xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 
264 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
265 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
266 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
267 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
268 	}
269 }
270 
271 /**
272  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
273  * TX FIFOs
274  *
275  * @hsotg: Programming view of the DWC_otg controller
276  */
277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
278 {
279 	int tx_fifo_count;
280 	int tx_fifo_depth;
281 
282 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
283 
284 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
285 
286 	if (!tx_fifo_count)
287 		return tx_fifo_depth;
288 	else
289 		return tx_fifo_depth / tx_fifo_count;
290 }
291 
292 /**
293  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
294  * @hsotg: The device instance.
295  */
296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
297 {
298 	unsigned int ep;
299 	unsigned int addr;
300 	int timeout;
301 
302 	u32 val;
303 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
304 
305 	/* Reset fifo map if not correctly cleared during previous session */
306 	WARN_ON(hsotg->fifo_map);
307 	hsotg->fifo_map = 0;
308 
309 	/* set RX/NPTX FIFO sizes */
310 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
311 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
312 		    FIFOSIZE_STARTADDR_SHIFT) |
313 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
314 		    GNPTXFSIZ);
315 
316 	/*
317 	 * arange all the rest of the TX FIFOs, as some versions of this
318 	 * block have overlapping default addresses. This also ensures
319 	 * that if the settings have been changed, then they are set to
320 	 * known values.
321 	 */
322 
323 	/* start at the end of the GNPTXFSIZ, rounded up */
324 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
325 
326 	/*
327 	 * Configure fifos sizes from provided configuration and assign
328 	 * them to endpoints dynamically according to maxpacket size value of
329 	 * given endpoint.
330 	 */
331 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
332 		if (!txfsz[ep])
333 			continue;
334 		val = addr;
335 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
336 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
337 			  "insufficient fifo memory");
338 		addr += txfsz[ep];
339 
340 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
341 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
342 	}
343 
344 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
345 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
346 		    GDFIFOCFG);
347 	/*
348 	 * according to p428 of the design guide, we need to ensure that
349 	 * all fifos are flushed before continuing
350 	 */
351 
352 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
353 	       GRSTCTL_RXFFLSH, GRSTCTL);
354 
355 	/* wait until the fifos are both flushed */
356 	timeout = 100;
357 	while (1) {
358 		val = dwc2_readl(hsotg, GRSTCTL);
359 
360 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
361 			break;
362 
363 		if (--timeout == 0) {
364 			dev_err(hsotg->dev,
365 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
366 				__func__, val);
367 			break;
368 		}
369 
370 		udelay(1);
371 	}
372 
373 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
374 }
375 
376 /**
377  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
378  * @ep: USB endpoint to allocate request for.
379  * @flags: Allocation flags
380  *
381  * Allocate a new USB request structure appropriate for the specified endpoint
382  */
383 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
384 						       gfp_t flags)
385 {
386 	struct dwc2_hsotg_req *req;
387 
388 	req = kzalloc(sizeof(*req), flags);
389 	if (!req)
390 		return NULL;
391 
392 	INIT_LIST_HEAD(&req->queue);
393 
394 	return &req->req;
395 }
396 
397 /**
398  * is_ep_periodic - return true if the endpoint is in periodic mode.
399  * @hs_ep: The endpoint to query.
400  *
401  * Returns true if the endpoint is in periodic mode, meaning it is being
402  * used for an Interrupt or ISO transfer.
403  */
404 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
405 {
406 	return hs_ep->periodic;
407 }
408 
409 /**
410  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
411  * @hsotg: The device state.
412  * @hs_ep: The endpoint for the request
413  * @hs_req: The request being processed.
414  *
415  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
416  * of a request to ensure the buffer is ready for access by the caller.
417  */
418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
419 				 struct dwc2_hsotg_ep *hs_ep,
420 				struct dwc2_hsotg_req *hs_req)
421 {
422 	struct usb_request *req = &hs_req->req;
423 
424 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
425 }
426 
427 /*
428  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
429  * for Control endpoint
430  * @hsotg: The device state.
431  *
432  * This function will allocate 4 descriptor chains for EP 0: 2 for
433  * Setup stage, per one for IN and OUT data/status transactions.
434  */
435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
436 {
437 	hsotg->setup_desc[0] =
438 		dmam_alloc_coherent(hsotg->dev,
439 				    sizeof(struct dwc2_dma_desc),
440 				    &hsotg->setup_desc_dma[0],
441 				    GFP_KERNEL);
442 	if (!hsotg->setup_desc[0])
443 		goto fail;
444 
445 	hsotg->setup_desc[1] =
446 		dmam_alloc_coherent(hsotg->dev,
447 				    sizeof(struct dwc2_dma_desc),
448 				    &hsotg->setup_desc_dma[1],
449 				    GFP_KERNEL);
450 	if (!hsotg->setup_desc[1])
451 		goto fail;
452 
453 	hsotg->ctrl_in_desc =
454 		dmam_alloc_coherent(hsotg->dev,
455 				    sizeof(struct dwc2_dma_desc),
456 				    &hsotg->ctrl_in_desc_dma,
457 				    GFP_KERNEL);
458 	if (!hsotg->ctrl_in_desc)
459 		goto fail;
460 
461 	hsotg->ctrl_out_desc =
462 		dmam_alloc_coherent(hsotg->dev,
463 				    sizeof(struct dwc2_dma_desc),
464 				    &hsotg->ctrl_out_desc_dma,
465 				    GFP_KERNEL);
466 	if (!hsotg->ctrl_out_desc)
467 		goto fail;
468 
469 	return 0;
470 
471 fail:
472 	return -ENOMEM;
473 }
474 
475 /**
476  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
477  * @hsotg: The controller state.
478  * @hs_ep: The endpoint we're going to write for.
479  * @hs_req: The request to write data for.
480  *
481  * This is called when the TxFIFO has some space in it to hold a new
482  * transmission and we have something to give it. The actual setup of
483  * the data size is done elsewhere, so all we have to do is to actually
484  * write the data.
485  *
486  * The return value is zero if there is more space (or nothing was done)
487  * otherwise -ENOSPC is returned if the FIFO space was used up.
488  *
489  * This routine is only needed for PIO
490  */
491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
492 				 struct dwc2_hsotg_ep *hs_ep,
493 				struct dwc2_hsotg_req *hs_req)
494 {
495 	bool periodic = is_ep_periodic(hs_ep);
496 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
497 	int buf_pos = hs_req->req.actual;
498 	int to_write = hs_ep->size_loaded;
499 	void *data;
500 	int can_write;
501 	int pkt_round;
502 	int max_transfer;
503 
504 	to_write -= (buf_pos - hs_ep->last_load);
505 
506 	/* if there's nothing to write, get out early */
507 	if (to_write == 0)
508 		return 0;
509 
510 	if (periodic && !hsotg->dedicated_fifos) {
511 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
512 		int size_left;
513 		int size_done;
514 
515 		/*
516 		 * work out how much data was loaded so we can calculate
517 		 * how much data is left in the fifo.
518 		 */
519 
520 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
521 
522 		/*
523 		 * if shared fifo, we cannot write anything until the
524 		 * previous data has been completely sent.
525 		 */
526 		if (hs_ep->fifo_load != 0) {
527 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
528 			return -ENOSPC;
529 		}
530 
531 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
532 			__func__, size_left,
533 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
534 
535 		/* how much of the data has moved */
536 		size_done = hs_ep->size_loaded - size_left;
537 
538 		/* how much data is left in the fifo */
539 		can_write = hs_ep->fifo_load - size_done;
540 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
541 			__func__, can_write);
542 
543 		can_write = hs_ep->fifo_size - can_write;
544 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
545 			__func__, can_write);
546 
547 		if (can_write <= 0) {
548 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
549 			return -ENOSPC;
550 		}
551 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
552 		can_write = dwc2_readl(hsotg,
553 				       DTXFSTS(hs_ep->fifo_index));
554 
555 		can_write &= 0xffff;
556 		can_write *= 4;
557 	} else {
558 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
559 			dev_dbg(hsotg->dev,
560 				"%s: no queue slots available (0x%08x)\n",
561 				__func__, gnptxsts);
562 
563 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
564 			return -ENOSPC;
565 		}
566 
567 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
568 		can_write *= 4;	/* fifo size is in 32bit quantities. */
569 	}
570 
571 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
572 
573 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
574 		__func__, gnptxsts, can_write, to_write, max_transfer);
575 
576 	/*
577 	 * limit to 512 bytes of data, it seems at least on the non-periodic
578 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
579 	 * fragment of the end of the transfer in it.
580 	 */
581 	if (can_write > 512 && !periodic)
582 		can_write = 512;
583 
584 	/*
585 	 * limit the write to one max-packet size worth of data, but allow
586 	 * the transfer to return that it did not run out of fifo space
587 	 * doing it.
588 	 */
589 	if (to_write > max_transfer) {
590 		to_write = max_transfer;
591 
592 		/* it's needed only when we do not use dedicated fifos */
593 		if (!hsotg->dedicated_fifos)
594 			dwc2_hsotg_en_gsint(hsotg,
595 					    periodic ? GINTSTS_PTXFEMP :
596 					   GINTSTS_NPTXFEMP);
597 	}
598 
599 	/* see if we can write data */
600 
601 	if (to_write > can_write) {
602 		to_write = can_write;
603 		pkt_round = to_write % max_transfer;
604 
605 		/*
606 		 * Round the write down to an
607 		 * exact number of packets.
608 		 *
609 		 * Note, we do not currently check to see if we can ever
610 		 * write a full packet or not to the FIFO.
611 		 */
612 
613 		if (pkt_round)
614 			to_write -= pkt_round;
615 
616 		/*
617 		 * enable correct FIFO interrupt to alert us when there
618 		 * is more room left.
619 		 */
620 
621 		/* it's needed only when we do not use dedicated fifos */
622 		if (!hsotg->dedicated_fifos)
623 			dwc2_hsotg_en_gsint(hsotg,
624 					    periodic ? GINTSTS_PTXFEMP :
625 					   GINTSTS_NPTXFEMP);
626 	}
627 
628 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
629 		to_write, hs_req->req.length, can_write, buf_pos);
630 
631 	if (to_write <= 0)
632 		return -ENOSPC;
633 
634 	hs_req->req.actual = buf_pos + to_write;
635 	hs_ep->total_data += to_write;
636 
637 	if (periodic)
638 		hs_ep->fifo_load += to_write;
639 
640 	to_write = DIV_ROUND_UP(to_write, 4);
641 	data = hs_req->req.buf + buf_pos;
642 
643 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
644 
645 	return (to_write >= can_write) ? -ENOSPC : 0;
646 }
647 
648 /**
649  * get_ep_limit - get the maximum data legnth for this endpoint
650  * @hs_ep: The endpoint
651  *
652  * Return the maximum data that can be queued in one go on a given endpoint
653  * so that transfers that are too long can be split.
654  */
655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
656 {
657 	int index = hs_ep->index;
658 	unsigned int maxsize;
659 	unsigned int maxpkt;
660 
661 	if (index != 0) {
662 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
663 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
664 	} else {
665 		maxsize = 64 + 64;
666 		if (hs_ep->dir_in)
667 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
668 		else
669 			maxpkt = 2;
670 	}
671 
672 	/* we made the constant loading easier above by using +1 */
673 	maxpkt--;
674 	maxsize--;
675 
676 	/*
677 	 * constrain by packet count if maxpkts*pktsize is greater
678 	 * than the length register size.
679 	 */
680 
681 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
682 		maxsize = maxpkt * hs_ep->ep.maxpacket;
683 
684 	return maxsize;
685 }
686 
687 /**
688  * dwc2_hsotg_read_frameno - read current frame number
689  * @hsotg: The device instance
690  *
691  * Return the current frame number
692  */
693 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
694 {
695 	u32 dsts;
696 
697 	dsts = dwc2_readl(hsotg, DSTS);
698 	dsts &= DSTS_SOFFN_MASK;
699 	dsts >>= DSTS_SOFFN_SHIFT;
700 
701 	return dsts;
702 }
703 
704 /**
705  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
706  * DMA descriptor chain prepared for specific endpoint
707  * @hs_ep: The endpoint
708  *
709  * Return the maximum data that can be queued in one go on a given endpoint
710  * depending on its descriptor chain capacity so that transfers that
711  * are too long can be split.
712  */
713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
714 {
715 	int is_isoc = hs_ep->isochronous;
716 	unsigned int maxsize;
717 
718 	if (is_isoc)
719 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
720 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
721 					   MAX_DMA_DESC_NUM_HS_ISOC;
722 	else
723 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
724 
725 	return maxsize;
726 }
727 
728 /*
729  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
730  * @hs_ep: The endpoint
731  * @mask: RX/TX bytes mask to be defined
732  *
733  * Returns maximum data payload for one descriptor after analyzing endpoint
734  * characteristics.
735  * DMA descriptor transfer bytes limit depends on EP type:
736  * Control out - MPS,
737  * Isochronous - descriptor rx/tx bytes bitfield limit,
738  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
739  * have concatenations from various descriptors within one packet.
740  *
741  * Selects corresponding mask for RX/TX bytes as well.
742  */
743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
744 {
745 	u32 mps = hs_ep->ep.maxpacket;
746 	int dir_in = hs_ep->dir_in;
747 	u32 desc_size = 0;
748 
749 	if (!hs_ep->index && !dir_in) {
750 		desc_size = mps;
751 		*mask = DEV_DMA_NBYTES_MASK;
752 	} else if (hs_ep->isochronous) {
753 		if (dir_in) {
754 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
755 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
756 		} else {
757 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
758 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
759 		}
760 	} else {
761 		desc_size = DEV_DMA_NBYTES_LIMIT;
762 		*mask = DEV_DMA_NBYTES_MASK;
763 
764 		/* Round down desc_size to be mps multiple */
765 		desc_size -= desc_size % mps;
766 	}
767 
768 	return desc_size;
769 }
770 
771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
772 						 struct dwc2_dma_desc **desc,
773 						 dma_addr_t dma_buff,
774 						 unsigned int len,
775 						 bool true_last)
776 {
777 	int dir_in = hs_ep->dir_in;
778 	u32 mps = hs_ep->ep.maxpacket;
779 	u32 maxsize = 0;
780 	u32 offset = 0;
781 	u32 mask = 0;
782 	int i;
783 
784 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
785 
786 	hs_ep->desc_count = (len / maxsize) +
787 				((len % maxsize) ? 1 : 0);
788 	if (len == 0)
789 		hs_ep->desc_count = 1;
790 
791 	for (i = 0; i < hs_ep->desc_count; ++i) {
792 		(*desc)->status = 0;
793 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
794 				 << DEV_DMA_BUFF_STS_SHIFT);
795 
796 		if (len > maxsize) {
797 			if (!hs_ep->index && !dir_in)
798 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
799 
800 			(*desc)->status |=
801 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
802 			(*desc)->buf = dma_buff + offset;
803 
804 			len -= maxsize;
805 			offset += maxsize;
806 		} else {
807 			if (true_last)
808 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
809 
810 			if (dir_in)
811 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
812 					((hs_ep->send_zlp && true_last) ?
813 					DEV_DMA_SHORT : 0);
814 
815 			(*desc)->status |=
816 				len << DEV_DMA_NBYTES_SHIFT & mask;
817 			(*desc)->buf = dma_buff + offset;
818 		}
819 
820 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
821 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
822 				 << DEV_DMA_BUFF_STS_SHIFT);
823 		(*desc)++;
824 	}
825 }
826 
827 /*
828  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
829  * @hs_ep: The endpoint
830  * @ureq: Request to transfer
831  * @offset: offset in bytes
832  * @len: Length of the transfer
833  *
834  * This function will iterate over descriptor chain and fill its entries
835  * with corresponding information based on transfer data.
836  */
837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
838 						 dma_addr_t dma_buff,
839 						 unsigned int len)
840 {
841 	struct usb_request *ureq = NULL;
842 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
843 	struct scatterlist *sg;
844 	int i;
845 	u8 desc_count = 0;
846 
847 	if (hs_ep->req)
848 		ureq = &hs_ep->req->req;
849 
850 	/* non-DMA sg buffer */
851 	if (!ureq || !ureq->num_sgs) {
852 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
853 			dma_buff, len, true);
854 		return;
855 	}
856 
857 	/* DMA sg buffer */
858 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
859 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
860 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
861 			sg_is_last(sg));
862 		desc_count += hs_ep->desc_count;
863 	}
864 
865 	hs_ep->desc_count = desc_count;
866 }
867 
868 /*
869  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
870  * @hs_ep: The isochronous endpoint.
871  * @dma_buff: usb requests dma buffer.
872  * @len: usb request transfer length.
873  *
874  * Fills next free descriptor with the data of the arrived usb request,
875  * frame info, sets Last and IOC bits increments next_desc. If filled
876  * descriptor is not the first one, removes L bit from the previous descriptor
877  * status.
878  */
879 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
880 				      dma_addr_t dma_buff, unsigned int len)
881 {
882 	struct dwc2_dma_desc *desc;
883 	struct dwc2_hsotg *hsotg = hs_ep->parent;
884 	u32 index;
885 	u32 maxsize = 0;
886 	u32 mask = 0;
887 	u8 pid = 0;
888 
889 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
890 
891 	index = hs_ep->next_desc;
892 	desc = &hs_ep->desc_list[index];
893 
894 	/* Check if descriptor chain full */
895 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
896 	    DEV_DMA_BUFF_STS_HREADY) {
897 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
898 		return 1;
899 	}
900 
901 	/* Clear L bit of previous desc if more than one entries in the chain */
902 	if (hs_ep->next_desc)
903 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
904 
905 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
906 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
907 
908 	desc->status = 0;
909 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
910 
911 	desc->buf = dma_buff;
912 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
913 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
914 
915 	if (hs_ep->dir_in) {
916 		if (len)
917 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
918 		else
919 			pid = 1;
920 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
921 				 DEV_DMA_ISOC_PID_MASK) |
922 				((len % hs_ep->ep.maxpacket) ?
