xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 
264 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
265 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
266 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
267 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
268 	}
269 }
270 
271 /**
272  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
273  * TX FIFOs
274  *
275  * @hsotg: Programming view of the DWC_otg controller
276  */
277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
278 {
279 	int tx_fifo_count;
280 	int tx_fifo_depth;
281 
282 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
283 
284 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
285 
286 	if (!tx_fifo_count)
287 		return tx_fifo_depth;
288 	else
289 		return tx_fifo_depth / tx_fifo_count;
290 }
291 
292 /**
293  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
294  * @hsotg: The device instance.
295  */
296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
297 {
298 	unsigned int ep;
299 	unsigned int addr;
300 	int timeout;
301 
302 	u32 val;
303 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
304 
305 	/* Reset fifo map if not correctly cleared during previous session */
306 	WARN_ON(hsotg->fifo_map);
307 	hsotg->fifo_map = 0;
308 
309 	/* set RX/NPTX FIFO sizes */
310 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
311 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
312 		    FIFOSIZE_STARTADDR_SHIFT) |
313 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
314 		    GNPTXFSIZ);
315 
316 	/*
317 	 * arange all the rest of the TX FIFOs, as some versions of this
318 	 * block have overlapping default addresses. This also ensures
319 	 * that if the settings have been changed, then they are set to
320 	 * known values.
321 	 */
322 
323 	/* start at the end of the GNPTXFSIZ, rounded up */
324 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
325 
326 	/*
327 	 * Configure fifos sizes from provided configuration and assign
328 	 * them to endpoints dynamically according to maxpacket size value of
329 	 * given endpoint.
330 	 */
331 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
332 		if (!txfsz[ep])
333 			continue;
334 		val = addr;
335 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
336 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
337 			  "insufficient fifo memory");
338 		addr += txfsz[ep];
339 
340 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
341 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
342 	}
343 
344 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
345 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
346 		    GDFIFOCFG);
347 	/*
348 	 * according to p428 of the design guide, we need to ensure that
349 	 * all fifos are flushed before continuing
350 	 */
351 
352 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
353 	       GRSTCTL_RXFFLSH, GRSTCTL);
354 
355 	/* wait until the fifos are both flushed */
356 	timeout = 100;
357 	while (1) {
358 		val = dwc2_readl(hsotg, GRSTCTL);
359 
360 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
361 			break;
362 
363 		if (--timeout == 0) {
364 			dev_err(hsotg->dev,
365 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
366 				__func__, val);
367 			break;
368 		}
369 
370 		udelay(1);
371 	}
372 
373 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
374 }
375 
376 /**
377  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
378  * @ep: USB endpoint to allocate request for.
379  * @flags: Allocation flags
380  *
381  * Allocate a new USB request structure appropriate for the specified endpoint
382  */
383 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
384 						       gfp_t flags)
385 {
386 	struct dwc2_hsotg_req *req;
387 
388 	req = kzalloc(sizeof(*req), flags);
389 	if (!req)
390 		return NULL;
391 
392 	INIT_LIST_HEAD(&req->queue);
393 
394 	return &req->req;
395 }
396 
397 /**
398  * is_ep_periodic - return true if the endpoint is in periodic mode.
399  * @hs_ep: The endpoint to query.
400  *
401  * Returns true if the endpoint is in periodic mode, meaning it is being
402  * used for an Interrupt or ISO transfer.
403  */
404 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
405 {
406 	return hs_ep->periodic;
407 }
408 
409 /**
410  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
411  * @hsotg: The device state.
412  * @hs_ep: The endpoint for the request
413  * @hs_req: The request being processed.
414  *
415  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
416  * of a request to ensure the buffer is ready for access by the caller.
417  */
418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
419 				 struct dwc2_hsotg_ep *hs_ep,
420 				struct dwc2_hsotg_req *hs_req)
421 {
422 	struct usb_request *req = &hs_req->req;
423 
424 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
425 }
426 
427 /*
428  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
429  * for Control endpoint
430  * @hsotg: The device state.
431  *
432  * This function will allocate 4 descriptor chains for EP 0: 2 for
433  * Setup stage, per one for IN and OUT data/status transactions.
434  */
435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
436 {
437 	hsotg->setup_desc[0] =
438 		dmam_alloc_coherent(hsotg->dev,
439 				    sizeof(struct dwc2_dma_desc),
440 				    &hsotg->setup_desc_dma[0],
441 				    GFP_KERNEL);
442 	if (!hsotg->setup_desc[0])
443 		goto fail;
444 
445 	hsotg->setup_desc[1] =
446 		dmam_alloc_coherent(hsotg->dev,
447 				    sizeof(struct dwc2_dma_desc),
448 				    &hsotg->setup_desc_dma[1],
449 				    GFP_KERNEL);
450 	if (!hsotg->setup_desc[1])
451 		goto fail;
452 
453 	hsotg->ctrl_in_desc =
454 		dmam_alloc_coherent(hsotg->dev,
455 				    sizeof(struct dwc2_dma_desc),
456 				    &hsotg->ctrl_in_desc_dma,
457 				    GFP_KERNEL);
458 	if (!hsotg->ctrl_in_desc)
459 		goto fail;
460 
461 	hsotg->ctrl_out_desc =
462 		dmam_alloc_coherent(hsotg->dev,
463 				    sizeof(struct dwc2_dma_desc),
464 				    &hsotg->ctrl_out_desc_dma,
465 				    GFP_KERNEL);
466 	if (!hsotg->ctrl_out_desc)
467 		goto fail;
468 
469 	return 0;
470 
471 fail:
472 	return -ENOMEM;
473 }
474 
475 /**
476  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
477  * @hsotg: The controller state.
478  * @hs_ep: The endpoint we're going to write for.
479  * @hs_req: The request to write data for.
480  *
481  * This is called when the TxFIFO has some space in it to hold a new
482  * transmission and we have something to give it. The actual setup of
483  * the data size is done elsewhere, so all we have to do is to actually
484  * write the data.
485  *
486  * The return value is zero if there is more space (or nothing was done)
487  * otherwise -ENOSPC is returned if the FIFO space was used up.
488  *
489  * This routine is only needed for PIO
490  */
491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
492 				 struct dwc2_hsotg_ep *hs_ep,
493 				struct dwc2_hsotg_req *hs_req)
494 {
495 	bool periodic = is_ep_periodic(hs_ep);
496 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
497 	int buf_pos = hs_req->req.actual;
498 	int to_write = hs_ep->size_loaded;
499 	void *data;
500 	int can_write;
501 	int pkt_round;
502 	int max_transfer;
503 
504 	to_write -= (buf_pos - hs_ep->last_load);
505 
506 	/* if there's nothing to write, get out early */
507 	if (to_write == 0)
508 		return 0;
509 
510 	if (periodic && !hsotg->dedicated_fifos) {
511 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
512 		int size_left;
513 		int size_done;
514 
515 		/*
516 		 * work out how much data was loaded so we can calculate
517 		 * how much data is left in the fifo.
518 		 */
519 
520 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
521 
522 		/*
523 		 * if shared fifo, we cannot write anything until the
524 		 * previous data has been completely sent.
525 		 */
526 		if (hs_ep->fifo_load != 0) {
527 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
528 			return -ENOSPC;
529 		}
530 
531 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
532 			__func__, size_left,
533 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
534 
535 		/* how much of the data has moved */
536 		size_done = hs_ep->size_loaded - size_left;
537 
538 		/* how much data is left in the fifo */
539 		can_write = hs_ep->fifo_load - size_done;
540 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
541 			__func__, can_write);
542 
543 		can_write = hs_ep->fifo_size - can_write;
544 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
545 			__func__, can_write);
546 
547 		if (can_write <= 0) {
548 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
549 			return -ENOSPC;
550 		}
551 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
552 		can_write = dwc2_readl(hsotg,
553 				       DTXFSTS(hs_ep->fifo_index));
554 
555 		can_write &= 0xffff;
556 		can_write *= 4;
557 	} else {
558 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
559 			dev_dbg(hsotg->dev,
560 				"%s: no queue slots available (0x%08x)\n",
561 				__func__, gnptxsts);
562 
563 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
564 			return -ENOSPC;
565 		}
566 
567 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
568 		can_write *= 4;	/* fifo size is in 32bit quantities. */
569 	}
570 
571 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
572 
573 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
574 		__func__, gnptxsts, can_write, to_write, max_transfer);
575 
576 	/*
577 	 * limit to 512 bytes of data, it seems at least on the non-periodic
578 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
579 	 * fragment of the end of the transfer in it.
580 	 */
581 	if (can_write > 512 && !periodic)
582 		can_write = 512;
583 
584 	/*
585 	 * limit the write to one max-packet size worth of data, but allow
586 	 * the transfer to return that it did not run out of fifo space
587 	 * doing it.
588 	 */
589 	if (to_write > max_transfer) {
590 		to_write = max_transfer;
591 
592 		/* it's needed only when we do not use dedicated fifos */
593 		if (!hsotg->dedicated_fifos)
594 			dwc2_hsotg_en_gsint(hsotg,
595 					    periodic ? GINTSTS_PTXFEMP :
596 					   GINTSTS_NPTXFEMP);
597 	}
598 
599 	/* see if we can write data */
600 
601 	if (to_write > can_write) {
602 		to_write = can_write;
603 		pkt_round = to_write % max_transfer;
604 
605 		/*
606 		 * Round the write down to an
607 		 * exact number of packets.
608 		 *
609 		 * Note, we do not currently check to see if we can ever
610 		 * write a full packet or not to the FIFO.
611 		 */
612 
613 		if (pkt_round)
614 			to_write -= pkt_round;
615 
616 		/*
617 		 * enable correct FIFO interrupt to alert us when there
618 		 * is more room left.
619 		 */
620 
621 		/* it's needed only when we do not use dedicated fifos */
622 		if (!hsotg->dedicated_fifos)
623 			dwc2_hsotg_en_gsint(hsotg,
624 					    periodic ? GINTSTS_PTXFEMP :
625 					   GINTSTS_NPTXFEMP);
626 	}
627 
628 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
629 		to_write, hs_req->req.length, can_write, buf_pos);
630 
631 	if (to_write <= 0)
632 		return -ENOSPC;
633 
634 	hs_req->req.actual = buf_pos + to_write;
635 	hs_ep->total_data += to_write;
636 
637 	if (periodic)
638 		hs_ep->fifo_load += to_write;
639 
640 	to_write = DIV_ROUND_UP(to_write, 4);
641 	data = hs_req->req.buf + buf_pos;
642 
643 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
644 
645 	return (to_write >= can_write) ? -ENOSPC : 0;
646 }
647 
648 /**
649  * get_ep_limit - get the maximum data legnth for this endpoint
650  * @hs_ep: The endpoint
651  *
652  * Return the maximum data that can be queued in one go on a given endpoint
653  * so that transfers that are too long can be split.
654  */
655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
656 {
657 	int index = hs_ep->index;
658 	unsigned int maxsize;
659 	unsigned int maxpkt;
660 
661 	if (index != 0) {
662 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
663 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
664 	} else {
665 		maxsize = 64 + 64;
666 		if (hs_ep->dir_in)
667 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
668 		else
669 			maxpkt = 2;
670 	}
671 
672 	/* we made the constant loading easier above by using +1 */
673 	maxpkt--;
674 	maxsize--;
675 
676 	/*
677 	 * constrain by packet count if maxpkts*pktsize is greater
678 	 * than the length register size.
679 	 */
680 
681 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
682 		maxsize = maxpkt * hs_ep->ep.maxpacket;
683 
684 	return maxsize;
685 }
686 
687 /**
688  * dwc2_hsotg_read_frameno - read current frame number
689  * @hsotg: The device instance
690  *
691  * Return the current frame number
692  */
693 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
694 {
695 	u32 dsts;
696 
697 	dsts = dwc2_readl(hsotg, DSTS);
698 	dsts &= DSTS_SOFFN_MASK;
699 	dsts >>= DSTS_SOFFN_SHIFT;
700 
701 	return dsts;
702 }
703 
704 /**
705  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
706  * DMA descriptor chain prepared for specific endpoint
707  * @hs_ep: The endpoint
708  *
709  * Return the maximum data that can be queued in one go on a given endpoint
710  * depending on its descriptor chain capacity so that transfers that
711  * are too long can be split.
712  */
713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
714 {
715 	int is_isoc = hs_ep->isochronous;
716 	unsigned int maxsize;
717 
718 	if (is_isoc)
719 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
720 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
721 					   MAX_DMA_DESC_NUM_HS_ISOC;
722 	else
723 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
724 
725 	return maxsize;
726 }
727 
728 /*
729  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
730  * @hs_ep: The endpoint
731  * @mask: RX/TX bytes mask to be defined
732  *
733  * Returns maximum data payload for one descriptor after analyzing endpoint
734  * characteristics.
735  * DMA descriptor transfer bytes limit depends on EP type:
736  * Control out - MPS,
737  * Isochronous - descriptor rx/tx bytes bitfield limit,
738  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
739  * have concatenations from various descriptors within one packet.
740  *
741  * Selects corresponding mask for RX/TX bytes as well.
742  */
743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
744 {
745 	u32 mps = hs_ep->ep.maxpacket;
746 	int dir_in = hs_ep->dir_in;
747 	u32 desc_size = 0;
748 
749 	if (!hs_ep->index && !dir_in) {
750 		desc_size = mps;
751 		*mask = DEV_DMA_NBYTES_MASK;
752 	} else if (hs_ep->isochronous) {
753 		if (dir_in) {
754 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
755 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
756 		} else {
757 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
758 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
759 		}
760 	} else {
761 		desc_size = DEV_DMA_NBYTES_LIMIT;
762 		*mask = DEV_DMA_NBYTES_MASK;
763 
764 		/* Round down desc_size to be mps multiple */
765 		desc_size -= desc_size % mps;
766 	}
767 
768 	return desc_size;
769 }
770 
771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
772 						 struct dwc2_dma_desc **desc,
773 						 dma_addr_t dma_buff,
774 						 unsigned int len,
775 						 bool true_last)
776 {
777 	int dir_in = hs_ep->dir_in;
778 	u32 mps = hs_ep->ep.maxpacket;
779 	u32 maxsize = 0;
780 	u32 offset = 0;
781 	u32 mask = 0;
782 	int i;
783 
784 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
785 
786 	hs_ep->desc_count = (len / maxsize) +
787 				((len % maxsize) ? 1 : 0);
788 	if (len == 0)
789 		hs_ep->desc_count = 1;
790 
791 	for (i = 0; i < hs_ep->desc_count; ++i) {
792 		(*desc)->status = 0;
793 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
794 				 << DEV_DMA_BUFF_STS_SHIFT);
795 
796 		if (len > maxsize) {
797 			if (!hs_ep->index && !dir_in)
798 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
799 
800 			(*desc)->status |=
801 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
802 			(*desc)->buf = dma_buff + offset;
803 
804 			len -= maxsize;
805 			offset += maxsize;
806 		} else {
807 			if (true_last)
808 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
809 
810 			if (dir_in)
811 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
812 					((hs_ep->send_zlp && true_last) ?
813 					DEV_DMA_SHORT : 0);
814 
815 			(*desc)->status |=
816 				len << DEV_DMA_NBYTES_SHIFT & mask;
817 			(*desc)->buf = dma_buff + offset;
818 		}
819 
820 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
821 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
822 				 << DEV_DMA_BUFF_STS_SHIFT);
823 		(*desc)++;
824 	}
825 }
826 
827 /*
828  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
829  * @hs_ep: The endpoint
830  * @ureq: Request to transfer
831  * @offset: offset in bytes
832  * @len: Length of the transfer
833  *
834  * This function will iterate over descriptor chain and fill its entries
835  * with corresponding information based on transfer data.
836  */
837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
838 						 dma_addr_t dma_buff,
839 						 unsigned int len)
840 {
841 	struct usb_request *ureq = NULL;
842 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
843 	struct scatterlist *sg;
844 	int i;
845 	u8 desc_count = 0;
846 
847 	if (hs_ep->req)
848 		ureq = &hs_ep->req->req;
849 
850 	/* non-DMA sg buffer */
851 	if (!ureq || !ureq->num_sgs) {
852 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
853 			dma_buff, len, true);
854 		return;
855 	}
856 
857 	/* DMA sg buffer */
858 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
859 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
860 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
861 			sg_is_last(sg));
862 		desc_count += hs_ep->desc_count;
863 	}
864 
865 	hs_ep->desc_count = desc_count;
866 }
867 
868 /*
869  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
870  * @hs_ep: The isochronous endpoint.
871  * @dma_buff: usb requests dma buffer.
872  * @len: usb request transfer length.
873  *
874  * Fills next free descriptor with the data of the arrived usb request,
875  * frame info, sets Last and IOC bits increments next_desc. If filled
876  * descriptor is not the first one, removes L bit from the previous descriptor
877  * status.
878  */
879 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
880 				      dma_addr_t dma_buff, unsigned int len)
881 {
882 	struct dwc2_dma_desc *desc;
883 	struct dwc2_hsotg *hsotg = hs_ep->parent;
884 	u32 index;
885 	u32 maxsize = 0;
886 	u32 mask = 0;
887 	u8 pid = 0;
888 
889 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
890 
891 	index = hs_ep->next_desc;
892 	desc = &hs_ep->desc_list[index];
893 
894 	/* Check if descriptor chain full */
895 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
896 	    DEV_DMA_BUFF_STS_HREADY) {
897 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
898 		return 1;
899 	}
900 
901 	/* Clear L bit of previous desc if more than one entries in the chain */
902 	if (hs_ep->next_desc)
903 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
904 
905 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
906 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
907 
908 	desc->status = 0;
909 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
910 
911 	desc->buf = dma_buff;
912 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
913 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
914 
915 	if (hs_ep->dir_in) {
916 		if (len)
917 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
918 		else
919 			pid = 1;
920 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
921 				 DEV_DMA_ISOC_PID_MASK) |
922 				((len % hs_ep->ep.maxpacket) ?
