1 /** 2 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright 2008 Openmoko, Inc. 6 * Copyright 2008 Simtec Electronics 7 * Ben Dooks <ben@simtec.co.uk> 8 * http://armlinux.simtec.co.uk/ 9 * 10 * S3C USB2.0 High-speed / OtG driver 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/interrupt.h> 21 #include <linux/platform_device.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/debugfs.h> 24 #include <linux/mutex.h> 25 #include <linux/seq_file.h> 26 #include <linux/delay.h> 27 #include <linux/io.h> 28 #include <linux/slab.h> 29 #include <linux/clk.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/of_platform.h> 32 #include <linux/phy/phy.h> 33 34 #include <linux/usb/ch9.h> 35 #include <linux/usb/gadget.h> 36 #include <linux/usb/phy.h> 37 #include <linux/platform_data/s3c-hsotg.h> 38 #include <linux/uaccess.h> 39 40 #include "core.h" 41 #include "hw.h" 42 43 /* conversion functions */ 44 static inline struct s3c_hsotg_req *our_req(struct usb_request *req) 45 { 46 return container_of(req, struct s3c_hsotg_req, req); 47 } 48 49 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep) 50 { 51 return container_of(ep, struct s3c_hsotg_ep, ep); 52 } 53 54 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 55 { 56 return container_of(gadget, struct dwc2_hsotg, gadget); 57 } 58 59 static inline void __orr32(void __iomem *ptr, u32 val) 60 { 61 writel(readl(ptr) | val, ptr); 62 } 63 64 static inline void __bic32(void __iomem *ptr, u32 val) 65 { 66 writel(readl(ptr) & ~val, ptr); 67 } 68 69 static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 70 u32 ep_index, u32 dir_in) 71 { 72 if (dir_in) 73 return hsotg->eps_in[ep_index]; 74 else 75 return hsotg->eps_out[ep_index]; 76 } 77 78 /* forward declaration of functions */ 79 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg); 80 81 /** 82 * using_dma - return the DMA status of the driver. 83 * @hsotg: The driver state. 84 * 85 * Return true if we're using DMA. 86 * 87 * Currently, we have the DMA support code worked into everywhere 88 * that needs it, but the AMBA DMA implementation in the hardware can 89 * only DMA from 32bit aligned addresses. This means that gadgets such 90 * as the CDC Ethernet cannot work as they often pass packets which are 91 * not 32bit aligned. 92 * 93 * Unfortunately the choice to use DMA or not is global to the controller 94 * and seems to be only settable when the controller is being put through 95 * a core reset. This means we either need to fix the gadgets to take 96 * account of DMA alignment, or add bounce buffers (yuerk). 97 * 98 * g_using_dma is set depending on dts flag. 99 */ 100 static inline bool using_dma(struct dwc2_hsotg *hsotg) 101 { 102 return hsotg->g_using_dma; 103 } 104 105 /** 106 * s3c_hsotg_en_gsint - enable one or more of the general interrupt 107 * @hsotg: The device state 108 * @ints: A bitmask of the interrupts to enable 109 */ 110 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 111 { 112 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 113 u32 new_gsintmsk; 114 115 new_gsintmsk = gsintmsk | ints; 116 117 if (new_gsintmsk != gsintmsk) { 118 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 119 writel(new_gsintmsk, hsotg->regs + GINTMSK); 120 } 121 } 122 123 /** 124 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt 125 * @hsotg: The device state 126 * @ints: A bitmask of the interrupts to enable 127 */ 128 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 129 { 130 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 131 u32 new_gsintmsk; 132 133 new_gsintmsk = gsintmsk & ~ints; 134 135 if (new_gsintmsk != gsintmsk) 136 writel(new_gsintmsk, hsotg->regs + GINTMSK); 137 } 138 139 /** 140 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq 141 * @hsotg: The device state 142 * @ep: The endpoint index 143 * @dir_in: True if direction is in. 144 * @en: The enable value, true to enable 145 * 146 * Set or clear the mask for an individual endpoint's interrupt 147 * request. 148 */ 149 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 150 unsigned int ep, unsigned int dir_in, 151 unsigned int en) 152 { 153 unsigned long flags; 154 u32 bit = 1 << ep; 155 u32 daint; 156 157 if (!dir_in) 158 bit <<= 16; 159 160 local_irq_save(flags); 161 daint = readl(hsotg->regs + DAINTMSK); 162 if (en) 163 daint |= bit; 164 else 165 daint &= ~bit; 166 writel(daint, hsotg->regs + DAINTMSK); 167 local_irq_restore(flags); 168 } 169 170 /** 171 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs 172 * @hsotg: The device instance. 173 */ 174 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 175 { 176 unsigned int ep; 177 unsigned int addr; 178 int timeout; 179 u32 val; 180 181 /* Reset fifo map if not correctly cleared during previous session */ 182 WARN_ON(hsotg->fifo_map); 183 hsotg->fifo_map = 0; 184 185 /* set RX/NPTX FIFO sizes */ 186 writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ); 187 writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) | 188 (hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT), 189 hsotg->regs + GNPTXFSIZ); 190 191 /* 192 * arange all the rest of the TX FIFOs, as some versions of this 193 * block have overlapping default addresses. This also ensures 194 * that if the settings have been changed, then they are set to 195 * known values. 196 */ 197 198 /* start at the end of the GNPTXFSIZ, rounded up */ 199 addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz; 200 201 /* 202 * Configure fifos sizes from provided configuration and assign 203 * them to endpoints dynamically according to maxpacket size value of 204 * given endpoint. 205 */ 206 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 207 if (!hsotg->g_tx_fifo_sz[ep]) 208 continue; 209 val = addr; 210 val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT; 211 WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem, 212 "insufficient fifo memory"); 213 addr += hsotg->g_tx_fifo_sz[ep]; 214 215 writel(val, hsotg->regs + DPTXFSIZN(ep)); 216 } 217 218 /* 219 * according to p428 of the design guide, we need to ensure that 220 * all fifos are flushed before continuing 221 */ 222 223 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 224 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 225 226 /* wait until the fifos are both flushed */ 227 timeout = 100; 228 while (1) { 229 val = readl(hsotg->regs + GRSTCTL); 230 231 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 232 break; 233 234 if (--timeout == 0) { 235 dev_err(hsotg->dev, 236 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 237 __func__, val); 238 break; 239 } 240 241 udelay(1); 242 } 243 244 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 245 } 246 247 /** 248 * @ep: USB endpoint to allocate request for. 249 * @flags: Allocation flags 250 * 251 * Allocate a new USB request structure appropriate for the specified endpoint 252 */ 253 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, 254 gfp_t flags) 255 { 256 struct s3c_hsotg_req *req; 257 258 req = kzalloc(sizeof(struct s3c_hsotg_req), flags); 259 if (!req) 260 return NULL; 261 262 INIT_LIST_HEAD(&req->queue); 263 264 return &req->req; 265 } 266 267 /** 268 * is_ep_periodic - return true if the endpoint is in periodic mode. 269 * @hs_ep: The endpoint to query. 270 * 271 * Returns true if the endpoint is in periodic mode, meaning it is being 272 * used for an Interrupt or ISO transfer. 273 */ 274 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep) 275 { 276 return hs_ep->periodic; 277 } 278 279 /** 280 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request 281 * @hsotg: The device state. 282 * @hs_ep: The endpoint for the request 283 * @hs_req: The request being processed. 284 * 285 * This is the reverse of s3c_hsotg_map_dma(), called for the completion 286 * of a request to ensure the buffer is ready for access by the caller. 287 */ 288 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 289 struct s3c_hsotg_ep *hs_ep, 290 struct s3c_hsotg_req *hs_req) 291 { 292 struct usb_request *req = &hs_req->req; 293 294 /* ignore this if we're not moving any data */ 295 if (hs_req->req.length == 0) 296 return; 297 298 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 299 } 300 301 /** 302 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO 303 * @hsotg: The controller state. 304 * @hs_ep: The endpoint we're going to write for. 305 * @hs_req: The request to write data for. 306 * 307 * This is called when the TxFIFO has some space in it to hold a new 308 * transmission and we have something to give it. The actual setup of 309 * the data size is done elsewhere, so all we have to do is to actually 310 * write the data. 311 * 312 * The return value is zero if there is more space (or nothing was done) 313 * otherwise -ENOSPC is returned if the FIFO space was used up. 314 * 315 * This routine is only needed for PIO 316 */ 317 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 318 struct s3c_hsotg_ep *hs_ep, 319 struct s3c_hsotg_req *hs_req) 320 { 321 bool periodic = is_ep_periodic(hs_ep); 322 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS); 323 int buf_pos = hs_req->req.actual; 324 int to_write = hs_ep->size_loaded; 325 void *data; 326 int can_write; 327 int pkt_round; 328 int max_transfer; 329 330 to_write -= (buf_pos - hs_ep->last_load); 331 332 /* if there's nothing to write, get out early */ 333 if (to_write == 0) 334 return 0; 335 336 if (periodic && !hsotg->dedicated_fifos) { 337 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 338 int size_left; 339 int size_done; 340 341 /* 342 * work out how much data was loaded so we can calculate 343 * how much data is left in the fifo. 344 */ 345 346 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 347 348 /* 349 * if shared fifo, we cannot write anything until the 350 * previous data has been completely sent. 351 */ 352 if (hs_ep->fifo_load != 0) { 353 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 354 return -ENOSPC; 355 } 356 357 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 358 __func__, size_left, 359 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 360 361 /* how much of the data has moved */ 362 size_done = hs_ep->size_loaded - size_left; 363 364 /* how much data is left in the fifo */ 365 can_write = hs_ep->fifo_load - size_done; 366 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 367 __func__, can_write); 368 369 can_write = hs_ep->fifo_size - can_write; 370 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 371 __func__, can_write); 372 373 if (can_write <= 0) { 374 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 375 return -ENOSPC; 376 } 377 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 378 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index)); 379 380 can_write &= 0xffff; 381 can_write *= 4; 382 } else { 383 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 384 dev_dbg(hsotg->dev, 385 "%s: no queue slots available (0x%08x)\n", 386 __func__, gnptxsts); 387 388 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 389 return -ENOSPC; 390 } 391 392 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 393 can_write *= 4; /* fifo size is in 32bit quantities. */ 394 } 395 396 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 397 398 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 399 __func__, gnptxsts, can_write, to_write, max_transfer); 400 401 /* 402 * limit to 512 bytes of data, it seems at least on the non-periodic 403 * FIFO, requests of >512 cause the endpoint to get stuck with a 404 * fragment of the end of the transfer in it. 405 */ 406 if (can_write > 512 && !periodic) 407 can_write = 512; 408 409 /* 410 * limit the write to one max-packet size worth of data, but allow 411 * the transfer to return that it did not run out of fifo space 412 * doing it. 413 */ 414 if (to_write > max_transfer) { 415 to_write = max_transfer; 416 417 /* it's needed only when we do not use dedicated fifos */ 418 if (!hsotg->dedicated_fifos) 419 s3c_hsotg_en_gsint(hsotg, 420 periodic ? GINTSTS_PTXFEMP : 421 GINTSTS_NPTXFEMP); 422 } 423 424 /* see if we can write data */ 425 426 if (to_write > can_write) { 427 to_write = can_write; 428 pkt_round = to_write % max_transfer; 429 430 /* 431 * Round the write down to an 432 * exact number of packets. 433 * 434 * Note, we do not currently check to see if we can ever 435 * write a full packet or not to the FIFO. 436 */ 437 438 if (pkt_round) 439 to_write -= pkt_round; 440 441 /* 442 * enable correct FIFO interrupt to alert us when there 443 * is more room left. 444 */ 445 446 /* it's needed only when we do not use dedicated fifos */ 447 if (!hsotg->dedicated_fifos) 448 s3c_hsotg_en_gsint(hsotg, 449 periodic ? GINTSTS_PTXFEMP : 450 GINTSTS_NPTXFEMP); 451 } 452 453 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 454 to_write, hs_req->req.length, can_write, buf_pos); 455 456 if (to_write <= 0) 457 return -ENOSPC; 458 459 hs_req->req.actual = buf_pos + to_write; 460 hs_ep->total_data += to_write; 461 462 if (periodic) 463 hs_ep->fifo_load += to_write; 464 465 to_write = DIV_ROUND_UP(to_write, 4); 466 data = hs_req->req.buf + buf_pos; 467 468 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 469 470 return (to_write >= can_write) ? -ENOSPC : 0; 471 } 472 473 /** 474 * get_ep_limit - get the maximum data legnth for this endpoint 475 * @hs_ep: The endpoint 476 * 477 * Return the maximum data that can be queued in one go on a given endpoint 478 * so that transfers that are too long can be split. 479 */ 480 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep) 481 { 482 int index = hs_ep->index; 483 unsigned maxsize; 484 unsigned maxpkt; 485 486 if (index != 0) { 487 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 488 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 489 } else { 490 maxsize = 64+64; 491 if (hs_ep->dir_in) 492 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 493 else 494 maxpkt = 2; 495 } 496 497 /* we made the constant loading easier above by using +1 */ 498 maxpkt--; 499 maxsize--; 500 501 /* 502 * constrain by packet count if maxpkts*pktsize is greater 503 * than the length register size. 504 */ 505 506 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 507 maxsize = maxpkt * hs_ep->ep.maxpacket; 508 509 return maxsize; 510 } 511 512 /** 513 * s3c_hsotg_start_req - start a USB request from an endpoint's queue 514 * @hsotg: The controller state. 515 * @hs_ep: The endpoint to process a request for 516 * @hs_req: The request to start. 517 * @continuing: True if we are doing more for the current request. 518 * 519 * Start the given request running by setting the endpoint registers 520 * appropriately, and writing any data to the FIFOs. 