923 				 DEV_DMA_SHORT : 0) |
924 				((hs_ep->target_frame <<
925 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
926 				 DEV_DMA_ISOC_FRNUM_MASK);
927 	}
928 
929 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
930 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
931 
932 	/* Increment frame number by interval for IN */
933 	if (hs_ep->dir_in)
934 		dwc2_gadget_incr_frame_num(hs_ep);
935 
936 	/* Update index of last configured entry in the chain */
937 	hs_ep->next_desc++;
938 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
939 		hs_ep->next_desc = 0;
940 
941 	return 0;
942 }
943 
944 /*
945  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
946  * @hs_ep: The isochronous endpoint.
947  *
948  * Prepare descriptor chain for isochronous endpoints. Afterwards
949  * write DMA address to HW and enable the endpoint.
950  */
951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
952 {
953 	struct dwc2_hsotg *hsotg = hs_ep->parent;
954 	struct dwc2_hsotg_req *hs_req, *treq;
955 	int index = hs_ep->index;
956 	int ret;
957 	int i;
958 	u32 dma_reg;
959 	u32 depctl;
960 	u32 ctrl;
961 	struct dwc2_dma_desc *desc;
962 
963 	if (list_empty(&hs_ep->queue)) {
964 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
965 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
966 		return;
967 	}
968 
969 	/* Initialize descriptor chain by Host Busy status */
970 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
971 		desc = &hs_ep->desc_list[i];
972 		desc->status = 0;
973 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
974 				    << DEV_DMA_BUFF_STS_SHIFT);
975 	}
976 
977 	hs_ep->next_desc = 0;
978 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
979 		dma_addr_t dma_addr = hs_req->req.dma;
980 
981 		if (hs_req->req.num_sgs) {
982 			WARN_ON(hs_req->req.num_sgs > 1);
983 			dma_addr = sg_dma_address(hs_req->req.sg);
984 		}
985 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
986 						 hs_req->req.length);
987 		if (ret)
988 			break;
989 	}
990 
991 	hs_ep->compl_desc = 0;
992 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
993 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
994 
995 	/* write descriptor chain address to control register */
996 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
997 
998 	ctrl = dwc2_readl(hsotg, depctl);
999 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1000 	dwc2_writel(hsotg, ctrl, depctl);
1001 }
1002 
1003 /**
1004  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1005  * @hsotg: The controller state.
1006  * @hs_ep: The endpoint to process a request for
1007  * @hs_req: The request to start.
1008  * @continuing: True if we are doing more for the current request.
1009  *
1010  * Start the given request running by setting the endpoint registers
1011  * appropriately, and writing any data to the FIFOs.
1012  */
1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1014 				 struct dwc2_hsotg_ep *hs_ep,
1015 				struct dwc2_hsotg_req *hs_req,
1016 				bool continuing)
1017 {
1018 	struct usb_request *ureq = &hs_req->req;
1019 	int index = hs_ep->index;
1020 	int dir_in = hs_ep->dir_in;
1021 	u32 epctrl_reg;
1022 	u32 epsize_reg;
1023 	u32 epsize;
1024 	u32 ctrl;
1025 	unsigned int length;
1026 	unsigned int packets;
1027 	unsigned int maxreq;
1028 	unsigned int dma_reg;
1029 
1030 	if (index != 0) {
1031 		if (hs_ep->req && !continuing) {
1032 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1033 			WARN_ON(1);
1034 			return;
1035 		} else if (hs_ep->req != hs_req && continuing) {
1036 			dev_err(hsotg->dev,
1037 				"%s: continue different req\n", __func__);
1038 			WARN_ON(1);
1039 			return;
1040 		}
1041 	}
1042 
1043 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1044 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1045 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1046 
1047 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1048 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1049 		hs_ep->dir_in ? "in" : "out");
1050 
1051 	/* If endpoint is stalled, we will restart request later */
1052 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1053 
1054 	if (index && ctrl & DXEPCTL_STALL) {
1055 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1056 		return;
1057 	}
1058 
1059 	length = ureq->length - ureq->actual;
1060 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1061 		ureq->length, ureq->actual);
1062 
1063 	if (!using_desc_dma(hsotg))
1064 		maxreq = get_ep_limit(hs_ep);
1065 	else
1066 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1067 
1068 	if (length > maxreq) {
1069 		int round = maxreq % hs_ep->ep.maxpacket;
1070 
1071 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1072 			__func__, length, maxreq, round);
1073 
1074 		/* round down to multiple of packets */
1075 		if (round)
1076 			maxreq -= round;
1077 
1078 		length = maxreq;
1079 	}
1080 
1081 	if (length)
1082 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1083 	else
1084 		packets = 1;	/* send one packet if length is zero. */
1085 
1086 	if (dir_in && index != 0)
1087 		if (hs_ep->isochronous)
1088 			epsize = DXEPTSIZ_MC(packets);
1089 		else
1090 			epsize = DXEPTSIZ_MC(1);
1091 	else
1092 		epsize = 0;
1093 
1094 	/*
1095 	 * zero length packet should be programmed on its own and should not
1096 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1097 	 */
1098 	if (dir_in && ureq->zero && !continuing) {
1099 		/* Test if zlp is actually required. */
1100 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1101 		    !(ureq->length % hs_ep->ep.maxpacket))
1102 			hs_ep->send_zlp = 1;
1103 	}
1104 
1105 	epsize |= DXEPTSIZ_PKTCNT(packets);
1106 	epsize |= DXEPTSIZ_XFERSIZE(length);
1107 
1108 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1109 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1110 
1111 	/* store the request as the current one we're doing */
1112 	hs_ep->req = hs_req;
1113 
1114 	if (using_desc_dma(hsotg)) {
1115 		u32 offset = 0;
1116 		u32 mps = hs_ep->ep.maxpacket;
1117 
1118 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1119 		if (!dir_in) {
1120 			if (!index)
1121 				length = mps;
1122 			else if (length % mps)
1123 				length += (mps - (length % mps));
1124 		}
1125 
1126 		/*
1127 		 * If more data to send, adjust DMA for EP0 out data stage.
1128 		 * ureq->dma stays unchanged, hence increment it by already
1129 		 * passed passed data count before starting new transaction.
1130 		 */
1131 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1132 		    continuing)
1133 			offset = ureq->actual;
1134 
1135 		/* Fill DDMA chain entries */
1136 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1137 						     length);
1138 
1139 		/* write descriptor chain address to control register */
1140 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1141 
1142 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1143 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1144 	} else {
1145 		/* write size / packets */
1146 		dwc2_writel(hsotg, epsize, epsize_reg);
1147 
1148 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1149 			/*
1150 			 * write DMA address to control register, buffer
1151 			 * already synced by dwc2_hsotg_ep_queue().
1152 			 */
1153 
1154 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1155 
1156 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1157 				__func__, &ureq->dma, dma_reg);
1158 		}
1159 	}
1160 
1161 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1162 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1163 		dwc2_gadget_incr_frame_num(hs_ep);
1164 
1165 		if (hs_ep->target_frame & 0x1)
1166 			ctrl |= DXEPCTL_SETODDFR;
1167 		else
1168 			ctrl |= DXEPCTL_SETEVENFR;
1169 	}
1170 
1171 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1172 
1173 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1174 
1175 	/* For Setup request do not clear NAK */
1176 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1177 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1178 
1179 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1180 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1181 
1182 	/*
1183 	 * set these, it seems that DMA support increments past the end
1184 	 * of the packet buffer so we need to calculate the length from
1185 	 * this information.
1186 	 */
1187 	hs_ep->size_loaded = length;
1188 	hs_ep->last_load = ureq->actual;
1189 
1190 	if (dir_in && !using_dma(hsotg)) {
1191 		/* set these anyway, we may need them for non-periodic in */
1192 		hs_ep->fifo_load = 0;
1193 
1194 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1195 	}
1196 
1197 	/*
1198 	 * Note, trying to clear the NAK here causes problems with transmit
1199 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1200 	 */
1201 
1202 	/* check ep is enabled */
1203 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1204 		dev_dbg(hsotg->dev,
1205 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1206 			 index, dwc2_readl(hsotg, epctrl_reg));
1207 
1208 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1209 		__func__, dwc2_readl(hsotg, epctrl_reg));
1210 
1211 	/* enable ep interrupts */
1212 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1213 }
1214 
1215 /**
1216  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1217  * @hsotg: The device state.
1218  * @hs_ep: The endpoint the request is on.
1219  * @req: The request being processed.
1220  *
1221  * We've been asked to queue a request, so ensure that the memory buffer
1222  * is correctly setup for DMA. If we've been passed an extant DMA address
1223  * then ensure the buffer has been synced to memory. If our buffer has no
1224  * DMA memory, then we map the memory and mark our request to allow us to
1225  * cleanup on completion.
1226  */
1227 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1228 			      struct dwc2_hsotg_ep *hs_ep,
1229 			     struct usb_request *req)
1230 {
1231 	int ret;
1232 
1233 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1234 	if (ret)
1235 		goto dma_error;
1236 
1237 	return 0;
1238 
1239 dma_error:
1240 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1241 		__func__, req->buf, req->length);
1242 
1243 	return -EIO;
1244 }
1245 
1246 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1247 						 struct dwc2_hsotg_ep *hs_ep,
1248 						 struct dwc2_hsotg_req *hs_req)
1249 {
1250 	void *req_buf = hs_req->req.buf;
1251 
1252 	/* If dma is not being used or buffer is aligned */
1253 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1254 		return 0;
1255 
1256 	WARN_ON(hs_req->saved_req_buf);
1257 
1258 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1259 		hs_ep->ep.name, req_buf, hs_req->req.length);
1260 
1261 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1262 	if (!hs_req->req.buf) {
1263 		hs_req->req.buf = req_buf;
1264 		dev_err(hsotg->dev,
1265 			"%s: unable to allocate memory for bounce buffer\n",
1266 			__func__);
1267 		return -ENOMEM;
1268 	}
1269 
1270 	/* Save actual buffer */
1271 	hs_req->saved_req_buf = req_buf;
1272 
1273 	if (hs_ep->dir_in)
1274 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1275 	return 0;
1276 }
1277 
1278 static void
1279 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1280 					 struct dwc2_hsotg_ep *hs_ep,
1281 					 struct dwc2_hsotg_req *hs_req)
1282 {
1283 	/* If dma is not being used or buffer was aligned */
1284 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1285 		return;
1286 
1287 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1288 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1289 
1290 	/* Copy data from bounce buffer on successful out transfer */
1291 	if (!hs_ep->dir_in && !hs_req->req.status)
1292 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1293 		       hs_req->req.actual);
1294 
1295 	/* Free bounce buffer */
1296 	kfree(hs_req->req.buf);
1297 
1298 	hs_req->req.buf = hs_req->saved_req_buf;
1299 	hs_req->saved_req_buf = NULL;
1300 }
1301 
1302 /**
1303  * dwc2_gadget_target_frame_elapsed - Checks target frame
1304  * @hs_ep: The driver endpoint to check
1305  *
1306  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1307  * corresponding transfer.
1308  */
1309 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1310 {
1311 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1312 	u32 target_frame = hs_ep->target_frame;
1313 	u32 current_frame = hsotg->frame_number;
1314 	bool frame_overrun = hs_ep->frame_overrun;
1315 
1316 	if (!frame_overrun && current_frame >= target_frame)
1317 		return true;
1318 
1319 	if (frame_overrun && current_frame >= target_frame &&
1320 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1321 		return true;
1322 
1323 	return false;
1324 }
1325 
1326 /*
1327  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1328  * @hsotg: The driver state
1329  * @hs_ep: the ep descriptor chain is for
1330  *
1331  * Called to update EP0 structure's pointers depend on stage of
1332  * control transfer.
1333  */
1334 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1335 					  struct dwc2_hsotg_ep *hs_ep)
1336 {
1337 	switch (hsotg->ep0_state) {
1338 	case DWC2_EP0_SETUP:
1339 	case DWC2_EP0_STATUS_OUT:
1340 		hs_ep->desc_list = hsotg->setup_desc[0];
1341 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1342 		break;
1343 	case DWC2_EP0_DATA_IN:
1344 	case DWC2_EP0_STATUS_IN:
1345 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1346 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1347 		break;
1348 	case DWC2_EP0_DATA_OUT:
1349 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1350 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1351 		break;
1352 	default:
1353 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1354 			hsotg->ep0_state);
1355 		return -EINVAL;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1362 			       gfp_t gfp_flags)
1363 {
1364 	struct dwc2_hsotg_req *hs_req = our_req(req);
1365 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366 	struct dwc2_hsotg *hs = hs_ep->parent;
1367 	bool first;
1368 	int ret;
1369 	u32 maxsize = 0;
1370 	u32 mask = 0;
1371 
1372 
1373 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1374 		ep->name, req, req->length, req->buf, req->no_interrupt,
1375 		req->zero, req->short_not_ok);
1376 
1377 	/* Prevent new request submission when controller is suspended */
1378 	if (hs->lx_state != DWC2_L0) {
1379 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1380 			__func__);
1381 		return -EAGAIN;
1382 	}
1383 
1384 	/* initialise status of the request */
1385 	INIT_LIST_HEAD(&hs_req->queue);
1386 	req->actual = 0;
1387 	req->status = -EINPROGRESS;
1388 
1389 	/* Don't queue ISOC request if length greater than mps*mc */
1390 	if (hs_ep->isochronous &&
1391 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1392 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1393 		return -EINVAL;
1394 	}
1395 
1396 	/* In DDMA mode for ISOC's don't queue request if length greater
1397 	 * than descriptor limits.
1398 	 */
1399 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1400 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1401 		if (hs_ep->dir_in && req->length > maxsize) {
1402 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1403 				req->length, maxsize);
1404 			return -EINVAL;
1405 		}
1406 
1407 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1408 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1409 				req->length, hs_ep->ep.maxpacket);
1410 			return -EINVAL;
1411 		}
1412 	}
1413 
1414 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1415 	if (ret)
1416 		return ret;
1417 
1418 	/* if we're using DMA, sync the buffers as necessary */
1419 	if (using_dma(hs)) {
1420 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1421 		if (ret)
1422 			return ret;
1423 	}
1424 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1425 	if (using_desc_dma(hs) && !hs_ep->index) {
1426 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1427 		if (ret)
1428 			return ret;
1429 	}
1430 
1431 	first = list_empty(&hs_ep->queue);
1432 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1433 
1434 	/*
1435 	 * Handle DDMA isochronous transfers separately - just add new entry
1436 	 * to the descriptor chain.
1437 	 * Transfer will be started once SW gets either one of NAK or
1438 	 * OutTknEpDis interrupts.
1439 	 */
1440 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1441 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1442 			dma_addr_t dma_addr = hs_req->req.dma;
1443 
1444 			if (hs_req->req.num_sgs) {
1445 				WARN_ON(hs_req->req.num_sgs > 1);
1446 				dma_addr = sg_dma_address(hs_req->req.sg);
1447 			}
1448 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1449 						   hs_req->req.length);
1450 		}
1451 		return 0;
1452 	}
1453 
1454 	/* Change EP direction if status phase request is after data out */
1455 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1456 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1457 		hs_ep->dir_in = 1;
1458 
1459 	if (first) {
1460 		if (!hs_ep->isochronous) {
1461 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1462 			return 0;
1463 		}
1464 
1465 		/* Update current frame number value. */
1466 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1467 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1468 			dwc2_gadget_incr_frame_num(hs_ep);
1469 			/* Update current frame number value once more as it
1470 			 * changes here.
1471 			 */
1472 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1473 		}
1474 
1475 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1476 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1477 	}
1478 	return 0;
1479 }
1480 
1481 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1482 				    gfp_t gfp_flags)
1483 {
1484 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1485 	struct dwc2_hsotg *hs = hs_ep->parent;
1486 	unsigned long flags = 0;
1487 	int ret = 0;
1488 
1489 	spin_lock_irqsave(&hs->lock, flags);
1490 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1491 	spin_unlock_irqrestore(&hs->lock, flags);
1492 
1493 	return ret;
1494 }
1495 
1496 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1497 				       struct usb_request *req)
1498 {
1499 	struct dwc2_hsotg_req *hs_req = our_req(req);
1500 
1501 	kfree(hs_req);
1502 }
1503 
1504 /**
1505  * dwc2_hsotg_complete_oursetup - setup completion callback
1506  * @ep: The endpoint the request was on.
1507  * @req: The request completed.
1508  *
1509  * Called on completion of any requests the driver itself
1510  * submitted that need cleaning up.
1511  */
1512 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1513 					 struct usb_request *req)
1514 {
1515 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1516 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1517 
1518 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1519 
1520 	dwc2_hsotg_ep_free_request(ep, req);
1521 }
1522 
1523 /**
1524  * ep_from_windex - convert control wIndex value to endpoint
1525  * @hsotg: The driver state.
1526  * @windex: The control request wIndex field (in host order).
1527  *
1528  * Convert the given wIndex into a pointer to an driver endpoint
1529  * structure, or return NULL if it is not a valid endpoint.