923 				 DEV_DMA_SHORT : 0) |
924 				((hs_ep->target_frame <<
925 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
926 				 DEV_DMA_ISOC_FRNUM_MASK);
927 	}
928 
929 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
930 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
931 
932 	/* Increment frame number by interval for IN */
933 	if (hs_ep->dir_in)
934 		dwc2_gadget_incr_frame_num(hs_ep);
935 
936 	/* Update index of last configured entry in the chain */
937 	hs_ep->next_desc++;
938 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
939 		hs_ep->next_desc = 0;
940 
941 	return 0;
942 }
943 
944 /*
945  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
946  * @hs_ep: The isochronous endpoint.
947  *
948  * Prepare descriptor chain for isochronous endpoints. Afterwards
949  * write DMA address to HW and enable the endpoint.
950  */
951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
952 {
953 	struct dwc2_hsotg *hsotg = hs_ep->parent;
954 	struct dwc2_hsotg_req *hs_req, *treq;
955 	int index = hs_ep->index;
956 	int ret;
957 	int i;
958 	u32 dma_reg;
959 	u32 depctl;
960 	u32 ctrl;
961 	struct dwc2_dma_desc *desc;
962 
963 	if (list_empty(&hs_ep->queue)) {
964 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
965 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
966 		return;
967 	}
968 
969 	/* Initialize descriptor chain by Host Busy status */
970 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
971 		desc = &hs_ep->desc_list[i];
972 		desc->status = 0;
973 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
974 				    << DEV_DMA_BUFF_STS_SHIFT);
975 	}
976 
977 	hs_ep->next_desc = 0;
978 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
979 		dma_addr_t dma_addr = hs_req->req.dma;
980 
981 		if (hs_req->req.num_sgs) {
982 			WARN_ON(hs_req->req.num_sgs > 1);
983 			dma_addr = sg_dma_address(hs_req->req.sg);
984 		}
985 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
986 						 hs_req->req.length);
987 		if (ret)
988 			break;
989 	}
990 
991 	hs_ep->compl_desc = 0;
992 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
993 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
994 
995 	/* write descriptor chain address to control register */
996 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
997 
998 	ctrl = dwc2_readl(hsotg, depctl);
999 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1000 	dwc2_writel(hsotg, ctrl, depctl);
1001 }
1002 
1003 /**
1004  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1005  * @hsotg: The controller state.
1006  * @hs_ep: The endpoint to process a request for
1007  * @hs_req: The request to start.
1008  * @continuing: True if we are doing more for the current request.
1009  *
1010  * Start the given request running by setting the endpoint registers
1011  * appropriately, and writing any data to the FIFOs.
1012  */
1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1014 				 struct dwc2_hsotg_ep *hs_ep,
1015 				struct dwc2_hsotg_req *hs_req,
1016 				bool continuing)
1017 {
1018 	struct usb_request *ureq = &hs_req->req;
1019 	int index = hs_ep->index;
1020 	int dir_in = hs_ep->dir_in;
1021 	u32 epctrl_reg;
1022 	u32 epsize_reg;
1023 	u32 epsize;
1024 	u32 ctrl;
1025 	unsigned int length;
1026 	unsigned int packets;
1027 	unsigned int maxreq;
1028 	unsigned int dma_reg;
1029 
1030 	if (index != 0) {
1031 		if (hs_ep->req && !continuing) {
1032 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1033 			WARN_ON(1);
1034 			return;
1035 		} else if (hs_ep->req != hs_req && continuing) {
1036 			dev_err(hsotg->dev,
1037 				"%s: continue different req\n", __func__);
1038 			WARN_ON(1);
1039 			return;
1040 		}
1041 	}
1042 
1043 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1044 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1045 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1046 
1047 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1048 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1049 		hs_ep->dir_in ? "in" : "out");
1050 
1051 	/* If endpoint is stalled, we will restart request later */
1052 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1053 
1054 	if (index && ctrl & DXEPCTL_STALL) {
1055 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1056 		return;
1057 	}
1058 
1059 	length = ureq->length - ureq->actual;
1060 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1061 		ureq->length, ureq->actual);
1062 
1063 	if (!using_desc_dma(hsotg))
1064 		maxreq = get_ep_limit(hs_ep);
1065 	else
1066 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1067 
1068 	if (length > maxreq) {
1069 		int round = maxreq % hs_ep->ep.maxpacket;
1070 
1071 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1072 			__func__, length, maxreq, round);
1073 
1074 		/* round down to multiple of packets */
1075 		if (round)
1076 			maxreq -= round;
1077 
1078 		length = maxreq;
1079 	}
1080 
1081 	if (length)
1082 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1083 	else
1084 		packets = 1;	/* send one packet if length is zero. */
1085 
1086 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1087 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1088 		return;
1089 	}
1090 
1091 	if (dir_in && index != 0)
1092 		if (hs_ep->isochronous)
1093 			epsize = DXEPTSIZ_MC(packets);
1094 		else
1095 			epsize = DXEPTSIZ_MC(1);
1096 	else
1097 		epsize = 0;
1098 
1099 	/*
1100 	 * zero length packet should be programmed on its own and should not
1101 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1102 	 */
1103 	if (dir_in && ureq->zero && !continuing) {
1104 		/* Test if zlp is actually required. */
1105 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1106 		    !(ureq->length % hs_ep->ep.maxpacket))
1107 			hs_ep->send_zlp = 1;
1108 	}
1109 
1110 	epsize |= DXEPTSIZ_PKTCNT(packets);
1111 	epsize |= DXEPTSIZ_XFERSIZE(length);
1112 
1113 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1114 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1115 
1116 	/* store the request as the current one we're doing */
1117 	hs_ep->req = hs_req;
1118 
1119 	if (using_desc_dma(hsotg)) {
1120 		u32 offset = 0;
1121 		u32 mps = hs_ep->ep.maxpacket;
1122 
1123 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1124 		if (!dir_in) {
1125 			if (!index)
1126 				length = mps;
1127 			else if (length % mps)
1128 				length += (mps - (length % mps));
1129 		}
1130 
1131 		/*
1132 		 * If more data to send, adjust DMA for EP0 out data stage.
1133 		 * ureq->dma stays unchanged, hence increment it by already
1134 		 * passed passed data count before starting new transaction.
1135 		 */
1136 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1137 		    continuing)
1138 			offset = ureq->actual;
1139 
1140 		/* Fill DDMA chain entries */
1141 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1142 						     length);
1143 
1144 		/* write descriptor chain address to control register */
1145 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1146 
1147 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1148 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1149 	} else {
1150 		/* write size / packets */
1151 		dwc2_writel(hsotg, epsize, epsize_reg);
1152 
1153 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1154 			/*
1155 			 * write DMA address to control register, buffer
1156 			 * already synced by dwc2_hsotg_ep_queue().
1157 			 */
1158 
1159 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1160 
1161 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1162 				__func__, &ureq->dma, dma_reg);
1163 		}
1164 	}
1165 
1166 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1167 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1168 		dwc2_gadget_incr_frame_num(hs_ep);
1169 
1170 		if (hs_ep->target_frame & 0x1)
1171 			ctrl |= DXEPCTL_SETODDFR;
1172 		else
1173 			ctrl |= DXEPCTL_SETEVENFR;
1174 	}
1175 
1176 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1177 
1178 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1179 
1180 	/* For Setup request do not clear NAK */
1181 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1182 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1183 
1184 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1185 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1186 
1187 	/*
1188 	 * set these, it seems that DMA support increments past the end
1189 	 * of the packet buffer so we need to calculate the length from
1190 	 * this information.
1191 	 */
1192 	hs_ep->size_loaded = length;
1193 	hs_ep->last_load = ureq->actual;
1194 
1195 	if (dir_in && !using_dma(hsotg)) {
1196 		/* set these anyway, we may need them for non-periodic in */
1197 		hs_ep->fifo_load = 0;
1198 
1199 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1200 	}
1201 
1202 	/*
1203 	 * Note, trying to clear the NAK here causes problems with transmit
1204 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1205 	 */
1206 
1207 	/* check ep is enabled */
1208 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1209 		dev_dbg(hsotg->dev,
1210 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1211 			 index, dwc2_readl(hsotg, epctrl_reg));
1212 
1213 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1214 		__func__, dwc2_readl(hsotg, epctrl_reg));
1215 
1216 	/* enable ep interrupts */
1217 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1218 }
1219 
1220 /**
1221  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1222  * @hsotg: The device state.
1223  * @hs_ep: The endpoint the request is on.
1224  * @req: The request being processed.
1225  *
1226  * We've been asked to queue a request, so ensure that the memory buffer
1227  * is correctly setup for DMA. If we've been passed an extant DMA address
1228  * then ensure the buffer has been synced to memory. If our buffer has no
1229  * DMA memory, then we map the memory and mark our request to allow us to
1230  * cleanup on completion.
1231  */
1232 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1233 			      struct dwc2_hsotg_ep *hs_ep,
1234 			     struct usb_request *req)
1235 {
1236 	int ret;
1237 
1238 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1239 	if (ret)
1240 		goto dma_error;
1241 
1242 	return 0;
1243 
1244 dma_error:
1245 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1246 		__func__, req->buf, req->length);
1247 
1248 	return -EIO;
1249 }
1250 
1251 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1252 						 struct dwc2_hsotg_ep *hs_ep,
1253 						 struct dwc2_hsotg_req *hs_req)
1254 {
1255 	void *req_buf = hs_req->req.buf;
1256 
1257 	/* If dma is not being used or buffer is aligned */
1258 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1259 		return 0;
1260 
1261 	WARN_ON(hs_req->saved_req_buf);
1262 
1263 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1264 		hs_ep->ep.name, req_buf, hs_req->req.length);
1265 
1266 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1267 	if (!hs_req->req.buf) {
1268 		hs_req->req.buf = req_buf;
1269 		dev_err(hsotg->dev,
1270 			"%s: unable to allocate memory for bounce buffer\n",
1271 			__func__);
1272 		return -ENOMEM;
1273 	}
1274 
1275 	/* Save actual buffer */
1276 	hs_req->saved_req_buf = req_buf;
1277 
1278 	if (hs_ep->dir_in)
1279 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1280 	return 0;
1281 }
1282 
1283 static void
1284 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1285 					 struct dwc2_hsotg_ep *hs_ep,
1286 					 struct dwc2_hsotg_req *hs_req)
1287 {
1288 	/* If dma is not being used or buffer was aligned */
1289 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1290 		return;
1291 
1292 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1293 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1294 
1295 	/* Copy data from bounce buffer on successful out transfer */
1296 	if (!hs_ep->dir_in && !hs_req->req.status)
1297 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1298 		       hs_req->req.actual);
1299 
1300 	/* Free bounce buffer */
1301 	kfree(hs_req->req.buf);
1302 
1303 	hs_req->req.buf = hs_req->saved_req_buf;
1304 	hs_req->saved_req_buf = NULL;
1305 }
1306 
1307 /**
1308  * dwc2_gadget_target_frame_elapsed - Checks target frame
1309  * @hs_ep: The driver endpoint to check
1310  *
1311  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1312  * corresponding transfer.
1313  */
1314 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1315 {
1316 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1317 	u32 target_frame = hs_ep->target_frame;
1318 	u32 current_frame = hsotg->frame_number;
1319 	bool frame_overrun = hs_ep->frame_overrun;
1320 
1321 	if (!frame_overrun && current_frame >= target_frame)
1322 		return true;
1323 
1324 	if (frame_overrun && current_frame >= target_frame &&
1325 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1326 		return true;
1327 
1328 	return false;
1329 }
1330 
1331 /*
1332  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1333  * @hsotg: The driver state
1334  * @hs_ep: the ep descriptor chain is for
1335  *
1336  * Called to update EP0 structure's pointers depend on stage of
1337  * control transfer.
1338  */
1339 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1340 					  struct dwc2_hsotg_ep *hs_ep)
1341 {
1342 	switch (hsotg->ep0_state) {
1343 	case DWC2_EP0_SETUP:
1344 	case DWC2_EP0_STATUS_OUT:
1345 		hs_ep->desc_list = hsotg->setup_desc[0];
1346 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1347 		break;
1348 	case DWC2_EP0_DATA_IN:
1349 	case DWC2_EP0_STATUS_IN:
1350 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1351 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1352 		break;
1353 	case DWC2_EP0_DATA_OUT:
1354 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1355 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1356 		break;
1357 	default:
1358 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1359 			hsotg->ep0_state);
1360 		return -EINVAL;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1367 			       gfp_t gfp_flags)
1368 {
1369 	struct dwc2_hsotg_req *hs_req = our_req(req);
1370 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1371 	struct dwc2_hsotg *hs = hs_ep->parent;
1372 	bool first;
1373 	int ret;
1374 	u32 maxsize = 0;
1375 	u32 mask = 0;
1376 
1377 
1378 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1379 		ep->name, req, req->length, req->buf, req->no_interrupt,
1380 		req->zero, req->short_not_ok);
1381 
1382 	/* Prevent new request submission when controller is suspended */
1383 	if (hs->lx_state != DWC2_L0) {
1384 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1385 			__func__);
1386 		return -EAGAIN;
1387 	}
1388 
1389 	/* initialise status of the request */
1390 	INIT_LIST_HEAD(&hs_req->queue);
1391 	req->actual = 0;
1392 	req->status = -EINPROGRESS;
1393 
1394 	/* In DDMA mode for ISOC's don't queue request if length greater
1395 	 * than descriptor limits.
1396 	 */
1397 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1398 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1399 		if (hs_ep->dir_in && req->length > maxsize) {
1400 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1401 				req->length, maxsize);
1402 			return -EINVAL;
1403 		}
1404 
1405 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1406 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1407 				req->length, hs_ep->ep.maxpacket);
1408 			return -EINVAL;
1409 		}
1410 	}
1411 
1412 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1413 	if (ret)
1414 		return ret;
1415 
1416 	/* if we're using DMA, sync the buffers as necessary */
1417 	if (using_dma(hs)) {
1418 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1419 		if (ret)
1420 			return ret;
1421 	}
1422 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1423 	if (using_desc_dma(hs) && !hs_ep->index) {
1424 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1425 		if (ret)
1426 			return ret;
1427 	}
1428 
1429 	first = list_empty(&hs_ep->queue);
1430 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1431 
1432 	/*
1433 	 * Handle DDMA isochronous transfers separately - just add new entry
1434 	 * to the descriptor chain.
1435 	 * Transfer will be started once SW gets either one of NAK or
1436 	 * OutTknEpDis interrupts.
1437 	 */
1438 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1439 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1440 			dma_addr_t dma_addr = hs_req->req.dma;
1441 
1442 			if (hs_req->req.num_sgs) {
1443 				WARN_ON(hs_req->req.num_sgs > 1);
1444 				dma_addr = sg_dma_address(hs_req->req.sg);
1445 			}
1446 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1447 						   hs_req->req.length);
1448 		}
1449 		return 0;
1450 	}
1451 
1452 	/* Change EP direction if status phase request is after data out */
1453 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1454 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1455 		hs_ep->dir_in = 1;
1456 
1457 	if (first) {
1458 		if (!hs_ep->isochronous) {
1459 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1460 			return 0;
1461 		}
1462 
1463 		/* Update current frame number value. */
1464 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1465 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1466 			dwc2_gadget_incr_frame_num(hs_ep);
1467 			/* Update current frame number value once more as it
1468 			 * changes here.
1469 			 */
1470 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1471 		}
1472 
1473 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1474 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1475 	}
1476 	return 0;
1477 }
1478 
1479 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1480 				    gfp_t gfp_flags)
1481 {
1482 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1483 	struct dwc2_hsotg *hs = hs_ep->parent;
1484 	unsigned long flags = 0;
1485 	int ret = 0;
1486 
1487 	spin_lock_irqsave(&hs->lock, flags);
1488 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1489 	spin_unlock_irqrestore(&hs->lock, flags);
1490 
1491 	return ret;
1492 }
1493 
1494 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1495 				       struct usb_request *req)
1496 {
1497 	struct dwc2_hsotg_req *hs_req = our_req(req);
1498 
1499 	kfree(hs_req);
1500 }
1501 
1502 /**
1503  * dwc2_hsotg_complete_oursetup - setup completion callback
1504  * @ep: The endpoint the request was on.
1505  * @req: The request completed.
1506  *
1507  * Called on completion of any requests the driver itself
1508  * submitted that need cleaning up.
1509  */
1510 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1511 					 struct usb_request *req)
1512 {
1513 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1514 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1515 
1516 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1517 
1518 	dwc2_hsotg_ep_free_request(ep, req);
1519 }
1520 
1521 /**
1522  * ep_from_windex - convert control wIndex value to endpoint
1523  * @hsotg: The driver state.
1524  * @windex: The control request wIndex field (in host order).
1525  *
1526  * Convert the given wIndex into a pointer to an driver endpoint
1527  * structure, or return NULL if it is not a valid endpoint.