521 */ 522 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg, 523 struct s3c_hsotg_ep *hs_ep, 524 struct s3c_hsotg_req *hs_req, 525 bool continuing) 526 { 527 struct usb_request *ureq = &hs_req->req; 528 int index = hs_ep->index; 529 int dir_in = hs_ep->dir_in; 530 u32 epctrl_reg; 531 u32 epsize_reg; 532 u32 epsize; 533 u32 ctrl; 534 unsigned length; 535 unsigned packets; 536 unsigned maxreq; 537 538 if (index != 0) { 539 if (hs_ep->req && !continuing) { 540 dev_err(hsotg->dev, "%s: active request\n", __func__); 541 WARN_ON(1); 542 return; 543 } else if (hs_ep->req != hs_req && continuing) { 544 dev_err(hsotg->dev, 545 "%s: continue different req\n", __func__); 546 WARN_ON(1); 547 return; 548 } 549 } 550 551 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 552 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 553 554 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 555 __func__, readl(hsotg->regs + epctrl_reg), index, 556 hs_ep->dir_in ? "in" : "out"); 557 558 /* If endpoint is stalled, we will restart request later */ 559 ctrl = readl(hsotg->regs + epctrl_reg); 560 561 if (ctrl & DXEPCTL_STALL) { 562 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 563 return; 564 } 565 566 length = ureq->length - ureq->actual; 567 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 568 ureq->length, ureq->actual); 569 570 maxreq = get_ep_limit(hs_ep); 571 if (length > maxreq) { 572 int round = maxreq % hs_ep->ep.maxpacket; 573 574 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 575 __func__, length, maxreq, round); 576 577 /* round down to multiple of packets */ 578 if (round) 579 maxreq -= round; 580 581 length = maxreq; 582 } 583 584 if (length) 585 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 586 else 587 packets = 1; /* send one packet if length is zero. */ 588 589 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 590 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 591 return; 592 } 593 594 if (dir_in && index != 0) 595 if (hs_ep->isochronous) 596 epsize = DXEPTSIZ_MC(packets); 597 else 598 epsize = DXEPTSIZ_MC(1); 599 else 600 epsize = 0; 601 602 /* 603 * zero length packet should be programmed on its own and should not 604 * be counted in DIEPTSIZ.PktCnt with other packets. 605 */ 606 if (dir_in && ureq->zero && !continuing) { 607 /* Test if zlp is actually required. */ 608 if ((ureq->length >= hs_ep->ep.maxpacket) && 609 !(ureq->length % hs_ep->ep.maxpacket)) 610 hs_ep->send_zlp = 1; 611 } 612 613 epsize |= DXEPTSIZ_PKTCNT(packets); 614 epsize |= DXEPTSIZ_XFERSIZE(length); 615 616 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 617 __func__, packets, length, ureq->length, epsize, epsize_reg); 618 619 /* store the request as the current one we're doing */ 620 hs_ep->req = hs_req; 621 622 /* write size / packets */ 623 writel(epsize, hsotg->regs + epsize_reg); 624 625 if (using_dma(hsotg) && !continuing) { 626 unsigned int dma_reg; 627 628 /* 629 * write DMA address to control register, buffer already 630 * synced by s3c_hsotg_ep_queue(). 631 */ 632 633 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 634 writel(ureq->dma, hsotg->regs + dma_reg); 635 636 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 637 __func__, &ureq->dma, dma_reg); 638 } 639 640 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 641 ctrl |= DXEPCTL_USBACTEP; 642 643 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 644 645 /* For Setup request do not clear NAK */ 646 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 647 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 648 649 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 650 writel(ctrl, hsotg->regs + epctrl_reg); 651 652 /* 653 * set these, it seems that DMA support increments past the end 654 * of the packet buffer so we need to calculate the length from 655 * this information. 656 */ 657 hs_ep->size_loaded = length; 658 hs_ep->last_load = ureq->actual; 659 660 if (dir_in && !using_dma(hsotg)) { 661 /* set these anyway, we may need them for non-periodic in */ 662 hs_ep->fifo_load = 0; 663 664 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 665 } 666 667 /* 668 * clear the INTknTXFEmpMsk when we start request, more as a aide 669 * to debugging to see what is going on. 670 */ 671 if (dir_in) 672 writel(DIEPMSK_INTKNTXFEMPMSK, 673 hsotg->regs + DIEPINT(index)); 674 675 /* 676 * Note, trying to clear the NAK here causes problems with transmit 677 * on the S3C6400 ending up with the TXFIFO becoming full. 678 */ 679 680 /* check ep is enabled */ 681 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 682 dev_dbg(hsotg->dev, 683 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 684 index, readl(hsotg->regs + epctrl_reg)); 685 686 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 687 __func__, readl(hsotg->regs + epctrl_reg)); 688 689 /* enable ep interrupts */ 690 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 691 } 692 693 /** 694 * s3c_hsotg_map_dma - map the DMA memory being used for the request 695 * @hsotg: The device state. 696 * @hs_ep: The endpoint the request is on. 697 * @req: The request being processed. 698 * 699 * We've been asked to queue a request, so ensure that the memory buffer 700 * is correctly setup for DMA. If we've been passed an extant DMA address 701 * then ensure the buffer has been synced to memory. If our buffer has no 702 * DMA memory, then we map the memory and mark our request to allow us to 703 * cleanup on completion. 704 */ 705 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg, 706 struct s3c_hsotg_ep *hs_ep, 707 struct usb_request *req) 708 { 709 struct s3c_hsotg_req *hs_req = our_req(req); 710 int ret; 711 712 /* if the length is zero, ignore the DMA data */ 713 if (hs_req->req.length == 0) 714 return 0; 715 716 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 717 if (ret) 718 goto dma_error; 719 720 return 0; 721 722 dma_error: 723 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 724 __func__, req->buf, req->length); 725 726 return -EIO; 727 } 728 729 static int s3c_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 730 struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req) 731 { 732 void *req_buf = hs_req->req.buf; 733 734 /* If dma is not being used or buffer is aligned */ 735 if (!using_dma(hsotg) || !((long)req_buf & 3)) 736 return 0; 737 738 WARN_ON(hs_req->saved_req_buf); 739 740 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 741 hs_ep->ep.name, req_buf, hs_req->req.length); 742 743 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 744 if (!hs_req->req.buf) { 745 hs_req->req.buf = req_buf; 746 dev_err(hsotg->dev, 747 "%s: unable to allocate memory for bounce buffer\n", 748 __func__); 749 return -ENOMEM; 750 } 751 752 /* Save actual buffer */ 753 hs_req->saved_req_buf = req_buf; 754 755 if (hs_ep->dir_in) 756 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 757 return 0; 758 } 759 760 static void s3c_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 761 struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req) 762 { 763 /* If dma is not being used or buffer was aligned */ 764 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 765 return; 766 767 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 768 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 769 770 /* Copy data from bounce buffer on successful out transfer */ 771 if (!hs_ep->dir_in && !hs_req->req.status) 772 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 773 hs_req->req.actual); 774 775 /* Free bounce buffer */ 776 kfree(hs_req->req.buf); 777 778 hs_req->req.buf = hs_req->saved_req_buf; 779 hs_req->saved_req_buf = NULL; 780 } 781 782 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 783 gfp_t gfp_flags) 784 { 785 struct s3c_hsotg_req *hs_req = our_req(req); 786 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 787 struct dwc2_hsotg *hs = hs_ep->parent; 788 bool first; 789 int ret; 790 791 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 792 ep->name, req, req->length, req->buf, req->no_interrupt, 793 req->zero, req->short_not_ok); 794 795 /* initialise status of the request */ 796 INIT_LIST_HEAD(&hs_req->queue); 797 req->actual = 0; 798 req->status = -EINPROGRESS; 799 800 ret = s3c_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 801 if (ret) 802 return ret; 803 804 /* if we're using DMA, sync the buffers as necessary */ 805 if (using_dma(hs)) { 806 ret = s3c_hsotg_map_dma(hs, hs_ep, req); 807 if (ret) 808 return ret; 809 } 810 811 first = list_empty(&hs_ep->queue); 812 list_add_tail(&hs_req->queue, &hs_ep->queue); 813 814 if (first) 815 s3c_hsotg_start_req(hs, hs_ep, hs_req, false); 816 817 return 0; 818 } 819 820 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 821 gfp_t gfp_flags) 822 { 823 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 824 struct dwc2_hsotg *hs = hs_ep->parent; 825 unsigned long flags = 0; 826 int ret = 0; 827 828 spin_lock_irqsave(&hs->lock, flags); 829 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags); 830 spin_unlock_irqrestore(&hs->lock, flags); 831 832 return ret; 833 } 834 835 static void s3c_hsotg_ep_free_request(struct usb_ep *ep, 836 struct usb_request *req) 837 { 838 struct s3c_hsotg_req *hs_req = our_req(req); 839 840 kfree(hs_req); 841 } 842 843 /** 844 * s3c_hsotg_complete_oursetup - setup completion callback 845 * @ep: The endpoint the request was on. 846 * @req: The request completed. 847 * 848 * Called on completion of any requests the driver itself 849 * submitted that need cleaning up. 850 */ 851 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep, 852 struct usb_request *req) 853 { 854 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 855 struct dwc2_hsotg *hsotg = hs_ep->parent; 856 857 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 858 859 s3c_hsotg_ep_free_request(ep, req); 860 } 861 862 /** 863 * ep_from_windex - convert control wIndex value to endpoint 864 * @hsotg: The driver state. 865 * @windex: The control request wIndex field (in host order). 866 * 867 * Convert the given wIndex into a pointer to an driver endpoint 868 * structure, or return NULL if it is not a valid endpoint. 869 */ 870 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 871 u32 windex) 872 { 873 struct s3c_hsotg_ep *ep; 874 int dir = (windex & USB_DIR_IN) ? 1 : 0; 875 int idx = windex & 0x7F; 876 877 if (windex >= 0x100) 878 return NULL; 879 880 if (idx > hsotg->num_of_eps) 881 return NULL; 882 883 ep = index_to_ep(hsotg, idx, dir); 884 885 if (idx && ep->dir_in != dir) 886 return NULL; 887 888 return ep; 889 } 890 891 /** 892 * s3c_hsotg_set_test_mode - Enable usb Test Modes 893 * @hsotg: The driver state. 894 * @testmode: requested usb test mode 895 * Enable usb Test Mode requested by the Host. 896 */ 897 static int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 898 { 899 int dctl = readl(hsotg->regs + DCTL); 900 901 dctl &= ~DCTL_TSTCTL_MASK; 902 switch (testmode) { 903 case TEST_J: 904 case TEST_K: 905 case TEST_SE0_NAK: 906 case TEST_PACKET: 907 case TEST_FORCE_EN: 908 dctl |= testmode << DCTL_TSTCTL_SHIFT; 909 break; 910 default: 911 return -EINVAL; 912 } 913 writel(dctl, hsotg->regs + DCTL); 914 return 0; 915 } 916 917 /** 918 * s3c_hsotg_send_reply - send reply to control request 919 * @hsotg: The device state 920 * @ep: Endpoint 0 921 * @buff: Buffer for request 922 * @length: Length of reply. 923 * 924 * Create a request and queue it on the given endpoint. This is useful as 925 * an internal method of sending replies to certain control requests, etc. 926 */ 927 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg, 928 struct s3c_hsotg_ep *ep, 929 void *buff, 930 int length) 931 { 932 struct usb_request *req; 933 int ret; 934 935 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 936 937 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 938 hsotg->ep0_reply = req; 939 if (!req) { 940 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 941 return -ENOMEM; 942 } 943 944 req->buf = hsotg->ep0_buff; 945 req->length = length; 946 /* 947 * zero flag is for sending zlp in DATA IN stage. It has no impact on 948 * STATUS stage. 949 */ 950 req->zero = 0; 951 req->complete = s3c_hsotg_complete_oursetup; 952 953 if (length) 954 memcpy(req->buf, buff, length); 955 956 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 957 if (ret) { 958 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 959 return ret; 960 } 961 962 return 0; 963 } 964 965 /** 966 * s3c_hsotg_process_req_status - process request GET_STATUS 967 * @hsotg: The device state 968 * @ctrl: USB control request 969 */ 970 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 971 struct usb_ctrlrequest *ctrl) 972 { 973 struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0]; 974 struct s3c_hsotg_ep *ep; 975 __le16 reply; 976 int ret; 977 978 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 979 980 if (!ep0->dir_in) { 981 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 982 return -EINVAL; 983 } 984 985 switch (ctrl->bRequestType & USB_RECIP_MASK) { 986 case USB_RECIP_DEVICE: 987 reply = cpu_to_le16(0); /* bit 0 => self powered, 988 * bit 1 => remote wakeup */ 989 break; 990 991 case USB_RECIP_INTERFACE: 992 /* currently, the data result should be zero */ 993 reply = cpu_to_le16(0); 994 break; 995 996 case USB_RECIP_ENDPOINT: 997 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 998 if (!ep) 999 return -ENOENT; 1000 1001 reply = cpu_to_le16(ep->halted ? 1 : 0); 1002 break; 1003 1004 default: 1005 return 0; 1006 } 1007 1008 if (le16_to_cpu(ctrl->wLength) != 2) 1009 return -EINVAL; 1010 1011 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2); 1012 if (ret) { 1013 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1014 return ret; 1015 } 1016 1017 return 1; 1018 } 1019 1020 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value); 1021 1022 /** 1023 * get_ep_head - return the first request on the endpoint 1024 * @hs_ep: The controller endpoint to get 1025 * 1026 * Get the first request on the endpoint. 