1530  */
1531 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1532 					    u32 windex)
1533 {
1534 	struct dwc2_hsotg_ep *ep;
1535 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1536 	int idx = windex & 0x7F;
1537 
1538 	if (windex >= 0x100)
1539 		return NULL;
1540 
1541 	if (idx > hsotg->num_of_eps)
1542 		return NULL;
1543 
1544 	ep = index_to_ep(hsotg, idx, dir);
1545 
1546 	if (idx && ep->dir_in != dir)
1547 		return NULL;
1548 
1549 	return ep;
1550 }
1551 
1552 /**
1553  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1554  * @hsotg: The driver state.
1555  * @testmode: requested usb test mode
1556  * Enable usb Test Mode requested by the Host.
1557  */
1558 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1559 {
1560 	int dctl = dwc2_readl(hsotg, DCTL);
1561 
1562 	dctl &= ~DCTL_TSTCTL_MASK;
1563 	switch (testmode) {
1564 	case TEST_J:
1565 	case TEST_K:
1566 	case TEST_SE0_NAK:
1567 	case TEST_PACKET:
1568 	case TEST_FORCE_EN:
1569 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1570 		break;
1571 	default:
1572 		return -EINVAL;
1573 	}
1574 	dwc2_writel(hsotg, dctl, DCTL);
1575 	return 0;
1576 }
1577 
1578 /**
1579  * dwc2_hsotg_send_reply - send reply to control request
1580  * @hsotg: The device state
1581  * @ep: Endpoint 0
1582  * @buff: Buffer for request
1583  * @length: Length of reply.
1584  *
1585  * Create a request and queue it on the given endpoint. This is useful as
1586  * an internal method of sending replies to certain control requests, etc.
1587  */
1588 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1589 				 struct dwc2_hsotg_ep *ep,
1590 				void *buff,
1591 				int length)
1592 {
1593 	struct usb_request *req;
1594 	int ret;
1595 
1596 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1597 
1598 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1599 	hsotg->ep0_reply = req;
1600 	if (!req) {
1601 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1602 		return -ENOMEM;
1603 	}
1604 
1605 	req->buf = hsotg->ep0_buff;
1606 	req->length = length;
1607 	/*
1608 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1609 	 * STATUS stage.
1610 	 */
1611 	req->zero = 0;
1612 	req->complete = dwc2_hsotg_complete_oursetup;
1613 
1614 	if (length)
1615 		memcpy(req->buf, buff, length);
1616 
1617 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1618 	if (ret) {
1619 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1620 		return ret;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 /**
1627  * dwc2_hsotg_process_req_status - process request GET_STATUS
1628  * @hsotg: The device state
1629  * @ctrl: USB control request
1630  */
1631 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1632 					 struct usb_ctrlrequest *ctrl)
1633 {
1634 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1635 	struct dwc2_hsotg_ep *ep;
1636 	__le16 reply;
1637 	u16 status;
1638 	int ret;
1639 
1640 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1641 
1642 	if (!ep0->dir_in) {
1643 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1644 		return -EINVAL;
1645 	}
1646 
1647 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1648 	case USB_RECIP_DEVICE:
1649 		status = hsotg->gadget.is_selfpowered <<
1650 			 USB_DEVICE_SELF_POWERED;
1651 		status |= hsotg->remote_wakeup_allowed <<
1652 			  USB_DEVICE_REMOTE_WAKEUP;
1653 		reply = cpu_to_le16(status);
1654 		break;
1655 
1656 	case USB_RECIP_INTERFACE:
1657 		/* currently, the data result should be zero */
1658 		reply = cpu_to_le16(0);
1659 		break;
1660 
1661 	case USB_RECIP_ENDPOINT:
1662 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1663 		if (!ep)
1664 			return -ENOENT;
1665 
1666 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1667 		break;
1668 
1669 	default:
1670 		return 0;
1671 	}
1672 
1673 	if (le16_to_cpu(ctrl->wLength) != 2)
1674 		return -EINVAL;
1675 
1676 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1677 	if (ret) {
1678 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1679 		return ret;
1680 	}
1681 
1682 	return 1;
1683 }
1684 
1685 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1686 
1687 /**
1688  * get_ep_head - return the first request on the endpoint
1689  * @hs_ep: The controller endpoint to get
1690  *
1691  * Get the first request on the endpoint.
1692  */
1693 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1694 {
1695 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1696 					queue);
1697 }
1698 
1699 /**
1700  * dwc2_gadget_start_next_request - Starts next request from ep queue
1701  * @hs_ep: Endpoint structure
1702  *
1703  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1704  * in its handler. Hence we need to unmask it here to be able to do
1705  * resynchronization.
1706  */
1707 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1708 {
1709 	u32 mask;
1710 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1711 	int dir_in = hs_ep->dir_in;
1712 	struct dwc2_hsotg_req *hs_req;
1713 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1714 
1715 	if (!list_empty(&hs_ep->queue)) {
1716 		hs_req = get_ep_head(hs_ep);
1717 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1718 		return;
1719 	}
1720 	if (!hs_ep->isochronous)
1721 		return;
1722 
1723 	if (dir_in) {
1724 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1725 			__func__);
1726 	} else {
1727 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1728 			__func__);
1729 		mask = dwc2_readl(hsotg, epmsk_reg);
1730 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1731 		dwc2_writel(hsotg, mask, epmsk_reg);
1732 	}
1733 }
1734 
1735 /**
1736  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1737  * @hsotg: The device state
1738  * @ctrl: USB control request
1739  */
1740 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1741 					  struct usb_ctrlrequest *ctrl)
1742 {
1743 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1744 	struct dwc2_hsotg_req *hs_req;
1745 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1746 	struct dwc2_hsotg_ep *ep;
1747 	int ret;
1748 	bool halted;
1749 	u32 recip;
1750 	u32 wValue;
1751 	u32 wIndex;
1752 
1753 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1754 		__func__, set ? "SET" : "CLEAR");
1755 
1756 	wValue = le16_to_cpu(ctrl->wValue);
1757 	wIndex = le16_to_cpu(ctrl->wIndex);
1758 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1759 
1760 	switch (recip) {
1761 	case USB_RECIP_DEVICE:
1762 		switch (wValue) {
1763 		case USB_DEVICE_REMOTE_WAKEUP:
1764 			if (set)
1765 				hsotg->remote_wakeup_allowed = 1;
1766 			else
1767 				hsotg->remote_wakeup_allowed = 0;
1768 			break;
1769 
1770 		case USB_DEVICE_TEST_MODE:
1771 			if ((wIndex & 0xff) != 0)
1772 				return -EINVAL;
1773 			if (!set)
1774 				return -EINVAL;
1775 
1776 			hsotg->test_mode = wIndex >> 8;
1777 			break;
1778 		default:
1779 			return -ENOENT;
1780 		}
1781 
1782 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1783 		if (ret) {
1784 			dev_err(hsotg->dev,
1785 				"%s: failed to send reply\n", __func__);
1786 			return ret;
1787 		}
1788 		break;
1789 
1790 	case USB_RECIP_ENDPOINT:
1791 		ep = ep_from_windex(hsotg, wIndex);
1792 		if (!ep) {
1793 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1794 				__func__, wIndex);
1795 			return -ENOENT;
1796 		}
1797 
1798 		switch (wValue) {
1799 		case USB_ENDPOINT_HALT:
1800 			halted = ep->halted;
1801 
1802 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1803 
1804 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1805 			if (ret) {
1806 				dev_err(hsotg->dev,
1807 					"%s: failed to send reply\n", __func__);
1808 				return ret;
1809 			}
1810 
1811 			/*
1812 			 * we have to complete all requests for ep if it was
1813 			 * halted, and the halt was cleared by CLEAR_FEATURE
1814 			 */
1815 
1816 			if (!set && halted) {
1817 				/*
1818 				 * If we have request in progress,
1819 				 * then complete it
1820 				 */
1821 				if (ep->req) {
1822 					hs_req = ep->req;
1823 					ep->req = NULL;
1824 					list_del_init(&hs_req->queue);
1825 					if (hs_req->req.complete) {
1826 						spin_unlock(&hsotg->lock);
1827 						usb_gadget_giveback_request(
1828 							&ep->ep, &hs_req->req);
1829 						spin_lock(&hsotg->lock);
1830 					}
1831 				}
1832 
1833 				/* If we have pending request, then start it */
1834 				if (!ep->req)
1835 					dwc2_gadget_start_next_request(ep);
1836 			}
1837 
1838 			break;
1839 
1840 		default:
1841 			return -ENOENT;
1842 		}
1843 		break;
1844 	default:
1845 		return -ENOENT;
1846 	}
1847 	return 1;
1848 }
1849 
1850 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1851 
1852 /**
1853  * dwc2_hsotg_stall_ep0 - stall ep0
1854  * @hsotg: The device state
1855  *
1856  * Set stall for ep0 as response for setup request.
1857  */
1858 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1859 {
1860 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1861 	u32 reg;
1862 	u32 ctrl;
1863 
1864 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1865 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1866 
1867 	/*
1868 	 * DxEPCTL_Stall will be cleared by EP once it has
1869 	 * taken effect, so no need to clear later.
1870 	 */
1871 
1872 	ctrl = dwc2_readl(hsotg, reg);
1873 	ctrl |= DXEPCTL_STALL;
1874 	ctrl |= DXEPCTL_CNAK;
1875 	dwc2_writel(hsotg, ctrl, reg);
1876 
1877 	dev_dbg(hsotg->dev,
1878 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1879 		ctrl, reg, dwc2_readl(hsotg, reg));
1880 
1881 	 /*
1882 	  * complete won't be called, so we enqueue
1883 	  * setup request here
1884 	  */
1885 	 dwc2_hsotg_enqueue_setup(hsotg);
1886 }
1887 
1888 /**
1889  * dwc2_hsotg_process_control - process a control request
1890  * @hsotg: The device state
1891  * @ctrl: The control request received
1892  *
1893  * The controller has received the SETUP phase of a control request, and
1894  * needs to work out what to do next (and whether to pass it on to the
1895  * gadget driver).
1896  */
1897 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1898 				       struct usb_ctrlrequest *ctrl)
1899 {
1900 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1901 	int ret = 0;
1902 	u32 dcfg;
1903 
1904 	dev_dbg(hsotg->dev,
1905 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1906 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1907 		ctrl->wIndex, ctrl->wLength);
1908 
1909 	if (ctrl->wLength == 0) {
1910 		ep0->dir_in = 1;
1911 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1912 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1913 		ep0->dir_in = 1;
1914 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1915 	} else {
1916 		ep0->dir_in = 0;
1917 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1918 	}
1919 
1920 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1921 		switch (ctrl->bRequest) {
1922 		case USB_REQ_SET_ADDRESS:
1923 			hsotg->connected = 1;
1924 			dcfg = dwc2_readl(hsotg, DCFG);
1925 			dcfg &= ~DCFG_DEVADDR_MASK;
1926 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1927 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1928 			dwc2_writel(hsotg, dcfg, DCFG);
1929 
1930 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1931 
1932 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1933 			return;
1934 
1935 		case USB_REQ_GET_STATUS:
1936 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1937 			break;
1938 
1939 		case USB_REQ_CLEAR_FEATURE:
1940 		case USB_REQ_SET_FEATURE:
1941 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1942 			break;
1943 		}
1944 	}
1945 
1946 	/* as a fallback, try delivering it to the driver to deal with */
1947 
1948 	if (ret == 0 && hsotg->driver) {
1949 		spin_unlock(&hsotg->lock);
1950 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1951 		spin_lock(&hsotg->lock);
1952 		if (ret < 0)
1953 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1954 	}
1955 
1956 	hsotg->delayed_status = false;
1957 	if (ret == USB_GADGET_DELAYED_STATUS)
1958 		hsotg->delayed_status = true;
1959 
1960 	/*
1961 	 * the request is either unhandlable, or is not formatted correctly
1962 	 * so respond with a STALL for the status stage to indicate failure.
1963 	 */
1964 
1965 	if (ret < 0)
1966 		dwc2_hsotg_stall_ep0(hsotg);
1967 }
1968 
1969 /**
1970  * dwc2_hsotg_complete_setup - completion of a setup transfer
1971  * @ep: The endpoint the request was on.
1972  * @req: The request completed.
1973  *
1974  * Called on completion of any requests the driver itself submitted for
1975  * EP0 setup packets
1976  */
1977 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1978 				      struct usb_request *req)
1979 {
1980 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1981 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1982 
1983 	if (req->status < 0) {
1984 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1985 		return;
1986 	}
1987 
1988 	spin_lock(&hsotg->lock);
1989 	if (req->actual == 0)
1990 		dwc2_hsotg_enqueue_setup(hsotg);
1991 	else
1992 		dwc2_hsotg_process_control(hsotg, req->buf);
1993 	spin_unlock(&hsotg->lock);
1994 }
1995 
1996 /**
1997  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1998  * @hsotg: The device state.
1999  *
2000  * Enqueue a request on EP0 if necessary to received any SETUP packets
2001  * received from the host.
2002  */
2003 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2004 {
2005 	struct usb_request *req = hsotg->ctrl_req;
2006 	struct dwc2_hsotg_req *hs_req = our_req(req);
2007 	int ret;
2008 
2009 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2010 
2011 	req->zero = 0;
2012 	req->length = 8;
2013 	req->buf = hsotg->ctrl_buff;
2014 	req->complete = dwc2_hsotg_complete_setup;
2015 
2016 	if (!list_empty(&hs_req->queue)) {
2017 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2018 		return;
2019 	}
2020 
2021 	hsotg->eps_out[0]->dir_in = 0;
2022 	hsotg->eps_out[0]->send_zlp = 0;
2023 	hsotg->ep0_state = DWC2_EP0_SETUP;
2024 
2025 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2026 	if (ret < 0) {
2027 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2028 		/*
2029 		 * Don't think there's much we can do other than watch the
2030 		 * driver fail.
2031 		 */
2032 	}
2033 }
2034 
2035 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2036 				   struct dwc2_hsotg_ep *hs_ep)
2037 {
2038 	u32 ctrl;
2039 	u8 index = hs_ep->index;
2040 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2041 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2042 
2043 	if (hs_ep->dir_in)
2044 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2045 			index);
2046 	else
2047 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2048 			index);
2049 	if (using_desc_dma(hsotg)) {
2050 		/* Not specific buffer needed for ep0 ZLP */
2051 		dma_addr_t dma = hs_ep->desc_list_dma;
2052 
2053 		if (!index)
2054 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2055 
2056 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2057 	} else {
2058 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2059 			    DXEPTSIZ_XFERSIZE(0),
2060 			    epsiz_reg);
2061 	}
2062 
2063 	ctrl = dwc2_readl(hsotg, epctl_reg);
2064 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2065 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2066 	ctrl |= DXEPCTL_USBACTEP;
2067 	dwc2_writel(hsotg, ctrl, epctl_reg);
2068 }
2069 
2070 /**
2071  * dwc2_hsotg_complete_request - complete a request given to us
2072  * @hsotg: The device state.
2073  * @hs_ep: The endpoint the request was on.
2074  * @hs_req: The request to complete.
2075  * @result: The result code (0 => Ok, otherwise errno)
2076  *
2077  * The given request has finished, so call the necessary completion
2078  * if it has one and then look to see if we can start a new request
2079  * on the endpoint.
2080  *
2081  * Note, expects the ep to already be locked as appropriate.
2082  */
2083 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2084 					struct dwc2_hsotg_ep *hs_ep,
2085 				       struct dwc2_hsotg_req *hs_req,
2086 				       int result)
2087 {
2088 	if (!hs_req) {
2089 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2090 		return;
2091 	}
2092 
2093 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2094 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2095 
2096 	/*
2097 	 * only replace the status if we've not already set an error
2098 	 * from a previous transaction
2099 	 */
2100 
2101 	if (hs_req->req.status == -EINPROGRESS)
2102 		hs_req->req.status = result;
2103 
2104 	if (using_dma(hsotg))
2105 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2106 
2107 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2108 
2109 	hs_ep->req = NULL;
2110 	list_del_init(&hs_req->queue);
2111 
2112 	/*
2113 	 * call the complete request with the locks off, just in case the
2114 	 * request tries to queue more work for this endpoint.
2115 	 */
2116 
2117 	if (hs_req->req.complete) {
2118 		spin_unlock(&hsotg->lock);
2119 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2120 		spin_lock(&hsotg->lock);
2121 	}
2122 
2123 	/* In DDMA don't need to proceed to starting of next ISOC request */
2124 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2125 		return;
2126 
2127 	/*
2128 	 * Look to see if there is anything else to do. Note, the completion
2129 	 * of the previous request may have caused a new request to be started
2130 	 * so be careful when doing this.
2131 	 */
2132 
2133 	if (!hs_ep->req && result >= 0)
2134 		dwc2_gadget_start_next_request(hs_ep);
2135 }
2136 
2137 /*
2138  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2139  * @hs_ep: The endpoint the request was on.
2140  *
2141  * Get first request from the ep queue, determine descriptor on which complete
2142  * happened. SW discovers which descriptor currently in use by HW, adjusts
2143  * dma_address and calculates index of completed descriptor based on the value
2144  * of DEPDMA register. Update actual length of request, giveback to gadget.
