1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 hs_ep->target_frame += hs_ep->interval; 119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 120 hs_ep->frame_overrun = true; 121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 122 } else { 123 hs_ep->frame_overrun = false; 124 } 125 } 126 127 /** 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 129 * by one. 130 * @hs_ep: The endpoint. 131 * 132 * This function used in service interval based scheduling flow to calculate 133 * descriptor frame number filed value. For service interval mode frame 134 * number in descriptor should point to last (u)frame in the interval. 135 * 136 */ 137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 138 { 139 if (hs_ep->target_frame) 140 hs_ep->target_frame -= 1; 141 else 142 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 143 } 144 145 /** 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 147 * @hsotg: The device state 148 * @ints: A bitmask of the interrupts to enable 149 */ 150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 151 { 152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 153 u32 new_gsintmsk; 154 155 new_gsintmsk = gsintmsk | ints; 156 157 if (new_gsintmsk != gsintmsk) { 158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 160 } 161 } 162 163 /** 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 165 * @hsotg: The device state 166 * @ints: A bitmask of the interrupts to enable 167 */ 168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 169 { 170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 171 u32 new_gsintmsk; 172 173 new_gsintmsk = gsintmsk & ~ints; 174 175 if (new_gsintmsk != gsintmsk) 176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 177 } 178 179 /** 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 181 * @hsotg: The device state 182 * @ep: The endpoint index 183 * @dir_in: True if direction is in. 184 * @en: The enable value, true to enable 185 * 186 * Set or clear the mask for an individual endpoint's interrupt 187 * request. 188 */ 189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 190 unsigned int ep, unsigned int dir_in, 191 unsigned int en) 192 { 193 unsigned long flags; 194 u32 bit = 1 << ep; 195 u32 daint; 196 197 if (!dir_in) 198 bit <<= 16; 199 200 local_irq_save(flags); 201 daint = dwc2_readl(hsotg, DAINTMSK); 202 if (en) 203 daint |= bit; 204 else 205 daint &= ~bit; 206 dwc2_writel(hsotg, daint, DAINTMSK); 207 local_irq_restore(flags); 208 } 209 210 /** 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 212 * 213 * @hsotg: Programming view of the DWC_otg controller 214 */ 215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 216 { 217 if (hsotg->hw_params.en_multiple_tx_fifo) 218 /* In dedicated FIFO mode we need count of IN EPs */ 219 return hsotg->hw_params.num_dev_in_eps; 220 else 221 /* In shared FIFO mode we need count of Periodic IN EPs */ 222 return hsotg->hw_params.num_dev_perio_in_ep; 223 } 224 225 /** 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 227 * device mode TX FIFOs 228 * 229 * @hsotg: Programming view of the DWC_otg controller 230 */ 231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 232 { 233 int addr; 234 int tx_addr_max; 235 u32 np_tx_fifo_size; 236 237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 238 hsotg->params.g_np_tx_fifo_size); 239 240 /* Get Endpoint Info Control block size in DWORDs. */ 241 tx_addr_max = hsotg->hw_params.total_fifo_size; 242 243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 244 if (tx_addr_max <= addr) 245 return 0; 246 247 return tx_addr_max - addr; 248 } 249 250 /** 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 252 * 253 * @hsotg: Programming view of the DWC_otg controller 254 * 255 */ 256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 257 { 258 u32 gintsts2; 259 u32 gintmsk2; 260 261 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 263 gintsts2 &= gintmsk2; 264 265 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 266 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 267 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 268 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 269 } 270 } 271 272 /** 273 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 274 * TX FIFOs 275 * 276 * @hsotg: Programming view of the DWC_otg controller 277 */ 278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 279 { 280 int tx_fifo_count; 281 int tx_fifo_depth; 282 283 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 284 285 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 286 287 if (!tx_fifo_count) 288 return tx_fifo_depth; 289 else 290 return tx_fifo_depth / tx_fifo_count; 291 } 292 293 /** 294 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 295 * @hsotg: The device instance. 296 */ 297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 298 { 299 unsigned int ep; 300 unsigned int addr; 301 int timeout; 302 303 u32 val; 304 u32 *txfsz = hsotg->params.g_tx_fifo_size; 305 306 /* Reset fifo map if not correctly cleared during previous session */ 307 WARN_ON(hsotg->fifo_map); 308 hsotg->fifo_map = 0; 309 310 /* set RX/NPTX FIFO sizes */ 311 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 312 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 313 FIFOSIZE_STARTADDR_SHIFT) | 314 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 315 GNPTXFSIZ); 316 317 /* 318 * arange all the rest of the TX FIFOs, as some versions of this 319 * block have overlapping default addresses. This also ensures 320 * that if the settings have been changed, then they are set to 321 * known values. 322 */ 323 324 /* start at the end of the GNPTXFSIZ, rounded up */ 325 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 326 327 /* 328 * Configure fifos sizes from provided configuration and assign 329 * them to endpoints dynamically according to maxpacket size value of 330 * given endpoint. 331 */ 332 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 333 if (!txfsz[ep]) 334 continue; 335 val = addr; 336 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 337 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 338 "insufficient fifo memory"); 339 addr += txfsz[ep]; 340 341 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 342 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 343 } 344 345 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 346 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 347 GDFIFOCFG); 348 /* 349 * according to p428 of the design guide, we need to ensure that 350 * all fifos are flushed before continuing 351 */ 352 353 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 354 GRSTCTL_RXFFLSH, GRSTCTL); 355 356 /* wait until the fifos are both flushed */ 357 timeout = 100; 358 while (1) { 359 val = dwc2_readl(hsotg, GRSTCTL); 360 361 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 362 break; 363 364 if (--timeout == 0) { 365 dev_err(hsotg->dev, 366 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 367 __func__, val); 368 break; 369 } 370 371 udelay(1); 372 } 373 374 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 375 } 376 377 /** 378 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 379 * @ep: USB endpoint to allocate request for. 380 * @flags: Allocation flags 381 * 382 * Allocate a new USB request structure appropriate for the specified endpoint 383 */ 384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 385 gfp_t flags) 386 { 387 struct dwc2_hsotg_req *req; 388 389 req = kzalloc(sizeof(*req), flags); 390 if (!req) 391 return NULL; 392 393 INIT_LIST_HEAD(&req->queue); 394 395 return &req->req; 396 } 397 398 /** 399 * is_ep_periodic - return true if the endpoint is in periodic mode. 400 * @hs_ep: The endpoint to query. 401 * 402 * Returns true if the endpoint is in periodic mode, meaning it is being 403 * used for an Interrupt or ISO transfer. 404 */ 405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 406 { 407 return hs_ep->periodic; 408 } 409 410 /** 411 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 412 * @hsotg: The device state. 413 * @hs_ep: The endpoint for the request 414 * @hs_req: The request being processed. 415 * 416 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 417 * of a request to ensure the buffer is ready for access by the caller. 418 */ 419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 420 struct dwc2_hsotg_ep *hs_ep, 421 struct dwc2_hsotg_req *hs_req) 422 { 423 struct usb_request *req = &hs_req->req; 424 425 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 426 } 427 428 /* 429 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 430 * for Control endpoint 431 * @hsotg: The device state. 432 * 433 * This function will allocate 4 descriptor chains for EP 0: 2 for 434 * Setup stage, per one for IN and OUT data/status transactions. 435 */ 436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 437 { 438 hsotg->setup_desc[0] = 439 dmam_alloc_coherent(hsotg->dev, 440 sizeof(struct dwc2_dma_desc), 441 &hsotg->setup_desc_dma[0], 442 GFP_KERNEL); 443 if (!hsotg->setup_desc[0]) 444 goto fail; 445 446 hsotg->setup_desc[1] = 447 dmam_alloc_coherent(hsotg->dev, 448 sizeof(struct dwc2_dma_desc), 449 &hsotg->setup_desc_dma[1], 450 GFP_KERNEL); 451 if (!hsotg->setup_desc[1]) 452 goto fail; 453 454 hsotg->ctrl_in_desc = 455 dmam_alloc_coherent(hsotg->dev, 456 sizeof(struct dwc2_dma_desc), 457 &hsotg->ctrl_in_desc_dma, 458 GFP_KERNEL); 459 if (!hsotg->ctrl_in_desc) 460 goto fail; 461 462 hsotg->ctrl_out_desc = 463 dmam_alloc_coherent(hsotg->dev, 464 sizeof(struct dwc2_dma_desc), 465 &hsotg->ctrl_out_desc_dma, 466 GFP_KERNEL); 467 if (!hsotg->ctrl_out_desc) 468 goto fail; 469 470 return 0; 471 472 fail: 473 return -ENOMEM; 474 } 475 476 /** 477 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 478 * @hsotg: The controller state. 