1027 */ 1028 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep) 1029 { 1030 if (list_empty(&hs_ep->queue)) 1031 return NULL; 1032 1033 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue); 1034 } 1035 1036 /** 1037 * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1038 * @hsotg: The device state 1039 * @ctrl: USB control request 1040 */ 1041 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1042 struct usb_ctrlrequest *ctrl) 1043 { 1044 struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0]; 1045 struct s3c_hsotg_req *hs_req; 1046 bool restart; 1047 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1048 struct s3c_hsotg_ep *ep; 1049 int ret; 1050 bool halted; 1051 u32 recip; 1052 u32 wValue; 1053 u32 wIndex; 1054 1055 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1056 __func__, set ? "SET" : "CLEAR"); 1057 1058 wValue = le16_to_cpu(ctrl->wValue); 1059 wIndex = le16_to_cpu(ctrl->wIndex); 1060 recip = ctrl->bRequestType & USB_RECIP_MASK; 1061 1062 switch (recip) { 1063 case USB_RECIP_DEVICE: 1064 switch (wValue) { 1065 case USB_DEVICE_TEST_MODE: 1066 if ((wIndex & 0xff) != 0) 1067 return -EINVAL; 1068 if (!set) 1069 return -EINVAL; 1070 1071 hsotg->test_mode = wIndex >> 8; 1072 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 1073 if (ret) { 1074 dev_err(hsotg->dev, 1075 "%s: failed to send reply\n", __func__); 1076 return ret; 1077 } 1078 break; 1079 default: 1080 return -ENOENT; 1081 } 1082 break; 1083 1084 case USB_RECIP_ENDPOINT: 1085 ep = ep_from_windex(hsotg, wIndex); 1086 if (!ep) { 1087 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1088 __func__, wIndex); 1089 return -ENOENT; 1090 } 1091 1092 switch (wValue) { 1093 case USB_ENDPOINT_HALT: 1094 halted = ep->halted; 1095 1096 s3c_hsotg_ep_sethalt(&ep->ep, set); 1097 1098 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 1099 if (ret) { 1100 dev_err(hsotg->dev, 1101 "%s: failed to send reply\n", __func__); 1102 return ret; 1103 } 1104 1105 /* 1106 * we have to complete all requests for ep if it was 1107 * halted, and the halt was cleared by CLEAR_FEATURE 1108 */ 1109 1110 if (!set && halted) { 1111 /* 1112 * If we have request in progress, 1113 * then complete it 1114 */ 1115 if (ep->req) { 1116 hs_req = ep->req; 1117 ep->req = NULL; 1118 list_del_init(&hs_req->queue); 1119 if (hs_req->req.complete) { 1120 spin_unlock(&hsotg->lock); 1121 usb_gadget_giveback_request( 1122 &ep->ep, &hs_req->req); 1123 spin_lock(&hsotg->lock); 1124 } 1125 } 1126 1127 /* If we have pending request, then start it */ 1128 if (!ep->req) { 1129 restart = !list_empty(&ep->queue); 1130 if (restart) { 1131 hs_req = get_ep_head(ep); 1132 s3c_hsotg_start_req(hsotg, ep, 1133 hs_req, false); 1134 } 1135 } 1136 } 1137 1138 break; 1139 1140 default: 1141 return -ENOENT; 1142 } 1143 break; 1144 default: 1145 return -ENOENT; 1146 } 1147 return 1; 1148 } 1149 1150 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1151 1152 /** 1153 * s3c_hsotg_stall_ep0 - stall ep0 1154 * @hsotg: The device state 1155 * 1156 * Set stall for ep0 as response for setup request. 1157 */ 1158 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1159 { 1160 struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0]; 1161 u32 reg; 1162 u32 ctrl; 1163 1164 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1165 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1166 1167 /* 1168 * DxEPCTL_Stall will be cleared by EP once it has 1169 * taken effect, so no need to clear later. 1170 */ 1171 1172 ctrl = readl(hsotg->regs + reg); 1173 ctrl |= DXEPCTL_STALL; 1174 ctrl |= DXEPCTL_CNAK; 1175 writel(ctrl, hsotg->regs + reg); 1176 1177 dev_dbg(hsotg->dev, 1178 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1179 ctrl, reg, readl(hsotg->regs + reg)); 1180 1181 /* 1182 * complete won't be called, so we enqueue 1183 * setup request here 1184 */ 1185 s3c_hsotg_enqueue_setup(hsotg); 1186 } 1187 1188 /** 1189 * s3c_hsotg_process_control - process a control request 1190 * @hsotg: The device state 1191 * @ctrl: The control request received 1192 * 1193 * The controller has received the SETUP phase of a control request, and 1194 * needs to work out what to do next (and whether to pass it on to the 1195 * gadget driver). 1196 */ 1197 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg, 1198 struct usb_ctrlrequest *ctrl) 1199 { 1200 struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0]; 1201 int ret = 0; 1202 u32 dcfg; 1203 1204 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n", 1205 ctrl->bRequest, ctrl->bRequestType, 1206 ctrl->wValue, ctrl->wLength); 1207 1208 if (ctrl->wLength == 0) { 1209 ep0->dir_in = 1; 1210 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1211 } else if (ctrl->bRequestType & USB_DIR_IN) { 1212 ep0->dir_in = 1; 1213 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1214 } else { 1215 ep0->dir_in = 0; 1216 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1217 } 1218 1219 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1220 switch (ctrl->bRequest) { 1221 case USB_REQ_SET_ADDRESS: 1222 hsotg->connected = 1; 1223 dcfg = readl(hsotg->regs + DCFG); 1224 dcfg &= ~DCFG_DEVADDR_MASK; 1225 dcfg |= (le16_to_cpu(ctrl->wValue) << 1226 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1227 writel(dcfg, hsotg->regs + DCFG); 1228 1229 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1230 1231 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 1232 return; 1233 1234 case USB_REQ_GET_STATUS: 1235 ret = s3c_hsotg_process_req_status(hsotg, ctrl); 1236 break; 1237 1238 case USB_REQ_CLEAR_FEATURE: 1239 case USB_REQ_SET_FEATURE: 1240 ret = s3c_hsotg_process_req_feature(hsotg, ctrl); 1241 break; 1242 } 1243 } 1244 1245 /* as a fallback, try delivering it to the driver to deal with */ 1246 1247 if (ret == 0 && hsotg->driver) { 1248 spin_unlock(&hsotg->lock); 1249 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1250 spin_lock(&hsotg->lock); 1251 if (ret < 0) 1252 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1253 } 1254 1255 /* 1256 * the request is either unhandlable, or is not formatted correctly 1257 * so respond with a STALL for the status stage to indicate failure. 1258 */ 1259 1260 if (ret < 0) 1261 s3c_hsotg_stall_ep0(hsotg); 1262 } 1263 1264 /** 1265 * s3c_hsotg_complete_setup - completion of a setup transfer 1266 * @ep: The endpoint the request was on. 1267 * @req: The request completed. 1268 * 1269 * Called on completion of any requests the driver itself submitted for 1270 * EP0 setup packets 1271 */ 1272 static void s3c_hsotg_complete_setup(struct usb_ep *ep, 1273 struct usb_request *req) 1274 { 1275 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 1276 struct dwc2_hsotg *hsotg = hs_ep->parent; 1277 1278 if (req->status < 0) { 1279 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1280 return; 1281 } 1282 1283 spin_lock(&hsotg->lock); 1284 if (req->actual == 0) 1285 s3c_hsotg_enqueue_setup(hsotg); 1286 else 1287 s3c_hsotg_process_control(hsotg, req->buf); 1288 spin_unlock(&hsotg->lock); 1289 } 1290 1291 /** 1292 * s3c_hsotg_enqueue_setup - start a request for EP0 packets 1293 * @hsotg: The device state. 1294 * 1295 * Enqueue a request on EP0 if necessary to received any SETUP packets 1296 * received from the host. 1297 */ 1298 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1299 { 1300 struct usb_request *req = hsotg->ctrl_req; 1301 struct s3c_hsotg_req *hs_req = our_req(req); 1302 int ret; 1303 1304 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1305 1306 req->zero = 0; 1307 req->length = 8; 1308 req->buf = hsotg->ctrl_buff; 1309 req->complete = s3c_hsotg_complete_setup; 1310 1311 if (!list_empty(&hs_req->queue)) { 1312 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1313 return; 1314 } 1315 1316 hsotg->eps_out[0]->dir_in = 0; 1317 hsotg->eps_out[0]->send_zlp = 0; 1318 hsotg->ep0_state = DWC2_EP0_SETUP; 1319 1320 ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 1321 if (ret < 0) { 1322 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1323 /* 1324 * Don't think there's much we can do other than watch the 1325 * driver fail. 1326 */ 1327 } 1328 } 1329 1330 static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 1331 struct s3c_hsotg_ep *hs_ep) 1332 { 1333 u32 ctrl; 1334 u8 index = hs_ep->index; 1335 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1336 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1337 1338 if (hs_ep->dir_in) 1339 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 1340 index); 1341 else 1342 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 1343 index); 1344 1345 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1346 DXEPTSIZ_XFERSIZE(0), hsotg->regs + 1347 epsiz_reg); 1348 1349 ctrl = readl(hsotg->regs + epctl_reg); 1350 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1351 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1352 ctrl |= DXEPCTL_USBACTEP; 1353 writel(ctrl, hsotg->regs + epctl_reg); 1354 } 1355 1356 /** 1357 * s3c_hsotg_complete_request - complete a request given to us 1358 * @hsotg: The device state. 1359 * @hs_ep: The endpoint the request was on. 1360 * @hs_req: The request to complete. 1361 * @result: The result code (0 => Ok, otherwise errno) 1362 * 1363 * The given request has finished, so call the necessary completion 1364 * if it has one and then look to see if we can start a new request 1365 * on the endpoint. 1366 * 1367 * Note, expects the ep to already be locked as appropriate. 1368 */ 1369 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1370 struct s3c_hsotg_ep *hs_ep, 1371 struct s3c_hsotg_req *hs_req, 1372 int result) 1373 { 1374 bool restart; 1375 1376 if (!hs_req) { 1377 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1378 return; 1379 } 1380 1381 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1382 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1383 1384 /* 1385 * only replace the status if we've not already set an error 1386 * from a previous transaction 1387 */ 1388 1389 if (hs_req->req.status == -EINPROGRESS) 1390 hs_req->req.status = result; 1391 1392 s3c_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 1393 1394 hs_ep->req = NULL; 1395 list_del_init(&hs_req->queue); 1396 1397 if (using_dma(hsotg)) 1398 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1399 1400 /* 1401 * call the complete request with the locks off, just in case the 1402 * request tries to queue more work for this endpoint. 1403 */ 1404 1405 if (hs_req->req.complete) { 1406 spin_unlock(&hsotg->lock); 1407 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 1408 spin_lock(&hsotg->lock); 1409 } 1410 1411 /* 1412 * Look to see if there is anything else to do. Note, the completion 1413 * of the previous request may have caused a new request to be started 1414 * so be careful when doing this. 1415 */ 1416 1417 if (!hs_ep->req && result >= 0) { 1418 restart = !list_empty(&hs_ep->queue); 1419 if (restart) { 1420 hs_req = get_ep_head(hs_ep); 1421 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1422 } 1423 } 1424 } 1425 1426 /** 1427 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint 1428 * @hsotg: The device state. 1429 * @ep_idx: The endpoint index for the data 1430 * @size: The size of data in the fifo, in bytes 1431 * 1432 * The FIFO status shows there is data to read from the FIFO for a given 1433 * endpoint, so sort out whether we need to read the data into a request 1434 * that has been made for that endpoint. 1435 */ 1436 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 1437 { 1438 struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 1439 struct s3c_hsotg_req *hs_req = hs_ep->req; 1440 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 1441 int to_read; 1442 int max_req; 1443 int read_ptr; 1444 1445 1446 if (!hs_req) { 1447 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx)); 1448 int ptr; 1449 1450 dev_dbg(hsotg->dev, 1451 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 1452 __func__, size, ep_idx, epctl); 1453 1454 /* dump the data from the FIFO, we've nothing we can do */ 1455 for (ptr = 0; ptr < size; ptr += 4) 1456 (void)readl(fifo); 1457 1458 return; 1459 } 1460 1461 to_read = size; 1462 read_ptr = hs_req->req.actual; 1463 max_req = hs_req->req.length - read_ptr; 1464 1465 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 1466 __func__, to_read, max_req, read_ptr, hs_req->req.length); 1467 1468 if (to_read > max_req) { 1469 /* 1470 * more data appeared than we where willing 1471 * to deal with in this request. 1472 */ 1473 1474 /* currently we don't deal this */ 1475 WARN_ON_ONCE(1); 1476 } 1477 1478 hs_ep->total_data += to_read; 1479 hs_req->req.actual += to_read; 1480 to_read = DIV_ROUND_UP(to_read, 4); 1481 1482 /* 1483 * note, we might over-write the buffer end by 3 bytes depending on 1484 * alignment of the data. 1485 */ 1486 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 1487 } 1488 1489 /** 1490 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 1491 * @hsotg: The device instance 1492 * @dir_in: If IN zlp 1493 * 1494 * Generate a zero-length IN packet request for terminating a SETUP 1495 * transaction. 1496 * 1497 * Note, since we don't write any data to the TxFIFO, then it is 1498 * currently believed that we do not need to wait for any space in 1499 * the TxFIFO. 1500 */ 1501 static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 1502 { 1503 /* eps_out[0] is used in both directions */ 1504 hsotg->eps_out[0]->dir_in = dir_in; 1505 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 1506 1507 s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 1508 } 1509 1510 /** 1511 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 1512 * @hsotg: The device instance 1513 * @epnum: The endpoint received from 1514 * 1515 * The RXFIFO has delivered an OutDone event, which means that the data 1516 * transfer for an OUT endpoint has been completed, either by a short 1517 * packet or by the finish of a transfer. 1518 */ 1519 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 1520 { 1521 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum)); 1522 struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 1523 struct s3c_hsotg_req *hs_req = hs_ep->req; 1524 struct usb_request *req = &hs_req->req; 1525 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1526 int result = 0; 1527 1528 if (!hs_req) { 1529 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 1530 return; 1531 } 1532 1533 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 1534 dev_dbg(hsotg->dev, "zlp packet received\n"); 1535 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1536 s3c_hsotg_enqueue_setup(hsotg); 1537 return; 1538 } 1539 1540 if (using_dma(hsotg)) { 1541 unsigned size_done; 1542 1543 /* 1544 * Calculate the size of the transfer by checking how much 1545 * is left in the endpoint size register and then working it 1546 * out from the amount we loaded for the transfer. 1547 * 1548 * We need to do this as DMA pointers are always 32bit aligned 1549 * so may overshoot/undershoot the transfer. 1550 */ 1551 1552 size_done = hs_ep->size_loaded - size_left; 1553 size_done += hs_ep->last_load; 1554 1555 req->actual = size_done; 1556 } 1557 1558 /* if there is more request to do, schedule new transfer */ 1559 if (req->actual < req->length && size_left == 0) { 1560 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1561 return; 1562 } 1563 1564 if (req->actual < req->length && req->short_not_ok) { 1565 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 1566 __func__, req->actual, req->length); 1567 1568 /* 1569 * todo - what should we return here? there's no one else 1570 * even bothering to check the status. 