1528  */
1529 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1530 					    u32 windex)
1531 {
1532 	struct dwc2_hsotg_ep *ep;
1533 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1534 	int idx = windex & 0x7F;
1535 
1536 	if (windex >= 0x100)
1537 		return NULL;
1538 
1539 	if (idx > hsotg->num_of_eps)
1540 		return NULL;
1541 
1542 	ep = index_to_ep(hsotg, idx, dir);
1543 
1544 	if (idx && ep->dir_in != dir)
1545 		return NULL;
1546 
1547 	return ep;
1548 }
1549 
1550 /**
1551  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1552  * @hsotg: The driver state.
1553  * @testmode: requested usb test mode
1554  * Enable usb Test Mode requested by the Host.
1555  */
1556 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1557 {
1558 	int dctl = dwc2_readl(hsotg, DCTL);
1559 
1560 	dctl &= ~DCTL_TSTCTL_MASK;
1561 	switch (testmode) {
1562 	case TEST_J:
1563 	case TEST_K:
1564 	case TEST_SE0_NAK:
1565 	case TEST_PACKET:
1566 	case TEST_FORCE_EN:
1567 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1568 		break;
1569 	default:
1570 		return -EINVAL;
1571 	}
1572 	dwc2_writel(hsotg, dctl, DCTL);
1573 	return 0;
1574 }
1575 
1576 /**
1577  * dwc2_hsotg_send_reply - send reply to control request
1578  * @hsotg: The device state
1579  * @ep: Endpoint 0
1580  * @buff: Buffer for request
1581  * @length: Length of reply.
1582  *
1583  * Create a request and queue it on the given endpoint. This is useful as
1584  * an internal method of sending replies to certain control requests, etc.
1585  */
1586 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1587 				 struct dwc2_hsotg_ep *ep,
1588 				void *buff,
1589 				int length)
1590 {
1591 	struct usb_request *req;
1592 	int ret;
1593 
1594 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1595 
1596 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1597 	hsotg->ep0_reply = req;
1598 	if (!req) {
1599 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1600 		return -ENOMEM;
1601 	}
1602 
1603 	req->buf = hsotg->ep0_buff;
1604 	req->length = length;
1605 	/*
1606 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1607 	 * STATUS stage.
1608 	 */
1609 	req->zero = 0;
1610 	req->complete = dwc2_hsotg_complete_oursetup;
1611 
1612 	if (length)
1613 		memcpy(req->buf, buff, length);
1614 
1615 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1616 	if (ret) {
1617 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1618 		return ret;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 /**
1625  * dwc2_hsotg_process_req_status - process request GET_STATUS
1626  * @hsotg: The device state
1627  * @ctrl: USB control request
1628  */
1629 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1630 					 struct usb_ctrlrequest *ctrl)
1631 {
1632 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1633 	struct dwc2_hsotg_ep *ep;
1634 	__le16 reply;
1635 	int ret;
1636 
1637 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1638 
1639 	if (!ep0->dir_in) {
1640 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1641 		return -EINVAL;
1642 	}
1643 
1644 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1645 	case USB_RECIP_DEVICE:
1646 		/*
1647 		 * bit 0 => self powered
1648 		 * bit 1 => remote wakeup
1649 		 */
1650 		reply = cpu_to_le16(0);
1651 		break;
1652 
1653 	case USB_RECIP_INTERFACE:
1654 		/* currently, the data result should be zero */
1655 		reply = cpu_to_le16(0);
1656 		break;
1657 
1658 	case USB_RECIP_ENDPOINT:
1659 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1660 		if (!ep)
1661 			return -ENOENT;
1662 
1663 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1664 		break;
1665 
1666 	default:
1667 		return 0;
1668 	}
1669 
1670 	if (le16_to_cpu(ctrl->wLength) != 2)
1671 		return -EINVAL;
1672 
1673 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1674 	if (ret) {
1675 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1676 		return ret;
1677 	}
1678 
1679 	return 1;
1680 }
1681 
1682 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1683 
1684 /**
1685  * get_ep_head - return the first request on the endpoint
1686  * @hs_ep: The controller endpoint to get
1687  *
1688  * Get the first request on the endpoint.
1689  */
1690 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1691 {
1692 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1693 					queue);
1694 }
1695 
1696 /**
1697  * dwc2_gadget_start_next_request - Starts next request from ep queue
1698  * @hs_ep: Endpoint structure
1699  *
1700  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1701  * in its handler. Hence we need to unmask it here to be able to do
1702  * resynchronization.
1703  */
1704 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1705 {
1706 	u32 mask;
1707 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1708 	int dir_in = hs_ep->dir_in;
1709 	struct dwc2_hsotg_req *hs_req;
1710 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1711 
1712 	if (!list_empty(&hs_ep->queue)) {
1713 		hs_req = get_ep_head(hs_ep);
1714 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1715 		return;
1716 	}
1717 	if (!hs_ep->isochronous)
1718 		return;
1719 
1720 	if (dir_in) {
1721 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1722 			__func__);
1723 	} else {
1724 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1725 			__func__);
1726 		mask = dwc2_readl(hsotg, epmsk_reg);
1727 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1728 		dwc2_writel(hsotg, mask, epmsk_reg);
1729 	}
1730 }
1731 
1732 /**
1733  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1734  * @hsotg: The device state
1735  * @ctrl: USB control request
1736  */
1737 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1738 					  struct usb_ctrlrequest *ctrl)
1739 {
1740 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1741 	struct dwc2_hsotg_req *hs_req;
1742 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1743 	struct dwc2_hsotg_ep *ep;
1744 	int ret;
1745 	bool halted;
1746 	u32 recip;
1747 	u32 wValue;
1748 	u32 wIndex;
1749 
1750 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1751 		__func__, set ? "SET" : "CLEAR");
1752 
1753 	wValue = le16_to_cpu(ctrl->wValue);
1754 	wIndex = le16_to_cpu(ctrl->wIndex);
1755 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1756 
1757 	switch (recip) {
1758 	case USB_RECIP_DEVICE:
1759 		switch (wValue) {
1760 		case USB_DEVICE_REMOTE_WAKEUP:
1761 			hsotg->remote_wakeup_allowed = 1;
1762 			break;
1763 
1764 		case USB_DEVICE_TEST_MODE:
1765 			if ((wIndex & 0xff) != 0)
1766 				return -EINVAL;
1767 			if (!set)
1768 				return -EINVAL;
1769 
1770 			hsotg->test_mode = wIndex >> 8;
1771 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1772 			if (ret) {
1773 				dev_err(hsotg->dev,
1774 					"%s: failed to send reply\n", __func__);
1775 				return ret;
1776 			}
1777 			break;
1778 		default:
1779 			return -ENOENT;
1780 		}
1781 		break;
1782 
1783 	case USB_RECIP_ENDPOINT:
1784 		ep = ep_from_windex(hsotg, wIndex);
1785 		if (!ep) {
1786 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1787 				__func__, wIndex);
1788 			return -ENOENT;
1789 		}
1790 
1791 		switch (wValue) {
1792 		case USB_ENDPOINT_HALT:
1793 			halted = ep->halted;
1794 
1795 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1796 
1797 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1798 			if (ret) {
1799 				dev_err(hsotg->dev,
1800 					"%s: failed to send reply\n", __func__);
1801 				return ret;
1802 			}
1803 
1804 			/*
1805 			 * we have to complete all requests for ep if it was
1806 			 * halted, and the halt was cleared by CLEAR_FEATURE
1807 			 */
1808 
1809 			if (!set && halted) {
1810 				/*
1811 				 * If we have request in progress,
1812 				 * then complete it
1813 				 */
1814 				if (ep->req) {
1815 					hs_req = ep->req;
1816 					ep->req = NULL;
1817 					list_del_init(&hs_req->queue);
1818 					if (hs_req->req.complete) {
1819 						spin_unlock(&hsotg->lock);
1820 						usb_gadget_giveback_request(
1821 							&ep->ep, &hs_req->req);
1822 						spin_lock(&hsotg->lock);
1823 					}
1824 				}
1825 
1826 				/* If we have pending request, then start it */
1827 				if (!ep->req)
1828 					dwc2_gadget_start_next_request(ep);
1829 			}
1830 
1831 			break;
1832 
1833 		default:
1834 			return -ENOENT;
1835 		}
1836 		break;
1837 	default:
1838 		return -ENOENT;
1839 	}
1840 	return 1;
1841 }
1842 
1843 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1844 
1845 /**
1846  * dwc2_hsotg_stall_ep0 - stall ep0
1847  * @hsotg: The device state
1848  *
1849  * Set stall for ep0 as response for setup request.
1850  */
1851 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1852 {
1853 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1854 	u32 reg;
1855 	u32 ctrl;
1856 
1857 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1858 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1859 
1860 	/*
1861 	 * DxEPCTL_Stall will be cleared by EP once it has
1862 	 * taken effect, so no need to clear later.
1863 	 */
1864 
1865 	ctrl = dwc2_readl(hsotg, reg);
1866 	ctrl |= DXEPCTL_STALL;
1867 	ctrl |= DXEPCTL_CNAK;
1868 	dwc2_writel(hsotg, ctrl, reg);
1869 
1870 	dev_dbg(hsotg->dev,
1871 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1872 		ctrl, reg, dwc2_readl(hsotg, reg));
1873 
1874 	 /*
1875 	  * complete won't be called, so we enqueue
1876 	  * setup request here
1877 	  */
1878 	 dwc2_hsotg_enqueue_setup(hsotg);
1879 }
1880 
1881 /**
1882  * dwc2_hsotg_process_control - process a control request
1883  * @hsotg: The device state
1884  * @ctrl: The control request received
1885  *
1886  * The controller has received the SETUP phase of a control request, and
1887  * needs to work out what to do next (and whether to pass it on to the
1888  * gadget driver).
1889  */
1890 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1891 				       struct usb_ctrlrequest *ctrl)
1892 {
1893 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1894 	int ret = 0;
1895 	u32 dcfg;
1896 
1897 	dev_dbg(hsotg->dev,
1898 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1899 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1900 		ctrl->wIndex, ctrl->wLength);
1901 
1902 	if (ctrl->wLength == 0) {
1903 		ep0->dir_in = 1;
1904 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1905 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1906 		ep0->dir_in = 1;
1907 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1908 	} else {
1909 		ep0->dir_in = 0;
1910 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1911 	}
1912 
1913 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1914 		switch (ctrl->bRequest) {
1915 		case USB_REQ_SET_ADDRESS:
1916 			hsotg->connected = 1;
1917 			dcfg = dwc2_readl(hsotg, DCFG);
1918 			dcfg &= ~DCFG_DEVADDR_MASK;
1919 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1920 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1921 			dwc2_writel(hsotg, dcfg, DCFG);
1922 
1923 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1924 
1925 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1926 			return;
1927 
1928 		case USB_REQ_GET_STATUS:
1929 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1930 			break;
1931 
1932 		case USB_REQ_CLEAR_FEATURE:
1933 		case USB_REQ_SET_FEATURE:
1934 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1935 			break;
1936 		}
1937 	}
1938 
1939 	/* as a fallback, try delivering it to the driver to deal with */
1940 
1941 	if (ret == 0 && hsotg->driver) {
1942 		spin_unlock(&hsotg->lock);
1943 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1944 		spin_lock(&hsotg->lock);
1945 		if (ret < 0)
1946 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1947 	}
1948 
1949 	hsotg->delayed_status = false;
1950 	if (ret == USB_GADGET_DELAYED_STATUS)
1951 		hsotg->delayed_status = true;
1952 
1953 	/*
1954 	 * the request is either unhandlable, or is not formatted correctly
1955 	 * so respond with a STALL for the status stage to indicate failure.
1956 	 */
1957 
1958 	if (ret < 0)
1959 		dwc2_hsotg_stall_ep0(hsotg);
1960 }
1961 
1962 /**
1963  * dwc2_hsotg_complete_setup - completion of a setup transfer
1964  * @ep: The endpoint the request was on.
1965  * @req: The request completed.
1966  *
1967  * Called on completion of any requests the driver itself submitted for
1968  * EP0 setup packets
1969  */
1970 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1971 				      struct usb_request *req)
1972 {
1973 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1974 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1975 
1976 	if (req->status < 0) {
1977 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1978 		return;
1979 	}
1980 
1981 	spin_lock(&hsotg->lock);
1982 	if (req->actual == 0)
1983 		dwc2_hsotg_enqueue_setup(hsotg);
1984 	else
1985 		dwc2_hsotg_process_control(hsotg, req->buf);
1986 	spin_unlock(&hsotg->lock);
1987 }
1988 
1989 /**
1990  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1991  * @hsotg: The device state.
1992  *
1993  * Enqueue a request on EP0 if necessary to received any SETUP packets
1994  * received from the host.
1995  */
1996 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1997 {
1998 	struct usb_request *req = hsotg->ctrl_req;
1999 	struct dwc2_hsotg_req *hs_req = our_req(req);
2000 	int ret;
2001 
2002 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2003 
2004 	req->zero = 0;
2005 	req->length = 8;
2006 	req->buf = hsotg->ctrl_buff;
2007 	req->complete = dwc2_hsotg_complete_setup;
2008 
2009 	if (!list_empty(&hs_req->queue)) {
2010 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2011 		return;
2012 	}
2013 
2014 	hsotg->eps_out[0]->dir_in = 0;
2015 	hsotg->eps_out[0]->send_zlp = 0;
2016 	hsotg->ep0_state = DWC2_EP0_SETUP;
2017 
2018 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2019 	if (ret < 0) {
2020 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2021 		/*
2022 		 * Don't think there's much we can do other than watch the
2023 		 * driver fail.
2024 		 */
2025 	}
2026 }
2027 
2028 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2029 				   struct dwc2_hsotg_ep *hs_ep)
2030 {
2031 	u32 ctrl;
2032 	u8 index = hs_ep->index;
2033 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2034 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2035 
2036 	if (hs_ep->dir_in)
2037 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2038 			index);
2039 	else
2040 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2041 			index);
2042 	if (using_desc_dma(hsotg)) {
2043 		/* Not specific buffer needed for ep0 ZLP */
2044 		dma_addr_t dma = hs_ep->desc_list_dma;
2045 
2046 		if (!index)
2047 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2048 
2049 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2050 	} else {
2051 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2052 			    DXEPTSIZ_XFERSIZE(0),
2053 			    epsiz_reg);
2054 	}
2055 
2056 	ctrl = dwc2_readl(hsotg, epctl_reg);
2057 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2058 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2059 	ctrl |= DXEPCTL_USBACTEP;
2060 	dwc2_writel(hsotg, ctrl, epctl_reg);
2061 }
2062 
2063 /**
2064  * dwc2_hsotg_complete_request - complete a request given to us
2065  * @hsotg: The device state.
2066  * @hs_ep: The endpoint the request was on.
2067  * @hs_req: The request to complete.
2068  * @result: The result code (0 => Ok, otherwise errno)
2069  *
2070  * The given request has finished, so call the necessary completion
2071  * if it has one and then look to see if we can start a new request
2072  * on the endpoint.
2073  *
2074  * Note, expects the ep to already be locked as appropriate.
2075  */
2076 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2077 					struct dwc2_hsotg_ep *hs_ep,
2078 				       struct dwc2_hsotg_req *hs_req,
2079 				       int result)
2080 {
2081 	if (!hs_req) {
2082 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2083 		return;
2084 	}
2085 
2086 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2087 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2088 
2089 	/*
2090 	 * only replace the status if we've not already set an error
2091 	 * from a previous transaction
2092 	 */
2093 
2094 	if (hs_req->req.status == -EINPROGRESS)
2095 		hs_req->req.status = result;
2096 
2097 	if (using_dma(hsotg))
2098 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2099 
2100 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2101 
2102 	hs_ep->req = NULL;
2103 	list_del_init(&hs_req->queue);
2104 
2105 	/*
2106 	 * call the complete request with the locks off, just in case the
2107 	 * request tries to queue more work for this endpoint.
2108 	 */
2109 
2110 	if (hs_req->req.complete) {
2111 		spin_unlock(&hsotg->lock);
2112 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2113 		spin_lock(&hsotg->lock);
2114 	}
2115 
2116 	/* In DDMA don't need to proceed to starting of next ISOC request */
2117 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2118 		return;
2119 
2120 	/*
2121 	 * Look to see if there is anything else to do. Note, the completion
2122 	 * of the previous request may have caused a new request to be started
2123 	 * so be careful when doing this.
2124 	 */
2125 
2126 	if (!hs_ep->req && result >= 0)
2127 		dwc2_gadget_start_next_request(hs_ep);
2128 }
2129 
2130 /*
2131  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2132  * @hs_ep: The endpoint the request was on.
2133  *
2134  * Get first request from the ep queue, determine descriptor on which complete
2135  * happened. SW discovers which descriptor currently in use by HW, adjusts
2136  * dma_address and calculates index of completed descriptor based on the value
2137  * of DEPDMA register. Update actual length of request, giveback to gadget.
