xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 3fc7c707)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 
26 #include <linux/usb/ch9.h>
27 #include <linux/usb/gadget.h>
28 #include <linux/usb/phy.h>
29 #include <linux/usb/composite.h>
30 
31 
32 #include "core.h"
33 #include "hw.h"
34 
35 /* conversion functions */
36 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
37 {
38 	return container_of(req, struct dwc2_hsotg_req, req);
39 }
40 
41 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
42 {
43 	return container_of(ep, struct dwc2_hsotg_ep, ep);
44 }
45 
46 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
47 {
48 	return container_of(gadget, struct dwc2_hsotg, gadget);
49 }
50 
51 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
52 {
53 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
54 }
55 
56 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
57 {
58 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
59 }
60 
61 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
62 						u32 ep_index, u32 dir_in)
63 {
64 	if (dir_in)
65 		return hsotg->eps_in[ep_index];
66 	else
67 		return hsotg->eps_out[ep_index];
68 }
69 
70 /* forward declaration of functions */
71 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
72 
73 /**
74  * using_dma - return the DMA status of the driver.
75  * @hsotg: The driver state.
76  *
77  * Return true if we're using DMA.
78  *
79  * Currently, we have the DMA support code worked into everywhere
80  * that needs it, but the AMBA DMA implementation in the hardware can
81  * only DMA from 32bit aligned addresses. This means that gadgets such
82  * as the CDC Ethernet cannot work as they often pass packets which are
83  * not 32bit aligned.
84  *
85  * Unfortunately the choice to use DMA or not is global to the controller
86  * and seems to be only settable when the controller is being put through
87  * a core reset. This means we either need to fix the gadgets to take
88  * account of DMA alignment, or add bounce buffers (yuerk).
89  *
90  * g_using_dma is set depending on dts flag.
91  */
92 static inline bool using_dma(struct dwc2_hsotg *hsotg)
93 {
94 	return hsotg->params.g_dma;
95 }
96 
97 /*
98  * using_desc_dma - return the descriptor DMA status of the driver.
99  * @hsotg: The driver state.
100  *
101  * Return true if we're using descriptor DMA.
102  */
103 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
104 {
105 	return hsotg->params.g_dma_desc;
106 }
107 
108 /**
109  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
110  * @hs_ep: The endpoint
111  *
112  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114  */
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 {
117 	struct dwc2_hsotg *hsotg = hs_ep->parent;
118 	u16 limit = DSTS_SOFFN_LIMIT;
119 
120 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
121 		limit >>= 3;
122 
123 	hs_ep->target_frame += hs_ep->interval;
124 	if (hs_ep->target_frame > limit) {
125 		hs_ep->frame_overrun = true;
126 		hs_ep->target_frame &= limit;
127 	} else {
128 		hs_ep->frame_overrun = false;
129 	}
130 }
131 
132 /**
133  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
134  *                                    by one.
135  * @hs_ep: The endpoint.
136  *
137  * This function used in service interval based scheduling flow to calculate
138  * descriptor frame number filed value. For service interval mode frame
139  * number in descriptor should point to last (u)frame in the interval.
140  *
141  */
142 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
143 {
144 	struct dwc2_hsotg *hsotg = hs_ep->parent;
145 	u16 limit = DSTS_SOFFN_LIMIT;
146 
147 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
148 		limit >>= 3;
149 
150 	if (hs_ep->target_frame)
151 		hs_ep->target_frame -= 1;
152 	else
153 		hs_ep->target_frame = limit;
154 }
155 
156 /**
157  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
158  * @hsotg: The device state
159  * @ints: A bitmask of the interrupts to enable
160  */
161 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
162 {
163 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
164 	u32 new_gsintmsk;
165 
166 	new_gsintmsk = gsintmsk | ints;
167 
168 	if (new_gsintmsk != gsintmsk) {
169 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
170 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
171 	}
172 }
173 
174 /**
175  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
176  * @hsotg: The device state
177  * @ints: A bitmask of the interrupts to enable
178  */
179 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
180 {
181 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
182 	u32 new_gsintmsk;
183 
184 	new_gsintmsk = gsintmsk & ~ints;
185 
186 	if (new_gsintmsk != gsintmsk)
187 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
188 }
189 
190 /**
191  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
192  * @hsotg: The device state
193  * @ep: The endpoint index
194  * @dir_in: True if direction is in.
195  * @en: The enable value, true to enable
196  *
197  * Set or clear the mask for an individual endpoint's interrupt
198  * request.
199  */
200 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
201 				  unsigned int ep, unsigned int dir_in,
202 				 unsigned int en)
203 {
204 	unsigned long flags;
205 	u32 bit = 1 << ep;
206 	u32 daint;
207 
208 	if (!dir_in)
209 		bit <<= 16;
210 
211 	local_irq_save(flags);
212 	daint = dwc2_readl(hsotg, DAINTMSK);
213 	if (en)
214 		daint |= bit;
215 	else
216 		daint &= ~bit;
217 	dwc2_writel(hsotg, daint, DAINTMSK);
218 	local_irq_restore(flags);
219 }
220 
221 /**
222  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
223  *
224  * @hsotg: Programming view of the DWC_otg controller
225  */
226 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
227 {
228 	if (hsotg->hw_params.en_multiple_tx_fifo)
229 		/* In dedicated FIFO mode we need count of IN EPs */
230 		return hsotg->hw_params.num_dev_in_eps;
231 	else
232 		/* In shared FIFO mode we need count of Periodic IN EPs */
233 		return hsotg->hw_params.num_dev_perio_in_ep;
234 }
235 
236 /**
237  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
238  * device mode TX FIFOs
239  *
240  * @hsotg: Programming view of the DWC_otg controller
241  */
242 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
243 {
244 	int addr;
245 	int tx_addr_max;
246 	u32 np_tx_fifo_size;
247 
248 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
249 				hsotg->params.g_np_tx_fifo_size);
250 
251 	/* Get Endpoint Info Control block size in DWORDs. */
252 	tx_addr_max = hsotg->hw_params.total_fifo_size;
253 
254 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
255 	if (tx_addr_max <= addr)
256 		return 0;
257 
258 	return tx_addr_max - addr;
259 }
260 
261 /**
262  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
263  *
264  * @hsotg: Programming view of the DWC_otg controller
265  *
266  */
267 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
268 {
269 	u32 gintsts2;
270 	u32 gintmsk2;
271 
272 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
273 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
274 	gintsts2 &= gintmsk2;
275 
276 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
277 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
278 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
279 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
280 	}
281 }
282 
283 /**
284  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
285  * TX FIFOs
286  *
287  * @hsotg: Programming view of the DWC_otg controller
288  */
289 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
290 {
291 	int tx_fifo_count;
292 	int tx_fifo_depth;
293 
294 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
295 
296 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
297 
298 	if (!tx_fifo_count)
299 		return tx_fifo_depth;
300 	else
301 		return tx_fifo_depth / tx_fifo_count;
302 }
303 
304 /**
305  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
306  * @hsotg: The device instance.
307  */
308 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
309 {
310 	unsigned int ep;
311 	unsigned int addr;
312 	int timeout;
313 
314 	u32 val;
315 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
316 
317 	/* Reset fifo map if not correctly cleared during previous session */
318 	WARN_ON(hsotg->fifo_map);
319 	hsotg->fifo_map = 0;
320 
321 	/* set RX/NPTX FIFO sizes */
322 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
323 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
324 		    FIFOSIZE_STARTADDR_SHIFT) |
325 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
326 		    GNPTXFSIZ);
327 
328 	/*
329 	 * arange all the rest of the TX FIFOs, as some versions of this
330 	 * block have overlapping default addresses. This also ensures
331 	 * that if the settings have been changed, then they are set to
332 	 * known values.
333 	 */
334 
335 	/* start at the end of the GNPTXFSIZ, rounded up */
336 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
337 
338 	/*
339 	 * Configure fifos sizes from provided configuration and assign
340 	 * them to endpoints dynamically according to maxpacket size value of
341 	 * given endpoint.
342 	 */
343 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
344 		if (!txfsz[ep])
345 			continue;
346 		val = addr;
347 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
348 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
349 			  "insufficient fifo memory");
350 		addr += txfsz[ep];
351 
352 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
353 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
354 	}
355 
356 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
357 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
358 		    GDFIFOCFG);
359 	/*
360 	 * according to p428 of the design guide, we need to ensure that
361 	 * all fifos are flushed before continuing
362 	 */
363 
364 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
365 	       GRSTCTL_RXFFLSH, GRSTCTL);
366 
367 	/* wait until the fifos are both flushed */
368 	timeout = 100;
369 	while (1) {
370 		val = dwc2_readl(hsotg, GRSTCTL);
371 
372 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
373 			break;
374 
375 		if (--timeout == 0) {
376 			dev_err(hsotg->dev,
377 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
378 				__func__, val);
379 			break;
380 		}
381 
382 		udelay(1);
383 	}
384 
385 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
386 }
387 
388 /**
389  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
390  * @ep: USB endpoint to allocate request for.
391  * @flags: Allocation flags
392  *
393  * Allocate a new USB request structure appropriate for the specified endpoint
394  */
395 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
396 						       gfp_t flags)
397 {
398 	struct dwc2_hsotg_req *req;
399 
400 	req = kzalloc(sizeof(*req), flags);
401 	if (!req)
402 		return NULL;
403 
404 	INIT_LIST_HEAD(&req->queue);
405 
406 	return &req->req;
407 }
408 
409 /**
410  * is_ep_periodic - return true if the endpoint is in periodic mode.
411  * @hs_ep: The endpoint to query.
412  *
413  * Returns true if the endpoint is in periodic mode, meaning it is being
414  * used for an Interrupt or ISO transfer.
415  */
416 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
417 {
418 	return hs_ep->periodic;
419 }
420 
421 /**
422  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
423  * @hsotg: The device state.
424  * @hs_ep: The endpoint for the request
425  * @hs_req: The request being processed.
426  *
427  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
428  * of a request to ensure the buffer is ready for access by the caller.
429  */
430 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
431 				 struct dwc2_hsotg_ep *hs_ep,
432 				struct dwc2_hsotg_req *hs_req)
433 {
434 	struct usb_request *req = &hs_req->req;
435 
436 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
437 }
438 
439 /*
440  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
441  * for Control endpoint
442  * @hsotg: The device state.
443  *
444  * This function will allocate 4 descriptor chains for EP 0: 2 for
445  * Setup stage, per one for IN and OUT data/status transactions.
446  */
447 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
448 {
449 	hsotg->setup_desc[0] =
450 		dmam_alloc_coherent(hsotg->dev,
451 				    sizeof(struct dwc2_dma_desc),
452 				    &hsotg->setup_desc_dma[0],
453 				    GFP_KERNEL);
454 	if (!hsotg->setup_desc[0])
455 		goto fail;
456 
457 	hsotg->setup_desc[1] =
458 		dmam_alloc_coherent(hsotg->dev,
459 				    sizeof(struct dwc2_dma_desc),
460 				    &hsotg->setup_desc_dma[1],
461 				    GFP_KERNEL);
462 	if (!hsotg->setup_desc[1])
463 		goto fail;
464 
465 	hsotg->ctrl_in_desc =
466 		dmam_alloc_coherent(hsotg->dev,
467 				    sizeof(struct dwc2_dma_desc),
468 				    &hsotg->ctrl_in_desc_dma,
469 				    GFP_KERNEL);
470 	if (!hsotg->ctrl_in_desc)
471 		goto fail;
472 
473 	hsotg->ctrl_out_desc =
474 		dmam_alloc_coherent(hsotg->dev,
475 				    sizeof(struct dwc2_dma_desc),
476 				    &hsotg->ctrl_out_desc_dma,
477 				    GFP_KERNEL);
478 	if (!hsotg->ctrl_out_desc)
479 		goto fail;
480 
481 	return 0;
482 
483 fail:
484 	return -ENOMEM;
485 }
486 
487 /**
488  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
489  * @hsotg: The controller state.
490  * @hs_ep: The endpoint we're going to write for.
491  * @hs_req: The request to write data for.
492  *
493  * This is called when the TxFIFO has some space in it to hold a new
494  * transmission and we have something to give it. The actual setup of
495  * the data size is done elsewhere, so all we have to do is to actually
496  * write the data.
497  *
498  * The return value is zero if there is more space (or nothing was done)
499  * otherwise -ENOSPC is returned if the FIFO space was used up.
500  *
501  * This routine is only needed for PIO
502  */
503 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
504 				 struct dwc2_hsotg_ep *hs_ep,
505 				struct dwc2_hsotg_req *hs_req)
506 {
507 	bool periodic = is_ep_periodic(hs_ep);
508 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
509 	int buf_pos = hs_req->req.actual;
510 	int to_write = hs_ep->size_loaded;
511 	void *data;
512 	int can_write;
513 	int pkt_round;
514 	int max_transfer;
515 
516 	to_write -= (buf_pos - hs_ep->last_load);
517 
518 	/* if there's nothing to write, get out early */
519 	if (to_write == 0)
520 		return 0;
521 
522 	if (periodic && !hsotg->dedicated_fifos) {
523 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
524 		int size_left;
525 		int size_done;
526 
527 		/*
528 		 * work out how much data was loaded so we can calculate
529 		 * how much data is left in the fifo.
530 		 */
531 
532 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
533 
534 		/*
535 		 * if shared fifo, we cannot write anything until the
536 		 * previous data has been completely sent.
537 		 */
538 		if (hs_ep->fifo_load != 0) {
539 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
540 			return -ENOSPC;
541 		}
542 
543 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
544 			__func__, size_left,
545 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
546 
547 		/* how much of the data has moved */
548 		size_done = hs_ep->size_loaded - size_left;
549 
550 		/* how much data is left in the fifo */
551 		can_write = hs_ep->fifo_load - size_done;
552 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
553 			__func__, can_write);
554 
555 		can_write = hs_ep->fifo_size - can_write;
556 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
557 			__func__, can_write);
558 
559 		if (can_write <= 0) {
560 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
561 			return -ENOSPC;
562 		}
563 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
564 		can_write = dwc2_readl(hsotg,
565 				       DTXFSTS(hs_ep->fifo_index));
566 
567 		can_write &= 0xffff;
568 		can_write *= 4;
569 	} else {
570 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
571 			dev_dbg(hsotg->dev,
572 				"%s: no queue slots available (0x%08x)\n",
573 				__func__, gnptxsts);
574 
575 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
576 			return -ENOSPC;
577 		}
578 
579 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
580 		can_write *= 4;	/* fifo size is in 32bit quantities. */
581 	}
582 
583 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
584 
585 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
586 		__func__, gnptxsts, can_write, to_write, max_transfer);
587 
588 	/*
589 	 * limit to 512 bytes of data, it seems at least on the non-periodic
590 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
591 	 * fragment of the end of the transfer in it.
592 	 */
593 	if (can_write > 512 && !periodic)
594 		can_write = 512;
595 
596 	/*
597 	 * limit the write to one max-packet size worth of data, but allow
598 	 * the transfer to return that it did not run out of fifo space
599 	 * doing it.
600 	 */
601 	if (to_write > max_transfer) {
602 		to_write = max_transfer;
603 
604 		/* it's needed only when we do not use dedicated fifos */
605 		if (!hsotg->dedicated_fifos)
606 			dwc2_hsotg_en_gsint(hsotg,
607 					    periodic ? GINTSTS_PTXFEMP :
608 					   GINTSTS_NPTXFEMP);
609 	}
610 
611 	/* see if we can write data */
612 
613 	if (to_write > can_write) {
614 		to_write = can_write;
615 		pkt_round = to_write % max_transfer;
616 
617 		/*
618 		 * Round the write down to an
619 		 * exact number of packets.
620 		 *
621 		 * Note, we do not currently check to see if we can ever
622 		 * write a full packet or not to the FIFO.
623 		 */
624 
625 		if (pkt_round)
626 			to_write -= pkt_round;
627 
628 		/*
629 		 * enable correct FIFO interrupt to alert us when there
630 		 * is more room left.
631 		 */
632 
633 		/* it's needed only when we do not use dedicated fifos */
634 		if (!hsotg->dedicated_fifos)
635 			dwc2_hsotg_en_gsint(hsotg,
636 					    periodic ? GINTSTS_PTXFEMP :
637 					   GINTSTS_NPTXFEMP);
638 	}
639 
640 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
641 		to_write, hs_req->req.length, can_write, buf_pos);
642 
643 	if (to_write <= 0)
644 		return -ENOSPC;
645 
646 	hs_req->req.actual = buf_pos + to_write;
647 	hs_ep->total_data += to_write;
648 
649 	if (periodic)
650 		hs_ep->fifo_load += to_write;
651 
652 	to_write = DIV_ROUND_UP(to_write, 4);
653 	data = hs_req->req.buf + buf_pos;
654 
655 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
656 
657 	return (to_write >= can_write) ? -ENOSPC : 0;
658 }
659 
660 /**
661  * get_ep_limit - get the maximum data legnth for this endpoint
662  * @hs_ep: The endpoint
663  *
664  * Return the maximum data that can be queued in one go on a given endpoint
665  * so that transfers that are too long can be split.
666  */
667 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
668 {
669 	int index = hs_ep->index;
670 	unsigned int maxsize;
671 	unsigned int maxpkt;
672 
673 	if (index != 0) {
674 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
675 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
676 	} else {
677 		maxsize = 64 + 64;
678 		if (hs_ep->dir_in)
679 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
680 		else
681 			maxpkt = 2;
682 	}
683 
684 	/* we made the constant loading easier above by using +1 */
685 	maxpkt--;
686 	maxsize--;
687 
688 	/*
689 	 * constrain by packet count if maxpkts*pktsize is greater
690 	 * than the length register size.
691 	 */
692 
693 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
694 		maxsize = maxpkt * hs_ep->ep.maxpacket;
695 
696 	return maxsize;
697 }
698 
699 /**
700  * dwc2_hsotg_read_frameno - read current frame number
701  * @hsotg: The device instance
702  *
703  * Return the current frame number
704  */
705 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
706 {
707 	u32 dsts;
708 
709 	dsts = dwc2_readl(hsotg, DSTS);
710 	dsts &= DSTS_SOFFN_MASK;
711 	dsts >>= DSTS_SOFFN_SHIFT;
712 
713 	return dsts;
714 }
715 
716 /**
717  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
718  * DMA descriptor chain prepared for specific endpoint
719  * @hs_ep: The endpoint
720  *
721  * Return the maximum data that can be queued in one go on a given endpoint
722  * depending on its descriptor chain capacity so that transfers that
723  * are too long can be split.
724  */
725 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
726 {
727 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
728 	int is_isoc = hs_ep->isochronous;
729 	unsigned int maxsize;
730 	u32 mps = hs_ep->ep.maxpacket;
731 	int dir_in = hs_ep->dir_in;
732 
733 	if (is_isoc)
734 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
735 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
736 					   MAX_DMA_DESC_NUM_HS_ISOC;
737 	else
738 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
739 
740 	/* Interrupt OUT EP with mps not multiple of 4 */
741 	if (hs_ep->index)
742 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
743 			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
744 
745 	return maxsize;
746 }
747 
748 /*
749  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
750  * @hs_ep: The endpoint
751  * @mask: RX/TX bytes mask to be defined
752  *
753  * Returns maximum data payload for one descriptor after analyzing endpoint
754  * characteristics.
755  * DMA descriptor transfer bytes limit depends on EP type:
756  * Control out - MPS,
757  * Isochronous - descriptor rx/tx bytes bitfield limit,
758  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
759  * have concatenations from various descriptors within one packet.