479 * @hs_ep: The endpoint we're going to write for. 480 * @hs_req: The request to write data for. 481 * 482 * This is called when the TxFIFO has some space in it to hold a new 483 * transmission and we have something to give it. The actual setup of 484 * the data size is done elsewhere, so all we have to do is to actually 485 * write the data. 486 * 487 * The return value is zero if there is more space (or nothing was done) 488 * otherwise -ENOSPC is returned if the FIFO space was used up. 489 * 490 * This routine is only needed for PIO 491 */ 492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 493 struct dwc2_hsotg_ep *hs_ep, 494 struct dwc2_hsotg_req *hs_req) 495 { 496 bool periodic = is_ep_periodic(hs_ep); 497 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 498 int buf_pos = hs_req->req.actual; 499 int to_write = hs_ep->size_loaded; 500 void *data; 501 int can_write; 502 int pkt_round; 503 int max_transfer; 504 505 to_write -= (buf_pos - hs_ep->last_load); 506 507 /* if there's nothing to write, get out early */ 508 if (to_write == 0) 509 return 0; 510 511 if (periodic && !hsotg->dedicated_fifos) { 512 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 513 int size_left; 514 int size_done; 515 516 /* 517 * work out how much data was loaded so we can calculate 518 * how much data is left in the fifo. 519 */ 520 521 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 522 523 /* 524 * if shared fifo, we cannot write anything until the 525 * previous data has been completely sent. 526 */ 527 if (hs_ep->fifo_load != 0) { 528 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 529 return -ENOSPC; 530 } 531 532 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 533 __func__, size_left, 534 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 535 536 /* how much of the data has moved */ 537 size_done = hs_ep->size_loaded - size_left; 538 539 /* how much data is left in the fifo */ 540 can_write = hs_ep->fifo_load - size_done; 541 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 542 __func__, can_write); 543 544 can_write = hs_ep->fifo_size - can_write; 545 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 546 __func__, can_write); 547 548 if (can_write <= 0) { 549 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 550 return -ENOSPC; 551 } 552 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 553 can_write = dwc2_readl(hsotg, 554 DTXFSTS(hs_ep->fifo_index)); 555 556 can_write &= 0xffff; 557 can_write *= 4; 558 } else { 559 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 560 dev_dbg(hsotg->dev, 561 "%s: no queue slots available (0x%08x)\n", 562 __func__, gnptxsts); 563 564 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 565 return -ENOSPC; 566 } 567 568 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 569 can_write *= 4; /* fifo size is in 32bit quantities. */ 570 } 571 572 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 573 574 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 575 __func__, gnptxsts, can_write, to_write, max_transfer); 576 577 /* 578 * limit to 512 bytes of data, it seems at least on the non-periodic 579 * FIFO, requests of >512 cause the endpoint to get stuck with a 580 * fragment of the end of the transfer in it. 581 */ 582 if (can_write > 512 && !periodic) 583 can_write = 512; 584 585 /* 586 * limit the write to one max-packet size worth of data, but allow 587 * the transfer to return that it did not run out of fifo space 588 * doing it. 589 */ 590 if (to_write > max_transfer) { 591 to_write = max_transfer; 592 593 /* it's needed only when we do not use dedicated fifos */ 594 if (!hsotg->dedicated_fifos) 595 dwc2_hsotg_en_gsint(hsotg, 596 periodic ? GINTSTS_PTXFEMP : 597 GINTSTS_NPTXFEMP); 598 } 599 600 /* see if we can write data */ 601 602 if (to_write > can_write) { 603 to_write = can_write; 604 pkt_round = to_write % max_transfer; 605 606 /* 607 * Round the write down to an 608 * exact number of packets. 609 * 610 * Note, we do not currently check to see if we can ever 611 * write a full packet or not to the FIFO. 612 */ 613 614 if (pkt_round) 615 to_write -= pkt_round; 616 617 /* 618 * enable correct FIFO interrupt to alert us when there 619 * is more room left. 620 */ 621 622 /* it's needed only when we do not use dedicated fifos */ 623 if (!hsotg->dedicated_fifos) 624 dwc2_hsotg_en_gsint(hsotg, 625 periodic ? GINTSTS_PTXFEMP : 626 GINTSTS_NPTXFEMP); 627 } 628 629 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 630 to_write, hs_req->req.length, can_write, buf_pos); 631 632 if (to_write <= 0) 633 return -ENOSPC; 634 635 hs_req->req.actual = buf_pos + to_write; 636 hs_ep->total_data += to_write; 637 638 if (periodic) 639 hs_ep->fifo_load += to_write; 640 641 to_write = DIV_ROUND_UP(to_write, 4); 642 data = hs_req->req.buf + buf_pos; 643 644 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 645 646 return (to_write >= can_write) ? -ENOSPC : 0; 647 } 648 649 /** 650 * get_ep_limit - get the maximum data legnth for this endpoint 651 * @hs_ep: The endpoint 652 * 653 * Return the maximum data that can be queued in one go on a given endpoint 654 * so that transfers that are too long can be split. 655 */ 656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 657 { 658 int index = hs_ep->index; 659 unsigned int maxsize; 660 unsigned int maxpkt; 661 662 if (index != 0) { 663 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 664 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 665 } else { 666 maxsize = 64 + 64; 667 if (hs_ep->dir_in) 668 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 669 else 670 maxpkt = 2; 671 } 672 673 /* we made the constant loading easier above by using +1 */ 674 maxpkt--; 675 maxsize--; 676 677 /* 678 * constrain by packet count if maxpkts*pktsize is greater 679 * than the length register size. 680 */ 681 682 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 683 maxsize = maxpkt * hs_ep->ep.maxpacket; 684 685 return maxsize; 686 } 687 688 /** 689 * dwc2_hsotg_read_frameno - read current frame number 690 * @hsotg: The device instance 691 * 692 * Return the current frame number 693 */ 694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 695 { 696 u32 dsts; 697 698 dsts = dwc2_readl(hsotg, DSTS); 699 dsts &= DSTS_SOFFN_MASK; 700 dsts >>= DSTS_SOFFN_SHIFT; 701 702 return dsts; 703 } 704 705 /** 706 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 707 * DMA descriptor chain prepared for specific endpoint 708 * @hs_ep: The endpoint 709 * 710 * Return the maximum data that can be queued in one go on a given endpoint 711 * depending on its descriptor chain capacity so that transfers that 712 * are too long can be split. 713 */ 714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 715 { 716 int is_isoc = hs_ep->isochronous; 717 unsigned int maxsize; 718 719 if (is_isoc) 720 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 721 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 722 MAX_DMA_DESC_NUM_HS_ISOC; 723 else 724 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 725 726 return maxsize; 727 } 728 729 /* 730 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 731 * @hs_ep: The endpoint 732 * @mask: RX/TX bytes mask to be defined 733 * 734 * Returns maximum data payload for one descriptor after analyzing endpoint 735 * characteristics. 736 * DMA descriptor transfer bytes limit depends on EP type: 737 * Control out - MPS, 738 * Isochronous - descriptor rx/tx bytes bitfield limit, 739 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 740 * have concatenations from various descriptors within one packet. 741 * 742 * Selects corresponding mask for RX/TX bytes as well. 743 */ 744 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 745 { 746 u32 mps = hs_ep->ep.maxpacket; 747 int dir_in = hs_ep->dir_in; 748 u32 desc_size = 0; 749 750 if (!hs_ep->index && !dir_in) { 751 desc_size = mps; 752 *mask = DEV_DMA_NBYTES_MASK; 753 } else if (hs_ep->isochronous) { 754 if (dir_in) { 755 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 756 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 757 } else { 758 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 759 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 760 } 761 } else { 762 desc_size = DEV_DMA_NBYTES_LIMIT; 763 *mask = DEV_DMA_NBYTES_MASK; 764 765 /* Round down desc_size to be mps multiple */ 766 desc_size -= desc_size % mps; 767 } 768 769 return desc_size; 770 } 771 772 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 773 struct dwc2_dma_desc **desc, 774 dma_addr_t dma_buff, 775 unsigned int len, 776 bool true_last) 777 { 778 int dir_in = hs_ep->dir_in; 779 u32 mps = hs_ep->ep.maxpacket; 780 u32 maxsize = 0; 781 u32 offset = 0; 782 u32 mask = 0; 783 int i; 784 785 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 786 787 hs_ep->desc_count = (len / maxsize) + 788 ((len % maxsize) ? 1 : 0); 789 if (len == 0) 790 hs_ep->desc_count = 1; 791 792 for (i = 0; i < hs_ep->desc_count; ++i) { 793 (*desc)->status = 0; 794 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 795 << DEV_DMA_BUFF_STS_SHIFT); 796 797 if (len > maxsize) { 798 if (!hs_ep->index && !dir_in) 799 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 800 801 (*desc)->status |= 802 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 803 (*desc)->buf = dma_buff + offset; 804 805 len -= maxsize; 806 offset += maxsize; 807 } else { 808 if (true_last) 809 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 810 811 if (dir_in) 812 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 813 ((hs_ep->send_zlp && true_last) ? 