2138  */
2139 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2140 {
2141 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2142 	struct dwc2_hsotg_req *hs_req;
2143 	struct usb_request *ureq;
2144 	u32 desc_sts;
2145 	u32 mask;
2146 
2147 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2148 
2149 	/* Process only descriptors with buffer status set to DMA done */
2150 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2151 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2152 
2153 		hs_req = get_ep_head(hs_ep);
2154 		if (!hs_req) {
2155 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2156 			return;
2157 		}
2158 		ureq = &hs_req->req;
2159 
2160 		/* Check completion status */
2161 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2162 			DEV_DMA_STS_SUCC) {
2163 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2164 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2165 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2166 				DEV_DMA_ISOC_NBYTES_SHIFT);
2167 
2168 			/* Adjust actual len for ISOC Out if len is
2169 			 * not align of 4
2170 			 */
2171 			if (!hs_ep->dir_in && ureq->length & 0x3)
2172 				ureq->actual += 4 - (ureq->length & 0x3);
2173 
2174 			/* Set actual frame number for completed transfers */
2175 			ureq->frame_number =
2176 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2177 				DEV_DMA_ISOC_FRNUM_SHIFT;
2178 		}
2179 
2180 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2181 
2182 		hs_ep->compl_desc++;
2183 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2184 			hs_ep->compl_desc = 0;
2185 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186 	}
2187 }
2188 
2189 /*
2190  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2191  * @hs_ep: The isochronous endpoint.
2192  *
2193  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2194  * interrupt. Reset target frame and next_desc to allow to start
2195  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2196  * interrupt for OUT direction.
2197  */
2198 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2199 {
2200 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2201 
2202 	if (!hs_ep->dir_in)
2203 		dwc2_flush_rx_fifo(hsotg);
2204 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2205 
2206 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2207 	hs_ep->next_desc = 0;
2208 	hs_ep->compl_desc = 0;
2209 }
2210 
2211 /**
2212  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2213  * @hsotg: The device state.
2214  * @ep_idx: The endpoint index for the data
2215  * @size: The size of data in the fifo, in bytes
2216  *
2217  * The FIFO status shows there is data to read from the FIFO for a given
2218  * endpoint, so sort out whether we need to read the data into a request
2219  * that has been made for that endpoint.
2220  */
2221 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2222 {
2223 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2224 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2225 	int to_read;
2226 	int max_req;
2227 	int read_ptr;
2228 
2229 	if (!hs_req) {
2230 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2231 		int ptr;
2232 
2233 		dev_dbg(hsotg->dev,
2234 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2235 			 __func__, size, ep_idx, epctl);
2236 
2237 		/* dump the data from the FIFO, we've nothing we can do */
2238 		for (ptr = 0; ptr < size; ptr += 4)
2239 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2240 
2241 		return;
2242 	}
2243 
2244 	to_read = size;
2245 	read_ptr = hs_req->req.actual;
2246 	max_req = hs_req->req.length - read_ptr;
2247 
2248 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2249 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2250 
2251 	if (to_read > max_req) {
2252 		/*
2253 		 * more data appeared than we where willing
2254 		 * to deal with in this request.
2255 		 */
2256 
2257 		/* currently we don't deal this */
2258 		WARN_ON_ONCE(1);
2259 	}
2260 
2261 	hs_ep->total_data += to_read;
2262 	hs_req->req.actual += to_read;
2263 	to_read = DIV_ROUND_UP(to_read, 4);
2264 
2265 	/*
2266 	 * note, we might over-write the buffer end by 3 bytes depending on
2267 	 * alignment of the data.
2268 	 */
2269 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2270 		       hs_req->req.buf + read_ptr, to_read);
2271 }
2272 
2273 /**
2274  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2275  * @hsotg: The device instance
2276  * @dir_in: If IN zlp
2277  *
2278  * Generate a zero-length IN packet request for terminating a SETUP
2279  * transaction.
2280  *
2281  * Note, since we don't write any data to the TxFIFO, then it is
2282  * currently believed that we do not need to wait for any space in
2283  * the TxFIFO.
2284  */
2285 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2286 {
2287 	/* eps_out[0] is used in both directions */
2288 	hsotg->eps_out[0]->dir_in = dir_in;
2289 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2290 
2291 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2292 }
2293 
2294 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2295 					    u32 epctl_reg)
2296 {
2297 	u32 ctrl;
2298 
2299 	ctrl = dwc2_readl(hsotg, epctl_reg);
2300 	if (ctrl & DXEPCTL_EOFRNUM)
2301 		ctrl |= DXEPCTL_SETEVENFR;
2302 	else
2303 		ctrl |= DXEPCTL_SETODDFR;
2304 	dwc2_writel(hsotg, ctrl, epctl_reg);
2305 }
2306 
2307 /*
2308  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2309  * @hs_ep - The endpoint on which transfer went
2310  *
2311  * Iterate over endpoints descriptor chain and get info on bytes remained
2312  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2313  */
2314 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2315 {
2316 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2317 	unsigned int bytes_rem = 0;
2318 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2319 	int i;
2320 	u32 status;
2321 
2322 	if (!desc)
2323 		return -EINVAL;
2324 
2325 	for (i = 0; i < hs_ep->desc_count; ++i) {
2326 		status = desc->status;
2327 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2328 
2329 		if (status & DEV_DMA_STS_MASK)
2330 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2331 				i, status & DEV_DMA_STS_MASK);
2332 		desc++;
2333 	}
2334 
2335 	return bytes_rem;
2336 }
2337 
2338 /**
2339  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2340  * @hsotg: The device instance
2341  * @epnum: The endpoint received from
2342  *
2343  * The RXFIFO has delivered an OutDone event, which means that the data
2344  * transfer for an OUT endpoint has been completed, either by a short
2345  * packet or by the finish of a transfer.
2346  */
2347 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2348 {
2349 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2350 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2351 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2352 	struct usb_request *req = &hs_req->req;
2353 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2354 	int result = 0;
2355 
2356 	if (!hs_req) {
2357 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2358 		return;
2359 	}
2360 
2361 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2362 		dev_dbg(hsotg->dev, "zlp packet received\n");
2363 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2364 		dwc2_hsotg_enqueue_setup(hsotg);
2365 		return;
2366 	}
2367 
2368 	if (using_desc_dma(hsotg))
2369 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2370 
2371 	if (using_dma(hsotg)) {
2372 		unsigned int size_done;
2373 
2374 		/*
2375 		 * Calculate the size of the transfer by checking how much
2376 		 * is left in the endpoint size register and then working it
2377 		 * out from the amount we loaded for the transfer.
2378 		 *
2379 		 * We need to do this as DMA pointers are always 32bit aligned
2380 		 * so may overshoot/undershoot the transfer.
2381 		 */
2382 
2383 		size_done = hs_ep->size_loaded - size_left;
2384 		size_done += hs_ep->last_load;
2385 
2386 		req->actual = size_done;
2387 	}
2388 
2389 	/* if there is more request to do, schedule new transfer */
2390 	if (req->actual < req->length && size_left == 0) {
2391 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2392 		return;
2393 	}
2394 
2395 	if (req->actual < req->length && req->short_not_ok) {
2396 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2397 			__func__, req->actual, req->length);
2398 
2399 		/*
2400 		 * todo - what should we return here? there's no one else
2401 		 * even bothering to check the status.
2402 		 */
2403 	}
2404 
2405 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2406 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2407 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2408 		/* Move to STATUS IN */
2409 		if (!hsotg->delayed_status)
2410 			dwc2_hsotg_ep0_zlp(hsotg, true);
2411 	}
2412 
2413 	/*
2414 	 * Slave mode OUT transfers do not go through XferComplete so
2415 	 * adjust the ISOC parity here.
2416 	 */
2417 	if (!using_dma(hsotg)) {
2418 		if (hs_ep->isochronous && hs_ep->interval == 1)
2419 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2420 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2421 			dwc2_gadget_incr_frame_num(hs_ep);
2422 	}
2423 
2424 	/* Set actual frame number for completed transfers */
2425 	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2426 		req->frame_number = hsotg->frame_number;
2427 
2428 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2429 }
2430 
2431 /**
2432  * dwc2_hsotg_handle_rx - RX FIFO has data
2433  * @hsotg: The device instance
2434  *
2435  * The IRQ handler has detected that the RX FIFO has some data in it
2436  * that requires processing, so find out what is in there and do the
2437  * appropriate read.
2438  *
2439  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2440  * chunks, so if you have x packets received on an endpoint you'll get x
2441  * FIFO events delivered, each with a packet's worth of data in it.
2442  *
2443  * When using DMA, we should not be processing events from the RXFIFO
2444  * as the actual data should be sent to the memory directly and we turn
2445  * on the completion interrupts to get notifications of transfer completion.
2446  */
2447 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2448 {
2449 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2450 	u32 epnum, status, size;
2451 
2452 	WARN_ON(using_dma(hsotg));
2453 
2454 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2455 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2456 
2457 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2458 	size >>= GRXSTS_BYTECNT_SHIFT;
2459 
2460 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2461 		__func__, grxstsr, size, epnum);
2462 
2463 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2464 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2465 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2466 		break;
2467 
2468 	case GRXSTS_PKTSTS_OUTDONE:
2469 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2470 			dwc2_hsotg_read_frameno(hsotg));
2471 
2472 		if (!using_dma(hsotg))
2473 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2474 		break;
2475 
2476 	case GRXSTS_PKTSTS_SETUPDONE:
2477 		dev_dbg(hsotg->dev,
2478 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2479 			dwc2_hsotg_read_frameno(hsotg),
2480 			dwc2_readl(hsotg, DOEPCTL(0)));
2481 		/*
2482 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2483 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2484 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2485 		 */
2486 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2487 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2488 		break;
2489 
2490 	case GRXSTS_PKTSTS_OUTRX:
2491 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2492 		break;
2493 
2494 	case GRXSTS_PKTSTS_SETUPRX:
2495 		dev_dbg(hsotg->dev,
2496 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2497 			dwc2_hsotg_read_frameno(hsotg),
2498 			dwc2_readl(hsotg, DOEPCTL(0)));
2499 
2500 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2501 
2502 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2503 		break;
2504 
2505 	default:
2506 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2507 			 __func__, grxstsr);
2508 
2509 		dwc2_hsotg_dump(hsotg);
2510 		break;
2511 	}
2512 }
2513 
2514 /**
2515  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2516  * @mps: The maximum packet size in bytes.
2517  */
2518 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2519 {
2520 	switch (mps) {
2521 	case 64:
2522 		return D0EPCTL_MPS_64;
2523 	case 32:
2524 		return D0EPCTL_MPS_32;
2525 	case 16:
2526 		return D0EPCTL_MPS_16;
2527 	case 8:
2528 		return D0EPCTL_MPS_8;
2529 	}
2530 
2531 	/* bad max packet size, warn and return invalid result */
2532 	WARN_ON(1);
2533 	return (u32)-1;
2534 }
2535 
2536 /**
2537  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2538  * @hsotg: The driver state.
2539  * @ep: The index number of the endpoint
2540  * @mps: The maximum packet size in bytes
2541  * @mc: The multicount value
2542  * @dir_in: True if direction is in.
2543  *
2544  * Configure the maximum packet size for the given endpoint, updating
2545  * the hardware control registers to reflect this.
2546  */
2547 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2548 					unsigned int ep, unsigned int mps,
2549 					unsigned int mc, unsigned int dir_in)
2550 {
2551 	struct dwc2_hsotg_ep *hs_ep;
2552 	u32 reg;
2553 
2554 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2555 	if (!hs_ep)
2556 		return;
2557 
2558 	if (ep == 0) {
2559 		u32 mps_bytes = mps;
2560 
2561 		/* EP0 is a special case */
2562 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2563 		if (mps > 3)
2564 			goto bad_mps;
2565 		hs_ep->ep.maxpacket = mps_bytes;
2566 		hs_ep->mc = 1;
2567 	} else {
2568 		if (mps > 1024)
2569 			goto bad_mps;
2570 		hs_ep->mc = mc;
2571 		if (mc > 3)
2572 			goto bad_mps;
2573 		hs_ep->ep.maxpacket = mps;
2574 	}
2575 
2576 	if (dir_in) {
2577 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2578 		reg &= ~DXEPCTL_MPS_MASK;
2579 		reg |= mps;
2580 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2581 	} else {
2582 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2583 		reg &= ~DXEPCTL_MPS_MASK;
2584 		reg |= mps;
2585 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2586 	}
2587 
2588 	return;
2589 
2590 bad_mps:
2591 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2592 }
2593 
2594 /**
2595  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2596  * @hsotg: The driver state
2597  * @idx: The index for the endpoint (0..15)
2598  */
2599 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2600 {
2601 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2602 		    GRSTCTL);
2603 
2604 	/* wait until the fifo is flushed */
2605 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2606 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2607 			 __func__);
2608 }
2609 
2610 /**
2611  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2612  * @hsotg: The driver state
2613  * @hs_ep: The driver endpoint to check.
2614  *
2615  * Check to see if there is a request that has data to send, and if so
2616  * make an attempt to write data into the FIFO.
2617  */
2618 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2619 			    struct dwc2_hsotg_ep *hs_ep)
2620 {
2621 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2622 
2623 	if (!hs_ep->dir_in || !hs_req) {
2624 		/**
2625 		 * if request is not enqueued, we disable interrupts
2626 		 * for endpoints, excepting ep0
2627 		 */
2628 		if (hs_ep->index != 0)
2629 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2630 					      hs_ep->dir_in, 0);
2631 		return 0;
2632 	}
2633 
2634 	if (hs_req->req.actual < hs_req->req.length) {
2635 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2636 			hs_ep->index);
2637 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2638 	}
2639 
2640 	return 0;
2641 }
2642 
2643 /**
2644  * dwc2_hsotg_complete_in - complete IN transfer
2645  * @hsotg: The device state.
2646  * @hs_ep: The endpoint that has just completed.
2647  *
2648  * An IN transfer has been completed, update the transfer's state and then
2649  * call the relevant completion routines.
2650  */
2651 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2652 				   struct dwc2_hsotg_ep *hs_ep)
2653 {
2654 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2655 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2656 	int size_left, size_done;
2657 
2658 	if (!hs_req) {
2659 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2660 		return;
2661 	}
2662 
2663 	/* Finish ZLP handling for IN EP0 transactions */
2664 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2665 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2666 
2667 		/*
2668 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2669 		 * changed to IN. Change back to complete OUT transfer request
2670 		 */
2671 		hs_ep->dir_in = 0;
2672 
2673 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2674 		if (hsotg->test_mode) {
2675 			int ret;
2676 
2677 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2678 			if (ret < 0) {
2679 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2680 					hsotg->test_mode);
2681 				dwc2_hsotg_stall_ep0(hsotg);
2682 				return;
2683 			}
2684 		}
2685 		dwc2_hsotg_enqueue_setup(hsotg);
2686 		return;
2687 	}
2688 
2689 	/*
2690 	 * Calculate the size of the transfer by checking how much is left
2691 	 * in the endpoint size register and then working it out from
2692 	 * the amount we loaded for the transfer.
2693 	 *
2694 	 * We do this even for DMA, as the transfer may have incremented
2695 	 * past the end of the buffer (DMA transfers are always 32bit
2696 	 * aligned).
2697 	 */
2698 	if (using_desc_dma(hsotg)) {
2699 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2700 		if (size_left < 0)
2701 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2702 				size_left);
2703 	} else {
2704 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2705 	}
2706 
2707 	size_done = hs_ep->size_loaded - size_left;
2708 	size_done += hs_ep->last_load;
2709 
2710 	if (hs_req->req.actual != size_done)
2711 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2712 			__func__, hs_req->req.actual, size_done);
2713 
2714 	hs_req->req.actual = size_done;
2715 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2716 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2717 
2718 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2719 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2720 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2721 		return;
2722 	}
2723 
2724 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2725 	if (hs_ep->send_zlp) {
2726 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2727 		hs_ep->send_zlp = 0;
2728 		/* transfer will be completed on next complete interrupt */
2729 		return;
2730 	}
2731 
2732 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2733 		/* Move to STATUS OUT */
2734 		dwc2_hsotg_ep0_zlp(hsotg, false);
2735 		return;
2736 	}
2737 
2738 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2739 }
2740 
2741 /**
2742  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2743  * @hsotg: The device state.
2744  * @idx: Index of ep.
2745  * @dir_in: Endpoint direction 1-in 0-out.
2746  *
2747  * Reads for endpoint with given index and direction, by masking
2748  * epint_reg with coresponding mask.
2749  */
2750 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2751 					  unsigned int idx, int dir_in)
2752 {
2753 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2754 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2755 	u32 ints;
2756 	u32 mask;
2757 	u32 diepempmsk;
2758 
2759 	mask = dwc2_readl(hsotg, epmsk_reg);
2760 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2761 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2762 	mask |= DXEPINT_SETUP_RCVD;
2763 
2764 	ints = dwc2_readl(hsotg, epint_reg);
2765 	ints &= mask;
2766 	return ints;
2767 }
2768 
2769 /**
2770  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2771  * @hs_ep: The endpoint on which interrupt is asserted.
2772  *
2773  * This interrupt indicates that the endpoint has been disabled per the
2774  * application's request.
2775  *
2776  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2777  * in case of ISOC completes current request.
2778  *
2779  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2780  * request starts it.