760  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
761  * to a single descriptor.
762  *
763  * Selects corresponding mask for RX/TX bytes as well.
764  */
765 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
766 {
767 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
768 	u32 mps = hs_ep->ep.maxpacket;
769 	int dir_in = hs_ep->dir_in;
770 	u32 desc_size = 0;
771 
772 	if (!hs_ep->index && !dir_in) {
773 		desc_size = mps;
774 		*mask = DEV_DMA_NBYTES_MASK;
775 	} else if (hs_ep->isochronous) {
776 		if (dir_in) {
777 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
778 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
779 		} else {
780 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
781 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
782 		}
783 	} else {
784 		desc_size = DEV_DMA_NBYTES_LIMIT;
785 		*mask = DEV_DMA_NBYTES_MASK;
786 
787 		/* Round down desc_size to be mps multiple */
788 		desc_size -= desc_size % mps;
789 	}
790 
791 	/* Interrupt OUT EP with mps not multiple of 4 */
792 	if (hs_ep->index)
793 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
794 			desc_size = mps;
795 			*mask = DEV_DMA_NBYTES_MASK;
796 		}
797 
798 	return desc_size;
799 }
800 
801 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
802 						 struct dwc2_dma_desc **desc,
803 						 dma_addr_t dma_buff,
804 						 unsigned int len,
805 						 bool true_last)
806 {
807 	int dir_in = hs_ep->dir_in;
808 	u32 mps = hs_ep->ep.maxpacket;
809 	u32 maxsize = 0;
810 	u32 offset = 0;
811 	u32 mask = 0;
812 	int i;
813 
814 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
815 
816 	hs_ep->desc_count = (len / maxsize) +
817 				((len % maxsize) ? 1 : 0);
818 	if (len == 0)
819 		hs_ep->desc_count = 1;
820 
821 	for (i = 0; i < hs_ep->desc_count; ++i) {
822 		(*desc)->status = 0;
823 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
824 				 << DEV_DMA_BUFF_STS_SHIFT);
825 
826 		if (len > maxsize) {
827 			if (!hs_ep->index && !dir_in)
828 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
829 
830 			(*desc)->status |=
831 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
832 			(*desc)->buf = dma_buff + offset;
833 
834 			len -= maxsize;
835 			offset += maxsize;
836 		} else {
837 			if (true_last)
838 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
839 
840 			if (dir_in)
841 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
842 					((hs_ep->send_zlp && true_last) ?
843 					DEV_DMA_SHORT : 0);
844 
845 			(*desc)->status |=
846 				len << DEV_DMA_NBYTES_SHIFT & mask;
847 			(*desc)->buf = dma_buff + offset;
848 		}
849 
850 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
851 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
852 				 << DEV_DMA_BUFF_STS_SHIFT);
853 		(*desc)++;
854 	}
855 }
856 
857 /*
858  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
859  * @hs_ep: The endpoint
860  * @ureq: Request to transfer
861  * @offset: offset in bytes
862  * @len: Length of the transfer
863  *
864  * This function will iterate over descriptor chain and fill its entries
865  * with corresponding information based on transfer data.
866  */
867 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
868 						 dma_addr_t dma_buff,
869 						 unsigned int len)
870 {
871 	struct usb_request *ureq = NULL;
872 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
873 	struct scatterlist *sg;
874 	int i;
875 	u8 desc_count = 0;
876 
877 	if (hs_ep->req)
878 		ureq = &hs_ep->req->req;
879 
880 	/* non-DMA sg buffer */
881 	if (!ureq || !ureq->num_sgs) {
882 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
883 			dma_buff, len, true);
884 		return;
885 	}
886 
887 	/* DMA sg buffer */
888 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
889 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
890 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
891 			sg_is_last(sg));
892 		desc_count += hs_ep->desc_count;
893 	}
894 
895 	hs_ep->desc_count = desc_count;
896 }
897 
898 /*
899  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
900  * @hs_ep: The isochronous endpoint.
901  * @dma_buff: usb requests dma buffer.
902  * @len: usb request transfer length.
903  *
904  * Fills next free descriptor with the data of the arrived usb request,
905  * frame info, sets Last and IOC bits increments next_desc. If filled
906  * descriptor is not the first one, removes L bit from the previous descriptor
907  * status.
908  */
909 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
910 				      dma_addr_t dma_buff, unsigned int len)
911 {
912 	struct dwc2_dma_desc *desc;
913 	struct dwc2_hsotg *hsotg = hs_ep->parent;
914 	u32 index;
915 	u32 mask = 0;
916 	u8 pid = 0;
917 
918 	dwc2_gadget_get_desc_params(hs_ep, &mask);
919 
920 	index = hs_ep->next_desc;
921 	desc = &hs_ep->desc_list[index];
922 
923 	/* Check if descriptor chain full */
924 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
925 	    DEV_DMA_BUFF_STS_HREADY) {
926 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
927 		return 1;
928 	}
929 
930 	/* Clear L bit of previous desc if more than one entries in the chain */
931 	if (hs_ep->next_desc)
932 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
933 
934 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
935 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
936 
937 	desc->status = 0;
938 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
939 
940 	desc->buf = dma_buff;
941 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
942 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
943 
944 	if (hs_ep->dir_in) {
945 		if (len)
946 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
947 		else
948 			pid = 1;
949 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
950 				 DEV_DMA_ISOC_PID_MASK) |
951 				((len % hs_ep->ep.maxpacket) ?
952 				 DEV_DMA_SHORT : 0) |
953 				((hs_ep->target_frame <<
954 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
955 				 DEV_DMA_ISOC_FRNUM_MASK);
956 	}
957 
958 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
959 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
960 
961 	/* Increment frame number by interval for IN */
962 	if (hs_ep->dir_in)
963 		dwc2_gadget_incr_frame_num(hs_ep);
964 
965 	/* Update index of last configured entry in the chain */
966 	hs_ep->next_desc++;
967 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
968 		hs_ep->next_desc = 0;
969 
970 	return 0;
971 }
972 
973 /*
974  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
975  * @hs_ep: The isochronous endpoint.
976  *
977  * Prepare descriptor chain for isochronous endpoints. Afterwards
978  * write DMA address to HW and enable the endpoint.
979  */
980 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
981 {
982 	struct dwc2_hsotg *hsotg = hs_ep->parent;
983 	struct dwc2_hsotg_req *hs_req, *treq;
984 	int index = hs_ep->index;
985 	int ret;
986 	int i;
987 	u32 dma_reg;
988 	u32 depctl;
989 	u32 ctrl;
990 	struct dwc2_dma_desc *desc;
991 
992 	if (list_empty(&hs_ep->queue)) {
993 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
994 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
995 		return;
996 	}
997 
998 	/* Initialize descriptor chain by Host Busy status */
999 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1000 		desc = &hs_ep->desc_list[i];
1001 		desc->status = 0;
1002 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1003 				    << DEV_DMA_BUFF_STS_SHIFT);
1004 	}
1005 
1006 	hs_ep->next_desc = 0;
1007 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1008 		dma_addr_t dma_addr = hs_req->req.dma;
1009 
1010 		if (hs_req->req.num_sgs) {
1011 			WARN_ON(hs_req->req.num_sgs > 1);
1012 			dma_addr = sg_dma_address(hs_req->req.sg);
1013 		}
1014 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1015 						 hs_req->req.length);
1016 		if (ret)
1017 			break;
1018 	}
1019 
1020 	hs_ep->compl_desc = 0;
1021 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1022 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1023 
1024 	/* write descriptor chain address to control register */
1025 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1026 
1027 	ctrl = dwc2_readl(hsotg, depctl);
1028 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1029 	dwc2_writel(hsotg, ctrl, depctl);
1030 }
1031 
1032 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1033 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1034 					struct dwc2_hsotg_ep *hs_ep,
1035 				       struct dwc2_hsotg_req *hs_req,
1036 				       int result);
1037 
1038 /**
1039  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040  * @hsotg: The controller state.
1041  * @hs_ep: The endpoint to process a request for
1042  * @hs_req: The request to start.
1043  * @continuing: True if we are doing more for the current request.
1044  *
1045  * Start the given request running by setting the endpoint registers
1046  * appropriately, and writing any data to the FIFOs.
1047  */
1048 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1049 				 struct dwc2_hsotg_ep *hs_ep,
1050 				struct dwc2_hsotg_req *hs_req,
1051 				bool continuing)
1052 {
1053 	struct usb_request *ureq = &hs_req->req;
1054 	int index = hs_ep->index;
1055 	int dir_in = hs_ep->dir_in;
1056 	u32 epctrl_reg;
1057 	u32 epsize_reg;
1058 	u32 epsize;
1059 	u32 ctrl;
1060 	unsigned int length;
1061 	unsigned int packets;
1062 	unsigned int maxreq;
1063 	unsigned int dma_reg;
1064 
1065 	if (index != 0) {
1066 		if (hs_ep->req && !continuing) {
1067 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1068 			WARN_ON(1);
1069 			return;
1070 		} else if (hs_ep->req != hs_req && continuing) {
1071 			dev_err(hsotg->dev,
1072 				"%s: continue different req\n", __func__);
1073 			WARN_ON(1);
1074 			return;
1075 		}
1076 	}
1077 
1078 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1079 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1080 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1081 
1082 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1084 		hs_ep->dir_in ? "in" : "out");
1085 
1086 	/* If endpoint is stalled, we will restart request later */
1087 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1088 
1089 	if (index && ctrl & DXEPCTL_STALL) {
1090 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1091 		return;
1092 	}
1093 
1094 	length = ureq->length - ureq->actual;
1095 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1096 		ureq->length, ureq->actual);
1097 
1098 	if (!using_desc_dma(hsotg))
1099 		maxreq = get_ep_limit(hs_ep);
1100 	else
1101 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1102 
1103 	if (length > maxreq) {
1104 		int round = maxreq % hs_ep->ep.maxpacket;
1105 
1106 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1107 			__func__, length, maxreq, round);
1108 
1109 		/* round down to multiple of packets */
1110 		if (round)
1111 			maxreq -= round;
1112 
1113 		length = maxreq;
1114 	}
1115 
1116 	if (length)
1117 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1118 	else
1119 		packets = 1;	/* send one packet if length is zero. */
1120 
1121 	if (dir_in && index != 0)
1122 		if (hs_ep->isochronous)
1123 			epsize = DXEPTSIZ_MC(packets);
1124 		else
1125 			epsize = DXEPTSIZ_MC(1);
1126 	else
1127 		epsize = 0;
1128 
1129 	/*
1130 	 * zero length packet should be programmed on its own and should not
1131 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1132 	 */
1133 	if (dir_in && ureq->zero && !continuing) {
1134 		/* Test if zlp is actually required. */
1135 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1136 		    !(ureq->length % hs_ep->ep.maxpacket))
1137 			hs_ep->send_zlp = 1;
1138 	}
1139 
1140 	epsize |= DXEPTSIZ_PKTCNT(packets);
1141 	epsize |= DXEPTSIZ_XFERSIZE(length);
1142 
1143 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1145 
1146 	/* store the request as the current one we're doing */
1147 	hs_ep->req = hs_req;
1148 
1149 	if (using_desc_dma(hsotg)) {
1150 		u32 offset = 0;
1151 		u32 mps = hs_ep->ep.maxpacket;
1152 
1153 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1154 		if (!dir_in) {
1155 			if (!index)
1156 				length = mps;
1157 			else if (length % mps)
1158 				length += (mps - (length % mps));
1159 		}
1160 
1161 		if (continuing)
1162 			offset = ureq->actual;
1163 
1164 		/* Fill DDMA chain entries */
1165 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1166 						     length);
1167 
1168 		/* write descriptor chain address to control register */
1169 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1170 
1171 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1172 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1173 	} else {
1174 		/* write size / packets */
1175 		dwc2_writel(hsotg, epsize, epsize_reg);
1176 
1177 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1178 			/*
1179 			 * write DMA address to control register, buffer
1180 			 * already synced by dwc2_hsotg_ep_queue().
1181 			 */
1182 
1183 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1184 
1185 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1186 				__func__, &ureq->dma, dma_reg);
1187 		}
1188 	}
1189 
1190 	if (hs_ep->isochronous) {
1191 		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1192 			if (hs_ep->interval == 1) {
1193 				if (hs_ep->target_frame & 0x1)
1194 					ctrl |= DXEPCTL_SETODDFR;
1195 				else
1196 					ctrl |= DXEPCTL_SETEVENFR;
1197 			}
1198 			ctrl |= DXEPCTL_CNAK;
1199 		} else {
1200 			hs_req->req.frame_number = hs_ep->target_frame;
1201 			hs_req->req.actual = 0;
1202 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1203 			return;
1204 		}
1205 	}
1206 
1207 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1208 
1209 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1210 
1211 	/* For Setup request do not clear NAK */
1212 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1213 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1214 
1215 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1216 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1217 
1218 	/*
1219 	 * set these, it seems that DMA support increments past the end
1220 	 * of the packet buffer so we need to calculate the length from
1221 	 * this information.
1222 	 */
1223 	hs_ep->size_loaded = length;
1224 	hs_ep->last_load = ureq->actual;
1225 
1226 	if (dir_in && !using_dma(hsotg)) {
1227 		/* set these anyway, we may need them for non-periodic in */
1228 		hs_ep->fifo_load = 0;
1229 
1230 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1231 	}
1232 
1233 	/*
1234 	 * Note, trying to clear the NAK here causes problems with transmit
1235 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1236 	 */
1237 
1238 	/* check ep is enabled */
1239 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1240 		dev_dbg(hsotg->dev,
1241 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242 			 index, dwc2_readl(hsotg, epctrl_reg));
1243 
1244 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1245 		__func__, dwc2_readl(hsotg, epctrl_reg));
1246 
1247 	/* enable ep interrupts */
1248 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1249 }
1250 
1251 /**
1252  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253  * @hsotg: The device state.
1254  * @hs_ep: The endpoint the request is on.
1255  * @req: The request being processed.
1256  *
1257  * We've been asked to queue a request, so ensure that the memory buffer
1258  * is correctly setup for DMA. If we've been passed an extant DMA address
1259  * then ensure the buffer has been synced to memory. If our buffer has no
1260  * DMA memory, then we map the memory and mark our request to allow us to
1261  * cleanup on completion.
1262  */
1263 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1264 			      struct dwc2_hsotg_ep *hs_ep,
1265 			     struct usb_request *req)
1266 {
1267 	int ret;
1268 
1269 	hs_ep->map_dir = hs_ep->dir_in;
1270 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1271 	if (ret)
1272 		goto dma_error;
1273 
1274 	return 0;
1275 
1276 dma_error:
1277 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1278 		__func__, req->buf, req->length);
1279 
1280 	return -EIO;
1281 }
1282 
1283 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1284 						 struct dwc2_hsotg_ep *hs_ep,
1285 						 struct dwc2_hsotg_req *hs_req)
1286 {
1287 	void *req_buf = hs_req->req.buf;
1288 
1289 	/* If dma is not being used or buffer is aligned */
1290 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1291 		return 0;
1292 
1293 	WARN_ON(hs_req->saved_req_buf);
1294 
1295 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1296 		hs_ep->ep.name, req_buf, hs_req->req.length);
1297 
1298 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1299 	if (!hs_req->req.buf) {
1300 		hs_req->req.buf = req_buf;
1301 		dev_err(hsotg->dev,
1302 			"%s: unable to allocate memory for bounce buffer\n",
1303 			__func__);
1304 		return -ENOMEM;
1305 	}
1306 
1307 	/* Save actual buffer */
1308 	hs_req->saved_req_buf = req_buf;
1309 
1310 	if (hs_ep->dir_in)
1311 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1312 	return 0;
1313 }
1314 
1315 static void
1316 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1317 					 struct dwc2_hsotg_ep *hs_ep,
1318 					 struct dwc2_hsotg_req *hs_req)
1319 {
1320 	/* If dma is not being used or buffer was aligned */
1321 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1322 		return;
1323 
1324 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1325 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1326 
1327 	/* Copy data from bounce buffer on successful out transfer */
1328 	if (!hs_ep->dir_in && !hs_req->req.status)
1329 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1330 		       hs_req->req.actual);
1331 
1332 	/* Free bounce buffer */
1333 	kfree(hs_req->req.buf);
1334 
1335 	hs_req->req.buf = hs_req->saved_req_buf;
1336 	hs_req->saved_req_buf = NULL;
1337 }
1338 
1339 /**
1340  * dwc2_gadget_target_frame_elapsed - Checks target frame
1341  * @hs_ep: The driver endpoint to check
1342  *
1343  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344  * corresponding transfer.
1345  */
1346 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1347 {
1348 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1349 	u32 target_frame = hs_ep->target_frame;
1350 	u32 current_frame = hsotg->frame_number;
1351 	bool frame_overrun = hs_ep->frame_overrun;
1352 	u16 limit = DSTS_SOFFN_LIMIT;
1353 
1354 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1355 		limit >>= 3;
1356 
1357 	if (!frame_overrun && current_frame >= target_frame)
1358 		return true;
1359 
1360 	if (frame_overrun && current_frame >= target_frame &&
1361 	    ((current_frame - target_frame) < limit / 2))
1362 		return true;
1363 
1364 	return false;
1365 }
1366 
1367 /*
1368  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369  * @hsotg: The driver state
1370  * @hs_ep: the ep descriptor chain is for
1371  *
1372  * Called to update EP0 structure's pointers depend on stage of
1373  * control transfer.
1374  */
1375 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1376 					  struct dwc2_hsotg_ep *hs_ep)
1377 {
1378 	switch (hsotg->ep0_state) {
1379 	case DWC2_EP0_SETUP:
1380 	case DWC2_EP0_STATUS_OUT:
1381 		hs_ep->desc_list = hsotg->setup_desc[0];
1382 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1383 		break;
1384 	case DWC2_EP0_DATA_IN:
1385 	case DWC2_EP0_STATUS_IN:
1386 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1387 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1388 		break;
1389 	case DWC2_EP0_DATA_OUT:
1390 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1391 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1392 		break;
1393 	default:
1394 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1395 			hsotg->ep0_state);
1396 		return -EINVAL;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1403 			       gfp_t gfp_flags)
1404 {
1405 	struct dwc2_hsotg_req *hs_req = our_req(req);
1406 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1407 	struct dwc2_hsotg *hs = hs_ep->parent;
1408 	bool first;
1409 	int ret;
1410 	u32 maxsize = 0;
1411 	u32 mask = 0;
1412 
1413 
1414 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415 		ep->name, req, req->length, req->buf, req->no_interrupt,
1416 		req->zero, req->short_not_ok);
1417 
1418 	/* Prevent new request submission when controller is suspended */
1419 	if (hs->lx_state != DWC2_L0) {
1420 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1421 			__func__);
1422 		return -EAGAIN;
1423 	}
1424 
1425 	/* initialise status of the request */
1426 	INIT_LIST_HEAD(&hs_req->queue);
1427 	req->actual = 0;
1428 	req->status = -EINPROGRESS;
1429 
1430 	/* Don't queue ISOC request if length greater than mps*mc */
1431 	if (hs_ep->isochronous &&
1432 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1433 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1434 		return -EINVAL;
1435 	}
1436 
1437 	/* In DDMA mode for ISOC's don't queue request if length greater
1438 	 * than descriptor limits.
