xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 4f3db074)
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/debugfs.h>
24 #include <linux/mutex.h>
25 #include <linux/seq_file.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/of_platform.h>
32 #include <linux/phy/phy.h>
33 
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37 #include <linux/platform_data/s3c-hsotg.h>
38 #include <linux/uaccess.h>
39 
40 #include "core.h"
41 #include "hw.h"
42 
43 /* conversion functions */
44 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
45 {
46 	return container_of(req, struct s3c_hsotg_req, req);
47 }
48 
49 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
50 {
51 	return container_of(ep, struct s3c_hsotg_ep, ep);
52 }
53 
54 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
55 {
56 	return container_of(gadget, struct dwc2_hsotg, gadget);
57 }
58 
59 static inline void __orr32(void __iomem *ptr, u32 val)
60 {
61 	writel(readl(ptr) | val, ptr);
62 }
63 
64 static inline void __bic32(void __iomem *ptr, u32 val)
65 {
66 	writel(readl(ptr) & ~val, ptr);
67 }
68 
69 static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
70 						u32 ep_index, u32 dir_in)
71 {
72 	if (dir_in)
73 		return hsotg->eps_in[ep_index];
74 	else
75 		return hsotg->eps_out[ep_index];
76 }
77 
78 /* forward declaration of functions */
79 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
80 
81 /**
82  * using_dma - return the DMA status of the driver.
83  * @hsotg: The driver state.
84  *
85  * Return true if we're using DMA.
86  *
87  * Currently, we have the DMA support code worked into everywhere
88  * that needs it, but the AMBA DMA implementation in the hardware can
89  * only DMA from 32bit aligned addresses. This means that gadgets such
90  * as the CDC Ethernet cannot work as they often pass packets which are
91  * not 32bit aligned.
92  *
93  * Unfortunately the choice to use DMA or not is global to the controller
94  * and seems to be only settable when the controller is being put through
95  * a core reset. This means we either need to fix the gadgets to take
96  * account of DMA alignment, or add bounce buffers (yuerk).
97  *
98  * g_using_dma is set depending on dts flag.
99  */
100 static inline bool using_dma(struct dwc2_hsotg *hsotg)
101 {
102 	return hsotg->g_using_dma;
103 }
104 
105 /**
106  * s3c_hsotg_en_gsint - enable one or more of the general interrupt
107  * @hsotg: The device state
108  * @ints: A bitmask of the interrupts to enable
109  */
110 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
111 {
112 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
113 	u32 new_gsintmsk;
114 
115 	new_gsintmsk = gsintmsk | ints;
116 
117 	if (new_gsintmsk != gsintmsk) {
118 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
119 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
120 	}
121 }
122 
123 /**
124  * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
125  * @hsotg: The device state
126  * @ints: A bitmask of the interrupts to enable
127  */
128 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
129 {
130 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
131 	u32 new_gsintmsk;
132 
133 	new_gsintmsk = gsintmsk & ~ints;
134 
135 	if (new_gsintmsk != gsintmsk)
136 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
137 }
138 
139 /**
140  * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
141  * @hsotg: The device state
142  * @ep: The endpoint index
143  * @dir_in: True if direction is in.
144  * @en: The enable value, true to enable
145  *
146  * Set or clear the mask for an individual endpoint's interrupt
147  * request.
148  */
149 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
150 				 unsigned int ep, unsigned int dir_in,
151 				 unsigned int en)
152 {
153 	unsigned long flags;
154 	u32 bit = 1 << ep;
155 	u32 daint;
156 
157 	if (!dir_in)
158 		bit <<= 16;
159 
160 	local_irq_save(flags);
161 	daint = readl(hsotg->regs + DAINTMSK);
162 	if (en)
163 		daint |= bit;
164 	else
165 		daint &= ~bit;
166 	writel(daint, hsotg->regs + DAINTMSK);
167 	local_irq_restore(flags);
168 }
169 
170 /**
171  * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
172  * @hsotg: The device instance.
173  */
174 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
175 {
176 	unsigned int ep;
177 	unsigned int addr;
178 	int timeout;
179 	u32 val;
180 
181 	/* Reset fifo map if not correctly cleared during previous session */
182 	WARN_ON(hsotg->fifo_map);
183 	hsotg->fifo_map = 0;
184 
185 	/* set RX/NPTX FIFO sizes */
186 	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
187 	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
188 		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
189 		hsotg->regs + GNPTXFSIZ);
190 
191 	/*
192 	 * arange all the rest of the TX FIFOs, as some versions of this
193 	 * block have overlapping default addresses. This also ensures
194 	 * that if the settings have been changed, then they are set to
195 	 * known values.
196 	 */
197 
198 	/* start at the end of the GNPTXFSIZ, rounded up */
199 	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
200 
201 	/*
202 	 * Configure fifos sizes from provided configuration and assign
203 	 * them to endpoints dynamically according to maxpacket size value of
204 	 * given endpoint.
205 	 */
206 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
207 		if (!hsotg->g_tx_fifo_sz[ep])
208 			continue;
209 		val = addr;
210 		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
211 		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
212 			  "insufficient fifo memory");
213 		addr += hsotg->g_tx_fifo_sz[ep];
214 
215 		writel(val, hsotg->regs + DPTXFSIZN(ep));
216 	}
217 
218 	/*
219 	 * according to p428 of the design guide, we need to ensure that
220 	 * all fifos are flushed before continuing
221 	 */
222 
223 	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
224 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
225 
226 	/* wait until the fifos are both flushed */
227 	timeout = 100;
228 	while (1) {
229 		val = readl(hsotg->regs + GRSTCTL);
230 
231 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
232 			break;
233 
234 		if (--timeout == 0) {
235 			dev_err(hsotg->dev,
236 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
237 				__func__, val);
238 			break;
239 		}
240 
241 		udelay(1);
242 	}
243 
244 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
245 }
246 
247 /**
248  * @ep: USB endpoint to allocate request for.
249  * @flags: Allocation flags
250  *
251  * Allocate a new USB request structure appropriate for the specified endpoint
252  */
253 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
254 						      gfp_t flags)
255 {
256 	struct s3c_hsotg_req *req;
257 
258 	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
259 	if (!req)
260 		return NULL;
261 
262 	INIT_LIST_HEAD(&req->queue);
263 
264 	return &req->req;
265 }
266 
267 /**
268  * is_ep_periodic - return true if the endpoint is in periodic mode.
269  * @hs_ep: The endpoint to query.
270  *
271  * Returns true if the endpoint is in periodic mode, meaning it is being
272  * used for an Interrupt or ISO transfer.
273  */
274 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
275 {
276 	return hs_ep->periodic;
277 }
278 
279 /**
280  * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
281  * @hsotg: The device state.
282  * @hs_ep: The endpoint for the request
283  * @hs_req: The request being processed.
284  *
285  * This is the reverse of s3c_hsotg_map_dma(), called for the completion
286  * of a request to ensure the buffer is ready for access by the caller.
287  */
288 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
289 				struct s3c_hsotg_ep *hs_ep,
290 				struct s3c_hsotg_req *hs_req)
291 {
292 	struct usb_request *req = &hs_req->req;
293 
294 	/* ignore this if we're not moving any data */
295 	if (hs_req->req.length == 0)
296 		return;
297 
298 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
299 }
300 
301 /**
302  * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
303  * @hsotg: The controller state.
304  * @hs_ep: The endpoint we're going to write for.
305  * @hs_req: The request to write data for.
306  *
307  * This is called when the TxFIFO has some space in it to hold a new
308  * transmission and we have something to give it. The actual setup of
309  * the data size is done elsewhere, so all we have to do is to actually
310  * write the data.
311  *
312  * The return value is zero if there is more space (or nothing was done)
313  * otherwise -ENOSPC is returned if the FIFO space was used up.
314  *
315  * This routine is only needed for PIO
316  */
317 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
318 				struct s3c_hsotg_ep *hs_ep,
319 				struct s3c_hsotg_req *hs_req)
320 {
321 	bool periodic = is_ep_periodic(hs_ep);
322 	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
323 	int buf_pos = hs_req->req.actual;
324 	int to_write = hs_ep->size_loaded;
325 	void *data;
326 	int can_write;
327 	int pkt_round;
328 	int max_transfer;
329 
330 	to_write -= (buf_pos - hs_ep->last_load);
331 
332 	/* if there's nothing to write, get out early */
333 	if (to_write == 0)
334 		return 0;
335 
336 	if (periodic && !hsotg->dedicated_fifos) {
337 		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
338 		int size_left;
339 		int size_done;
340 
341 		/*
342 		 * work out how much data was loaded so we can calculate
343 		 * how much data is left in the fifo.
344 		 */
345 
346 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
347 
348 		/*
349 		 * if shared fifo, we cannot write anything until the
350 		 * previous data has been completely sent.
351 		 */
352 		if (hs_ep->fifo_load != 0) {
353 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
354 			return -ENOSPC;
355 		}
356 
357 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
358 			__func__, size_left,
359 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
360 
361 		/* how much of the data has moved */
362 		size_done = hs_ep->size_loaded - size_left;
363 
364 		/* how much data is left in the fifo */
365 		can_write = hs_ep->fifo_load - size_done;
366 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
367 			__func__, can_write);
368 
369 		can_write = hs_ep->fifo_size - can_write;
370 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
371 			__func__, can_write);
372 
373 		if (can_write <= 0) {
374 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
375 			return -ENOSPC;
376 		}
377 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
378 		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
379 
380 		can_write &= 0xffff;
381 		can_write *= 4;
382 	} else {
383 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
384 			dev_dbg(hsotg->dev,
385 				"%s: no queue slots available (0x%08x)\n",
386 				__func__, gnptxsts);
387 
388 			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
389 			return -ENOSPC;
390 		}
391 
392 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
393 		can_write *= 4;	/* fifo size is in 32bit quantities. */
394 	}
395 
396 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
397 
398 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
399 		 __func__, gnptxsts, can_write, to_write, max_transfer);
400 
401 	/*
402 	 * limit to 512 bytes of data, it seems at least on the non-periodic
403 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
404 	 * fragment of the end of the transfer in it.
405 	 */
406 	if (can_write > 512 && !periodic)
407 		can_write = 512;
408 
409 	/*
410 	 * limit the write to one max-packet size worth of data, but allow
411 	 * the transfer to return that it did not run out of fifo space
412 	 * doing it.
413 	 */
414 	if (to_write > max_transfer) {
415 		to_write = max_transfer;
416 
417 		/* it's needed only when we do not use dedicated fifos */
418 		if (!hsotg->dedicated_fifos)
419 			s3c_hsotg_en_gsint(hsotg,
420 					   periodic ? GINTSTS_PTXFEMP :
421 					   GINTSTS_NPTXFEMP);
422 	}
423 
424 	/* see if we can write data */
425 
426 	if (to_write > can_write) {
427 		to_write = can_write;
428 		pkt_round = to_write % max_transfer;
429 
430 		/*
431 		 * Round the write down to an
432 		 * exact number of packets.
433 		 *
434 		 * Note, we do not currently check to see if we can ever
435 		 * write a full packet or not to the FIFO.
436 		 */
437 
438 		if (pkt_round)
439 			to_write -= pkt_round;
440 
441 		/*
442 		 * enable correct FIFO interrupt to alert us when there
443 		 * is more room left.
444 		 */
445 
446 		/* it's needed only when we do not use dedicated fifos */
447 		if (!hsotg->dedicated_fifos)
448 			s3c_hsotg_en_gsint(hsotg,
449 					   periodic ? GINTSTS_PTXFEMP :
450 					   GINTSTS_NPTXFEMP);
451 	}
452 
453 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
454 		 to_write, hs_req->req.length, can_write, buf_pos);
455 
456 	if (to_write <= 0)
457 		return -ENOSPC;
458 
459 	hs_req->req.actual = buf_pos + to_write;
460 	hs_ep->total_data += to_write;
461 
462 	if (periodic)
463 		hs_ep->fifo_load += to_write;
464 
465 	to_write = DIV_ROUND_UP(to_write, 4);
466 	data = hs_req->req.buf + buf_pos;
467 
468 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
469 
470 	return (to_write >= can_write) ? -ENOSPC : 0;
471 }
472 
473 /**
474  * get_ep_limit - get the maximum data legnth for this endpoint
475  * @hs_ep: The endpoint
476  *
477  * Return the maximum data that can be queued in one go on a given endpoint
478  * so that transfers that are too long can be split.
479  */
480 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
481 {
482 	int index = hs_ep->index;
483 	unsigned maxsize;
484 	unsigned maxpkt;
485 
486 	if (index != 0) {
487 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
488 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
489 	} else {
490 		maxsize = 64+64;
491 		if (hs_ep->dir_in)
492 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
493 		else
494 			maxpkt = 2;
495 	}
496 
497 	/* we made the constant loading easier above by using +1 */
498 	maxpkt--;
499 	maxsize--;
500 
501 	/*
502 	 * constrain by packet count if maxpkts*pktsize is greater
503 	 * than the length register size.
504 	 */
505 
506 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
507 		maxsize = maxpkt * hs_ep->ep.maxpacket;
508 
509 	return maxsize;
510 }
511 
512 /**
513  * s3c_hsotg_start_req - start a USB request from an endpoint's queue
514  * @hsotg: The controller state.
515  * @hs_ep: The endpoint to process a request for
516  * @hs_req: The request to start.
517  * @continuing: True if we are doing more for the current request.
518  *
519  * Start the given request running by setting the endpoint registers
520  * appropriately, and writing any data to the FIFOs.
521  */
522 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
523 				struct s3c_hsotg_ep *hs_ep,
524 				struct s3c_hsotg_req *hs_req,
525 				bool continuing)
526 {
527 	struct usb_request *ureq = &hs_req->req;
528 	int index = hs_ep->index;
529 	int dir_in = hs_ep->dir_in;
530 	u32 epctrl_reg;
531 	u32 epsize_reg;
532 	u32 epsize;
533 	u32 ctrl;
534 	unsigned length;
535 	unsigned packets;
536 	unsigned maxreq;
537 
538 	if (index != 0) {
539 		if (hs_ep->req && !continuing) {
540 			dev_err(hsotg->dev, "%s: active request\n", __func__);
541 			WARN_ON(1);
542 			return;
543 		} else if (hs_ep->req != hs_req && continuing) {
544 			dev_err(hsotg->dev,
545 				"%s: continue different req\n", __func__);
546 			WARN_ON(1);
547 			return;
548 		}
549 	}
550 
551 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
552 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
553 
554 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
555 		__func__, readl(hsotg->regs + epctrl_reg), index,
556 		hs_ep->dir_in ? "in" : "out");
557 
558 	/* If endpoint is stalled, we will restart request later */
559 	ctrl = readl(hsotg->regs + epctrl_reg);
560 
561 	if (ctrl & DXEPCTL_STALL) {
562 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
563 		return;
564 	}
565 
566 	length = ureq->length - ureq->actual;
567 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
568 		ureq->length, ureq->actual);
569 
570 	maxreq = get_ep_limit(hs_ep);
571 	if (length > maxreq) {
572 		int round = maxreq % hs_ep->ep.maxpacket;
573 
574 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
575 			__func__, length, maxreq, round);
576 
577 		/* round down to multiple of packets */
578 		if (round)
579 			maxreq -= round;
580 
581 		length = maxreq;
582 	}
583 
584 	if (length)
585 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
586 	else
587 		packets = 1;	/* send one packet if length is zero. */
588 
589 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
590 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
591 		return;
592 	}
593 
594 	if (dir_in && index != 0)
595 		if (hs_ep->isochronous)
596 			epsize = DXEPTSIZ_MC(packets);
597 		else
598 			epsize = DXEPTSIZ_MC(1);
599 	else
600 		epsize = 0;
601 
602 	/*
603 	 * zero length packet should be programmed on its own and should not
604 	 * be counted in DIEPTSIZ.PktCnt with other packets.