2781  */
2782 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2783 {
2784 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2785 	struct dwc2_hsotg_req *hs_req;
2786 	unsigned char idx = hs_ep->index;
2787 	int dir_in = hs_ep->dir_in;
2788 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2789 	int dctl = dwc2_readl(hsotg, DCTL);
2790 
2791 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2792 
2793 	if (dir_in) {
2794 		int epctl = dwc2_readl(hsotg, epctl_reg);
2795 
2796 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2797 
2798 		if (hs_ep->isochronous) {
2799 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2800 			return;
2801 		}
2802 
2803 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2804 			int dctl = dwc2_readl(hsotg, DCTL);
2805 
2806 			dctl |= DCTL_CGNPINNAK;
2807 			dwc2_writel(hsotg, dctl, DCTL);
2808 		}
2809 		return;
2810 	}
2811 
2812 	if (dctl & DCTL_GOUTNAKSTS) {
2813 		dctl |= DCTL_CGOUTNAK;
2814 		dwc2_writel(hsotg, dctl, DCTL);
2815 	}
2816 
2817 	if (!hs_ep->isochronous)
2818 		return;
2819 
2820 	if (list_empty(&hs_ep->queue)) {
2821 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2822 			__func__, hs_ep);
2823 		return;
2824 	}
2825 
2826 	do {
2827 		hs_req = get_ep_head(hs_ep);
2828 		if (hs_req)
2829 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2830 						    -ENODATA);
2831 		dwc2_gadget_incr_frame_num(hs_ep);
2832 		/* Update current frame number value. */
2833 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2834 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2835 
2836 	dwc2_gadget_start_next_request(hs_ep);
2837 }
2838 
2839 /**
2840  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2841  * @ep: The endpoint on which interrupt is asserted.
2842  *
2843  * This is starting point for ISOC-OUT transfer, synchronization done with
2844  * first out token received from host while corresponding EP is disabled.
2845  *
2846  * Device does not know initial frame in which out token will come. For this
2847  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2848  * getting this interrupt SW starts calculation for next transfer frame.
2849  */
2850 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2851 {
2852 	struct dwc2_hsotg *hsotg = ep->parent;
2853 	int dir_in = ep->dir_in;
2854 	u32 doepmsk;
2855 
2856 	if (dir_in || !ep->isochronous)
2857 		return;
2858 
2859 	if (using_desc_dma(hsotg)) {
2860 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2861 			/* Start first ISO Out */
2862 			ep->target_frame = hsotg->frame_number;
2863 			dwc2_gadget_start_isoc_ddma(ep);
2864 		}
2865 		return;
2866 	}
2867 
2868 	if (ep->interval > 1 &&
2869 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2870 		u32 ctrl;
2871 
2872 		ep->target_frame = hsotg->frame_number;
2873 		dwc2_gadget_incr_frame_num(ep);
2874 
2875 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2876 		if (ep->target_frame & 0x1)
2877 			ctrl |= DXEPCTL_SETODDFR;
2878 		else
2879 			ctrl |= DXEPCTL_SETEVENFR;
2880 
2881 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2882 	}
2883 
2884 	dwc2_gadget_start_next_request(ep);
2885 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2886 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2887 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2888 }
2889 
2890 /**
2891  * dwc2_gadget_handle_nak - handle NAK interrupt
2892  * @hs_ep: The endpoint on which interrupt is asserted.
2893  *
2894  * This is starting point for ISOC-IN transfer, synchronization done with
2895  * first IN token received from host while corresponding EP is disabled.
2896  *
2897  * Device does not know when first one token will arrive from host. On first
2898  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2899  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2900  * sent in response to that as there was no data in FIFO. SW is basing on this
2901  * interrupt to obtain frame in which token has come and then based on the
2902  * interval calculates next frame for transfer.
2903  */
2904 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2905 {
2906 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2907 	int dir_in = hs_ep->dir_in;
2908 
2909 	if (!dir_in || !hs_ep->isochronous)
2910 		return;
2911 
2912 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2913 
2914 		if (using_desc_dma(hsotg)) {
2915 			hs_ep->target_frame = hsotg->frame_number;
2916 			dwc2_gadget_incr_frame_num(hs_ep);
2917 
2918 			/* In service interval mode target_frame must
2919 			 * be set to last (u)frame of the service interval.
2920 			 */
2921 			if (hsotg->params.service_interval) {
2922 				/* Set target_frame to the first (u)frame of
2923 				 * the service interval
2924 				 */
2925 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2926 
2927 				/* Set target_frame to the last (u)frame of
2928 				 * the service interval
2929 				 */
2930 				dwc2_gadget_incr_frame_num(hs_ep);
2931 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2932 			}
2933 
2934 			dwc2_gadget_start_isoc_ddma(hs_ep);
2935 			return;
2936 		}
2937 
2938 		hs_ep->target_frame = hsotg->frame_number;
2939 		if (hs_ep->interval > 1) {
2940 			u32 ctrl = dwc2_readl(hsotg,
2941 					      DIEPCTL(hs_ep->index));
2942 			if (hs_ep->target_frame & 0x1)
2943 				ctrl |= DXEPCTL_SETODDFR;
2944 			else
2945 				ctrl |= DXEPCTL_SETEVENFR;
2946 
2947 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2948 		}
2949 
2950 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2951 					    get_ep_head(hs_ep), 0);
2952 	}
2953 
2954 	if (!using_desc_dma(hsotg))
2955 		dwc2_gadget_incr_frame_num(hs_ep);
2956 }
2957 
2958 /**
2959  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2960  * @hsotg: The driver state
2961  * @idx: The index for the endpoint (0..15)
2962  * @dir_in: Set if this is an IN endpoint
2963  *
2964  * Process and clear any interrupt pending for an individual endpoint
2965  */
2966 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2967 			     int dir_in)
2968 {
2969 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2970 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2971 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2972 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2973 	u32 ints;
2974 	u32 ctrl;
2975 
2976 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2977 	ctrl = dwc2_readl(hsotg, epctl_reg);
2978 
2979 	/* Clear endpoint interrupts */
2980 	dwc2_writel(hsotg, ints, epint_reg);
2981 
2982 	if (!hs_ep) {
2983 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2984 			__func__, idx, dir_in ? "in" : "out");
2985 		return;
2986 	}
2987 
2988 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2989 		__func__, idx, dir_in ? "in" : "out", ints);
2990 
2991 	/* Don't process XferCompl interrupt if it is a setup packet */
2992 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2993 		ints &= ~DXEPINT_XFERCOMPL;
2994 
2995 	/*
2996 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2997 	 * stage and xfercomplete was generated without SETUP phase done
2998 	 * interrupt. SW should parse received setup packet only after host's
2999 	 * exit from setup phase of control transfer.
3000 	 */
3001 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3002 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3003 		ints &= ~DXEPINT_XFERCOMPL;
3004 
3005 	if (ints & DXEPINT_XFERCOMPL) {
3006 		dev_dbg(hsotg->dev,
3007 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3008 			__func__, dwc2_readl(hsotg, epctl_reg),
3009 			dwc2_readl(hsotg, epsiz_reg));
3010 
3011 		/* In DDMA handle isochronous requests separately */
3012 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3013 			/* XferCompl set along with BNA */
3014 			if (!(ints & DXEPINT_BNAINTR))
3015 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3016 		} else if (dir_in) {
3017 			/*
3018 			 * We get OutDone from the FIFO, so we only
3019 			 * need to look at completing IN requests here
3020 			 * if operating slave mode
3021 			 */
3022 			if (hs_ep->isochronous && hs_ep->interval > 1)
3023 				dwc2_gadget_incr_frame_num(hs_ep);
3024 
3025 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3026 			if (ints & DXEPINT_NAKINTRPT)
3027 				ints &= ~DXEPINT_NAKINTRPT;
3028 
3029 			if (idx == 0 && !hs_ep->req)
3030 				dwc2_hsotg_enqueue_setup(hsotg);
3031 		} else if (using_dma(hsotg)) {
3032 			/*
3033 			 * We're using DMA, we need to fire an OutDone here
3034 			 * as we ignore the RXFIFO.
3035 			 */
3036 			if (hs_ep->isochronous && hs_ep->interval > 1)
3037 				dwc2_gadget_incr_frame_num(hs_ep);
3038 
3039 			dwc2_hsotg_handle_outdone(hsotg, idx);
3040 		}
3041 	}
3042 
3043 	if (ints & DXEPINT_EPDISBLD)
3044 		dwc2_gadget_handle_ep_disabled(hs_ep);
3045 
3046 	if (ints & DXEPINT_OUTTKNEPDIS)
3047 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3048 
3049 	if (ints & DXEPINT_NAKINTRPT)
3050 		dwc2_gadget_handle_nak(hs_ep);
3051 
3052 	if (ints & DXEPINT_AHBERR)
3053 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3054 
3055 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3056 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3057 
3058 		if (using_dma(hsotg) && idx == 0) {
3059 			/*
3060 			 * this is the notification we've received a
3061 			 * setup packet. In non-DMA mode we'd get this
3062 			 * from the RXFIFO, instead we need to process
3063 			 * the setup here.
3064 			 */
3065 
3066 			if (dir_in)
3067 				WARN_ON_ONCE(1);
3068 			else
3069 				dwc2_hsotg_handle_outdone(hsotg, 0);
3070 		}
3071 	}
3072 
3073 	if (ints & DXEPINT_STSPHSERCVD) {
3074 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3075 
3076 		/* Safety check EP0 state when STSPHSERCVD asserted */
3077 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3078 			/* Move to STATUS IN for DDMA */
3079 			if (using_desc_dma(hsotg)) {
3080 				if (!hsotg->delayed_status)
3081 					dwc2_hsotg_ep0_zlp(hsotg, true);
3082 				else
3083 				/* In case of 3 stage Control Write with delayed
3084 				 * status, when Status IN transfer started
3085 				 * before STSPHSERCVD asserted, NAKSTS bit not
3086 				 * cleared by CNAK in dwc2_hsotg_start_req()
3087 				 * function. Clear now NAKSTS to allow complete
3088 				 * transfer.
3089 				 */
3090 					dwc2_set_bit(hsotg, DIEPCTL(0),
3091 						     DXEPCTL_CNAK);
3092 			}
3093 		}
3094 
3095 	}
3096 
3097 	if (ints & DXEPINT_BACK2BACKSETUP)
3098 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3099 
3100 	if (ints & DXEPINT_BNAINTR) {
3101 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3102 		if (hs_ep->isochronous)
3103 			dwc2_gadget_handle_isoc_bna(hs_ep);
3104 	}
3105 
3106 	if (dir_in && !hs_ep->isochronous) {
3107 		/* not sure if this is important, but we'll clear it anyway */
3108 		if (ints & DXEPINT_INTKNTXFEMP) {
3109 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3110 				__func__, idx);
3111 		}
3112 
3113 		/* this probably means something bad is happening */
3114 		if (ints & DXEPINT_INTKNEPMIS) {
3115 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3116 				 __func__, idx);
3117 		}
3118 
3119 		/* FIFO has space or is empty (see GAHBCFG) */
3120 		if (hsotg->dedicated_fifos &&
3121 		    ints & DXEPINT_TXFEMP) {
3122 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3123 				__func__, idx);
3124 			if (!using_dma(hsotg))
3125 				dwc2_hsotg_trytx(hsotg, hs_ep);
3126 		}
3127 	}
3128 }
3129 
3130 /**
3131  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3132  * @hsotg: The device state.
3133  *
3134  * Handle updating the device settings after the enumeration phase has
3135  * been completed.
3136  */
3137 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3138 {
3139 	u32 dsts = dwc2_readl(hsotg, DSTS);
3140 	int ep0_mps = 0, ep_mps = 8;
3141 
3142 	/*
3143 	 * This should signal the finish of the enumeration phase
3144 	 * of the USB handshaking, so we should now know what rate
3145 	 * we connected at.
3146 	 */
3147 
3148 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3149 
3150 	/*
3151 	 * note, since we're limited by the size of transfer on EP0, and
3152 	 * it seems IN transfers must be a even number of packets we do
3153 	 * not advertise a 64byte MPS on EP0.
3154 	 */
3155 
3156 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3157 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3158 	case DSTS_ENUMSPD_FS:
3159 	case DSTS_ENUMSPD_FS48:
3160 		hsotg->gadget.speed = USB_SPEED_FULL;
3161 		ep0_mps = EP0_MPS_LIMIT;
3162 		ep_mps = 1023;
3163 		break;
3164 
3165 	case DSTS_ENUMSPD_HS:
3166 		hsotg->gadget.speed = USB_SPEED_HIGH;
3167 		ep0_mps = EP0_MPS_LIMIT;
3168 		ep_mps = 1024;
3169 		break;
3170 
3171 	case DSTS_ENUMSPD_LS:
3172 		hsotg->gadget.speed = USB_SPEED_LOW;
3173 		ep0_mps = 8;
3174 		ep_mps = 8;
3175 		/*
3176 		 * note, we don't actually support LS in this driver at the
3177 		 * moment, and the documentation seems to imply that it isn't
3178 		 * supported by the PHYs on some of the devices.
3179 		 */
3180 		break;
3181 	}
3182 	dev_info(hsotg->dev, "new device is %s\n",
3183 		 usb_speed_string(hsotg->gadget.speed));
3184 
3185 	/*
3186 	 * we should now know the maximum packet size for an
3187 	 * endpoint, so set the endpoints to a default value.
3188 	 */
3189 
3190 	if (ep0_mps) {
3191 		int i;
3192 		/* Initialize ep0 for both in and out directions */
3193 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3194 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3195 		for (i = 1; i < hsotg->num_of_eps; i++) {
3196 			if (hsotg->eps_in[i])
3197 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3198 							    0, 1);
3199 			if (hsotg->eps_out[i])
3200 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3201 							    0, 0);
3202 		}
3203 	}
3204 
3205 	/* ensure after enumeration our EP0 is active */
3206 
3207 	dwc2_hsotg_enqueue_setup(hsotg);
3208 
3209 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3210 		dwc2_readl(hsotg, DIEPCTL0),
3211 		dwc2_readl(hsotg, DOEPCTL0));
3212 }
3213 
3214 /**
3215  * kill_all_requests - remove all requests from the endpoint's queue
3216  * @hsotg: The device state.
3217  * @ep: The endpoint the requests may be on.
3218  * @result: The result code to use.
3219  *
3220  * Go through the requests on the given endpoint and mark them
3221  * completed with the given result code.
3222  */
3223 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3224 			      struct dwc2_hsotg_ep *ep,
3225 			      int result)
3226 {
3227 	struct dwc2_hsotg_req *req, *treq;
3228 	unsigned int size;
3229 
3230 	ep->req = NULL;
3231 
3232 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3233 		dwc2_hsotg_complete_request(hsotg, ep, req,
3234 					    result);
3235 
3236 	if (!hsotg->dedicated_fifos)
3237 		return;
3238 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3239 	if (size < ep->fifo_size)
3240 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3241 }
3242 
3243 /**
3244  * dwc2_hsotg_disconnect - disconnect service
3245  * @hsotg: The device state.
3246  *
3247  * The device has been disconnected. Remove all current
3248  * transactions and signal the gadget driver that this
3249  * has happened.
3250  */
3251 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3252 {
3253 	unsigned int ep;
3254 
3255 	if (!hsotg->connected)
3256 		return;
3257 
3258 	hsotg->connected = 0;
3259 	hsotg->test_mode = 0;
3260 
3261 	/* all endpoints should be shutdown */
3262 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3263 		if (hsotg->eps_in[ep])
3264 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3265 					  -ESHUTDOWN);
3266 		if (hsotg->eps_out[ep])
3267 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3268 					  -ESHUTDOWN);
3269 	}
3270 
3271 	call_gadget(hsotg, disconnect);
3272 	hsotg->lx_state = DWC2_L3;
3273 
3274 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3275 }
3276 
3277 /**
3278  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3279  * @hsotg: The device state:
3280  * @periodic: True if this is a periodic FIFO interrupt
3281  */
3282 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3283 {
3284 	struct dwc2_hsotg_ep *ep;
3285 	int epno, ret;
3286 
3287 	/* look through for any more data to transmit */
3288 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3289 		ep = index_to_ep(hsotg, epno, 1);
3290 
3291 		if (!ep)
3292 			continue;
3293 
3294 		if (!ep->dir_in)
3295 			continue;
3296 
3297 		if ((periodic && !ep->periodic) ||
3298 		    (!periodic && ep->periodic))
3299 			continue;
3300 
3301 		ret = dwc2_hsotg_trytx(hsotg, ep);
3302 		if (ret < 0)
3303 			break;
3304 	}
3305 }
3306 
3307 /* IRQ flags which will trigger a retry around the IRQ loop */
3308 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3309 			GINTSTS_PTXFEMP |  \
3310 			GINTSTS_RXFLVL)
3311 
3312 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3313 /**
3314  * dwc2_hsotg_core_init - issue softreset to the core
3315  * @hsotg: The device state
3316  * @is_usb_reset: Usb resetting flag
3317  *
3318  * Issue a soft reset to the core, and await the core finishing it.
3319  */
3320 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3321 				       bool is_usb_reset)
3322 {
3323 	u32 intmsk;
3324 	u32 val;
3325 	u32 usbcfg;
3326 	u32 dcfg = 0;
3327 	int ep;
3328 
3329 	/* Kill any ep0 requests as controller will be reinitialized */
3330 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3331 
3332 	if (!is_usb_reset) {
3333 		if (dwc2_core_reset(hsotg, true))
3334 			return;
3335 	} else {
3336 		/* all endpoints should be shutdown */
3337 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3338 			if (hsotg->eps_in[ep])
3339 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3340 			if (hsotg->eps_out[ep])
3341 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3342 		}
3343 	}
3344 
3345 	/*
3346 	 * we must now enable ep0 ready for host detection and then
3347 	 * set configuration.