1439 	 */
1440 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1441 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1442 		if (hs_ep->dir_in && req->length > maxsize) {
1443 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1444 				req->length, maxsize);
1445 			return -EINVAL;
1446 		}
1447 
1448 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1449 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1450 				req->length, hs_ep->ep.maxpacket);
1451 			return -EINVAL;
1452 		}
1453 	}
1454 
1455 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1456 	if (ret)
1457 		return ret;
1458 
1459 	/* if we're using DMA, sync the buffers as necessary */
1460 	if (using_dma(hs)) {
1461 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1462 		if (ret)
1463 			return ret;
1464 	}
1465 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1466 	if (using_desc_dma(hs) && !hs_ep->index) {
1467 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1468 		if (ret)
1469 			return ret;
1470 	}
1471 
1472 	first = list_empty(&hs_ep->queue);
1473 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1474 
1475 	/*
1476 	 * Handle DDMA isochronous transfers separately - just add new entry
1477 	 * to the descriptor chain.
1478 	 * Transfer will be started once SW gets either one of NAK or
1479 	 * OutTknEpDis interrupts.
1480 	 */
1481 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1482 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1483 			dma_addr_t dma_addr = hs_req->req.dma;
1484 
1485 			if (hs_req->req.num_sgs) {
1486 				WARN_ON(hs_req->req.num_sgs > 1);
1487 				dma_addr = sg_dma_address(hs_req->req.sg);
1488 			}
1489 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1490 						   hs_req->req.length);
1491 		}
1492 		return 0;
1493 	}
1494 
1495 	/* Change EP direction if status phase request is after data out */
1496 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1497 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1498 		hs_ep->dir_in = 1;
1499 
1500 	if (first) {
1501 		if (!hs_ep->isochronous) {
1502 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1503 			return 0;
1504 		}
1505 
1506 		/* Update current frame number value. */
1507 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1508 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1509 			dwc2_gadget_incr_frame_num(hs_ep);
1510 			/* Update current frame number value once more as it
1511 			 * changes here.
1512 			 */
1513 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1514 		}
1515 
1516 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1517 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1518 	}
1519 	return 0;
1520 }
1521 
1522 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1523 				    gfp_t gfp_flags)
1524 {
1525 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1526 	struct dwc2_hsotg *hs = hs_ep->parent;
1527 	unsigned long flags;
1528 	int ret;
1529 
1530 	spin_lock_irqsave(&hs->lock, flags);
1531 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1532 	spin_unlock_irqrestore(&hs->lock, flags);
1533 
1534 	return ret;
1535 }
1536 
1537 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1538 				       struct usb_request *req)
1539 {
1540 	struct dwc2_hsotg_req *hs_req = our_req(req);
1541 
1542 	kfree(hs_req);
1543 }
1544 
1545 /**
1546  * dwc2_hsotg_complete_oursetup - setup completion callback
1547  * @ep: The endpoint the request was on.
1548  * @req: The request completed.
1549  *
1550  * Called on completion of any requests the driver itself
1551  * submitted that need cleaning up.
1552  */
1553 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1554 					 struct usb_request *req)
1555 {
1556 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1557 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1558 
1559 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1560 
1561 	dwc2_hsotg_ep_free_request(ep, req);
1562 }
1563 
1564 /**
1565  * ep_from_windex - convert control wIndex value to endpoint
1566  * @hsotg: The driver state.
1567  * @windex: The control request wIndex field (in host order).
1568  *
1569  * Convert the given wIndex into a pointer to an driver endpoint
1570  * structure, or return NULL if it is not a valid endpoint.
1571  */
1572 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1573 					    u32 windex)
1574 {
1575 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1576 	int idx = windex & 0x7F;
1577 
1578 	if (windex >= 0x100)
1579 		return NULL;
1580 
1581 	if (idx > hsotg->num_of_eps)
1582 		return NULL;
1583 
1584 	return index_to_ep(hsotg, idx, dir);
1585 }
1586 
1587 /**
1588  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1589  * @hsotg: The driver state.
1590  * @testmode: requested usb test mode
1591  * Enable usb Test Mode requested by the Host.
1592  */
1593 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1594 {
1595 	int dctl = dwc2_readl(hsotg, DCTL);
1596 
1597 	dctl &= ~DCTL_TSTCTL_MASK;
1598 	switch (testmode) {
1599 	case USB_TEST_J:
1600 	case USB_TEST_K:
1601 	case USB_TEST_SE0_NAK:
1602 	case USB_TEST_PACKET:
1603 	case USB_TEST_FORCE_ENABLE:
1604 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1605 		break;
1606 	default:
1607 		return -EINVAL;
1608 	}
1609 	dwc2_writel(hsotg, dctl, DCTL);
1610 	return 0;
1611 }
1612 
1613 /**
1614  * dwc2_hsotg_send_reply - send reply to control request
1615  * @hsotg: The device state
1616  * @ep: Endpoint 0
1617  * @buff: Buffer for request
1618  * @length: Length of reply.
1619  *
1620  * Create a request and queue it on the given endpoint. This is useful as
1621  * an internal method of sending replies to certain control requests, etc.
1622  */
1623 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1624 				 struct dwc2_hsotg_ep *ep,
1625 				void *buff,
1626 				int length)
1627 {
1628 	struct usb_request *req;
1629 	int ret;
1630 
1631 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1632 
1633 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1634 	hsotg->ep0_reply = req;
1635 	if (!req) {
1636 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1637 		return -ENOMEM;
1638 	}
1639 
1640 	req->buf = hsotg->ep0_buff;
1641 	req->length = length;
1642 	/*
1643 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1644 	 * STATUS stage.
1645 	 */
1646 	req->zero = 0;
1647 	req->complete = dwc2_hsotg_complete_oursetup;
1648 
1649 	if (length)
1650 		memcpy(req->buf, buff, length);
1651 
1652 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1653 	if (ret) {
1654 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1655 		return ret;
1656 	}
1657 
1658 	return 0;
1659 }
1660 
1661 /**
1662  * dwc2_hsotg_process_req_status - process request GET_STATUS
1663  * @hsotg: The device state
1664  * @ctrl: USB control request
1665  */
1666 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1667 					 struct usb_ctrlrequest *ctrl)
1668 {
1669 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1670 	struct dwc2_hsotg_ep *ep;
1671 	__le16 reply;
1672 	u16 status;
1673 	int ret;
1674 
1675 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1676 
1677 	if (!ep0->dir_in) {
1678 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1679 		return -EINVAL;
1680 	}
1681 
1682 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1683 	case USB_RECIP_DEVICE:
1684 		status = hsotg->gadget.is_selfpowered <<
1685 			 USB_DEVICE_SELF_POWERED;
1686 		status |= hsotg->remote_wakeup_allowed <<
1687 			  USB_DEVICE_REMOTE_WAKEUP;
1688 		reply = cpu_to_le16(status);
1689 		break;
1690 
1691 	case USB_RECIP_INTERFACE:
1692 		/* currently, the data result should be zero */
1693 		reply = cpu_to_le16(0);
1694 		break;
1695 
1696 	case USB_RECIP_ENDPOINT:
1697 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1698 		if (!ep)
1699 			return -ENOENT;
1700 
1701 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1702 		break;
1703 
1704 	default:
1705 		return 0;
1706 	}
1707 
1708 	if (le16_to_cpu(ctrl->wLength) != 2)
1709 		return -EINVAL;
1710 
1711 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1712 	if (ret) {
1713 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1714 		return ret;
1715 	}
1716 
1717 	return 1;
1718 }
1719 
1720 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1721 
1722 /**
1723  * get_ep_head - return the first request on the endpoint
1724  * @hs_ep: The controller endpoint to get
1725  *
1726  * Get the first request on the endpoint.
1727  */
1728 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1729 {
1730 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1731 					queue);
1732 }
1733 
1734 /**
1735  * dwc2_gadget_start_next_request - Starts next request from ep queue
1736  * @hs_ep: Endpoint structure
1737  *
1738  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1739  * in its handler. Hence we need to unmask it here to be able to do
1740  * resynchronization.
1741  */
1742 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1743 {
1744 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1745 	int dir_in = hs_ep->dir_in;
1746 	struct dwc2_hsotg_req *hs_req;
1747 
1748 	if (!list_empty(&hs_ep->queue)) {
1749 		hs_req = get_ep_head(hs_ep);
1750 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1751 		return;
1752 	}
1753 	if (!hs_ep->isochronous)
1754 		return;
1755 
1756 	if (dir_in) {
1757 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1758 			__func__);
1759 	} else {
1760 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1761 			__func__);
1762 	}
1763 }
1764 
1765 /**
1766  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1767  * @hsotg: The device state
1768  * @ctrl: USB control request
1769  */
1770 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1771 					  struct usb_ctrlrequest *ctrl)
1772 {
1773 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1774 	struct dwc2_hsotg_req *hs_req;
1775 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1776 	struct dwc2_hsotg_ep *ep;
1777 	int ret;
1778 	bool halted;
1779 	u32 recip;
1780 	u32 wValue;
1781 	u32 wIndex;
1782 
1783 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1784 		__func__, set ? "SET" : "CLEAR");
1785 
1786 	wValue = le16_to_cpu(ctrl->wValue);
1787 	wIndex = le16_to_cpu(ctrl->wIndex);
1788 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1789 
1790 	switch (recip) {
1791 	case USB_RECIP_DEVICE:
1792 		switch (wValue) {
1793 		case USB_DEVICE_REMOTE_WAKEUP:
1794 			if (set)
1795 				hsotg->remote_wakeup_allowed = 1;
1796 			else
1797 				hsotg->remote_wakeup_allowed = 0;
1798 			break;
1799 
1800 		case USB_DEVICE_TEST_MODE:
1801 			if ((wIndex & 0xff) != 0)
1802 				return -EINVAL;
1803 			if (!set)
1804 				return -EINVAL;
1805 
1806 			hsotg->test_mode = wIndex >> 8;
1807 			break;
1808 		default:
1809 			return -ENOENT;
1810 		}
1811 
1812 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1813 		if (ret) {
1814 			dev_err(hsotg->dev,
1815 				"%s: failed to send reply\n", __func__);
1816 			return ret;
1817 		}
1818 		break;
1819 
1820 	case USB_RECIP_ENDPOINT:
1821 		ep = ep_from_windex(hsotg, wIndex);
1822 		if (!ep) {
1823 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1824 				__func__, wIndex);
1825 			return -ENOENT;
1826 		}
1827 
1828 		switch (wValue) {
1829 		case USB_ENDPOINT_HALT:
1830 			halted = ep->halted;
1831 
1832 			if (!ep->wedged)
1833 				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1834 
1835 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1836 			if (ret) {
1837 				dev_err(hsotg->dev,
1838 					"%s: failed to send reply\n", __func__);
1839 				return ret;
1840 			}
1841 
1842 			/*
1843 			 * we have to complete all requests for ep if it was
1844 			 * halted, and the halt was cleared by CLEAR_FEATURE
1845 			 */
1846 
1847 			if (!set && halted) {
1848 				/*
1849 				 * If we have request in progress,
1850 				 * then complete it
1851 				 */
1852 				if (ep->req) {
1853 					hs_req = ep->req;
1854 					ep->req = NULL;
1855 					list_del_init(&hs_req->queue);
1856 					if (hs_req->req.complete) {
1857 						spin_unlock(&hsotg->lock);
1858 						usb_gadget_giveback_request(
1859 							&ep->ep, &hs_req->req);
1860 						spin_lock(&hsotg->lock);
1861 					}
1862 				}
1863 
1864 				/* If we have pending request, then start it */
1865 				if (!ep->req)
1866 					dwc2_gadget_start_next_request(ep);
1867 			}
1868 
1869 			break;
1870 
1871 		default:
1872 			return -ENOENT;
1873 		}
1874 		break;
1875 	default:
1876 		return -ENOENT;
1877 	}
1878 	return 1;
1879 }
1880 
1881 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1882 
1883 /**
1884  * dwc2_hsotg_stall_ep0 - stall ep0
1885  * @hsotg: The device state
1886  *
1887  * Set stall for ep0 as response for setup request.
1888  */
1889 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1890 {
1891 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1892 	u32 reg;
1893 	u32 ctrl;
1894 
1895 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1896 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1897 
1898 	/*
1899 	 * DxEPCTL_Stall will be cleared by EP once it has
1900 	 * taken effect, so no need to clear later.
1901 	 */
1902 
1903 	ctrl = dwc2_readl(hsotg, reg);
1904 	ctrl |= DXEPCTL_STALL;
1905 	ctrl |= DXEPCTL_CNAK;
1906 	dwc2_writel(hsotg, ctrl, reg);
1907 
1908 	dev_dbg(hsotg->dev,
1909 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1910 		ctrl, reg, dwc2_readl(hsotg, reg));
1911 
1912 	 /*
1913 	  * complete won't be called, so we enqueue
1914 	  * setup request here
1915 	  */
1916 	 dwc2_hsotg_enqueue_setup(hsotg);
1917 }
1918 
1919 /**
1920  * dwc2_hsotg_process_control - process a control request
1921  * @hsotg: The device state
1922  * @ctrl: The control request received
1923  *
1924  * The controller has received the SETUP phase of a control request, and
1925  * needs to work out what to do next (and whether to pass it on to the
1926  * gadget driver).
1927  */
1928 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1929 				       struct usb_ctrlrequest *ctrl)
1930 {
1931 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1932 	int ret = 0;
1933 	u32 dcfg;
1934 
1935 	dev_dbg(hsotg->dev,
1936 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1937 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1938 		ctrl->wIndex, ctrl->wLength);
1939 
1940 	if (ctrl->wLength == 0) {
1941 		ep0->dir_in = 1;
1942 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1943 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1944 		ep0->dir_in = 1;
1945 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1946 	} else {
1947 		ep0->dir_in = 0;
1948 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1949 	}
1950 
1951 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1952 		switch (ctrl->bRequest) {
1953 		case USB_REQ_SET_ADDRESS:
1954 			hsotg->connected = 1;
1955 			dcfg = dwc2_readl(hsotg, DCFG);
1956 			dcfg &= ~DCFG_DEVADDR_MASK;
1957 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1958 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1959 			dwc2_writel(hsotg, dcfg, DCFG);
1960 
1961 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1962 
1963 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1964 			return;
1965 
1966 		case USB_REQ_GET_STATUS:
1967 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1968 			break;
1969 
1970 		case USB_REQ_CLEAR_FEATURE:
1971 		case USB_REQ_SET_FEATURE:
1972 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1973 			break;
1974 		}
1975 	}
1976 
1977 	/* as a fallback, try delivering it to the driver to deal with */
1978 
1979 	if (ret == 0 && hsotg->driver) {
1980 		spin_unlock(&hsotg->lock);
1981 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1982 		spin_lock(&hsotg->lock);
1983 		if (ret < 0)
1984 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1985 	}
1986 
1987 	hsotg->delayed_status = false;
1988 	if (ret == USB_GADGET_DELAYED_STATUS)
1989 		hsotg->delayed_status = true;
1990 
1991 	/*
1992 	 * the request is either unhandlable, or is not formatted correctly
1993 	 * so respond with a STALL for the status stage to indicate failure.
1994 	 */
1995 
1996 	if (ret < 0)
1997 		dwc2_hsotg_stall_ep0(hsotg);
1998 }
1999 
2000 /**
2001  * dwc2_hsotg_complete_setup - completion of a setup transfer
2002  * @ep: The endpoint the request was on.
2003  * @req: The request completed.
2004  *
2005  * Called on completion of any requests the driver itself submitted for
2006  * EP0 setup packets
2007  */
2008 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2009 				      struct usb_request *req)
2010 {
2011 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2012 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2013 
2014 	if (req->status < 0) {
2015 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2016 		return;
2017 	}
2018 
2019 	spin_lock(&hsotg->lock);
2020 	if (req->actual == 0)
2021 		dwc2_hsotg_enqueue_setup(hsotg);
2022 	else
2023 		dwc2_hsotg_process_control(hsotg, req->buf);
2024 	spin_unlock(&hsotg->lock);
2025 }
2026 
2027 /**
2028  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2029  * @hsotg: The device state.
2030  *
2031  * Enqueue a request on EP0 if necessary to received any SETUP packets
2032  * received from the host.
2033  */
2034 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2035 {
2036 	struct usb_request *req = hsotg->ctrl_req;
2037 	struct dwc2_hsotg_req *hs_req = our_req(req);
2038 	int ret;
2039 
2040 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2041 
2042 	req->zero = 0;
2043 	req->length = 8;
2044 	req->buf = hsotg->ctrl_buff;
2045 	req->complete = dwc2_hsotg_complete_setup;
2046 
2047 	if (!list_empty(&hs_req->queue)) {
2048 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2049 		return;
2050 	}
2051 
2052 	hsotg->eps_out[0]->dir_in = 0;
2053 	hsotg->eps_out[0]->send_zlp = 0;
2054 	hsotg->ep0_state = DWC2_EP0_SETUP;
2055 
2056 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2057 	if (ret < 0) {
2058 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2059 		/*
2060 		 * Don't think there's much we can do other than watch the
2061 		 * driver fail.
2062 		 */
2063 	}
2064 }
2065 
2066 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2067 				   struct dwc2_hsotg_ep *hs_ep)
2068 {
2069 	u32 ctrl;
2070 	u8 index = hs_ep->index;
2071 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2072 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2073 
2074 	if (hs_ep->dir_in)
2075 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2076 			index);
2077 	else
2078 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2079 			index);
2080 	if (using_desc_dma(hsotg)) {
2081 		/* Not specific buffer needed for ep0 ZLP */
2082 		dma_addr_t dma = hs_ep->desc_list_dma;
2083 
2084 		if (!index)
2085 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2086 
2087 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2088 	} else {
2089 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2090 			    DXEPTSIZ_XFERSIZE(0),
2091 			    epsiz_reg);
2092 	}
2093 
2094 	ctrl = dwc2_readl(hsotg, epctl_reg);
2095 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2096 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2097 	ctrl |= DXEPCTL_USBACTEP;
2098 	dwc2_writel(hsotg, ctrl, epctl_reg);
2099 }
2100 
2101 /**
2102  * dwc2_hsotg_complete_request - complete a request given to us
2103  * @hsotg: The device state.
2104  * @hs_ep: The endpoint the request was on.
2105  * @hs_req: The request to complete.
2106  * @result: The result code (0 => Ok, otherwise errno)
2107  *
2108  * The given request has finished, so call the necessary completion
2109  * if it has one and then look to see if we can start a new request
2110  * on the endpoint.
2111  *
2112  * Note, expects the ep to already be locked as appropriate.
2113  */
2114 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2115 					struct dwc2_hsotg_ep *hs_ep,
2116 				       struct dwc2_hsotg_req *hs_req,
2117 				       int result)
2118 {
2119 	if (!hs_req) {
2120 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2121 		return;
2122 	}
2123 
2124 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2125 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2126 
2127 	/*
2128 	 * only replace the status if we've not already set an error
2129 	 * from a previous transaction
2130 	 */
2131 
2132 	if (hs_req->req.status == -EINPROGRESS)
2133 		hs_req->req.status = result;
2134 
2135 	if (using_dma(hsotg))
2136 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2137 
2138 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2139 
2140 	hs_ep->req = NULL;
2141 	list_del_init(&hs_req->queue);
2142 
2143 	/*
2144 	 * call the complete request with the locks off, just in case the
2145 	 * request tries to queue more work for this endpoint.
2146 	 */
2147 
2148 	if (hs_req->req.complete) {
2149 		spin_unlock(&hsotg->lock);
2150 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2151 		spin_lock(&hsotg->lock);
2152 	}
2153 
2154 	/* In DDMA don't need to proceed to starting of next ISOC request */
2155 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2156 		return;
2157 
2158 	/*
2159 	 * Look to see if there is anything else to do. Note, the completion
2160 	 * of the previous request may have caused a new request to be started
2161 	 * so be careful when doing this.