1571 */ 1572 } 1573 1574 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 1575 /* Move to STATUS IN */ 1576 s3c_hsotg_ep0_zlp(hsotg, true); 1577 return; 1578 } 1579 1580 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 1581 } 1582 1583 /** 1584 * s3c_hsotg_read_frameno - read current frame number 1585 * @hsotg: The device instance 1586 * 1587 * Return the current frame number 1588 */ 1589 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 1590 { 1591 u32 dsts; 1592 1593 dsts = readl(hsotg->regs + DSTS); 1594 dsts &= DSTS_SOFFN_MASK; 1595 dsts >>= DSTS_SOFFN_SHIFT; 1596 1597 return dsts; 1598 } 1599 1600 /** 1601 * s3c_hsotg_handle_rx - RX FIFO has data 1602 * @hsotg: The device instance 1603 * 1604 * The IRQ handler has detected that the RX FIFO has some data in it 1605 * that requires processing, so find out what is in there and do the 1606 * appropriate read. 1607 * 1608 * The RXFIFO is a true FIFO, the packets coming out are still in packet 1609 * chunks, so if you have x packets received on an endpoint you'll get x 1610 * FIFO events delivered, each with a packet's worth of data in it. 1611 * 1612 * When using DMA, we should not be processing events from the RXFIFO 1613 * as the actual data should be sent to the memory directly and we turn 1614 * on the completion interrupts to get notifications of transfer completion. 1615 */ 1616 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 1617 { 1618 u32 grxstsr = readl(hsotg->regs + GRXSTSP); 1619 u32 epnum, status, size; 1620 1621 WARN_ON(using_dma(hsotg)); 1622 1623 epnum = grxstsr & GRXSTS_EPNUM_MASK; 1624 status = grxstsr & GRXSTS_PKTSTS_MASK; 1625 1626 size = grxstsr & GRXSTS_BYTECNT_MASK; 1627 size >>= GRXSTS_BYTECNT_SHIFT; 1628 1629 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 1630 __func__, grxstsr, size, epnum); 1631 1632 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 1633 case GRXSTS_PKTSTS_GLOBALOUTNAK: 1634 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 1635 break; 1636 1637 case GRXSTS_PKTSTS_OUTDONE: 1638 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 1639 s3c_hsotg_read_frameno(hsotg)); 1640 1641 if (!using_dma(hsotg)) 1642 s3c_hsotg_handle_outdone(hsotg, epnum); 1643 break; 1644 1645 case GRXSTS_PKTSTS_SETUPDONE: 1646 dev_dbg(hsotg->dev, 1647 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1648 s3c_hsotg_read_frameno(hsotg), 1649 readl(hsotg->regs + DOEPCTL(0))); 1650 /* 1651 * Call s3c_hsotg_handle_outdone here if it was not called from 1652 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 1653 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 1654 */ 1655 if (hsotg->ep0_state == DWC2_EP0_SETUP) 1656 s3c_hsotg_handle_outdone(hsotg, epnum); 1657 break; 1658 1659 case GRXSTS_PKTSTS_OUTRX: 1660 s3c_hsotg_rx_data(hsotg, epnum, size); 1661 break; 1662 1663 case GRXSTS_PKTSTS_SETUPRX: 1664 dev_dbg(hsotg->dev, 1665 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1666 s3c_hsotg_read_frameno(hsotg), 1667 readl(hsotg->regs + DOEPCTL(0))); 1668 1669 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 1670 1671 s3c_hsotg_rx_data(hsotg, epnum, size); 1672 break; 1673 1674 default: 1675 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 1676 __func__, grxstsr); 1677 1678 s3c_hsotg_dump(hsotg); 1679 break; 1680 } 1681 } 1682 1683 /** 1684 * s3c_hsotg_ep0_mps - turn max packet size into register setting 1685 * @mps: The maximum packet size in bytes. 1686 */ 1687 static u32 s3c_hsotg_ep0_mps(unsigned int mps) 1688 { 1689 switch (mps) { 1690 case 64: 1691 return D0EPCTL_MPS_64; 1692 case 32: 1693 return D0EPCTL_MPS_32; 1694 case 16: 1695 return D0EPCTL_MPS_16; 1696 case 8: 1697 return D0EPCTL_MPS_8; 1698 } 1699 1700 /* bad max packet size, warn and return invalid result */ 1701 WARN_ON(1); 1702 return (u32)-1; 1703 } 1704 1705 /** 1706 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field 1707 * @hsotg: The driver state. 1708 * @ep: The index number of the endpoint 1709 * @mps: The maximum packet size in bytes 1710 * 1711 * Configure the maximum packet size for the given endpoint, updating 1712 * the hardware control registers to reflect this. 1713 */ 1714 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 1715 unsigned int ep, unsigned int mps, unsigned int dir_in) 1716 { 1717 struct s3c_hsotg_ep *hs_ep; 1718 void __iomem *regs = hsotg->regs; 1719 u32 mpsval; 1720 u32 mcval; 1721 u32 reg; 1722 1723 hs_ep = index_to_ep(hsotg, ep, dir_in); 1724 if (!hs_ep) 1725 return; 1726 1727 if (ep == 0) { 1728 /* EP0 is a special case */ 1729 mpsval = s3c_hsotg_ep0_mps(mps); 1730 if (mpsval > 3) 1731 goto bad_mps; 1732 hs_ep->ep.maxpacket = mps; 1733 hs_ep->mc = 1; 1734 } else { 1735 mpsval = mps & DXEPCTL_MPS_MASK; 1736 if (mpsval > 1024) 1737 goto bad_mps; 1738 mcval = ((mps >> 11) & 0x3) + 1; 1739 hs_ep->mc = mcval; 1740 if (mcval > 3) 1741 goto bad_mps; 1742 hs_ep->ep.maxpacket = mpsval; 1743 } 1744 1745 if (dir_in) { 1746 reg = readl(regs + DIEPCTL(ep)); 1747 reg &= ~DXEPCTL_MPS_MASK; 1748 reg |= mpsval; 1749 writel(reg, regs + DIEPCTL(ep)); 1750 } else { 1751 reg = readl(regs + DOEPCTL(ep)); 1752 reg &= ~DXEPCTL_MPS_MASK; 1753 reg |= mpsval; 1754 writel(reg, regs + DOEPCTL(ep)); 1755 } 1756 1757 return; 1758 1759 bad_mps: 1760 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 1761 } 1762 1763 /** 1764 * s3c_hsotg_txfifo_flush - flush Tx FIFO 1765 * @hsotg: The driver state 1766 * @idx: The index for the endpoint (0..15) 1767 */ 1768 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 1769 { 1770 int timeout; 1771 int val; 1772 1773 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 1774 hsotg->regs + GRSTCTL); 1775 1776 /* wait until the fifo is flushed */ 1777 timeout = 100; 1778 1779 while (1) { 1780 val = readl(hsotg->regs + GRSTCTL); 1781 1782 if ((val & (GRSTCTL_TXFFLSH)) == 0) 1783 break; 1784 1785 if (--timeout == 0) { 1786 dev_err(hsotg->dev, 1787 "%s: timeout flushing fifo (GRSTCTL=%08x)\n", 1788 __func__, val); 1789 break; 1790 } 1791 1792 udelay(1); 1793 } 1794 } 1795 1796 /** 1797 * s3c_hsotg_trytx - check to see if anything needs transmitting 1798 * @hsotg: The driver state 1799 * @hs_ep: The driver endpoint to check. 1800 * 1801 * Check to see if there is a request that has data to send, and if so 1802 * make an attempt to write data into the FIFO. 1803 */ 1804 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg, 1805 struct s3c_hsotg_ep *hs_ep) 1806 { 1807 struct s3c_hsotg_req *hs_req = hs_ep->req; 1808 1809 if (!hs_ep->dir_in || !hs_req) { 1810 /** 1811 * if request is not enqueued, we disable interrupts 1812 * for endpoints, excepting ep0 1813 */ 1814 if (hs_ep->index != 0) 1815 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, 1816 hs_ep->dir_in, 0); 1817 return 0; 1818 } 1819 1820 if (hs_req->req.actual < hs_req->req.length) { 1821 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 1822 hs_ep->index); 1823 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1824 } 1825 1826 return 0; 1827 } 1828 1829 /** 1830 * s3c_hsotg_complete_in - complete IN transfer 1831 * @hsotg: The device state. 1832 * @hs_ep: The endpoint that has just completed. 1833 * 1834 * An IN transfer has been completed, update the transfer's state and then 1835 * call the relevant completion routines. 1836 */ 1837 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg, 1838 struct s3c_hsotg_ep *hs_ep) 1839 { 1840 struct s3c_hsotg_req *hs_req = hs_ep->req; 1841 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 1842 int size_left, size_done; 1843 1844 if (!hs_req) { 1845 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 1846 return; 1847 } 1848 1849 /* Finish ZLP handling for IN EP0 transactions */ 1850 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 1851 dev_dbg(hsotg->dev, "zlp packet sent\n"); 1852 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1853 if (hsotg->test_mode) { 1854 int ret; 1855 1856 ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode); 1857 if (ret < 0) { 1858 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 1859 hsotg->test_mode); 1860 s3c_hsotg_stall_ep0(hsotg); 1861 return; 1862 } 1863 } 1864 s3c_hsotg_enqueue_setup(hsotg); 1865 return; 1866 } 1867 1868 /* 1869 * Calculate the size of the transfer by checking how much is left 1870 * in the endpoint size register and then working it out from 1871 * the amount we loaded for the transfer. 1872 * 1873 * We do this even for DMA, as the transfer may have incremented 1874 * past the end of the buffer (DMA transfers are always 32bit 1875 * aligned). 1876 */ 1877 1878 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1879 1880 size_done = hs_ep->size_loaded - size_left; 1881 size_done += hs_ep->last_load; 1882 1883 if (hs_req->req.actual != size_done) 1884 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 1885 __func__, hs_req->req.actual, size_done); 1886 1887 hs_req->req.actual = size_done; 1888 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 1889 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 1890 1891 if (!size_left && hs_req->req.actual < hs_req->req.length) { 1892 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 1893 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1894 return; 1895 } 1896 1897 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 1898 if (hs_ep->send_zlp) { 1899 s3c_hsotg_program_zlp(hsotg, hs_ep); 1900 hs_ep->send_zlp = 0; 1901 /* transfer will be completed on next complete interrupt */ 1902 return; 1903 } 1904 1905 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 1906 /* Move to STATUS OUT */ 1907 s3c_hsotg_ep0_zlp(hsotg, false); 1908 return; 1909 } 1910 1911 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1912 } 1913 1914 /** 1915 * s3c_hsotg_epint - handle an in/out endpoint interrupt 1916 * @hsotg: The driver state 1917 * @idx: The index for the endpoint (0..15) 1918 * @dir_in: Set if this is an IN endpoint 1919 * 1920 * Process and clear any interrupt pending for an individual endpoint 1921 */ 1922 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 1923 int dir_in) 1924 { 1925 struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 1926 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 1927 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 1928 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 1929 u32 ints; 1930 u32 ctrl; 1931 1932 ints = readl(hsotg->regs + epint_reg); 1933 ctrl = readl(hsotg->regs + epctl_reg); 1934 1935 /* Clear endpoint interrupts */ 1936 writel(ints, hsotg->regs + epint_reg); 1937 1938 if (!hs_ep) { 1939 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 1940 __func__, idx, dir_in ? "in" : "out"); 1941 return; 1942 } 1943 1944 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 1945 __func__, idx, dir_in ? "in" : "out", ints); 1946 1947 /* Don't process XferCompl interrupt if it is a setup packet */ 1948 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 1949 ints &= ~DXEPINT_XFERCOMPL; 1950 1951 if (ints & DXEPINT_XFERCOMPL) { 1952 if (hs_ep->isochronous && hs_ep->interval == 1) { 1953 if (ctrl & DXEPCTL_EOFRNUM) 1954 ctrl |= DXEPCTL_SETEVENFR; 1955 else 1956 ctrl |= DXEPCTL_SETODDFR; 1957 writel(ctrl, hsotg->regs + epctl_reg); 1958 } 1959 1960 dev_dbg(hsotg->dev, 1961 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 1962 __func__, readl(hsotg->regs + epctl_reg), 1963 readl(hsotg->regs + epsiz_reg)); 1964 1965 /* 1966 * we get OutDone from the FIFO, so we only need to look 1967 * at completing IN requests here 1968 */ 1969 if (dir_in) { 1970 s3c_hsotg_complete_in(hsotg, hs_ep); 1971 1972 if (idx == 0 && !hs_ep->req) 1973 s3c_hsotg_enqueue_setup(hsotg); 1974 } else if (using_dma(hsotg)) { 1975 /* 1976 * We're using DMA, we need to fire an OutDone here 1977 * as we ignore the RXFIFO. 1978 */ 1979 1980 s3c_hsotg_handle_outdone(hsotg, idx); 1981 } 1982 } 1983 1984 if (ints & DXEPINT_EPDISBLD) { 1985 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 1986 1987 if (dir_in) { 1988 int epctl = readl(hsotg->regs + epctl_reg); 1989 1990 s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 1991 1992 if ((epctl & DXEPCTL_STALL) && 1993 (epctl & DXEPCTL_EPTYPE_BULK)) { 1994 int dctl = readl(hsotg->regs + DCTL); 1995 1996 dctl |= DCTL_CGNPINNAK; 1997 writel(dctl, hsotg->regs + DCTL); 1998 } 1999 } 2000 } 2001 2002 if (ints & DXEPINT_AHBERR) 2003 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 2004 2005 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 2006 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 2007 2008 if (using_dma(hsotg) && idx == 0) { 2009 /* 2010 * this is the notification we've received a 2011 * setup packet. In non-DMA mode we'd get this 2012 * from the RXFIFO, instead we need to process 2013 * the setup here. 2014 */ 2015 2016 if (dir_in) 2017 WARN_ON_ONCE(1); 2018 else 2019 s3c_hsotg_handle_outdone(hsotg, 0); 2020 } 2021 } 2022 2023 if (ints & DXEPINT_BACK2BACKSETUP) 2024 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 2025 2026 if (dir_in && !hs_ep->isochronous) { 2027 /* not sure if this is important, but we'll clear it anyway */ 2028 if (ints & DIEPMSK_INTKNTXFEMPMSK) { 2029 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 2030 __func__, idx); 2031 } 2032 2033 /* this probably means something bad is happening */ 2034 if (ints & DIEPMSK_INTKNEPMISMSK) { 2035 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 2036 __func__, idx); 2037 } 2038 2039 /* FIFO has space or is empty (see GAHBCFG) */ 2040 if (hsotg->dedicated_fifos && 2041 ints & DIEPMSK_TXFIFOEMPTY) { 2042 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 2043 __func__, idx); 2044 if (!using_dma(hsotg)) 2045 s3c_hsotg_trytx(hsotg, hs_ep); 2046 } 2047 } 2048 } 2049 2050 /** 2051 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 2052 * @hsotg: The device state. 2053 * 2054 * Handle updating the device settings after the enumeration phase has 2055 * been completed. 2056 */ 2057 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 2058 { 2059 u32 dsts = readl(hsotg->regs + DSTS); 2060 int ep0_mps = 0, ep_mps = 8; 2061 2062 /* 2063 * This should signal the finish of the enumeration phase 2064 * of the USB handshaking, so we should now know what rate 2065 * we connected at. 2066 */ 2067 2068 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 2069 2070 /* 2071 * note, since we're limited by the size of transfer on EP0, and 2072 * it seems IN transfers must be a even number of packets we do 2073 * not advertise a 64byte MPS on EP0. 