605 	 */
606 	if (dir_in && ureq->zero && !continuing) {
607 		/* Test if zlp is actually required. */
608 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
609 					!(ureq->length % hs_ep->ep.maxpacket))
610 			hs_ep->send_zlp = 1;
611 	}
612 
613 	epsize |= DXEPTSIZ_PKTCNT(packets);
614 	epsize |= DXEPTSIZ_XFERSIZE(length);
615 
616 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
617 		__func__, packets, length, ureq->length, epsize, epsize_reg);
618 
619 	/* store the request as the current one we're doing */
620 	hs_ep->req = hs_req;
621 
622 	/* write size / packets */
623 	writel(epsize, hsotg->regs + epsize_reg);
624 
625 	if (using_dma(hsotg) && !continuing) {
626 		unsigned int dma_reg;
627 
628 		/*
629 		 * write DMA address to control register, buffer already
630 		 * synced by s3c_hsotg_ep_queue().
631 		 */
632 
633 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
634 		writel(ureq->dma, hsotg->regs + dma_reg);
635 
636 		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
637 			__func__, &ureq->dma, dma_reg);
638 	}
639 
640 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
641 	ctrl |= DXEPCTL_USBACTEP;
642 
643 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
644 
645 	/* For Setup request do not clear NAK */
646 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
647 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
648 
649 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
650 	writel(ctrl, hsotg->regs + epctrl_reg);
651 
652 	/*
653 	 * set these, it seems that DMA support increments past the end
654 	 * of the packet buffer so we need to calculate the length from
655 	 * this information.
656 	 */
657 	hs_ep->size_loaded = length;
658 	hs_ep->last_load = ureq->actual;
659 
660 	if (dir_in && !using_dma(hsotg)) {
661 		/* set these anyway, we may need them for non-periodic in */
662 		hs_ep->fifo_load = 0;
663 
664 		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
665 	}
666 
667 	/*
668 	 * clear the INTknTXFEmpMsk when we start request, more as a aide
669 	 * to debugging to see what is going on.
670 	 */
671 	if (dir_in)
672 		writel(DIEPMSK_INTKNTXFEMPMSK,
673 		       hsotg->regs + DIEPINT(index));
674 
675 	/*
676 	 * Note, trying to clear the NAK here causes problems with transmit
677 	 * on the S3C6400 ending up with the TXFIFO becoming full.
678 	 */
679 
680 	/* check ep is enabled */
681 	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
682 		dev_dbg(hsotg->dev,
683 			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
684 			 index, readl(hsotg->regs + epctrl_reg));
685 
686 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
687 		__func__, readl(hsotg->regs + epctrl_reg));
688 
689 	/* enable ep interrupts */
690 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
691 }
692 
693 /**
694  * s3c_hsotg_map_dma - map the DMA memory being used for the request
695  * @hsotg: The device state.
696  * @hs_ep: The endpoint the request is on.
697  * @req: The request being processed.
698  *
699  * We've been asked to queue a request, so ensure that the memory buffer
700  * is correctly setup for DMA. If we've been passed an extant DMA address
701  * then ensure the buffer has been synced to memory. If our buffer has no
702  * DMA memory, then we map the memory and mark our request to allow us to
703  * cleanup on completion.
704  */
705 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
706 			     struct s3c_hsotg_ep *hs_ep,
707 			     struct usb_request *req)
708 {
709 	struct s3c_hsotg_req *hs_req = our_req(req);
710 	int ret;
711 
712 	/* if the length is zero, ignore the DMA data */
713 	if (hs_req->req.length == 0)
714 		return 0;
715 
716 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
717 	if (ret)
718 		goto dma_error;
719 
720 	return 0;
721 
722 dma_error:
723 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
724 		__func__, req->buf, req->length);
725 
726 	return -EIO;
727 }
728 
729 static int s3c_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
730 	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
731 {
732 	void *req_buf = hs_req->req.buf;
733 
734 	/* If dma is not being used or buffer is aligned */
735 	if (!using_dma(hsotg) || !((long)req_buf & 3))
736 		return 0;
737 
738 	WARN_ON(hs_req->saved_req_buf);
739 
740 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
741 			hs_ep->ep.name, req_buf, hs_req->req.length);
742 
743 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
744 	if (!hs_req->req.buf) {
745 		hs_req->req.buf = req_buf;
746 		dev_err(hsotg->dev,
747 			"%s: unable to allocate memory for bounce buffer\n",
748 			__func__);
749 		return -ENOMEM;
750 	}
751 
752 	/* Save actual buffer */
753 	hs_req->saved_req_buf = req_buf;
754 
755 	if (hs_ep->dir_in)
756 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
757 	return 0;
758 }
759 
760 static void s3c_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
761 	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
762 {
763 	/* If dma is not being used or buffer was aligned */
764 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
765 		return;
766 
767 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
768 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
769 
770 	/* Copy data from bounce buffer on successful out transfer */
771 	if (!hs_ep->dir_in && !hs_req->req.status)
772 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
773 							hs_req->req.actual);
774 
775 	/* Free bounce buffer */
776 	kfree(hs_req->req.buf);
777 
778 	hs_req->req.buf = hs_req->saved_req_buf;
779 	hs_req->saved_req_buf = NULL;
780 }
781 
782 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
783 			      gfp_t gfp_flags)
784 {
785 	struct s3c_hsotg_req *hs_req = our_req(req);
786 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
787 	struct dwc2_hsotg *hs = hs_ep->parent;
788 	bool first;
789 	int ret;
790 
791 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
792 		ep->name, req, req->length, req->buf, req->no_interrupt,
793 		req->zero, req->short_not_ok);
794 
795 	/* initialise status of the request */
796 	INIT_LIST_HEAD(&hs_req->queue);
797 	req->actual = 0;
798 	req->status = -EINPROGRESS;
799 
800 	ret = s3c_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
801 	if (ret)
802 		return ret;
803 
804 	/* if we're using DMA, sync the buffers as necessary */
805 	if (using_dma(hs)) {
806 		ret = s3c_hsotg_map_dma(hs, hs_ep, req);
807 		if (ret)
808 			return ret;
809 	}
810 
811 	first = list_empty(&hs_ep->queue);
812 	list_add_tail(&hs_req->queue, &hs_ep->queue);
813 
814 	if (first)
815 		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
816 
817 	return 0;
818 }
819 
820 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
821 			      gfp_t gfp_flags)
822 {
823 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
824 	struct dwc2_hsotg *hs = hs_ep->parent;
825 	unsigned long flags = 0;
826 	int ret = 0;
827 
828 	spin_lock_irqsave(&hs->lock, flags);
829 	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
830 	spin_unlock_irqrestore(&hs->lock, flags);
831 
832 	return ret;
833 }
834 
835 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
836 				      struct usb_request *req)
837 {
838 	struct s3c_hsotg_req *hs_req = our_req(req);
839 
840 	kfree(hs_req);
841 }
842 
843 /**
844  * s3c_hsotg_complete_oursetup - setup completion callback
845  * @ep: The endpoint the request was on.
846  * @req: The request completed.
847  *
848  * Called on completion of any requests the driver itself
849  * submitted that need cleaning up.
850  */
851 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
852 					struct usb_request *req)
853 {
854 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
855 	struct dwc2_hsotg *hsotg = hs_ep->parent;
856 
857 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
858 
859 	s3c_hsotg_ep_free_request(ep, req);
860 }
861 
862 /**
863  * ep_from_windex - convert control wIndex value to endpoint
864  * @hsotg: The driver state.
865  * @windex: The control request wIndex field (in host order).
866  *
867  * Convert the given wIndex into a pointer to an driver endpoint
868  * structure, or return NULL if it is not a valid endpoint.
869  */
870 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
871 					   u32 windex)
872 {
873 	struct s3c_hsotg_ep *ep;
874 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
875 	int idx = windex & 0x7F;
876 
877 	if (windex >= 0x100)
878 		return NULL;
879 
880 	if (idx > hsotg->num_of_eps)
881 		return NULL;
882 
883 	ep = index_to_ep(hsotg, idx, dir);
884 
885 	if (idx && ep->dir_in != dir)
886 		return NULL;
887 
888 	return ep;
889 }
890 
891 /**
892  * s3c_hsotg_set_test_mode - Enable usb Test Modes
893  * @hsotg: The driver state.
894  * @testmode: requested usb test mode
895  * Enable usb Test Mode requested by the Host.
896  */
897 static int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
898 {
899 	int dctl = readl(hsotg->regs + DCTL);
900 
901 	dctl &= ~DCTL_TSTCTL_MASK;
902 	switch (testmode) {
903 	case TEST_J:
904 	case TEST_K:
905 	case TEST_SE0_NAK:
906 	case TEST_PACKET:
907 	case TEST_FORCE_EN:
908 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
909 		break;
910 	default:
911 		return -EINVAL;
912 	}
913 	writel(dctl, hsotg->regs + DCTL);
914 	return 0;
915 }
916 
917 /**
918  * s3c_hsotg_send_reply - send reply to control request
919  * @hsotg: The device state
920  * @ep: Endpoint 0
921  * @buff: Buffer for request
922  * @length: Length of reply.
923  *
924  * Create a request and queue it on the given endpoint. This is useful as
925  * an internal method of sending replies to certain control requests, etc.
926  */
927 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
928 				struct s3c_hsotg_ep *ep,
929 				void *buff,
930 				int length)
931 {
932 	struct usb_request *req;
933 	int ret;
934 
935 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
936 
937 	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
938 	hsotg->ep0_reply = req;
939 	if (!req) {
940 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
941 		return -ENOMEM;
942 	}
943 
944 	req->buf = hsotg->ep0_buff;
945 	req->length = length;
946 	/*
947 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
948 	 * STATUS stage.
949 	 */
950 	req->zero = 0;
951 	req->complete = s3c_hsotg_complete_oursetup;
952 
953 	if (length)
954 		memcpy(req->buf, buff, length);
955 
956 	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
957 	if (ret) {
958 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
959 		return ret;
960 	}
961 
962 	return 0;
963 }
964 
965 /**
966  * s3c_hsotg_process_req_status - process request GET_STATUS
967  * @hsotg: The device state
968  * @ctrl: USB control request
969  */
970 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
971 					struct usb_ctrlrequest *ctrl)
972 {
973 	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
974 	struct s3c_hsotg_ep *ep;
975 	__le16 reply;
976 	int ret;
977 
978 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
979 
980 	if (!ep0->dir_in) {
981 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
982 		return -EINVAL;
983 	}
984 
985 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
986 	case USB_RECIP_DEVICE:
987 		reply = cpu_to_le16(0); /* bit 0 => self powered,
988 					 * bit 1 => remote wakeup */
989 		break;
990 
991 	case USB_RECIP_INTERFACE:
992 		/* currently, the data result should be zero */
993 		reply = cpu_to_le16(0);
994 		break;
995 
996 	case USB_RECIP_ENDPOINT:
997 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
998 		if (!ep)
999 			return -ENOENT;
1000 
1001 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1002 		break;
1003 
1004 	default:
1005 		return 0;
1006 	}
1007 
1008 	if (le16_to_cpu(ctrl->wLength) != 2)
1009 		return -EINVAL;
1010 
1011 	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1012 	if (ret) {
1013 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1014 		return ret;
1015 	}
1016 
1017 	return 1;
1018 }
1019 
1020 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1021 
1022 /**
1023  * get_ep_head - return the first request on the endpoint
1024  * @hs_ep: The controller endpoint to get
1025  *
1026  * Get the first request on the endpoint.
1027  */
1028 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1029 {
1030 	if (list_empty(&hs_ep->queue))
1031 		return NULL;
1032 
1033 	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1034 }
1035 
1036 /**
1037  * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1038  * @hsotg: The device state
1039  * @ctrl: USB control request
1040  */
1041 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1042 					 struct usb_ctrlrequest *ctrl)
1043 {
1044 	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1045 	struct s3c_hsotg_req *hs_req;
1046 	bool restart;
1047 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1048 	struct s3c_hsotg_ep *ep;
1049 	int ret;
1050 	bool halted;
1051 	u32 recip;
1052 	u32 wValue;
1053 	u32 wIndex;
1054 
1055 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1056 		__func__, set ? "SET" : "CLEAR");
1057 
1058 	wValue = le16_to_cpu(ctrl->wValue);
1059 	wIndex = le16_to_cpu(ctrl->wIndex);
1060 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1061 
1062 	switch (recip) {
1063 	case USB_RECIP_DEVICE:
1064 		switch (wValue) {
1065 		case USB_DEVICE_TEST_MODE:
1066 			if ((wIndex & 0xff) != 0)
1067 				return -EINVAL;
1068 			if (!set)
1069 				return -EINVAL;
1070 
1071 			hsotg->test_mode = wIndex >> 8;
1072 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1073 			if (ret) {
1074 				dev_err(hsotg->dev,
1075 					"%s: failed to send reply\n", __func__);
1076 				return ret;
1077 			}
1078 			break;
1079 		default:
1080 			return -ENOENT;
1081 		}
1082 		break;
1083 
1084 	case USB_RECIP_ENDPOINT:
1085 		ep = ep_from_windex(hsotg, wIndex);
1086 		if (!ep) {
1087 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1088 				__func__, wIndex);
1089 			return -ENOENT;
1090 		}
1091 
1092 		switch (wValue) {
1093 		case USB_ENDPOINT_HALT:
1094 			halted = ep->halted;
1095 
1096 			s3c_hsotg_ep_sethalt(&ep->ep, set);
1097 
1098 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1099 			if (ret) {
1100 				dev_err(hsotg->dev,
1101 					"%s: failed to send reply\n", __func__);
1102 				return ret;
1103 			}
1104 
1105 			/*
1106 			 * we have to complete all requests for ep if it was
1107 			 * halted, and the halt was cleared by CLEAR_FEATURE
1108 			 */
1109 
1110 			if (!set && halted) {
1111 				/*
1112 				 * If we have request in progress,
1113 				 * then complete it
1114 				 */
1115 				if (ep->req) {
1116 					hs_req = ep->req;
1117 					ep->req = NULL;
1118 					list_del_init(&hs_req->queue);
1119 					if (hs_req->req.complete) {
1120 						spin_unlock(&hsotg->lock);
1121 						usb_gadget_giveback_request(
1122 							&ep->ep, &hs_req->req);
1123 						spin_lock(&hsotg->lock);
1124 					}
1125 				}
1126 
1127 				/* If we have pending request, then start it */
1128 				if (!ep->req) {
1129 					restart = !list_empty(&ep->queue);
1130 					if (restart) {
1131 						hs_req = get_ep_head(ep);
1132 						s3c_hsotg_start_req(hsotg, ep,
1133 								hs_req, false);
1134 					}
1135 				}
1136 			}
1137 
1138 			break;
1139 
1140 		default:
1141 			return -ENOENT;
1142 		}
1143 		break;
1144 	default:
1145 		return -ENOENT;
1146 	}
1147 	return 1;
1148 }
1149 
1150 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1151 
1152 /**
1153  * s3c_hsotg_stall_ep0 - stall ep0
1154  * @hsotg: The device state
1155  *
1156  * Set stall for ep0 as response for setup request.