2162 	 */
2163 
2164 	if (!hs_ep->req && result >= 0)
2165 		dwc2_gadget_start_next_request(hs_ep);
2166 }
2167 
2168 /*
2169  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2170  * @hs_ep: The endpoint the request was on.
2171  *
2172  * Get first request from the ep queue, determine descriptor on which complete
2173  * happened. SW discovers which descriptor currently in use by HW, adjusts
2174  * dma_address and calculates index of completed descriptor based on the value
2175  * of DEPDMA register. Update actual length of request, giveback to gadget.
2176  */
2177 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2178 {
2179 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2180 	struct dwc2_hsotg_req *hs_req;
2181 	struct usb_request *ureq;
2182 	u32 desc_sts;
2183 	u32 mask;
2184 
2185 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186 
2187 	/* Process only descriptors with buffer status set to DMA done */
2188 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2189 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2190 
2191 		hs_req = get_ep_head(hs_ep);
2192 		if (!hs_req) {
2193 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2194 			return;
2195 		}
2196 		ureq = &hs_req->req;
2197 
2198 		/* Check completion status */
2199 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2200 			DEV_DMA_STS_SUCC) {
2201 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2202 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2203 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2204 				DEV_DMA_ISOC_NBYTES_SHIFT);
2205 
2206 			/* Adjust actual len for ISOC Out if len is
2207 			 * not align of 4
2208 			 */
2209 			if (!hs_ep->dir_in && ureq->length & 0x3)
2210 				ureq->actual += 4 - (ureq->length & 0x3);
2211 
2212 			/* Set actual frame number for completed transfers */
2213 			ureq->frame_number =
2214 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2215 				DEV_DMA_ISOC_FRNUM_SHIFT;
2216 		}
2217 
2218 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2219 
2220 		hs_ep->compl_desc++;
2221 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2222 			hs_ep->compl_desc = 0;
2223 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2224 	}
2225 }
2226 
2227 /*
2228  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2229  * @hs_ep: The isochronous endpoint.
2230  *
2231  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2232  * interrupt. Reset target frame and next_desc to allow to start
2233  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2234  * interrupt for OUT direction.
2235  */
2236 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2237 {
2238 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2239 
2240 	if (!hs_ep->dir_in)
2241 		dwc2_flush_rx_fifo(hsotg);
2242 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2243 
2244 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2245 	hs_ep->next_desc = 0;
2246 	hs_ep->compl_desc = 0;
2247 }
2248 
2249 /**
2250  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2251  * @hsotg: The device state.
2252  * @ep_idx: The endpoint index for the data
2253  * @size: The size of data in the fifo, in bytes
2254  *
2255  * The FIFO status shows there is data to read from the FIFO for a given
2256  * endpoint, so sort out whether we need to read the data into a request
2257  * that has been made for that endpoint.
2258  */
2259 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2260 {
2261 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2262 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2263 	int to_read;
2264 	int max_req;
2265 	int read_ptr;
2266 
2267 	if (!hs_req) {
2268 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2269 		int ptr;
2270 
2271 		dev_dbg(hsotg->dev,
2272 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2273 			 __func__, size, ep_idx, epctl);
2274 
2275 		/* dump the data from the FIFO, we've nothing we can do */
2276 		for (ptr = 0; ptr < size; ptr += 4)
2277 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2278 
2279 		return;
2280 	}
2281 
2282 	to_read = size;
2283 	read_ptr = hs_req->req.actual;
2284 	max_req = hs_req->req.length - read_ptr;
2285 
2286 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2287 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2288 
2289 	if (to_read > max_req) {
2290 		/*
2291 		 * more data appeared than we where willing
2292 		 * to deal with in this request.
2293 		 */
2294 
2295 		/* currently we don't deal this */
2296 		WARN_ON_ONCE(1);
2297 	}
2298 
2299 	hs_ep->total_data += to_read;
2300 	hs_req->req.actual += to_read;
2301 	to_read = DIV_ROUND_UP(to_read, 4);
2302 
2303 	/*
2304 	 * note, we might over-write the buffer end by 3 bytes depending on
2305 	 * alignment of the data.
2306 	 */
2307 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2308 		       hs_req->req.buf + read_ptr, to_read);
2309 }
2310 
2311 /**
2312  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2313  * @hsotg: The device instance
2314  * @dir_in: If IN zlp
2315  *
2316  * Generate a zero-length IN packet request for terminating a SETUP
2317  * transaction.
2318  *
2319  * Note, since we don't write any data to the TxFIFO, then it is
2320  * currently believed that we do not need to wait for any space in
2321  * the TxFIFO.
2322  */
2323 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2324 {
2325 	/* eps_out[0] is used in both directions */
2326 	hsotg->eps_out[0]->dir_in = dir_in;
2327 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2328 
2329 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2330 }
2331 
2332 /*
2333  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2334  * @hs_ep - The endpoint on which transfer went
2335  *
2336  * Iterate over endpoints descriptor chain and get info on bytes remained
2337  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2338  */
2339 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2340 {
2341 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2342 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2343 	unsigned int bytes_rem = 0;
2344 	unsigned int bytes_rem_correction = 0;
2345 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2346 	int i;
2347 	u32 status;
2348 	u32 mps = hs_ep->ep.maxpacket;
2349 	int dir_in = hs_ep->dir_in;
2350 
2351 	if (!desc)
2352 		return -EINVAL;
2353 
2354 	/* Interrupt OUT EP with mps not multiple of 4 */
2355 	if (hs_ep->index)
2356 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2357 			bytes_rem_correction = 4 - (mps % 4);
2358 
2359 	for (i = 0; i < hs_ep->desc_count; ++i) {
2360 		status = desc->status;
2361 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2362 		bytes_rem -= bytes_rem_correction;
2363 
2364 		if (status & DEV_DMA_STS_MASK)
2365 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2366 				i, status & DEV_DMA_STS_MASK);
2367 
2368 		if (status & DEV_DMA_L)
2369 			break;
2370 
2371 		desc++;
2372 	}
2373 
2374 	return bytes_rem;
2375 }
2376 
2377 /**
2378  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2379  * @hsotg: The device instance
2380  * @epnum: The endpoint received from
2381  *
2382  * The RXFIFO has delivered an OutDone event, which means that the data
2383  * transfer for an OUT endpoint has been completed, either by a short
2384  * packet or by the finish of a transfer.
2385  */
2386 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2387 {
2388 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2389 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2390 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2391 	struct usb_request *req = &hs_req->req;
2392 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2393 	int result = 0;
2394 
2395 	if (!hs_req) {
2396 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2397 		return;
2398 	}
2399 
2400 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2401 		dev_dbg(hsotg->dev, "zlp packet received\n");
2402 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2403 		dwc2_hsotg_enqueue_setup(hsotg);
2404 		return;
2405 	}
2406 
2407 	if (using_desc_dma(hsotg))
2408 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2409 
2410 	if (using_dma(hsotg)) {
2411 		unsigned int size_done;
2412 
2413 		/*
2414 		 * Calculate the size of the transfer by checking how much
2415 		 * is left in the endpoint size register and then working it
2416 		 * out from the amount we loaded for the transfer.
2417 		 *
2418 		 * We need to do this as DMA pointers are always 32bit aligned
2419 		 * so may overshoot/undershoot the transfer.
2420 		 */
2421 
2422 		size_done = hs_ep->size_loaded - size_left;
2423 		size_done += hs_ep->last_load;
2424 
2425 		req->actual = size_done;
2426 	}
2427 
2428 	/* if there is more request to do, schedule new transfer */
2429 	if (req->actual < req->length && size_left == 0) {
2430 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2431 		return;
2432 	}
2433 
2434 	if (req->actual < req->length && req->short_not_ok) {
2435 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2436 			__func__, req->actual, req->length);
2437 
2438 		/*
2439 		 * todo - what should we return here? there's no one else
2440 		 * even bothering to check the status.
2441 		 */
2442 	}
2443 
2444 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2445 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2446 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2447 		/* Move to STATUS IN */
2448 		if (!hsotg->delayed_status)
2449 			dwc2_hsotg_ep0_zlp(hsotg, true);
2450 	}
2451 
2452 	/* Set actual frame number for completed transfers */
2453 	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2454 		req->frame_number = hs_ep->target_frame;
2455 		dwc2_gadget_incr_frame_num(hs_ep);
2456 	}
2457 
2458 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2459 }
2460 
2461 /**
2462  * dwc2_hsotg_handle_rx - RX FIFO has data
2463  * @hsotg: The device instance
2464  *
2465  * The IRQ handler has detected that the RX FIFO has some data in it
2466  * that requires processing, so find out what is in there and do the
2467  * appropriate read.
2468  *
2469  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2470  * chunks, so if you have x packets received on an endpoint you'll get x
2471  * FIFO events delivered, each with a packet's worth of data in it.
2472  *
2473  * When using DMA, we should not be processing events from the RXFIFO
2474  * as the actual data should be sent to the memory directly and we turn
2475  * on the completion interrupts to get notifications of transfer completion.
2476  */
2477 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2478 {
2479 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2480 	u32 epnum, status, size;
2481 
2482 	WARN_ON(using_dma(hsotg));
2483 
2484 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2485 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2486 
2487 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2488 	size >>= GRXSTS_BYTECNT_SHIFT;
2489 
2490 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2491 		__func__, grxstsr, size, epnum);
2492 
2493 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2494 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2495 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2496 		break;
2497 
2498 	case GRXSTS_PKTSTS_OUTDONE:
2499 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2500 			dwc2_hsotg_read_frameno(hsotg));
2501 
2502 		if (!using_dma(hsotg))
2503 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2504 		break;
2505 
2506 	case GRXSTS_PKTSTS_SETUPDONE:
2507 		dev_dbg(hsotg->dev,
2508 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2509 			dwc2_hsotg_read_frameno(hsotg),
2510 			dwc2_readl(hsotg, DOEPCTL(0)));
2511 		/*
2512 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2513 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2514 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2515 		 */
2516 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2517 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2518 		break;
2519 
2520 	case GRXSTS_PKTSTS_OUTRX:
2521 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2522 		break;
2523 
2524 	case GRXSTS_PKTSTS_SETUPRX:
2525 		dev_dbg(hsotg->dev,
2526 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2527 			dwc2_hsotg_read_frameno(hsotg),
2528 			dwc2_readl(hsotg, DOEPCTL(0)));
2529 
2530 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2531 
2532 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2533 		break;
2534 
2535 	default:
2536 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2537 			 __func__, grxstsr);
2538 
2539 		dwc2_hsotg_dump(hsotg);
2540 		break;
2541 	}
2542 }
2543 
2544 /**
2545  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2546  * @mps: The maximum packet size in bytes.
2547  */
2548 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2549 {
2550 	switch (mps) {
2551 	case 64:
2552 		return D0EPCTL_MPS_64;
2553 	case 32:
2554 		return D0EPCTL_MPS_32;
2555 	case 16:
2556 		return D0EPCTL_MPS_16;
2557 	case 8:
2558 		return D0EPCTL_MPS_8;
2559 	}
2560 
2561 	/* bad max packet size, warn and return invalid result */
2562 	WARN_ON(1);
2563 	return (u32)-1;
2564 }
2565 
2566 /**
2567  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2568  * @hsotg: The driver state.
2569  * @ep: The index number of the endpoint
2570  * @mps: The maximum packet size in bytes
2571  * @mc: The multicount value
2572  * @dir_in: True if direction is in.
2573  *
2574  * Configure the maximum packet size for the given endpoint, updating
2575  * the hardware control registers to reflect this.
2576  */
2577 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2578 					unsigned int ep, unsigned int mps,
2579 					unsigned int mc, unsigned int dir_in)
2580 {
2581 	struct dwc2_hsotg_ep *hs_ep;
2582 	u32 reg;
2583 
2584 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2585 	if (!hs_ep)
2586 		return;
2587 
2588 	if (ep == 0) {
2589 		u32 mps_bytes = mps;
2590 
2591 		/* EP0 is a special case */
2592 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2593 		if (mps > 3)
2594 			goto bad_mps;
2595 		hs_ep->ep.maxpacket = mps_bytes;
2596 		hs_ep->mc = 1;
2597 	} else {
2598 		if (mps > 1024)
2599 			goto bad_mps;
2600 		hs_ep->mc = mc;
2601 		if (mc > 3)
2602 			goto bad_mps;
2603 		hs_ep->ep.maxpacket = mps;
2604 	}
2605 
2606 	if (dir_in) {
2607 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2608 		reg &= ~DXEPCTL_MPS_MASK;
2609 		reg |= mps;
2610 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2611 	} else {
2612 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2613 		reg &= ~DXEPCTL_MPS_MASK;
2614 		reg |= mps;
2615 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2616 	}
2617 
2618 	return;
2619 
2620 bad_mps:
2621 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2622 }
2623 
2624 /**
2625  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2626  * @hsotg: The driver state
2627  * @idx: The index for the endpoint (0..15)
2628  */
2629 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2630 {
2631 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2632 		    GRSTCTL);
2633 
2634 	/* wait until the fifo is flushed */
2635 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2636 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2637 			 __func__);
2638 }
2639 
2640 /**
2641  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2642  * @hsotg: The driver state
2643  * @hs_ep: The driver endpoint to check.
2644  *
2645  * Check to see if there is a request that has data to send, and if so
2646  * make an attempt to write data into the FIFO.
2647  */
2648 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2649 			    struct dwc2_hsotg_ep *hs_ep)
2650 {
2651 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2652 
2653 	if (!hs_ep->dir_in || !hs_req) {
2654 		/**
2655 		 * if request is not enqueued, we disable interrupts
2656 		 * for endpoints, excepting ep0
2657 		 */
2658 		if (hs_ep->index != 0)
2659 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2660 					      hs_ep->dir_in, 0);
2661 		return 0;
2662 	}
2663 
2664 	if (hs_req->req.actual < hs_req->req.length) {
2665 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2666 			hs_ep->index);
2667 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 /**
2674  * dwc2_hsotg_complete_in - complete IN transfer
2675  * @hsotg: The device state.
2676  * @hs_ep: The endpoint that has just completed.
2677  *
2678  * An IN transfer has been completed, update the transfer's state and then
2679  * call the relevant completion routines.
2680  */
2681 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2682 				   struct dwc2_hsotg_ep *hs_ep)
2683 {
2684 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2685 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2686 	int size_left, size_done;
2687 
2688 	if (!hs_req) {
2689 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2690 		return;
2691 	}
2692 
2693 	/* Finish ZLP handling for IN EP0 transactions */
2694 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2695 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2696 
2697 		/*
2698 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2699 		 * changed to IN. Change back to complete OUT transfer request
2700 		 */
2701 		hs_ep->dir_in = 0;
2702 
2703 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2704 		if (hsotg->test_mode) {
2705 			int ret;
2706 
2707 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2708 			if (ret < 0) {
2709 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2710 					hsotg->test_mode);
2711 				dwc2_hsotg_stall_ep0(hsotg);
2712 				return;
2713 			}
2714 		}
2715 		dwc2_hsotg_enqueue_setup(hsotg);
2716 		return;
2717 	}
2718 
2719 	/*
2720 	 * Calculate the size of the transfer by checking how much is left
2721 	 * in the endpoint size register and then working it out from
2722 	 * the amount we loaded for the transfer.
2723 	 *
2724 	 * We do this even for DMA, as the transfer may have incremented
2725 	 * past the end of the buffer (DMA transfers are always 32bit
2726 	 * aligned).
2727 	 */
2728 	if (using_desc_dma(hsotg)) {
2729 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2730 		if (size_left < 0)
2731 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2732 				size_left);
2733 	} else {
2734 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2735 	}
2736 
2737 	size_done = hs_ep->size_loaded - size_left;
2738 	size_done += hs_ep->last_load;
2739 
2740 	if (hs_req->req.actual != size_done)
2741 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2742 			__func__, hs_req->req.actual, size_done);
2743 
2744 	hs_req->req.actual = size_done;
2745 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2746 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2747 
2748 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2749 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2750 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2751 		return;
2752 	}
2753 
2754 	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2755 	if (hs_ep->send_zlp) {
2756 		hs_ep->send_zlp = 0;
2757 		if (!using_desc_dma(hsotg)) {
2758 			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2759 			/* transfer will be completed on next complete interrupt */
2760 			return;
2761 		}
2762 	}
2763 
2764 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2765 		/* Move to STATUS OUT */
2766 		dwc2_hsotg_ep0_zlp(hsotg, false);
2767 		return;
2768 	}
2769 
2770 	/* Set actual frame number for completed transfers */
2771 	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2772 		hs_req->req.frame_number = hs_ep->target_frame;
2773 		dwc2_gadget_incr_frame_num(hs_ep);
2774 	}
2775 
2776 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2777 }
2778 
2779 /**
2780  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2781  * @hsotg: The device state.
2782  * @idx: Index of ep.
2783  * @dir_in: Endpoint direction 1-in 0-out.
2784  *
2785  * Reads for endpoint with given index and direction, by masking
2786  * epint_reg with coresponding mask.
2787  */
2788 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2789 					  unsigned int idx, int dir_in)
2790 {
2791 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2792 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2793 	u32 ints;
2794 	u32 mask;
2795 	u32 diepempmsk;
2796 
2797 	mask = dwc2_readl(hsotg, epmsk_reg);
2798 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2799 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2800 	mask |= DXEPINT_SETUP_RCVD;
2801 
2802 	ints = dwc2_readl(hsotg, epint_reg);
2803 	ints &= mask;
2804 	return ints;
2805 }
2806 
2807 /**
2808  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2809  * @hs_ep: The endpoint on which interrupt is asserted.
2810  *
2811  * This interrupt indicates that the endpoint has been disabled per the
2812  * application's request.
2813  *
2814  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2815  * in case of ISOC completes current request.
2816  *
2817  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2818  * request starts it.
2819  */
2820 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2821 {
2822 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2823 	struct dwc2_hsotg_req *hs_req;
2824 	unsigned char idx = hs_ep->index;
2825 	int dir_in = hs_ep->dir_in;
2826 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2827 	int dctl = dwc2_readl(hsotg, DCTL);
2828 
2829 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2830 
2831 	if (dir_in) {
2832 		int epctl = dwc2_readl(hsotg, epctl_reg);
2833 
2834 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2835 
2836 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2837 			int dctl = dwc2_readl(hsotg, DCTL);
2838 
2839 			dctl |= DCTL_CGNPINNAK;
2840 			dwc2_writel(hsotg, dctl, DCTL);
2841 		}
2842 	} else {
2843 
2844 		if (dctl & DCTL_GOUTNAKSTS) {
2845 			dctl |= DCTL_CGOUTNAK;
2846 			dwc2_writel(hsotg, dctl, DCTL);
2847 		}
2848 	}
2849 
2850 	if (!hs_ep->isochronous)
2851 		return;
2852 
2853 	if (list_empty(&hs_ep->queue)) {
2854 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855 			__func__, hs_ep);
2856 		return;
2857 	}
2858 
2859 	do {
2860 		hs_req = get_ep_head(hs_ep);
2861 		if (hs_req) {
2862 			hs_req->req.frame_number = hs_ep->target_frame;
2863 			hs_req->req.actual = 0;
2864 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2865 						    -ENODATA);
2866 		}
2867 		dwc2_gadget_incr_frame_num(hs_ep);
2868 		/* Update current frame number value. */
2869 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2870 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2871 }
2872 
2873 /**
2874  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2875  * @ep: The endpoint on which interrupt is asserted.
