-zero if failed to enter to hibernation.
5110  */
5111 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5112 {
5113 	u32 gpwrdn;
5114 	int ret = 0;
5115 
5116 	/* Change to L2(suspend) state */
5117 	hsotg->lx_state = DWC2_L2;
5118 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5119 	ret = dwc2_backup_global_registers(hsotg);
5120 	if (ret) {
5121 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5122 			__func__);
5123 		return ret;
5124 	}
5125 	ret = dwc2_backup_device_registers(hsotg);
5126 	if (ret) {
5127 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5128 			__func__);
5129 		return ret;
5130 	}
5131 
5132 	gpwrdn = GPWRDN_PWRDNRSTN;
5133 	gpwrdn |= GPWRDN_PMUACTV;
5134 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5135 	udelay(10);
5136 
5137 	/* Set flag to indicate that we are in hibernation */
5138 	hsotg->hibernated = 1;
5139 
5140 	/* Enable interrupts from wake up logic */
5141 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5142 	gpwrdn |= GPWRDN_PMUINTSEL;
5143 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5144 	udelay(10);
5145 
5146 	/* Unmask device mode interrupts in GPWRDN */
5147 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5148 	gpwrdn |= GPWRDN_RST_DET_MSK;
5149 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5150 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5151 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5152 	udelay(10);
5153 
5154 	/* Enable Power Down Clamp */
5155 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5156 	gpwrdn |= GPWRDN_PWRDNCLMP;
5157 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5158 	udelay(10);
5159 
5160 	/* Switch off VDD */
5161 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5162 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5163 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5164 	udelay(10);
5165 
5166 	/* Save gpwrdn register for further usage if stschng interrupt */
5167 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5168 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5169 
5170 	return ret;
5171 }
5172 
5173 /**
5174  * dwc2_gadget_exit_hibernation()
5175  * This function is for exiting from Device mode hibernation by host initiated
5176  * resume/reset and device initiated remote-wakeup.
5177  *
5178  * @hsotg: Programming view of the DWC_otg controller
5179  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5180  * @reset: indicates whether resume is initiated by Reset.
5181  *
5182  * Return non-zero if failed to exit from hibernation.
5183  */
5184 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5185 				 int rem_wakeup, int reset)
5186 {
5187 	u32 pcgcctl;
5188 	u32 gpwrdn;
5189 	u32 dctl;
5190 	int ret = 0;
5191 	struct dwc2_gregs_backup *gr;
5192 	struct dwc2_dregs_backup *dr;
5193 
5194 	gr = &hsotg->gr_backup;
5195 	dr = &hsotg->dr_backup;
5196 
5197 	if (!hsotg->hibernated) {
5198 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5199 		return 1;
5200 	}
5201 	dev_dbg(hsotg->dev,
5202 		"%s: called with rem_wakeup = %d reset = %d\n",
5203 		__func__, rem_wakeup, reset);
5204 
5205 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5206 
5207 	if (!reset) {
5208 		/* Clear all pending interupts */
5209 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5210 	}
5211 
5212 	/* De-assert Restore */
5213 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5214 	gpwrdn &= ~GPWRDN_RESTORE;
5215 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5216 	udelay(10);
5217 
5218 	if (!rem_wakeup) {
5219 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5220 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5221 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5222 	}
5223 
5224 	/* Restore GUSBCFG, DCFG and DCTL */
5225 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5226 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5227 	dwc2_writel(hsotg, dr->dctl, DCTL);
5228 
5229 	/* De-assert Wakeup Logic */
5230 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5231 	gpwrdn &= ~GPWRDN_PMUACTV;
5232 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5233 
5234 	if (rem_wakeup) {
5235 		udelay(10);
5236 		/* Start Remote Wakeup Signaling */
5237 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5238 	} else {
5239 		udelay(50);
5240 		/* Set Device programming done bit */
5241 		dctl = dwc2_readl(hsotg, DCTL);
5242 		dctl |= DCTL_PWRONPRGDONE;
5243 		dwc2_writel(hsotg, dctl, DCTL);
5244 	}
5245 	/* Wait for interrupts which must be cleared */
5246 	mdelay(2);
5247 	/* Clear all pending interupts */
5248 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5249 
5250 	/* Restore global registers */
5251 	ret = dwc2_restore_global_registers(hsotg);
5252 	if (ret) {
5253 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5254 			__func__);
5255 		return ret;
5256 	}
5257 
5258 	/* Restore device registers */
5259 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5260 	if (ret) {
5261 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5262 			__func__);
5263 		return ret;
5264 	}
5265 
5266 	if (rem_wakeup) {
5267 		mdelay(10);
5268 		dctl = dwc2_readl(hsotg, DCTL);
5269 		dctl &= ~DCTL_RMTWKUPSIG;
5270 		dwc2_writel(hsotg, dctl, DCTL);
5271 	}
5272 
5273 	hsotg->hibernated = 0;
5274 	hsotg->lx_state = DWC2_L0;
5275 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5276 
5277 	return ret;
5278 }
5279