1157  */
1158 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1159 {
1160 	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1161 	u32 reg;
1162 	u32 ctrl;
1163 
1164 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1165 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1166 
1167 	/*
1168 	 * DxEPCTL_Stall will be cleared by EP once it has
1169 	 * taken effect, so no need to clear later.
1170 	 */
1171 
1172 	ctrl = readl(hsotg->regs + reg);
1173 	ctrl |= DXEPCTL_STALL;
1174 	ctrl |= DXEPCTL_CNAK;
1175 	writel(ctrl, hsotg->regs + reg);
1176 
1177 	dev_dbg(hsotg->dev,
1178 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1179 		ctrl, reg, readl(hsotg->regs + reg));
1180 
1181 	 /*
1182 	  * complete won't be called, so we enqueue
1183 	  * setup request here
1184 	  */
1185 	 s3c_hsotg_enqueue_setup(hsotg);
1186 }
1187 
1188 /**
1189  * s3c_hsotg_process_control - process a control request
1190  * @hsotg: The device state
1191  * @ctrl: The control request received
1192  *
1193  * The controller has received the SETUP phase of a control request, and
1194  * needs to work out what to do next (and whether to pass it on to the
1195  * gadget driver).
1196  */
1197 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1198 				      struct usb_ctrlrequest *ctrl)
1199 {
1200 	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1201 	int ret = 0;
1202 	u32 dcfg;
1203 
1204 	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1205 		 ctrl->bRequest, ctrl->bRequestType,
1206 		 ctrl->wValue, ctrl->wLength);
1207 
1208 	if (ctrl->wLength == 0) {
1209 		ep0->dir_in = 1;
1210 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1211 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1212 		ep0->dir_in = 1;
1213 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1214 	} else {
1215 		ep0->dir_in = 0;
1216 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1217 	}
1218 
1219 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1220 		switch (ctrl->bRequest) {
1221 		case USB_REQ_SET_ADDRESS:
1222 			hsotg->connected = 1;
1223 			dcfg = readl(hsotg->regs + DCFG);
1224 			dcfg &= ~DCFG_DEVADDR_MASK;
1225 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1226 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1227 			writel(dcfg, hsotg->regs + DCFG);
1228 
1229 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1230 
1231 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1232 			return;
1233 
1234 		case USB_REQ_GET_STATUS:
1235 			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1236 			break;
1237 
1238 		case USB_REQ_CLEAR_FEATURE:
1239 		case USB_REQ_SET_FEATURE:
1240 			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1241 			break;
1242 		}
1243 	}
1244 
1245 	/* as a fallback, try delivering it to the driver to deal with */
1246 
1247 	if (ret == 0 && hsotg->driver) {
1248 		spin_unlock(&hsotg->lock);
1249 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1250 		spin_lock(&hsotg->lock);
1251 		if (ret < 0)
1252 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1253 	}
1254 
1255 	/*
1256 	 * the request is either unhandlable, or is not formatted correctly
1257 	 * so respond with a STALL for the status stage to indicate failure.
1258 	 */
1259 
1260 	if (ret < 0)
1261 		s3c_hsotg_stall_ep0(hsotg);
1262 }
1263 
1264 /**
1265  * s3c_hsotg_complete_setup - completion of a setup transfer
1266  * @ep: The endpoint the request was on.
1267  * @req: The request completed.
1268  *
1269  * Called on completion of any requests the driver itself submitted for
1270  * EP0 setup packets
1271  */
1272 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1273 				     struct usb_request *req)
1274 {
1275 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1276 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1277 
1278 	if (req->status < 0) {
1279 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1280 		return;
1281 	}
1282 
1283 	spin_lock(&hsotg->lock);
1284 	if (req->actual == 0)
1285 		s3c_hsotg_enqueue_setup(hsotg);
1286 	else
1287 		s3c_hsotg_process_control(hsotg, req->buf);
1288 	spin_unlock(&hsotg->lock);
1289 }
1290 
1291 /**
1292  * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1293  * @hsotg: The device state.
1294  *
1295  * Enqueue a request on EP0 if necessary to received any SETUP packets
1296  * received from the host.
1297  */
1298 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1299 {
1300 	struct usb_request *req = hsotg->ctrl_req;
1301 	struct s3c_hsotg_req *hs_req = our_req(req);
1302 	int ret;
1303 
1304 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1305 
1306 	req->zero = 0;
1307 	req->length = 8;
1308 	req->buf = hsotg->ctrl_buff;
1309 	req->complete = s3c_hsotg_complete_setup;
1310 
1311 	if (!list_empty(&hs_req->queue)) {
1312 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1313 		return;
1314 	}
1315 
1316 	hsotg->eps_out[0]->dir_in = 0;
1317 	hsotg->eps_out[0]->send_zlp = 0;
1318 	hsotg->ep0_state = DWC2_EP0_SETUP;
1319 
1320 	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1321 	if (ret < 0) {
1322 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1323 		/*
1324 		 * Don't think there's much we can do other than watch the
1325 		 * driver fail.
1326 		 */
1327 	}
1328 }
1329 
1330 static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1331 					struct s3c_hsotg_ep *hs_ep)
1332 {
1333 	u32 ctrl;
1334 	u8 index = hs_ep->index;
1335 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1336 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1337 
1338 	if (hs_ep->dir_in)
1339 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1340 									index);
1341 	else
1342 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1343 									index);
1344 
1345 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1346 			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1347 			epsiz_reg);
1348 
1349 	ctrl = readl(hsotg->regs + epctl_reg);
1350 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1351 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1352 	ctrl |= DXEPCTL_USBACTEP;
1353 	writel(ctrl, hsotg->regs + epctl_reg);
1354 }
1355 
1356 /**
1357  * s3c_hsotg_complete_request - complete a request given to us
1358  * @hsotg: The device state.
1359  * @hs_ep: The endpoint the request was on.
1360  * @hs_req: The request to complete.
1361  * @result: The result code (0 => Ok, otherwise errno)
1362  *
1363  * The given request has finished, so call the necessary completion
1364  * if it has one and then look to see if we can start a new request
1365  * on the endpoint.
1366  *
1367  * Note, expects the ep to already be locked as appropriate.
1368  */
1369 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1370 				       struct s3c_hsotg_ep *hs_ep,
1371 				       struct s3c_hsotg_req *hs_req,
1372 				       int result)
1373 {
1374 	bool restart;
1375 
1376 	if (!hs_req) {
1377 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1378 		return;
1379 	}
1380 
1381 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1382 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1383 
1384 	/*
1385 	 * only replace the status if we've not already set an error
1386 	 * from a previous transaction
1387 	 */
1388 
1389 	if (hs_req->req.status == -EINPROGRESS)
1390 		hs_req->req.status = result;
1391 
1392 	s3c_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1393 
1394 	hs_ep->req = NULL;
1395 	list_del_init(&hs_req->queue);
1396 
1397 	if (using_dma(hsotg))
1398 		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1399 
1400 	/*
1401 	 * call the complete request with the locks off, just in case the
1402 	 * request tries to queue more work for this endpoint.
1403 	 */
1404 
1405 	if (hs_req->req.complete) {
1406 		spin_unlock(&hsotg->lock);
1407 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1408 		spin_lock(&hsotg->lock);
1409 	}
1410 
1411 	/*
1412 	 * Look to see if there is anything else to do. Note, the completion
1413 	 * of the previous request may have caused a new request to be started
1414 	 * so be careful when doing this.
1415 	 */
1416 
1417 	if (!hs_ep->req && result >= 0) {
1418 		restart = !list_empty(&hs_ep->queue);
1419 		if (restart) {
1420 			hs_req = get_ep_head(hs_ep);
1421 			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1422 		}
1423 	}
1424 }
1425 
1426 /**
1427  * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1428  * @hsotg: The device state.
1429  * @ep_idx: The endpoint index for the data
1430  * @size: The size of data in the fifo, in bytes
1431  *
1432  * The FIFO status shows there is data to read from the FIFO for a given
1433  * endpoint, so sort out whether we need to read the data into a request
1434  * that has been made for that endpoint.
1435  */
1436 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1437 {
1438 	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1439 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1440 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1441 	int to_read;
1442 	int max_req;
1443 	int read_ptr;
1444 
1445 
1446 	if (!hs_req) {
1447 		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1448 		int ptr;
1449 
1450 		dev_dbg(hsotg->dev,
1451 			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1452 			 __func__, size, ep_idx, epctl);
1453 
1454 		/* dump the data from the FIFO, we've nothing we can do */
1455 		for (ptr = 0; ptr < size; ptr += 4)
1456 			(void)readl(fifo);
1457 
1458 		return;
1459 	}
1460 
1461 	to_read = size;
1462 	read_ptr = hs_req->req.actual;
1463 	max_req = hs_req->req.length - read_ptr;
1464 
1465 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1466 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1467 
1468 	if (to_read > max_req) {
1469 		/*
1470 		 * more data appeared than we where willing
1471 		 * to deal with in this request.
1472 		 */
1473 
1474 		/* currently we don't deal this */
1475 		WARN_ON_ONCE(1);
1476 	}
1477 
1478 	hs_ep->total_data += to_read;
1479 	hs_req->req.actual += to_read;
1480 	to_read = DIV_ROUND_UP(to_read, 4);
1481 
1482 	/*
1483 	 * note, we might over-write the buffer end by 3 bytes depending on
1484 	 * alignment of the data.
1485 	 */
1486 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1487 }
1488 
1489 /**
1490  * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1491  * @hsotg: The device instance
1492  * @dir_in: If IN zlp
1493  *
1494  * Generate a zero-length IN packet request for terminating a SETUP
1495  * transaction.
1496  *
1497  * Note, since we don't write any data to the TxFIFO, then it is
1498  * currently believed that we do not need to wait for any space in
1499  * the TxFIFO.
1500  */
1501 static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1502 {
1503 	/* eps_out[0] is used in both directions */
1504 	hsotg->eps_out[0]->dir_in = dir_in;
1505 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1506 
1507 	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1508 }
1509 
1510 /**
1511  * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1512  * @hsotg: The device instance
1513  * @epnum: The endpoint received from
1514  *
1515  * The RXFIFO has delivered an OutDone event, which means that the data
1516  * transfer for an OUT endpoint has been completed, either by a short
1517  * packet or by the finish of a transfer.
1518  */
1519 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1520 {
1521 	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1522 	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1523 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1524 	struct usb_request *req = &hs_req->req;
1525 	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1526 	int result = 0;
1527 
1528 	if (!hs_req) {
1529 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1530 		return;
1531 	}
1532 
1533 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1534 		dev_dbg(hsotg->dev, "zlp packet received\n");
1535 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1536 		s3c_hsotg_enqueue_setup(hsotg);
1537 		return;
1538 	}
1539 
1540 	if (using_dma(hsotg)) {
1541 		unsigned size_done;
1542 
1543 		/*
1544 		 * Calculate the size of the transfer by checking how much
1545 		 * is left in the endpoint size register and then working it
1546 		 * out from the amount we loaded for the transfer.
1547 		 *
1548 		 * We need to do this as DMA pointers are always 32bit aligned
1549 		 * so may overshoot/undershoot the transfer.
1550 		 */
1551 
1552 		size_done = hs_ep->size_loaded - size_left;
1553 		size_done += hs_ep->last_load;
1554 
1555 		req->actual = size_done;
1556 	}
1557 
1558 	/* if there is more request to do, schedule new transfer */
1559 	if (req->actual < req->length && size_left == 0) {
1560 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1561 		return;
1562 	}
1563 
1564 	if (req->actual < req->length && req->short_not_ok) {
1565 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1566 			__func__, req->actual, req->length);
1567 
1568 		/*
1569 		 * todo - what should we return here? there's no one else
1570 		 * even bothering to check the status.
1571 		 */
1572 	}
1573 
1574 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1575 		/* Move to STATUS IN */
1576 		s3c_hsotg_ep0_zlp(hsotg, true);
1577 		return;
1578 	}
1579 
1580 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1581 }
1582 
1583 /**
1584  * s3c_hsotg_read_frameno - read current frame number
1585  * @hsotg: The device instance
1586  *
1587  * Return the current frame number
1588  */
1589 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1590 {
1591 	u32 dsts;
1592 
1593 	dsts = readl(hsotg->regs + DSTS);
1594 	dsts &= DSTS_SOFFN_MASK;
1595 	dsts >>= DSTS_SOFFN_SHIFT;
1596 
1597 	return dsts;
1598 }
1599 
1600 /**
1601  * s3c_hsotg_handle_rx - RX FIFO has data
1602  * @hsotg: The device instance
1603  *
1604  * The IRQ handler has detected that the RX FIFO has some data in it
1605  * that requires processing, so find out what is in there and do the
1606  * appropriate read.
1607  *
1608  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1609  * chunks, so if you have x packets received on an endpoint you'll get x
1610  * FIFO events delivered, each with a packet's worth of data in it.
1611  *
1612  * When using DMA, we should not be processing events from the RXFIFO
1613  * as the actual data should be sent to the memory directly and we turn
1614  * on the completion interrupts to get notifications of transfer completion.
1615  */
1616 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1617 {
1618 	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1619 	u32 epnum, status, size;
1620 
1621 	WARN_ON(using_dma(hsotg));
1622 
1623 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1624 	status = grxstsr & GRXSTS_PKTSTS_MASK;
1625 
1626 	size = grxstsr & GRXSTS_BYTECNT_MASK;
1627 	size >>= GRXSTS_BYTECNT_SHIFT;
1628 
1629 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1630 			__func__, grxstsr, size, epnum);
1631 
1632 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1633 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1634 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1635 		break;
1636 
1637 	case GRXSTS_PKTSTS_OUTDONE:
1638 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1639 			s3c_hsotg_read_frameno(hsotg));
1640 
1641 		if (!using_dma(hsotg))
1642 			s3c_hsotg_handle_outdone(hsotg, epnum);
1643 		break;
1644 
1645 	case GRXSTS_PKTSTS_SETUPDONE:
1646 		dev_dbg(hsotg->dev,
1647 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1648 			s3c_hsotg_read_frameno(hsotg),
1649 			readl(hsotg->regs + DOEPCTL(0)));
1650 		/*
1651 		 * Call s3c_hsotg_handle_outdone here if it was not called from
1652 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1653 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1654 		 */
1655 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1656 			s3c_hsotg_handle_outdone(hsotg, epnum);
1657 		break;
1658 
1659 	case GRXSTS_PKTSTS_OUTRX:
1660 		s3c_hsotg_rx_data(hsotg, epnum, size);
1661 		break;
1662 
1663 	case GRXSTS_PKTSTS_SETUPRX:
1664 		dev_dbg(hsotg->dev,
1665 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1666 			s3c_hsotg_read_frameno(hsotg),
1667 			readl(hsotg->regs + DOEPCTL(0)));
1668 
1669 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1670 
1671 		s3c_hsotg_rx_data(hsotg, epnum, size);
1672 		break;
1673 
1674 	default:
1675 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1676 			 __func__, grxstsr);
1677 
1678 		s3c_hsotg_dump(hsotg);
1679 		break;
1680 	}
1681 }
1682 
1683 /**
1684  * s3c_hsotg_ep0_mps - turn max packet size into register setting
1685  * @mps: The maximum packet size in bytes.