2876  *
2877  * This is starting point for ISOC-OUT transfer, synchronization done with
2878  * first out token received from host while corresponding EP is disabled.
2879  *
2880  * Device does not know initial frame in which out token will come. For this
2881  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2882  * getting this interrupt SW starts calculation for next transfer frame.
2883  */
2884 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2885 {
2886 	struct dwc2_hsotg *hsotg = ep->parent;
2887 	struct dwc2_hsotg_req *hs_req;
2888 	int dir_in = ep->dir_in;
2889 
2890 	if (dir_in || !ep->isochronous)
2891 		return;
2892 
2893 	if (using_desc_dma(hsotg)) {
2894 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2895 			/* Start first ISO Out */
2896 			ep->target_frame = hsotg->frame_number;
2897 			dwc2_gadget_start_isoc_ddma(ep);
2898 		}
2899 		return;
2900 	}
2901 
2902 	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2903 		u32 ctrl;
2904 
2905 		ep->target_frame = hsotg->frame_number;
2906 		if (ep->interval > 1) {
2907 			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2908 			if (ep->target_frame & 0x1)
2909 				ctrl |= DXEPCTL_SETODDFR;
2910 			else
2911 				ctrl |= DXEPCTL_SETEVENFR;
2912 
2913 			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2914 		}
2915 	}
2916 
2917 	while (dwc2_gadget_target_frame_elapsed(ep)) {
2918 		hs_req = get_ep_head(ep);
2919 		if (hs_req) {
2920 			hs_req->req.frame_number = ep->target_frame;
2921 			hs_req->req.actual = 0;
2922 			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2923 		}
2924 
2925 		dwc2_gadget_incr_frame_num(ep);
2926 		/* Update current frame number value. */
2927 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2928 	}
2929 
2930 	if (!ep->req)
2931 		dwc2_gadget_start_next_request(ep);
2932 
2933 }
2934 
2935 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2936 				   struct dwc2_hsotg_ep *hs_ep);
2937 
2938 /**
2939  * dwc2_gadget_handle_nak - handle NAK interrupt
2940  * @hs_ep: The endpoint on which interrupt is asserted.
2941  *
2942  * This is starting point for ISOC-IN transfer, synchronization done with
2943  * first IN token received from host while corresponding EP is disabled.
2944  *
2945  * Device does not know when first one token will arrive from host. On first
2946  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2947  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2948  * sent in response to that as there was no data in FIFO. SW is basing on this
2949  * interrupt to obtain frame in which token has come and then based on the
2950  * interval calculates next frame for transfer.
2951  */
2952 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2953 {
2954 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2955 	struct dwc2_hsotg_req *hs_req;
2956 	int dir_in = hs_ep->dir_in;
2957 	u32 ctrl;
2958 
2959 	if (!dir_in || !hs_ep->isochronous)
2960 		return;
2961 
2962 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2963 
2964 		if (using_desc_dma(hsotg)) {
2965 			hs_ep->target_frame = hsotg->frame_number;
2966 			dwc2_gadget_incr_frame_num(hs_ep);
2967 
2968 			/* In service interval mode target_frame must
2969 			 * be set to last (u)frame of the service interval.
2970 			 */
2971 			if (hsotg->params.service_interval) {
2972 				/* Set target_frame to the first (u)frame of
2973 				 * the service interval
2974 				 */
2975 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2976 
2977 				/* Set target_frame to the last (u)frame of
2978 				 * the service interval
2979 				 */
2980 				dwc2_gadget_incr_frame_num(hs_ep);
2981 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2982 			}
2983 
2984 			dwc2_gadget_start_isoc_ddma(hs_ep);
2985 			return;
2986 		}
2987 
2988 		hs_ep->target_frame = hsotg->frame_number;
2989 		if (hs_ep->interval > 1) {
2990 			u32 ctrl = dwc2_readl(hsotg,
2991 					      DIEPCTL(hs_ep->index));
2992 			if (hs_ep->target_frame & 0x1)
2993 				ctrl |= DXEPCTL_SETODDFR;
2994 			else
2995 				ctrl |= DXEPCTL_SETEVENFR;
2996 
2997 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2998 		}
2999 	}
3000 
3001 	if (using_desc_dma(hsotg))
3002 		return;
3003 
3004 	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3005 	if (ctrl & DXEPCTL_EPENA)
3006 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3007 	else
3008 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3009 
3010 	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3011 		hs_req = get_ep_head(hs_ep);
3012 		if (hs_req) {
3013 			hs_req->req.frame_number = hs_ep->target_frame;
3014 			hs_req->req.actual = 0;
3015 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3016 		}
3017 
3018 		dwc2_gadget_incr_frame_num(hs_ep);
3019 		/* Update current frame number value. */
3020 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3021 	}
3022 
3023 	if (!hs_ep->req)
3024 		dwc2_gadget_start_next_request(hs_ep);
3025 }
3026 
3027 /**
3028  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3029  * @hsotg: The driver state
3030  * @idx: The index for the endpoint (0..15)
3031  * @dir_in: Set if this is an IN endpoint
3032  *
3033  * Process and clear any interrupt pending for an individual endpoint
3034  */
3035 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3036 			     int dir_in)
3037 {
3038 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3039 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3040 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3041 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3042 	u32 ints;
3043 
3044 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3045 
3046 	/* Clear endpoint interrupts */
3047 	dwc2_writel(hsotg, ints, epint_reg);
3048 
3049 	if (!hs_ep) {
3050 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3051 			__func__, idx, dir_in ? "in" : "out");
3052 		return;
3053 	}
3054 
3055 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3056 		__func__, idx, dir_in ? "in" : "out", ints);
3057 
3058 	/* Don't process XferCompl interrupt if it is a setup packet */
3059 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3060 		ints &= ~DXEPINT_XFERCOMPL;
3061 
3062 	/*
3063 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3064 	 * stage and xfercomplete was generated without SETUP phase done
3065 	 * interrupt. SW should parse received setup packet only after host's
3066 	 * exit from setup phase of control transfer.
3067 	 */
3068 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3069 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3070 		ints &= ~DXEPINT_XFERCOMPL;
3071 
3072 	if (ints & DXEPINT_XFERCOMPL) {
3073 		dev_dbg(hsotg->dev,
3074 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3075 			__func__, dwc2_readl(hsotg, epctl_reg),
3076 			dwc2_readl(hsotg, epsiz_reg));
3077 
3078 		/* In DDMA handle isochronous requests separately */
3079 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3080 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3081 		} else if (dir_in) {
3082 			/*
3083 			 * We get OutDone from the FIFO, so we only
3084 			 * need to look at completing IN requests here
3085 			 * if operating slave mode
3086 			 */
3087 			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3088 				dwc2_hsotg_complete_in(hsotg, hs_ep);
3089 
3090 			if (idx == 0 && !hs_ep->req)
3091 				dwc2_hsotg_enqueue_setup(hsotg);
3092 		} else if (using_dma(hsotg)) {
3093 			/*
3094 			 * We're using DMA, we need to fire an OutDone here
3095 			 * as we ignore the RXFIFO.
3096 			 */
3097 			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3098 				dwc2_hsotg_handle_outdone(hsotg, idx);
3099 		}
3100 	}
3101 
3102 	if (ints & DXEPINT_EPDISBLD)
3103 		dwc2_gadget_handle_ep_disabled(hs_ep);
3104 
3105 	if (ints & DXEPINT_OUTTKNEPDIS)
3106 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3107 
3108 	if (ints & DXEPINT_NAKINTRPT)
3109 		dwc2_gadget_handle_nak(hs_ep);
3110 
3111 	if (ints & DXEPINT_AHBERR)
3112 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3113 
3114 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3115 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3116 
3117 		if (using_dma(hsotg) && idx == 0) {
3118 			/*
3119 			 * this is the notification we've received a
3120 			 * setup packet. In non-DMA mode we'd get this
3121 			 * from the RXFIFO, instead we need to process
3122 			 * the setup here.
3123 			 */
3124 
3125 			if (dir_in)
3126 				WARN_ON_ONCE(1);
3127 			else
3128 				dwc2_hsotg_handle_outdone(hsotg, 0);
3129 		}
3130 	}
3131 
3132 	if (ints & DXEPINT_STSPHSERCVD) {
3133 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3134 
3135 		/* Safety check EP0 state when STSPHSERCVD asserted */
3136 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3137 			/* Move to STATUS IN for DDMA */
3138 			if (using_desc_dma(hsotg)) {
3139 				if (!hsotg->delayed_status)
3140 					dwc2_hsotg_ep0_zlp(hsotg, true);
3141 				else
3142 				/* In case of 3 stage Control Write with delayed
3143 				 * status, when Status IN transfer started
3144 				 * before STSPHSERCVD asserted, NAKSTS bit not
3145 				 * cleared by CNAK in dwc2_hsotg_start_req()
3146 				 * function. Clear now NAKSTS to allow complete
3147 				 * transfer.
3148 				 */
3149 					dwc2_set_bit(hsotg, DIEPCTL(0),
3150 						     DXEPCTL_CNAK);
3151 			}
3152 		}
3153 
3154 	}
3155 
3156 	if (ints & DXEPINT_BACK2BACKSETUP)
3157 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3158 
3159 	if (ints & DXEPINT_BNAINTR) {
3160 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3161 		if (hs_ep->isochronous)
3162 			dwc2_gadget_handle_isoc_bna(hs_ep);
3163 	}
3164 
3165 	if (dir_in && !hs_ep->isochronous) {
3166 		/* not sure if this is important, but we'll clear it anyway */
3167 		if (ints & DXEPINT_INTKNTXFEMP) {
3168 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3169 				__func__, idx);
3170 		}
3171 
3172 		/* this probably means something bad is happening */
3173 		if (ints & DXEPINT_INTKNEPMIS) {
3174 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3175 				 __func__, idx);
3176 		}
3177 
3178 		/* FIFO has space or is empty (see GAHBCFG) */
3179 		if (hsotg->dedicated_fifos &&
3180 		    ints & DXEPINT_TXFEMP) {
3181 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3182 				__func__, idx);
3183 			if (!using_dma(hsotg))
3184 				dwc2_hsotg_trytx(hsotg, hs_ep);
3185 		}
3186 	}
3187 }
3188 
3189 /**
3190  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3191  * @hsotg: The device state.
3192  *
3193  * Handle updating the device settings after the enumeration phase has
3194  * been completed.
3195  */
3196 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3197 {
3198 	u32 dsts = dwc2_readl(hsotg, DSTS);
3199 	int ep0_mps = 0, ep_mps = 8;
3200 
3201 	/*
3202 	 * This should signal the finish of the enumeration phase
3203 	 * of the USB handshaking, so we should now know what rate
3204 	 * we connected at.
3205 	 */
3206 
3207 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3208 
3209 	/*
3210 	 * note, since we're limited by the size of transfer on EP0, and
3211 	 * it seems IN transfers must be a even number of packets we do
3212 	 * not advertise a 64byte MPS on EP0.
3213 	 */
3214 
3215 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3216 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3217 	case DSTS_ENUMSPD_FS:
3218 	case DSTS_ENUMSPD_FS48:
3219 		hsotg->gadget.speed = USB_SPEED_FULL;
3220 		ep0_mps = EP0_MPS_LIMIT;
3221 		ep_mps = 1023;
3222 		break;
3223 
3224 	case DSTS_ENUMSPD_HS:
3225 		hsotg->gadget.speed = USB_SPEED_HIGH;
3226 		ep0_mps = EP0_MPS_LIMIT;
3227 		ep_mps = 1024;
3228 		break;
3229 
3230 	case DSTS_ENUMSPD_LS:
3231 		hsotg->gadget.speed = USB_SPEED_LOW;
3232 		ep0_mps = 8;
3233 		ep_mps = 8;
3234 		/*
3235 		 * note, we don't actually support LS in this driver at the
3236 		 * moment, and the documentation seems to imply that it isn't
3237 		 * supported by the PHYs on some of the devices.
3238 		 */
3239 		break;
3240 	}
3241 	dev_info(hsotg->dev, "new device is %s\n",
3242 		 usb_speed_string(hsotg->gadget.speed));
3243 
3244 	/*
3245 	 * we should now know the maximum packet size for an
3246 	 * endpoint, so set the endpoints to a default value.
3247 	 */
3248 
3249 	if (ep0_mps) {
3250 		int i;
3251 		/* Initialize ep0 for both in and out directions */
3252 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3253 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3254 		for (i = 1; i < hsotg->num_of_eps; i++) {
3255 			if (hsotg->eps_in[i])
3256 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3257 							    0, 1);
3258 			if (hsotg->eps_out[i])
3259 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3260 							    0, 0);
3261 		}
3262 	}
3263 
3264 	/* ensure after enumeration our EP0 is active */
3265 
3266 	dwc2_hsotg_enqueue_setup(hsotg);
3267 
3268 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3269 		dwc2_readl(hsotg, DIEPCTL0),
3270 		dwc2_readl(hsotg, DOEPCTL0));
3271 }
3272 
3273 /**
3274  * kill_all_requests - remove all requests from the endpoint's queue
3275  * @hsotg: The device state.
3276  * @ep: The endpoint the requests may be on.
3277  * @result: The result code to use.
3278  *
3279  * Go through the requests on the given endpoint and mark them
3280  * completed with the given result code.
3281  */
3282 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3283 			      struct dwc2_hsotg_ep *ep,
3284 			      int result)
3285 {
3286 	unsigned int size;
3287 
3288 	ep->req = NULL;
3289 
3290 	while (!list_empty(&ep->queue)) {
3291 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3292 
3293 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3294 	}
3295 
3296 	if (!hsotg->dedicated_fifos)
3297 		return;
3298 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3299 	if (size < ep->fifo_size)
3300 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3301 }
3302 
3303 /**
3304  * dwc2_hsotg_disconnect - disconnect service
3305  * @hsotg: The device state.
3306  *
3307  * The device has been disconnected. Remove all current
3308  * transactions and signal the gadget driver that this
3309  * has happened.
3310  */
3311 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3312 {
3313 	unsigned int ep;
3314 
3315 	if (!hsotg->connected)
3316 		return;
3317 
3318 	hsotg->connected = 0;
3319 	hsotg->test_mode = 0;
3320 
3321 	/* all endpoints should be shutdown */
3322 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3323 		if (hsotg->eps_in[ep])
3324 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3325 					  -ESHUTDOWN);
3326 		if (hsotg->eps_out[ep])
3327 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3328 					  -ESHUTDOWN);
3329 	}
3330 
3331 	call_gadget(hsotg, disconnect);
3332 	hsotg->lx_state = DWC2_L3;
3333 
3334 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3335 }
3336 
3337 /**
3338  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3339  * @hsotg: The device state:
3340  * @periodic: True if this is a periodic FIFO interrupt
3341  */
3342 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3343 {
3344 	struct dwc2_hsotg_ep *ep;
3345 	int epno, ret;
3346 
3347 	/* look through for any more data to transmit */
3348 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3349 		ep = index_to_ep(hsotg, epno, 1);
3350 
3351 		if (!ep)
3352 			continue;
3353 
3354 		if (!ep->dir_in)
3355 			continue;
3356 
3357 		if ((periodic && !ep->periodic) ||
3358 		    (!periodic && ep->periodic))
3359 			continue;
3360 
3361 		ret = dwc2_hsotg_trytx(hsotg, ep);
3362 		if (ret < 0)
3363 			break;
3364 	}
3365 }
3366 
3367 /* IRQ flags which will trigger a retry around the IRQ loop */
3368 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3369 			GINTSTS_PTXFEMP |  \
3370 			GINTSTS_RXFLVL)
3371 
3372 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3373 /**
3374  * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3375  * @hsotg: The device state
3376  * @is_usb_reset: Usb resetting flag
3377  *
3378  * Issue a soft reset to the core, and await the core finishing it.
3379  */
3380 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3381 				       bool is_usb_reset)
3382 {
3383 	u32 intmsk;
3384 	u32 val;
3385 	u32 usbcfg;
3386 	u32 dcfg = 0;
3387 	int ep;
3388 
3389 	/* Kill any ep0 requests as controller will be reinitialized */
3390 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3391 
3392 	if (!is_usb_reset) {
3393 		if (dwc2_core_reset(hsotg, true))
3394 			return;
3395 	} else {
3396 		/* all endpoints should be shutdown */
3397 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3398 			if (hsotg->eps_in[ep])
3399 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3400 			if (hsotg->eps_out[ep])
3401 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3402 		}
3403 	}
3404 
3405 	/*
3406 	 * we must now enable ep0 ready for host detection and then
3407 	 * set configuration.
3408 	 */
3409 
3410 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3411 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3412 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3413 	usbcfg |= GUSBCFG_TOUTCAL(7);
3414 
3415 	/* remove the HNP/SRP and set the PHY */
3416 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3417         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3418 
3419 	dwc2_phy_init(hsotg, true);
3420 
3421 	dwc2_hsotg_init_fifo(hsotg);
3422 
3423 	if (!is_usb_reset)
3424 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3425 
3426 	dcfg |= DCFG_EPMISCNT(1);
3427 
3428 	switch (hsotg->params.speed) {
3429 	case DWC2_SPEED_PARAM_LOW:
3430 		dcfg |= DCFG_DEVSPD_LS;
3431 		break;
3432 	case DWC2_SPEED_PARAM_FULL:
3433 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3434 			dcfg |= DCFG_DEVSPD_FS48;
3435 		else
3436 			dcfg |= DCFG_DEVSPD_FS;
3437 		break;
3438 	default:
3439 		dcfg |= DCFG_DEVSPD_HS;
3440 	}
3441 
3442 	if (hsotg->params.ipg_isoc_en)
3443 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3444 
3445 	dwc2_writel(hsotg, dcfg,  DCFG);
3446 
3447 	/* Clear any pending OTG interrupts */
3448 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3449 
3450 	/* Clear any pending interrupts */
3451 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3452 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3453 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3454 		GINTSTS_USBRST | GINTSTS_RESETDET |
3455 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3456 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3457 		GINTSTS_LPMTRANRCVD;
3458 
3459 	if (!using_desc_dma(hsotg))
3460 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3461 
3462 	if (!hsotg->params.external_id_pin_ctl)
3463 		intmsk |= GINTSTS_CONIDSTSCHNG;
3464 
3465 	dwc2_writel(hsotg, intmsk, GINTMSK);
3466 
3467 	if (using_dma(hsotg)) {
3468 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3469 			    hsotg->params.ahbcfg,
3470 			    GAHBCFG);
3471 
3472 		/* Set DDMA mode support in the core if needed */
3473 		if (using_desc_dma(hsotg))
3474 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3475 
3476 	} else {
3477 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3478 						(GAHBCFG_NP_TXF_EMP_LVL |
3479 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3480 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3481 	}
3482 
3483 	/*
3484 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3485 	 * when we have no data to transfer. Otherwise we get being flooded by
3486 	 * interrupts.
3487 	 */
3488 
3489 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3490 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3491 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3492 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3493 		DIEPMSK);
3494 
3495 	/*
3496 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3497 	 * DMA mode we may need this and StsPhseRcvd.
3498 	 */
3499 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3500 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3501 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3502 		DOEPMSK_SETUPMSK,
3503 		DOEPMSK);
3504 
3505 	/* Enable BNA interrupt for DDMA */
3506 	if (using_desc_dma(hsotg)) {
3507 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3508 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3509 	}
3510 
3511 	/* Enable Service Interval mode if supported */
3512 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3513 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3514 
3515 	dwc2_writel(hsotg, 0, DAINTMSK);
3516 
3517 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3518 		dwc2_readl(hsotg, DIEPCTL0),
3519 		dwc2_readl(hsotg, DOEPCTL0));
3520 
3521 	/* enable in and out endpoint interrupts */
3522 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3523 
3524 	/*
3525 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3526 	 * the data. In DMA mode, we get events from the FIFO but also
3527 	 * things we cannot process, so do not use it.