2074 */ 2075 2076 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 2077 switch (dsts & DSTS_ENUMSPD_MASK) { 2078 case DSTS_ENUMSPD_FS: 2079 case DSTS_ENUMSPD_FS48: 2080 hsotg->gadget.speed = USB_SPEED_FULL; 2081 ep0_mps = EP0_MPS_LIMIT; 2082 ep_mps = 1023; 2083 break; 2084 2085 case DSTS_ENUMSPD_HS: 2086 hsotg->gadget.speed = USB_SPEED_HIGH; 2087 ep0_mps = EP0_MPS_LIMIT; 2088 ep_mps = 1024; 2089 break; 2090 2091 case DSTS_ENUMSPD_LS: 2092 hsotg->gadget.speed = USB_SPEED_LOW; 2093 /* 2094 * note, we don't actually support LS in this driver at the 2095 * moment, and the documentation seems to imply that it isn't 2096 * supported by the PHYs on some of the devices. 2097 */ 2098 break; 2099 } 2100 dev_info(hsotg->dev, "new device is %s\n", 2101 usb_speed_string(hsotg->gadget.speed)); 2102 2103 /* 2104 * we should now know the maximum packet size for an 2105 * endpoint, so set the endpoints to a default value. 2106 */ 2107 2108 if (ep0_mps) { 2109 int i; 2110 /* Initialize ep0 for both in and out directions */ 2111 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1); 2112 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0); 2113 for (i = 1; i < hsotg->num_of_eps; i++) { 2114 if (hsotg->eps_in[i]) 2115 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1); 2116 if (hsotg->eps_out[i]) 2117 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0); 2118 } 2119 } 2120 2121 /* ensure after enumeration our EP0 is active */ 2122 2123 s3c_hsotg_enqueue_setup(hsotg); 2124 2125 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2126 readl(hsotg->regs + DIEPCTL0), 2127 readl(hsotg->regs + DOEPCTL0)); 2128 } 2129 2130 /** 2131 * kill_all_requests - remove all requests from the endpoint's queue 2132 * @hsotg: The device state. 2133 * @ep: The endpoint the requests may be on. 2134 * @result: The result code to use. 2135 * 2136 * Go through the requests on the given endpoint and mark them 2137 * completed with the given result code. 2138 */ 2139 static void kill_all_requests(struct dwc2_hsotg *hsotg, 2140 struct s3c_hsotg_ep *ep, 2141 int result) 2142 { 2143 struct s3c_hsotg_req *req, *treq; 2144 unsigned size; 2145 2146 ep->req = NULL; 2147 2148 list_for_each_entry_safe(req, treq, &ep->queue, queue) 2149 s3c_hsotg_complete_request(hsotg, ep, req, 2150 result); 2151 2152 if (!hsotg->dedicated_fifos) 2153 return; 2154 size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4; 2155 if (size < ep->fifo_size) 2156 s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index); 2157 } 2158 2159 /** 2160 * s3c_hsotg_disconnect - disconnect service 2161 * @hsotg: The device state. 2162 * 2163 * The device has been disconnected. Remove all current 2164 * transactions and signal the gadget driver that this 2165 * has happened. 2166 */ 2167 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg) 2168 { 2169 unsigned ep; 2170 2171 if (!hsotg->connected) 2172 return; 2173 2174 hsotg->connected = 0; 2175 hsotg->test_mode = 0; 2176 2177 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 2178 if (hsotg->eps_in[ep]) 2179 kill_all_requests(hsotg, hsotg->eps_in[ep], 2180 -ESHUTDOWN); 2181 if (hsotg->eps_out[ep]) 2182 kill_all_requests(hsotg, hsotg->eps_out[ep], 2183 -ESHUTDOWN); 2184 } 2185 2186 call_gadget(hsotg, disconnect); 2187 } 2188 EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect); 2189 2190 /** 2191 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 2192 * @hsotg: The device state: 2193 * @periodic: True if this is a periodic FIFO interrupt 2194 */ 2195 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 2196 { 2197 struct s3c_hsotg_ep *ep; 2198 int epno, ret; 2199 2200 /* look through for any more data to transmit */ 2201 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 2202 ep = index_to_ep(hsotg, epno, 1); 2203 2204 if (!ep) 2205 continue; 2206 2207 if (!ep->dir_in) 2208 continue; 2209 2210 if ((periodic && !ep->periodic) || 2211 (!periodic && ep->periodic)) 2212 continue; 2213 2214 ret = s3c_hsotg_trytx(hsotg, ep); 2215 if (ret < 0) 2216 break; 2217 } 2218 } 2219 2220 /* IRQ flags which will trigger a retry around the IRQ loop */ 2221 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 2222 GINTSTS_PTXFEMP | \ 2223 GINTSTS_RXFLVL) 2224 2225 /** 2226 * s3c_hsotg_corereset - issue softreset to the core 2227 * @hsotg: The device state 2228 * 2229 * Issue a soft reset to the core, and await the core finishing it. 2230 */ 2231 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg) 2232 { 2233 int timeout; 2234 u32 grstctl; 2235 2236 dev_dbg(hsotg->dev, "resetting core\n"); 2237 2238 /* issue soft reset */ 2239 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL); 2240 2241 timeout = 10000; 2242 do { 2243 grstctl = readl(hsotg->regs + GRSTCTL); 2244 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0); 2245 2246 if (grstctl & GRSTCTL_CSFTRST) { 2247 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n"); 2248 return -EINVAL; 2249 } 2250 2251 timeout = 10000; 2252 2253 while (1) { 2254 u32 grstctl = readl(hsotg->regs + GRSTCTL); 2255 2256 if (timeout-- < 0) { 2257 dev_info(hsotg->dev, 2258 "%s: reset failed, GRSTCTL=%08x\n", 2259 __func__, grstctl); 2260 return -ETIMEDOUT; 2261 } 2262 2263 if (!(grstctl & GRSTCTL_AHBIDLE)) 2264 continue; 2265 2266 break; /* reset done */ 2267 } 2268 2269 dev_dbg(hsotg->dev, "reset successful\n"); 2270 return 0; 2271 } 2272 2273 /** 2274 * s3c_hsotg_core_init - issue softreset to the core 2275 * @hsotg: The device state 2276 * 2277 * Issue a soft reset to the core, and await the core finishing it. 2278 */ 2279 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 2280 bool is_usb_reset) 2281 { 2282 u32 val; 2283 2284 if (!is_usb_reset) 2285 s3c_hsotg_corereset(hsotg); 2286 2287 /* 2288 * we must now enable ep0 ready for host detection and then 2289 * set configuration. 2290 */ 2291 2292 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2293 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 2294 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) | 2295 (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG); 2296 2297 s3c_hsotg_init_fifo(hsotg); 2298 2299 if (!is_usb_reset) 2300 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2301 2302 writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS, hsotg->regs + DCFG); 2303 2304 /* Clear any pending OTG interrupts */ 2305 writel(0xffffffff, hsotg->regs + GOTGINT); 2306 2307 /* Clear any pending interrupts */ 2308 writel(0xffffffff, hsotg->regs + GINTSTS); 2309 2310 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 2311 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 2312 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST | 2313 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 2314 GINTSTS_USBSUSP | GINTSTS_WKUPINT, 2315 hsotg->regs + GINTMSK); 2316 2317 if (using_dma(hsotg)) 2318 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 2319 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT), 2320 hsotg->regs + GAHBCFG); 2321 else 2322 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL | 2323 GAHBCFG_P_TXF_EMP_LVL) : 0) | 2324 GAHBCFG_GLBL_INTR_EN, 2325 hsotg->regs + GAHBCFG); 2326 2327 /* 2328 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 2329 * when we have no data to transfer. Otherwise we get being flooded by 2330 * interrupts. 2331 */ 2332 2333 writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 2334 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 2335 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 2336 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2337 DIEPMSK_INTKNEPMISMSK, 2338 hsotg->regs + DIEPMSK); 2339 2340 /* 2341 * don't need XferCompl, we get that from RXFIFO in slave mode. In 2342 * DMA mode we may need this. 2343 */ 2344 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 2345 DIEPMSK_TIMEOUTMSK) : 0) | 2346 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 2347 DOEPMSK_SETUPMSK, 2348 hsotg->regs + DOEPMSK); 2349 2350 writel(0, hsotg->regs + DAINTMSK); 2351 2352 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2353 readl(hsotg->regs + DIEPCTL0), 2354 readl(hsotg->regs + DOEPCTL0)); 2355 2356 /* enable in and out endpoint interrupts */ 2357 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 2358 2359 /* 2360 * Enable the RXFIFO when in slave mode, as this is how we collect 2361 * the data. In DMA mode, we get events from the FIFO but also 2362 * things we cannot process, so do not use it. 2363 */ 2364 if (!using_dma(hsotg)) 2365 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 2366 2367 /* Enable interrupts for EP0 in and out */ 2368 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1); 2369 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1); 2370 2371 if (!is_usb_reset) { 2372 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2373 udelay(10); /* see openiboot */ 2374 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2375 } 2376 2377 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL)); 2378 2379 /* 2380 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 2381 * writing to the EPCTL register.. 2382 */ 2383 2384 /* set to read 1 8byte packet */ 2385 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2386 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 2387 2388 writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 2389 DXEPCTL_CNAK | DXEPCTL_EPENA | 2390 DXEPCTL_USBACTEP, 2391 hsotg->regs + DOEPCTL0); 2392 2393 /* enable, but don't activate EP0in */ 2394 writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 2395 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 2396 2397 s3c_hsotg_enqueue_setup(hsotg); 2398 2399 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2400 readl(hsotg->regs + DIEPCTL0), 2401 readl(hsotg->regs + DOEPCTL0)); 2402 2403 /* clear global NAKs */ 2404 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 2405 if (!is_usb_reset) 2406 val |= DCTL_SFTDISCON; 2407 __orr32(hsotg->regs + DCTL, val); 2408 2409 /* must be at-least 3ms to allow bus to see disconnect */ 2410 mdelay(3); 2411 2412 hsotg->last_rst = jiffies; 2413 } 2414 2415 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 2416 { 2417 /* set the soft-disconnect bit */ 2418 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2419 } 2420 2421 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg) 2422 { 2423 /* remove the soft-disconnect and let's go */ 2424 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2425 } 2426 2427 /** 2428 * s3c_hsotg_irq - handle device interrupt 2429 * @irq: The IRQ number triggered 2430 * @pw: The pw value when registered the handler. 2431 */ 2432 static irqreturn_t s3c_hsotg_irq(int irq, void *pw) 2433 { 2434 struct dwc2_hsotg *hsotg = pw; 2435 int retry_count = 8; 2436 u32 gintsts; 2437 u32 gintmsk; 2438 2439 spin_lock(&hsotg->lock); 2440 irq_retry: 2441 gintsts = readl(hsotg->regs + GINTSTS); 2442 gintmsk = readl(hsotg->regs + GINTMSK); 2443 2444 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 2445 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 2446 2447 gintsts &= gintmsk; 2448 2449 if (gintsts & GINTSTS_ENUMDONE) { 2450 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 2451 2452 s3c_hsotg_irq_enumdone(hsotg); 2453 } 2454 2455 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 2456 u32 daint = readl(hsotg->regs + DAINT); 2457 u32 daintmsk = readl(hsotg->regs + DAINTMSK); 2458 u32 daint_out, daint_in; 2459 int ep; 2460 2461 daint &= daintmsk; 2462 daint_out = daint >> DAINT_OUTEP_SHIFT; 2463 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 2464 2465 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 2466 2467 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 2468 ep++, daint_out >>= 1) { 2469 if (daint_out & 1) 2470 s3c_hsotg_epint(hsotg, ep, 0); 2471 } 2472 2473 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 2474 ep++, daint_in >>= 1) { 2475 if (daint_in & 1) 2476 s3c_hsotg_epint(hsotg, ep, 1); 2477 } 2478 } 2479 2480 if (gintsts & GINTSTS_USBRST) { 2481 2482 u32 usb_status = readl(hsotg->regs + GOTGCTL); 2483 2484 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 2485 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 2486 readl(hsotg->regs + GNPTXSTS)); 2487 2488 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 2489 2490 /* Report disconnection if it is not already done. */ 2491 s3c_hsotg_disconnect(hsotg); 2492 2493 if (usb_status & GOTGCTL_BSESVLD) { 2494 if (time_after(jiffies, hsotg->last_rst + 2495 msecs_to_jiffies(200))) { 2496 2497 kill_all_requests(hsotg, hsotg->eps_out[0], 2498 -ECONNRESET); 2499 2500 s3c_hsotg_core_init_disconnected(hsotg, true); 2501 } 2502 } 2503 } 2504 2505 /* check both FIFOs */ 2506 2507 if (gintsts & GINTSTS_NPTXFEMP) { 2508 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 2509 2510 /* 2511 * Disable the interrupt to stop it happening again 2512 * unless one of these endpoint routines decides that 2513 * it needs re-enabling 2514 */ 2515 2516 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 2517 s3c_hsotg_irq_fifoempty(hsotg, false); 2518 } 2519 2520 if (gintsts & GINTSTS_PTXFEMP) { 2521 dev_dbg(hsotg->dev, "PTxFEmp\n"); 2522 2523 /* See note in GINTSTS_NPTxFEmp */ 2524 2525 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 2526 s3c_hsotg_irq_fifoempty(hsotg, true); 2527 } 2528 2529 if (gintsts & GINTSTS_RXFLVL) { 2530 /* 2531 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 2532 * we need to retry s3c_hsotg_handle_rx if this is still 2533 * set. 2534 */ 2535 2536 s3c_hsotg_handle_rx(hsotg); 2537 } 2538 2539 if (gintsts & GINTSTS_ERLYSUSP) { 2540 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 2541 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 2542 } 2543 2544 /* 2545 * these next two seem to crop-up occasionally causing the core 2546 * to shutdown the USB transfer, so try clearing them and logging 2547 * the occurrence. 2548 */ 2549 2550 if (gintsts & GINTSTS_GOUTNAKEFF) { 2551 dev_info(hsotg->dev, "GOUTNakEff triggered\n"); 2552 2553 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL); 2554 2555 s3c_hsotg_dump(hsotg); 2556 } 2557 2558 if (gintsts & GINTSTS_GINNAKEFF) { 2559 dev_info(hsotg->dev, "GINNakEff triggered\n"); 2560 2561 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL); 2562 2563 s3c_hsotg_dump(hsotg); 2564 } 2565 2566 /* 2567 * if we've had fifo events, we should try and go around the 2568 * loop again to see if there's any point in returning yet. 2569 */ 2570 2571 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 2572 goto irq_retry; 2573 2574 spin_unlock(&hsotg->lock); 2575 2576 return IRQ_HANDLED; 2577 } 2578 2579 /** 2580 * s3c_hsotg_ep_enable - enable the given endpoint 2581 * @ep: The USB endpint to configure 2582 * @desc: The USB endpoint descriptor to configure with. 2583 * 2584 * This is called from the USB gadget code's usb_ep_enable(). 