814 DEV_DMA_SHORT : 0); 815 816 (*desc)->status |= 817 len << DEV_DMA_NBYTES_SHIFT & mask; 818 (*desc)->buf = dma_buff + offset; 819 } 820 821 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 822 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 823 << DEV_DMA_BUFF_STS_SHIFT); 824 (*desc)++; 825 } 826 } 827 828 /* 829 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 830 * @hs_ep: The endpoint 831 * @ureq: Request to transfer 832 * @offset: offset in bytes 833 * @len: Length of the transfer 834 * 835 * This function will iterate over descriptor chain and fill its entries 836 * with corresponding information based on transfer data. 837 */ 838 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 839 dma_addr_t dma_buff, 840 unsigned int len) 841 { 842 struct usb_request *ureq = NULL; 843 struct dwc2_dma_desc *desc = hs_ep->desc_list; 844 struct scatterlist *sg; 845 int i; 846 u8 desc_count = 0; 847 848 if (hs_ep->req) 849 ureq = &hs_ep->req->req; 850 851 /* non-DMA sg buffer */ 852 if (!ureq || !ureq->num_sgs) { 853 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 854 dma_buff, len, true); 855 return; 856 } 857 858 /* DMA sg buffer */ 859 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 860 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 861 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 862 sg_is_last(sg)); 863 desc_count += hs_ep->desc_count; 864 } 865 866 hs_ep->desc_count = desc_count; 867 } 868 869 /* 870 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 871 * @hs_ep: The isochronous endpoint. 872 * @dma_buff: usb requests dma buffer. 873 * @len: usb request transfer length. 874 * 875 * Fills next free descriptor with the data of the arrived usb request, 876 * frame info, sets Last and IOC bits increments next_desc. If filled 877 * descriptor is not the first one, removes L bit from the previous descriptor 878 * status. 879 */ 880 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 881 dma_addr_t dma_buff, unsigned int len) 882 { 883 struct dwc2_dma_desc *desc; 884 struct dwc2_hsotg *hsotg = hs_ep->parent; 885 u32 index; 886 u32 mask = 0; 887 u8 pid = 0; 888 889 dwc2_gadget_get_desc_params(hs_ep, &mask); 890 891 index = hs_ep->next_desc; 892 desc = &hs_ep->desc_list[index]; 893 894 /* Check if descriptor chain full */ 895 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 896 DEV_DMA_BUFF_STS_HREADY) { 897 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 898 return 1; 899 } 900 901 /* Clear L bit of previous desc if more than one entries in the chain */ 902 if (hs_ep->next_desc) 903 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 904 905 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 906 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 907 908 desc->status = 0; 909 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 910 911 desc->buf = dma_buff; 912 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 913 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 914 915 if (hs_ep->dir_in) { 916 if (len) 917 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 918 else 919 pid = 1; 920 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 921 DEV_DMA_ISOC_PID_MASK) | 922 ((len % hs_ep->ep.maxpacket) ? 923 DEV_DMA_SHORT : 0) | 924 ((hs_ep->target_frame << 925 DEV_DMA_ISOC_FRNUM_SHIFT) & 926 DEV_DMA_ISOC_FRNUM_MASK); 927 } 928 929 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 930 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 931 932 /* Increment frame number by interval for IN */ 933 if (hs_ep->dir_in) 934 dwc2_gadget_incr_frame_num(hs_ep); 935 936 /* Update index of last configured entry in the chain */ 937 hs_ep->next_desc++; 938 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 939 hs_ep->next_desc = 0; 940 941 return 0; 942 } 943 944 /* 945 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 946 * @hs_ep: The isochronous endpoint. 947 * 948 * Prepare descriptor chain for isochronous endpoints. Afterwards 949 * write DMA address to HW and enable the endpoint. 950 */ 951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 952 { 953 struct dwc2_hsotg *hsotg = hs_ep->parent; 954 struct dwc2_hsotg_req *hs_req, *treq; 955 int index = hs_ep->index; 956 int ret; 957 int i; 958 u32 dma_reg; 959 u32 depctl; 960 u32 ctrl; 961 struct dwc2_dma_desc *desc; 962 963 if (list_empty(&hs_ep->queue)) { 964 hs_ep->target_frame = TARGET_FRAME_INITIAL; 965 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 966 return; 967 } 968 969 /* Initialize descriptor chain by Host Busy status */ 970 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 971 desc = &hs_ep->desc_list[i]; 972 desc->status = 0; 973 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 974 << DEV_DMA_BUFF_STS_SHIFT); 975 } 976 977 hs_ep->next_desc = 0; 978 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 979 dma_addr_t dma_addr = hs_req->req.dma; 980 981 if (hs_req->req.num_sgs) { 982 WARN_ON(hs_req->req.num_sgs > 1); 983 dma_addr = sg_dma_address(hs_req->req.sg); 984 } 985 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 986 hs_req->req.length); 987 if (ret) 988 break; 989 } 990 991 hs_ep->compl_desc = 0; 992 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 993 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 994 995 /* write descriptor chain address to control register */ 996 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 997 998 ctrl = dwc2_readl(hsotg, depctl); 999 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1000 dwc2_writel(hsotg, ctrl, depctl); 1001 } 1002 1003 /** 1004 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1005 * @hsotg: The controller state. 1006 * @hs_ep: The endpoint to process a request for 1007 * @hs_req: The request to start. 1008 * @continuing: True if we are doing more for the current request. 1009 * 1010 * Start the given request running by setting the endpoint registers 1011 * appropriately, and writing any data to the FIFOs. 1012 */ 1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1014 struct dwc2_hsotg_ep *hs_ep, 1015 struct dwc2_hsotg_req *hs_req, 1016 bool continuing) 1017 { 1018 struct usb_request *ureq = &hs_req->req; 1019 int index = hs_ep->index; 1020 int dir_in = hs_ep->dir_in; 1021 u32 epctrl_reg; 1022 u32 epsize_reg; 1023 u32 epsize; 1024 u32 ctrl; 1025 unsigned int length; 1026 unsigned int packets; 1027 unsigned int maxreq; 1028 unsigned int dma_reg; 1029 1030 if (index != 0) { 1031 if (hs_ep->req && !continuing) { 1032 dev_err(hsotg->dev, "%s: active request\n", __func__); 1033 WARN_ON(1); 1034 return; 1035 } else if (hs_ep->req != hs_req && continuing) { 1036 dev_err(hsotg->dev, 1037 "%s: continue different req\n", __func__); 1038 WARN_ON(1); 1039 return; 1040 } 1041 } 1042 1043 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1044 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1045 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1046 1047 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1048 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1049 hs_ep->dir_in ? "in" : "out"); 1050 1051 /* If endpoint is stalled, we will restart request later */ 1052 ctrl = dwc2_readl(hsotg, epctrl_reg); 1053 1054 if (index && ctrl & DXEPCTL_STALL) { 1055 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1056 return; 1057 } 1058 1059 length = ureq->length - ureq->actual; 1060 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1061 ureq->length, ureq->actual); 1062 1063 if (!using_desc_dma(hsotg)) 1064 maxreq = get_ep_limit(hs_ep); 1065 else 1066 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1067 1068 if (length > maxreq) { 1069 int round = maxreq % hs_ep->ep.maxpacket; 1070 1071 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1072 __func__, length, maxreq, round); 1073 1074 /* round down to multiple of packets */ 1075 if (round) 1076 maxreq -= round; 1077 1078 length = maxreq; 1079 } 1080 1081 if (length) 1082 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1083 else 1084 packets = 1; /* send one packet if length is zero. */ 1085 1086 if (dir_in && index != 0) 1087 if (hs_ep->isochronous) 1088 epsize = DXEPTSIZ_MC(packets); 1089 else 1090 epsize = DXEPTSIZ_MC(1); 1091 else 1092 epsize = 0; 1093 1094 /* 1095 * zero length packet should be programmed on its own and should not 1096 * be counted in DIEPTSIZ.PktCnt with other packets. 1097 */ 1098 if (dir_in && ureq->zero && !continuing) { 1099 /* Test if zlp is actually required. */ 1100 if ((ureq->length >= hs_ep->ep.maxpacket) && 1101 !(ureq->length % hs_ep->ep.maxpacket)) 1102 hs_ep->send_zlp = 1; 1103 } 1104 1105 epsize |= DXEPTSIZ_PKTCNT(packets); 1106 epsize |= DXEPTSIZ_XFERSIZE(length); 1107 1108 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1109 __func__, packets, length, ureq->length, epsize, epsize_reg); 1110 1111 /* store the request as the current one we're doing */ 1112 hs_ep->req = hs_req; 1113 1114 if (using_desc_dma(hsotg)) { 1115 u32 offset = 0; 1116 u32 mps = hs_ep->ep.maxpacket; 1117 1118 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1119 if (!dir_in) { 1120 if (!index) 1121 length = mps; 1122 else if (length % mps) 1123 length += (mps - (length % mps)); 1124 } 1125 1126 /* 1127 * If more data to send, adjust DMA for EP0 out data stage. 