3528 	 */
3529 	if (!using_dma(hsotg))
3530 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3531 
3532 	/* Enable interrupts for EP0 in and out */
3533 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3534 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3535 
3536 	if (!is_usb_reset) {
3537 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3538 		udelay(10);  /* see openiboot */
3539 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3540 	}
3541 
3542 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3543 
3544 	/*
3545 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3546 	 * writing to the EPCTL register..
3547 	 */
3548 
3549 	/* set to read 1 8byte packet */
3550 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3551 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3552 
3553 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3554 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3555 	       DXEPCTL_USBACTEP,
3556 	       DOEPCTL0);
3557 
3558 	/* enable, but don't activate EP0in */
3559 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3560 	       DXEPCTL_USBACTEP, DIEPCTL0);
3561 
3562 	/* clear global NAKs */
3563 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3564 	if (!is_usb_reset)
3565 		val |= DCTL_SFTDISCON;
3566 	dwc2_set_bit(hsotg, DCTL, val);
3567 
3568 	/* configure the core to support LPM */
3569 	dwc2_gadget_init_lpm(hsotg);
3570 
3571 	/* program GREFCLK register if needed */
3572 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3573 		dwc2_gadget_program_ref_clk(hsotg);
3574 
3575 	/* must be at-least 3ms to allow bus to see disconnect */
3576 	mdelay(3);
3577 
3578 	hsotg->lx_state = DWC2_L0;
3579 
3580 	dwc2_hsotg_enqueue_setup(hsotg);
3581 
3582 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3583 		dwc2_readl(hsotg, DIEPCTL0),
3584 		dwc2_readl(hsotg, DOEPCTL0));
3585 }
3586 
3587 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3588 {
3589 	/* set the soft-disconnect bit */
3590 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3591 }
3592 
3593 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3594 {
3595 	/* remove the soft-disconnect and let's go */
3596 	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3597 		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3598 }
3599 
3600 /**
3601  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3602  * @hsotg: The device state:
3603  *
3604  * This interrupt indicates one of the following conditions occurred while
3605  * transmitting an ISOC transaction.
3606  * - Corrupted IN Token for ISOC EP.
3607  * - Packet not complete in FIFO.
3608  *
3609  * The following actions will be taken:
3610  * - Determine the EP
3611  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3612  */
3613 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3614 {
3615 	struct dwc2_hsotg_ep *hs_ep;
3616 	u32 epctrl;
3617 	u32 daintmsk;
3618 	u32 idx;
3619 
3620 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3621 
3622 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3623 
3624 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3625 		hs_ep = hsotg->eps_in[idx];
3626 		/* Proceed only unmasked ISOC EPs */
3627 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3628 			continue;
3629 
3630 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3631 		if ((epctrl & DXEPCTL_EPENA) &&
3632 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3633 			epctrl |= DXEPCTL_SNAK;
3634 			epctrl |= DXEPCTL_EPDIS;
3635 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3636 		}
3637 	}
3638 
3639 	/* Clear interrupt */
3640 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3641 }
3642 
3643 /**
3644  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3645  * @hsotg: The device state:
3646  *
3647  * This interrupt indicates one of the following conditions occurred while
3648  * transmitting an ISOC transaction.
3649  * - Corrupted OUT Token for ISOC EP.
3650  * - Packet not complete in FIFO.
3651  *
3652  * The following actions will be taken:
3653  * - Determine the EP
3654  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3655  */
3656 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3657 {
3658 	u32 gintsts;
3659 	u32 gintmsk;
3660 	u32 daintmsk;
3661 	u32 epctrl;
3662 	struct dwc2_hsotg_ep *hs_ep;
3663 	int idx;
3664 
3665 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3666 
3667 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3668 	daintmsk >>= DAINT_OUTEP_SHIFT;
3669 
3670 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3671 		hs_ep = hsotg->eps_out[idx];
3672 		/* Proceed only unmasked ISOC EPs */
3673 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3674 			continue;
3675 
3676 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3677 		if ((epctrl & DXEPCTL_EPENA) &&
3678 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3679 			/* Unmask GOUTNAKEFF interrupt */
3680 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3681 			gintmsk |= GINTSTS_GOUTNAKEFF;
3682 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3683 
3684 			gintsts = dwc2_readl(hsotg, GINTSTS);
3685 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3686 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3687 				break;
3688 			}
3689 		}
3690 	}
3691 
3692 	/* Clear interrupt */
3693 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3694 }
3695 
3696 /**
3697  * dwc2_hsotg_irq - handle device interrupt
3698  * @irq: The IRQ number triggered
3699  * @pw: The pw value when registered the handler.
3700  */
3701 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3702 {
3703 	struct dwc2_hsotg *hsotg = pw;
3704 	int retry_count = 8;
3705 	u32 gintsts;
3706 	u32 gintmsk;
3707 
3708 	if (!dwc2_is_device_mode(hsotg))
3709 		return IRQ_NONE;
3710 
3711 	spin_lock(&hsotg->lock);
3712 irq_retry:
3713 	gintsts = dwc2_readl(hsotg, GINTSTS);
3714 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3715 
3716 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3717 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3718 
3719 	gintsts &= gintmsk;
3720 
3721 	if (gintsts & GINTSTS_RESETDET) {
3722 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3723 
3724 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3725 
3726 		/* This event must be used only if controller is suspended */
3727 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3728 			dwc2_exit_partial_power_down(hsotg, 0, true);
3729 
3730 		hsotg->lx_state = DWC2_L0;
3731 	}
3732 
3733 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3734 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3735 		u32 connected = hsotg->connected;
3736 
3737 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3738 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3739 			dwc2_readl(hsotg, GNPTXSTS));
3740 
3741 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3742 
3743 		/* Report disconnection if it is not already done. */
3744 		dwc2_hsotg_disconnect(hsotg);
3745 
3746 		/* Reset device address to zero */
3747 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3748 
3749 		if (usb_status & GOTGCTL_BSESVLD && connected)
3750 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3751 	}
3752 
3753 	if (gintsts & GINTSTS_ENUMDONE) {
3754 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3755 
3756 		dwc2_hsotg_irq_enumdone(hsotg);
3757 	}
3758 
3759 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3760 		u32 daint = dwc2_readl(hsotg, DAINT);
3761 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3762 		u32 daint_out, daint_in;
3763 		int ep;
3764 
3765 		daint &= daintmsk;
3766 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3767 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3768 
3769 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3770 
3771 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3772 						ep++, daint_out >>= 1) {
3773 			if (daint_out & 1)
3774 				dwc2_hsotg_epint(hsotg, ep, 0);
3775 		}
3776 
3777 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3778 						ep++, daint_in >>= 1) {
3779 			if (daint_in & 1)
3780 				dwc2_hsotg_epint(hsotg, ep, 1);
3781 		}
3782 	}
3783 
3784 	/* check both FIFOs */
3785 
3786 	if (gintsts & GINTSTS_NPTXFEMP) {
3787 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3788 
3789 		/*
3790 		 * Disable the interrupt to stop it happening again
3791 		 * unless one of these endpoint routines decides that
3792 		 * it needs re-enabling
3793 		 */
3794 
3795 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3796 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3797 	}
3798 
3799 	if (gintsts & GINTSTS_PTXFEMP) {
3800 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3801 
3802 		/* See note in GINTSTS_NPTxFEmp */
3803 
3804 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3805 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3806 	}
3807 
3808 	if (gintsts & GINTSTS_RXFLVL) {
3809 		/*
3810 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3811 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3812 		 * set.
3813 		 */
3814 
3815 		dwc2_hsotg_handle_rx(hsotg);
3816 	}
3817 
3818 	if (gintsts & GINTSTS_ERLYSUSP) {
3819 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3820 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3821 	}
3822 
3823 	/*
3824 	 * these next two seem to crop-up occasionally causing the core
3825 	 * to shutdown the USB transfer, so try clearing them and logging
3826 	 * the occurrence.
3827 	 */
3828 
3829 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3830 		u8 idx;
3831 		u32 epctrl;
3832 		u32 gintmsk;
3833 		u32 daintmsk;
3834 		struct dwc2_hsotg_ep *hs_ep;
3835 
3836 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3837 		daintmsk >>= DAINT_OUTEP_SHIFT;
3838 		/* Mask this interrupt */
3839 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3840 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3841 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3842 
3843 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3844 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3845 			hs_ep = hsotg->eps_out[idx];
3846 			/* Proceed only unmasked ISOC EPs */
3847 			if (BIT(idx) & ~daintmsk)
3848 				continue;
3849 
3850 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3851 
3852 			//ISOC Ep's only
3853 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3854 				epctrl |= DXEPCTL_SNAK;
3855 				epctrl |= DXEPCTL_EPDIS;
3856 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3857 				continue;
3858 			}
3859 
3860 			//Non-ISOC EP's
3861 			if (hs_ep->halted) {
3862 				if (!(epctrl & DXEPCTL_EPENA))
3863 					epctrl |= DXEPCTL_EPENA;
3864 				epctrl |= DXEPCTL_EPDIS;
3865 				epctrl |= DXEPCTL_STALL;
3866 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3867 			}
3868 		}
3869 
3870 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3871 	}
3872 
3873 	if (gintsts & GINTSTS_GINNAKEFF) {
3874 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3875 
3876 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3877 
3878 		dwc2_hsotg_dump(hsotg);
3879 	}
3880 
3881 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3882 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3883 
3884 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3885 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3886 
3887 	/*
3888 	 * if we've had fifo events, we should try and go around the
3889 	 * loop again to see if there's any point in returning yet.
3890 	 */
3891 
3892 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3893 		goto irq_retry;
3894 
3895 	/* Check WKUP_ALERT interrupt*/
3896 	if (hsotg->params.service_interval)
3897 		dwc2_gadget_wkup_alert_handler(hsotg);
3898 
3899 	spin_unlock(&hsotg->lock);
3900 
3901 	return IRQ_HANDLED;
3902 }
3903 
3904 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3905 				   struct dwc2_hsotg_ep *hs_ep)
3906 {
3907 	u32 epctrl_reg;
3908 	u32 epint_reg;
3909 
3910 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3911 		DOEPCTL(hs_ep->index);
3912 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3913 		DOEPINT(hs_ep->index);
3914 
3915 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3916 		hs_ep->name);
3917 
3918 	if (hs_ep->dir_in) {
3919 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3920 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3921 			/* Wait for Nak effect */
3922 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3923 						    DXEPINT_INEPNAKEFF, 100))
3924 				dev_warn(hsotg->dev,
3925 					 "%s: timeout DIEPINT.NAKEFF\n",
3926 					 __func__);
3927 		} else {
3928 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3929 			/* Wait for Nak effect */
3930 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3931 						    GINTSTS_GINNAKEFF, 100))
3932 				dev_warn(hsotg->dev,
3933 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3934 					 __func__);
3935 		}
3936 	} else {
3937 		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3938 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3939 
3940 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3941 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3942 
3943 		if (!using_dma(hsotg)) {
3944 			/* Wait for GINTSTS_RXFLVL interrupt */
3945 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3946 						    GINTSTS_RXFLVL, 100)) {
3947 				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3948 					 __func__);
3949 			} else {
3950 				/*
3951 				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3952 				 * to assert GOUTNAKEFF interrupt
3953 				 */
3954 				dwc2_readl(hsotg, GRXSTSP);
3955 			}
3956 		}
3957 
3958 		/* Wait for global nak to take effect */
3959 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3960 					    GINTSTS_GOUTNAKEFF, 100))
3961 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3962 				 __func__);
3963 	}
3964 
3965 	/* Disable ep */
3966 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3967 
3968 	/* Wait for ep to be disabled */
3969 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3970 		dev_warn(hsotg->dev,
3971 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3972 
3973 	/* Clear EPDISBLD interrupt */
3974 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3975 
3976 	if (hs_ep->dir_in) {
3977 		unsigned short fifo_index;
3978 
3979 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3980 			fifo_index = hs_ep->fifo_index;
3981 		else
3982 			fifo_index = 0;
3983 
3984 		/* Flush TX FIFO */
3985 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3986 
3987 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3988 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3989 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3990 
3991 	} else {
3992 		/* Remove global NAKs */
3993 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3994 	}
3995 }
3996 
3997 /**
3998  * dwc2_hsotg_ep_enable - enable the given endpoint
3999  * @ep: The USB endpint to configure
4000  * @desc: The USB endpoint descriptor to configure with.
4001  *
4002  * This is called from the USB gadget code's usb_ep_enable().
4003  */
4004 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4005 				const struct usb_endpoint_descriptor *desc)
4006 {
4007 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4008 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4009 	unsigned long flags;
4010 	unsigned int index = hs_ep->index;
4011 	u32 epctrl_reg;
4012 	u32 epctrl;
4013 	u32 mps;
4014 	u32 mc;
4015 	u32 mask;
4016 	unsigned int dir_in;
4017 	unsigned int i, val, size;
4018 	int ret = 0;
4019 	unsigned char ep_type;
4020 	int desc_num;
4021 
4022 	dev_dbg(hsotg->dev,
4023 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4024 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4025 		desc->wMaxPacketSize, desc->bInterval);
4026 
4027 	/* not to be called for EP0 */
4028 	if (index == 0) {
4029 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4030 		return -EINVAL;
4031 	}
4032 
4033 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4034 	if (dir_in != hs_ep->dir_in) {
4035 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4036 		return -EINVAL;
4037 	}
4038 
4039 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4040 	mps = usb_endpoint_maxp(desc);
4041 	mc = usb_endpoint_maxp_mult(desc);
4042 
4043 	/* ISOC IN in DDMA supported bInterval up to 10 */
4044 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4045 	    dir_in && desc->bInterval > 10) {
4046 		dev_err(hsotg->dev,
4047 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4048 		return -EINVAL;
4049 	}
4050 
4051 	/* High bandwidth ISOC OUT in DDMA not supported */
4052 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4053 	    !dir_in && mc > 1) {
4054 		dev_err(hsotg->dev,
4055 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4056 		return -EINVAL;
4057 	}
4058 
4059 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4060 
4061 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4062 	epctrl = dwc2_readl(hsotg, epctrl_reg);
4063 
4064 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4065 		__func__, epctrl, epctrl_reg);
4066 
4067 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4068 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4069 	else
4070 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4071 
4072 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4073 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4074 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4075 			desc_num * sizeof(struct dwc2_dma_desc),
4076 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4077 		if (!hs_ep->desc_list) {
4078 			ret = -ENOMEM;
4079 			goto error2;
4080 		}
4081 	}
4082 
4083 	spin_lock_irqsave(&hsotg->lock, flags);
4084 
4085 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4086 	epctrl |= DXEPCTL_MPS(mps);
4087 
4088 	/*
4089 	 * mark the endpoint as active, otherwise the core may ignore
4090 	 * transactions entirely for this endpoint
4091 	 */
4092 	epctrl |= DXEPCTL_USBACTEP;
4093 
4094 	/* update the endpoint state */
4095 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4096 
4097 	/* default, set to non-periodic */
4098 	hs_ep->isochronous = 0;
4099 	hs_ep->periodic = 0;
4100 	hs_ep->halted = 0;
4101 	hs_ep->wedged = 0;
4102 	hs_ep->interval = desc->bInterval;
4103 
4104 	switch (ep_type) {
4105 	case USB_ENDPOINT_XFER_ISOC:
4106 		epctrl |= DXEPCTL_EPTYPE_ISO;
4107 		epctrl |= DXEPCTL_SETEVENFR;
4108 		hs_ep->isochronous = 1;
4109 		hs_ep->interval = 1 << (desc->bInterval - 1);
4110 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4111 		hs_ep->next_desc = 0;
4112 		hs_ep->compl_desc = 0;
4113 		if (dir_in) {
4114 			hs_ep->periodic = 1;
4115 			mask = dwc2_readl(hsotg, DIEPMSK);
4116 			mask |= DIEPMSK_NAKMSK;
4117 			dwc2_writel(hsotg, mask, DIEPMSK);
4118 		} else {
4119 			epctrl |= DXEPCTL_SNAK;
4120 			mask = dwc2_readl(hsotg, DOEPMSK);
4121 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4122 			dwc2_writel(hsotg, mask, DOEPMSK);
4123 		}
4124 		break;
4125 
4126 	case USB_ENDPOINT_XFER_BULK:
4127 		epctrl |= DXEPCTL_EPTYPE_BULK;
4128 		break;
4129 
4130 	case USB_ENDPOINT_XFER_INT:
4131 		if (dir_in)
4132 			hs_ep->periodic = 1;
4133 
4134 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4135 			hs_ep->interval = 1 << (desc->bInterval - 1);
4136 
4137 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4138 		break;
4139 
4140 	case USB_ENDPOINT_XFER_CONTROL:
4141 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4142 		break;
4143 	}
4144 
4145 	/*
4146 	 * if the hardware has dedicated fifos, we must give each IN EP
4147 	 * a unique tx-fifo even if it is non-periodic.
4148 	 */
4149 	if (dir_in && hsotg->dedicated_fifos) {
4150 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4151 		u32 fifo_index = 0;
4152 		u32 fifo_size = UINT_MAX;
4153 
4154 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4155 		for (i = 1; i <= fifo_count; ++i) {
4156 			if (hsotg->fifo_map & (1 << i))
4157 				continue;
4158 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4159 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4160 			if (val < size)
4161 				continue;
4162 			/* Search for smallest acceptable fifo */
4163 			if (val < fifo_size) {
4164 				fifo_size = val;
4165 				fifo_index = i;
4166 			}
4167 		}
4168 		if (!fifo_index) {
4169 			dev_err(hsotg->dev,
4170 				"%s: No suitable fifo found\n", __func__);
4171 			ret = -ENOMEM;
4172 			goto error1;
4173 		}
4174 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4175 		hsotg->fifo_map |= 1 << fifo_index;
4176 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4177 		hs_ep->fifo_index = fifo_index;
4178 		hs_ep->fifo_size = fifo_size;
4179 	}
4180 
4181 	/* for non control endpoints, set PID to D0 */
4182 	if (index && !hs_ep->isochronous)
4183 		epctrl |= DXEPCTL_SETD0PID;
4184 
4185 	/* WA for Full speed ISOC IN in DDMA mode.
4186 	 * By Clear NAK status of EP, core will send ZLP
4187 	 * to IN token and assert NAK interrupt relying
4188 	 * on TxFIFO status only
4189 	 */
4190 
4191 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4192 	    hs_ep->isochronous && dir_in) {
4193 		/* The WA applies only to core versions from 2.72a
4194 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4195 		 * and HS_IOT_1.00a.
4196 		 */
4197 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4198 
4199 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4200 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4201 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4202 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4203 			epctrl |= DXEPCTL_CNAK;
4204 	}
4205 
4206 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4207 		__func__, epctrl);
4208 
4209 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4210 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4211 		__func__, dwc2_readl(hsotg, epctrl_reg));
4212 
4213 	/* enable the endpoint interrupt */
4214 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4215 
4216 error1:
4217 	spin_unlock_irqrestore(&hsotg->lock, flags);
4218 
4219 error2:
4220 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4221 		dmam_free_coherent(hsotg->dev, desc_num *
4222 			sizeof(struct dwc2_dma_desc),
4223 			hs_ep->desc_list, hs_ep->desc_list_dma);
4224 		hs_ep->desc_list = NULL;
4225 	}
4226 
4227 	return ret;
4228 }
4229 
4230 /**
4231  * dwc2_hsotg_ep_disable - disable given endpoint
4232  * @ep: The endpoint to disable.