2145  */
2146 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2147 {
2148 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2149 	struct dwc2_hsotg_req *hs_req;
2150 	struct usb_request *ureq;
2151 	u32 desc_sts;
2152 	u32 mask;
2153 
2154 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2155 
2156 	/* Process only descriptors with buffer status set to DMA done */
2157 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2158 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2159 
2160 		hs_req = get_ep_head(hs_ep);
2161 		if (!hs_req) {
2162 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2163 			return;
2164 		}
2165 		ureq = &hs_req->req;
2166 
2167 		/* Check completion status */
2168 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2169 			DEV_DMA_STS_SUCC) {
2170 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2171 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2172 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2173 				DEV_DMA_ISOC_NBYTES_SHIFT);
2174 
2175 			/* Adjust actual len for ISOC Out if len is
2176 			 * not align of 4
2177 			 */
2178 			if (!hs_ep->dir_in && ureq->length & 0x3)
2179 				ureq->actual += 4 - (ureq->length & 0x3);
2180 
2181 			/* Set actual frame number for completed transfers */
2182 			ureq->frame_number =
2183 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2184 				DEV_DMA_ISOC_FRNUM_SHIFT;
2185 		}
2186 
2187 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2188 
2189 		hs_ep->compl_desc++;
2190 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2191 			hs_ep->compl_desc = 0;
2192 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2193 	}
2194 }
2195 
2196 /*
2197  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2198  * @hs_ep: The isochronous endpoint.
2199  *
2200  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2201  * interrupt. Reset target frame and next_desc to allow to start
2202  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2203  * interrupt for OUT direction.
2204  */
2205 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2206 {
2207 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2208 
2209 	if (!hs_ep->dir_in)
2210 		dwc2_flush_rx_fifo(hsotg);
2211 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2212 
2213 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2214 	hs_ep->next_desc = 0;
2215 	hs_ep->compl_desc = 0;
2216 }
2217 
2218 /**
2219  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2220  * @hsotg: The device state.
2221  * @ep_idx: The endpoint index for the data
2222  * @size: The size of data in the fifo, in bytes
2223  *
2224  * The FIFO status shows there is data to read from the FIFO for a given
2225  * endpoint, so sort out whether we need to read the data into a request
2226  * that has been made for that endpoint.
2227  */
2228 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2229 {
2230 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2231 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2232 	int to_read;
2233 	int max_req;
2234 	int read_ptr;
2235 
2236 	if (!hs_req) {
2237 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2238 		int ptr;
2239 
2240 		dev_dbg(hsotg->dev,
2241 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2242 			 __func__, size, ep_idx, epctl);
2243 
2244 		/* dump the data from the FIFO, we've nothing we can do */
2245 		for (ptr = 0; ptr < size; ptr += 4)
2246 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2247 
2248 		return;
2249 	}
2250 
2251 	to_read = size;
2252 	read_ptr = hs_req->req.actual;
2253 	max_req = hs_req->req.length - read_ptr;
2254 
2255 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2256 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2257 
2258 	if (to_read > max_req) {
2259 		/*
2260 		 * more data appeared than we where willing
2261 		 * to deal with in this request.
2262 		 */
2263 
2264 		/* currently we don't deal this */
2265 		WARN_ON_ONCE(1);
2266 	}
2267 
2268 	hs_ep->total_data += to_read;
2269 	hs_req->req.actual += to_read;
2270 	to_read = DIV_ROUND_UP(to_read, 4);
2271 
2272 	/*
2273 	 * note, we might over-write the buffer end by 3 bytes depending on
2274 	 * alignment of the data.
2275 	 */
2276 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2277 		       hs_req->req.buf + read_ptr, to_read);
2278 }
2279 
2280 /**
2281  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2282  * @hsotg: The device instance
2283  * @dir_in: If IN zlp
2284  *
2285  * Generate a zero-length IN packet request for terminating a SETUP
2286  * transaction.
2287  *
2288  * Note, since we don't write any data to the TxFIFO, then it is
2289  * currently believed that we do not need to wait for any space in
2290  * the TxFIFO.
2291  */
2292 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2293 {
2294 	/* eps_out[0] is used in both directions */
2295 	hsotg->eps_out[0]->dir_in = dir_in;
2296 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2297 
2298 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2299 }
2300 
2301 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2302 					    u32 epctl_reg)
2303 {
2304 	u32 ctrl;
2305 
2306 	ctrl = dwc2_readl(hsotg, epctl_reg);
2307 	if (ctrl & DXEPCTL_EOFRNUM)
2308 		ctrl |= DXEPCTL_SETEVENFR;
2309 	else
2310 		ctrl |= DXEPCTL_SETODDFR;
2311 	dwc2_writel(hsotg, ctrl, epctl_reg);
2312 }
2313 
2314 /*
2315  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2316  * @hs_ep - The endpoint on which transfer went
2317  *
2318  * Iterate over endpoints descriptor chain and get info on bytes remained
2319  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2320  */
2321 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2322 {
2323 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2324 	unsigned int bytes_rem = 0;
2325 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2326 	int i;
2327 	u32 status;
2328 
2329 	if (!desc)
2330 		return -EINVAL;
2331 
2332 	for (i = 0; i < hs_ep->desc_count; ++i) {
2333 		status = desc->status;
2334 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2335 
2336 		if (status & DEV_DMA_STS_MASK)
2337 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2338 				i, status & DEV_DMA_STS_MASK);
2339 		desc++;
2340 	}
2341 
2342 	return bytes_rem;
2343 }
2344 
2345 /**
2346  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2347  * @hsotg: The device instance
2348  * @epnum: The endpoint received from
2349  *
2350  * The RXFIFO has delivered an OutDone event, which means that the data
2351  * transfer for an OUT endpoint has been completed, either by a short
2352  * packet or by the finish of a transfer.
2353  */
2354 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2355 {
2356 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2357 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2358 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2359 	struct usb_request *req = &hs_req->req;
2360 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2361 	int result = 0;
2362 
2363 	if (!hs_req) {
2364 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2365 		return;
2366 	}
2367 
2368 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2369 		dev_dbg(hsotg->dev, "zlp packet received\n");
2370 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2371 		dwc2_hsotg_enqueue_setup(hsotg);
2372 		return;
2373 	}
2374 
2375 	if (using_desc_dma(hsotg))
2376 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2377 
2378 	if (using_dma(hsotg)) {
2379 		unsigned int size_done;
2380 
2381 		/*
2382 		 * Calculate the size of the transfer by checking how much
2383 		 * is left in the endpoint size register and then working it
2384 		 * out from the amount we loaded for the transfer.
2385 		 *
2386 		 * We need to do this as DMA pointers are always 32bit aligned
2387 		 * so may overshoot/undershoot the transfer.
2388 		 */
2389 
2390 		size_done = hs_ep->size_loaded - size_left;
2391 		size_done += hs_ep->last_load;
2392 
2393 		req->actual = size_done;
2394 	}
2395 
2396 	/* if there is more request to do, schedule new transfer */
2397 	if (req->actual < req->length && size_left == 0) {
2398 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2399 		return;
2400 	}
2401 
2402 	if (req->actual < req->length && req->short_not_ok) {
2403 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2404 			__func__, req->actual, req->length);
2405 
2406 		/*
2407 		 * todo - what should we return here? there's no one else
2408 		 * even bothering to check the status.
2409 		 */
2410 	}
2411 
2412 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2413 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2414 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2415 		/* Move to STATUS IN */
2416 		if (!hsotg->delayed_status)
2417 			dwc2_hsotg_ep0_zlp(hsotg, true);
2418 	}
2419 
2420 	/*
2421 	 * Slave mode OUT transfers do not go through XferComplete so
2422 	 * adjust the ISOC parity here.
2423 	 */
2424 	if (!using_dma(hsotg)) {
2425 		if (hs_ep->isochronous && hs_ep->interval == 1)
2426 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2427 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2428 			dwc2_gadget_incr_frame_num(hs_ep);
2429 	}
2430 
2431 	/* Set actual frame number for completed transfers */
2432 	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2433 		req->frame_number = hsotg->frame_number;
2434 
2435 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2436 }
2437 
2438 /**
2439  * dwc2_hsotg_handle_rx - RX FIFO has data
2440  * @hsotg: The device instance
2441  *
2442  * The IRQ handler has detected that the RX FIFO has some data in it
2443  * that requires processing, so find out what is in there and do the
2444  * appropriate read.
2445  *
2446  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2447  * chunks, so if you have x packets received on an endpoint you'll get x
2448  * FIFO events delivered, each with a packet's worth of data in it.
2449  *
2450  * When using DMA, we should not be processing events from the RXFIFO
2451  * as the actual data should be sent to the memory directly and we turn
2452  * on the completion interrupts to get notifications of transfer completion.
2453  */
2454 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2455 {
2456 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2457 	u32 epnum, status, size;
2458 
2459 	WARN_ON(using_dma(hsotg));
2460 
2461 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2462 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2463 
2464 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2465 	size >>= GRXSTS_BYTECNT_SHIFT;
2466 
2467 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2468 		__func__, grxstsr, size, epnum);
2469 
2470 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2471 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2472 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2473 		break;
2474 
2475 	case GRXSTS_PKTSTS_OUTDONE:
2476 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2477 			dwc2_hsotg_read_frameno(hsotg));
2478 
2479 		if (!using_dma(hsotg))
2480 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2481 		break;
2482 
2483 	case GRXSTS_PKTSTS_SETUPDONE:
2484 		dev_dbg(hsotg->dev,
2485 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2486 			dwc2_hsotg_read_frameno(hsotg),
2487 			dwc2_readl(hsotg, DOEPCTL(0)));
2488 		/*
2489 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2490 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2491 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2492 		 */
2493 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2494 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2495 		break;
2496 
2497 	case GRXSTS_PKTSTS_OUTRX:
2498 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2499 		break;
2500 
2501 	case GRXSTS_PKTSTS_SETUPRX:
2502 		dev_dbg(hsotg->dev,
2503 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2504 			dwc2_hsotg_read_frameno(hsotg),
2505 			dwc2_readl(hsotg, DOEPCTL(0)));
2506 
2507 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2508 
2509 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2510 		break;
2511 
2512 	default:
2513 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2514 			 __func__, grxstsr);
2515 
2516 		dwc2_hsotg_dump(hsotg);
2517 		break;
2518 	}
2519 }
2520 
2521 /**
2522  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2523  * @mps: The maximum packet size in bytes.
2524  */
2525 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2526 {
2527 	switch (mps) {
2528 	case 64:
2529 		return D0EPCTL_MPS_64;
2530 	case 32:
2531 		return D0EPCTL_MPS_32;
2532 	case 16:
2533 		return D0EPCTL_MPS_16;
2534 	case 8:
2535 		return D0EPCTL_MPS_8;
2536 	}
2537 
2538 	/* bad max packet size, warn and return invalid result */
2539 	WARN_ON(1);
2540 	return (u32)-1;
2541 }
2542 
2543 /**
2544  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2545  * @hsotg: The driver state.
2546  * @ep: The index number of the endpoint
2547  * @mps: The maximum packet size in bytes
2548  * @mc: The multicount value
2549  * @dir_in: True if direction is in.
2550  *
2551  * Configure the maximum packet size for the given endpoint, updating
2552  * the hardware control registers to reflect this.
2553  */
2554 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2555 					unsigned int ep, unsigned int mps,
2556 					unsigned int mc, unsigned int dir_in)
2557 {
2558 	struct dwc2_hsotg_ep *hs_ep;
2559 	u32 reg;
2560 
2561 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2562 	if (!hs_ep)
2563 		return;
2564 
2565 	if (ep == 0) {
2566 		u32 mps_bytes = mps;
2567 
2568 		/* EP0 is a special case */
2569 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2570 		if (mps > 3)
2571 			goto bad_mps;
2572 		hs_ep->ep.maxpacket = mps_bytes;
2573 		hs_ep->mc = 1;
2574 	} else {
2575 		if (mps > 1024)
2576 			goto bad_mps;
2577 		hs_ep->mc = mc;
2578 		if (mc > 3)
2579 			goto bad_mps;
2580 		hs_ep->ep.maxpacket = mps;
2581 	}
2582 
2583 	if (dir_in) {
2584 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2585 		reg &= ~DXEPCTL_MPS_MASK;
2586 		reg |= mps;
2587 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2588 	} else {
2589 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2590 		reg &= ~DXEPCTL_MPS_MASK;
2591 		reg |= mps;
2592 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2593 	}
2594 
2595 	return;
2596 
2597 bad_mps:
2598 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2599 }
2600 
2601 /**
2602  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2603  * @hsotg: The driver state
2604  * @idx: The index for the endpoint (0..15)
2605  */
2606 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2607 {
2608 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2609 		    GRSTCTL);
2610 
2611 	/* wait until the fifo is flushed */
2612 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2613 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2614 			 __func__);
2615 }
2616 
2617 /**
2618  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2619  * @hsotg: The driver state
2620  * @hs_ep: The driver endpoint to check.
2621  *
2622  * Check to see if there is a request that has data to send, and if so
2623  * make an attempt to write data into the FIFO.
2624  */
2625 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2626 			    struct dwc2_hsotg_ep *hs_ep)
2627 {
2628 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2629 
2630 	if (!hs_ep->dir_in || !hs_req) {
2631 		/**
2632 		 * if request is not enqueued, we disable interrupts
2633 		 * for endpoints, excepting ep0
2634 		 */
2635 		if (hs_ep->index != 0)
2636 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2637 					      hs_ep->dir_in, 0);
2638 		return 0;
2639 	}
2640 
2641 	if (hs_req->req.actual < hs_req->req.length) {
2642 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2643 			hs_ep->index);
2644 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 /**
2651  * dwc2_hsotg_complete_in - complete IN transfer
2652  * @hsotg: The device state.
2653  * @hs_ep: The endpoint that has just completed.
2654  *
2655  * An IN transfer has been completed, update the transfer's state and then
2656  * call the relevant completion routines.
2657  */
2658 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2659 				   struct dwc2_hsotg_ep *hs_ep)
2660 {
2661 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2662 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2663 	int size_left, size_done;
2664 
2665 	if (!hs_req) {
2666 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2667 		return;
2668 	}
2669 
2670 	/* Finish ZLP handling for IN EP0 transactions */
2671 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2672 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2673 
2674 		/*
2675 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2676 		 * changed to IN. Change back to complete OUT transfer request
2677 		 */
2678 		hs_ep->dir_in = 0;
2679 
2680 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2681 		if (hsotg->test_mode) {
2682 			int ret;
2683 
2684 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2685 			if (ret < 0) {
2686 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2687 					hsotg->test_mode);
2688 				dwc2_hsotg_stall_ep0(hsotg);
2689 				return;
2690 			}
2691 		}
2692 		dwc2_hsotg_enqueue_setup(hsotg);
2693 		return;
2694 	}
2695 
2696 	/*
2697 	 * Calculate the size of the transfer by checking how much is left
2698 	 * in the endpoint size register and then working it out from
2699 	 * the amount we loaded for the transfer.
2700 	 *
2701 	 * We do this even for DMA, as the transfer may have incremented
2702 	 * past the end of the buffer (DMA transfers are always 32bit
2703 	 * aligned).
2704 	 */
2705 	if (using_desc_dma(hsotg)) {
2706 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2707 		if (size_left < 0)
2708 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2709 				size_left);
2710 	} else {
2711 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2712 	}
2713 
2714 	size_done = hs_ep->size_loaded - size_left;
2715 	size_done += hs_ep->last_load;
2716 
2717 	if (hs_req->req.actual != size_done)
2718 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2719 			__func__, hs_req->req.actual, size_done);
2720 
2721 	hs_req->req.actual = size_done;
2722 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2723 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2724 
2725 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2726 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2727 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2728 		return;
2729 	}
2730 
2731 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2732 	if (hs_ep->send_zlp) {
2733 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2734 		hs_ep->send_zlp = 0;
2735 		/* transfer will be completed on next complete interrupt */
2736 		return;
2737 	}
2738 
2739 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2740 		/* Move to STATUS OUT */
2741 		dwc2_hsotg_ep0_zlp(hsotg, false);
2742 		return;
2743 	}
2744 
2745 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2746 }
2747 
2748 /**
2749  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2750  * @hsotg: The device state.
2751  * @idx: Index of ep.
2752  * @dir_in: Endpoint direction 1-in 0-out.
2753  *
2754  * Reads for endpoint with given index and direction, by masking
2755  * epint_reg with coresponding mask.
2756  */
2757 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2758 					  unsigned int idx, int dir_in)
2759 {
2760 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2761 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2762 	u32 ints;
2763 	u32 mask;
2764 	u32 diepempmsk;
2765 
2766 	mask = dwc2_readl(hsotg, epmsk_reg);
2767 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2768 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2769 	mask |= DXEPINT_SETUP_RCVD;
2770 
2771 	ints = dwc2_readl(hsotg, epint_reg);
2772 	ints &= mask;
2773 	return ints;
2774 }
2775 
2776 /**
2777  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2778  * @hs_ep: The endpoint on which interrupt is asserted.
2779  *
2780  * This interrupt indicates that the endpoint has been disabled per the
2781  * application's request.
2782  *
2783  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2784  * in case of ISOC completes current request.
2785  *
2786  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2787  * request starts it.
2788  */
2789 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2790 {
2791 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2792 	struct dwc2_hsotg_req *hs_req;
2793 	unsigned char idx = hs_ep->index;
2794 	int dir_in = hs_ep->dir_in;
2795 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2796 	int dctl = dwc2_readl(hsotg, DCTL);
2797 
2798 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2799 
2800 	if (dir_in) {
2801 		int epctl = dwc2_readl(hsotg, epctl_reg);
2802 
2803 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2804 
2805 		if (hs_ep->isochronous) {
2806 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2807 			return;
2808 		}
2809 
2810 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2811 			int dctl = dwc2_readl(hsotg, DCTL);
2812 
2813 			dctl |= DCTL_CGNPINNAK;
2814 			dwc2_writel(hsotg, dctl, DCTL);
2815 		}
2816 		return;
2817 	}
2818 
2819 	if (dctl & DCTL_GOUTNAKSTS) {
2820 		dctl |= DCTL_CGOUTNAK;
2821 		dwc2_writel(hsotg, dctl, DCTL);
2822 	}
2823 
2824 	if (!hs_ep->isochronous)
2825 		return;
2826 
2827 	if (list_empty(&hs_ep->queue)) {
2828 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2829 			__func__, hs_ep);
2830 		return;
2831 	}
2832 
2833 	do {
2834 		hs_req = get_ep_head(hs_ep);
2835 		if (hs_req)
2836 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2837 						    -ENODATA);
2838 		dwc2_gadget_incr_frame_num(hs_ep);
2839 		/* Update current frame number value. */
2840 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2841 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2842 
2843 	dwc2_gadget_start_next_request(hs_ep);
2844 }
2845 
2846 /**
2847  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2848  * @ep: The endpoint on which interrupt is asserted.