2585 */ 2586 static int s3c_hsotg_ep_enable(struct usb_ep *ep, 2587 const struct usb_endpoint_descriptor *desc) 2588 { 2589 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2590 struct dwc2_hsotg *hsotg = hs_ep->parent; 2591 unsigned long flags; 2592 unsigned int index = hs_ep->index; 2593 u32 epctrl_reg; 2594 u32 epctrl; 2595 u32 mps; 2596 unsigned int dir_in; 2597 unsigned int i, val, size; 2598 int ret = 0; 2599 2600 dev_dbg(hsotg->dev, 2601 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 2602 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 2603 desc->wMaxPacketSize, desc->bInterval); 2604 2605 /* not to be called for EP0 */ 2606 WARN_ON(index == 0); 2607 2608 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 2609 if (dir_in != hs_ep->dir_in) { 2610 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 2611 return -EINVAL; 2612 } 2613 2614 mps = usb_endpoint_maxp(desc); 2615 2616 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */ 2617 2618 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2619 epctrl = readl(hsotg->regs + epctrl_reg); 2620 2621 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 2622 __func__, epctrl, epctrl_reg); 2623 2624 spin_lock_irqsave(&hsotg->lock, flags); 2625 2626 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 2627 epctrl |= DXEPCTL_MPS(mps); 2628 2629 /* 2630 * mark the endpoint as active, otherwise the core may ignore 2631 * transactions entirely for this endpoint 2632 */ 2633 epctrl |= DXEPCTL_USBACTEP; 2634 2635 /* 2636 * set the NAK status on the endpoint, otherwise we might try and 2637 * do something with data that we've yet got a request to process 2638 * since the RXFIFO will take data for an endpoint even if the 2639 * size register hasn't been set. 2640 */ 2641 2642 epctrl |= DXEPCTL_SNAK; 2643 2644 /* update the endpoint state */ 2645 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in); 2646 2647 /* default, set to non-periodic */ 2648 hs_ep->isochronous = 0; 2649 hs_ep->periodic = 0; 2650 hs_ep->halted = 0; 2651 hs_ep->interval = desc->bInterval; 2652 2653 if (hs_ep->interval > 1 && hs_ep->mc > 1) 2654 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n"); 2655 2656 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 2657 case USB_ENDPOINT_XFER_ISOC: 2658 epctrl |= DXEPCTL_EPTYPE_ISO; 2659 epctrl |= DXEPCTL_SETEVENFR; 2660 hs_ep->isochronous = 1; 2661 if (dir_in) 2662 hs_ep->periodic = 1; 2663 break; 2664 2665 case USB_ENDPOINT_XFER_BULK: 2666 epctrl |= DXEPCTL_EPTYPE_BULK; 2667 break; 2668 2669 case USB_ENDPOINT_XFER_INT: 2670 if (dir_in) 2671 hs_ep->periodic = 1; 2672 2673 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 2674 break; 2675 2676 case USB_ENDPOINT_XFER_CONTROL: 2677 epctrl |= DXEPCTL_EPTYPE_CONTROL; 2678 break; 2679 } 2680 2681 /* If fifo is already allocated for this ep */ 2682 if (hs_ep->fifo_index) { 2683 size = hs_ep->ep.maxpacket * hs_ep->mc; 2684 /* If bigger fifo is required deallocate current one */ 2685 if (size > hs_ep->fifo_size) { 2686 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 2687 hs_ep->fifo_index = 0; 2688 hs_ep->fifo_size = 0; 2689 } 2690 } 2691 2692 /* 2693 * if the hardware has dedicated fifos, we must give each IN EP 2694 * a unique tx-fifo even if it is non-periodic. 2695 */ 2696 if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) { 2697 u32 fifo_index = 0; 2698 u32 fifo_size = UINT_MAX; 2699 size = hs_ep->ep.maxpacket*hs_ep->mc; 2700 for (i = 1; i < hsotg->num_of_eps; ++i) { 2701 if (hsotg->fifo_map & (1<<i)) 2702 continue; 2703 val = readl(hsotg->regs + DPTXFSIZN(i)); 2704 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4; 2705 if (val < size) 2706 continue; 2707 /* Search for smallest acceptable fifo */ 2708 if (val < fifo_size) { 2709 fifo_size = val; 2710 fifo_index = i; 2711 } 2712 } 2713 if (!fifo_index) { 2714 dev_err(hsotg->dev, 2715 "%s: No suitable fifo found\n", __func__); 2716 ret = -ENOMEM; 2717 goto error; 2718 } 2719 hsotg->fifo_map |= 1 << fifo_index; 2720 epctrl |= DXEPCTL_TXFNUM(fifo_index); 2721 hs_ep->fifo_index = fifo_index; 2722 hs_ep->fifo_size = fifo_size; 2723 } 2724 2725 /* for non control endpoints, set PID to D0 */ 2726 if (index) 2727 epctrl |= DXEPCTL_SETD0PID; 2728 2729 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 2730 __func__, epctrl); 2731 2732 writel(epctrl, hsotg->regs + epctrl_reg); 2733 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 2734 __func__, readl(hsotg->regs + epctrl_reg)); 2735 2736 /* enable the endpoint interrupt */ 2737 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 2738 2739 error: 2740 spin_unlock_irqrestore(&hsotg->lock, flags); 2741 return ret; 2742 } 2743 2744 /** 2745 * s3c_hsotg_ep_disable - disable given endpoint 2746 * @ep: The endpoint to disable. 2747 */ 2748 static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force) 2749 { 2750 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2751 struct dwc2_hsotg *hsotg = hs_ep->parent; 2752 int dir_in = hs_ep->dir_in; 2753 int index = hs_ep->index; 2754 unsigned long flags; 2755 u32 epctrl_reg; 2756 u32 ctrl; 2757 2758 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 2759 2760 if (ep == &hsotg->eps_out[0]->ep) { 2761 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 2762 return -EINVAL; 2763 } 2764 2765 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2766 2767 spin_lock_irqsave(&hsotg->lock, flags); 2768 2769 hsotg->fifo_map &= ~(1<<hs_ep->fifo_index); 2770 hs_ep->fifo_index = 0; 2771 hs_ep->fifo_size = 0; 2772 2773 ctrl = readl(hsotg->regs + epctrl_reg); 2774 ctrl &= ~DXEPCTL_EPENA; 2775 ctrl &= ~DXEPCTL_USBACTEP; 2776 ctrl |= DXEPCTL_SNAK; 2777 2778 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 2779 writel(ctrl, hsotg->regs + epctrl_reg); 2780 2781 /* disable endpoint interrupts */ 2782 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 2783 2784 /* terminate all requests with shutdown */ 2785 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 2786 2787 spin_unlock_irqrestore(&hsotg->lock, flags); 2788 return 0; 2789 } 2790 2791 static int s3c_hsotg_ep_disable(struct usb_ep *ep) 2792 { 2793 return s3c_hsotg_ep_disable_force(ep, false); 2794 } 2795 /** 2796 * on_list - check request is on the given endpoint 2797 * @ep: The endpoint to check. 2798 * @test: The request to test if it is on the endpoint. 2799 */ 2800 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test) 2801 { 2802 struct s3c_hsotg_req *req, *treq; 2803 2804 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 2805 if (req == test) 2806 return true; 2807 } 2808 2809 return false; 2810 } 2811 2812 /** 2813 * s3c_hsotg_ep_dequeue - dequeue given endpoint 2814 * @ep: The endpoint to dequeue. 2815 * @req: The request to be removed from a queue. 2816 */ 2817 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 2818 { 2819 struct s3c_hsotg_req *hs_req = our_req(req); 2820 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2821 struct dwc2_hsotg *hs = hs_ep->parent; 2822 unsigned long flags; 2823 2824 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 2825 2826 spin_lock_irqsave(&hs->lock, flags); 2827 2828 if (!on_list(hs_ep, hs_req)) { 2829 spin_unlock_irqrestore(&hs->lock, flags); 2830 return -EINVAL; 2831 } 2832 2833 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 2834 spin_unlock_irqrestore(&hs->lock, flags); 2835 2836 return 0; 2837 } 2838 2839 /** 2840 * s3c_hsotg_ep_sethalt - set halt on a given endpoint 2841 * @ep: The endpoint to set halt. 2842 * @value: Set or unset the halt. 2843 */ 2844 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value) 2845 { 2846 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2847 struct dwc2_hsotg *hs = hs_ep->parent; 2848 int index = hs_ep->index; 2849 u32 epreg; 2850 u32 epctl; 2851 u32 xfertype; 2852 2853 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 2854 2855 if (index == 0) { 2856 if (value) 2857 s3c_hsotg_stall_ep0(hs); 2858 else 2859 dev_warn(hs->dev, 2860 "%s: can't clear halt on ep0\n", __func__); 2861 return 0; 2862 } 2863 2864 if (hs_ep->dir_in) { 2865 epreg = DIEPCTL(index); 2866 epctl = readl(hs->regs + epreg); 2867 2868 if (value) { 2869 epctl |= DXEPCTL_STALL + DXEPCTL_SNAK; 2870 if (epctl & DXEPCTL_EPENA) 2871 epctl |= DXEPCTL_EPDIS; 2872 } else { 2873 epctl &= ~DXEPCTL_STALL; 2874 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2875 if (xfertype == DXEPCTL_EPTYPE_BULK || 2876 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2877 epctl |= DXEPCTL_SETD0PID; 2878 } 2879 writel(epctl, hs->regs + epreg); 2880 } else { 2881 2882 epreg = DOEPCTL(index); 2883 epctl = readl(hs->regs + epreg); 2884 2885 if (value) 2886 epctl |= DXEPCTL_STALL; 2887 else { 2888 epctl &= ~DXEPCTL_STALL; 2889 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2890 if (xfertype == DXEPCTL_EPTYPE_BULK || 2891 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2892 epctl |= DXEPCTL_SETD0PID; 2893 } 2894 writel(epctl, hs->regs + epreg); 2895 } 2896 2897 hs_ep->halted = value; 2898 2899 return 0; 2900 } 2901 2902 /** 2903 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 2904 * @ep: The endpoint to set halt. 2905 * @value: Set or unset the halt. 2906 */ 2907 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 2908 { 2909 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2910 struct dwc2_hsotg *hs = hs_ep->parent; 2911 unsigned long flags = 0; 2912 int ret = 0; 2913 2914 spin_lock_irqsave(&hs->lock, flags); 2915 ret = s3c_hsotg_ep_sethalt(ep, value); 2916 spin_unlock_irqrestore(&hs->lock, flags); 2917 2918 return ret; 2919 } 2920 2921 static struct usb_ep_ops s3c_hsotg_ep_ops = { 2922 .enable = s3c_hsotg_ep_enable, 2923 .disable = s3c_hsotg_ep_disable, 2924 .alloc_request = s3c_hsotg_ep_alloc_request, 2925 .free_request = s3c_hsotg_ep_free_request, 2926 .queue = s3c_hsotg_ep_queue_lock, 2927 .dequeue = s3c_hsotg_ep_dequeue, 2928 .set_halt = s3c_hsotg_ep_sethalt_lock, 2929 /* note, don't believe we have any call for the fifo routines */ 2930 }; 2931 2932 /** 2933 * s3c_hsotg_phy_enable - enable platform phy dev 2934 * @hsotg: The driver state 2935 * 2936 * A wrapper for platform code responsible for controlling 2937 * low-level USB code 2938 */ 2939 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg) 2940 { 2941 struct platform_device *pdev = to_platform_device(hsotg->dev); 2942 2943 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev); 2944 2945 if (hsotg->uphy) 2946 usb_phy_init(hsotg->uphy); 2947 else if (hsotg->plat && hsotg->plat->phy_init) 2948 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type); 2949 else { 2950 phy_init(hsotg->phy); 2951 phy_power_on(hsotg->phy); 2952 } 2953 } 2954 2955 /** 2956 * s3c_hsotg_phy_disable - disable platform phy dev 2957 * @hsotg: The driver state 2958 * 2959 * A wrapper for platform code responsible for controlling 2960 * low-level USB code 2961 */ 2962 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg) 2963 { 2964 struct platform_device *pdev = to_platform_device(hsotg->dev); 2965 2966 if (hsotg->uphy) 2967 usb_phy_shutdown(hsotg->uphy); 2968 else if (hsotg->plat && hsotg->plat->phy_exit) 2969 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type); 2970 else { 2971 phy_power_off(hsotg->phy); 2972 phy_exit(hsotg->phy); 2973 } 2974 } 2975 2976 /** 2977 * s3c_hsotg_init - initalize the usb core 2978 * @hsotg: The driver state 2979 */ 2980 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg) 2981 { 2982 u32 trdtim; 2983 /* unmask subset of endpoint interrupts */ 2984 2985 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2986 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 2987 hsotg->regs + DIEPMSK); 2988 2989 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 2990 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 2991 hsotg->regs + DOEPMSK); 2992 2993 writel(0, hsotg->regs + DAINTMSK); 2994 2995 /* Be in disconnected state until gadget is registered */ 2996 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2997 2998 /* setup fifos */ 2999 3000 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 3001 readl(hsotg->regs + GRXFSIZ), 3002 readl(hsotg->regs + GNPTXFSIZ)); 3003 3004 s3c_hsotg_init_fifo(hsotg); 3005 3006 /* set the PLL on, remove the HNP/SRP and set the PHY */ 3007 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 3008 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) | 3009 (trdtim << GUSBCFG_USBTRDTIM_SHIFT), 3010 hsotg->regs + GUSBCFG); 3011 3012 if (using_dma(hsotg)) 3013 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN); 3014 } 3015 3016 /** 3017 * s3c_hsotg_udc_start - prepare the udc for work 3018 * @gadget: The usb gadget state 3019 * @driver: The usb gadget driver 3020 * 3021 * Perform initialization to prepare udc device and driver 3022 * to work. 3023 */ 3024 static int s3c_hsotg_udc_start(struct usb_gadget *gadget, 3025 struct usb_gadget_driver *driver) 3026 { 3027 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 3028 unsigned long flags; 3029 int ret; 3030 3031 if (!hsotg) { 3032 pr_err("%s: called with no device\n", __func__); 3033 return -ENODEV; 3034 } 3035 3036 if (!driver) { 3037 dev_err(hsotg->dev, "%s: no driver\n", __func__); 3038 return -EINVAL; 3039 } 3040 3041 if (driver->max_speed < USB_SPEED_FULL) 3042 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 3043 3044 if (!driver->setup) { 3045 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 3046 return -EINVAL; 3047 } 3048 3049 mutex_lock(&hsotg->init_mutex); 3050 WARN_ON(hsotg->driver); 3051 3052 driver->driver.bus = NULL; 3053 hsotg->driver = driver; 3054 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 3055 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 3056 3057 clk_enable(hsotg->clk); 3058 3059 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3060 hsotg->supplies); 3061 if (ret) { 3062 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret); 3063 goto err; 3064 } 3065 3066 s3c_hsotg_phy_enable(hsotg); 3067 if (!IS_ERR_OR_NULL(hsotg->uphy)) 3068 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 3069 3070 spin_lock_irqsave(&hsotg->lock, flags); 3071 s3c_hsotg_init(hsotg); 3072 s3c_hsotg_core_init_disconnected(hsotg, false); 3073 hsotg->enabled = 0; 3074 spin_unlock_irqrestore(&hsotg->lock, flags); 3075 3076 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 3077 3078 mutex_unlock(&hsotg->init_mutex); 3079 3080 return 0; 3081 3082 err: 3083 mutex_unlock(&hsotg->init_mutex); 3084 hsotg->driver = NULL; 3085 return ret; 3086 } 3087 3088 /** 3089 * s3c_hsotg_udc_stop - stop the udc 3090 * @gadget: The usb gadget state 3091 * @driver: The usb gadget driver 3092 * 3093 * Stop udc hw block and stay tunned for future transmissions 3094 */ 3095 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget) 3096 { 3097 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 3098 unsigned long flags = 0; 3099 int ep; 3100 3101 if (!hsotg) 3102 return -ENODEV; 3103 3104 mutex_lock(&hsotg->init_mutex); 