4233  */
4234 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4235 {
4236 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4237 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4238 	int dir_in = hs_ep->dir_in;
4239 	int index = hs_ep->index;
4240 	u32 epctrl_reg;
4241 	u32 ctrl;
4242 
4243 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4244 
4245 	if (ep == &hsotg->eps_out[0]->ep) {
4246 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4247 		return -EINVAL;
4248 	}
4249 
4250 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4251 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4252 		return -EINVAL;
4253 	}
4254 
4255 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4256 
4257 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4258 
4259 	if (ctrl & DXEPCTL_EPENA)
4260 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4261 
4262 	ctrl &= ~DXEPCTL_EPENA;
4263 	ctrl &= ~DXEPCTL_USBACTEP;
4264 	ctrl |= DXEPCTL_SNAK;
4265 
4266 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4267 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4268 
4269 	/* disable endpoint interrupts */
4270 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4271 
4272 	/* terminate all requests with shutdown */
4273 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4274 
4275 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4276 	hs_ep->fifo_index = 0;
4277 	hs_ep->fifo_size = 0;
4278 
4279 	return 0;
4280 }
4281 
4282 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4283 {
4284 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4285 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4286 	unsigned long flags;
4287 	int ret;
4288 
4289 	spin_lock_irqsave(&hsotg->lock, flags);
4290 	ret = dwc2_hsotg_ep_disable(ep);
4291 	spin_unlock_irqrestore(&hsotg->lock, flags);
4292 	return ret;
4293 }
4294 
4295 /**
4296  * on_list - check request is on the given endpoint
4297  * @ep: The endpoint to check.
4298  * @test: The request to test if it is on the endpoint.
4299  */
4300 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4301 {
4302 	struct dwc2_hsotg_req *req, *treq;
4303 
4304 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4305 		if (req == test)
4306 			return true;
4307 	}
4308 
4309 	return false;
4310 }
4311 
4312 /**
4313  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4314  * @ep: The endpoint to dequeue.
4315  * @req: The request to be removed from a queue.
4316  */
4317 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4318 {
4319 	struct dwc2_hsotg_req *hs_req = our_req(req);
4320 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4321 	struct dwc2_hsotg *hs = hs_ep->parent;
4322 	unsigned long flags;
4323 
4324 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4325 
4326 	spin_lock_irqsave(&hs->lock, flags);
4327 
4328 	if (!on_list(hs_ep, hs_req)) {
4329 		spin_unlock_irqrestore(&hs->lock, flags);
4330 		return -EINVAL;
4331 	}
4332 
4333 	/* Dequeue already started request */
4334 	if (req == &hs_ep->req->req)
4335 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4336 
4337 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4338 	spin_unlock_irqrestore(&hs->lock, flags);
4339 
4340 	return 0;
4341 }
4342 
4343 /**
4344  * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4345  * @ep: The endpoint to be wedged.
4346  *
4347  */
4348 static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4349 {
4350 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4351 	struct dwc2_hsotg *hs = hs_ep->parent;
4352 
4353 	unsigned long	flags;
4354 	int		ret;
4355 
4356 	spin_lock_irqsave(&hs->lock, flags);
4357 	hs_ep->wedged = 1;
4358 	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4359 	spin_unlock_irqrestore(&hs->lock, flags);
4360 
4361 	return ret;
4362 }
4363 
4364 /**
4365  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4366  * @ep: The endpoint to set halt.
4367  * @value: Set or unset the halt.
4368  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4369  *       the endpoint is busy processing requests.
4370  *
4371  * We need to stall the endpoint immediately if request comes from set_feature
4372  * protocol command handler.
4373  */
4374 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4375 {
4376 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4377 	struct dwc2_hsotg *hs = hs_ep->parent;
4378 	int index = hs_ep->index;
4379 	u32 epreg;
4380 	u32 epctl;
4381 	u32 xfertype;
4382 
4383 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4384 
4385 	if (index == 0) {
4386 		if (value)
4387 			dwc2_hsotg_stall_ep0(hs);
4388 		else
4389 			dev_warn(hs->dev,
4390 				 "%s: can't clear halt on ep0\n", __func__);
4391 		return 0;
4392 	}
4393 
4394 	if (hs_ep->isochronous) {
4395 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4396 		return -EINVAL;
4397 	}
4398 
4399 	if (!now && value && !list_empty(&hs_ep->queue)) {
4400 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4401 			ep->name);
4402 		return -EAGAIN;
4403 	}
4404 
4405 	if (hs_ep->dir_in) {
4406 		epreg = DIEPCTL(index);
4407 		epctl = dwc2_readl(hs, epreg);
4408 
4409 		if (value) {
4410 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4411 			if (epctl & DXEPCTL_EPENA)
4412 				epctl |= DXEPCTL_EPDIS;
4413 		} else {
4414 			epctl &= ~DXEPCTL_STALL;
4415 			hs_ep->wedged = 0;
4416 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4417 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4418 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4419 				epctl |= DXEPCTL_SETD0PID;
4420 		}
4421 		dwc2_writel(hs, epctl, epreg);
4422 	} else {
4423 		epreg = DOEPCTL(index);
4424 		epctl = dwc2_readl(hs, epreg);
4425 
4426 		if (value) {
4427 			/* Unmask GOUTNAKEFF interrupt */
4428 			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4429 
4430 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4431 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4432 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4433 		} else {
4434 			epctl &= ~DXEPCTL_STALL;
4435 			hs_ep->wedged = 0;
4436 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4437 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4438 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4439 				epctl |= DXEPCTL_SETD0PID;
4440 			dwc2_writel(hs, epctl, epreg);
4441 		}
4442 	}
4443 
4444 	hs_ep->halted = value;
4445 	return 0;
4446 }
4447 
4448 /**
4449  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4450  * @ep: The endpoint to set halt.
4451  * @value: Set or unset the halt.
4452  */
4453 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4454 {
4455 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4456 	struct dwc2_hsotg *hs = hs_ep->parent;
4457 	unsigned long flags;
4458 	int ret;
4459 
4460 	spin_lock_irqsave(&hs->lock, flags);
4461 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4462 	spin_unlock_irqrestore(&hs->lock, flags);
4463 
4464 	return ret;
4465 }
4466 
4467 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4468 	.enable		= dwc2_hsotg_ep_enable,
4469 	.disable	= dwc2_hsotg_ep_disable_lock,
4470 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4471 	.free_request	= dwc2_hsotg_ep_free_request,
4472 	.queue		= dwc2_hsotg_ep_queue_lock,
4473 	.dequeue	= dwc2_hsotg_ep_dequeue,
4474 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4475 	.set_wedge	= dwc2_gadget_ep_set_wedge,
4476 	/* note, don't believe we have any call for the fifo routines */
4477 };
4478 
4479 /**
4480  * dwc2_hsotg_init - initialize the usb core
4481  * @hsotg: The driver state
4482  */
4483 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4484 {
4485 	/* unmask subset of endpoint interrupts */
4486 
4487 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4488 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4489 		    DIEPMSK);
4490 
4491 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4492 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4493 		    DOEPMSK);
4494 
4495 	dwc2_writel(hsotg, 0, DAINTMSK);
4496 
4497 	/* Be in disconnected state until gadget is registered */
4498 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4499 
4500 	/* setup fifos */
4501 
4502 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4503 		dwc2_readl(hsotg, GRXFSIZ),
4504 		dwc2_readl(hsotg, GNPTXFSIZ));
4505 
4506 	dwc2_hsotg_init_fifo(hsotg);
4507 
4508 	if (using_dma(hsotg))
4509 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4510 }
4511 
4512 /**
4513  * dwc2_hsotg_udc_start - prepare the udc for work
4514  * @gadget: The usb gadget state
4515  * @driver: The usb gadget driver
4516  *
4517  * Perform initialization to prepare udc device and driver
4518  * to work.
4519  */
4520 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4521 				struct usb_gadget_driver *driver)
4522 {
4523 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4524 	unsigned long flags;
4525 	int ret;
4526 
4527 	if (!hsotg) {
4528 		pr_err("%s: called with no device\n", __func__);
4529 		return -ENODEV;
4530 	}
4531 
4532 	if (!driver) {
4533 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4534 		return -EINVAL;
4535 	}
4536 
4537 	if (driver->max_speed < USB_SPEED_FULL)
4538 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4539 
4540 	if (!driver->setup) {
4541 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4542 		return -EINVAL;
4543 	}
4544 
4545 	WARN_ON(hsotg->driver);
4546 
4547 	hsotg->driver = driver;
4548 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4549 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4550 
4551 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4552 		ret = dwc2_lowlevel_hw_enable(hsotg);
4553 		if (ret)
4554 			goto err;
4555 	}
4556 
4557 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4558 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4559 
4560 	spin_lock_irqsave(&hsotg->lock, flags);
4561 	if (dwc2_hw_is_device(hsotg)) {
4562 		dwc2_hsotg_init(hsotg);
4563 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4564 	}
4565 
4566 	hsotg->enabled = 0;
4567 	spin_unlock_irqrestore(&hsotg->lock, flags);
4568 
4569 	gadget->sg_supported = using_desc_dma(hsotg);
4570 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4571 
4572 	return 0;
4573 
4574 err:
4575 	hsotg->driver = NULL;
4576 	return ret;
4577 }
4578 
4579 /**
4580  * dwc2_hsotg_udc_stop - stop the udc
4581  * @gadget: The usb gadget state
4582  *
4583  * Stop udc hw block and stay tunned for future transmissions
4584  */
4585 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4586 {
4587 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4588 	unsigned long flags;
4589 	int ep;
4590 
4591 	if (!hsotg)
4592 		return -ENODEV;
4593 
4594 	/* all endpoints should be shutdown */
4595 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4596 		if (hsotg->eps_in[ep])
4597 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4598 		if (hsotg->eps_out[ep])
4599 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4600 	}
4601 
4602 	spin_lock_irqsave(&hsotg->lock, flags);
4603 
4604 	hsotg->driver = NULL;
4605 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4606 	hsotg->enabled = 0;
4607 
4608 	spin_unlock_irqrestore(&hsotg->lock, flags);
4609 
4610 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4611 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4612 
4613 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4614 		dwc2_lowlevel_hw_disable(hsotg);
4615 
4616 	return 0;
4617 }
4618 
4619 /**
4620  * dwc2_hsotg_gadget_getframe - read the frame number
4621  * @gadget: The usb gadget state
4622  *
4623  * Read the {micro} frame number
4624  */
4625 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4626 {
4627 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4628 }
4629 
4630 /**
4631  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4632  * @gadget: The usb gadget state
4633  * @is_selfpowered: Whether the device is self-powered
4634  *
4635  * Set if the device is self or bus powered.
4636  */
4637 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4638 				      int is_selfpowered)
4639 {
4640 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4641 	unsigned long flags;
4642 
4643 	spin_lock_irqsave(&hsotg->lock, flags);
4644 	gadget->is_selfpowered = !!is_selfpowered;
4645 	spin_unlock_irqrestore(&hsotg->lock, flags);
4646 
4647 	return 0;
4648 }
4649 
4650 /**
4651  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4652  * @gadget: The usb gadget state
4653  * @is_on: Current state of the USB PHY
4654  *
4655  * Connect/Disconnect the USB PHY pullup
4656  */
4657 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4658 {
4659 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4660 	unsigned long flags;
4661 
4662 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4663 		hsotg->op_state);
4664 
4665 	/* Don't modify pullup state while in host mode */
4666 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4667 		hsotg->enabled = is_on;
4668 		return 0;
4669 	}
4670 
4671 	spin_lock_irqsave(&hsotg->lock, flags);
4672 	if (is_on) {
4673 		hsotg->enabled = 1;
4674 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4675 		/* Enable ACG feature in device mode,if supported */
4676 		dwc2_enable_acg(hsotg);
4677 		dwc2_hsotg_core_connect(hsotg);
4678 	} else {
4679 		dwc2_hsotg_core_disconnect(hsotg);
4680 		dwc2_hsotg_disconnect(hsotg);
4681 		hsotg->enabled = 0;
4682 	}
4683 
4684 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4685 	spin_unlock_irqrestore(&hsotg->lock, flags);
4686 
4687 	return 0;
4688 }
4689 
4690 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4691 {
4692 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4693 	unsigned long flags;
4694 
4695 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4696 	spin_lock_irqsave(&hsotg->lock, flags);
4697 
4698 	/*
4699 	 * If controller is in partial power down state, it must exit from
4700 	 * that state before being initialized / de-initialized
4701 	 */
4702 	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4703 		/*
4704 		 * No need to check the return value as
4705 		 * registers are not being restored.
4706 		 */
4707 		dwc2_exit_partial_power_down(hsotg, 0, false);
4708 
4709 	if (is_active) {
4710 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4711 
4712 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4713 		if (hsotg->enabled) {
4714 			/* Enable ACG feature in device mode,if supported */
4715 			dwc2_enable_acg(hsotg);
4716 			dwc2_hsotg_core_connect(hsotg);
4717 		}
4718 	} else {
4719 		dwc2_hsotg_core_disconnect(hsotg);
4720 		dwc2_hsotg_disconnect(hsotg);
4721 	}
4722 
4723 	spin_unlock_irqrestore(&hsotg->lock, flags);
4724 	return 0;
4725 }
4726 
4727 /**
4728  * dwc2_hsotg_vbus_draw - report bMaxPower field
4729  * @gadget: The usb gadget state
4730  * @mA: Amount of current
4731  *
4732  * Report how much power the device may consume to the phy.
4733  */
4734 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4735 {
4736 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4737 
4738 	if (IS_ERR_OR_NULL(hsotg->uphy))
4739 		return -ENOTSUPP;
4740 	return usb_phy_set_power(hsotg->uphy, mA);
4741 }
4742 
4743 static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4744 {
4745 	struct dwc2_hsotg *hsotg = to_hsotg(g);
4746 	unsigned long		flags;
4747 
4748 	spin_lock_irqsave(&hsotg->lock, flags);
4749 	switch (speed) {
4750 	case USB_SPEED_HIGH:
4751 		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4752 		break;
4753 	case USB_SPEED_FULL:
4754 		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4755 		break;
4756 	case USB_SPEED_LOW:
4757 		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4758 		break;
4759 	default:
4760 		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4761 	}
4762 	spin_unlock_irqrestore(&hsotg->lock, flags);
4763 }
4764 
4765 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4766 	.get_frame	= dwc2_hsotg_gadget_getframe,
4767 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4768 	.udc_start		= dwc2_hsotg_udc_start,
4769 	.udc_stop		= dwc2_hsotg_udc_stop,
4770 	.pullup                 = dwc2_hsotg_pullup,
4771 	.udc_set_speed		= dwc2_gadget_set_speed,
4772 	.vbus_session		= dwc2_hsotg_vbus_session,
4773 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4774 };
4775 
4776 /**
4777  * dwc2_hsotg_initep - initialise a single endpoint
4778  * @hsotg: The device state.
4779  * @hs_ep: The endpoint to be initialised.
4780  * @epnum: The endpoint number
4781  * @dir_in: True if direction is in.
4782  *
4783  * Initialise the given endpoint (as part of the probe and device state
4784  * creation) to give to the gadget driver. Setup the endpoint name, any
4785  * direction information and other state that may be required.
4786  */
4787 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4788 			      struct dwc2_hsotg_ep *hs_ep,
4789 				       int epnum,
4790 				       bool dir_in)
4791 {
4792 	char *dir;
4793 
4794 	if (epnum == 0)
4795 		dir = "";
4796 	else if (dir_in)
4797 		dir = "in";
4798 	else
4799 		dir = "out";
4800 
4801 	hs_ep->dir_in = dir_in;
4802 	hs_ep->index = epnum;
4803 
4804 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4805 
4806 	INIT_LIST_HEAD(&hs_ep->queue);
4807 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4808 
4809 	/* add to the list of endpoints known by the gadget driver */
4810 	if (epnum)
4811 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4812 
4813 	hs_ep->parent = hsotg;
4814 	hs_ep->ep.name = hs_ep->name;
4815 
4816 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4817 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4818 	else
4819 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4820 					   epnum ? 1024 : EP0_MPS_LIMIT);
4821 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4822 
4823 	if (epnum == 0) {
4824 		hs_ep->ep.caps.type_control = true;
4825 	} else {
4826 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4827 			hs_ep->ep.caps.type_iso = true;
4828 			hs_ep->ep.caps.type_bulk = true;
4829 		}
4830 		hs_ep->ep.caps.type_int = true;
4831 	}
4832 
4833 	if (dir_in)
4834 		hs_ep->ep.caps.dir_in = true;
4835 	else
4836 		hs_ep->ep.caps.dir_out = true;
4837 
4838 	/*
4839 	 * if we're using dma, we need to set the next-endpoint pointer
4840 	 * to be something valid.