2849  *
2850  * This is starting point for ISOC-OUT transfer, synchronization done with
2851  * first out token received from host while corresponding EP is disabled.
2852  *
2853  * Device does not know initial frame in which out token will come. For this
2854  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2855  * getting this interrupt SW starts calculation for next transfer frame.
2856  */
2857 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2858 {
2859 	struct dwc2_hsotg *hsotg = ep->parent;
2860 	int dir_in = ep->dir_in;
2861 	u32 doepmsk;
2862 
2863 	if (dir_in || !ep->isochronous)
2864 		return;
2865 
2866 	if (using_desc_dma(hsotg)) {
2867 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2868 			/* Start first ISO Out */
2869 			ep->target_frame = hsotg->frame_number;
2870 			dwc2_gadget_start_isoc_ddma(ep);
2871 		}
2872 		return;
2873 	}
2874 
2875 	if (ep->interval > 1 &&
2876 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2877 		u32 ctrl;
2878 
2879 		ep->target_frame = hsotg->frame_number;
2880 		dwc2_gadget_incr_frame_num(ep);
2881 
2882 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2883 		if (ep->target_frame & 0x1)
2884 			ctrl |= DXEPCTL_SETODDFR;
2885 		else
2886 			ctrl |= DXEPCTL_SETEVENFR;
2887 
2888 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2889 	}
2890 
2891 	dwc2_gadget_start_next_request(ep);
2892 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2893 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2894 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2895 }
2896 
2897 /**
2898  * dwc2_gadget_handle_nak - handle NAK interrupt
2899  * @hs_ep: The endpoint on which interrupt is asserted.
2900  *
2901  * This is starting point for ISOC-IN transfer, synchronization done with
2902  * first IN token received from host while corresponding EP is disabled.
2903  *
2904  * Device does not know when first one token will arrive from host. On first
2905  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2906  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2907  * sent in response to that as there was no data in FIFO. SW is basing on this
2908  * interrupt to obtain frame in which token has come and then based on the
2909  * interval calculates next frame for transfer.
2910  */
2911 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2912 {
2913 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2914 	int dir_in = hs_ep->dir_in;
2915 
2916 	if (!dir_in || !hs_ep->isochronous)
2917 		return;
2918 
2919 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2920 
2921 		if (using_desc_dma(hsotg)) {
2922 			hs_ep->target_frame = hsotg->frame_number;
2923 			dwc2_gadget_incr_frame_num(hs_ep);
2924 
2925 			/* In service interval mode target_frame must
2926 			 * be set to last (u)frame of the service interval.
2927 			 */
2928 			if (hsotg->params.service_interval) {
2929 				/* Set target_frame to the first (u)frame of
2930 				 * the service interval
2931 				 */
2932 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2933 
2934 				/* Set target_frame to the last (u)frame of
2935 				 * the service interval
2936 				 */
2937 				dwc2_gadget_incr_frame_num(hs_ep);
2938 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2939 			}
2940 
2941 			dwc2_gadget_start_isoc_ddma(hs_ep);
2942 			return;
2943 		}
2944 
2945 		hs_ep->target_frame = hsotg->frame_number;
2946 		if (hs_ep->interval > 1) {
2947 			u32 ctrl = dwc2_readl(hsotg,
2948 					      DIEPCTL(hs_ep->index));
2949 			if (hs_ep->target_frame & 0x1)
2950 				ctrl |= DXEPCTL_SETODDFR;
2951 			else
2952 				ctrl |= DXEPCTL_SETEVENFR;
2953 
2954 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2955 		}
2956 
2957 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2958 					    get_ep_head(hs_ep), 0);
2959 	}
2960 
2961 	if (!using_desc_dma(hsotg))
2962 		dwc2_gadget_incr_frame_num(hs_ep);
2963 }
2964 
2965 /**
2966  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2967  * @hsotg: The driver state
2968  * @idx: The index for the endpoint (0..15)
2969  * @dir_in: Set if this is an IN endpoint
2970  *
2971  * Process and clear any interrupt pending for an individual endpoint
2972  */
2973 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2974 			     int dir_in)
2975 {
2976 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2977 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2978 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2979 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2980 	u32 ints;
2981 	u32 ctrl;
2982 
2983 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2984 	ctrl = dwc2_readl(hsotg, epctl_reg);
2985 
2986 	/* Clear endpoint interrupts */
2987 	dwc2_writel(hsotg, ints, epint_reg);
2988 
2989 	if (!hs_ep) {
2990 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2991 			__func__, idx, dir_in ? "in" : "out");
2992 		return;
2993 	}
2994 
2995 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2996 		__func__, idx, dir_in ? "in" : "out", ints);
2997 
2998 	/* Don't process XferCompl interrupt if it is a setup packet */
2999 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3000 		ints &= ~DXEPINT_XFERCOMPL;
3001 
3002 	/*
3003 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3004 	 * stage and xfercomplete was generated without SETUP phase done
3005 	 * interrupt. SW should parse received setup packet only after host's
3006 	 * exit from setup phase of control transfer.
3007 	 */
3008 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3009 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3010 		ints &= ~DXEPINT_XFERCOMPL;
3011 
3012 	if (ints & DXEPINT_XFERCOMPL) {
3013 		dev_dbg(hsotg->dev,
3014 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3015 			__func__, dwc2_readl(hsotg, epctl_reg),
3016 			dwc2_readl(hsotg, epsiz_reg));
3017 
3018 		/* In DDMA handle isochronous requests separately */
3019 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3020 			/* XferCompl set along with BNA */
3021 			if (!(ints & DXEPINT_BNAINTR))
3022 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3023 		} else if (dir_in) {
3024 			/*
3025 			 * We get OutDone from the FIFO, so we only
3026 			 * need to look at completing IN requests here
3027 			 * if operating slave mode
3028 			 */
3029 			if (hs_ep->isochronous && hs_ep->interval > 1)
3030 				dwc2_gadget_incr_frame_num(hs_ep);
3031 
3032 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3033 			if (ints & DXEPINT_NAKINTRPT)
3034 				ints &= ~DXEPINT_NAKINTRPT;
3035 
3036 			if (idx == 0 && !hs_ep->req)
3037 				dwc2_hsotg_enqueue_setup(hsotg);
3038 		} else if (using_dma(hsotg)) {
3039 			/*
3040 			 * We're using DMA, we need to fire an OutDone here
3041 			 * as we ignore the RXFIFO.
3042 			 */
3043 			if (hs_ep->isochronous && hs_ep->interval > 1)
3044 				dwc2_gadget_incr_frame_num(hs_ep);
3045 
3046 			dwc2_hsotg_handle_outdone(hsotg, idx);
3047 		}
3048 	}
3049 
3050 	if (ints & DXEPINT_EPDISBLD)
3051 		dwc2_gadget_handle_ep_disabled(hs_ep);
3052 
3053 	if (ints & DXEPINT_OUTTKNEPDIS)
3054 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3055 
3056 	if (ints & DXEPINT_NAKINTRPT)
3057 		dwc2_gadget_handle_nak(hs_ep);
3058 
3059 	if (ints & DXEPINT_AHBERR)
3060 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3061 
3062 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3063 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3064 
3065 		if (using_dma(hsotg) && idx == 0) {
3066 			/*
3067 			 * this is the notification we've received a
3068 			 * setup packet. In non-DMA mode we'd get this
3069 			 * from the RXFIFO, instead we need to process
3070 			 * the setup here.
3071 			 */
3072 
3073 			if (dir_in)
3074 				WARN_ON_ONCE(1);
3075 			else
3076 				dwc2_hsotg_handle_outdone(hsotg, 0);
3077 		}
3078 	}
3079 
3080 	if (ints & DXEPINT_STSPHSERCVD) {
3081 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3082 
3083 		/* Safety check EP0 state when STSPHSERCVD asserted */
3084 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3085 			/* Move to STATUS IN for DDMA */
3086 			if (using_desc_dma(hsotg)) {
3087 				if (!hsotg->delayed_status)
3088 					dwc2_hsotg_ep0_zlp(hsotg, true);
3089 				else
3090 				/* In case of 3 stage Control Write with delayed
3091 				 * status, when Status IN transfer started
3092 				 * before STSPHSERCVD asserted, NAKSTS bit not
3093 				 * cleared by CNAK in dwc2_hsotg_start_req()
3094 				 * function. Clear now NAKSTS to allow complete
3095 				 * transfer.
3096 				 */
3097 					dwc2_set_bit(hsotg, DIEPCTL(0),
3098 						     DXEPCTL_CNAK);
3099 			}
3100 		}
3101 
3102 	}
3103 
3104 	if (ints & DXEPINT_BACK2BACKSETUP)
3105 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3106 
3107 	if (ints & DXEPINT_BNAINTR) {
3108 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3109 		if (hs_ep->isochronous)
3110 			dwc2_gadget_handle_isoc_bna(hs_ep);
3111 	}
3112 
3113 	if (dir_in && !hs_ep->isochronous) {
3114 		/* not sure if this is important, but we'll clear it anyway */
3115 		if (ints & DXEPINT_INTKNTXFEMP) {
3116 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3117 				__func__, idx);
3118 		}
3119 
3120 		/* this probably means something bad is happening */
3121 		if (ints & DXEPINT_INTKNEPMIS) {
3122 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3123 				 __func__, idx);
3124 		}
3125 
3126 		/* FIFO has space or is empty (see GAHBCFG) */
3127 		if (hsotg->dedicated_fifos &&
3128 		    ints & DXEPINT_TXFEMP) {
3129 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3130 				__func__, idx);
3131 			if (!using_dma(hsotg))
3132 				dwc2_hsotg_trytx(hsotg, hs_ep);
3133 		}
3134 	}
3135 }
3136 
3137 /**
3138  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3139  * @hsotg: The device state.
3140  *
3141  * Handle updating the device settings after the enumeration phase has
3142  * been completed.
3143  */
3144 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3145 {
3146 	u32 dsts = dwc2_readl(hsotg, DSTS);
3147 	int ep0_mps = 0, ep_mps = 8;
3148 
3149 	/*
3150 	 * This should signal the finish of the enumeration phase
3151 	 * of the USB handshaking, so we should now know what rate
3152 	 * we connected at.
3153 	 */
3154 
3155 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3156 
3157 	/*
3158 	 * note, since we're limited by the size of transfer on EP0, and
3159 	 * it seems IN transfers must be a even number of packets we do
3160 	 * not advertise a 64byte MPS on EP0.
3161 	 */
3162 
3163 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3164 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3165 	case DSTS_ENUMSPD_FS:
3166 	case DSTS_ENUMSPD_FS48:
3167 		hsotg->gadget.speed = USB_SPEED_FULL;
3168 		ep0_mps = EP0_MPS_LIMIT;
3169 		ep_mps = 1023;
3170 		break;
3171 
3172 	case DSTS_ENUMSPD_HS:
3173 		hsotg->gadget.speed = USB_SPEED_HIGH;
3174 		ep0_mps = EP0_MPS_LIMIT;
3175 		ep_mps = 1024;
3176 		break;
3177 
3178 	case DSTS_ENUMSPD_LS:
3179 		hsotg->gadget.speed = USB_SPEED_LOW;
3180 		ep0_mps = 8;
3181 		ep_mps = 8;
3182 		/*
3183 		 * note, we don't actually support LS in this driver at the
3184 		 * moment, and the documentation seems to imply that it isn't
3185 		 * supported by the PHYs on some of the devices.
3186 		 */
3187 		break;
3188 	}
3189 	dev_info(hsotg->dev, "new device is %s\n",
3190 		 usb_speed_string(hsotg->gadget.speed));
3191 
3192 	/*
3193 	 * we should now know the maximum packet size for an
3194 	 * endpoint, so set the endpoints to a default value.
3195 	 */
3196 
3197 	if (ep0_mps) {
3198 		int i;
3199 		/* Initialize ep0 for both in and out directions */
3200 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3201 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3202 		for (i = 1; i < hsotg->num_of_eps; i++) {
3203 			if (hsotg->eps_in[i])
3204 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3205 							    0, 1);
3206 			if (hsotg->eps_out[i])
3207 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3208 							    0, 0);
3209 		}
3210 	}
3211 
3212 	/* ensure after enumeration our EP0 is active */
3213 
3214 	dwc2_hsotg_enqueue_setup(hsotg);
3215 
3216 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3217 		dwc2_readl(hsotg, DIEPCTL0),
3218 		dwc2_readl(hsotg, DOEPCTL0));
3219 }
3220 
3221 /**
3222  * kill_all_requests - remove all requests from the endpoint's queue
3223  * @hsotg: The device state.
3224  * @ep: The endpoint the requests may be on.
3225  * @result: The result code to use.
3226  *
3227  * Go through the requests on the given endpoint and mark them
3228  * completed with the given result code.
3229  */
3230 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3231 			      struct dwc2_hsotg_ep *ep,
3232 			      int result)
3233 {
3234 	unsigned int size;
3235 
3236 	ep->req = NULL;
3237 
3238 	while (!list_empty(&ep->queue)) {
3239 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3240 
3241 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3242 	}
3243 
3244 	if (!hsotg->dedicated_fifos)
3245 		return;
3246 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3247 	if (size < ep->fifo_size)
3248 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3249 }
3250 
3251 /**
3252  * dwc2_hsotg_disconnect - disconnect service
3253  * @hsotg: The device state.
3254  *
3255  * The device has been disconnected. Remove all current
3256  * transactions and signal the gadget driver that this
3257  * has happened.
3258  */
3259 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3260 {
3261 	unsigned int ep;
3262 
3263 	if (!hsotg->connected)
3264 		return;
3265 
3266 	hsotg->connected = 0;
3267 	hsotg->test_mode = 0;
3268 
3269 	/* all endpoints should be shutdown */
3270 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3271 		if (hsotg->eps_in[ep])
3272 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3273 					  -ESHUTDOWN);
3274 		if (hsotg->eps_out[ep])
3275 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3276 					  -ESHUTDOWN);
3277 	}
3278 
3279 	call_gadget(hsotg, disconnect);
3280 	hsotg->lx_state = DWC2_L3;
3281 
3282 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3283 }
3284 
3285 /**
3286  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3287  * @hsotg: The device state:
3288  * @periodic: True if this is a periodic FIFO interrupt
3289  */
3290 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3291 {
3292 	struct dwc2_hsotg_ep *ep;
3293 	int epno, ret;
3294 
3295 	/* look through for any more data to transmit */
3296 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3297 		ep = index_to_ep(hsotg, epno, 1);
3298 
3299 		if (!ep)
3300 			continue;
3301 
3302 		if (!ep->dir_in)
3303 			continue;
3304 
3305 		if ((periodic && !ep->periodic) ||
3306 		    (!periodic && ep->periodic))
3307 			continue;
3308 
3309 		ret = dwc2_hsotg_trytx(hsotg, ep);
3310 		if (ret < 0)
3311 			break;
3312 	}
3313 }
3314 
3315 /* IRQ flags which will trigger a retry around the IRQ loop */
3316 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3317 			GINTSTS_PTXFEMP |  \
3318 			GINTSTS_RXFLVL)
3319 
3320 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3321 /**
3322  * dwc2_hsotg_core_init - issue softreset to the core
3323  * @hsotg: The device state
3324  * @is_usb_reset: Usb resetting flag
3325  *
3326  * Issue a soft reset to the core, and await the core finishing it.
3327  */
3328 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3329 				       bool is_usb_reset)
3330 {
3331 	u32 intmsk;
3332 	u32 val;
3333 	u32 usbcfg;
3334 	u32 dcfg = 0;
3335 	int ep;
3336 
3337 	/* Kill any ep0 requests as controller will be reinitialized */
3338 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3339 
3340 	if (!is_usb_reset) {
3341 		if (dwc2_core_reset(hsotg, true))
3342 			return;
3343 	} else {
3344 		/* all endpoints should be shutdown */
3345 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3346 			if (hsotg->eps_in[ep])
3347 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3348 			if (hsotg->eps_out[ep])
3349 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3350 		}
3351 	}
3352 
3353 	/*
3354 	 * we must now enable ep0 ready for host detection and then
3355 	 * set configuration.