1128 * ureq->dma stays unchanged, hence increment it by already 1129 * passed passed data count before starting new transaction. 1130 */ 1131 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1132 continuing) 1133 offset = ureq->actual; 1134 1135 /* Fill DDMA chain entries */ 1136 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1137 length); 1138 1139 /* write descriptor chain address to control register */ 1140 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1141 1142 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1143 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1144 } else { 1145 /* write size / packets */ 1146 dwc2_writel(hsotg, epsize, epsize_reg); 1147 1148 if (using_dma(hsotg) && !continuing && (length != 0)) { 1149 /* 1150 * write DMA address to control register, buffer 1151 * already synced by dwc2_hsotg_ep_queue(). 1152 */ 1153 1154 dwc2_writel(hsotg, ureq->dma, dma_reg); 1155 1156 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1157 __func__, &ureq->dma, dma_reg); 1158 } 1159 } 1160 1161 if (hs_ep->isochronous && hs_ep->interval == 1) { 1162 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1163 dwc2_gadget_incr_frame_num(hs_ep); 1164 1165 if (hs_ep->target_frame & 0x1) 1166 ctrl |= DXEPCTL_SETODDFR; 1167 else 1168 ctrl |= DXEPCTL_SETEVENFR; 1169 } 1170 1171 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1172 1173 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1174 1175 /* For Setup request do not clear NAK */ 1176 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1177 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1178 1179 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1180 dwc2_writel(hsotg, ctrl, epctrl_reg); 1181 1182 /* 1183 * set these, it seems that DMA support increments past the end 1184 * of the packet buffer so we need to calculate the length from 1185 * this information. 1186 */ 1187 hs_ep->size_loaded = length; 1188 hs_ep->last_load = ureq->actual; 1189 1190 if (dir_in && !using_dma(hsotg)) { 1191 /* set these anyway, we may need them for non-periodic in */ 1192 hs_ep->fifo_load = 0; 1193 1194 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1195 } 1196 1197 /* 1198 * Note, trying to clear the NAK here causes problems with transmit 1199 * on the S3C6400 ending up with the TXFIFO becoming full. 1200 */ 1201 1202 /* check ep is enabled */ 1203 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1204 dev_dbg(hsotg->dev, 1205 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1206 index, dwc2_readl(hsotg, epctrl_reg)); 1207 1208 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1209 __func__, dwc2_readl(hsotg, epctrl_reg)); 1210 1211 /* enable ep interrupts */ 1212 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1213 } 1214 1215 /** 1216 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1217 * @hsotg: The device state. 1218 * @hs_ep: The endpoint the request is on. 1219 * @req: The request being processed. 1220 * 1221 * We've been asked to queue a request, so ensure that the memory buffer 1222 * is correctly setup for DMA. If we've been passed an extant DMA address 1223 * then ensure the buffer has been synced to memory. If our buffer has no 1224 * DMA memory, then we map the memory and mark our request to allow us to 1225 * cleanup on completion. 1226 */ 1227 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1228 struct dwc2_hsotg_ep *hs_ep, 1229 struct usb_request *req) 1230 { 1231 int ret; 1232 1233 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1234 if (ret) 1235 goto dma_error; 1236 1237 return 0; 1238 1239 dma_error: 1240 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1241 __func__, req->buf, req->length); 1242 1243 return -EIO; 1244 } 1245 1246 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1247 struct dwc2_hsotg_ep *hs_ep, 1248 struct dwc2_hsotg_req *hs_req) 1249 { 1250 void *req_buf = hs_req->req.buf; 1251 1252 /* If dma is not being used or buffer is aligned */ 1253 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1254 return 0; 1255 1256 WARN_ON(hs_req->saved_req_buf); 1257 1258 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1259 hs_ep->ep.name, req_buf, hs_req->req.length); 1260 1261 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1262 if (!hs_req->req.buf) { 1263 hs_req->req.buf = req_buf; 1264 dev_err(hsotg->dev, 1265 "%s: unable to allocate memory for bounce buffer\n", 1266 __func__); 1267 return -ENOMEM; 1268 } 1269 1270 /* Save actual buffer */ 1271 hs_req->saved_req_buf = req_buf; 1272 1273 if (hs_ep->dir_in) 1274 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1275 return 0; 1276 } 1277 1278 static void 1279 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1280 struct dwc2_hsotg_ep *hs_ep, 1281 struct dwc2_hsotg_req *hs_req) 1282 { 1283 /* If dma is not being used or buffer was aligned */ 1284 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1285 return; 1286 1287 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1288 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1289 1290 /* Copy data from bounce buffer on successful out transfer */ 1291 if (!hs_ep->dir_in && !hs_req->req.status) 1292 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1293 hs_req->req.actual); 1294 1295 /* Free bounce buffer */ 1296 kfree(hs_req->req.buf); 1297 1298 hs_req->req.buf = hs_req->saved_req_buf; 1299 hs_req->saved_req_buf = NULL; 1300 } 1301 1302 /** 1303 * dwc2_gadget_target_frame_elapsed - Checks target frame 1304 * @hs_ep: The driver endpoint to check 1305 * 1306 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1307 * corresponding transfer. 1308 */ 1309 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1310 { 1311 struct dwc2_hsotg *hsotg = hs_ep->parent; 1312 u32 target_frame = hs_ep->target_frame; 1313 u32 current_frame = hsotg->frame_number; 1314 bool frame_overrun = hs_ep->frame_overrun; 1315 1316 if (!frame_overrun && current_frame >= target_frame) 1317 return true; 1318 1319 if (frame_overrun && current_frame >= target_frame && 1320 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1321 return true; 1322 1323 return false; 1324 } 1325 1326 /* 1327 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1328 * @hsotg: The driver state 1329 * @hs_ep: the ep descriptor chain is for 1330 * 1331 * Called to update EP0 structure's pointers depend on stage of 1332 * control transfer. 1333 */ 1334 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1335 struct dwc2_hsotg_ep *hs_ep) 1336 { 1337 switch (hsotg->ep0_state) { 1338 case DWC2_EP0_SETUP: 1339 case DWC2_EP0_STATUS_OUT: 1340 hs_ep->desc_list = hsotg->setup_desc[0]; 1341 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1342 break; 1343 case DWC2_EP0_DATA_IN: 1344 case DWC2_EP0_STATUS_IN: 1345 hs_ep->desc_list = hsotg->ctrl_in_desc; 1346 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1347 break; 1348 case DWC2_EP0_DATA_OUT: 1349 hs_ep->desc_list = hsotg->ctrl_out_desc; 1350 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1351 break; 1352 default: 1353 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1354 hsotg->ep0_state); 1355 return -EINVAL; 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1362 gfp_t gfp_flags) 1363 { 1364 struct dwc2_hsotg_req *hs_req = our_req(req); 1365 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1366 struct dwc2_hsotg *hs = hs_ep->parent; 1367 bool first; 1368 int ret; 1369 u32 maxsize = 0; 1370 u32 mask = 0; 1371 1372 1373 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1374 ep->name, req, req->length, req->buf, req->no_interrupt, 1375 req->zero, req->short_not_ok); 1376 1377 /* Prevent new request submission when controller is suspended */ 1378 if (hs->lx_state != DWC2_L0) { 1379 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1380 __func__); 1381 return -EAGAIN; 1382 } 1383 1384 /* initialise status of the request */ 1385 INIT_LIST_HEAD(&hs_req->queue); 1386 req->actual = 0; 1387 req->status = -EINPROGRESS; 1388 1389 /* Don't queue ISOC request if length greater than mps*mc */ 1390 if (hs_ep->isochronous && 1391 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1392 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1393 return -EINVAL; 1394 } 1395 1396 /* In DDMA mode for ISOC's don't queue request if length greater 1397 * than descriptor limits. 1398 */ 1399 if (using_desc_dma(hs) && hs_ep->isochronous) { 1400 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1401 if (hs_ep->dir_in && req->length > maxsize) { 1402 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1403 req->length, maxsize); 1404 return -EINVAL; 1405 } 1406 1407 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1408 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1409 req->length, hs_ep->ep.maxpacket); 1410 return -EINVAL; 1411 } 1412 } 1413 1414 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1415 if (ret) 1416 return ret; 1417 1418 /* if we're using DMA, sync the buffers as necessary */ 1419 if (using_dma(hs)) { 1420 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1421 if (ret) 1422 return ret; 1423 } 1424 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1425 if (using_desc_dma(hs) && !hs_ep->index) { 1426 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1427 if (ret) 1428 return ret; 1429 } 1430 1431 first = list_empty(&hs_ep->queue); 1432 list_add_tail(&hs_req->queue, &hs_ep->queue); 1433 1434 /* 1435 * Handle DDMA isochronous transfers separately - just add new entry 1436 * to the descriptor chain. 