4841 	 */
4842 
4843 	if (using_dma(hsotg)) {
4844 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4845 
4846 		if (dir_in)
4847 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4848 		else
4849 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4850 	}
4851 }
4852 
4853 /**
4854  * dwc2_hsotg_hw_cfg - read HW configuration registers
4855  * @hsotg: Programming view of the DWC_otg controller
4856  *
4857  * Read the USB core HW configuration registers
4858  */
4859 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4860 {
4861 	u32 cfg;
4862 	u32 ep_type;
4863 	u32 i;
4864 
4865 	/* check hardware configuration */
4866 
4867 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4868 
4869 	/* Add ep0 */
4870 	hsotg->num_of_eps++;
4871 
4872 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4873 					sizeof(struct dwc2_hsotg_ep),
4874 					GFP_KERNEL);
4875 	if (!hsotg->eps_in[0])
4876 		return -ENOMEM;
4877 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4878 	hsotg->eps_out[0] = hsotg->eps_in[0];
4879 
4880 	cfg = hsotg->hw_params.dev_ep_dirs;
4881 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4882 		ep_type = cfg & 3;
4883 		/* Direction in or both */
4884 		if (!(ep_type & 2)) {
4885 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4886 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4887 			if (!hsotg->eps_in[i])
4888 				return -ENOMEM;
4889 		}
4890 		/* Direction out or both */
4891 		if (!(ep_type & 1)) {
4892 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4893 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4894 			if (!hsotg->eps_out[i])
4895 				return -ENOMEM;
4896 		}
4897 	}
4898 
4899 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4900 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4901 
4902 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4903 		 hsotg->num_of_eps,
4904 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4905 		 hsotg->fifo_mem);
4906 	return 0;
4907 }
4908 
4909 /**
4910  * dwc2_hsotg_dump - dump state of the udc
4911  * @hsotg: Programming view of the DWC_otg controller
4912  *
4913  */
4914 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4915 {
4916 #ifdef DEBUG
4917 	struct device *dev = hsotg->dev;
4918 	u32 val;
4919 	int idx;
4920 
4921 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4922 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4923 		 dwc2_readl(hsotg, DIEPMSK));
4924 
4925 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4926 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4927 
4928 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4929 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4930 
4931 	/* show periodic fifo settings */
4932 
4933 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4934 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4935 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4936 			 val >> FIFOSIZE_DEPTH_SHIFT,
4937 			 val & FIFOSIZE_STARTADDR_MASK);
4938 	}
4939 
4940 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4941 		dev_info(dev,
4942 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4943 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4944 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4945 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4946 
4947 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4948 		dev_info(dev,
4949 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4950 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4951 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4952 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4953 	}
4954 
4955 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4956 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4957 #endif
4958 }
4959 
4960 /**
4961  * dwc2_gadget_init - init function for gadget
4962  * @hsotg: Programming view of the DWC_otg controller
4963  *
4964  */
4965 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4966 {
4967 	struct device *dev = hsotg->dev;
4968 	int epnum;
4969 	int ret;
4970 
4971 	/* Dump fifo information */
4972 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4973 		hsotg->params.g_np_tx_fifo_size);
4974 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4975 
4976 	switch (hsotg->params.speed) {
4977 	case DWC2_SPEED_PARAM_LOW:
4978 		hsotg->gadget.max_speed = USB_SPEED_LOW;
4979 		break;
4980 	case DWC2_SPEED_PARAM_FULL:
4981 		hsotg->gadget.max_speed = USB_SPEED_FULL;
4982 		break;
4983 	default:
4984 		hsotg->gadget.max_speed = USB_SPEED_HIGH;
4985 		break;
4986 	}
4987 
4988 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4989 	hsotg->gadget.name = dev_name(dev);
4990 	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4991 	hsotg->remote_wakeup_allowed = 0;
4992 
4993 	if (hsotg->params.lpm)
4994 		hsotg->gadget.lpm_capable = true;
4995 
4996 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4997 		hsotg->gadget.is_otg = 1;
4998 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4999 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5000 
5001 	ret = dwc2_hsotg_hw_cfg(hsotg);
5002 	if (ret) {
5003 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5004 		return ret;
5005 	}
5006 
5007 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5008 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5009 	if (!hsotg->ctrl_buff)
5010 		return -ENOMEM;
5011 
5012 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5013 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5014 	if (!hsotg->ep0_buff)
5015 		return -ENOMEM;
5016 
5017 	if (using_desc_dma(hsotg)) {
5018 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5019 		if (ret < 0)
5020 			return ret;
5021 	}
5022 
5023 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5024 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5025 	if (ret < 0) {
5026 		dev_err(dev, "cannot claim IRQ for gadget\n");
5027 		return ret;
5028 	}
5029 
5030 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5031 
5032 	if (hsotg->num_of_eps == 0) {
5033 		dev_err(dev, "wrong number of EPs (zero)\n");
5034 		return -EINVAL;
5035 	}
5036 
5037 	/* setup endpoint information */
5038 
5039 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5040 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5041 
5042 	/* allocate EP0 request */
5043 
5044 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5045 						     GFP_KERNEL);
5046 	if (!hsotg->ctrl_req) {
5047 		dev_err(dev, "failed to allocate ctrl req\n");
5048 		return -ENOMEM;
5049 	}
5050 
5051 	/* initialise the endpoints now the core has been initialised */
5052 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5053 		if (hsotg->eps_in[epnum])
5054 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5055 					  epnum, 1);
5056 		if (hsotg->eps_out[epnum])
5057 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5058 					  epnum, 0);
5059 	}
5060 
5061 	dwc2_hsotg_dump(hsotg);
5062 
5063 	return 0;
5064 }
5065 
5066 /**
5067  * dwc2_hsotg_remove - remove function for hsotg driver
5068  * @hsotg: Programming view of the DWC_otg controller
5069  *
5070  */
5071 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5072 {
5073 	usb_del_gadget_udc(&hsotg->gadget);
5074 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5075 
5076 	return 0;
5077 }
5078 
5079 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5080 {
5081 	unsigned long flags;
5082 
5083 	if (hsotg->lx_state != DWC2_L0)
5084 		return 0;
5085 
5086 	if (hsotg->driver) {
5087 		int ep;
5088 
5089 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5090 			 hsotg->driver->driver.name);
5091 
5092 		spin_lock_irqsave(&hsotg->lock, flags);
5093 		if (hsotg->enabled)
5094 			dwc2_hsotg_core_disconnect(hsotg);
5095 		dwc2_hsotg_disconnect(hsotg);
5096 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5097 		spin_unlock_irqrestore(&hsotg->lock, flags);
5098 
5099 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5100 			if (hsotg->eps_in[ep])
5101 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5102 			if (hsotg->eps_out[ep])
5103 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5104 		}
5105 	}
5106 
5107 	return 0;
5108 }
5109 
5110 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5111 {
5112 	unsigned long flags;
5113 
5114 	if (hsotg->lx_state == DWC2_L2)
5115 		return 0;
5116 
5117 	if (hsotg->driver) {
5118 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5119 			 hsotg->driver->driver.name);
5120 
5121 		spin_lock_irqsave(&hsotg->lock, flags);
5122 		dwc2_hsotg_core_init_disconnected(hsotg, false);
5123 		if (hsotg->enabled) {
5124 			/* Enable ACG feature in device mode,if supported */
5125 			dwc2_enable_acg(hsotg);
5126 			dwc2_hsotg_core_connect(hsotg);
5127 		}
5128 		spin_unlock_irqrestore(&hsotg->lock, flags);
5129 	}
5130 
5131 	return 0;
5132 }
5133 
5134 /**
5135  * dwc2_backup_device_registers() - Backup controller device registers.
5136  * When suspending usb bus, registers needs to be backuped
5137  * if controller power is disabled once suspended.
5138  *
5139  * @hsotg: Programming view of the DWC_otg controller
5140  */
5141 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5142 {
5143 	struct dwc2_dregs_backup *dr;
5144 	int i;
5145 
5146 	dev_dbg(hsotg->dev, "%s\n", __func__);
5147 
5148 	/* Backup dev regs */
5149 	dr = &hsotg->dr_backup;
5150 
5151 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5152 	dr->dctl = dwc2_readl(hsotg, DCTL);
5153 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5154 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5155 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5156 
5157 	for (i = 0; i < hsotg->num_of_eps; i++) {
5158 		/* Backup IN EPs */
5159 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5160 
5161 		/* Ensure DATA PID is correctly configured */
5162 		if (dr->diepctl[i] & DXEPCTL_DPID)
5163 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5164 		else
5165 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5166 
5167 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5168 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5169 
5170 		/* Backup OUT EPs */
5171 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5172 
5173 		/* Ensure DATA PID is correctly configured */
5174 		if (dr->doepctl[i] & DXEPCTL_DPID)
5175 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5176 		else
5177 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5178 
5179 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5180 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5181 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5182 	}
5183 	dr->valid = true;
5184 	return 0;
5185 }
5186 
5187 /**
5188  * dwc2_restore_device_registers() - Restore controller device registers.
5189  * When resuming usb bus, device registers needs to be restored
5190  * if controller power were disabled.
5191  *
5192  * @hsotg: Programming view of the DWC_otg controller
5193  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5194  *
5195  * Return: 0 if successful, negative error code otherwise
5196  */
5197 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5198 {
5199 	struct dwc2_dregs_backup *dr;
5200 	int i;
5201 
5202 	dev_dbg(hsotg->dev, "%s\n", __func__);
5203 
5204 	/* Restore dev regs */
5205 	dr = &hsotg->dr_backup;
5206 	if (!dr->valid) {
5207 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5208 			__func__);
5209 		return -EINVAL;
5210 	}
5211 	dr->valid = false;
5212 
5213 	if (!remote_wakeup)
5214 		dwc2_writel(hsotg, dr->dctl, DCTL);
5215 
5216 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5217 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5218 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5219 
5220 	for (i = 0; i < hsotg->num_of_eps; i++) {
5221 		/* Restore IN EPs */
5222 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5223 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5224 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5225 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5226 		 * hibernation wrong value read and saved from DIEPDMAx,
5227 		 * as result BNA interrupt asserted on hibernation exit
5228 		 * by restoring from saved area.
5229 		 */
5230 		if (using_desc_dma(hsotg) &&
5231 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5232 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5233 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5234 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5235 		/* Restore OUT EPs */
5236 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5237 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5238 		 * hibernation wrong value read and saved from DOEPDMAx,
5239 		 * as result BNA interrupt asserted on hibernation exit
5240 		 * by restoring from saved area.
5241 		 */
5242 		if (using_desc_dma(hsotg) &&
5243 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5244 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5245 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5246 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5247 	}
5248 
5249 	return 0;
5250 }
5251 
5252 /**
5253  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5254  *
5255  * @hsotg: Programming view of DWC_otg controller
5256  *
5257  */
5258 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5259 {
5260 	u32 val;
5261 
5262 	if (!hsotg->params.lpm)
5263 		return;
5264 
5265 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5266 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5267 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5268 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5269 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5270 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5271 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5272 	dwc2_writel(hsotg, val, GLPMCFG);
5273 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5274 
5275 	/* Unmask WKUP_ALERT Interrupt */
5276 	if (hsotg->params.service_interval)
5277 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5278 }
5279 
5280 /**
5281  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5282  *
5283  * @hsotg: Programming view of DWC_otg controller
5284  *
5285  */
5286 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5287 {
5288 	u32 val = 0;
5289 
5290 	val |= GREFCLK_REF_CLK_MODE;
5291 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5292 	val |= hsotg->params.sof_cnt_wkup_alert <<
5293 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5294 
5295 	dwc2_writel(hsotg, val, GREFCLK);
5296 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5297 }
5298 
5299 /**
5300  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5301  *
5302  * @hsotg: Programming view of the DWC_otg controller
5303  *
5304  * Return non-zero if failed to enter to hibernation.
5305  */
5306 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5307 {
5308 	u32 gpwrdn;
5309 	int ret = 0;
5310 
5311 	/* Change to L2(suspend) state */
5312 	hsotg->lx_state = DWC2_L2;
5313 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5314 	ret = dwc2_backup_global_registers(hsotg);
5315 	if (ret) {
5316 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5317 			__func__);
5318 		return ret;
5319 	}
5320 	ret = dwc2_backup_device_registers(hsotg);
5321 	if (ret) {
5322 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5323 			__func__);
5324 		return ret;
5325 	}
5326 
5327 	gpwrdn = GPWRDN_PWRDNRSTN;
5328 	gpwrdn |= GPWRDN_PMUACTV;
5329 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5330 	udelay(10);
5331 
5332 	/* Set flag to indicate that we are in hibernation */
5333 	hsotg->hibernated = 1;
5334 
5335 	/* Enable interrupts from wake up logic */
5336 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5337 	gpwrdn |= GPWRDN_PMUINTSEL;
5338 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5339 	udelay(10);
5340 
5341 	/* Unmask device mode interrupts in GPWRDN */
5342 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5343 	gpwrdn |= GPWRDN_RST_DET_MSK;
5344 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5345 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5346 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5347 	udelay(10);
5348 
5349 	/* Enable Power Down Clamp */
5350 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5351 	gpwrdn |= GPWRDN_PWRDNCLMP;
5352 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5353 	udelay(10);
5354 
5355 	/* Switch off VDD */
5356 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5357 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5358 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5359 	udelay(10);
5360 
5361 	/* Save gpwrdn register for further usage if stschng interrupt */
5362 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5363 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5364 
5365 	return ret;
5366 }
5367 
5368 /**
5369  * dwc2_gadget_exit_hibernation()
5370  * This function is for exiting from Device mode hibernation by host initiated
5371  * resume/reset and device initiated remote-wakeup.
5372  *
5373  * @hsotg: Programming view of the DWC_otg controller
5374  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5375  * @reset: indicates whether resume is initiated by Reset.
5376  *
5377  * Return non-zero if failed to exit from hibernation.
5378  */
5379 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5380 				 int rem_wakeup, int reset)
5381 {
5382 	u32 pcgcctl;
5383 	u32 gpwrdn;
5384 	u32 dctl;
5385 	int ret = 0;
5386 	struct dwc2_gregs_backup *gr;
5387 	struct dwc2_dregs_backup *dr;
5388 
5389 	gr = &hsotg->gr_backup;
5390 	dr = &hsotg->dr_backup;
5391 
5392 	if (!hsotg->hibernated) {
5393 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5394 		return 1;
5395 	}
5396 	dev_dbg(hsotg->dev,
5397 		"%s: called with rem_wakeup = %d reset = %d\n",
5398 		__func__, rem_wakeup, reset);
5399 
5400 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5401 
5402 	if (!reset) {
5403 		/* Clear all pending interupts */
5404 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5405 	}
5406 
5407 	/* De-assert Restore */
5408 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5409 	gpwrdn &= ~GPWRDN_RESTORE;
5410 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5411 	udelay(10);
5412 
5413 	if (!rem_wakeup) {
5414 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5416 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417 	}
5418 
5419 	/* Restore GUSBCFG, DCFG and DCTL */
5420 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5421 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5422 	dwc2_writel(hsotg, dr->dctl, DCTL);
5423 
5424 	/* On USB Reset, reset device address to zero */
5425 	if (reset)
5426 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5427 
5428 	/* De-assert Wakeup Logic */
5429 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5430 	gpwrdn &= ~GPWRDN_PMUACTV;
5431 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5432 
5433 	if (rem_wakeup) {
5434 		udelay(10);
5435 		/* Start Remote Wakeup Signaling */
5436 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5437 	} else {
5438 		udelay(50);
5439 		/* Set Device programming done bit */
5440 		dctl = dwc2_readl(hsotg, DCTL);
5441 		dctl |= DCTL_PWRONPRGDONE;
5442 		dwc2_writel(hsotg, dctl, DCTL);
5443 	}
5444 	/* Wait for interrupts which must be cleared */
5445 	mdelay(2);
5446 	/* Clear all pending interupts */
5447 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5448 
5449 	/* Restore global registers */
5450 	ret = dwc2_restore_global_registers(hsotg);
5451 	if (ret) {
5452 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5453 			__func__);
5454 		return ret;
5455 	}
5456 
5457 	/* Restore device registers */
5458 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5459 	if (ret) {
5460 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5461 			__func__);
5462 		return ret;
5463 	}
5464 
5465 	if (rem_wakeup) {
5466 		mdelay(10);
5467 		dctl = dwc2_readl(hsotg, DCTL);
5468 		dctl &= ~DCTL_RMTWKUPSIG;
5469 		dwc2_writel(hsotg, dctl, DCTL);
5470 	}
5471 
5472 	hsotg->hibernated = 0;
5473 	hsotg->lx_state = DWC2_L0;
5474 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5475 
5476 	return ret;
5477 }
5478 
5479 /**
5480  * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5481  * power down.
5482  *
5483  * @hsotg: Programming view of the DWC_otg controller
5484  *
5485  * Return: non-zero if failed to enter device partial power down.
5486  *
5487  * This function is for entering device mode partial power down.
5488  */
5489 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5490 {
5491 	u32 pcgcctl;
5492 	int ret = 0;
5493 
5494 	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5495 
5496 	/* Backup all registers */
5497 	ret = dwc2_backup_global_registers(hsotg);
5498 	if (ret) {
5499 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5500 			__func__);
5501 		return ret;
5502 	}
5503 
5504 	ret = dwc2_backup_device_registers(hsotg);
5505 	if (ret) {
5506 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5507 			__func__);
5508 		return ret;
5509 	}
5510 
5511 	/*
5512 	 * Clear any pending interrupts since dwc2 will not be able to
5513 	 * clear them after entering partial_power_down.
5514 	 */
5515 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5516 
5517 	/* Put the controller in low power state */
5518 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5519 
5520 	pcgcctl |= PCGCTL_PWRCLMP;
5521 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5522 	udelay(5);
5523 
5524 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5525 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5526 	udelay(5);
5527 
5528 	pcgcctl |= PCGCTL_STOPPCLK;
5529 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5530 
5531 	/* Set in_ppd flag to 1 as here core enters suspend. */
5532 	hsotg->in_ppd = 1;
5533 	hsotg->lx_state = DWC2_L2;
5534 
5535 	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5536 
5537 	return ret;
5538 }
5539 
5540 /*
5541  * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5542  * power down.
5543  *
5544  * @hsotg: Programming view of the DWC_otg controller
5545  * @restore: indicates whether need to restore the registers or not.
5546  *
5547  * Return: non-zero if failed to exit device partial power down.
5548  *
5549  * This function is for exiting from device mode partial power down.
5550  */
5551 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5552 					bool restore)
5553 {
5554 	u32 pcgcctl;
5555 	u32 dctl;
5556 	struct dwc2_dregs_backup *dr;
5557 	int ret = 0;
5558 
5559 	dr = &hsotg->dr_backup;
5560 
5561 	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5562 
5563 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5564 	pcgcctl &= ~PCGCTL_STOPPCLK;
5565 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5566 
5567 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5568 	pcgcctl &= ~PCGCTL_PWRCLMP;
5569 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5570 
5571 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5572 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5573 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5574 
5575 	udelay(100);
5576 	if (restore) {
5577 		ret = dwc2_restore_global_registers(hsotg);
5578 		if (ret) {
5579 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5580 				__func__);
5581 			return ret;
5582 		}
5583 		/* Restore DCFG */
5584 		dwc2_writel(hsotg, dr->dcfg, DCFG);
5585 
5586 		ret = dwc2_restore_device_registers(hsotg, 0);
5587 		if (ret) {
5588 			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5589 				__func__);
5590 			return ret;
5591 		}
5592 	}
5593 
5594 	/* Set the Power-On Programming done bit */
5595 	dctl = dwc2_readl(hsotg, DCTL);
5596 	dctl |= DCTL_PWRONPRGDONE;
5597 	dwc2_writel(hsotg, dctl, DCTL);
5598 
5599 	/* Set in_ppd flag to 0 as here core exits from suspend. */
5600 	hsotg->in_ppd = 0;
5601 	hsotg->lx_state = DWC2_L0;
5602 
5603 	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5604 	return ret;
5605 }
5606 
5607 /**
5608  * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5609  *
5610  * @hsotg: Programming view of the DWC_otg controller
5611  *
5612  * Return: non-zero if failed to enter device partial power down.
5613  *
5614  * This function is for entering device mode clock gating.
5615  */
5616 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5617 {
5618 	u32 pcgctl;
5619 
5620 	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5621 
5622 	/* Set the Phy Clock bit as suspend is received. */
5623 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5624 	pcgctl |= PCGCTL_STOPPCLK;
5625 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5626 	udelay(5);
5627 
5628 	/* Set the Gate hclk as suspend is received. */
5629 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5630 	pcgctl |= PCGCTL_GATEHCLK;
5631 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5632 	udelay(5);
5633 
5634 	hsotg->lx_state = DWC2_L2;
5635 	hsotg->bus_suspended = true;
5636 }
5637 
5638 /*
5639  * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5640  *
5641  * @hsotg: Programming view of the DWC_otg controller
5642  * @rem_wakeup: indicates whether remote wake up is enabled.
5643  *
5644  * This function is for exiting from device mode clock gating.
5645  */
5646 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5647 {
5648 	u32 pcgctl;
5649 	u32 dctl;
5650 
5651 	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5652 
5653 	/* Clear the Gate hclk. */
5654 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5655 	pcgctl &= ~PCGCTL_GATEHCLK;
5656 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5657 	udelay(5);
5658 
5659 	/* Phy Clock bit. */
5660 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5661 	pcgctl &= ~PCGCTL_STOPPCLK;
5662 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5663 	udelay(5);
5664 
5665 	if (rem_wakeup) {
5666 		/* Set Remote Wakeup Signaling */
5667 		dctl = dwc2_readl(hsotg, DCTL);
5668 		dctl |= DCTL_RMTWKUPSIG;
5669 		dwc2_writel(hsotg, dctl, DCTL);
5670 	}
5671 
5672 	/* Change to L0 state */
5673 	call_gadget(hsotg, resume);
5674 	hsotg->lx_state = DWC2_L0;
5675 	hsotg->bus_suspended = false;
5676 }
5677