3356 	 */
3357 
3358 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3359 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3360 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3361 	usbcfg |= GUSBCFG_TOUTCAL(7);
3362 
3363 	/* remove the HNP/SRP and set the PHY */
3364 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3365         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3366 
3367 	dwc2_phy_init(hsotg, true);
3368 
3369 	dwc2_hsotg_init_fifo(hsotg);
3370 
3371 	if (!is_usb_reset)
3372 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3373 
3374 	dcfg |= DCFG_EPMISCNT(1);
3375 
3376 	switch (hsotg->params.speed) {
3377 	case DWC2_SPEED_PARAM_LOW:
3378 		dcfg |= DCFG_DEVSPD_LS;
3379 		break;
3380 	case DWC2_SPEED_PARAM_FULL:
3381 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3382 			dcfg |= DCFG_DEVSPD_FS48;
3383 		else
3384 			dcfg |= DCFG_DEVSPD_FS;
3385 		break;
3386 	default:
3387 		dcfg |= DCFG_DEVSPD_HS;
3388 	}
3389 
3390 	if (hsotg->params.ipg_isoc_en)
3391 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3392 
3393 	dwc2_writel(hsotg, dcfg,  DCFG);
3394 
3395 	/* Clear any pending OTG interrupts */
3396 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3397 
3398 	/* Clear any pending interrupts */
3399 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3400 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3401 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3402 		GINTSTS_USBRST | GINTSTS_RESETDET |
3403 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3404 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3405 		GINTSTS_LPMTRANRCVD;
3406 
3407 	if (!using_desc_dma(hsotg))
3408 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3409 
3410 	if (!hsotg->params.external_id_pin_ctl)
3411 		intmsk |= GINTSTS_CONIDSTSCHNG;
3412 
3413 	dwc2_writel(hsotg, intmsk, GINTMSK);
3414 
3415 	if (using_dma(hsotg)) {
3416 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3417 			    hsotg->params.ahbcfg,
3418 			    GAHBCFG);
3419 
3420 		/* Set DDMA mode support in the core if needed */
3421 		if (using_desc_dma(hsotg))
3422 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3423 
3424 	} else {
3425 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3426 						(GAHBCFG_NP_TXF_EMP_LVL |
3427 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3428 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3429 	}
3430 
3431 	/*
3432 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3433 	 * when we have no data to transfer. Otherwise we get being flooded by
3434 	 * interrupts.
3435 	 */
3436 
3437 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3438 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3439 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3440 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3441 		DIEPMSK);
3442 
3443 	/*
3444 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3445 	 * DMA mode we may need this and StsPhseRcvd.
3446 	 */
3447 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3448 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3449 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3450 		DOEPMSK_SETUPMSK,
3451 		DOEPMSK);
3452 
3453 	/* Enable BNA interrupt for DDMA */
3454 	if (using_desc_dma(hsotg)) {
3455 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3456 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3457 	}
3458 
3459 	/* Enable Service Interval mode if supported */
3460 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3461 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3462 
3463 	dwc2_writel(hsotg, 0, DAINTMSK);
3464 
3465 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3466 		dwc2_readl(hsotg, DIEPCTL0),
3467 		dwc2_readl(hsotg, DOEPCTL0));
3468 
3469 	/* enable in and out endpoint interrupts */
3470 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3471 
3472 	/*
3473 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3474 	 * the data. In DMA mode, we get events from the FIFO but also
3475 	 * things we cannot process, so do not use it.
3476 	 */
3477 	if (!using_dma(hsotg))
3478 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3479 
3480 	/* Enable interrupts for EP0 in and out */
3481 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3482 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3483 
3484 	if (!is_usb_reset) {
3485 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3486 		udelay(10);  /* see openiboot */
3487 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3488 	}
3489 
3490 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3491 
3492 	/*
3493 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3494 	 * writing to the EPCTL register..
3495 	 */
3496 
3497 	/* set to read 1 8byte packet */
3498 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3499 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3500 
3501 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3502 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3503 	       DXEPCTL_USBACTEP,
3504 	       DOEPCTL0);
3505 
3506 	/* enable, but don't activate EP0in */
3507 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3508 	       DXEPCTL_USBACTEP, DIEPCTL0);
3509 
3510 	/* clear global NAKs */
3511 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3512 	if (!is_usb_reset)
3513 		val |= DCTL_SFTDISCON;
3514 	dwc2_set_bit(hsotg, DCTL, val);
3515 
3516 	/* configure the core to support LPM */
3517 	dwc2_gadget_init_lpm(hsotg);
3518 
3519 	/* program GREFCLK register if needed */
3520 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3521 		dwc2_gadget_program_ref_clk(hsotg);
3522 
3523 	/* must be at-least 3ms to allow bus to see disconnect */
3524 	mdelay(3);
3525 
3526 	hsotg->lx_state = DWC2_L0;
3527 
3528 	dwc2_hsotg_enqueue_setup(hsotg);
3529 
3530 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3531 		dwc2_readl(hsotg, DIEPCTL0),
3532 		dwc2_readl(hsotg, DOEPCTL0));
3533 }
3534 
3535 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3536 {
3537 	/* set the soft-disconnect bit */
3538 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3539 }
3540 
3541 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3542 {
3543 	/* remove the soft-disconnect and let's go */
3544 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3545 }
3546 
3547 /**
3548  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3549  * @hsotg: The device state:
3550  *
3551  * This interrupt indicates one of the following conditions occurred while
3552  * transmitting an ISOC transaction.
3553  * - Corrupted IN Token for ISOC EP.
3554  * - Packet not complete in FIFO.
3555  *
3556  * The following actions will be taken:
3557  * - Determine the EP
3558  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3559  */
3560 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3561 {
3562 	struct dwc2_hsotg_ep *hs_ep;
3563 	u32 epctrl;
3564 	u32 daintmsk;
3565 	u32 idx;
3566 
3567 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3568 
3569 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3570 
3571 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3572 		hs_ep = hsotg->eps_in[idx];
3573 		/* Proceed only unmasked ISOC EPs */
3574 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3575 			continue;
3576 
3577 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3578 		if ((epctrl & DXEPCTL_EPENA) &&
3579 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3580 			epctrl |= DXEPCTL_SNAK;
3581 			epctrl |= DXEPCTL_EPDIS;
3582 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3583 		}
3584 	}
3585 
3586 	/* Clear interrupt */
3587 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3588 }
3589 
3590 /**
3591  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3592  * @hsotg: The device state:
3593  *
3594  * This interrupt indicates one of the following conditions occurred while
3595  * transmitting an ISOC transaction.
3596  * - Corrupted OUT Token for ISOC EP.
3597  * - Packet not complete in FIFO.
3598  *
3599  * The following actions will be taken:
3600  * - Determine the EP
3601  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3602  */
3603 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3604 {
3605 	u32 gintsts;
3606 	u32 gintmsk;
3607 	u32 daintmsk;
3608 	u32 epctrl;
3609 	struct dwc2_hsotg_ep *hs_ep;
3610 	int idx;
3611 
3612 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3613 
3614 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3615 	daintmsk >>= DAINT_OUTEP_SHIFT;
3616 
3617 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3618 		hs_ep = hsotg->eps_out[idx];
3619 		/* Proceed only unmasked ISOC EPs */
3620 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3621 			continue;
3622 
3623 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3624 		if ((epctrl & DXEPCTL_EPENA) &&
3625 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3626 			/* Unmask GOUTNAKEFF interrupt */
3627 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3628 			gintmsk |= GINTSTS_GOUTNAKEFF;
3629 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3630 
3631 			gintsts = dwc2_readl(hsotg, GINTSTS);
3632 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3633 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3634 				break;
3635 			}
3636 		}
3637 	}
3638 
3639 	/* Clear interrupt */
3640 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3641 }
3642 
3643 /**
3644  * dwc2_hsotg_irq - handle device interrupt
3645  * @irq: The IRQ number triggered
3646  * @pw: The pw value when registered the handler.
3647  */
3648 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3649 {
3650 	struct dwc2_hsotg *hsotg = pw;
3651 	int retry_count = 8;
3652 	u32 gintsts;
3653 	u32 gintmsk;
3654 
3655 	if (!dwc2_is_device_mode(hsotg))
3656 		return IRQ_NONE;
3657 
3658 	spin_lock(&hsotg->lock);
3659 irq_retry:
3660 	gintsts = dwc2_readl(hsotg, GINTSTS);
3661 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3662 
3663 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3664 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3665 
3666 	gintsts &= gintmsk;
3667 
3668 	if (gintsts & GINTSTS_RESETDET) {
3669 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3670 
3671 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3672 
3673 		/* This event must be used only if controller is suspended */
3674 		if (hsotg->lx_state == DWC2_L2) {
3675 			dwc2_exit_partial_power_down(hsotg, true);
3676 			hsotg->lx_state = DWC2_L0;
3677 		}
3678 	}
3679 
3680 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3681 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3682 		u32 connected = hsotg->connected;
3683 
3684 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3685 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3686 			dwc2_readl(hsotg, GNPTXSTS));
3687 
3688 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3689 
3690 		/* Report disconnection if it is not already done. */
3691 		dwc2_hsotg_disconnect(hsotg);
3692 
3693 		/* Reset device address to zero */
3694 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3695 
3696 		if (usb_status & GOTGCTL_BSESVLD && connected)
3697 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3698 	}
3699 
3700 	if (gintsts & GINTSTS_ENUMDONE) {
3701 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3702 
3703 		dwc2_hsotg_irq_enumdone(hsotg);
3704 	}
3705 
3706 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3707 		u32 daint = dwc2_readl(hsotg, DAINT);
3708 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3709 		u32 daint_out, daint_in;
3710 		int ep;
3711 
3712 		daint &= daintmsk;
3713 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3714 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3715 
3716 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3717 
3718 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3719 						ep++, daint_out >>= 1) {
3720 			if (daint_out & 1)
3721 				dwc2_hsotg_epint(hsotg, ep, 0);
3722 		}
3723 
3724 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3725 						ep++, daint_in >>= 1) {
3726 			if (daint_in & 1)
3727 				dwc2_hsotg_epint(hsotg, ep, 1);
3728 		}
3729 	}
3730 
3731 	/* check both FIFOs */
3732 
3733 	if (gintsts & GINTSTS_NPTXFEMP) {
3734 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3735 
3736 		/*
3737 		 * Disable the interrupt to stop it happening again
3738 		 * unless one of these endpoint routines decides that
3739 		 * it needs re-enabling
3740 		 */
3741 
3742 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3743 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3744 	}
3745 
3746 	if (gintsts & GINTSTS_PTXFEMP) {
3747 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3748 
3749 		/* See note in GINTSTS_NPTxFEmp */
3750 
3751 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3752 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3753 	}
3754 
3755 	if (gintsts & GINTSTS_RXFLVL) {
3756 		/*
3757 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3758 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3759 		 * set.
3760 		 */
3761 
3762 		dwc2_hsotg_handle_rx(hsotg);
3763 	}
3764 
3765 	if (gintsts & GINTSTS_ERLYSUSP) {
3766 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3767 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3768 	}
3769 
3770 	/*
3771 	 * these next two seem to crop-up occasionally causing the core
3772 	 * to shutdown the USB transfer, so try clearing them and logging
3773 	 * the occurrence.
3774 	 */
3775 
3776 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3777 		u8 idx;
3778 		u32 epctrl;
3779 		u32 gintmsk;
3780 		u32 daintmsk;
3781 		struct dwc2_hsotg_ep *hs_ep;
3782 
3783 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3784 		daintmsk >>= DAINT_OUTEP_SHIFT;
3785 		/* Mask this interrupt */
3786 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3787 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3788 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3789 
3790 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3791 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3792 			hs_ep = hsotg->eps_out[idx];
3793 			/* Proceed only unmasked ISOC EPs */
3794 			if (BIT(idx) & ~daintmsk)
3795 				continue;
3796 
3797 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3798 
3799 			//ISOC Ep's only
3800 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3801 				epctrl |= DXEPCTL_SNAK;
3802 				epctrl |= DXEPCTL_EPDIS;
3803 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3804 				continue;
3805 			}
3806 
3807 			//Non-ISOC EP's
3808 			if (hs_ep->halted) {
3809 				if (!(epctrl & DXEPCTL_EPENA))
3810 					epctrl |= DXEPCTL_EPENA;
3811 				epctrl |= DXEPCTL_EPDIS;
3812 				epctrl |= DXEPCTL_STALL;
3813 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3814 			}
3815 		}
3816 
3817 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3818 	}
3819 
3820 	if (gintsts & GINTSTS_GINNAKEFF) {
3821 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3822 
3823 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3824 
3825 		dwc2_hsotg_dump(hsotg);
3826 	}
3827 
3828 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3829 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3830 
3831 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3832 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3833 
3834 	/*
3835 	 * if we've had fifo events, we should try and go around the
3836 	 * loop again to see if there's any point in returning yet.
3837 	 */
3838 
3839 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3840 		goto irq_retry;
3841 
3842 	/* Check WKUP_ALERT interrupt*/
3843 	if (hsotg->params.service_interval)
3844 		dwc2_gadget_wkup_alert_handler(hsotg);
3845 
3846 	spin_unlock(&hsotg->lock);
3847 
3848 	return IRQ_HANDLED;
3849 }
3850 
3851 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3852 				   struct dwc2_hsotg_ep *hs_ep)
3853 {
3854 	u32 epctrl_reg;
3855 	u32 epint_reg;
3856 
3857 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3858 		DOEPCTL(hs_ep->index);
3859 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3860 		DOEPINT(hs_ep->index);
3861 
3862 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3863 		hs_ep->name);
3864 
3865 	if (hs_ep->dir_in) {
3866 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3867 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3868 			/* Wait for Nak effect */
3869 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3870 						    DXEPINT_INEPNAKEFF, 100))
3871 				dev_warn(hsotg->dev,
3872 					 "%s: timeout DIEPINT.NAKEFF\n",
3873 					 __func__);
3874 		} else {
3875 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3876 			/* Wait for Nak effect */
3877 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3878 						    GINTSTS_GINNAKEFF, 100))
3879 				dev_warn(hsotg->dev,
3880 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3881 					 __func__);
3882 		}
3883 	} else {
3884 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3885 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3886 
3887 		/* Wait for global nak to take effect */
3888 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3889 					    GINTSTS_GOUTNAKEFF, 100))
3890 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3891 				 __func__);
3892 	}
3893 
3894 	/* Disable ep */
3895 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3896 
3897 	/* Wait for ep to be disabled */
3898 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3899 		dev_warn(hsotg->dev,
3900 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3901 
3902 	/* Clear EPDISBLD interrupt */
3903 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3904 
3905 	if (hs_ep->dir_in) {
3906 		unsigned short fifo_index;
3907 
3908 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3909 			fifo_index = hs_ep->fifo_index;
3910 		else
3911 			fifo_index = 0;
3912 
3913 		/* Flush TX FIFO */
3914 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3915 
3916 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3917 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3918 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3919 
3920 	} else {
3921 		/* Remove global NAKs */
3922 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3923 	}
3924 }
3925 
3926 /**
3927  * dwc2_hsotg_ep_enable - enable the given endpoint
3928  * @ep: The USB endpint to configure
3929  * @desc: The USB endpoint descriptor to configure with.
3930  *
3931  * This is called from the USB gadget code's usb_ep_enable().
3932  */
3933 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3934 				const struct usb_endpoint_descriptor *desc)
3935 {
3936 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3937 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3938 	unsigned long flags;
3939 	unsigned int index = hs_ep->index;
3940 	u32 epctrl_reg;
3941 	u32 epctrl;
3942 	u32 mps;
3943 	u32 mc;
3944 	u32 mask;
3945 	unsigned int dir_in;
3946 	unsigned int i, val, size;
3947 	int ret = 0;
3948 	unsigned char ep_type;
3949 	int desc_num;
3950 
3951 	dev_dbg(hsotg->dev,
3952 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3953 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3954 		desc->wMaxPacketSize, desc->bInterval);
3955 
3956 	/* not to be called for EP0 */
3957 	if (index == 0) {
3958 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3959 		return -EINVAL;
3960 	}
3961 
3962 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3963 	if (dir_in != hs_ep->dir_in) {
3964 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3965 		return -EINVAL;
3966 	}
3967 
3968 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3969 	mps = usb_endpoint_maxp(desc);
3970 	mc = usb_endpoint_maxp_mult(desc);
3971 
3972 	/* ISOC IN in DDMA supported bInterval up to 10 */
3973 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3974 	    dir_in && desc->bInterval > 10) {
3975 		dev_err(hsotg->dev,
3976 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3977 		return -EINVAL;
3978 	}
3979 
3980 	/* High bandwidth ISOC OUT in DDMA not supported */
3981 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3982 	    !dir_in && mc > 1) {
3983 		dev_err(hsotg->dev,
3984 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3985 		return -EINVAL;
3986 	}
3987 
3988 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3989 
3990 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3991 	epctrl = dwc2_readl(hsotg, epctrl_reg);
3992 
3993 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3994 		__func__, epctrl, epctrl_reg);
3995 
3996 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
3997 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
3998 	else
3999 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4000 
4001 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4002 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4003 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4004 			desc_num * sizeof(struct dwc2_dma_desc),
4005 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4006 		if (!hs_ep->desc_list) {
4007 			ret = -ENOMEM;
4008 			goto error2;
4009 		}
4010 	}
4011 
4012 	spin_lock_irqsave(&hsotg->lock, flags);
4013 
4014 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4015 	epctrl |= DXEPCTL_MPS(mps);
4016 
4017 	/*
4018 	 * mark the endpoint as active, otherwise the core may ignore
4019 	 * transactions entirely for this endpoint
4020 	 */
4021 	epctrl |= DXEPCTL_USBACTEP;
4022 
4023 	/* update the endpoint state */
4024 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4025 
4026 	/* default, set to non-periodic */
4027 	hs_ep->isochronous = 0;
4028 	hs_ep->periodic = 0;
4029 	hs_ep->halted = 0;
4030 	hs_ep->interval = desc->bInterval;
4031 
4032 	switch (ep_type) {
4033 	case USB_ENDPOINT_XFER_ISOC:
4034 		epctrl |= DXEPCTL_EPTYPE_ISO;
4035 		epctrl |= DXEPCTL_SETEVENFR;
4036 		hs_ep->isochronous = 1;
4037 		hs_ep->interval = 1 << (desc->bInterval - 1);
4038 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4039 		hs_ep->next_desc = 0;
4040 		hs_ep->compl_desc = 0;
4041 		if (dir_in) {
4042 			hs_ep->periodic = 1;
4043 			mask = dwc2_readl(hsotg, DIEPMSK);
4044 			mask |= DIEPMSK_NAKMSK;
4045 			dwc2_writel(hsotg, mask, DIEPMSK);
4046 		} else {
4047 			mask = dwc2_readl(hsotg, DOEPMSK);
4048 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4049 			dwc2_writel(hsotg, mask, DOEPMSK);
4050 		}
4051 		break;
4052 
4053 	case USB_ENDPOINT_XFER_BULK:
4054 		epctrl |= DXEPCTL_EPTYPE_BULK;
4055 		break;
4056 
4057 	case USB_ENDPOINT_XFER_INT:
4058 		if (dir_in)
4059 			hs_ep->periodic = 1;
4060 
4061 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4062 			hs_ep->interval = 1 << (desc->bInterval - 1);
4063 
4064 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4065 		break;
4066 
4067 	case USB_ENDPOINT_XFER_CONTROL:
4068 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4069 		break;
4070 	}
4071 
4072 	/*
4073 	 * if the hardware has dedicated fifos, we must give each IN EP
4074 	 * a unique tx-fifo even if it is non-periodic.