1437 * Transfer will be started once SW gets either one of NAK or 1438 * OutTknEpDis interrupts. 1439 */ 1440 if (using_desc_dma(hs) && hs_ep->isochronous) { 1441 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1442 dma_addr_t dma_addr = hs_req->req.dma; 1443 1444 if (hs_req->req.num_sgs) { 1445 WARN_ON(hs_req->req.num_sgs > 1); 1446 dma_addr = sg_dma_address(hs_req->req.sg); 1447 } 1448 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1449 hs_req->req.length); 1450 } 1451 return 0; 1452 } 1453 1454 /* Change EP direction if status phase request is after data out */ 1455 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1456 hs->ep0_state == DWC2_EP0_DATA_OUT) 1457 hs_ep->dir_in = 1; 1458 1459 if (first) { 1460 if (!hs_ep->isochronous) { 1461 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1462 return 0; 1463 } 1464 1465 /* Update current frame number value. */ 1466 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1467 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1468 dwc2_gadget_incr_frame_num(hs_ep); 1469 /* Update current frame number value once more as it 1470 * changes here. 1471 */ 1472 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1473 } 1474 1475 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1476 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1477 } 1478 return 0; 1479 } 1480 1481 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1482 gfp_t gfp_flags) 1483 { 1484 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1485 struct dwc2_hsotg *hs = hs_ep->parent; 1486 unsigned long flags = 0; 1487 int ret = 0; 1488 1489 spin_lock_irqsave(&hs->lock, flags); 1490 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1491 spin_unlock_irqrestore(&hs->lock, flags); 1492 1493 return ret; 1494 } 1495 1496 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1497 struct usb_request *req) 1498 { 1499 struct dwc2_hsotg_req *hs_req = our_req(req); 1500 1501 kfree(hs_req); 1502 } 1503 1504 /** 1505 * dwc2_hsotg_complete_oursetup - setup completion callback 1506 * @ep: The endpoint the request was on. 1507 * @req: The request completed. 1508 * 1509 * Called on completion of any requests the driver itself 1510 * submitted that need cleaning up. 1511 */ 1512 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1513 struct usb_request *req) 1514 { 1515 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1516 struct dwc2_hsotg *hsotg = hs_ep->parent; 1517 1518 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1519 1520 dwc2_hsotg_ep_free_request(ep, req); 1521 } 1522 1523 /** 1524 * ep_from_windex - convert control wIndex value to endpoint 1525 * @hsotg: The driver state. 1526 * @windex: The control request wIndex field (in host order). 1527 * 1528 * Convert the given wIndex into a pointer to an driver endpoint 1529 * structure, or return NULL if it is not a valid endpoint. 1530 */ 1531 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1532 u32 windex) 1533 { 1534 struct dwc2_hsotg_ep *ep; 1535 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1536 int idx = windex & 0x7F; 1537 1538 if (windex >= 0x100) 1539 return NULL; 1540 1541 if (idx > hsotg->num_of_eps) 1542 return NULL; 1543 1544 ep = index_to_ep(hsotg, idx, dir); 1545 1546 if (idx && ep->dir_in != dir) 1547 return NULL; 1548 1549 return ep; 1550 } 1551 1552 /** 1553 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1554 * @hsotg: The driver state. 1555 * @testmode: requested usb test mode 1556 * Enable usb Test Mode requested by the Host. 1557 */ 1558 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1559 { 1560 int dctl = dwc2_readl(hsotg, DCTL); 1561 1562 dctl &= ~DCTL_TSTCTL_MASK; 1563 switch (testmode) { 1564 case USB_TEST_J: 1565 case USB_TEST_K: 1566 case USB_TEST_SE0_NAK: 1567 case USB_TEST_PACKET: 1568 case USB_TEST_FORCE_ENABLE: 1569 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1570 break; 1571 default: 1572 return -EINVAL; 1573 } 1574 dwc2_writel(hsotg, dctl, DCTL); 1575 return 0; 1576 } 1577 1578 /** 1579 * dwc2_hsotg_send_reply - send reply to control request 1580 * @hsotg: The device state 1581 * @ep: Endpoint 0 1582 * @buff: Buffer for request 1583 * @length: Length of reply. 1584 * 1585 * Create a request and queue it on the given endpoint. This is useful as 1586 * an internal method of sending replies to certain control requests, etc. 1587 */ 1588 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1589 struct dwc2_hsotg_ep *ep, 1590 void *buff, 1591 int length) 1592 { 1593 struct usb_request *req; 1594 int ret; 1595 1596 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1597 1598 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1599 hsotg->ep0_reply = req; 1600 if (!req) { 1601 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1602 return -ENOMEM; 1603 } 1604 1605 req->buf = hsotg->ep0_buff; 1606 req->length = length; 1607 /* 1608 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1609 * STATUS stage. 1610 */ 1611 req->zero = 0; 1612 req->complete = dwc2_hsotg_complete_oursetup; 1613 1614 if (length) 1615 memcpy(req->buf, buff, length); 1616 1617 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1618 if (ret) { 1619 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1620 return ret; 1621 } 1622 1623 return 0; 1624 } 1625 1626 /** 1627 * dwc2_hsotg_process_req_status - process request GET_STATUS 1628 * @hsotg: The device state 1629 * @ctrl: USB control request 1630 */ 1631 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1632 struct usb_ctrlrequest *ctrl) 1633 { 1634 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1635 struct dwc2_hsotg_ep *ep; 1636 __le16 reply; 1637 u16 status; 1638 int ret; 1639 1640 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1641 1642 if (!ep0->dir_in) { 1643 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1644 return -EINVAL; 1645 } 1646 1647 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1648 case USB_RECIP_DEVICE: 1649 status = hsotg->gadget.is_selfpowered << 1650 USB_DEVICE_SELF_POWERED; 1651 status |= hsotg->remote_wakeup_allowed << 1652 USB_DEVICE_REMOTE_WAKEUP; 1653 reply = cpu_to_le16(status); 1654 break; 1655 1656 case USB_RECIP_INTERFACE: 1657 /* currently, the data result should be zero */ 1658 reply = cpu_to_le16(0); 1659 break; 1660 1661 case USB_RECIP_ENDPOINT: 1662 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1663 if (!ep) 1664 return -ENOENT; 1665 1666 reply = cpu_to_le16(ep->halted ? 1 : 0); 1667 break; 1668 1669 default: 1670 return 0; 1671 } 1672 1673 if (le16_to_cpu(ctrl->wLength) != 2) 1674 return -EINVAL; 1675 1676 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1677 if (ret) { 1678 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1679 return ret; 1680 } 1681 1682 return 1; 1683 } 1684 1685 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1686 1687 /** 1688 * get_ep_head - return the first request on the endpoint 1689 * @hs_ep: The controller endpoint to get 1690 * 1691 * Get the first request on the endpoint. 1692 */ 1693 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1694 { 1695 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1696 queue); 1697 } 1698 1699 /** 1700 * dwc2_gadget_start_next_request - Starts next request from ep queue 1701 * @hs_ep: Endpoint structure 1702 * 1703 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1704 * in its handler. Hence we need to unmask it here to be able to do 1705 * resynchronization. 1706 */ 1707 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1708 { 1709 u32 mask; 1710 struct dwc2_hsotg *hsotg = hs_ep->parent; 1711 int dir_in = hs_ep->dir_in; 1712 struct dwc2_hsotg_req *hs_req; 1713 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1714 1715 if (!list_empty(&hs_ep->queue)) { 1716 hs_req = get_ep_head(hs_ep); 1717 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1718 return; 1719 } 1720 if (!hs_ep->isochronous) 1721 return; 1722 1723 if (dir_in) { 1724 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1725 __func__); 1726 } else { 1727 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1728 __func__); 1729 mask = dwc2_readl(hsotg, epmsk_reg); 1730 mask |= DOEPMSK_OUTTKNEPDISMSK; 1731 dwc2_writel(hsotg, mask, epmsk_reg); 1732 } 1733 } 1734 1735 /** 1736 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1737 * @hsotg: The device state 1738 * @ctrl: USB control request 1739 */ 1740 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1741 struct usb_ctrlrequest *ctrl) 1742 { 1743 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1744 struct dwc2_hsotg_req *hs_req; 1745 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1746 struct dwc2_hsotg_ep *ep; 1747 int ret; 1748 bool halted; 1749 u32 recip; 1750 u32 wValue; 1751 u32 wIndex; 1752 1753 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1754 __func__, set ? "SET" : "CLEAR"); 1755 1756 wValue = le16_to_cpu(ctrl->wValue); 1757 wIndex = le16_to_cpu(ctrl->wIndex); 1758 recip = ctrl->bRequestType & USB_RECIP_MASK; 1759 1760 switch (recip) { 1761 case USB_RECIP_DEVICE: 1762 switch (wValue) { 1763 case USB_DEVICE_REMOTE_WAKEUP: 1764 if (set) 1765 hsotg->remote_wakeup_allowed = 1; 1766 else 1767 hsotg->remote_wakeup_allowed = 0; 1768 break; 1769 1770 case USB_DEVICE_TEST_MODE: 1771 if ((wIndex & 0xff) != 0) 1772 return -EINVAL; 1773 if (!set) 1774 return -EINVAL; 1775 1776 hsotg->test_mode = wIndex >> 8; 1777 break; 1778 default: 1779 return -ENOENT; 1780 } 1781 1782 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1783 if (ret) { 1784 dev_err(hsotg->dev, 1785 "%s: failed to send reply\n", __func__); 1786 return ret; 1787 } 1788 break; 1789 1790 case USB_RECIP_ENDPOINT: 1791 ep = ep_from_windex(hsotg, wIndex); 1792 if (!ep) { 1793 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1794 __func__, wIndex); 1795 return -ENOENT; 1796 } 1797 1798 switch (wValue) { 1799 case USB_ENDPOINT_HALT: 1800 halted = ep->halted; 1801 1802 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1803 1804 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1805 if (ret) { 1806 dev_err(hsotg->dev, 1807 "%s: failed to send reply\n", __func__); 1808 return ret; 1809 } 1810 1811 /* 1812 * we have to complete all requests for ep if it was 1813 * halted, and the halt was cleared by CLEAR_FEATURE 1814 */ 1815 1816 if (!set && halted) { 1817 /* 1818 * If we have request in progress, 1819 * then complete it 1820 */ 1821 if (ep->req) { 1822 hs_req = ep->req; 1823 ep->req = NULL; 1824 list_del_init(&hs_req->queue); 1825 if (hs_req->req.complete) { 1826 spin_unlock(&hsotg->lock); 1827 usb_gadget_giveback_request( 1828 &ep->ep, &hs_req->req); 1829 spin_lock(&hsotg->lock); 1830 } 1831 } 1832 1833 /* If we have pending request, then start it */ 1834 if (!ep->req) 1835 dwc2_gadget_start_next_request(ep); 1836 } 1837 1838 break; 1839 1840 default: 1841 return -ENOENT; 1842 } 1843 break; 1844 default: 1845 return -ENOENT; 1846 } 1847 return 1; 1848 } 1849 1850 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1851 1852 /** 1853 * dwc2_hsotg_stall_ep0 - stall ep0 1854 * @hsotg: The device state 1855 * 1856 * Set stall for ep0 as response for setup request. 1857 */ 1858 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1859 { 1860 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1861 u32 reg; 1862 u32 ctrl; 1863 1864 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1865 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1866 1867 /* 1868 * DxEPCTL_Stall will be cleared by EP once it has 1869 * taken effect, so no need to clear later. 1870 */ 1871 1872 ctrl = dwc2_readl(hsotg, reg); 1873 ctrl |= DXEPCTL_STALL; 1874 ctrl |= DXEPCTL_CNAK; 1875 dwc2_writel(hsotg, ctrl, reg); 1876 1877 dev_dbg(hsotg->dev, 1878 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1879 ctrl, reg, dwc2_readl(hsotg, reg)); 1880 1881 /* 1882 * complete won't be called, so we enqueue 1883 * setup request here 1884 */ 1885 dwc2_hsotg_enqueue_setup(hsotg); 1886 } 1887 1888 /** 1889 * dwc2_hsotg_process_control - process a control request 1890 * @hsotg: The device state 1891 * @ctrl: The control request received 1892 * 1893 * The controller has received the SETUP phase of a control request, and 1894 * needs to work out what to do next (and whether to pass it on to the 1895 * gadget driver). 1896 */ 1897 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1898 struct usb_ctrlrequest *ctrl) 1899 { 1900 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1901 int ret = 0; 1902 u32 dcfg; 1903 1904 dev_dbg(hsotg->dev, 1905 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1906 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1907 ctrl->wIndex, ctrl->wLength); 1908 1909 if (ctrl->wLength == 0) { 1910 ep0->dir_in = 1; 1911 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1912 } else if (ctrl->bRequestType & USB_DIR_IN) { 1913 ep0->dir_in = 1; 1914 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1915 } else { 1916 ep0->dir_in = 0; 1917 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1918 } 1919 1920 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1921 switch (ctrl->bRequest) { 1922 case USB_REQ_SET_ADDRESS: 1923 hsotg->connected = 1; 1924 dcfg = dwc2_readl(hsotg, DCFG); 1925 dcfg &= ~DCFG_DEVADDR_MASK; 1926 dcfg |= (le16_to_cpu(ctrl->wValue) << 1927 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1928 dwc2_writel(hsotg, dcfg, DCFG); 1929 1930 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1931 1932 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1933 return; 1934 1935 case USB_REQ_GET_STATUS: 1936 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1937 break; 1938 1939 case USB_REQ_CLEAR_FEATURE: 1940 case USB_REQ_SET_FEATURE: 1941 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1942 break; 1943 } 1944 } 1945 1946 /* as a fallback, try delivering it to the driver to deal with */ 1947 1948 if (ret == 0 && hsotg->driver) { 1949 spin_unlock(&hsotg->lock); 1950 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1951 spin_lock(&hsotg->lock); 1952 if (ret < 0) 1953 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1954 } 1955 1956 hsotg->delayed_status = false; 1957 if (ret == USB_GADGET_DELAYED_STATUS) 1958 hsotg->delayed_status = true; 1959 1960 /* 1961 * the request is either unhandlable, or is not formatted correctly 1962 * so respond with a STALL for the status stage to indicate failure. 1963 */ 1964 1965 if (ret < 0) 1966 dwc2_hsotg_stall_ep0(hsotg); 1967 } 1968 1969 /** 1970 * dwc2_hsotg_complete_setup - completion of a setup transfer 1971 * @ep: The endpoint the request was on. 1972 * @req: The request completed. 1973 * 1974 * Called on completion of any requests the driver itself submitted for 1975 * EP0 setup packets 1976 */ 1977 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1978 struct usb_request *req) 1979 { 1980 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1981 struct dwc2_hsotg *hsotg = hs_ep->parent; 1982 1983 if (req->status < 0) { 1984 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1985 return; 1986 } 1987 1988 spin_lock(&hsotg->lock); 1989 if (req->actual == 0) 1990 dwc2_hsotg_enqueue_setup(hsotg); 1991 else 1992 dwc2_hsotg_process_control(hsotg, req->buf); 1993 spin_unlock(&hsotg->lock); 1994 } 1995 1996 /** 1997 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1998 * @hsotg: The device state. 1999 * 2000 * Enqueue a request on EP0 if necessary to received any SETUP packets 2001 * received from the host. 2002 */ 2003 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2004 { 2005 struct usb_request *req = hsotg->ctrl_req; 2006 struct dwc2_hsotg_req *hs_req = our_req(req); 2007 int ret; 2008 2009 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2010 2011 req->zero = 0; 2012 req->length = 8; 2013 req->buf = hsotg->ctrl_buff; 2014 req->complete = dwc2_hsotg_complete_setup; 2015 2016 if (!list_empty(&hs_req->queue)) { 2017 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2018 return; 2019 } 2020 2021 hsotg->eps_out[0]->dir_in = 0; 2022 hsotg->eps_out[0]->send_zlp = 0; 2023 hsotg->ep0_state = DWC2_EP0_SETUP; 2024 2025 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2026 if (ret < 0) { 2027 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2028 /* 2029 * Don't think there's much we can do other than watch the 2030 * driver fail. 2031 */ 2032 } 2033 } 2034 2035 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2036 struct dwc2_hsotg_ep *hs_ep) 2037 { 2038 u32 ctrl; 2039 u8 index = hs_ep->index; 2040 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2041 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2042 2043 if (hs_ep->dir_in) 2044 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2045 index); 2046 else 2047 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2048 index); 2049 if (using_desc_dma(hsotg)) { 2050 /* Not specific buffer needed for ep0 ZLP */ 2051 dma_addr_t dma = hs_ep->desc_list_dma; 2052 2053 if (!index) 2054 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2055 2056 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2057 } else { 2058 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2059 DXEPTSIZ_XFERSIZE(0), 2060 epsiz_reg); 2061 } 2062 2063 ctrl = dwc2_readl(hsotg, epctl_reg); 2064 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2065 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2066 ctrl |= DXEPCTL_USBACTEP; 2067 dwc2_writel(hsotg, ctrl, epctl_reg); 2068 } 2069 2070 /** 2071 * dwc2_hsotg_complete_request - complete a request given to us 2072 * @hsotg: The device state. 2073 * @hs_ep: The endpoint the request was on. 2074 * @hs_req: The request to complete. 2075 * @result: The result code (0 => Ok, otherwise errno) 2076 * 2077 * The given request has finished, so call the necessary completion 2078 * if it has one and then look to see if we can start a new request 2079 * on the endpoint. 2080 * 2081 * Note, expects the ep to already be locked as appropriate. 2082 */ 2083 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2084 struct dwc2_hsotg_ep *hs_ep, 2085 struct dwc2_hsotg_req *hs_req, 2086 int result) 2087 { 2088 if (!hs_req) { 2089 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2090 return; 2091 } 2092 2093 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2094 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2095 2096 /* 2097 * only replace the status if we've not already set an error 2098 * from a previous transaction 2099 */ 2100 2101 if (hs_req->req.status == -EINPROGRESS) 2102 hs_req->req.status = result; 2103 2104 if (using_dma(hsotg)) 2105 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2106 2107 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2108 2109 hs_ep->req = NULL; 2110 list_del_init(&hs_req->queue); 2111 2112 /* 2113 * call the complete request with the locks off, just in case the 2114 * request tries to queue more work for this endpoint. 