1686  */
1687 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1688 {
1689 	switch (mps) {
1690 	case 64:
1691 		return D0EPCTL_MPS_64;
1692 	case 32:
1693 		return D0EPCTL_MPS_32;
1694 	case 16:
1695 		return D0EPCTL_MPS_16;
1696 	case 8:
1697 		return D0EPCTL_MPS_8;
1698 	}
1699 
1700 	/* bad max packet size, warn and return invalid result */
1701 	WARN_ON(1);
1702 	return (u32)-1;
1703 }
1704 
1705 /**
1706  * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1707  * @hsotg: The driver state.
1708  * @ep: The index number of the endpoint
1709  * @mps: The maximum packet size in bytes
1710  *
1711  * Configure the maximum packet size for the given endpoint, updating
1712  * the hardware control registers to reflect this.
1713  */
1714 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1715 			unsigned int ep, unsigned int mps, unsigned int dir_in)
1716 {
1717 	struct s3c_hsotg_ep *hs_ep;
1718 	void __iomem *regs = hsotg->regs;
1719 	u32 mpsval;
1720 	u32 mcval;
1721 	u32 reg;
1722 
1723 	hs_ep = index_to_ep(hsotg, ep, dir_in);
1724 	if (!hs_ep)
1725 		return;
1726 
1727 	if (ep == 0) {
1728 		/* EP0 is a special case */
1729 		mpsval = s3c_hsotg_ep0_mps(mps);
1730 		if (mpsval > 3)
1731 			goto bad_mps;
1732 		hs_ep->ep.maxpacket = mps;
1733 		hs_ep->mc = 1;
1734 	} else {
1735 		mpsval = mps & DXEPCTL_MPS_MASK;
1736 		if (mpsval > 1024)
1737 			goto bad_mps;
1738 		mcval = ((mps >> 11) & 0x3) + 1;
1739 		hs_ep->mc = mcval;
1740 		if (mcval > 3)
1741 			goto bad_mps;
1742 		hs_ep->ep.maxpacket = mpsval;
1743 	}
1744 
1745 	if (dir_in) {
1746 		reg = readl(regs + DIEPCTL(ep));
1747 		reg &= ~DXEPCTL_MPS_MASK;
1748 		reg |= mpsval;
1749 		writel(reg, regs + DIEPCTL(ep));
1750 	} else {
1751 		reg = readl(regs + DOEPCTL(ep));
1752 		reg &= ~DXEPCTL_MPS_MASK;
1753 		reg |= mpsval;
1754 		writel(reg, regs + DOEPCTL(ep));
1755 	}
1756 
1757 	return;
1758 
1759 bad_mps:
1760 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1761 }
1762 
1763 /**
1764  * s3c_hsotg_txfifo_flush - flush Tx FIFO
1765  * @hsotg: The driver state
1766  * @idx: The index for the endpoint (0..15)
1767  */
1768 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1769 {
1770 	int timeout;
1771 	int val;
1772 
1773 	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1774 		hsotg->regs + GRSTCTL);
1775 
1776 	/* wait until the fifo is flushed */
1777 	timeout = 100;
1778 
1779 	while (1) {
1780 		val = readl(hsotg->regs + GRSTCTL);
1781 
1782 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1783 			break;
1784 
1785 		if (--timeout == 0) {
1786 			dev_err(hsotg->dev,
1787 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1788 				__func__, val);
1789 			break;
1790 		}
1791 
1792 		udelay(1);
1793 	}
1794 }
1795 
1796 /**
1797  * s3c_hsotg_trytx - check to see if anything needs transmitting
1798  * @hsotg: The driver state
1799  * @hs_ep: The driver endpoint to check.
1800  *
1801  * Check to see if there is a request that has data to send, and if so
1802  * make an attempt to write data into the FIFO.
1803  */
1804 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1805 			   struct s3c_hsotg_ep *hs_ep)
1806 {
1807 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1808 
1809 	if (!hs_ep->dir_in || !hs_req) {
1810 		/**
1811 		 * if request is not enqueued, we disable interrupts
1812 		 * for endpoints, excepting ep0
1813 		 */
1814 		if (hs_ep->index != 0)
1815 			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1816 					     hs_ep->dir_in, 0);
1817 		return 0;
1818 	}
1819 
1820 	if (hs_req->req.actual < hs_req->req.length) {
1821 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1822 			hs_ep->index);
1823 		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 /**
1830  * s3c_hsotg_complete_in - complete IN transfer
1831  * @hsotg: The device state.
1832  * @hs_ep: The endpoint that has just completed.
1833  *
1834  * An IN transfer has been completed, update the transfer's state and then
1835  * call the relevant completion routines.
1836  */
1837 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1838 				  struct s3c_hsotg_ep *hs_ep)
1839 {
1840 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1841 	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1842 	int size_left, size_done;
1843 
1844 	if (!hs_req) {
1845 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1846 		return;
1847 	}
1848 
1849 	/* Finish ZLP handling for IN EP0 transactions */
1850 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1851 		dev_dbg(hsotg->dev, "zlp packet sent\n");
1852 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1853 		if (hsotg->test_mode) {
1854 			int ret;
1855 
1856 			ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1857 			if (ret < 0) {
1858 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1859 						hsotg->test_mode);
1860 				s3c_hsotg_stall_ep0(hsotg);
1861 				return;
1862 			}
1863 		}
1864 		s3c_hsotg_enqueue_setup(hsotg);
1865 		return;
1866 	}
1867 
1868 	/*
1869 	 * Calculate the size of the transfer by checking how much is left
1870 	 * in the endpoint size register and then working it out from
1871 	 * the amount we loaded for the transfer.
1872 	 *
1873 	 * We do this even for DMA, as the transfer may have incremented
1874 	 * past the end of the buffer (DMA transfers are always 32bit
1875 	 * aligned).
1876 	 */
1877 
1878 	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1879 
1880 	size_done = hs_ep->size_loaded - size_left;
1881 	size_done += hs_ep->last_load;
1882 
1883 	if (hs_req->req.actual != size_done)
1884 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1885 			__func__, hs_req->req.actual, size_done);
1886 
1887 	hs_req->req.actual = size_done;
1888 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1889 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1890 
1891 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1892 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1893 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1894 		return;
1895 	}
1896 
1897 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1898 	if (hs_ep->send_zlp) {
1899 		s3c_hsotg_program_zlp(hsotg, hs_ep);
1900 		hs_ep->send_zlp = 0;
1901 		/* transfer will be completed on next complete interrupt */
1902 		return;
1903 	}
1904 
1905 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1906 		/* Move to STATUS OUT */
1907 		s3c_hsotg_ep0_zlp(hsotg, false);
1908 		return;
1909 	}
1910 
1911 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1912 }
1913 
1914 /**
1915  * s3c_hsotg_epint - handle an in/out endpoint interrupt
1916  * @hsotg: The driver state
1917  * @idx: The index for the endpoint (0..15)
1918  * @dir_in: Set if this is an IN endpoint
1919  *
1920  * Process and clear any interrupt pending for an individual endpoint
1921  */
1922 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1923 			    int dir_in)
1924 {
1925 	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1926 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1927 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1928 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1929 	u32 ints;
1930 	u32 ctrl;
1931 
1932 	ints = readl(hsotg->regs + epint_reg);
1933 	ctrl = readl(hsotg->regs + epctl_reg);
1934 
1935 	/* Clear endpoint interrupts */
1936 	writel(ints, hsotg->regs + epint_reg);
1937 
1938 	if (!hs_ep) {
1939 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1940 					__func__, idx, dir_in ? "in" : "out");
1941 		return;
1942 	}
1943 
1944 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1945 		__func__, idx, dir_in ? "in" : "out", ints);
1946 
1947 	/* Don't process XferCompl interrupt if it is a setup packet */
1948 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1949 		ints &= ~DXEPINT_XFERCOMPL;
1950 
1951 	if (ints & DXEPINT_XFERCOMPL) {
1952 		if (hs_ep->isochronous && hs_ep->interval == 1) {
1953 			if (ctrl & DXEPCTL_EOFRNUM)
1954 				ctrl |= DXEPCTL_SETEVENFR;
1955 			else
1956 				ctrl |= DXEPCTL_SETODDFR;
1957 			writel(ctrl, hsotg->regs + epctl_reg);
1958 		}
1959 
1960 		dev_dbg(hsotg->dev,
1961 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1962 			__func__, readl(hsotg->regs + epctl_reg),
1963 			readl(hsotg->regs + epsiz_reg));
1964 
1965 		/*
1966 		 * we get OutDone from the FIFO, so we only need to look
1967 		 * at completing IN requests here
1968 		 */
1969 		if (dir_in) {
1970 			s3c_hsotg_complete_in(hsotg, hs_ep);
1971 
1972 			if (idx == 0 && !hs_ep->req)
1973 				s3c_hsotg_enqueue_setup(hsotg);
1974 		} else if (using_dma(hsotg)) {
1975 			/*
1976 			 * We're using DMA, we need to fire an OutDone here
1977 			 * as we ignore the RXFIFO.
1978 			 */
1979 
1980 			s3c_hsotg_handle_outdone(hsotg, idx);
1981 		}
1982 	}
1983 
1984 	if (ints & DXEPINT_EPDISBLD) {
1985 		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1986 
1987 		if (dir_in) {
1988 			int epctl = readl(hsotg->regs + epctl_reg);
1989 
1990 			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1991 
1992 			if ((epctl & DXEPCTL_STALL) &&
1993 				(epctl & DXEPCTL_EPTYPE_BULK)) {
1994 				int dctl = readl(hsotg->regs + DCTL);
1995 
1996 				dctl |= DCTL_CGNPINNAK;
1997 				writel(dctl, hsotg->regs + DCTL);
1998 			}
1999 		}
2000 	}
2001 
2002 	if (ints & DXEPINT_AHBERR)
2003 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2004 
2005 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2006 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2007 
2008 		if (using_dma(hsotg) && idx == 0) {
2009 			/*
2010 			 * this is the notification we've received a
2011 			 * setup packet. In non-DMA mode we'd get this
2012 			 * from the RXFIFO, instead we need to process
2013 			 * the setup here.
2014 			 */
2015 
2016 			if (dir_in)
2017 				WARN_ON_ONCE(1);
2018 			else
2019 				s3c_hsotg_handle_outdone(hsotg, 0);
2020 		}
2021 	}
2022 
2023 	if (ints & DXEPINT_BACK2BACKSETUP)
2024 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2025 
2026 	if (dir_in && !hs_ep->isochronous) {
2027 		/* not sure if this is important, but we'll clear it anyway */
2028 		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2029 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2030 				__func__, idx);
2031 		}
2032 
2033 		/* this probably means something bad is happening */
2034 		if (ints & DIEPMSK_INTKNEPMISMSK) {
2035 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2036 				 __func__, idx);
2037 		}
2038 
2039 		/* FIFO has space or is empty (see GAHBCFG) */
2040 		if (hsotg->dedicated_fifos &&
2041 		    ints & DIEPMSK_TXFIFOEMPTY) {
2042 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2043 				__func__, idx);
2044 			if (!using_dma(hsotg))
2045 				s3c_hsotg_trytx(hsotg, hs_ep);
2046 		}
2047 	}
2048 }
2049 
2050 /**
2051  * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2052  * @hsotg: The device state.
2053  *
2054  * Handle updating the device settings after the enumeration phase has
2055  * been completed.
2056  */
2057 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2058 {
2059 	u32 dsts = readl(hsotg->regs + DSTS);
2060 	int ep0_mps = 0, ep_mps = 8;
2061 
2062 	/*
2063 	 * This should signal the finish of the enumeration phase
2064 	 * of the USB handshaking, so we should now know what rate
2065 	 * we connected at.
2066 	 */
2067 
2068 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2069 
2070 	/*
2071 	 * note, since we're limited by the size of transfer on EP0, and
2072 	 * it seems IN transfers must be a even number of packets we do
2073 	 * not advertise a 64byte MPS on EP0.
2074 	 */
2075 
2076 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2077 	switch (dsts & DSTS_ENUMSPD_MASK) {
2078 	case DSTS_ENUMSPD_FS:
2079 	case DSTS_ENUMSPD_FS48:
2080 		hsotg->gadget.speed = USB_SPEED_FULL;
2081 		ep0_mps = EP0_MPS_LIMIT;
2082 		ep_mps = 1023;
2083 		break;
2084 
2085 	case DSTS_ENUMSPD_HS:
2086 		hsotg->gadget.speed = USB_SPEED_HIGH;
2087 		ep0_mps = EP0_MPS_LIMIT;
2088 		ep_mps = 1024;
2089 		break;
2090 
2091 	case DSTS_ENUMSPD_LS:
2092 		hsotg->gadget.speed = USB_SPEED_LOW;
2093 		/*
2094 		 * note, we don't actually support LS in this driver at the
2095 		 * moment, and the documentation seems to imply that it isn't
2096 		 * supported by the PHYs on some of the devices.
2097 		 */
2098 		break;
2099 	}
2100 	dev_info(hsotg->dev, "new device is %s\n",
2101 		 usb_speed_string(hsotg->gadget.speed));
2102 
2103 	/*
2104 	 * we should now know the maximum packet size for an
2105 	 * endpoint, so set the endpoints to a default value.
2106 	 */
2107 
2108 	if (ep0_mps) {
2109 		int i;
2110 		/* Initialize ep0 for both in and out directions */
2111 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2112 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2113 		for (i = 1; i < hsotg->num_of_eps; i++) {
2114 			if (hsotg->eps_in[i])
2115 				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2116 			if (hsotg->eps_out[i])
2117 				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2118 		}
2119 	}
2120 
2121 	/* ensure after enumeration our EP0 is active */
2122 
2123 	s3c_hsotg_enqueue_setup(hsotg);
2124 
2125 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2126 		readl(hsotg->regs + DIEPCTL0),
2127 		readl(hsotg->regs + DOEPCTL0));
2128 }
2129 
2130 /**
2131  * kill_all_requests - remove all requests from the endpoint's queue
2132  * @hsotg: The device state.
2133  * @ep: The endpoint the requests may be on.