4075 	 */
4076 	if (dir_in && hsotg->dedicated_fifos) {
4077 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4078 		u32 fifo_index = 0;
4079 		u32 fifo_size = UINT_MAX;
4080 
4081 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4082 		for (i = 1; i <= fifo_count; ++i) {
4083 			if (hsotg->fifo_map & (1 << i))
4084 				continue;
4085 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4086 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4087 			if (val < size)
4088 				continue;
4089 			/* Search for smallest acceptable fifo */
4090 			if (val < fifo_size) {
4091 				fifo_size = val;
4092 				fifo_index = i;
4093 			}
4094 		}
4095 		if (!fifo_index) {
4096 			dev_err(hsotg->dev,
4097 				"%s: No suitable fifo found\n", __func__);
4098 			ret = -ENOMEM;
4099 			goto error1;
4100 		}
4101 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4102 		hsotg->fifo_map |= 1 << fifo_index;
4103 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4104 		hs_ep->fifo_index = fifo_index;
4105 		hs_ep->fifo_size = fifo_size;
4106 	}
4107 
4108 	/* for non control endpoints, set PID to D0 */
4109 	if (index && !hs_ep->isochronous)
4110 		epctrl |= DXEPCTL_SETD0PID;
4111 
4112 	/* WA for Full speed ISOC IN in DDMA mode.
4113 	 * By Clear NAK status of EP, core will send ZLP
4114 	 * to IN token and assert NAK interrupt relying
4115 	 * on TxFIFO status only
4116 	 */
4117 
4118 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4119 	    hs_ep->isochronous && dir_in) {
4120 		/* The WA applies only to core versions from 2.72a
4121 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4122 		 * and HS_IOT_1.00a.
4123 		 */
4124 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4125 
4126 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4127 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4128 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4129 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4130 			epctrl |= DXEPCTL_CNAK;
4131 	}
4132 
4133 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4134 		__func__, epctrl);
4135 
4136 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4137 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4138 		__func__, dwc2_readl(hsotg, epctrl_reg));
4139 
4140 	/* enable the endpoint interrupt */
4141 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4142 
4143 error1:
4144 	spin_unlock_irqrestore(&hsotg->lock, flags);
4145 
4146 error2:
4147 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4148 		dmam_free_coherent(hsotg->dev, desc_num *
4149 			sizeof(struct dwc2_dma_desc),
4150 			hs_ep->desc_list, hs_ep->desc_list_dma);
4151 		hs_ep->desc_list = NULL;
4152 	}
4153 
4154 	return ret;
4155 }
4156 
4157 /**
4158  * dwc2_hsotg_ep_disable - disable given endpoint
4159  * @ep: The endpoint to disable.
4160  */
4161 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4162 {
4163 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4164 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4165 	int dir_in = hs_ep->dir_in;
4166 	int index = hs_ep->index;
4167 	u32 epctrl_reg;
4168 	u32 ctrl;
4169 
4170 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4171 
4172 	if (ep == &hsotg->eps_out[0]->ep) {
4173 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4174 		return -EINVAL;
4175 	}
4176 
4177 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4178 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4179 		return -EINVAL;
4180 	}
4181 
4182 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4183 
4184 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4185 
4186 	if (ctrl & DXEPCTL_EPENA)
4187 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4188 
4189 	ctrl &= ~DXEPCTL_EPENA;
4190 	ctrl &= ~DXEPCTL_USBACTEP;
4191 	ctrl |= DXEPCTL_SNAK;
4192 
4193 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4194 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4195 
4196 	/* disable endpoint interrupts */
4197 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4198 
4199 	/* terminate all requests with shutdown */
4200 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4201 
4202 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4203 	hs_ep->fifo_index = 0;
4204 	hs_ep->fifo_size = 0;
4205 
4206 	return 0;
4207 }
4208 
4209 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4210 {
4211 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4212 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4213 	unsigned long flags;
4214 	int ret;
4215 
4216 	spin_lock_irqsave(&hsotg->lock, flags);
4217 	ret = dwc2_hsotg_ep_disable(ep);
4218 	spin_unlock_irqrestore(&hsotg->lock, flags);
4219 	return ret;
4220 }
4221 
4222 /**
4223  * on_list - check request is on the given endpoint
4224  * @ep: The endpoint to check.
4225  * @test: The request to test if it is on the endpoint.
4226  */
4227 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4228 {
4229 	struct dwc2_hsotg_req *req, *treq;
4230 
4231 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4232 		if (req == test)
4233 			return true;
4234 	}
4235 
4236 	return false;
4237 }
4238 
4239 /**
4240  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4241  * @ep: The endpoint to dequeue.
4242  * @req: The request to be removed from a queue.
4243  */
4244 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4245 {
4246 	struct dwc2_hsotg_req *hs_req = our_req(req);
4247 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4248 	struct dwc2_hsotg *hs = hs_ep->parent;
4249 	unsigned long flags;
4250 
4251 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4252 
4253 	spin_lock_irqsave(&hs->lock, flags);
4254 
4255 	if (!on_list(hs_ep, hs_req)) {
4256 		spin_unlock_irqrestore(&hs->lock, flags);
4257 		return -EINVAL;
4258 	}
4259 
4260 	/* Dequeue already started request */
4261 	if (req == &hs_ep->req->req)
4262 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4263 
4264 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4265 	spin_unlock_irqrestore(&hs->lock, flags);
4266 
4267 	return 0;
4268 }
4269 
4270 /**
4271  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4272  * @ep: The endpoint to set halt.
4273  * @value: Set or unset the halt.
4274  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4275  *       the endpoint is busy processing requests.
4276  *
4277  * We need to stall the endpoint immediately if request comes from set_feature
4278  * protocol command handler.
4279  */
4280 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4281 {
4282 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4283 	struct dwc2_hsotg *hs = hs_ep->parent;
4284 	int index = hs_ep->index;
4285 	u32 epreg;
4286 	u32 epctl;
4287 	u32 xfertype;
4288 
4289 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4290 
4291 	if (index == 0) {
4292 		if (value)
4293 			dwc2_hsotg_stall_ep0(hs);
4294 		else
4295 			dev_warn(hs->dev,
4296 				 "%s: can't clear halt on ep0\n", __func__);
4297 		return 0;
4298 	}
4299 
4300 	if (hs_ep->isochronous) {
4301 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4302 		return -EINVAL;
4303 	}
4304 
4305 	if (!now && value && !list_empty(&hs_ep->queue)) {
4306 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4307 			ep->name);
4308 		return -EAGAIN;
4309 	}
4310 
4311 	if (hs_ep->dir_in) {
4312 		epreg = DIEPCTL(index);
4313 		epctl = dwc2_readl(hs, epreg);
4314 
4315 		if (value) {
4316 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4317 			if (epctl & DXEPCTL_EPENA)
4318 				epctl |= DXEPCTL_EPDIS;
4319 		} else {
4320 			epctl &= ~DXEPCTL_STALL;
4321 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4322 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4323 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4324 				epctl |= DXEPCTL_SETD0PID;
4325 		}
4326 		dwc2_writel(hs, epctl, epreg);
4327 	} else {
4328 		epreg = DOEPCTL(index);
4329 		epctl = dwc2_readl(hs, epreg);
4330 
4331 		if (value) {
4332 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4333 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4334 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4335 		} else {
4336 			epctl &= ~DXEPCTL_STALL;
4337 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4338 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4339 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4340 				epctl |= DXEPCTL_SETD0PID;
4341 			dwc2_writel(hs, epctl, epreg);
4342 		}
4343 	}
4344 
4345 	hs_ep->halted = value;
4346 	return 0;
4347 }
4348 
4349 /**
4350  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4351  * @ep: The endpoint to set halt.
4352  * @value: Set or unset the halt.
4353  */
4354 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4355 {
4356 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4357 	struct dwc2_hsotg *hs = hs_ep->parent;
4358 	unsigned long flags = 0;
4359 	int ret = 0;
4360 
4361 	spin_lock_irqsave(&hs->lock, flags);
4362 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4363 	spin_unlock_irqrestore(&hs->lock, flags);
4364 
4365 	return ret;
4366 }
4367 
4368 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4369 	.enable		= dwc2_hsotg_ep_enable,
4370 	.disable	= dwc2_hsotg_ep_disable_lock,
4371 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4372 	.free_request	= dwc2_hsotg_ep_free_request,
4373 	.queue		= dwc2_hsotg_ep_queue_lock,
4374 	.dequeue	= dwc2_hsotg_ep_dequeue,
4375 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4376 	/* note, don't believe we have any call for the fifo routines */
4377 };
4378 
4379 /**
4380  * dwc2_hsotg_init - initialize the usb core
4381  * @hsotg: The driver state
4382  */
4383 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4384 {
4385 	/* unmask subset of endpoint interrupts */
4386 
4387 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4388 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4389 		    DIEPMSK);
4390 
4391 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4392 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4393 		    DOEPMSK);
4394 
4395 	dwc2_writel(hsotg, 0, DAINTMSK);
4396 
4397 	/* Be in disconnected state until gadget is registered */
4398 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4399 
4400 	/* setup fifos */
4401 
4402 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4403 		dwc2_readl(hsotg, GRXFSIZ),
4404 		dwc2_readl(hsotg, GNPTXFSIZ));
4405 
4406 	dwc2_hsotg_init_fifo(hsotg);
4407 
4408 	if (using_dma(hsotg))
4409 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4410 }
4411 
4412 /**
4413  * dwc2_hsotg_udc_start - prepare the udc for work
4414  * @gadget: The usb gadget state
4415  * @driver: The usb gadget driver
4416  *
4417  * Perform initialization to prepare udc device and driver
4418  * to work.
4419  */
4420 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4421 				struct usb_gadget_driver *driver)
4422 {
4423 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4424 	unsigned long flags;
4425 	int ret;
4426 
4427 	if (!hsotg) {
4428 		pr_err("%s: called with no device\n", __func__);
4429 		return -ENODEV;
4430 	}
4431 
4432 	if (!driver) {
4433 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4434 		return -EINVAL;
4435 	}
4436 
4437 	if (driver->max_speed < USB_SPEED_FULL)
4438 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4439 
4440 	if (!driver->setup) {
4441 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4442 		return -EINVAL;
4443 	}
4444 
4445 	WARN_ON(hsotg->driver);
4446 
4447 	driver->driver.bus = NULL;
4448 	hsotg->driver = driver;
4449 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4450 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4451 
4452 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4453 		ret = dwc2_lowlevel_hw_enable(hsotg);
4454 		if (ret)
4455 			goto err;
4456 	}
4457 
4458 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4459 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4460 
4461 	spin_lock_irqsave(&hsotg->lock, flags);
4462 	if (dwc2_hw_is_device(hsotg)) {
4463 		dwc2_hsotg_init(hsotg);
4464 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4465 	}
4466 
4467 	hsotg->enabled = 0;
4468 	spin_unlock_irqrestore(&hsotg->lock, flags);
4469 
4470 	gadget->sg_supported = using_desc_dma(hsotg);
4471 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4472 
4473 	return 0;
4474 
4475 err:
4476 	hsotg->driver = NULL;
4477 	return ret;
4478 }
4479 
4480 /**
4481  * dwc2_hsotg_udc_stop - stop the udc
4482  * @gadget: The usb gadget state
4483  *
4484  * Stop udc hw block and stay tunned for future transmissions
4485  */
4486 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4487 {
4488 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4489 	unsigned long flags = 0;
4490 	int ep;
4491 
4492 	if (!hsotg)
4493 		return -ENODEV;
4494 
4495 	/* all endpoints should be shutdown */
4496 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4497 		if (hsotg->eps_in[ep])
4498 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4499 		if (hsotg->eps_out[ep])
4500 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4501 	}
4502 
4503 	spin_lock_irqsave(&hsotg->lock, flags);
4504 
4505 	hsotg->driver = NULL;
4506 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4507 	hsotg->enabled = 0;
4508 
4509 	spin_unlock_irqrestore(&hsotg->lock, flags);
4510 
4511 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4512 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4513 
4514 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4515 		dwc2_lowlevel_hw_disable(hsotg);
4516 
4517 	return 0;
4518 }
4519 
4520 /**
4521  * dwc2_hsotg_gadget_getframe - read the frame number
4522  * @gadget: The usb gadget state
4523  *
4524  * Read the {micro} frame number
4525  */
4526 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4527 {
4528 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4529 }
4530 
4531 /**
4532  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4533  * @gadget: The usb gadget state
4534  * @is_selfpowered: Whether the device is self-powered
4535  *
4536  * Set if the device is self or bus powered.
4537  */
4538 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4539 				      int is_selfpowered)
4540 {
4541 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4542 	unsigned long flags;
4543 
4544 	spin_lock_irqsave(&hsotg->lock, flags);
4545 	gadget->is_selfpowered = !!is_selfpowered;
4546 	spin_unlock_irqrestore(&hsotg->lock, flags);
4547 
4548 	return 0;
4549 }
4550 
4551 /**
4552  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4553  * @gadget: The usb gadget state
4554  * @is_on: Current state of the USB PHY
4555  *
4556  * Connect/Disconnect the USB PHY pullup
4557  */
4558 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4559 {
4560 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4561 	unsigned long flags = 0;
4562 
4563 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4564 		hsotg->op_state);
4565 
4566 	/* Don't modify pullup state while in host mode */
4567 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4568 		hsotg->enabled = is_on;
4569 		return 0;
4570 	}
4571 
4572 	spin_lock_irqsave(&hsotg->lock, flags);
4573 	if (is_on) {
4574 		hsotg->enabled = 1;
4575 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4576 		/* Enable ACG feature in device mode,if supported */
4577 		dwc2_enable_acg(hsotg);
4578 		dwc2_hsotg_core_connect(hsotg);
4579 	} else {
4580 		dwc2_hsotg_core_disconnect(hsotg);
4581 		dwc2_hsotg_disconnect(hsotg);
4582 		hsotg->enabled = 0;
4583 	}
4584 
4585 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4586 	spin_unlock_irqrestore(&hsotg->lock, flags);
4587 
4588 	return 0;
4589 }
4590 
4591 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4592 {
4593 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4594 	unsigned long flags;
4595 
4596 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4597 	spin_lock_irqsave(&hsotg->lock, flags);
4598 
4599 	/*
4600 	 * If controller is hibernated, it must exit from power_down
4601 	 * before being initialized / de-initialized
4602 	 */
4603 	if (hsotg->lx_state == DWC2_L2)
4604 		dwc2_exit_partial_power_down(hsotg, false);
4605 
4606 	if (is_active) {
4607 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4608 
4609 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4610 		if (hsotg->enabled) {
4611 			/* Enable ACG feature in device mode,if supported */
4612 			dwc2_enable_acg(hsotg);
4613 			dwc2_hsotg_core_connect(hsotg);
4614 		}
4615 	} else {
4616 		dwc2_hsotg_core_disconnect(hsotg);
4617 		dwc2_hsotg_disconnect(hsotg);
4618 	}
4619 
4620 	spin_unlock_irqrestore(&hsotg->lock, flags);
4621 	return 0;
4622 }
4623 
4624 /**
4625  * dwc2_hsotg_vbus_draw - report bMaxPower field
4626  * @gadget: The usb gadget state
4627  * @mA: Amount of current
4628  *
4629  * Report how much power the device may consume to the phy.
4630  */
4631 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4632 {
4633 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4634 
4635 	if (IS_ERR_OR_NULL(hsotg->uphy))
4636 		return -ENOTSUPP;
4637 	return usb_phy_set_power(hsotg->uphy, mA);
4638 }
4639 
4640 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4641 	.get_frame	= dwc2_hsotg_gadget_getframe,
4642 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4643 	.udc_start		= dwc2_hsotg_udc_start,
4644 	.udc_stop		= dwc2_hsotg_udc_stop,
4645 	.pullup                 = dwc2_hsotg_pullup,
4646 	.vbus_session		= dwc2_hsotg_vbus_session,
4647 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4648 };
4649 
4650 /**
4651  * dwc2_hsotg_initep - initialise a single endpoint
4652  * @hsotg: The device state.
4653  * @hs_ep: The endpoint to be initialised.
4654  * @epnum: The endpoint number
4655  * @dir_in: True if direction is in.
4656  *
4657  * Initialise the given endpoint (as part of the probe and device state
4658  * creation) to give to the gadget driver. Setup the endpoint name, any
4659  * direction information and other state that may be required.