2115 */ 2116 2117 if (hs_req->req.complete) { 2118 spin_unlock(&hsotg->lock); 2119 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2120 spin_lock(&hsotg->lock); 2121 } 2122 2123 /* In DDMA don't need to proceed to starting of next ISOC request */ 2124 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2125 return; 2126 2127 /* 2128 * Look to see if there is anything else to do. Note, the completion 2129 * of the previous request may have caused a new request to be started 2130 * so be careful when doing this. 2131 */ 2132 2133 if (!hs_ep->req && result >= 0) 2134 dwc2_gadget_start_next_request(hs_ep); 2135 } 2136 2137 /* 2138 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2139 * @hs_ep: The endpoint the request was on. 2140 * 2141 * Get first request from the ep queue, determine descriptor on which complete 2142 * happened. SW discovers which descriptor currently in use by HW, adjusts 2143 * dma_address and calculates index of completed descriptor based on the value 2144 * of DEPDMA register. Update actual length of request, giveback to gadget. 2145 */ 2146 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2147 { 2148 struct dwc2_hsotg *hsotg = hs_ep->parent; 2149 struct dwc2_hsotg_req *hs_req; 2150 struct usb_request *ureq; 2151 u32 desc_sts; 2152 u32 mask; 2153 2154 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2155 2156 /* Process only descriptors with buffer status set to DMA done */ 2157 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2158 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2159 2160 hs_req = get_ep_head(hs_ep); 2161 if (!hs_req) { 2162 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2163 return; 2164 } 2165 ureq = &hs_req->req; 2166 2167 /* Check completion status */ 2168 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2169 DEV_DMA_STS_SUCC) { 2170 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2171 DEV_DMA_ISOC_RX_NBYTES_MASK; 2172 ureq->actual = ureq->length - ((desc_sts & mask) >> 2173 DEV_DMA_ISOC_NBYTES_SHIFT); 2174 2175 /* Adjust actual len for ISOC Out if len is 2176 * not align of 4 2177 */ 2178 if (!hs_ep->dir_in && ureq->length & 0x3) 2179 ureq->actual += 4 - (ureq->length & 0x3); 2180 2181 /* Set actual frame number for completed transfers */ 2182 ureq->frame_number = 2183 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2184 DEV_DMA_ISOC_FRNUM_SHIFT; 2185 } 2186 2187 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2188 2189 hs_ep->compl_desc++; 2190 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2191 hs_ep->compl_desc = 0; 2192 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2193 } 2194 } 2195 2196 /* 2197 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2198 * @hs_ep: The isochronous endpoint. 2199 * 2200 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2201 * interrupt. Reset target frame and next_desc to allow to start 2202 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2203 * interrupt for OUT direction. 2204 */ 2205 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2206 { 2207 struct dwc2_hsotg *hsotg = hs_ep->parent; 2208 2209 if (!hs_ep->dir_in) 2210 dwc2_flush_rx_fifo(hsotg); 2211 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2212 2213 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2214 hs_ep->next_desc = 0; 2215 hs_ep->compl_desc = 0; 2216 } 2217 2218 /** 2219 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2220 * @hsotg: The device state. 2221 * @ep_idx: The endpoint index for the data 2222 * @size: The size of data in the fifo, in bytes 2223 * 2224 * The FIFO status shows there is data to read from the FIFO for a given 2225 * endpoint, so sort out whether we need to read the data into a request 2226 * that has been made for that endpoint. 2227 */ 2228 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2229 { 2230 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2231 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2232 int to_read; 2233 int max_req; 2234 int read_ptr; 2235 2236 if (!hs_req) { 2237 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2238 int ptr; 2239 2240 dev_dbg(hsotg->dev, 2241 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2242 __func__, size, ep_idx, epctl); 2243 2244 /* dump the data from the FIFO, we've nothing we can do */ 2245 for (ptr = 0; ptr < size; ptr += 4) 2246 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2247 2248 return; 2249 } 2250 2251 to_read = size; 2252 read_ptr = hs_req->req.actual; 2253 max_req = hs_req->req.length - read_ptr; 2254 2255 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2256 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2257 2258 if (to_read > max_req) { 2259 /* 2260 * more data appeared than we where willing 2261 * to deal with in this request. 2262 */ 2263 2264 /* currently we don't deal this */ 2265 WARN_ON_ONCE(1); 2266 } 2267 2268 hs_ep->total_data += to_read; 2269 hs_req->req.actual += to_read; 2270 to_read = DIV_ROUND_UP(to_read, 4); 2271 2272 /* 2273 * note, we might over-write the buffer end by 3 bytes depending on 2274 * alignment of the data. 2275 */ 2276 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2277 hs_req->req.buf + read_ptr, to_read); 2278 } 2279 2280 /** 2281 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2282 * @hsotg: The device instance 2283 * @dir_in: If IN zlp 2284 * 2285 * Generate a zero-length IN packet request for terminating a SETUP 2286 * transaction. 2287 * 2288 * Note, since we don't write any data to the TxFIFO, then it is 2289 * currently believed that we do not need to wait for any space in 2290 * the TxFIFO. 2291 */ 2292 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2293 { 2294 /* eps_out[0] is used in both directions */ 2295 hsotg->eps_out[0]->dir_in = dir_in; 2296 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2297 2298 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2299 } 2300 2301 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2302 u32 epctl_reg) 2303 { 2304 u32 ctrl; 2305 2306 ctrl = dwc2_readl(hsotg, epctl_reg); 2307 if (ctrl & DXEPCTL_EOFRNUM) 2308 ctrl |= DXEPCTL_SETEVENFR; 2309 else 2310 ctrl |= DXEPCTL_SETODDFR; 2311 dwc2_writel(hsotg, ctrl, epctl_reg); 2312 } 2313 2314 /* 2315 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2316 * @hs_ep - The endpoint on which transfer went 2317 * 2318 * Iterate over endpoints descriptor chain and get info on bytes remained 2319 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2320 */ 2321 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2322 { 2323 struct dwc2_hsotg *hsotg = hs_ep->parent; 2324 unsigned int bytes_rem = 0; 2325 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2326 int i; 2327 u32 status; 2328 2329 if (!desc) 2330 return -EINVAL; 2331 2332 for (i = 0; i < hs_ep->desc_count; ++i) { 2333 status = desc->status; 2334 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2335 2336 if (status & DEV_DMA_STS_MASK) 2337 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2338 i, status & DEV_DMA_STS_MASK); 2339 desc++; 2340 } 2341 2342 return bytes_rem; 2343 } 2344 2345 /** 2346 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2347 * @hsotg: The device instance 2348 * @epnum: The endpoint received from 2349 * 2350 * The RXFIFO has delivered an OutDone event, which means that the data 2351 * transfer for an OUT endpoint has been completed, either by a short 2352 * packet or by the finish of a transfer. 2353 */ 2354 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2355 { 2356 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2357 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2358 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2359 struct usb_request *req = &hs_req->req; 2360 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2361 int result = 0; 2362 2363 if (!hs_req) { 2364 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2365 return; 2366 } 2367 2368 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2369 dev_dbg(hsotg->dev, "zlp packet received\n"); 2370 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2371 dwc2_hsotg_enqueue_setup(hsotg); 2372 return; 2373 } 2374 2375 if (using_desc_dma(hsotg)) 2376 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2377 2378 if (using_dma(hsotg)) { 2379 unsigned int size_done; 2380 2381 /* 2382 * Calculate the size of the transfer by checking how much 2383 * is left in the endpoint size register and then working it 2384 * out from the amount we loaded for the transfer. 2385 * 2386 * We need to do this as DMA pointers are always 32bit aligned 2387 * so may overshoot/undershoot the transfer. 2388 */ 2389 2390 size_done = hs_ep->size_loaded - size_left; 2391 size_done += hs_ep->last_load; 2392 2393 req->actual = size_done; 2394 } 2395 2396 /* if there is more request to do, schedule new transfer */ 2397 if (req->actual < req->length && size_left == 0) { 2398 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2399 return; 2400 } 2401 2402 if (req->actual < req->length && req->short_not_ok) { 2403 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2404 __func__, req->actual, req->length); 2405 2406 /* 2407 * todo - what should we return here? there's no one else 2408 * even bothering to check the status. 