2134  * @result: The result code to use.
2135  *
2136  * Go through the requests on the given endpoint and mark them
2137  * completed with the given result code.
2138  */
2139 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2140 			      struct s3c_hsotg_ep *ep,
2141 			      int result)
2142 {
2143 	struct s3c_hsotg_req *req, *treq;
2144 	unsigned size;
2145 
2146 	ep->req = NULL;
2147 
2148 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2149 		s3c_hsotg_complete_request(hsotg, ep, req,
2150 					   result);
2151 
2152 	if (!hsotg->dedicated_fifos)
2153 		return;
2154 	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2155 	if (size < ep->fifo_size)
2156 		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2157 }
2158 
2159 /**
2160  * s3c_hsotg_disconnect - disconnect service
2161  * @hsotg: The device state.
2162  *
2163  * The device has been disconnected. Remove all current
2164  * transactions and signal the gadget driver that this
2165  * has happened.
2166  */
2167 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2168 {
2169 	unsigned ep;
2170 
2171 	if (!hsotg->connected)
2172 		return;
2173 
2174 	hsotg->connected = 0;
2175 	hsotg->test_mode = 0;
2176 
2177 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2178 		if (hsotg->eps_in[ep])
2179 			kill_all_requests(hsotg, hsotg->eps_in[ep],
2180 								-ESHUTDOWN);
2181 		if (hsotg->eps_out[ep])
2182 			kill_all_requests(hsotg, hsotg->eps_out[ep],
2183 								-ESHUTDOWN);
2184 	}
2185 
2186 	call_gadget(hsotg, disconnect);
2187 }
2188 EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2189 
2190 /**
2191  * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2192  * @hsotg: The device state:
2193  * @periodic: True if this is a periodic FIFO interrupt
2194  */
2195 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2196 {
2197 	struct s3c_hsotg_ep *ep;
2198 	int epno, ret;
2199 
2200 	/* look through for any more data to transmit */
2201 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2202 		ep = index_to_ep(hsotg, epno, 1);
2203 
2204 		if (!ep)
2205 			continue;
2206 
2207 		if (!ep->dir_in)
2208 			continue;
2209 
2210 		if ((periodic && !ep->periodic) ||
2211 		    (!periodic && ep->periodic))
2212 			continue;
2213 
2214 		ret = s3c_hsotg_trytx(hsotg, ep);
2215 		if (ret < 0)
2216 			break;
2217 	}
2218 }
2219 
2220 /* IRQ flags which will trigger a retry around the IRQ loop */
2221 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2222 			GINTSTS_PTXFEMP |  \
2223 			GINTSTS_RXFLVL)
2224 
2225 /**
2226  * s3c_hsotg_corereset - issue softreset to the core
2227  * @hsotg: The device state
2228  *
2229  * Issue a soft reset to the core, and await the core finishing it.
2230  */
2231 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2232 {
2233 	int timeout;
2234 	u32 grstctl;
2235 
2236 	dev_dbg(hsotg->dev, "resetting core\n");
2237 
2238 	/* issue soft reset */
2239 	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2240 
2241 	timeout = 10000;
2242 	do {
2243 		grstctl = readl(hsotg->regs + GRSTCTL);
2244 	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2245 
2246 	if (grstctl & GRSTCTL_CSFTRST) {
2247 		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2248 		return -EINVAL;
2249 	}
2250 
2251 	timeout = 10000;
2252 
2253 	while (1) {
2254 		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2255 
2256 		if (timeout-- < 0) {
2257 			dev_info(hsotg->dev,
2258 				 "%s: reset failed, GRSTCTL=%08x\n",
2259 				 __func__, grstctl);
2260 			return -ETIMEDOUT;
2261 		}
2262 
2263 		if (!(grstctl & GRSTCTL_AHBIDLE))
2264 			continue;
2265 
2266 		break;		/* reset done */
2267 	}
2268 
2269 	dev_dbg(hsotg->dev, "reset successful\n");
2270 	return 0;
2271 }
2272 
2273 /**
2274  * s3c_hsotg_core_init - issue softreset to the core
2275  * @hsotg: The device state
2276  *
2277  * Issue a soft reset to the core, and await the core finishing it.
2278  */
2279 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2280 						bool is_usb_reset)
2281 {
2282 	u32 val;
2283 
2284 	if (!is_usb_reset)
2285 		s3c_hsotg_corereset(hsotg);
2286 
2287 	/*
2288 	 * we must now enable ep0 ready for host detection and then
2289 	 * set configuration.
2290 	 */
2291 
2292 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2293 	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2294 	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2295 	       (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2296 
2297 	s3c_hsotg_init_fifo(hsotg);
2298 
2299 	if (!is_usb_reset)
2300 		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2301 
2302 	writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2303 
2304 	/* Clear any pending OTG interrupts */
2305 	writel(0xffffffff, hsotg->regs + GOTGINT);
2306 
2307 	/* Clear any pending interrupts */
2308 	writel(0xffffffff, hsotg->regs + GINTSTS);
2309 
2310 	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2311 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2312 		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2313 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2314 		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2315 		hsotg->regs + GINTMSK);
2316 
2317 	if (using_dma(hsotg))
2318 		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2319 		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2320 		       hsotg->regs + GAHBCFG);
2321 	else
2322 		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2323 						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2324 		       GAHBCFG_GLBL_INTR_EN,
2325 		       hsotg->regs + GAHBCFG);
2326 
2327 	/*
2328 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2329 	 * when we have no data to transfer. Otherwise we get being flooded by
2330 	 * interrupts.
2331 	 */
2332 
2333 	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2334 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2335 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2336 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2337 		DIEPMSK_INTKNEPMISMSK,
2338 		hsotg->regs + DIEPMSK);
2339 
2340 	/*
2341 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2342 	 * DMA mode we may need this.
2343 	 */
2344 	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2345 				    DIEPMSK_TIMEOUTMSK) : 0) |
2346 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2347 		DOEPMSK_SETUPMSK,
2348 		hsotg->regs + DOEPMSK);
2349 
2350 	writel(0, hsotg->regs + DAINTMSK);
2351 
2352 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2353 		readl(hsotg->regs + DIEPCTL0),
2354 		readl(hsotg->regs + DOEPCTL0));
2355 
2356 	/* enable in and out endpoint interrupts */
2357 	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2358 
2359 	/*
2360 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2361 	 * the data. In DMA mode, we get events from the FIFO but also
2362 	 * things we cannot process, so do not use it.
2363 	 */
2364 	if (!using_dma(hsotg))
2365 		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2366 
2367 	/* Enable interrupts for EP0 in and out */
2368 	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2369 	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2370 
2371 	if (!is_usb_reset) {
2372 		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2373 		udelay(10);  /* see openiboot */
2374 		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2375 	}
2376 
2377 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2378 
2379 	/*
2380 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2381 	 * writing to the EPCTL register..
2382 	 */
2383 
2384 	/* set to read 1 8byte packet */
2385 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2386 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2387 
2388 	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2389 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2390 	       DXEPCTL_USBACTEP,
2391 	       hsotg->regs + DOEPCTL0);
2392 
2393 	/* enable, but don't activate EP0in */
2394 	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2395 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2396 
2397 	s3c_hsotg_enqueue_setup(hsotg);
2398 
2399 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2400 		readl(hsotg->regs + DIEPCTL0),
2401 		readl(hsotg->regs + DOEPCTL0));
2402 
2403 	/* clear global NAKs */
2404 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2405 	if (!is_usb_reset)
2406 		val |= DCTL_SFTDISCON;
2407 	__orr32(hsotg->regs + DCTL, val);
2408 
2409 	/* must be at-least 3ms to allow bus to see disconnect */
2410 	mdelay(3);
2411 
2412 	hsotg->last_rst = jiffies;
2413 }
2414 
2415 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2416 {
2417 	/* set the soft-disconnect bit */
2418 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2419 }
2420 
2421 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2422 {
2423 	/* remove the soft-disconnect and let's go */
2424 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2425 }
2426 
2427 /**
2428  * s3c_hsotg_irq - handle device interrupt
2429  * @irq: The IRQ number triggered
2430  * @pw: The pw value when registered the handler.
2431  */
2432 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2433 {
2434 	struct dwc2_hsotg *hsotg = pw;
2435 	int retry_count = 8;
2436 	u32 gintsts;
2437 	u32 gintmsk;
2438 
2439 	spin_lock(&hsotg->lock);
2440 irq_retry:
2441 	gintsts = readl(hsotg->regs + GINTSTS);
2442 	gintmsk = readl(hsotg->regs + GINTMSK);
2443 
2444 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2445 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2446 
2447 	gintsts &= gintmsk;
2448 
2449 	if (gintsts & GINTSTS_ENUMDONE) {
2450 		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2451 
2452 		s3c_hsotg_irq_enumdone(hsotg);
2453 	}
2454 
2455 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2456 		u32 daint = readl(hsotg->regs + DAINT);
2457 		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2458 		u32 daint_out, daint_in;
2459 		int ep;
2460 
2461 		daint &= daintmsk;
2462 		daint_out = daint >> DAINT_OUTEP_SHIFT;
2463 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2464 
2465 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2466 
2467 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2468 						ep++, daint_out >>= 1) {
2469 			if (daint_out & 1)
2470 				s3c_hsotg_epint(hsotg, ep, 0);
2471 		}
2472 
2473 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2474 						ep++, daint_in >>= 1) {
2475 			if (daint_in & 1)
2476 				s3c_hsotg_epint(hsotg, ep, 1);
2477 		}
2478 	}
2479 
2480 	if (gintsts & GINTSTS_USBRST) {
2481 
2482 		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2483 
2484 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2485 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2486 			readl(hsotg->regs + GNPTXSTS));
2487 
2488 		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2489 
2490 		/* Report disconnection if it is not already done. */
2491 		s3c_hsotg_disconnect(hsotg);
2492 
2493 		if (usb_status & GOTGCTL_BSESVLD) {
2494 			if (time_after(jiffies, hsotg->last_rst +
2495 				       msecs_to_jiffies(200))) {
2496 
2497 				kill_all_requests(hsotg, hsotg->eps_out[0],
2498 							  -ECONNRESET);
2499 
2500 				s3c_hsotg_core_init_disconnected(hsotg, true);
2501 			}
2502 		}
2503 	}
2504 
2505 	/* check both FIFOs */
2506 
2507 	if (gintsts & GINTSTS_NPTXFEMP) {
2508 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2509 
2510 		/*
2511 		 * Disable the interrupt to stop it happening again
2512 		 * unless one of these endpoint routines decides that
2513 		 * it needs re-enabling
2514 		 */
2515 
2516 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2517 		s3c_hsotg_irq_fifoempty(hsotg, false);
2518 	}
2519 
2520 	if (gintsts & GINTSTS_PTXFEMP) {
2521 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2522 
2523 		/* See note in GINTSTS_NPTxFEmp */
2524 
2525 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2526 		s3c_hsotg_irq_fifoempty(hsotg, true);
2527 	}
2528 
2529 	if (gintsts & GINTSTS_RXFLVL) {
2530 		/*
2531 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2532 		 * we need to retry s3c_hsotg_handle_rx if this is still
2533 		 * set.
2534 		 */
2535 
2536 		s3c_hsotg_handle_rx(hsotg);
2537 	}
2538 
2539 	if (gintsts & GINTSTS_ERLYSUSP) {
2540 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2541 		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2542 	}
2543 
2544 	/*
2545 	 * these next two seem to crop-up occasionally causing the core
2546 	 * to shutdown the USB transfer, so try clearing them and logging
2547 	 * the occurrence.
2548 	 */
2549 
2550 	if (gintsts & GINTSTS_GOUTNAKEFF) {
2551 		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2552 
2553 		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2554 
2555 		s3c_hsotg_dump(hsotg);
2556 	}
2557 
2558 	if (gintsts & GINTSTS_GINNAKEFF) {
2559 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2560 
2561 		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2562 
2563 		s3c_hsotg_dump(hsotg);
2564 	}
2565 
2566 	/*
2567 	 * if we've had fifo events, we should try and go around the
2568 	 * loop again to see if there's any point in returning yet.
2569 	 */
2570 
2571 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2572 			goto irq_retry;
2573 
2574 	spin_unlock(&hsotg->lock);
2575 
2576 	return IRQ_HANDLED;
2577 }
2578 
2579 /**
2580  * s3c_hsotg_ep_enable - enable the given endpoint
2581  * @ep: The USB endpint to configure
2582  * @desc: The USB endpoint descriptor to configure with.
2583  *
2584  * This is called from the USB gadget code's usb_ep_enable().
2585  */
2586 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2587 			       const struct usb_endpoint_descriptor *desc)
2588 {
2589 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2590 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2591 	unsigned long flags;
2592 	unsigned int index = hs_ep->index;
2593 	u32 epctrl_reg;
2594 	u32 epctrl;
2595 	u32 mps;
2596 	unsigned int dir_in;
2597 	unsigned int i, val, size;
2598 	int ret = 0;
2599 
2600 	dev_dbg(hsotg->dev,
2601 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2602 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2603 		desc->wMaxPacketSize, desc->bInterval);
2604 
2605 	/* not to be called for EP0 */
2606 	WARN_ON(index == 0);
2607 
2608 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2609 	if (dir_in != hs_ep->dir_in) {
2610 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2611 		return -EINVAL;
2612 	}
2613 
2614 	mps = usb_endpoint_maxp(desc);
2615 
2616 	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2617 
2618 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2619 	epctrl = readl(hsotg->regs + epctrl_reg);
2620 
2621 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2622 		__func__, epctrl, epctrl_reg);
2623 
2624 	spin_lock_irqsave(&hsotg->lock, flags);
2625 
2626 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2627 	epctrl |= DXEPCTL_MPS(mps);
2628 
2629 	/*
2630 	 * mark the endpoint as active, otherwise the core may ignore
2631 	 * transactions entirely for this endpoint
2632 	 */
2633 	epctrl |= DXEPCTL_USBACTEP;
2634 
2635 	/*
2636 	 * set the NAK status on the endpoint, otherwise we might try and
2637 	 * do something with data that we've yet got a request to process
2638 	 * since the RXFIFO will take data for an endpoint even if the
2639 	 * size register hasn't been set.