3348 	 */
3349 
3350 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3351 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3352 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3353 	usbcfg |= GUSBCFG_TOUTCAL(7);
3354 
3355 	/* remove the HNP/SRP and set the PHY */
3356 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3357         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3358 
3359 	dwc2_phy_init(hsotg, true);
3360 
3361 	dwc2_hsotg_init_fifo(hsotg);
3362 
3363 	if (!is_usb_reset)
3364 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3365 
3366 	dcfg |= DCFG_EPMISCNT(1);
3367 
3368 	switch (hsotg->params.speed) {
3369 	case DWC2_SPEED_PARAM_LOW:
3370 		dcfg |= DCFG_DEVSPD_LS;
3371 		break;
3372 	case DWC2_SPEED_PARAM_FULL:
3373 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3374 			dcfg |= DCFG_DEVSPD_FS48;
3375 		else
3376 			dcfg |= DCFG_DEVSPD_FS;
3377 		break;
3378 	default:
3379 		dcfg |= DCFG_DEVSPD_HS;
3380 	}
3381 
3382 	if (hsotg->params.ipg_isoc_en)
3383 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3384 
3385 	dwc2_writel(hsotg, dcfg,  DCFG);
3386 
3387 	/* Clear any pending OTG interrupts */
3388 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3389 
3390 	/* Clear any pending interrupts */
3391 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3392 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3393 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3394 		GINTSTS_USBRST | GINTSTS_RESETDET |
3395 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3396 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3397 		GINTSTS_LPMTRANRCVD;
3398 
3399 	if (!using_desc_dma(hsotg))
3400 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3401 
3402 	if (!hsotg->params.external_id_pin_ctl)
3403 		intmsk |= GINTSTS_CONIDSTSCHNG;
3404 
3405 	dwc2_writel(hsotg, intmsk, GINTMSK);
3406 
3407 	if (using_dma(hsotg)) {
3408 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3409 			    hsotg->params.ahbcfg,
3410 			    GAHBCFG);
3411 
3412 		/* Set DDMA mode support in the core if needed */
3413 		if (using_desc_dma(hsotg))
3414 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3415 
3416 	} else {
3417 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3418 						(GAHBCFG_NP_TXF_EMP_LVL |
3419 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3420 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3421 	}
3422 
3423 	/*
3424 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3425 	 * when we have no data to transfer. Otherwise we get being flooded by
3426 	 * interrupts.
3427 	 */
3428 
3429 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3430 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3431 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3432 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3433 		DIEPMSK);
3434 
3435 	/*
3436 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3437 	 * DMA mode we may need this and StsPhseRcvd.
3438 	 */
3439 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3440 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3441 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3442 		DOEPMSK_SETUPMSK,
3443 		DOEPMSK);
3444 
3445 	/* Enable BNA interrupt for DDMA */
3446 	if (using_desc_dma(hsotg)) {
3447 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3448 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3449 	}
3450 
3451 	/* Enable Service Interval mode if supported */
3452 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3453 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3454 
3455 	dwc2_writel(hsotg, 0, DAINTMSK);
3456 
3457 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3458 		dwc2_readl(hsotg, DIEPCTL0),
3459 		dwc2_readl(hsotg, DOEPCTL0));
3460 
3461 	/* enable in and out endpoint interrupts */
3462 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3463 
3464 	/*
3465 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3466 	 * the data. In DMA mode, we get events from the FIFO but also
3467 	 * things we cannot process, so do not use it.
3468 	 */
3469 	if (!using_dma(hsotg))
3470 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3471 
3472 	/* Enable interrupts for EP0 in and out */
3473 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3474 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3475 
3476 	if (!is_usb_reset) {
3477 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3478 		udelay(10);  /* see openiboot */
3479 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3480 	}
3481 
3482 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3483 
3484 	/*
3485 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3486 	 * writing to the EPCTL register..
3487 	 */
3488 
3489 	/* set to read 1 8byte packet */
3490 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3491 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3492 
3493 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3494 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3495 	       DXEPCTL_USBACTEP,
3496 	       DOEPCTL0);
3497 
3498 	/* enable, but don't activate EP0in */
3499 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3500 	       DXEPCTL_USBACTEP, DIEPCTL0);
3501 
3502 	/* clear global NAKs */
3503 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3504 	if (!is_usb_reset)
3505 		val |= DCTL_SFTDISCON;
3506 	dwc2_set_bit(hsotg, DCTL, val);
3507 
3508 	/* configure the core to support LPM */
3509 	dwc2_gadget_init_lpm(hsotg);
3510 
3511 	/* program GREFCLK register if needed */
3512 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3513 		dwc2_gadget_program_ref_clk(hsotg);
3514 
3515 	/* must be at-least 3ms to allow bus to see disconnect */
3516 	mdelay(3);
3517 
3518 	hsotg->lx_state = DWC2_L0;
3519 
3520 	dwc2_hsotg_enqueue_setup(hsotg);
3521 
3522 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3523 		dwc2_readl(hsotg, DIEPCTL0),
3524 		dwc2_readl(hsotg, DOEPCTL0));
3525 }
3526 
3527 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3528 {
3529 	/* set the soft-disconnect bit */
3530 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3531 }
3532 
3533 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3534 {
3535 	/* remove the soft-disconnect and let's go */
3536 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3537 }
3538 
3539 /**
3540  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3541  * @hsotg: The device state:
3542  *
3543  * This interrupt indicates one of the following conditions occurred while
3544  * transmitting an ISOC transaction.
3545  * - Corrupted IN Token for ISOC EP.
3546  * - Packet not complete in FIFO.
3547  *
3548  * The following actions will be taken:
3549  * - Determine the EP
3550  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3551  */
3552 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3553 {
3554 	struct dwc2_hsotg_ep *hs_ep;
3555 	u32 epctrl;
3556 	u32 daintmsk;
3557 	u32 idx;
3558 
3559 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3560 
3561 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3562 
3563 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3564 		hs_ep = hsotg->eps_in[idx];
3565 		/* Proceed only unmasked ISOC EPs */
3566 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3567 			continue;
3568 
3569 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3570 		if ((epctrl & DXEPCTL_EPENA) &&
3571 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3572 			epctrl |= DXEPCTL_SNAK;
3573 			epctrl |= DXEPCTL_EPDIS;
3574 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3575 		}
3576 	}
3577 
3578 	/* Clear interrupt */
3579 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3580 }
3581 
3582 /**
3583  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3584  * @hsotg: The device state:
3585  *
3586  * This interrupt indicates one of the following conditions occurred while
3587  * transmitting an ISOC transaction.
3588  * - Corrupted OUT Token for ISOC EP.
3589  * - Packet not complete in FIFO.
3590  *
3591  * The following actions will be taken:
3592  * - Determine the EP
3593  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3594  */
3595 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3596 {
3597 	u32 gintsts;
3598 	u32 gintmsk;
3599 	u32 daintmsk;
3600 	u32 epctrl;
3601 	struct dwc2_hsotg_ep *hs_ep;
3602 	int idx;
3603 
3604 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3605 
3606 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3607 	daintmsk >>= DAINT_OUTEP_SHIFT;
3608 
3609 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3610 		hs_ep = hsotg->eps_out[idx];
3611 		/* Proceed only unmasked ISOC EPs */
3612 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3613 			continue;
3614 
3615 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3616 		if ((epctrl & DXEPCTL_EPENA) &&
3617 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3618 			/* Unmask GOUTNAKEFF interrupt */
3619 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3620 			gintmsk |= GINTSTS_GOUTNAKEFF;
3621 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3622 
3623 			gintsts = dwc2_readl(hsotg, GINTSTS);
3624 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3625 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3626 				break;
3627 			}
3628 		}
3629 	}
3630 
3631 	/* Clear interrupt */
3632 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3633 }
3634 
3635 /**
3636  * dwc2_hsotg_irq - handle device interrupt
3637  * @irq: The IRQ number triggered
3638  * @pw: The pw value when registered the handler.
3639  */
3640 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3641 {
3642 	struct dwc2_hsotg *hsotg = pw;
3643 	int retry_count = 8;
3644 	u32 gintsts;
3645 	u32 gintmsk;
3646 
3647 	if (!dwc2_is_device_mode(hsotg))
3648 		return IRQ_NONE;
3649 
3650 	spin_lock(&hsotg->lock);
3651 irq_retry:
3652 	gintsts = dwc2_readl(hsotg, GINTSTS);
3653 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3654 
3655 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3656 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3657 
3658 	gintsts &= gintmsk;
3659 
3660 	if (gintsts & GINTSTS_RESETDET) {
3661 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3662 
3663 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3664 
3665 		/* This event must be used only if controller is suspended */
3666 		if (hsotg->lx_state == DWC2_L2) {
3667 			dwc2_exit_partial_power_down(hsotg, true);
3668 			hsotg->lx_state = DWC2_L0;
3669 		}
3670 	}
3671 
3672 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3673 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3674 		u32 connected = hsotg->connected;
3675 
3676 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3677 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3678 			dwc2_readl(hsotg, GNPTXSTS));
3679 
3680 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3681 
3682 		/* Report disconnection if it is not already done. */
3683 		dwc2_hsotg_disconnect(hsotg);
3684 
3685 		/* Reset device address to zero */
3686 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3687 
3688 		if (usb_status & GOTGCTL_BSESVLD && connected)
3689 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3690 	}
3691 
3692 	if (gintsts & GINTSTS_ENUMDONE) {
3693 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3694 
3695 		dwc2_hsotg_irq_enumdone(hsotg);
3696 	}
3697 
3698 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3699 		u32 daint = dwc2_readl(hsotg, DAINT);
3700 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3701 		u32 daint_out, daint_in;
3702 		int ep;
3703 
3704 		daint &= daintmsk;
3705 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3706 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3707 
3708 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3709 
3710 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3711 						ep++, daint_out >>= 1) {
3712 			if (daint_out & 1)
3713 				dwc2_hsotg_epint(hsotg, ep, 0);
3714 		}
3715 
3716 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3717 						ep++, daint_in >>= 1) {
3718 			if (daint_in & 1)
3719 				dwc2_hsotg_epint(hsotg, ep, 1);
3720 		}
3721 	}
3722 
3723 	/* check both FIFOs */
3724 
3725 	if (gintsts & GINTSTS_NPTXFEMP) {
3726 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3727 
3728 		/*
3729 		 * Disable the interrupt to stop it happening again
3730 		 * unless one of these endpoint routines decides that
3731 		 * it needs re-enabling
3732 		 */
3733 
3734 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3735 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3736 	}
3737 
3738 	if (gintsts & GINTSTS_PTXFEMP) {
3739 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3740 
3741 		/* See note in GINTSTS_NPTxFEmp */
3742 
3743 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3744 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3745 	}
3746 
3747 	if (gintsts & GINTSTS_RXFLVL) {
3748 		/*
3749 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3750 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3751 		 * set.
3752 		 */
3753 
3754 		dwc2_hsotg_handle_rx(hsotg);
3755 	}
3756 
3757 	if (gintsts & GINTSTS_ERLYSUSP) {
3758 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3759 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3760 	}
3761 
3762 	/*
3763 	 * these next two seem to crop-up occasionally causing the core
3764 	 * to shutdown the USB transfer, so try clearing them and logging
3765 	 * the occurrence.
3766 	 */
3767 
3768 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3769 		u8 idx;
3770 		u32 epctrl;
3771 		u32 gintmsk;
3772 		u32 daintmsk;
3773 		struct dwc2_hsotg_ep *hs_ep;
3774 
3775 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3776 		daintmsk >>= DAINT_OUTEP_SHIFT;
3777 		/* Mask this interrupt */
3778 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3779 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3780 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3781 
3782 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3783 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3784 			hs_ep = hsotg->eps_out[idx];
3785 			/* Proceed only unmasked ISOC EPs */
3786 			if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3787 				continue;
3788 
3789 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3790 
3791 			if (epctrl & DXEPCTL_EPENA) {
3792 				epctrl |= DXEPCTL_SNAK;
3793 				epctrl |= DXEPCTL_EPDIS;
3794 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3795 			}
3796 		}
3797 
3798 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3799 	}
3800 
3801 	if (gintsts & GINTSTS_GINNAKEFF) {
3802 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3803 
3804 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3805 
3806 		dwc2_hsotg_dump(hsotg);
3807 	}
3808 
3809 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3810 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3811 
3812 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3813 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3814 
3815 	/*
3816 	 * if we've had fifo events, we should try and go around the
3817 	 * loop again to see if there's any point in returning yet.
3818 	 */
3819 
3820 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3821 		goto irq_retry;
3822 
3823 	/* Check WKUP_ALERT interrupt*/
3824 	if (hsotg->params.service_interval)
3825 		dwc2_gadget_wkup_alert_handler(hsotg);
3826 
3827 	spin_unlock(&hsotg->lock);
3828 
3829 	return IRQ_HANDLED;
3830 }
3831 
3832 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3833 				   struct dwc2_hsotg_ep *hs_ep)
3834 {
3835 	u32 epctrl_reg;
3836 	u32 epint_reg;
3837 
3838 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3839 		DOEPCTL(hs_ep->index);
3840 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3841 		DOEPINT(hs_ep->index);
3842 
3843 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3844 		hs_ep->name);
3845 
3846 	if (hs_ep->dir_in) {
3847 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3848 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3849 			/* Wait for Nak effect */
3850 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3851 						    DXEPINT_INEPNAKEFF, 100))
3852 				dev_warn(hsotg->dev,
3853 					 "%s: timeout DIEPINT.NAKEFF\n",
3854 					 __func__);
3855 		} else {
3856 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3857 			/* Wait for Nak effect */
3858 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3859 						    GINTSTS_GINNAKEFF, 100))
3860 				dev_warn(hsotg->dev,
3861 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3862 					 __func__);
3863 		}
3864 	} else {
3865 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3866 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3867 
3868 		/* Wait for global nak to take effect */
3869 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3870 					    GINTSTS_GOUTNAKEFF, 100))
3871 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3872 				 __func__);
3873 	}
3874 
3875 	/* Disable ep */
3876 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3877 
3878 	/* Wait for ep to be disabled */
3879 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3880 		dev_warn(hsotg->dev,
3881 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3882 
3883 	/* Clear EPDISBLD interrupt */
3884 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3885 
3886 	if (hs_ep->dir_in) {
3887 		unsigned short fifo_index;
3888 
3889 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3890 			fifo_index = hs_ep->fifo_index;
3891 		else
3892 			fifo_index = 0;
3893 
3894 		/* Flush TX FIFO */
3895 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3896 
3897 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3898 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3899 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3900 
3901 	} else {
3902 		/* Remove global NAKs */
3903 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3904 	}
3905 }
3906 
3907 /**
3908  * dwc2_hsotg_ep_enable - enable the given endpoint
3909  * @ep: The USB endpint to configure
3910  * @desc: The USB endpoint descriptor to configure with.
3911  *
3912  * This is called from the USB gadget code's usb_ep_enable().
3913  */
3914 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3915 				const struct usb_endpoint_descriptor *desc)
3916 {
3917 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3918 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3919 	unsigned long flags;
3920 	unsigned int index = hs_ep->index;
3921 	u32 epctrl_reg;
3922 	u32 epctrl;
3923 	u32 mps;
3924 	u32 mc;
3925 	u32 mask;
3926 	unsigned int dir_in;
3927 	unsigned int i, val, size;
3928 	int ret = 0;
3929 	unsigned char ep_type;
3930 	int desc_num;
3931 
3932 	dev_dbg(hsotg->dev,
3933 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3934 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3935 		desc->wMaxPacketSize, desc->bInterval);
3936 
3937 	/* not to be called for EP0 */
3938 	if (index == 0) {
3939 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3940 		return -EINVAL;
3941 	}
3942 
3943 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3944 	if (dir_in != hs_ep->dir_in) {
3945 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3946 		return -EINVAL;
3947 	}
3948 
3949 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3950 	mps = usb_endpoint_maxp(desc);
3951 	mc = usb_endpoint_maxp_mult(desc);
3952 
3953 	/* ISOC IN in DDMA supported bInterval up to 10 */
3954 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3955 	    dir_in && desc->bInterval > 10) {
3956 		dev_err(hsotg->dev,
3957 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3958 		return -EINVAL;
3959 	}
3960 
3961 	/* High bandwidth ISOC OUT in DDMA not supported */
3962 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3963 	    !dir_in && mc > 1) {
3964 		dev_err(hsotg->dev,
3965 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3966 		return -EINVAL;
3967 	}
3968 
3969 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3970 
3971 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3972 	epctrl = dwc2_readl(hsotg, epctrl_reg);
3973 
3974 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3975 		__func__, epctrl, epctrl_reg);
3976 
3977 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
3978 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
3979 	else
3980 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
3981 
3982 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3983 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3984 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3985 			desc_num * sizeof(struct dwc2_dma_desc),
3986 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3987 		if (!hs_ep->desc_list) {
3988 			ret = -ENOMEM;
3989 			goto error2;
3990 		}
3991 	}
3992 
3993 	spin_lock_irqsave(&hsotg->lock, flags);
3994 
3995 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3996 	epctrl |= DXEPCTL_MPS(mps);
3997 
3998 	/*
3999 	 * mark the endpoint as active, otherwise the core may ignore
4000 	 * transactions entirely for this endpoint
4001 	 */
4002 	epctrl |= DXEPCTL_USBACTEP;
4003 
4004 	/* update the endpoint state */
4005 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4006 
4007 	/* default, set to non-periodic */
4008 	hs_ep->isochronous = 0;
4009 	hs_ep->periodic = 0;
4010 	hs_ep->halted = 0;
4011 	hs_ep->interval = desc->bInterval;
4012 
4013 	switch (ep_type) {
4014 	case USB_ENDPOINT_XFER_ISOC:
4015 		epctrl |= DXEPCTL_EPTYPE_ISO;
4016 		epctrl |= DXEPCTL_SETEVENFR;
4017 		hs_ep->isochronous = 1;
4018 		hs_ep->interval = 1 << (desc->bInterval - 1);
4019 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4020 		hs_ep->next_desc = 0;
4021 		hs_ep->compl_desc = 0;
4022 		if (dir_in) {
4023 			hs_ep->periodic = 1;
4024 			mask = dwc2_readl(hsotg, DIEPMSK);
4025 			mask |= DIEPMSK_NAKMSK;
4026 			dwc2_writel(hsotg, mask, DIEPMSK);
4027 		} else {
4028 			mask = dwc2_readl(hsotg, DOEPMSK);
4029 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4030 			dwc2_writel(hsotg, mask, DOEPMSK);
4031 		}
4032 		break;
4033 
4034 	case USB_ENDPOINT_XFER_BULK:
4035 		epctrl |= DXEPCTL_EPTYPE_BULK;
4036 		break;
4037 
4038 	case USB_ENDPOINT_XFER_INT:
4039 		if (dir_in)
4040 			hs_ep->periodic = 1;
4041 
4042 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4043 			hs_ep->interval = 1 << (desc->bInterval - 1);
4044 
4045 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4046 		break;
4047 
4048 	case USB_ENDPOINT_XFER_CONTROL:
4049 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4050 		break;
4051 	}
4052 
4053 	/*
4054 	 * if the hardware has dedicated fifos, we must give each IN EP
4055 	 * a unique tx-fifo even if it is non-periodic.