3105 3106 /* all endpoints should be shutdown */ 3107 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3108 if (hsotg->eps_in[ep]) 3109 s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3110 if (hsotg->eps_out[ep]) 3111 s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3112 } 3113 3114 spin_lock_irqsave(&hsotg->lock, flags); 3115 3116 hsotg->driver = NULL; 3117 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 3118 hsotg->enabled = 0; 3119 3120 spin_unlock_irqrestore(&hsotg->lock, flags); 3121 3122 if (!IS_ERR_OR_NULL(hsotg->uphy)) 3123 otg_set_peripheral(hsotg->uphy->otg, NULL); 3124 s3c_hsotg_phy_disable(hsotg); 3125 3126 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies); 3127 3128 clk_disable(hsotg->clk); 3129 3130 mutex_unlock(&hsotg->init_mutex); 3131 3132 return 0; 3133 } 3134 3135 /** 3136 * s3c_hsotg_gadget_getframe - read the frame number 3137 * @gadget: The usb gadget state 3138 * 3139 * Read the {micro} frame number 3140 */ 3141 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget) 3142 { 3143 return s3c_hsotg_read_frameno(to_hsotg(gadget)); 3144 } 3145 3146 /** 3147 * s3c_hsotg_pullup - connect/disconnect the USB PHY 3148 * @gadget: The usb gadget state 3149 * @is_on: Current state of the USB PHY 3150 * 3151 * Connect/Disconnect the USB PHY pullup 3152 */ 3153 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on) 3154 { 3155 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 3156 unsigned long flags = 0; 3157 3158 dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on); 3159 3160 mutex_lock(&hsotg->init_mutex); 3161 spin_lock_irqsave(&hsotg->lock, flags); 3162 if (is_on) { 3163 clk_enable(hsotg->clk); 3164 hsotg->enabled = 1; 3165 s3c_hsotg_core_init_disconnected(hsotg, false); 3166 s3c_hsotg_core_connect(hsotg); 3167 } else { 3168 s3c_hsotg_core_disconnect(hsotg); 3169 s3c_hsotg_disconnect(hsotg); 3170 hsotg->enabled = 0; 3171 clk_disable(hsotg->clk); 3172 } 3173 3174 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 3175 spin_unlock_irqrestore(&hsotg->lock, flags); 3176 mutex_unlock(&hsotg->init_mutex); 3177 3178 return 0; 3179 } 3180 3181 static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 3182 { 3183 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 3184 unsigned long flags; 3185 3186 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 3187 spin_lock_irqsave(&hsotg->lock, flags); 3188 3189 if (is_active) { 3190 /* Kill any ep0 requests as controller will be reinitialized */ 3191 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3192 s3c_hsotg_core_init_disconnected(hsotg, false); 3193 if (hsotg->enabled) 3194 s3c_hsotg_core_connect(hsotg); 3195 } else { 3196 s3c_hsotg_core_disconnect(hsotg); 3197 s3c_hsotg_disconnect(hsotg); 3198 } 3199 3200 spin_unlock_irqrestore(&hsotg->lock, flags); 3201 return 0; 3202 } 3203 3204 /** 3205 * s3c_hsotg_vbus_draw - report bMaxPower field 3206 * @gadget: The usb gadget state 3207 * @mA: Amount of current 3208 * 3209 * Report how much power the device may consume to the phy. 3210 */ 3211 static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA) 3212 { 3213 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 3214 3215 if (IS_ERR_OR_NULL(hsotg->uphy)) 3216 return -ENOTSUPP; 3217 return usb_phy_set_power(hsotg->uphy, mA); 3218 } 3219 3220 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = { 3221 .get_frame = s3c_hsotg_gadget_getframe, 3222 .udc_start = s3c_hsotg_udc_start, 3223 .udc_stop = s3c_hsotg_udc_stop, 3224 .pullup = s3c_hsotg_pullup, 3225 .vbus_session = s3c_hsotg_vbus_session, 3226 .vbus_draw = s3c_hsotg_vbus_draw, 3227 }; 3228 3229 /** 3230 * s3c_hsotg_initep - initialise a single endpoint 3231 * @hsotg: The device state. 3232 * @hs_ep: The endpoint to be initialised. 3233 * @epnum: The endpoint number 3234 * 3235 * Initialise the given endpoint (as part of the probe and device state 3236 * creation) to give to the gadget driver. Setup the endpoint name, any 3237 * direction information and other state that may be required. 3238 */ 3239 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg, 3240 struct s3c_hsotg_ep *hs_ep, 3241 int epnum, 3242 bool dir_in) 3243 { 3244 char *dir; 3245 3246 if (epnum == 0) 3247 dir = ""; 3248 else if (dir_in) 3249 dir = "in"; 3250 else 3251 dir = "out"; 3252 3253 hs_ep->dir_in = dir_in; 3254 hs_ep->index = epnum; 3255 3256 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 3257 3258 INIT_LIST_HEAD(&hs_ep->queue); 3259 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 3260 3261 /* add to the list of endpoints known by the gadget driver */ 3262 if (epnum) 3263 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 3264 3265 hs_ep->parent = hsotg; 3266 hs_ep->ep.name = hs_ep->name; 3267 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT); 3268 hs_ep->ep.ops = &s3c_hsotg_ep_ops; 3269 3270 /* 3271 * if we're using dma, we need to set the next-endpoint pointer 3272 * to be something valid. 3273 */ 3274 3275 if (using_dma(hsotg)) { 3276 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 3277 if (dir_in) 3278 writel(next, hsotg->regs + DIEPCTL(epnum)); 3279 else 3280 writel(next, hsotg->regs + DOEPCTL(epnum)); 3281 } 3282 } 3283 3284 /** 3285 * s3c_hsotg_hw_cfg - read HW configuration registers 3286 * @param: The device state 3287 * 3288 * Read the USB core HW configuration registers 3289 */ 3290 static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 3291 { 3292 u32 cfg; 3293 u32 ep_type; 3294 u32 i; 3295 3296 /* check hardware configuration */ 3297 3298 cfg = readl(hsotg->regs + GHWCFG2); 3299 hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF; 3300 /* Add ep0 */ 3301 hsotg->num_of_eps++; 3302 3303 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep), 3304 GFP_KERNEL); 3305 if (!hsotg->eps_in[0]) 3306 return -ENOMEM; 3307 /* Same s3c_hsotg_ep is used in both directions for ep0 */ 3308 hsotg->eps_out[0] = hsotg->eps_in[0]; 3309 3310 cfg = readl(hsotg->regs + GHWCFG1); 3311 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 3312 ep_type = cfg & 3; 3313 /* Direction in or both */ 3314 if (!(ep_type & 2)) { 3315 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 3316 sizeof(struct s3c_hsotg_ep), GFP_KERNEL); 3317 if (!hsotg->eps_in[i]) 3318 return -ENOMEM; 3319 } 3320 /* Direction out or both */ 3321 if (!(ep_type & 1)) { 3322 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 3323 sizeof(struct s3c_hsotg_ep), GFP_KERNEL); 3324 if (!hsotg->eps_out[i]) 3325 return -ENOMEM; 3326 } 3327 } 3328 3329 cfg = readl(hsotg->regs + GHWCFG3); 3330 hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT); 3331 3332 cfg = readl(hsotg->regs + GHWCFG4); 3333 hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1; 3334 3335 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 3336 hsotg->num_of_eps, 3337 hsotg->dedicated_fifos ? "dedicated" : "shared", 3338 hsotg->fifo_mem); 3339 return 0; 3340 } 3341 3342 /** 3343 * s3c_hsotg_dump - dump state of the udc 3344 * @param: The device state 3345 */ 3346 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg) 3347 { 3348 #ifdef DEBUG 3349 struct device *dev = hsotg->dev; 3350 void __iomem *regs = hsotg->regs; 3351 u32 val; 3352 int idx; 3353 3354 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 3355 readl(regs + DCFG), readl(regs + DCTL), 3356 readl(regs + DIEPMSK)); 3357 3358 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 3359 readl(regs + GAHBCFG), readl(regs + GHWCFG1)); 3360 3361 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 3362 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ)); 3363 3364 /* show periodic fifo settings */ 3365 3366 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3367 val = readl(regs + DPTXFSIZN(idx)); 3368 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 3369 val >> FIFOSIZE_DEPTH_SHIFT, 3370 val & FIFOSIZE_STARTADDR_MASK); 3371 } 3372 3373 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 3374 dev_info(dev, 3375 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 3376 readl(regs + DIEPCTL(idx)), 3377 readl(regs + DIEPTSIZ(idx)), 3378 readl(regs + DIEPDMA(idx))); 3379 3380 val = readl(regs + DOEPCTL(idx)); 3381 dev_info(dev, 3382 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 3383 idx, readl(regs + DOEPCTL(idx)), 3384 readl(regs + DOEPTSIZ(idx)), 3385 readl(regs + DOEPDMA(idx))); 3386 3387 } 3388 3389 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 3390 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE)); 3391 #endif 3392 } 3393 3394 /** 3395 * testmode_write - debugfs: change usb test mode 3396 * @seq: The seq file to write to. 3397 * @v: Unused parameter. 3398 * 3399 * This debugfs entry modify the current usb test mode. 3400 */ 3401 static ssize_t testmode_write(struct file *file, const char __user *ubuf, size_t 3402 count, loff_t *ppos) 3403 { 3404 struct seq_file *s = file->private_data; 3405 struct dwc2_hsotg *hsotg = s->private; 3406 unsigned long flags; 3407 u32 testmode = 0; 3408 char buf[32]; 3409 3410 if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) 3411 return -EFAULT; 3412 3413 if (!strncmp(buf, "test_j", 6)) 3414 testmode = TEST_J; 3415 else if (!strncmp(buf, "test_k", 6)) 3416 testmode = TEST_K; 3417 else if (!strncmp(buf, "test_se0_nak", 12)) 3418 testmode = TEST_SE0_NAK; 3419 else if (!strncmp(buf, "test_packet", 11)) 3420 testmode = TEST_PACKET; 3421 else if (!strncmp(buf, "test_force_enable", 17)) 3422 testmode = TEST_FORCE_EN; 3423 else 3424 testmode = 0; 3425 3426 spin_lock_irqsave(&hsotg->lock, flags); 3427 s3c_hsotg_set_test_mode(hsotg, testmode); 3428 spin_unlock_irqrestore(&hsotg->lock, flags); 3429 return count; 3430 } 3431 3432 /** 3433 * testmode_show - debugfs: show usb test mode state 3434 * @seq: The seq file to write to. 3435 * @v: Unused parameter. 3436 * 3437 * This debugfs entry shows which usb test mode is currently enabled. 3438 */ 3439 static int testmode_show(struct seq_file *s, void *unused) 3440 { 3441 struct dwc2_hsotg *hsotg = s->private; 3442 unsigned long flags; 3443 int dctl; 3444 3445 spin_lock_irqsave(&hsotg->lock, flags); 3446 dctl = readl(hsotg->regs + DCTL); 3447 dctl &= DCTL_TSTCTL_MASK; 3448 dctl >>= DCTL_TSTCTL_SHIFT; 3449 spin_unlock_irqrestore(&hsotg->lock, flags); 3450 3451 switch (dctl) { 3452 case 0: 3453 seq_puts(s, "no test\n"); 3454 break; 3455 case TEST_J: 3456 seq_puts(s, "test_j\n"); 3457 break; 3458 case TEST_K: 3459 seq_puts(s, "test_k\n"); 3460 break; 3461 case TEST_SE0_NAK: 3462 seq_puts(s, "test_se0_nak\n"); 3463 break; 3464 case TEST_PACKET: 3465 seq_puts(s, "test_packet\n"); 3466 break; 3467 case TEST_FORCE_EN: 3468 seq_puts(s, "test_force_enable\n"); 3469 break; 3470 default: 3471 seq_printf(s, "UNKNOWN %d\n", dctl); 3472 } 3473 3474 return 0; 3475 } 3476 3477 static int testmode_open(struct inode *inode, struct file *file) 3478 { 3479 return single_open(file, testmode_show, inode->i_private); 3480 } 3481 3482 static const struct file_operations testmode_fops = { 3483 .owner = THIS_MODULE, 3484 .open = testmode_open, 3485 .write = testmode_write, 3486 .read = seq_read, 3487 .llseek = seq_lseek, 3488 .release = single_release, 3489 }; 3490 3491 /** 3492 * state_show - debugfs: show overall driver and device state. 3493 * @seq: The seq file to write to. 3494 * @v: Unused parameter. 3495 * 3496 * This debugfs entry shows the overall state of the hardware and 3497 * some general information about each of the endpoints available 3498 * to the system. 3499 */ 3500 static int state_show(struct seq_file *seq, void *v) 3501 { 3502 struct dwc2_hsotg *hsotg = seq->private; 3503 void __iomem *regs = hsotg->regs; 3504 int idx; 3505 3506 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n", 3507 readl(regs + DCFG), 3508 readl(regs + DCTL), 3509 readl(regs + DSTS)); 3510 3511 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n", 3512 readl(regs + DIEPMSK), readl(regs + DOEPMSK)); 3513 3514 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n", 3515 readl(regs + GINTMSK), 3516 readl(regs + GINTSTS)); 3517 3518 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n", 3519 readl(regs + DAINTMSK), 3520 readl(regs + DAINT)); 3521 3522 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n", 3523 readl(regs + GNPTXSTS), 3524 readl(regs + GRXSTSR)); 3525 3526 seq_puts(seq, "\nEndpoint status:\n"); 3527 3528 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 3529 u32 in, out; 3530 3531 in = readl(regs + DIEPCTL(idx)); 3532 out = readl(regs + DOEPCTL(idx)); 3533 3534 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x", 3535 idx, in, out); 3536 3537 in = readl(regs + DIEPTSIZ(idx)); 3538 out = readl(regs + DOEPTSIZ(idx)); 3539 3540 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x", 3541 in, out); 3542 3543 seq_puts(seq, "\n"); 3544 } 3545 3546 return 0; 3547 } 3548 3549 static int state_open(struct inode *inode, struct file *file) 3550 { 3551 return single_open(file, state_show, inode->i_private); 3552 } 3553 3554 static const struct file_operations state_fops = { 3555 .owner = THIS_MODULE, 3556 .open = state_open, 3557 .read = seq_read, 3558 .llseek = seq_lseek, 3559 .release = single_release, 3560 }; 3561 3562 /** 3563 * fifo_show - debugfs: show the fifo information 3564 * @seq: The seq_file to write data to. 3565 * @v: Unused parameter. 3566 * 3567 * Show the FIFO information for the overall fifo and all the 3568 * periodic transmission FIFOs. 3569 */ 3570 static int fifo_show(struct seq_file *seq, void *v) 3571 { 3572 struct dwc2_hsotg *hsotg = seq->private; 3573 void __iomem *regs = hsotg->regs; 3574 u32 val; 3575 int idx; 3576 3577 seq_puts(seq, "Non-periodic FIFOs:\n"); 3578 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ)); 3579 3580 val = readl(regs + GNPTXFSIZ); 3581 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n", 3582 val >> FIFOSIZE_DEPTH_SHIFT, 3583 val & FIFOSIZE_DEPTH_MASK); 3584 3585 seq_puts(seq, "\nPeriodic TXFIFOs:\n"); 3586 3587 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3588 val = readl(regs + DPTXFSIZN(idx)); 3589 3590 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx, 3591 val >> FIFOSIZE_DEPTH_SHIFT, 3592 val & FIFOSIZE_STARTADDR_MASK); 3593 } 3594 3595 return 0; 3596 } 3597 3598 static int fifo_open(struct inode *inode, struct file *file) 3599 { 3600 return single_open(file, fifo_show, inode->i_private); 3601 } 3602 3603 static const struct file_operations fifo_fops = { 3604 .owner = THIS_MODULE, 3605 .open = fifo_open, 3606 .read = seq_read, 3607 .llseek = seq_lseek, 3608 .release = single_release, 3609 }; 3610 3611 3612 static const char *decode_direction(int is_in) 3613 { 3614 return is_in ? "in" : "out"; 3615 } 3616 3617 /** 3618 * ep_show - debugfs: show the state of an endpoint. 3619 * @seq: The seq_file to write data to. 3620 * @v: Unused parameter. 