2640 	 */
2641 
2642 	epctrl |= DXEPCTL_SNAK;
2643 
2644 	/* update the endpoint state */
2645 	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2646 
2647 	/* default, set to non-periodic */
2648 	hs_ep->isochronous = 0;
2649 	hs_ep->periodic = 0;
2650 	hs_ep->halted = 0;
2651 	hs_ep->interval = desc->bInterval;
2652 
2653 	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2654 		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2655 
2656 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2657 	case USB_ENDPOINT_XFER_ISOC:
2658 		epctrl |= DXEPCTL_EPTYPE_ISO;
2659 		epctrl |= DXEPCTL_SETEVENFR;
2660 		hs_ep->isochronous = 1;
2661 		if (dir_in)
2662 			hs_ep->periodic = 1;
2663 		break;
2664 
2665 	case USB_ENDPOINT_XFER_BULK:
2666 		epctrl |= DXEPCTL_EPTYPE_BULK;
2667 		break;
2668 
2669 	case USB_ENDPOINT_XFER_INT:
2670 		if (dir_in)
2671 			hs_ep->periodic = 1;
2672 
2673 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2674 		break;
2675 
2676 	case USB_ENDPOINT_XFER_CONTROL:
2677 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2678 		break;
2679 	}
2680 
2681 	/* If fifo is already allocated for this ep */
2682 	if (hs_ep->fifo_index) {
2683 		size =  hs_ep->ep.maxpacket * hs_ep->mc;
2684 		/* If bigger fifo is required deallocate current one */
2685 		if (size > hs_ep->fifo_size) {
2686 			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2687 			hs_ep->fifo_index = 0;
2688 			hs_ep->fifo_size = 0;
2689 		}
2690 	}
2691 
2692 	/*
2693 	 * if the hardware has dedicated fifos, we must give each IN EP
2694 	 * a unique tx-fifo even if it is non-periodic.
2695 	 */
2696 	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2697 		u32 fifo_index = 0;
2698 		u32 fifo_size = UINT_MAX;
2699 		size = hs_ep->ep.maxpacket*hs_ep->mc;
2700 		for (i = 1; i < hsotg->num_of_eps; ++i) {
2701 			if (hsotg->fifo_map & (1<<i))
2702 				continue;
2703 			val = readl(hsotg->regs + DPTXFSIZN(i));
2704 			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2705 			if (val < size)
2706 				continue;
2707 			/* Search for smallest acceptable fifo */
2708 			if (val < fifo_size) {
2709 				fifo_size = val;
2710 				fifo_index = i;
2711 			}
2712 		}
2713 		if (!fifo_index) {
2714 			dev_err(hsotg->dev,
2715 				"%s: No suitable fifo found\n", __func__);
2716 			ret = -ENOMEM;
2717 			goto error;
2718 		}
2719 		hsotg->fifo_map |= 1 << fifo_index;
2720 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
2721 		hs_ep->fifo_index = fifo_index;
2722 		hs_ep->fifo_size = fifo_size;
2723 	}
2724 
2725 	/* for non control endpoints, set PID to D0 */
2726 	if (index)
2727 		epctrl |= DXEPCTL_SETD0PID;
2728 
2729 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2730 		__func__, epctrl);
2731 
2732 	writel(epctrl, hsotg->regs + epctrl_reg);
2733 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2734 		__func__, readl(hsotg->regs + epctrl_reg));
2735 
2736 	/* enable the endpoint interrupt */
2737 	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2738 
2739 error:
2740 	spin_unlock_irqrestore(&hsotg->lock, flags);
2741 	return ret;
2742 }
2743 
2744 /**
2745  * s3c_hsotg_ep_disable - disable given endpoint
2746  * @ep: The endpoint to disable.
2747  */
2748 static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force)
2749 {
2750 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2751 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2752 	int dir_in = hs_ep->dir_in;
2753 	int index = hs_ep->index;
2754 	unsigned long flags;
2755 	u32 epctrl_reg;
2756 	u32 ctrl;
2757 
2758 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2759 
2760 	if (ep == &hsotg->eps_out[0]->ep) {
2761 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2762 		return -EINVAL;
2763 	}
2764 
2765 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2766 
2767 	spin_lock_irqsave(&hsotg->lock, flags);
2768 
2769 	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2770 	hs_ep->fifo_index = 0;
2771 	hs_ep->fifo_size = 0;
2772 
2773 	ctrl = readl(hsotg->regs + epctrl_reg);
2774 	ctrl &= ~DXEPCTL_EPENA;
2775 	ctrl &= ~DXEPCTL_USBACTEP;
2776 	ctrl |= DXEPCTL_SNAK;
2777 
2778 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2779 	writel(ctrl, hsotg->regs + epctrl_reg);
2780 
2781 	/* disable endpoint interrupts */
2782 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2783 
2784 	/* terminate all requests with shutdown */
2785 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2786 
2787 	spin_unlock_irqrestore(&hsotg->lock, flags);
2788 	return 0;
2789 }
2790 
2791 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2792 {
2793 	return s3c_hsotg_ep_disable_force(ep, false);
2794 }
2795 /**
2796  * on_list - check request is on the given endpoint
2797  * @ep: The endpoint to check.
2798  * @test: The request to test if it is on the endpoint.
2799  */
2800 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2801 {
2802 	struct s3c_hsotg_req *req, *treq;
2803 
2804 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2805 		if (req == test)
2806 			return true;
2807 	}
2808 
2809 	return false;
2810 }
2811 
2812 /**
2813  * s3c_hsotg_ep_dequeue - dequeue given endpoint
2814  * @ep: The endpoint to dequeue.
2815  * @req: The request to be removed from a queue.
2816  */
2817 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2818 {
2819 	struct s3c_hsotg_req *hs_req = our_req(req);
2820 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2821 	struct dwc2_hsotg *hs = hs_ep->parent;
2822 	unsigned long flags;
2823 
2824 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2825 
2826 	spin_lock_irqsave(&hs->lock, flags);
2827 
2828 	if (!on_list(hs_ep, hs_req)) {
2829 		spin_unlock_irqrestore(&hs->lock, flags);
2830 		return -EINVAL;
2831 	}
2832 
2833 	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2834 	spin_unlock_irqrestore(&hs->lock, flags);
2835 
2836 	return 0;
2837 }
2838 
2839 /**
2840  * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2841  * @ep: The endpoint to set halt.
2842  * @value: Set or unset the halt.
2843  */
2844 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2845 {
2846 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2847 	struct dwc2_hsotg *hs = hs_ep->parent;
2848 	int index = hs_ep->index;
2849 	u32 epreg;
2850 	u32 epctl;
2851 	u32 xfertype;
2852 
2853 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2854 
2855 	if (index == 0) {
2856 		if (value)
2857 			s3c_hsotg_stall_ep0(hs);
2858 		else
2859 			dev_warn(hs->dev,
2860 				 "%s: can't clear halt on ep0\n", __func__);
2861 		return 0;
2862 	}
2863 
2864 	if (hs_ep->dir_in) {
2865 		epreg = DIEPCTL(index);
2866 		epctl = readl(hs->regs + epreg);
2867 
2868 		if (value) {
2869 			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2870 			if (epctl & DXEPCTL_EPENA)
2871 				epctl |= DXEPCTL_EPDIS;
2872 		} else {
2873 			epctl &= ~DXEPCTL_STALL;
2874 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2875 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2876 				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2877 					epctl |= DXEPCTL_SETD0PID;
2878 		}
2879 		writel(epctl, hs->regs + epreg);
2880 	} else {
2881 
2882 		epreg = DOEPCTL(index);
2883 		epctl = readl(hs->regs + epreg);
2884 
2885 		if (value)
2886 			epctl |= DXEPCTL_STALL;
2887 		else {
2888 			epctl &= ~DXEPCTL_STALL;
2889 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2890 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2891 				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2892 					epctl |= DXEPCTL_SETD0PID;
2893 		}
2894 		writel(epctl, hs->regs + epreg);
2895 	}
2896 
2897 	hs_ep->halted = value;
2898 
2899 	return 0;
2900 }
2901 
2902 /**
2903  * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2904  * @ep: The endpoint to set halt.
2905  * @value: Set or unset the halt.
2906  */
2907 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2908 {
2909 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2910 	struct dwc2_hsotg *hs = hs_ep->parent;
2911 	unsigned long flags = 0;
2912 	int ret = 0;
2913 
2914 	spin_lock_irqsave(&hs->lock, flags);
2915 	ret = s3c_hsotg_ep_sethalt(ep, value);
2916 	spin_unlock_irqrestore(&hs->lock, flags);
2917 
2918 	return ret;
2919 }
2920 
2921 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2922 	.enable		= s3c_hsotg_ep_enable,
2923 	.disable	= s3c_hsotg_ep_disable,
2924 	.alloc_request	= s3c_hsotg_ep_alloc_request,
2925 	.free_request	= s3c_hsotg_ep_free_request,
2926 	.queue		= s3c_hsotg_ep_queue_lock,
2927 	.dequeue	= s3c_hsotg_ep_dequeue,
2928 	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2929 	/* note, don't believe we have any call for the fifo routines */
2930 };
2931 
2932 /**
2933  * s3c_hsotg_phy_enable - enable platform phy dev
2934  * @hsotg: The driver state
2935  *
2936  * A wrapper for platform code responsible for controlling
2937  * low-level USB code
2938  */
2939 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2940 {
2941 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2942 
2943 	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2944 
2945 	if (hsotg->uphy)
2946 		usb_phy_init(hsotg->uphy);
2947 	else if (hsotg->plat && hsotg->plat->phy_init)
2948 		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2949 	else {
2950 		phy_init(hsotg->phy);
2951 		phy_power_on(hsotg->phy);
2952 	}
2953 }
2954 
2955 /**
2956  * s3c_hsotg_phy_disable - disable platform phy dev
2957  * @hsotg: The driver state
2958  *
2959  * A wrapper for platform code responsible for controlling
2960  * low-level USB code
2961  */
2962 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2963 {
2964 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2965 
2966 	if (hsotg->uphy)
2967 		usb_phy_shutdown(hsotg->uphy);
2968 	else if (hsotg->plat && hsotg->plat->phy_exit)
2969 		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2970 	else {
2971 		phy_power_off(hsotg->phy);
2972 		phy_exit(hsotg->phy);
2973 	}
2974 }
2975 
2976 /**
2977  * s3c_hsotg_init - initalize the usb core
2978  * @hsotg: The driver state
2979  */
2980 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2981 {
2982 	u32 trdtim;
2983 	/* unmask subset of endpoint interrupts */
2984 
2985 	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2986 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2987 		hsotg->regs + DIEPMSK);
2988 
2989 	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2990 		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2991 		hsotg->regs + DOEPMSK);
2992 
2993 	writel(0, hsotg->regs + DAINTMSK);
2994 
2995 	/* Be in disconnected state until gadget is registered */
2996 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2997 
2998 	/* setup fifos */
2999 
3000 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3001 		readl(hsotg->regs + GRXFSIZ),
3002 		readl(hsotg->regs + GNPTXFSIZ));
3003 
3004 	s3c_hsotg_init_fifo(hsotg);
3005 
3006 	/* set the PLL on, remove the HNP/SRP and set the PHY */
3007 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3008 	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3009 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3010 		hsotg->regs + GUSBCFG);
3011 
3012 	if (using_dma(hsotg))
3013 		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3014 }
3015 
3016 /**
3017  * s3c_hsotg_udc_start - prepare the udc for work
3018  * @gadget: The usb gadget state
3019  * @driver: The usb gadget driver
3020  *
3021  * Perform initialization to prepare udc device and driver
3022  * to work.
3023  */
3024 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
3025 			   struct usb_gadget_driver *driver)
3026 {
3027 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3028 	unsigned long flags;
3029 	int ret;
3030 
3031 	if (!hsotg) {
3032 		pr_err("%s: called with no device\n", __func__);
3033 		return -ENODEV;
3034 	}
3035 
3036 	if (!driver) {
3037 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3038 		return -EINVAL;
3039 	}
3040 
3041 	if (driver->max_speed < USB_SPEED_FULL)
3042 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3043 
3044 	if (!driver->setup) {
3045 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3046 		return -EINVAL;
3047 	}
3048 
3049 	mutex_lock(&hsotg->init_mutex);
3050 	WARN_ON(hsotg->driver);
3051 
3052 	driver->driver.bus = NULL;
3053 	hsotg->driver = driver;
3054 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3055 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3056 
3057 	clk_enable(hsotg->clk);
3058 
3059 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3060 				    hsotg->supplies);
3061 	if (ret) {
3062 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3063 		goto err;
3064 	}
3065 
3066 	s3c_hsotg_phy_enable(hsotg);
3067 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3068 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3069 
3070 	spin_lock_irqsave(&hsotg->lock, flags);
3071 	s3c_hsotg_init(hsotg);
3072 	s3c_hsotg_core_init_disconnected(hsotg, false);
3073 	hsotg->enabled = 0;
3074 	spin_unlock_irqrestore(&hsotg->lock, flags);
3075 
3076 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3077 
3078 	mutex_unlock(&hsotg->init_mutex);
3079 
3080 	return 0;
3081 
3082 err:
3083 	mutex_unlock(&hsotg->init_mutex);
3084 	hsotg->driver = NULL;
3085 	return ret;
3086 }
3087 
3088 /**
3089  * s3c_hsotg_udc_stop - stop the udc
3090  * @gadget: The usb gadget state
3091  * @driver: The usb gadget driver
3092  *
3093  * Stop udc hw block and stay tunned for future transmissions
3094  */
3095 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
3096 {
3097 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3098 	unsigned long flags = 0;
3099 	int ep;
3100 
3101 	if (!hsotg)
3102 		return -ENODEV;
3103 
3104 	mutex_lock(&hsotg->init_mutex);
3105 
3106 	/* all endpoints should be shutdown */
3107 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3108 		if (hsotg->eps_in[ep])
3109 			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3110 		if (hsotg->eps_out[ep])
3111 			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3112 	}
3113 
3114 	spin_lock_irqsave(&hsotg->lock, flags);
3115 
3116 	hsotg->driver = NULL;
3117 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3118 	hsotg->enabled = 0;
3119 
3120 	spin_unlock_irqrestore(&hsotg->lock, flags);
3121 
3122 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3123 		otg_set_peripheral(hsotg->uphy->otg, NULL);
3124 	s3c_hsotg_phy_disable(hsotg);
3125 
3126 	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3127 
3128 	clk_disable(hsotg->clk);
3129 
3130 	mutex_unlock(&hsotg->init_mutex);
3131 
3132 	return 0;
3133 }
3134 
3135 /**
3136  * s3c_hsotg_gadget_getframe - read the frame number
3137  * @gadget: The usb gadget state
3138  *
3139  * Read the {micro} frame number
3140  */
3141 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3142 {
3143 	return s3c_hsotg_read_frameno(to_hsotg(gadget));
3144 }
3145 
3146 /**
3147  * s3c_hsotg_pullup - connect/disconnect the USB PHY
3148  * @gadget: The usb gadget state
3149  * @is_on: Current state of the USB PHY
3150  *
3151  * Connect/Disconnect the USB PHY pullup
3152  */
3153 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3154 {
3155 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3156 	unsigned long flags = 0;
3157 
3158 	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3159 
3160 	mutex_lock(&hsotg->init_mutex);
3161 	spin_lock_irqsave(&hsotg->lock, flags);
3162 	if (is_on) {
3163 		clk_enable(hsotg->clk);
3164 		hsotg->enabled = 1;
3165 		s3c_hsotg_core_init_disconnected(hsotg, false);
3166 		s3c_hsotg_core_connect(hsotg);
3167 	} else {
3168 		s3c_hsotg_core_disconnect(hsotg);
3169 		s3c_hsotg_disconnect(hsotg);
3170 		hsotg->enabled = 0;
3171 		clk_disable(hsotg->clk);
3172 	}
3173 
3174 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3175 	spin_unlock_irqrestore(&hsotg->lock, flags);
3176 	mutex_unlock(&hsotg->init_mutex);
3177 
3178 	return 0;
3179 }
3180 
3181 static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3182 {
3183 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3184 	unsigned long flags;
3185 
3186 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3187 	spin_lock_irqsave(&hsotg->lock, flags);
3188 
3189 	if (is_active) {
3190 		/* Kill any ep0 requests as controller will be reinitialized */
3191 		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3192 		s3c_hsotg_core_init_disconnected(hsotg, false);
3193 		if (hsotg->enabled)
3194 			s3c_hsotg_core_connect(hsotg);
3195 	} else {
3196 		s3c_hsotg_core_disconnect(hsotg);
3197 		s3c_hsotg_disconnect(hsotg);
3198 	}
3199 
3200 	spin_unlock_irqrestore(&hsotg->lock, flags);
3201 	return 0;
3202 }
3203 
3204 /**
3205  * s3c_hsotg_vbus_draw - report bMaxPower field
3206  * @gadget: The usb gadget state
3207  * @mA: Amount of current
3208  *
3209  * Report how much power the device may consume to the phy.