4056 	 */
4057 	if (dir_in && hsotg->dedicated_fifos) {
4058 		u32 fifo_index = 0;
4059 		u32 fifo_size = UINT_MAX;
4060 
4061 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4062 		for (i = 1; i < hsotg->num_of_eps; ++i) {
4063 			if (hsotg->fifo_map & (1 << i))
4064 				continue;
4065 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4066 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4067 			if (val < size)
4068 				continue;
4069 			/* Search for smallest acceptable fifo */
4070 			if (val < fifo_size) {
4071 				fifo_size = val;
4072 				fifo_index = i;
4073 			}
4074 		}
4075 		if (!fifo_index) {
4076 			dev_err(hsotg->dev,
4077 				"%s: No suitable fifo found\n", __func__);
4078 			ret = -ENOMEM;
4079 			goto error1;
4080 		}
4081 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4082 		hsotg->fifo_map |= 1 << fifo_index;
4083 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4084 		hs_ep->fifo_index = fifo_index;
4085 		hs_ep->fifo_size = fifo_size;
4086 	}
4087 
4088 	/* for non control endpoints, set PID to D0 */
4089 	if (index && !hs_ep->isochronous)
4090 		epctrl |= DXEPCTL_SETD0PID;
4091 
4092 	/* WA for Full speed ISOC IN in DDMA mode.
4093 	 * By Clear NAK status of EP, core will send ZLP
4094 	 * to IN token and assert NAK interrupt relying
4095 	 * on TxFIFO status only
4096 	 */
4097 
4098 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4099 	    hs_ep->isochronous && dir_in) {
4100 		/* The WA applies only to core versions from 2.72a
4101 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4102 		 * and HS_IOT_1.00a.
4103 		 */
4104 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4105 
4106 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4107 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4108 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4109 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4110 			epctrl |= DXEPCTL_CNAK;
4111 	}
4112 
4113 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4114 		__func__, epctrl);
4115 
4116 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4117 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4118 		__func__, dwc2_readl(hsotg, epctrl_reg));
4119 
4120 	/* enable the endpoint interrupt */
4121 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4122 
4123 error1:
4124 	spin_unlock_irqrestore(&hsotg->lock, flags);
4125 
4126 error2:
4127 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4128 		dmam_free_coherent(hsotg->dev, desc_num *
4129 			sizeof(struct dwc2_dma_desc),
4130 			hs_ep->desc_list, hs_ep->desc_list_dma);
4131 		hs_ep->desc_list = NULL;
4132 	}
4133 
4134 	return ret;
4135 }
4136 
4137 /**
4138  * dwc2_hsotg_ep_disable - disable given endpoint
4139  * @ep: The endpoint to disable.
4140  */
4141 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4142 {
4143 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4144 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4145 	int dir_in = hs_ep->dir_in;
4146 	int index = hs_ep->index;
4147 	u32 epctrl_reg;
4148 	u32 ctrl;
4149 
4150 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4151 
4152 	if (ep == &hsotg->eps_out[0]->ep) {
4153 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4154 		return -EINVAL;
4155 	}
4156 
4157 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4158 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4159 		return -EINVAL;
4160 	}
4161 
4162 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4163 
4164 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4165 
4166 	if (ctrl & DXEPCTL_EPENA)
4167 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4168 
4169 	ctrl &= ~DXEPCTL_EPENA;
4170 	ctrl &= ~DXEPCTL_USBACTEP;
4171 	ctrl |= DXEPCTL_SNAK;
4172 
4173 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4174 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4175 
4176 	/* disable endpoint interrupts */
4177 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4178 
4179 	/* terminate all requests with shutdown */
4180 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4181 
4182 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4183 	hs_ep->fifo_index = 0;
4184 	hs_ep->fifo_size = 0;
4185 
4186 	return 0;
4187 }
4188 
4189 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4190 {
4191 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4192 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4193 	unsigned long flags;
4194 	int ret;
4195 
4196 	spin_lock_irqsave(&hsotg->lock, flags);
4197 	ret = dwc2_hsotg_ep_disable(ep);
4198 	spin_unlock_irqrestore(&hsotg->lock, flags);
4199 	return ret;
4200 }
4201 
4202 /**
4203  * on_list - check request is on the given endpoint
4204  * @ep: The endpoint to check.
4205  * @test: The request to test if it is on the endpoint.
4206  */
4207 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4208 {
4209 	struct dwc2_hsotg_req *req, *treq;
4210 
4211 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4212 		if (req == test)
4213 			return true;
4214 	}
4215 
4216 	return false;
4217 }
4218 
4219 /**
4220  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4221  * @ep: The endpoint to dequeue.
4222  * @req: The request to be removed from a queue.
4223  */
4224 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4225 {
4226 	struct dwc2_hsotg_req *hs_req = our_req(req);
4227 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4228 	struct dwc2_hsotg *hs = hs_ep->parent;
4229 	unsigned long flags;
4230 
4231 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4232 
4233 	spin_lock_irqsave(&hs->lock, flags);
4234 
4235 	if (!on_list(hs_ep, hs_req)) {
4236 		spin_unlock_irqrestore(&hs->lock, flags);
4237 		return -EINVAL;
4238 	}
4239 
4240 	/* Dequeue already started request */
4241 	if (req == &hs_ep->req->req)
4242 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4243 
4244 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4245 	spin_unlock_irqrestore(&hs->lock, flags);
4246 
4247 	return 0;
4248 }
4249 
4250 /**
4251  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4252  * @ep: The endpoint to set halt.
4253  * @value: Set or unset the halt.
4254  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4255  *       the endpoint is busy processing requests.
4256  *
4257  * We need to stall the endpoint immediately if request comes from set_feature
4258  * protocol command handler.
4259  */
4260 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4261 {
4262 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4263 	struct dwc2_hsotg *hs = hs_ep->parent;
4264 	int index = hs_ep->index;
4265 	u32 epreg;
4266 	u32 epctl;
4267 	u32 xfertype;
4268 
4269 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4270 
4271 	if (index == 0) {
4272 		if (value)
4273 			dwc2_hsotg_stall_ep0(hs);
4274 		else
4275 			dev_warn(hs->dev,
4276 				 "%s: can't clear halt on ep0\n", __func__);
4277 		return 0;
4278 	}
4279 
4280 	if (hs_ep->isochronous) {
4281 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4282 		return -EINVAL;
4283 	}
4284 
4285 	if (!now && value && !list_empty(&hs_ep->queue)) {
4286 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4287 			ep->name);
4288 		return -EAGAIN;
4289 	}
4290 
4291 	if (hs_ep->dir_in) {
4292 		epreg = DIEPCTL(index);
4293 		epctl = dwc2_readl(hs, epreg);
4294 
4295 		if (value) {
4296 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4297 			if (epctl & DXEPCTL_EPENA)
4298 				epctl |= DXEPCTL_EPDIS;
4299 		} else {
4300 			epctl &= ~DXEPCTL_STALL;
4301 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4302 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4303 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4304 				epctl |= DXEPCTL_SETD0PID;
4305 		}
4306 		dwc2_writel(hs, epctl, epreg);
4307 	} else {
4308 		epreg = DOEPCTL(index);
4309 		epctl = dwc2_readl(hs, epreg);
4310 
4311 		if (value) {
4312 			epctl |= DXEPCTL_STALL;
4313 		} else {
4314 			epctl &= ~DXEPCTL_STALL;
4315 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4316 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4317 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4318 				epctl |= DXEPCTL_SETD0PID;
4319 		}
4320 		dwc2_writel(hs, epctl, epreg);
4321 	}
4322 
4323 	hs_ep->halted = value;
4324 
4325 	return 0;
4326 }
4327 
4328 /**
4329  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4330  * @ep: The endpoint to set halt.
4331  * @value: Set or unset the halt.
4332  */
4333 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4334 {
4335 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4336 	struct dwc2_hsotg *hs = hs_ep->parent;
4337 	unsigned long flags = 0;
4338 	int ret = 0;
4339 
4340 	spin_lock_irqsave(&hs->lock, flags);
4341 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4342 	spin_unlock_irqrestore(&hs->lock, flags);
4343 
4344 	return ret;
4345 }
4346 
4347 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4348 	.enable		= dwc2_hsotg_ep_enable,
4349 	.disable	= dwc2_hsotg_ep_disable_lock,
4350 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4351 	.free_request	= dwc2_hsotg_ep_free_request,
4352 	.queue		= dwc2_hsotg_ep_queue_lock,
4353 	.dequeue	= dwc2_hsotg_ep_dequeue,
4354 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4355 	/* note, don't believe we have any call for the fifo routines */
4356 };
4357 
4358 /**
4359  * dwc2_hsotg_init - initialize the usb core
4360  * @hsotg: The driver state
4361  */
4362 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4363 {
4364 	/* unmask subset of endpoint interrupts */
4365 
4366 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4367 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4368 		    DIEPMSK);
4369 
4370 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4371 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4372 		    DOEPMSK);
4373 
4374 	dwc2_writel(hsotg, 0, DAINTMSK);
4375 
4376 	/* Be in disconnected state until gadget is registered */
4377 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4378 
4379 	/* setup fifos */
4380 
4381 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4382 		dwc2_readl(hsotg, GRXFSIZ),
4383 		dwc2_readl(hsotg, GNPTXFSIZ));
4384 
4385 	dwc2_hsotg_init_fifo(hsotg);
4386 
4387 	if (using_dma(hsotg))
4388 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4389 }
4390 
4391 /**
4392  * dwc2_hsotg_udc_start - prepare the udc for work
4393  * @gadget: The usb gadget state
4394  * @driver: The usb gadget driver
4395  *
4396  * Perform initialization to prepare udc device and driver
4397  * to work.
4398  */
4399 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4400 				struct usb_gadget_driver *driver)
4401 {
4402 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4403 	unsigned long flags;
4404 	int ret;
4405 
4406 	if (!hsotg) {
4407 		pr_err("%s: called with no device\n", __func__);
4408 		return -ENODEV;
4409 	}
4410 
4411 	if (!driver) {
4412 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4413 		return -EINVAL;
4414 	}
4415 
4416 	if (driver->max_speed < USB_SPEED_FULL)
4417 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4418 
4419 	if (!driver->setup) {
4420 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4421 		return -EINVAL;
4422 	}
4423 
4424 	WARN_ON(hsotg->driver);
4425 
4426 	driver->driver.bus = NULL;
4427 	hsotg->driver = driver;
4428 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4429 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4430 
4431 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4432 		ret = dwc2_lowlevel_hw_enable(hsotg);
4433 		if (ret)
4434 			goto err;
4435 	}
4436 
4437 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4438 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4439 
4440 	spin_lock_irqsave(&hsotg->lock, flags);
4441 	if (dwc2_hw_is_device(hsotg)) {
4442 		dwc2_hsotg_init(hsotg);
4443 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4444 	}
4445 
4446 	hsotg->enabled = 0;
4447 	spin_unlock_irqrestore(&hsotg->lock, flags);
4448 
4449 	gadget->sg_supported = using_desc_dma(hsotg);
4450 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4451 
4452 	return 0;
4453 
4454 err:
4455 	hsotg->driver = NULL;
4456 	return ret;
4457 }
4458 
4459 /**
4460  * dwc2_hsotg_udc_stop - stop the udc
4461  * @gadget: The usb gadget state
4462  *
4463  * Stop udc hw block and stay tunned for future transmissions
4464  */
4465 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4466 {
4467 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4468 	unsigned long flags = 0;
4469 	int ep;
4470 
4471 	if (!hsotg)
4472 		return -ENODEV;
4473 
4474 	/* all endpoints should be shutdown */
4475 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4476 		if (hsotg->eps_in[ep])
4477 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4478 		if (hsotg->eps_out[ep])
4479 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4480 	}
4481 
4482 	spin_lock_irqsave(&hsotg->lock, flags);
4483 
4484 	hsotg->driver = NULL;
4485 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4486 	hsotg->enabled = 0;
4487 
4488 	spin_unlock_irqrestore(&hsotg->lock, flags);
4489 
4490 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4491 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4492 
4493 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4494 		dwc2_lowlevel_hw_disable(hsotg);
4495 
4496 	return 0;
4497 }
4498 
4499 /**
4500  * dwc2_hsotg_gadget_getframe - read the frame number
4501  * @gadget: The usb gadget state
4502  *
4503  * Read the {micro} frame number
4504  */
4505 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4506 {
4507 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4508 }
4509 
4510 /**
4511  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4512  * @gadget: The usb gadget state
4513  * @is_on: Current state of the USB PHY
4514  *
4515  * Connect/Disconnect the USB PHY pullup
4516  */
4517 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4518 {
4519 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4520 	unsigned long flags = 0;
4521 
4522 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4523 		hsotg->op_state);
4524 
4525 	/* Don't modify pullup state while in host mode */
4526 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4527 		hsotg->enabled = is_on;
4528 		return 0;
4529 	}
4530 
4531 	spin_lock_irqsave(&hsotg->lock, flags);
4532 	if (is_on) {
4533 		hsotg->enabled = 1;
4534 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4535 		/* Enable ACG feature in device mode,if supported */
4536 		dwc2_enable_acg(hsotg);
4537 		dwc2_hsotg_core_connect(hsotg);
4538 	} else {
4539 		dwc2_hsotg_core_disconnect(hsotg);
4540 		dwc2_hsotg_disconnect(hsotg);
4541 		hsotg->enabled = 0;
4542 	}
4543 
4544 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4545 	spin_unlock_irqrestore(&hsotg->lock, flags);
4546 
4547 	return 0;
4548 }
4549 
4550 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4551 {
4552 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4553 	unsigned long flags;
4554 
4555 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4556 	spin_lock_irqsave(&hsotg->lock, flags);
4557 
4558 	/*
4559 	 * If controller is hibernated, it must exit from power_down
4560 	 * before being initialized / de-initialized
4561 	 */
4562 	if (hsotg->lx_state == DWC2_L2)
4563 		dwc2_exit_partial_power_down(hsotg, false);
4564 
4565 	if (is_active) {
4566 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4567 
4568 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4569 		if (hsotg->enabled) {
4570 			/* Enable ACG feature in device mode,if supported */
4571 			dwc2_enable_acg(hsotg);
4572 			dwc2_hsotg_core_connect(hsotg);
4573 		}
4574 	} else {
4575 		dwc2_hsotg_core_disconnect(hsotg);
4576 		dwc2_hsotg_disconnect(hsotg);
4577 	}
4578 
4579 	spin_unlock_irqrestore(&hsotg->lock, flags);
4580 	return 0;
4581 }
4582 
4583 /**
4584  * dwc2_hsotg_vbus_draw - report bMaxPower field
4585  * @gadget: The usb gadget state
4586  * @mA: Amount of current
4587  *
4588  * Report how much power the device may consume to the phy.
4589  */
4590 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4591 {
4592 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4593 
4594 	if (IS_ERR_OR_NULL(hsotg->uphy))
4595 		return -ENOTSUPP;
4596 	return usb_phy_set_power(hsotg->uphy, mA);
4597 }
4598 
4599 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4600 	.get_frame	= dwc2_hsotg_gadget_getframe,
4601 	.udc_start		= dwc2_hsotg_udc_start,
4602 	.udc_stop		= dwc2_hsotg_udc_stop,
4603 	.pullup                 = dwc2_hsotg_pullup,
4604 	.vbus_session		= dwc2_hsotg_vbus_session,
4605 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4606 };
4607 
4608 /**
4609  * dwc2_hsotg_initep - initialise a single endpoint
4610  * @hsotg: The device state.
4611  * @hs_ep: The endpoint to be initialised.
4612  * @epnum: The endpoint number
4613  * @dir_in: True if direction is in.
4614  *
4615  * Initialise the given endpoint (as part of the probe and device state
4616  * creation) to give to the gadget driver. Setup the endpoint name, any
4617  * direction information and other state that may be required.