3621 * 3622 * This debugfs entry shows the state of the given endpoint (one is 3623 * registered for each available). 3624 */ 3625 static int ep_show(struct seq_file *seq, void *v) 3626 { 3627 struct s3c_hsotg_ep *ep = seq->private; 3628 struct dwc2_hsotg *hsotg = ep->parent; 3629 struct s3c_hsotg_req *req; 3630 void __iomem *regs = hsotg->regs; 3631 int index = ep->index; 3632 int show_limit = 15; 3633 unsigned long flags; 3634 3635 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n", 3636 ep->index, ep->ep.name, decode_direction(ep->dir_in)); 3637 3638 /* first show the register state */ 3639 3640 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n", 3641 readl(regs + DIEPCTL(index)), 3642 readl(regs + DOEPCTL(index))); 3643 3644 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n", 3645 readl(regs + DIEPDMA(index)), 3646 readl(regs + DOEPDMA(index))); 3647 3648 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n", 3649 readl(regs + DIEPINT(index)), 3650 readl(regs + DOEPINT(index))); 3651 3652 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n", 3653 readl(regs + DIEPTSIZ(index)), 3654 readl(regs + DOEPTSIZ(index))); 3655 3656 seq_puts(seq, "\n"); 3657 seq_printf(seq, "mps %d\n", ep->ep.maxpacket); 3658 seq_printf(seq, "total_data=%ld\n", ep->total_data); 3659 3660 seq_printf(seq, "request list (%p,%p):\n", 3661 ep->queue.next, ep->queue.prev); 3662 3663 spin_lock_irqsave(&hsotg->lock, flags); 3664 3665 list_for_each_entry(req, &ep->queue, queue) { 3666 if (--show_limit < 0) { 3667 seq_puts(seq, "not showing more requests...\n"); 3668 break; 3669 } 3670 3671 seq_printf(seq, "%c req %p: %d bytes @%p, ", 3672 req == ep->req ? '*' : ' ', 3673 req, req->req.length, req->req.buf); 3674 seq_printf(seq, "%d done, res %d\n", 3675 req->req.actual, req->req.status); 3676 } 3677 3678 spin_unlock_irqrestore(&hsotg->lock, flags); 3679 3680 return 0; 3681 } 3682 3683 static int ep_open(struct inode *inode, struct file *file) 3684 { 3685 return single_open(file, ep_show, inode->i_private); 3686 } 3687 3688 static const struct file_operations ep_fops = { 3689 .owner = THIS_MODULE, 3690 .open = ep_open, 3691 .read = seq_read, 3692 .llseek = seq_lseek, 3693 .release = single_release, 3694 }; 3695 3696 /** 3697 * s3c_hsotg_create_debug - create debugfs directory and files 3698 * @hsotg: The driver state 3699 * 3700 * Create the debugfs files to allow the user to get information 3701 * about the state of the system. The directory name is created 3702 * with the same name as the device itself, in case we end up 3703 * with multiple blocks in future systems. 3704 */ 3705 static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg) 3706 { 3707 struct dentry *root; 3708 unsigned epidx; 3709 3710 root = debugfs_create_dir(dev_name(hsotg->dev), NULL); 3711 hsotg->debug_root = root; 3712 if (IS_ERR(root)) { 3713 dev_err(hsotg->dev, "cannot create debug root\n"); 3714 return; 3715 } 3716 3717 /* create general state file */ 3718 3719 hsotg->debug_file = debugfs_create_file("state", S_IRUGO, root, 3720 hsotg, &state_fops); 3721 3722 if (IS_ERR(hsotg->debug_file)) 3723 dev_err(hsotg->dev, "%s: failed to create state\n", __func__); 3724 3725 hsotg->debug_testmode = debugfs_create_file("testmode", 3726 S_IRUGO | S_IWUSR, root, 3727 hsotg, &testmode_fops); 3728 3729 if (IS_ERR(hsotg->debug_testmode)) 3730 dev_err(hsotg->dev, "%s: failed to create testmode\n", 3731 __func__); 3732 3733 hsotg->debug_fifo = debugfs_create_file("fifo", S_IRUGO, root, 3734 hsotg, &fifo_fops); 3735 3736 if (IS_ERR(hsotg->debug_fifo)) 3737 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__); 3738 3739 /* Create one file for each out endpoint */ 3740 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3741 struct s3c_hsotg_ep *ep; 3742 3743 ep = hsotg->eps_out[epidx]; 3744 if (ep) { 3745 ep->debugfs = debugfs_create_file(ep->name, S_IRUGO, 3746 root, ep, &ep_fops); 3747 3748 if (IS_ERR(ep->debugfs)) 3749 dev_err(hsotg->dev, "failed to create %s debug file\n", 3750 ep->name); 3751 } 3752 } 3753 /* Create one file for each in endpoint. EP0 is handled with out eps */ 3754 for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) { 3755 struct s3c_hsotg_ep *ep; 3756 3757 ep = hsotg->eps_in[epidx]; 3758 if (ep) { 3759 ep->debugfs = debugfs_create_file(ep->name, S_IRUGO, 3760 root, ep, &ep_fops); 3761 3762 if (IS_ERR(ep->debugfs)) 3763 dev_err(hsotg->dev, "failed to create %s debug file\n", 3764 ep->name); 3765 } 3766 } 3767 } 3768 3769 /** 3770 * s3c_hsotg_delete_debug - cleanup debugfs entries 3771 * @hsotg: The driver state 3772 * 3773 * Cleanup (remove) the debugfs files for use on module exit. 3774 */ 3775 static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg) 3776 { 3777 unsigned epidx; 3778 3779 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3780 if (hsotg->eps_in[epidx]) 3781 debugfs_remove(hsotg->eps_in[epidx]->debugfs); 3782 if (hsotg->eps_out[epidx]) 3783 debugfs_remove(hsotg->eps_out[epidx]->debugfs); 3784 } 3785 3786 debugfs_remove(hsotg->debug_file); 3787 debugfs_remove(hsotg->debug_testmode); 3788 debugfs_remove(hsotg->debug_fifo); 3789 debugfs_remove(hsotg->debug_root); 3790 } 3791 3792 #ifdef CONFIG_OF 3793 static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) 3794 { 3795 struct device_node *np = hsotg->dev->of_node; 3796 u32 len = 0; 3797 u32 i = 0; 3798 3799 /* Enable dma if requested in device tree */ 3800 hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma"); 3801 3802 /* 3803 * Register TX periodic fifo size per endpoint. 3804 * EP0 is excluded since it has no fifo configuration. 3805 */ 3806 if (!of_find_property(np, "g-tx-fifo-size", &len)) 3807 goto rx_fifo; 3808 3809 len /= sizeof(u32); 3810 3811 /* Read tx fifo sizes other than ep0 */ 3812 if (of_property_read_u32_array(np, "g-tx-fifo-size", 3813 &hsotg->g_tx_fifo_sz[1], len)) 3814 goto rx_fifo; 3815 3816 /* Add ep0 */ 3817 len++; 3818 3819 /* Make remaining TX fifos unavailable */ 3820 if (len < MAX_EPS_CHANNELS) { 3821 for (i = len; i < MAX_EPS_CHANNELS; i++) 3822 hsotg->g_tx_fifo_sz[i] = 0; 3823 } 3824 3825 rx_fifo: 3826 /* Register RX fifo size */ 3827 of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz); 3828 3829 /* Register NPTX fifo size */ 3830 of_property_read_u32(np, "g-np-tx-fifo-size", 3831 &hsotg->g_np_g_tx_fifo_sz); 3832 } 3833 #else 3834 static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { } 3835 #endif 3836 3837 /** 3838 * dwc2_gadget_init - init function for gadget 3839 * @dwc2: The data structure for the DWC2 driver. 3840 * @irq: The IRQ number for the controller. 3841 */ 3842 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq) 3843 { 3844 struct device *dev = hsotg->dev; 3845 struct s3c_hsotg_plat *plat = dev->platform_data; 3846 int epnum; 3847 int ret; 3848 int i; 3849 u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE; 3850 3851 /* Set default UTMI width */ 3852 hsotg->phyif = GUSBCFG_PHYIF16; 3853 3854 s3c_hsotg_of_probe(hsotg); 3855 3856 /* Initialize to legacy fifo configuration values */ 3857 hsotg->g_rx_fifo_sz = 2048; 3858 hsotg->g_np_g_tx_fifo_sz = 1024; 3859 memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo)); 3860 /* Device tree specific probe */ 3861 s3c_hsotg_of_probe(hsotg); 3862 /* Dump fifo information */ 3863 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 3864 hsotg->g_np_g_tx_fifo_sz); 3865 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz); 3866 for (i = 0; i < MAX_EPS_CHANNELS; i++) 3867 dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i, 3868 hsotg->g_tx_fifo_sz[i]); 3869 /* 3870 * If platform probe couldn't find a generic PHY or an old style 3871 * USB PHY, fall back to pdata 3872 */ 3873 if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) { 3874 plat = dev_get_platdata(dev); 3875 if (!plat) { 3876 dev_err(dev, 3877 "no platform data or transceiver defined\n"); 3878 return -EPROBE_DEFER; 3879 } 3880 hsotg->plat = plat; 3881 } else if (hsotg->phy) { 3882 /* 3883 * If using the generic PHY framework, check if the PHY bus 3884 * width is 8-bit and set the phyif appropriately. 3885 */ 3886 if (phy_get_bus_width(hsotg->phy) == 8) 3887 hsotg->phyif = GUSBCFG_PHYIF8; 3888 } 3889 3890 hsotg->clk = devm_clk_get(dev, "otg"); 3891 if (IS_ERR(hsotg->clk)) { 3892 hsotg->clk = NULL; 3893 dev_dbg(dev, "cannot get otg clock\n"); 3894 } 3895 3896 hsotg->gadget.max_speed = USB_SPEED_HIGH; 3897 hsotg->gadget.ops = &s3c_hsotg_gadget_ops; 3898 hsotg->gadget.name = dev_name(dev); 3899 3900 /* reset the system */ 3901 3902 ret = clk_prepare_enable(hsotg->clk); 3903 if (ret) { 3904 dev_err(dev, "failed to enable otg clk\n"); 3905 goto err_clk; 3906 } 3907 3908 3909 /* regulators */ 3910 3911 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++) 3912 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i]; 3913 3914 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies), 3915 hsotg->supplies); 3916 if (ret) { 3917 dev_err(dev, "failed to request supplies: %d\n", ret); 3918 goto err_clk; 3919 } 3920 3921 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3922 hsotg->supplies); 3923 3924 if (ret) { 3925 dev_err(dev, "failed to enable supplies: %d\n", ret); 3926 goto err_clk; 3927 } 3928 3929 /* usb phy enable */ 3930 s3c_hsotg_phy_enable(hsotg); 3931 3932 /* 3933 * Force Device mode before initialization. 3934 * This allows correctly configuring fifo for device mode. 3935 */ 3936 __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE); 3937 __orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE); 3938 3939 /* 3940 * According to Synopsys databook, this sleep is needed for the force 3941 * device mode to take effect. 3942 */ 3943 msleep(25); 3944 3945 s3c_hsotg_corereset(hsotg); 3946 ret = s3c_hsotg_hw_cfg(hsotg); 3947 if (ret) { 3948 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 3949 goto err_clk; 3950 } 3951 3952 s3c_hsotg_init(hsotg); 3953 3954 /* Switch back to default configuration */ 3955 __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE); 3956 3957 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 3958 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 3959 if (!hsotg->ctrl_buff) { 3960 dev_err(dev, "failed to allocate ctrl request buff\n"); 3961 ret = -ENOMEM; 3962 goto err_supplies; 3963 } 3964 3965 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 3966 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 3967 if (!hsotg->ep0_buff) { 3968 dev_err(dev, "failed to allocate ctrl reply buff\n"); 3969 ret = -ENOMEM; 3970 goto err_supplies; 3971 } 3972 3973 ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED, 3974 dev_name(hsotg->dev), hsotg); 3975 if (ret < 0) { 3976 s3c_hsotg_phy_disable(hsotg); 3977 clk_disable_unprepare(hsotg->clk); 3978 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3979 hsotg->supplies); 3980 dev_err(dev, "cannot claim IRQ for gadget\n"); 3981 goto err_supplies; 3982 } 3983 3984 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 3985 3986 if (hsotg->num_of_eps == 0) { 3987 dev_err(dev, "wrong number of EPs (zero)\n"); 3988 ret = -EINVAL; 3989 goto err_supplies; 3990 } 3991 3992 /* setup endpoint information */ 3993 3994 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 3995 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 3996 3997 /* allocate EP0 request */ 3998 3999 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4000 GFP_KERNEL); 4001 if (!hsotg->ctrl_req) { 4002 dev_err(dev, "failed to allocate ctrl req\n"); 4003 ret = -ENOMEM; 4004 goto err_supplies; 4005 } 4006 4007 /* initialise the endpoints now the core has been initialised */ 4008 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4009 if (hsotg->eps_in[epnum]) 4010 s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4011 epnum, 1); 4012 if (hsotg->eps_out[epnum]) 4013 s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4014 epnum, 0); 4015 } 4016 4017 /* disable power and clock */ 4018 s3c_hsotg_phy_disable(hsotg); 4019 4020 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 4021 hsotg->supplies); 4022 if (ret) { 4023 dev_err(dev, "failed to disable supplies: %d\n", ret); 4024 goto err_supplies; 4025 } 4026 4027 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4028 if (ret) 4029 goto err_supplies; 4030 4031 s3c_hsotg_create_debug(hsotg); 4032 4033 s3c_hsotg_dump(hsotg); 4034 4035 return 0; 4036 4037 err_supplies: 4038 s3c_hsotg_phy_disable(hsotg); 4039 err_clk: 4040 clk_disable_unprepare(hsotg->clk); 4041 4042 return ret; 4043 } 4044 EXPORT_SYMBOL_GPL(dwc2_gadget_init); 4045 4046 /** 4047 * s3c_hsotg_remove - remove function for hsotg driver 4048 * @pdev: The platform information for the driver 4049 */ 4050 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg) 4051 { 4052 usb_del_gadget_udc(&hsotg->gadget); 4053 s3c_hsotg_delete_debug(hsotg); 4054 clk_disable_unprepare(hsotg->clk); 4055 4056 return 0; 4057 } 4058 EXPORT_SYMBOL_GPL(s3c_hsotg_remove); 4059 4060 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg) 4061 { 4062 unsigned long flags; 4063 int ret = 0; 4064 4065 mutex_lock(&hsotg->init_mutex); 4066 4067 if (hsotg->driver) { 4068 int ep; 4069 4070 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4071 hsotg->driver->driver.name); 4072 4073 spin_lock_irqsave(&hsotg->lock, flags); 4074 if (hsotg->enabled) 4075 s3c_hsotg_core_disconnect(hsotg); 4076 s3c_hsotg_disconnect(hsotg); 4077 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4078 spin_unlock_irqrestore(&hsotg->lock, flags); 4079 4080 s3c_hsotg_phy_disable(hsotg); 4081 4082 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4083 if (hsotg->eps_in[ep]) 4084 s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4085 if (hsotg->eps_out[ep]) 4086 s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4087 } 4088 4089 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 4090 hsotg->supplies); 4091 clk_disable(hsotg->clk); 4092 } 4093 4094 mutex_unlock(&hsotg->init_mutex); 4095 4096 return ret; 4097 } 4098 EXPORT_SYMBOL_GPL(s3c_hsotg_suspend); 4099 4100 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg) 4101 { 4102 unsigned long flags; 4103 int ret = 0; 4104 4105 mutex_lock(&hsotg->init_mutex); 4106 4107 if (hsotg->driver) { 4108 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4109 hsotg->driver->driver.name); 4110 4111 clk_enable(hsotg->clk); 4112 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 4113 hsotg->supplies); 4114 4115 s3c_hsotg_phy_enable(hsotg); 4116 4117 spin_lock_irqsave(&hsotg->lock, flags); 4118 s3c_hsotg_core_init_disconnected(hsotg, false); 4119 if (hsotg->enabled) 4120 s3c_hsotg_core_connect(hsotg); 4121 spin_unlock_irqrestore(&hsotg->lock, flags); 4122 } 4123 mutex_unlock(&hsotg->init_mutex); 4124 4125 return ret; 4126 } 4127 EXPORT_SYMBOL_GPL(s3c_hsotg_resume); 4128