3210  */
3211 static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3212 {
3213 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3214 
3215 	if (IS_ERR_OR_NULL(hsotg->uphy))
3216 		return -ENOTSUPP;
3217 	return usb_phy_set_power(hsotg->uphy, mA);
3218 }
3219 
3220 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3221 	.get_frame	= s3c_hsotg_gadget_getframe,
3222 	.udc_start		= s3c_hsotg_udc_start,
3223 	.udc_stop		= s3c_hsotg_udc_stop,
3224 	.pullup                 = s3c_hsotg_pullup,
3225 	.vbus_session		= s3c_hsotg_vbus_session,
3226 	.vbus_draw		= s3c_hsotg_vbus_draw,
3227 };
3228 
3229 /**
3230  * s3c_hsotg_initep - initialise a single endpoint
3231  * @hsotg: The device state.
3232  * @hs_ep: The endpoint to be initialised.
3233  * @epnum: The endpoint number
3234  *
3235  * Initialise the given endpoint (as part of the probe and device state
3236  * creation) to give to the gadget driver. Setup the endpoint name, any
3237  * direction information and other state that may be required.
3238  */
3239 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3240 				       struct s3c_hsotg_ep *hs_ep,
3241 				       int epnum,
3242 				       bool dir_in)
3243 {
3244 	char *dir;
3245 
3246 	if (epnum == 0)
3247 		dir = "";
3248 	else if (dir_in)
3249 		dir = "in";
3250 	else
3251 		dir = "out";
3252 
3253 	hs_ep->dir_in = dir_in;
3254 	hs_ep->index = epnum;
3255 
3256 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3257 
3258 	INIT_LIST_HEAD(&hs_ep->queue);
3259 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3260 
3261 	/* add to the list of endpoints known by the gadget driver */
3262 	if (epnum)
3263 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3264 
3265 	hs_ep->parent = hsotg;
3266 	hs_ep->ep.name = hs_ep->name;
3267 	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3268 	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3269 
3270 	/*
3271 	 * if we're using dma, we need to set the next-endpoint pointer
3272 	 * to be something valid.
3273 	 */
3274 
3275 	if (using_dma(hsotg)) {
3276 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3277 		if (dir_in)
3278 			writel(next, hsotg->regs + DIEPCTL(epnum));
3279 		else
3280 			writel(next, hsotg->regs + DOEPCTL(epnum));
3281 	}
3282 }
3283 
3284 /**
3285  * s3c_hsotg_hw_cfg - read HW configuration registers
3286  * @param: The device state
3287  *
3288  * Read the USB core HW configuration registers
3289  */
3290 static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3291 {
3292 	u32 cfg;
3293 	u32 ep_type;
3294 	u32 i;
3295 
3296 	/* check hardware configuration */
3297 
3298 	cfg = readl(hsotg->regs + GHWCFG2);
3299 	hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3300 	/* Add ep0 */
3301 	hsotg->num_of_eps++;
3302 
3303 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
3304 								GFP_KERNEL);
3305 	if (!hsotg->eps_in[0])
3306 		return -ENOMEM;
3307 	/* Same s3c_hsotg_ep is used in both directions for ep0 */
3308 	hsotg->eps_out[0] = hsotg->eps_in[0];
3309 
3310 	cfg = readl(hsotg->regs + GHWCFG1);
3311 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3312 		ep_type = cfg & 3;
3313 		/* Direction in or both */
3314 		if (!(ep_type & 2)) {
3315 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3316 				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
3317 			if (!hsotg->eps_in[i])
3318 				return -ENOMEM;
3319 		}
3320 		/* Direction out or both */
3321 		if (!(ep_type & 1)) {
3322 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3323 				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
3324 			if (!hsotg->eps_out[i])
3325 				return -ENOMEM;
3326 		}
3327 	}
3328 
3329 	cfg = readl(hsotg->regs + GHWCFG3);
3330 	hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3331 
3332 	cfg = readl(hsotg->regs + GHWCFG4);
3333 	hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3334 
3335 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3336 		 hsotg->num_of_eps,
3337 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3338 		 hsotg->fifo_mem);
3339 	return 0;
3340 }
3341 
3342 /**
3343  * s3c_hsotg_dump - dump state of the udc
3344  * @param: The device state
3345  */
3346 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3347 {
3348 #ifdef DEBUG
3349 	struct device *dev = hsotg->dev;
3350 	void __iomem *regs = hsotg->regs;
3351 	u32 val;
3352 	int idx;
3353 
3354 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3355 		 readl(regs + DCFG), readl(regs + DCTL),
3356 		 readl(regs + DIEPMSK));
3357 
3358 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3359 		 readl(regs + GAHBCFG), readl(regs + GHWCFG1));
3360 
3361 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3362 		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3363 
3364 	/* show periodic fifo settings */
3365 
3366 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3367 		val = readl(regs + DPTXFSIZN(idx));
3368 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3369 			 val >> FIFOSIZE_DEPTH_SHIFT,
3370 			 val & FIFOSIZE_STARTADDR_MASK);
3371 	}
3372 
3373 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3374 		dev_info(dev,
3375 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3376 			 readl(regs + DIEPCTL(idx)),
3377 			 readl(regs + DIEPTSIZ(idx)),
3378 			 readl(regs + DIEPDMA(idx)));
3379 
3380 		val = readl(regs + DOEPCTL(idx));
3381 		dev_info(dev,
3382 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3383 			 idx, readl(regs + DOEPCTL(idx)),
3384 			 readl(regs + DOEPTSIZ(idx)),
3385 			 readl(regs + DOEPDMA(idx)));
3386 
3387 	}
3388 
3389 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3390 		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3391 #endif
3392 }
3393 
3394 /**
3395  * testmode_write - debugfs: change usb test mode
3396  * @seq: The seq file to write to.
3397  * @v: Unused parameter.
3398  *
3399  * This debugfs entry modify the current usb test mode.
3400  */
3401 static ssize_t testmode_write(struct file *file, const char __user *ubuf, size_t
3402 		count, loff_t *ppos)
3403 {
3404 	struct seq_file		*s = file->private_data;
3405 	struct dwc2_hsotg	*hsotg = s->private;
3406 	unsigned long		flags;
3407 	u32			testmode = 0;
3408 	char			buf[32];
3409 
3410 	if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
3411 		return -EFAULT;
3412 
3413 	if (!strncmp(buf, "test_j", 6))
3414 		testmode = TEST_J;
3415 	else if (!strncmp(buf, "test_k", 6))
3416 		testmode = TEST_K;
3417 	else if (!strncmp(buf, "test_se0_nak", 12))
3418 		testmode = TEST_SE0_NAK;
3419 	else if (!strncmp(buf, "test_packet", 11))
3420 		testmode = TEST_PACKET;
3421 	else if (!strncmp(buf, "test_force_enable", 17))
3422 		testmode = TEST_FORCE_EN;
3423 	else
3424 		testmode = 0;
3425 
3426 	spin_lock_irqsave(&hsotg->lock, flags);
3427 	s3c_hsotg_set_test_mode(hsotg, testmode);
3428 	spin_unlock_irqrestore(&hsotg->lock, flags);
3429 	return count;
3430 }
3431 
3432 /**
3433  * testmode_show - debugfs: show usb test mode state
3434  * @seq: The seq file to write to.
3435  * @v: Unused parameter.
3436  *
3437  * This debugfs entry shows which usb test mode is currently enabled.
3438  */
3439 static int testmode_show(struct seq_file *s, void *unused)
3440 {
3441 	struct dwc2_hsotg *hsotg = s->private;
3442 	unsigned long flags;
3443 	int dctl;
3444 
3445 	spin_lock_irqsave(&hsotg->lock, flags);
3446 	dctl = readl(hsotg->regs + DCTL);
3447 	dctl &= DCTL_TSTCTL_MASK;
3448 	dctl >>= DCTL_TSTCTL_SHIFT;
3449 	spin_unlock_irqrestore(&hsotg->lock, flags);
3450 
3451 	switch (dctl) {
3452 	case 0:
3453 		seq_puts(s, "no test\n");
3454 		break;
3455 	case TEST_J:
3456 		seq_puts(s, "test_j\n");
3457 		break;
3458 	case TEST_K:
3459 		seq_puts(s, "test_k\n");
3460 		break;
3461 	case TEST_SE0_NAK:
3462 		seq_puts(s, "test_se0_nak\n");
3463 		break;
3464 	case TEST_PACKET:
3465 		seq_puts(s, "test_packet\n");
3466 		break;
3467 	case TEST_FORCE_EN:
3468 		seq_puts(s, "test_force_enable\n");
3469 		break;
3470 	default:
3471 		seq_printf(s, "UNKNOWN %d\n", dctl);
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 static int testmode_open(struct inode *inode, struct file *file)
3478 {
3479 	return single_open(file, testmode_show, inode->i_private);
3480 }
3481 
3482 static const struct file_operations testmode_fops = {
3483 	.owner		= THIS_MODULE,
3484 	.open		= testmode_open,
3485 	.write		= testmode_write,
3486 	.read		= seq_read,
3487 	.llseek		= seq_lseek,
3488 	.release	= single_release,
3489 };
3490 
3491 /**
3492  * state_show - debugfs: show overall driver and device state.
3493  * @seq: The seq file to write to.
3494  * @v: Unused parameter.
3495  *
3496  * This debugfs entry shows the overall state of the hardware and
3497  * some general information about each of the endpoints available
3498  * to the system.
3499  */
3500 static int state_show(struct seq_file *seq, void *v)
3501 {
3502 	struct dwc2_hsotg *hsotg = seq->private;
3503 	void __iomem *regs = hsotg->regs;
3504 	int idx;
3505 
3506 	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3507 		 readl(regs + DCFG),
3508 		 readl(regs + DCTL),
3509 		 readl(regs + DSTS));
3510 
3511 	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3512 		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3513 
3514 	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3515 		   readl(regs + GINTMSK),
3516 		   readl(regs + GINTSTS));
3517 
3518 	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3519 		   readl(regs + DAINTMSK),
3520 		   readl(regs + DAINT));
3521 
3522 	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3523 		   readl(regs + GNPTXSTS),
3524 		   readl(regs + GRXSTSR));
3525 
3526 	seq_puts(seq, "\nEndpoint status:\n");
3527 
3528 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3529 		u32 in, out;
3530 
3531 		in = readl(regs + DIEPCTL(idx));
3532 		out = readl(regs + DOEPCTL(idx));
3533 
3534 		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3535 			   idx, in, out);
3536 
3537 		in = readl(regs + DIEPTSIZ(idx));
3538 		out = readl(regs + DOEPTSIZ(idx));
3539 
3540 		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3541 			   in, out);
3542 
3543 		seq_puts(seq, "\n");
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 static int state_open(struct inode *inode, struct file *file)
3550 {
3551 	return single_open(file, state_show, inode->i_private);
3552 }
3553 
3554 static const struct file_operations state_fops = {
3555 	.owner		= THIS_MODULE,
3556 	.open		= state_open,
3557 	.read		= seq_read,
3558 	.llseek		= seq_lseek,
3559 	.release	= single_release,
3560 };
3561 
3562 /**
3563  * fifo_show - debugfs: show the fifo information
3564  * @seq: The seq_file to write data to.
3565  * @v: Unused parameter.
3566  *
3567  * Show the FIFO information for the overall fifo and all the
3568  * periodic transmission FIFOs.
3569  */
3570 static int fifo_show(struct seq_file *seq, void *v)
3571 {
3572 	struct dwc2_hsotg *hsotg = seq->private;
3573 	void __iomem *regs = hsotg->regs;
3574 	u32 val;
3575 	int idx;
3576 
3577 	seq_puts(seq, "Non-periodic FIFOs:\n");
3578 	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3579 
3580 	val = readl(regs + GNPTXFSIZ);
3581 	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3582 		   val >> FIFOSIZE_DEPTH_SHIFT,
3583 		   val & FIFOSIZE_DEPTH_MASK);
3584 
3585 	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3586 
3587 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3588 		val = readl(regs + DPTXFSIZN(idx));
3589 
3590 		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3591 			   val >> FIFOSIZE_DEPTH_SHIFT,
3592 			   val & FIFOSIZE_STARTADDR_MASK);
3593 	}
3594 
3595 	return 0;
3596 }
3597 
3598 static int fifo_open(struct inode *inode, struct file *file)
3599 {
3600 	return single_open(file, fifo_show, inode->i_private);
3601 }
3602 
3603 static const struct file_operations fifo_fops = {
3604 	.owner		= THIS_MODULE,
3605 	.open		= fifo_open,
3606 	.read		= seq_read,
3607 	.llseek		= seq_lseek,
3608 	.release	= single_release,
3609 };
3610 
3611 
3612 static const char *decode_direction(int is_in)
3613 {
3614 	return is_in ? "in" : "out";
3615 }
3616 
3617 /**
3618  * ep_show - debugfs: show the state of an endpoint.
3619  * @seq: The seq_file to write data to.
3620  * @v: Unused parameter.
3621  *
3622  * This debugfs entry shows the state of the given endpoint (one is
3623  * registered for each available).