4618  */
4619 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4620 			      struct dwc2_hsotg_ep *hs_ep,
4621 				       int epnum,
4622 				       bool dir_in)
4623 {
4624 	char *dir;
4625 
4626 	if (epnum == 0)
4627 		dir = "";
4628 	else if (dir_in)
4629 		dir = "in";
4630 	else
4631 		dir = "out";
4632 
4633 	hs_ep->dir_in = dir_in;
4634 	hs_ep->index = epnum;
4635 
4636 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4637 
4638 	INIT_LIST_HEAD(&hs_ep->queue);
4639 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4640 
4641 	/* add to the list of endpoints known by the gadget driver */
4642 	if (epnum)
4643 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4644 
4645 	hs_ep->parent = hsotg;
4646 	hs_ep->ep.name = hs_ep->name;
4647 
4648 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4649 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4650 	else
4651 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4652 					   epnum ? 1024 : EP0_MPS_LIMIT);
4653 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4654 
4655 	if (epnum == 0) {
4656 		hs_ep->ep.caps.type_control = true;
4657 	} else {
4658 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4659 			hs_ep->ep.caps.type_iso = true;
4660 			hs_ep->ep.caps.type_bulk = true;
4661 		}
4662 		hs_ep->ep.caps.type_int = true;
4663 	}
4664 
4665 	if (dir_in)
4666 		hs_ep->ep.caps.dir_in = true;
4667 	else
4668 		hs_ep->ep.caps.dir_out = true;
4669 
4670 	/*
4671 	 * if we're using dma, we need to set the next-endpoint pointer
4672 	 * to be something valid.
4673 	 */
4674 
4675 	if (using_dma(hsotg)) {
4676 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4677 
4678 		if (dir_in)
4679 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4680 		else
4681 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4682 	}
4683 }
4684 
4685 /**
4686  * dwc2_hsotg_hw_cfg - read HW configuration registers
4687  * @hsotg: Programming view of the DWC_otg controller
4688  *
4689  * Read the USB core HW configuration registers
4690  */
4691 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4692 {
4693 	u32 cfg;
4694 	u32 ep_type;
4695 	u32 i;
4696 
4697 	/* check hardware configuration */
4698 
4699 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4700 
4701 	/* Add ep0 */
4702 	hsotg->num_of_eps++;
4703 
4704 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4705 					sizeof(struct dwc2_hsotg_ep),
4706 					GFP_KERNEL);
4707 	if (!hsotg->eps_in[0])
4708 		return -ENOMEM;
4709 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4710 	hsotg->eps_out[0] = hsotg->eps_in[0];
4711 
4712 	cfg = hsotg->hw_params.dev_ep_dirs;
4713 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4714 		ep_type = cfg & 3;
4715 		/* Direction in or both */
4716 		if (!(ep_type & 2)) {
4717 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4718 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4719 			if (!hsotg->eps_in[i])
4720 				return -ENOMEM;
4721 		}
4722 		/* Direction out or both */
4723 		if (!(ep_type & 1)) {
4724 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4725 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4726 			if (!hsotg->eps_out[i])
4727 				return -ENOMEM;
4728 		}
4729 	}
4730 
4731 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4732 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4733 
4734 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4735 		 hsotg->num_of_eps,
4736 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4737 		 hsotg->fifo_mem);
4738 	return 0;
4739 }
4740 
4741 /**
4742  * dwc2_hsotg_dump - dump state of the udc
4743  * @hsotg: Programming view of the DWC_otg controller
4744  *
4745  */
4746 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4747 {
4748 #ifdef DEBUG
4749 	struct device *dev = hsotg->dev;
4750 	u32 val;
4751 	int idx;
4752 
4753 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4754 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4755 		 dwc2_readl(hsotg, DIEPMSK));
4756 
4757 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4758 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4759 
4760 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4761 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4762 
4763 	/* show periodic fifo settings */
4764 
4765 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4766 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4767 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4768 			 val >> FIFOSIZE_DEPTH_SHIFT,
4769 			 val & FIFOSIZE_STARTADDR_MASK);
4770 	}
4771 
4772 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4773 		dev_info(dev,
4774 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4775 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4776 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4777 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4778 
4779 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4780 		dev_info(dev,
4781 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4782 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4783 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4784 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4785 	}
4786 
4787 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4788 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4789 #endif
4790 }
4791 
4792 /**
4793  * dwc2_gadget_init - init function for gadget
4794  * @hsotg: Programming view of the DWC_otg controller
4795  *
4796  */
4797 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4798 {
4799 	struct device *dev = hsotg->dev;
4800 	int epnum;
4801 	int ret;
4802 
4803 	/* Dump fifo information */
4804 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4805 		hsotg->params.g_np_tx_fifo_size);
4806 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4807 
4808 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4809 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4810 	hsotg->gadget.name = dev_name(dev);
4811 	hsotg->remote_wakeup_allowed = 0;
4812 
4813 	if (hsotg->params.lpm)
4814 		hsotg->gadget.lpm_capable = true;
4815 
4816 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4817 		hsotg->gadget.is_otg = 1;
4818 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4819 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4820 
4821 	ret = dwc2_hsotg_hw_cfg(hsotg);
4822 	if (ret) {
4823 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4824 		return ret;
4825 	}
4826 
4827 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4828 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4829 	if (!hsotg->ctrl_buff)
4830 		return -ENOMEM;
4831 
4832 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4833 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4834 	if (!hsotg->ep0_buff)
4835 		return -ENOMEM;
4836 
4837 	if (using_desc_dma(hsotg)) {
4838 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4839 		if (ret < 0)
4840 			return ret;
4841 	}
4842 
4843 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4844 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4845 	if (ret < 0) {
4846 		dev_err(dev, "cannot claim IRQ for gadget\n");
4847 		return ret;
4848 	}
4849 
4850 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4851 
4852 	if (hsotg->num_of_eps == 0) {
4853 		dev_err(dev, "wrong number of EPs (zero)\n");
4854 		return -EINVAL;
4855 	}
4856 
4857 	/* setup endpoint information */
4858 
4859 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4860 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4861 
4862 	/* allocate EP0 request */
4863 
4864 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4865 						     GFP_KERNEL);
4866 	if (!hsotg->ctrl_req) {
4867 		dev_err(dev, "failed to allocate ctrl req\n");
4868 		return -ENOMEM;
4869 	}
4870 
4871 	/* initialise the endpoints now the core has been initialised */
4872 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4873 		if (hsotg->eps_in[epnum])
4874 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4875 					  epnum, 1);
4876 		if (hsotg->eps_out[epnum])
4877 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4878 					  epnum, 0);
4879 	}
4880 
4881 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4882 	if (ret) {
4883 		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4884 					   hsotg->ctrl_req);
4885 		return ret;
4886 	}
4887 	dwc2_hsotg_dump(hsotg);
4888 
4889 	return 0;
4890 }
4891 
4892 /**
4893  * dwc2_hsotg_remove - remove function for hsotg driver
4894  * @hsotg: Programming view of the DWC_otg controller
4895  *
4896  */
4897 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4898 {
4899 	usb_del_gadget_udc(&hsotg->gadget);
4900 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4901 
4902 	return 0;
4903 }
4904 
4905 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4906 {
4907 	unsigned long flags;
4908 
4909 	if (hsotg->lx_state != DWC2_L0)
4910 		return 0;
4911 
4912 	if (hsotg->driver) {
4913 		int ep;
4914 
4915 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4916 			 hsotg->driver->driver.name);
4917 
4918 		spin_lock_irqsave(&hsotg->lock, flags);
4919 		if (hsotg->enabled)
4920 			dwc2_hsotg_core_disconnect(hsotg);
4921 		dwc2_hsotg_disconnect(hsotg);
4922 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4923 		spin_unlock_irqrestore(&hsotg->lock, flags);
4924 
4925 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4926 			if (hsotg->eps_in[ep])
4927 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4928 			if (hsotg->eps_out[ep])
4929 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4930 		}
4931 	}
4932 
4933 	return 0;
4934 }
4935 
4936 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4937 {
4938 	unsigned long flags;
4939 
4940 	if (hsotg->lx_state == DWC2_L2)
4941 		return 0;
4942 
4943 	if (hsotg->driver) {
4944 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4945 			 hsotg->driver->driver.name);
4946 
4947 		spin_lock_irqsave(&hsotg->lock, flags);
4948 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4949 		if (hsotg->enabled) {
4950 			/* Enable ACG feature in device mode,if supported */
4951 			dwc2_enable_acg(hsotg);
4952 			dwc2_hsotg_core_connect(hsotg);
4953 		}
4954 		spin_unlock_irqrestore(&hsotg->lock, flags);
4955 	}
4956 
4957 	return 0;
4958 }
4959 
4960 /**
4961  * dwc2_backup_device_registers() - Backup controller device registers.
4962  * When suspending usb bus, registers needs to be backuped
4963  * if controller power is disabled once suspended.
4964  *
4965  * @hsotg: Programming view of the DWC_otg controller
4966  */
4967 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4968 {
4969 	struct dwc2_dregs_backup *dr;
4970 	int i;
4971 
4972 	dev_dbg(hsotg->dev, "%s\n", __func__);
4973 
4974 	/* Backup dev regs */
4975 	dr = &hsotg->dr_backup;
4976 
4977 	dr->dcfg = dwc2_readl(hsotg, DCFG);
4978 	dr->dctl = dwc2_readl(hsotg, DCTL);
4979 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4980 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4981 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4982 
4983 	for (i = 0; i < hsotg->num_of_eps; i++) {
4984 		/* Backup IN EPs */
4985 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4986 
4987 		/* Ensure DATA PID is correctly configured */
4988 		if (dr->diepctl[i] & DXEPCTL_DPID)
4989 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4990 		else
4991 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4992 
4993 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4994 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4995 
4996 		/* Backup OUT EPs */
4997 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4998 
4999 		/* Ensure DATA PID is correctly configured */
5000 		if (dr->doepctl[i] & DXEPCTL_DPID)
5001 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5002 		else
5003 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5004 
5005 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5006 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5007 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5008 	}
5009 	dr->valid = true;
5010 	return 0;
5011 }
5012 
5013 /**
5014  * dwc2_restore_device_registers() - Restore controller device registers.
5015  * When resuming usb bus, device registers needs to be restored
5016  * if controller power were disabled.
5017  *
5018  * @hsotg: Programming view of the DWC_otg controller
5019  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5020  *
5021  * Return: 0 if successful, negative error code otherwise
5022  */
5023 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5024 {
5025 	struct dwc2_dregs_backup *dr;
5026 	int i;
5027 
5028 	dev_dbg(hsotg->dev, "%s\n", __func__);
5029 
5030 	/* Restore dev regs */
5031 	dr = &hsotg->dr_backup;
5032 	if (!dr->valid) {
5033 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5034 			__func__);
5035 		return -EINVAL;
5036 	}
5037 	dr->valid = false;
5038 
5039 	if (!remote_wakeup)
5040 		dwc2_writel(hsotg, dr->dctl, DCTL);
5041 
5042 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5043 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5044 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5045 
5046 	for (i = 0; i < hsotg->num_of_eps; i++) {
5047 		/* Restore IN EPs */
5048 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5049 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5050 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5051 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5052 		 * hibernation wrong value read and saved from DIEPDMAx,
5053 		 * as result BNA interrupt asserted on hibernation exit
5054 		 * by restoring from saved area.
5055 		 */
5056 		if (hsotg->params.g_dma_desc &&
5057 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5058 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5059 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5060 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5061 		/* Restore OUT EPs */
5062 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5063 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5064 		 * hibernation wrong value read and saved from DOEPDMAx,
5065 		 * as result BNA interrupt asserted on hibernation exit
5066 		 * by restoring from saved area.
5067 		 */
5068 		if (hsotg->params.g_dma_desc &&
5069 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5070 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5071 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5072 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5073 	}
5074 
5075 	return 0;
5076 }
5077 
5078 /**
5079  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5080  *
5081  * @hsotg: Programming view of DWC_otg controller
5082  *
5083  */
5084 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5085 {
5086 	u32 val;
5087 
5088 	if (!hsotg->params.lpm)
5089 		return;
5090 
5091 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5092 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5093 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5094 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5095 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5096 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5097 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5098 	dwc2_writel(hsotg, val, GLPMCFG);
5099 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5100 
5101 	/* Unmask WKUP_ALERT Interrupt */
5102 	if (hsotg->params.service_interval)
5103 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5104 }
5105 
5106 /**
5107  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5108  *
5109  * @hsotg: Programming view of DWC_otg controller
5110  *
5111  */
5112 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5113 {
5114 	u32 val = 0;
5115 
5116 	val |= GREFCLK_REF_CLK_MODE;
5117 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5118 	val |= hsotg->params.sof_cnt_wkup_alert <<
5119 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5120 
5121 	dwc2_writel(hsotg, val, GREFCLK);
5122 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5123 }
5124 
5125 /**
5126  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5127  *
5128  * @hsotg: Programming view of the DWC_otg controller
5129  *
5130  * Return non-zero if failed to enter to hibernation.
5131  */
5132 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5133 {
5134 	u32 gpwrdn;
5135 	int ret = 0;
5136 
5137 	/* Change to L2(suspend) state */
5138 	hsotg->lx_state = DWC2_L2;
5139 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5140 	ret = dwc2_backup_global_registers(hsotg);
5141 	if (ret) {
5142 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5143 			__func__);
5144 		return ret;
5145 	}
5146 	ret = dwc2_backup_device_registers(hsotg);
5147 	if (ret) {
5148 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5149 			__func__);
5150 		return ret;
5151 	}
5152 
5153 	gpwrdn = GPWRDN_PWRDNRSTN;
5154 	gpwrdn |= GPWRDN_PMUACTV;
5155 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5156 	udelay(10);
5157 
5158 	/* Set flag to indicate that we are in hibernation */
5159 	hsotg->hibernated = 1;
5160 
5161 	/* Enable interrupts from wake up logic */
5162 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5163 	gpwrdn |= GPWRDN_PMUINTSEL;
5164 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5165 	udelay(10);
5166 
5167 	/* Unmask device mode interrupts in GPWRDN */
5168 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5169 	gpwrdn |= GPWRDN_RST_DET_MSK;
5170 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5171 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5172 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5173 	udelay(10);
5174 
5175 	/* Enable Power Down Clamp */
5176 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5177 	gpwrdn |= GPWRDN_PWRDNCLMP;
5178 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5179 	udelay(10);
5180 
5181 	/* Switch off VDD */
5182 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5183 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5184 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5185 	udelay(10);
5186 
5187 	/* Save gpwrdn register for further usage if stschng interrupt */
5188 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5189 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5190 
5191 	return ret;
5192 }
5193 
5194 /**
5195  * dwc2_gadget_exit_hibernation()
5196  * This function is for exiting from Device mode hibernation by host initiated
5197  * resume/reset and device initiated remote-wakeup.
5198  *
5199  * @hsotg: Programming view of the DWC_otg controller
5200  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5201  * @reset: indicates whether resume is initiated by Reset.
5202  *
5203  * Return non-zero if failed to exit from hibernation.
5204  */
5205 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5206 				 int rem_wakeup, int reset)
5207 {
5208 	u32 pcgcctl;
5209 	u32 gpwrdn;
5210 	u32 dctl;
5211 	int ret = 0;
5212 	struct dwc2_gregs_backup *gr;
5213 	struct dwc2_dregs_backup *dr;
5214 
5215 	gr = &hsotg->gr_backup;
5216 	dr = &hsotg->dr_backup;
5217 
5218 	if (!hsotg->hibernated) {
5219 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5220 		return 1;
5221 	}
5222 	dev_dbg(hsotg->dev,
5223 		"%s: called with rem_wakeup = %d reset = %d\n",
5224 		__func__, rem_wakeup, reset);
5225 
5226 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5227 
5228 	if (!reset) {
5229 		/* Clear all pending interupts */
5230 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5231 	}
5232 
5233 	/* De-assert Restore */
5234 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5235 	gpwrdn &= ~GPWRDN_RESTORE;
5236 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5237 	udelay(10);
5238 
5239 	if (!rem_wakeup) {
5240 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5241 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5242 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5243 	}
5244 
5245 	/* Restore GUSBCFG, DCFG and DCTL */
5246 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5247 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5248 	dwc2_writel(hsotg, dr->dctl, DCTL);
5249 
5250 	/* De-assert Wakeup Logic */
5251 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5252 	gpwrdn &= ~GPWRDN_PMUACTV;
5253 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5254 
5255 	if (rem_wakeup) {
5256 		udelay(10);
5257 		/* Start Remote Wakeup Signaling */
5258 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5259 	} else {
5260 		udelay(50);
5261 		/* Set Device programming done bit */
5262 		dctl = dwc2_readl(hsotg, DCTL);
5263 		dctl |= DCTL_PWRONPRGDONE;
5264 		dwc2_writel(hsotg, dctl, DCTL);
5265 	}
5266 	/* Wait for interrupts which must be cleared */
5267 	mdelay(2);
5268 	/* Clear all pending interupts */
5269 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5270 
5271 	/* Restore global registers */
5272 	ret = dwc2_restore_global_registers(hsotg);
5273 	if (ret) {
5274 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5275 			__func__);
5276 		return ret;
5277 	}
5278 
5279 	/* Restore device registers */
5280 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5281 	if (ret) {
5282 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5283 			__func__);
5284 		return ret;
5285 	}
5286 
5287 	if (rem_wakeup) {
5288 		mdelay(10);
5289 		dctl = dwc2_readl(hsotg, DCTL);
5290 		dctl &= ~DCTL_RMTWKUPSIG;
5291 		dwc2_writel(hsotg, dctl, DCTL);
5292 	}
5293 
5294 	hsotg->hibernated = 0;
5295 	hsotg->lx_state = DWC2_L0;
5296 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5297 
5298 	return ret;
5299 }
5300