4660  */
4661 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4662 			      struct dwc2_hsotg_ep *hs_ep,
4663 				       int epnum,
4664 				       bool dir_in)
4665 {
4666 	char *dir;
4667 
4668 	if (epnum == 0)
4669 		dir = "";
4670 	else if (dir_in)
4671 		dir = "in";
4672 	else
4673 		dir = "out";
4674 
4675 	hs_ep->dir_in = dir_in;
4676 	hs_ep->index = epnum;
4677 
4678 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4679 
4680 	INIT_LIST_HEAD(&hs_ep->queue);
4681 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4682 
4683 	/* add to the list of endpoints known by the gadget driver */
4684 	if (epnum)
4685 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4686 
4687 	hs_ep->parent = hsotg;
4688 	hs_ep->ep.name = hs_ep->name;
4689 
4690 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4691 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4692 	else
4693 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4694 					   epnum ? 1024 : EP0_MPS_LIMIT);
4695 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4696 
4697 	if (epnum == 0) {
4698 		hs_ep->ep.caps.type_control = true;
4699 	} else {
4700 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4701 			hs_ep->ep.caps.type_iso = true;
4702 			hs_ep->ep.caps.type_bulk = true;
4703 		}
4704 		hs_ep->ep.caps.type_int = true;
4705 	}
4706 
4707 	if (dir_in)
4708 		hs_ep->ep.caps.dir_in = true;
4709 	else
4710 		hs_ep->ep.caps.dir_out = true;
4711 
4712 	/*
4713 	 * if we're using dma, we need to set the next-endpoint pointer
4714 	 * to be something valid.
4715 	 */
4716 
4717 	if (using_dma(hsotg)) {
4718 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4719 
4720 		if (dir_in)
4721 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4722 		else
4723 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4724 	}
4725 }
4726 
4727 /**
4728  * dwc2_hsotg_hw_cfg - read HW configuration registers
4729  * @hsotg: Programming view of the DWC_otg controller
4730  *
4731  * Read the USB core HW configuration registers
4732  */
4733 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4734 {
4735 	u32 cfg;
4736 	u32 ep_type;
4737 	u32 i;
4738 
4739 	/* check hardware configuration */
4740 
4741 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4742 
4743 	/* Add ep0 */
4744 	hsotg->num_of_eps++;
4745 
4746 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4747 					sizeof(struct dwc2_hsotg_ep),
4748 					GFP_KERNEL);
4749 	if (!hsotg->eps_in[0])
4750 		return -ENOMEM;
4751 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4752 	hsotg->eps_out[0] = hsotg->eps_in[0];
4753 
4754 	cfg = hsotg->hw_params.dev_ep_dirs;
4755 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4756 		ep_type = cfg & 3;
4757 		/* Direction in or both */
4758 		if (!(ep_type & 2)) {
4759 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4760 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4761 			if (!hsotg->eps_in[i])
4762 				return -ENOMEM;
4763 		}
4764 		/* Direction out or both */
4765 		if (!(ep_type & 1)) {
4766 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4767 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4768 			if (!hsotg->eps_out[i])
4769 				return -ENOMEM;
4770 		}
4771 	}
4772 
4773 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4774 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4775 
4776 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4777 		 hsotg->num_of_eps,
4778 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4779 		 hsotg->fifo_mem);
4780 	return 0;
4781 }
4782 
4783 /**
4784  * dwc2_hsotg_dump - dump state of the udc
4785  * @hsotg: Programming view of the DWC_otg controller
4786  *
4787  */
4788 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4789 {
4790 #ifdef DEBUG
4791 	struct device *dev = hsotg->dev;
4792 	u32 val;
4793 	int idx;
4794 
4795 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4796 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4797 		 dwc2_readl(hsotg, DIEPMSK));
4798 
4799 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4800 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4801 
4802 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4803 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4804 
4805 	/* show periodic fifo settings */
4806 
4807 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4808 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4809 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4810 			 val >> FIFOSIZE_DEPTH_SHIFT,
4811 			 val & FIFOSIZE_STARTADDR_MASK);
4812 	}
4813 
4814 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4815 		dev_info(dev,
4816 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4817 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4818 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4819 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4820 
4821 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4822 		dev_info(dev,
4823 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4824 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4825 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4826 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4827 	}
4828 
4829 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4830 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4831 #endif
4832 }
4833 
4834 /**
4835  * dwc2_gadget_init - init function for gadget
4836  * @hsotg: Programming view of the DWC_otg controller
4837  *
4838  */
4839 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4840 {
4841 	struct device *dev = hsotg->dev;
4842 	int epnum;
4843 	int ret;
4844 
4845 	/* Dump fifo information */
4846 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4847 		hsotg->params.g_np_tx_fifo_size);
4848 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4849 
4850 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4851 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4852 	hsotg->gadget.name = dev_name(dev);
4853 	hsotg->remote_wakeup_allowed = 0;
4854 
4855 	if (hsotg->params.lpm)
4856 		hsotg->gadget.lpm_capable = true;
4857 
4858 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4859 		hsotg->gadget.is_otg = 1;
4860 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4861 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4862 
4863 	ret = dwc2_hsotg_hw_cfg(hsotg);
4864 	if (ret) {
4865 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4866 		return ret;
4867 	}
4868 
4869 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4870 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4871 	if (!hsotg->ctrl_buff)
4872 		return -ENOMEM;
4873 
4874 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4875 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4876 	if (!hsotg->ep0_buff)
4877 		return -ENOMEM;
4878 
4879 	if (using_desc_dma(hsotg)) {
4880 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4881 		if (ret < 0)
4882 			return ret;
4883 	}
4884 
4885 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4886 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4887 	if (ret < 0) {
4888 		dev_err(dev, "cannot claim IRQ for gadget\n");
4889 		return ret;
4890 	}
4891 
4892 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4893 
4894 	if (hsotg->num_of_eps == 0) {
4895 		dev_err(dev, "wrong number of EPs (zero)\n");
4896 		return -EINVAL;
4897 	}
4898 
4899 	/* setup endpoint information */
4900 
4901 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4902 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4903 
4904 	/* allocate EP0 request */
4905 
4906 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4907 						     GFP_KERNEL);
4908 	if (!hsotg->ctrl_req) {
4909 		dev_err(dev, "failed to allocate ctrl req\n");
4910 		return -ENOMEM;
4911 	}
4912 
4913 	/* initialise the endpoints now the core has been initialised */
4914 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4915 		if (hsotg->eps_in[epnum])
4916 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4917 					  epnum, 1);
4918 		if (hsotg->eps_out[epnum])
4919 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4920 					  epnum, 0);
4921 	}
4922 
4923 	dwc2_hsotg_dump(hsotg);
4924 
4925 	return 0;
4926 }
4927 
4928 /**
4929  * dwc2_hsotg_remove - remove function for hsotg driver
4930  * @hsotg: Programming view of the DWC_otg controller
4931  *
4932  */
4933 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4934 {
4935 	usb_del_gadget_udc(&hsotg->gadget);
4936 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4937 
4938 	return 0;
4939 }
4940 
4941 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4942 {
4943 	unsigned long flags;
4944 
4945 	if (hsotg->lx_state != DWC2_L0)
4946 		return 0;
4947 
4948 	if (hsotg->driver) {
4949 		int ep;
4950 
4951 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4952 			 hsotg->driver->driver.name);
4953 
4954 		spin_lock_irqsave(&hsotg->lock, flags);
4955 		if (hsotg->enabled)
4956 			dwc2_hsotg_core_disconnect(hsotg);
4957 		dwc2_hsotg_disconnect(hsotg);
4958 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4959 		spin_unlock_irqrestore(&hsotg->lock, flags);
4960 
4961 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4962 			if (hsotg->eps_in[ep])
4963 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4964 			if (hsotg->eps_out[ep])
4965 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4966 		}
4967 	}
4968 
4969 	return 0;
4970 }
4971 
4972 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4973 {
4974 	unsigned long flags;
4975 
4976 	if (hsotg->lx_state == DWC2_L2)
4977 		return 0;
4978 
4979 	if (hsotg->driver) {
4980 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4981 			 hsotg->driver->driver.name);
4982 
4983 		spin_lock_irqsave(&hsotg->lock, flags);
4984 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4985 		if (hsotg->enabled) {
4986 			/* Enable ACG feature in device mode,if supported */
4987 			dwc2_enable_acg(hsotg);
4988 			dwc2_hsotg_core_connect(hsotg);
4989 		}
4990 		spin_unlock_irqrestore(&hsotg->lock, flags);
4991 	}
4992 
4993 	return 0;
4994 }
4995 
4996 /**
4997  * dwc2_backup_device_registers() - Backup controller device registers.
4998  * When suspending usb bus, registers needs to be backuped
4999  * if controller power is disabled once suspended.
5000  *
5001  * @hsotg: Programming view of the DWC_otg controller
5002  */
5003 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5004 {
5005 	struct dwc2_dregs_backup *dr;
5006 	int i;
5007 
5008 	dev_dbg(hsotg->dev, "%s\n", __func__);
5009 
5010 	/* Backup dev regs */
5011 	dr = &hsotg->dr_backup;
5012 
5013 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5014 	dr->dctl = dwc2_readl(hsotg, DCTL);
5015 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5016 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5017 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5018 
5019 	for (i = 0; i < hsotg->num_of_eps; i++) {
5020 		/* Backup IN EPs */
5021 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5022 
5023 		/* Ensure DATA PID is correctly configured */
5024 		if (dr->diepctl[i] & DXEPCTL_DPID)
5025 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5026 		else
5027 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5028 
5029 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5030 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5031 
5032 		/* Backup OUT EPs */
5033 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5034 
5035 		/* Ensure DATA PID is correctly configured */
5036 		if (dr->doepctl[i] & DXEPCTL_DPID)
5037 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5038 		else
5039 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5040 
5041 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5042 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5043 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5044 	}
5045 	dr->valid = true;
5046 	return 0;
5047 }
5048 
5049 /**
5050  * dwc2_restore_device_registers() - Restore controller device registers.
5051  * When resuming usb bus, device registers needs to be restored
5052  * if controller power were disabled.
5053  *
5054  * @hsotg: Programming view of the DWC_otg controller
5055  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5056  *
5057  * Return: 0 if successful, negative error code otherwise
5058  */
5059 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5060 {
5061 	struct dwc2_dregs_backup *dr;
5062 	int i;
5063 
5064 	dev_dbg(hsotg->dev, "%s\n", __func__);
5065 
5066 	/* Restore dev regs */
5067 	dr = &hsotg->dr_backup;
5068 	if (!dr->valid) {
5069 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5070 			__func__);
5071 		return -EINVAL;
5072 	}
5073 	dr->valid = false;
5074 
5075 	if (!remote_wakeup)
5076 		dwc2_writel(hsotg, dr->dctl, DCTL);
5077 
5078 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5079 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5080 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5081 
5082 	for (i = 0; i < hsotg->num_of_eps; i++) {
5083 		/* Restore IN EPs */
5084 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5085 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5086 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5087 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5088 		 * hibernation wrong value read and saved from DIEPDMAx,
5089 		 * as result BNA interrupt asserted on hibernation exit
5090 		 * by restoring from saved area.
5091 		 */
5092 		if (hsotg->params.g_dma_desc &&
5093 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5094 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5095 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5096 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5097 		/* Restore OUT EPs */
5098 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5099 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5100 		 * hibernation wrong value read and saved from DOEPDMAx,
5101 		 * as result BNA interrupt asserted on hibernation exit
5102 		 * by restoring from saved area.
5103 		 */
5104 		if (hsotg->params.g_dma_desc &&
5105 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5106 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5107 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5108 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5109 	}
5110 
5111 	return 0;
5112 }
5113 
5114 /**
5115  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5116  *
5117  * @hsotg: Programming view of DWC_otg controller
5118  *
5119  */
5120 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5121 {
5122 	u32 val;
5123 
5124 	if (!hsotg->params.lpm)
5125 		return;
5126 
5127 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5128 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5129 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5130 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5131 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5132 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5133 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5134 	dwc2_writel(hsotg, val, GLPMCFG);
5135 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5136 
5137 	/* Unmask WKUP_ALERT Interrupt */
5138 	if (hsotg->params.service_interval)
5139 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5140 }
5141 
5142 /**
5143  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5144  *
5145  * @hsotg: Programming view of DWC_otg controller
5146  *
5147  */
5148 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5149 {
5150 	u32 val = 0;
5151 
5152 	val |= GREFCLK_REF_CLK_MODE;
5153 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5154 	val |= hsotg->params.sof_cnt_wkup_alert <<
5155 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5156 
5157 	dwc2_writel(hsotg, val, GREFCLK);
5158 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5159 }
5160 
5161 /**
5162  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5163  *
5164  * @hsotg: Programming view of the DWC_otg controller
5165  *
5166  * Return non-zero if failed to enter to hibernation.
5167  */
5168 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5169 {
5170 	u32 gpwrdn;
5171 	int ret = 0;
5172 
5173 	/* Change to L2(suspend) state */
5174 	hsotg->lx_state = DWC2_L2;
5175 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5176 	ret = dwc2_backup_global_registers(hsotg);
5177 	if (ret) {
5178 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5179 			__func__);
5180 		return ret;
5181 	}
5182 	ret = dwc2_backup_device_registers(hsotg);
5183 	if (ret) {
5184 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5185 			__func__);
5186 		return ret;
5187 	}
5188 
5189 	gpwrdn = GPWRDN_PWRDNRSTN;
5190 	gpwrdn |= GPWRDN_PMUACTV;
5191 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5192 	udelay(10);
5193 
5194 	/* Set flag to indicate that we are in hibernation */
5195 	hsotg->hibernated = 1;
5196 
5197 	/* Enable interrupts from wake up logic */
5198 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5199 	gpwrdn |= GPWRDN_PMUINTSEL;
5200 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5201 	udelay(10);
5202 
5203 	/* Unmask device mode interrupts in GPWRDN */
5204 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5205 	gpwrdn |= GPWRDN_RST_DET_MSK;
5206 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5207 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5208 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5209 	udelay(10);
5210 
5211 	/* Enable Power Down Clamp */
5212 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5213 	gpwrdn |= GPWRDN_PWRDNCLMP;
5214 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5215 	udelay(10);
5216 
5217 	/* Switch off VDD */
5218 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5219 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5220 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5221 	udelay(10);
5222 
5223 	/* Save gpwrdn register for further usage if stschng interrupt */
5224 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5225 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5226 
5227 	return ret;
5228 }
5229 
5230 /**
5231  * dwc2_gadget_exit_hibernation()
5232  * This function is for exiting from Device mode hibernation by host initiated
5233  * resume/reset and device initiated remote-wakeup.
5234  *
5235  * @hsotg: Programming view of the DWC_otg controller
5236  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5237  * @reset: indicates whether resume is initiated by Reset.
5238  *
5239  * Return non-zero if failed to exit from hibernation.
5240  */
5241 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5242 				 int rem_wakeup, int reset)
5243 {
5244 	u32 pcgcctl;
5245 	u32 gpwrdn;
5246 	u32 dctl;
5247 	int ret = 0;
5248 	struct dwc2_gregs_backup *gr;
5249 	struct dwc2_dregs_backup *dr;
5250 
5251 	gr = &hsotg->gr_backup;
5252 	dr = &hsotg->dr_backup;
5253 
5254 	if (!hsotg->hibernated) {
5255 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5256 		return 1;
5257 	}
5258 	dev_dbg(hsotg->dev,
5259 		"%s: called with rem_wakeup = %d reset = %d\n",
5260 		__func__, rem_wakeup, reset);
5261 
5262 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5263 
5264 	if (!reset) {
5265 		/* Clear all pending interupts */
5266 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5267 	}
5268 
5269 	/* De-assert Restore */
5270 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5271 	gpwrdn &= ~GPWRDN_RESTORE;
5272 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5273 	udelay(10);
5274 
5275 	if (!rem_wakeup) {
5276 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5277 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5278 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5279 	}
5280 
5281 	/* Restore GUSBCFG, DCFG and DCTL */
5282 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5283 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5284 	dwc2_writel(hsotg, dr->dctl, DCTL);
5285 
5286 	/* De-assert Wakeup Logic */
5287 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5288 	gpwrdn &= ~GPWRDN_PMUACTV;
5289 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5290 
5291 	if (rem_wakeup) {
5292 		udelay(10);
5293 		/* Start Remote Wakeup Signaling */
5294 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5295 	} else {
5296 		udelay(50);
5297 		/* Set Device programming done bit */
5298 		dctl = dwc2_readl(hsotg, DCTL);
5299 		dctl |= DCTL_PWRONPRGDONE;
5300 		dwc2_writel(hsotg, dctl, DCTL);
5301 	}
5302 	/* Wait for interrupts which must be cleared */
5303 	mdelay(2);
5304 	/* Clear all pending interupts */
5305 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5306 
5307 	/* Restore global registers */
5308 	ret = dwc2_restore_global_registers(hsotg);
5309 	if (ret) {
5310 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5311 			__func__);
5312 		return ret;
5313 	}
5314 
5315 	/* Restore device registers */
5316 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5317 	if (ret) {
5318 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5319 			__func__);
5320 		return ret;
5321 	}
5322 
5323 	if (rem_wakeup) {
5324 		mdelay(10);
5325 		dctl = dwc2_readl(hsotg, DCTL);
5326 		dctl &= ~DCTL_RMTWKUPSIG;
5327 		dwc2_writel(hsotg, dctl, DCTL);
5328 	}
5329 
5330 	hsotg->hibernated = 0;
5331 	hsotg->lx_state = DWC2_L0;
5332 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5333 
5334 	return ret;
5335 }
5336