3624  */
3625 static int ep_show(struct seq_file *seq, void *v)
3626 {
3627 	struct s3c_hsotg_ep *ep = seq->private;
3628 	struct dwc2_hsotg *hsotg = ep->parent;
3629 	struct s3c_hsotg_req *req;
3630 	void __iomem *regs = hsotg->regs;
3631 	int index = ep->index;
3632 	int show_limit = 15;
3633 	unsigned long flags;
3634 
3635 	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3636 		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3637 
3638 	/* first show the register state */
3639 
3640 	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3641 		   readl(regs + DIEPCTL(index)),
3642 		   readl(regs + DOEPCTL(index)));
3643 
3644 	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3645 		   readl(regs + DIEPDMA(index)),
3646 		   readl(regs + DOEPDMA(index)));
3647 
3648 	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3649 		   readl(regs + DIEPINT(index)),
3650 		   readl(regs + DOEPINT(index)));
3651 
3652 	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3653 		   readl(regs + DIEPTSIZ(index)),
3654 		   readl(regs + DOEPTSIZ(index)));
3655 
3656 	seq_puts(seq, "\n");
3657 	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3658 	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3659 
3660 	seq_printf(seq, "request list (%p,%p):\n",
3661 		   ep->queue.next, ep->queue.prev);
3662 
3663 	spin_lock_irqsave(&hsotg->lock, flags);
3664 
3665 	list_for_each_entry(req, &ep->queue, queue) {
3666 		if (--show_limit < 0) {
3667 			seq_puts(seq, "not showing more requests...\n");
3668 			break;
3669 		}
3670 
3671 		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3672 			   req == ep->req ? '*' : ' ',
3673 			   req, req->req.length, req->req.buf);
3674 		seq_printf(seq, "%d done, res %d\n",
3675 			   req->req.actual, req->req.status);
3676 	}
3677 
3678 	spin_unlock_irqrestore(&hsotg->lock, flags);
3679 
3680 	return 0;
3681 }
3682 
3683 static int ep_open(struct inode *inode, struct file *file)
3684 {
3685 	return single_open(file, ep_show, inode->i_private);
3686 }
3687 
3688 static const struct file_operations ep_fops = {
3689 	.owner		= THIS_MODULE,
3690 	.open		= ep_open,
3691 	.read		= seq_read,
3692 	.llseek		= seq_lseek,
3693 	.release	= single_release,
3694 };
3695 
3696 /**
3697  * s3c_hsotg_create_debug - create debugfs directory and files
3698  * @hsotg: The driver state
3699  *
3700  * Create the debugfs files to allow the user to get information
3701  * about the state of the system. The directory name is created
3702  * with the same name as the device itself, in case we end up
3703  * with multiple blocks in future systems.
3704  */
3705 static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3706 {
3707 	struct dentry *root;
3708 	unsigned epidx;
3709 
3710 	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3711 	hsotg->debug_root = root;
3712 	if (IS_ERR(root)) {
3713 		dev_err(hsotg->dev, "cannot create debug root\n");
3714 		return;
3715 	}
3716 
3717 	/* create general state file */
3718 
3719 	hsotg->debug_file = debugfs_create_file("state", S_IRUGO, root,
3720 						hsotg, &state_fops);
3721 
3722 	if (IS_ERR(hsotg->debug_file))
3723 		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3724 
3725 	hsotg->debug_testmode = debugfs_create_file("testmode",
3726 					S_IRUGO | S_IWUSR, root,
3727 					hsotg, &testmode_fops);
3728 
3729 	if (IS_ERR(hsotg->debug_testmode))
3730 		dev_err(hsotg->dev, "%s: failed to create testmode\n",
3731 				__func__);
3732 
3733 	hsotg->debug_fifo = debugfs_create_file("fifo", S_IRUGO, root,
3734 						hsotg, &fifo_fops);
3735 
3736 	if (IS_ERR(hsotg->debug_fifo))
3737 		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3738 
3739 	/* Create one file for each out endpoint */
3740 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3741 		struct s3c_hsotg_ep *ep;
3742 
3743 		ep = hsotg->eps_out[epidx];
3744 		if (ep) {
3745 			ep->debugfs = debugfs_create_file(ep->name, S_IRUGO,
3746 							  root, ep, &ep_fops);
3747 
3748 			if (IS_ERR(ep->debugfs))
3749 				dev_err(hsotg->dev, "failed to create %s debug file\n",
3750 					ep->name);
3751 		}
3752 	}
3753 	/* Create one file for each in endpoint. EP0 is handled with out eps */
3754 	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
3755 		struct s3c_hsotg_ep *ep;
3756 
3757 		ep = hsotg->eps_in[epidx];
3758 		if (ep) {
3759 			ep->debugfs = debugfs_create_file(ep->name, S_IRUGO,
3760 							  root, ep, &ep_fops);
3761 
3762 			if (IS_ERR(ep->debugfs))
3763 				dev_err(hsotg->dev, "failed to create %s debug file\n",
3764 					ep->name);
3765 		}
3766 	}
3767 }
3768 
3769 /**
3770  * s3c_hsotg_delete_debug - cleanup debugfs entries
3771  * @hsotg: The driver state
3772  *
3773  * Cleanup (remove) the debugfs files for use on module exit.
3774  */
3775 static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3776 {
3777 	unsigned epidx;
3778 
3779 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3780 		if (hsotg->eps_in[epidx])
3781 			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
3782 		if (hsotg->eps_out[epidx])
3783 			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3784 	}
3785 
3786 	debugfs_remove(hsotg->debug_file);
3787 	debugfs_remove(hsotg->debug_testmode);
3788 	debugfs_remove(hsotg->debug_fifo);
3789 	debugfs_remove(hsotg->debug_root);
3790 }
3791 
3792 #ifdef CONFIG_OF
3793 static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3794 {
3795 	struct device_node *np = hsotg->dev->of_node;
3796 	u32 len = 0;
3797 	u32 i = 0;
3798 
3799 	/* Enable dma if requested in device tree */
3800 	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3801 
3802 	/*
3803 	* Register TX periodic fifo size per endpoint.
3804 	* EP0 is excluded since it has no fifo configuration.
3805 	*/
3806 	if (!of_find_property(np, "g-tx-fifo-size", &len))
3807 		goto rx_fifo;
3808 
3809 	len /= sizeof(u32);
3810 
3811 	/* Read tx fifo sizes other than ep0 */
3812 	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3813 						&hsotg->g_tx_fifo_sz[1], len))
3814 		goto rx_fifo;
3815 
3816 	/* Add ep0 */
3817 	len++;
3818 
3819 	/* Make remaining TX fifos unavailable */
3820 	if (len < MAX_EPS_CHANNELS) {
3821 		for (i = len; i < MAX_EPS_CHANNELS; i++)
3822 			hsotg->g_tx_fifo_sz[i] = 0;
3823 	}
3824 
3825 rx_fifo:
3826 	/* Register RX fifo size */
3827 	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3828 
3829 	/* Register NPTX fifo size */
3830 	of_property_read_u32(np, "g-np-tx-fifo-size",
3831 						&hsotg->g_np_g_tx_fifo_sz);
3832 }
3833 #else
3834 static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3835 #endif
3836 
3837 /**
3838  * dwc2_gadget_init - init function for gadget
3839  * @dwc2: The data structure for the DWC2 driver.
3840  * @irq: The IRQ number for the controller.
3841  */
3842 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3843 {
3844 	struct device *dev = hsotg->dev;
3845 	struct s3c_hsotg_plat *plat = dev->platform_data;
3846 	int epnum;
3847 	int ret;
3848 	int i;
3849 	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3850 
3851 	/* Set default UTMI width */
3852 	hsotg->phyif = GUSBCFG_PHYIF16;
3853 
3854 	s3c_hsotg_of_probe(hsotg);
3855 
3856 	/* Initialize to legacy fifo configuration values */
3857 	hsotg->g_rx_fifo_sz = 2048;
3858 	hsotg->g_np_g_tx_fifo_sz = 1024;
3859 	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3860 	/* Device tree specific probe */
3861 	s3c_hsotg_of_probe(hsotg);
3862 	/* Dump fifo information */
3863 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3864 						hsotg->g_np_g_tx_fifo_sz);
3865 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3866 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3867 		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3868 						hsotg->g_tx_fifo_sz[i]);
3869 	/*
3870 	 * If platform probe couldn't find a generic PHY or an old style
3871 	 * USB PHY, fall back to pdata
3872 	 */
3873 	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3874 		plat = dev_get_platdata(dev);
3875 		if (!plat) {
3876 			dev_err(dev,
3877 			"no platform data or transceiver defined\n");
3878 			return -EPROBE_DEFER;
3879 		}
3880 		hsotg->plat = plat;
3881 	} else if (hsotg->phy) {
3882 		/*
3883 		 * If using the generic PHY framework, check if the PHY bus
3884 		 * width is 8-bit and set the phyif appropriately.
3885 		 */
3886 		if (phy_get_bus_width(hsotg->phy) == 8)
3887 			hsotg->phyif = GUSBCFG_PHYIF8;
3888 	}
3889 
3890 	hsotg->clk = devm_clk_get(dev, "otg");
3891 	if (IS_ERR(hsotg->clk)) {
3892 		hsotg->clk = NULL;
3893 		dev_dbg(dev, "cannot get otg clock\n");
3894 	}
3895 
3896 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3897 	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3898 	hsotg->gadget.name = dev_name(dev);
3899 
3900 	/* reset the system */
3901 
3902 	ret = clk_prepare_enable(hsotg->clk);
3903 	if (ret) {
3904 		dev_err(dev, "failed to enable otg clk\n");
3905 		goto err_clk;
3906 	}
3907 
3908 
3909 	/* regulators */
3910 
3911 	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3912 		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3913 
3914 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3915 				 hsotg->supplies);
3916 	if (ret) {
3917 		dev_err(dev, "failed to request supplies: %d\n", ret);
3918 		goto err_clk;
3919 	}
3920 
3921 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3922 				    hsotg->supplies);
3923 
3924 	if (ret) {
3925 		dev_err(dev, "failed to enable supplies: %d\n", ret);
3926 		goto err_clk;
3927 	}
3928 
3929 	/* usb phy enable */
3930 	s3c_hsotg_phy_enable(hsotg);
3931 
3932 	/*
3933 	 * Force Device mode before initialization.
3934 	 * This allows correctly configuring fifo for device mode.
3935 	 */
3936 	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3937 	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3938 
3939 	/*
3940 	 * According to Synopsys databook, this sleep is needed for the force
3941 	 * device mode to take effect.
3942 	 */
3943 	msleep(25);
3944 
3945 	s3c_hsotg_corereset(hsotg);
3946 	ret = s3c_hsotg_hw_cfg(hsotg);
3947 	if (ret) {
3948 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3949 		goto err_clk;
3950 	}
3951 
3952 	s3c_hsotg_init(hsotg);
3953 
3954 	/* Switch back to default configuration */
3955 	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3956 
3957 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3958 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3959 	if (!hsotg->ctrl_buff) {
3960 		dev_err(dev, "failed to allocate ctrl request buff\n");
3961 		ret = -ENOMEM;
3962 		goto err_supplies;
3963 	}
3964 
3965 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3966 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3967 	if (!hsotg->ep0_buff) {
3968 		dev_err(dev, "failed to allocate ctrl reply buff\n");
3969 		ret = -ENOMEM;
3970 		goto err_supplies;
3971 	}
3972 
3973 	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
3974 				dev_name(hsotg->dev), hsotg);
3975 	if (ret < 0) {
3976 		s3c_hsotg_phy_disable(hsotg);
3977 		clk_disable_unprepare(hsotg->clk);
3978 		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3979 				       hsotg->supplies);
3980 		dev_err(dev, "cannot claim IRQ for gadget\n");
3981 		goto err_supplies;
3982 	}
3983 
3984 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3985 
3986 	if (hsotg->num_of_eps == 0) {
3987 		dev_err(dev, "wrong number of EPs (zero)\n");
3988 		ret = -EINVAL;
3989 		goto err_supplies;
3990 	}
3991 
3992 	/* setup endpoint information */
3993 
3994 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3995 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3996 
3997 	/* allocate EP0 request */
3998 
3999 	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4000 						     GFP_KERNEL);
4001 	if (!hsotg->ctrl_req) {
4002 		dev_err(dev, "failed to allocate ctrl req\n");
4003 		ret = -ENOMEM;
4004 		goto err_supplies;
4005 	}
4006 
4007 	/* initialise the endpoints now the core has been initialised */
4008 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4009 		if (hsotg->eps_in[epnum])
4010 			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4011 								epnum, 1);
4012 		if (hsotg->eps_out[epnum])
4013 			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4014 								epnum, 0);
4015 	}
4016 
4017 	/* disable power and clock */
4018 	s3c_hsotg_phy_disable(hsotg);
4019 
4020 	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
4021 				    hsotg->supplies);
4022 	if (ret) {
4023 		dev_err(dev, "failed to disable supplies: %d\n", ret);
4024 		goto err_supplies;
4025 	}
4026 
4027 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4028 	if (ret)
4029 		goto err_supplies;
4030 
4031 	s3c_hsotg_create_debug(hsotg);
4032 
4033 	s3c_hsotg_dump(hsotg);
4034 
4035 	return 0;
4036 
4037 err_supplies:
4038 	s3c_hsotg_phy_disable(hsotg);
4039 err_clk:
4040 	clk_disable_unprepare(hsotg->clk);
4041 
4042 	return ret;
4043 }
4044 EXPORT_SYMBOL_GPL(dwc2_gadget_init);
4045 
4046 /**
4047  * s3c_hsotg_remove - remove function for hsotg driver
4048  * @pdev: The platform information for the driver
4049  */
4050 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
4051 {
4052 	usb_del_gadget_udc(&hsotg->gadget);
4053 	s3c_hsotg_delete_debug(hsotg);
4054 	clk_disable_unprepare(hsotg->clk);
4055 
4056 	return 0;
4057 }
4058 EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
4059 
4060 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
4061 {
4062 	unsigned long flags;
4063 	int ret = 0;
4064 
4065 	mutex_lock(&hsotg->init_mutex);
4066 
4067 	if (hsotg->driver) {
4068 		int ep;
4069 
4070 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4071 			 hsotg->driver->driver.name);
4072 
4073 		spin_lock_irqsave(&hsotg->lock, flags);
4074 		if (hsotg->enabled)
4075 			s3c_hsotg_core_disconnect(hsotg);
4076 		s3c_hsotg_disconnect(hsotg);
4077 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4078 		spin_unlock_irqrestore(&hsotg->lock, flags);
4079 
4080 		s3c_hsotg_phy_disable(hsotg);
4081 
4082 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4083 			if (hsotg->eps_in[ep])
4084 				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4085 			if (hsotg->eps_out[ep])
4086 				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4087 		}
4088 
4089 		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
4090 					     hsotg->supplies);
4091 		clk_disable(hsotg->clk);
4092 	}
4093 
4094 	mutex_unlock(&hsotg->init_mutex);
4095 
4096 	return ret;
4097 }
4098 EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
4099 
4100 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
4101 {
4102 	unsigned long flags;
4103 	int ret = 0;
4104 
4105 	mutex_lock(&hsotg->init_mutex);
4106 
4107 	if (hsotg->driver) {
4108 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4109 			 hsotg->driver->driver.name);
4110 
4111 		clk_enable(hsotg->clk);
4112 		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
4113 					    hsotg->supplies);
4114 
4115 		s3c_hsotg_phy_enable(hsotg);
4116 
4117 		spin_lock_irqsave(&hsotg->lock, flags);
4118 		s3c_hsotg_core_init_disconnected(hsotg, false);
4119 		if (hsotg->enabled)
4120 			s3c_hsotg_core_connect(hsotg);
4121 		spin_unlock_irqrestore(&hsotg->lock, flags);
4122 	}
4123 	mutex_unlock(&hsotg->init_mutex);
4124 
4125 	return ret;
4126 }
4127 EXPORT_SYMBOL_GPL(s3c_hsotg_resume);
4128