2409 */ 2410 } 2411 2412 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2413 if (!using_desc_dma(hsotg) && epnum == 0 && 2414 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2415 /* Move to STATUS IN */ 2416 if (!hsotg->delayed_status) 2417 dwc2_hsotg_ep0_zlp(hsotg, true); 2418 } 2419 2420 /* 2421 * Slave mode OUT transfers do not go through XferComplete so 2422 * adjust the ISOC parity here. 2423 */ 2424 if (!using_dma(hsotg)) { 2425 if (hs_ep->isochronous && hs_ep->interval == 1) 2426 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2427 else if (hs_ep->isochronous && hs_ep->interval > 1) 2428 dwc2_gadget_incr_frame_num(hs_ep); 2429 } 2430 2431 /* Set actual frame number for completed transfers */ 2432 if (!using_desc_dma(hsotg) && hs_ep->isochronous) 2433 req->frame_number = hsotg->frame_number; 2434 2435 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2436 } 2437 2438 /** 2439 * dwc2_hsotg_handle_rx - RX FIFO has data 2440 * @hsotg: The device instance 2441 * 2442 * The IRQ handler has detected that the RX FIFO has some data in it 2443 * that requires processing, so find out what is in there and do the 2444 * appropriate read. 2445 * 2446 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2447 * chunks, so if you have x packets received on an endpoint you'll get x 2448 * FIFO events delivered, each with a packet's worth of data in it. 2449 * 2450 * When using DMA, we should not be processing events from the RXFIFO 2451 * as the actual data should be sent to the memory directly and we turn 2452 * on the completion interrupts to get notifications of transfer completion. 2453 */ 2454 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2455 { 2456 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2457 u32 epnum, status, size; 2458 2459 WARN_ON(using_dma(hsotg)); 2460 2461 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2462 status = grxstsr & GRXSTS_PKTSTS_MASK; 2463 2464 size = grxstsr & GRXSTS_BYTECNT_MASK; 2465 size >>= GRXSTS_BYTECNT_SHIFT; 2466 2467 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2468 __func__, grxstsr, size, epnum); 2469 2470 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2471 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2472 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2473 break; 2474 2475 case GRXSTS_PKTSTS_OUTDONE: 2476 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2477 dwc2_hsotg_read_frameno(hsotg)); 2478 2479 if (!using_dma(hsotg)) 2480 dwc2_hsotg_handle_outdone(hsotg, epnum); 2481 break; 2482 2483 case GRXSTS_PKTSTS_SETUPDONE: 2484 dev_dbg(hsotg->dev, 2485 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2486 dwc2_hsotg_read_frameno(hsotg), 2487 dwc2_readl(hsotg, DOEPCTL(0))); 2488 /* 2489 * Call dwc2_hsotg_handle_outdone here if it was not called from 2490 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2491 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2492 */ 2493 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2494 dwc2_hsotg_handle_outdone(hsotg, epnum); 2495 break; 2496 2497 case GRXSTS_PKTSTS_OUTRX: 2498 dwc2_hsotg_rx_data(hsotg, epnum, size); 2499 break; 2500 2501 case GRXSTS_PKTSTS_SETUPRX: 2502 dev_dbg(hsotg->dev, 2503 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2504 dwc2_hsotg_read_frameno(hsotg), 2505 dwc2_readl(hsotg, DOEPCTL(0))); 2506 2507 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2508 2509 dwc2_hsotg_rx_data(hsotg, epnum, size); 2510 break; 2511 2512 default: 2513 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2514 __func__, grxstsr); 2515 2516 dwc2_hsotg_dump(hsotg); 2517 break; 2518 } 2519 } 2520 2521 /** 2522 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2523 * @mps: The maximum packet size in bytes. 2524 */ 2525 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2526 { 2527 switch (mps) { 2528 case 64: 2529 return D0EPCTL_MPS_64; 2530 case 32: 2531 return D0EPCTL_MPS_32; 2532 case 16: 2533 return D0EPCTL_MPS_16; 2534 case 8: 2535 return D0EPCTL_MPS_8; 2536 } 2537 2538 /* bad max packet size, warn and return invalid result */ 2539 WARN_ON(1); 2540 return (u32)-1; 2541 } 2542 2543 /** 2544 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2545 * @hsotg: The driver state. 2546 * @ep: The index number of the endpoint 2547 * @mps: The maximum packet size in bytes 2548 * @mc: The multicount value 2549 * @dir_in: True if direction is in. 2550 * 2551 * Configure the maximum packet size for the given endpoint, updating 2552 * the hardware control registers to reflect this. 2553 */ 2554 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2555 unsigned int ep, unsigned int mps, 2556 unsigned int mc, unsigned int dir_in) 2557 { 2558 struct dwc2_hsotg_ep *hs_ep; 2559 u32 reg; 2560 2561 hs_ep = index_to_ep(hsotg, ep, dir_in); 2562 if (!hs_ep) 2563 return; 2564 2565 if (ep == 0) { 2566 u32 mps_bytes = mps; 2567 2568 /* EP0 is a special case */ 2569 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2570 if (mps > 3) 2571 goto bad_mps; 2572 hs_ep->ep.maxpacket = mps_bytes; 2573 hs_ep->mc = 1; 2574 } else { 2575 if (mps > 1024) 2576 goto bad_mps; 2577 hs_ep->mc = mc; 2578 if (mc > 3) 2579 goto bad_mps; 2580 hs_ep->ep.maxpacket = mps; 2581 } 2582 2583 if (dir_in) { 2584 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2585 reg &= ~DXEPCTL_MPS_MASK; 2586 reg |= mps; 2587 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2588 } else { 2589 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2590 reg &= ~DXEPCTL_MPS_MASK; 2591 reg |= mps; 2592 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2593 } 2594 2595 return; 2596 2597 bad_mps: 2598 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2599 } 2600 2601 /** 2602 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2603 * @hsotg: The driver state 2604 * @idx: The index for the endpoint (0..15) 2605 */ 2606 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2607 { 2608 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2609 GRSTCTL); 2610 2611 /* wait until the fifo is flushed */ 2612 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2613 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2614 __func__); 2615 } 2616 2617 /** 2618 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2619 * @hsotg: The driver state 2620 * @hs_ep: The driver endpoint to check. 2621 * 2622 * Check to see if there is a request that has data to send, and if so 2623 * make an attempt to write data into the FIFO. 2624 */ 2625 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2626 struct dwc2_hsotg_ep *hs_ep) 2627 { 2628 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2629 2630 if (!hs_ep->dir_in || !hs_req) { 2631 /** 2632 * if request is not enqueued, we disable interrupts 2633 * for endpoints, excepting ep0 2634 */ 2635 if (hs_ep->index != 0) 2636 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2637 hs_ep->dir_in, 0); 2638 return 0; 2639 } 2640 2641 if (hs_req->req.actual < hs_req->req.length) { 2642 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2643 hs_ep->index); 2644 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2645 } 2646 2647 return 0; 2648 } 2649 2650 /** 2651 * dwc2_hsotg_complete_in - complete IN transfer 2652 * @hsotg: The device state. 2653 * @hs_ep: The endpoint that has just completed. 2654 * 2655 * An IN transfer has been completed, update the transfer's state and then 2656 * call the relevant completion routines. 2657 */ 2658 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2659 struct dwc2_hsotg_ep *hs_ep) 2660 { 2661 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2662 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2663 int size_left, size_done; 2664 2665 if (!hs_req) { 2666 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2667 return; 2668 } 2669 2670 /* Finish ZLP handling for IN EP0 transactions */ 2671 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2672 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2673 2674 /* 2675 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2676 * changed to IN. Change back to complete OUT transfer request 2677 */ 2678 hs_ep->dir_in = 0; 2679 2680 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2681 if (hsotg->test_mode) { 2682 int ret; 2683 2684 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2685 if (ret < 0) { 2686 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2687 hsotg->test_mode); 2688 dwc2_hsotg_stall_ep0(hsotg); 2689 return; 2690 } 2691 } 2692 dwc2_hsotg_enqueue_setup(hsotg); 2693 return; 2694 } 2695 2696 /* 2697 * Calculate the size of the transfer by checking how much is left 2698 * in the endpoint size register and then working it out from 2699 * the amount we loaded for the transfer. 2700 * 2701 * We do this even for DMA, as the transfer may have incremented 2702 * past the end of the buffer (DMA transfers are always 32bit 2703 * aligned). 2704 */ 2705 if (using_desc_dma(hsotg)) { 2706 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2707 if (size_left < 0) 2708 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2709 size_left); 2710 } else { 2711 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2712 } 2713 2714 size_done = hs_ep->size_loaded - size_left; 2715 size_done += hs_ep->last_load; 2716 2717 if (hs_req->req.actual != size_done) 2718 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2719 __func__, hs_req->req.actual, size_done); 2720 2721 hs_req->req.actual = size_done; 2722 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2723 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2724 2725 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2726 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2727 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2728 return; 2729 } 2730 2731 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2732 if (hs_ep->send_zlp) { 2733 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2734 hs_ep->send_zlp = 0; 2735 /* transfer will be completed on next complete interrupt */ 2736 return; 2737 } 2738 2739 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2740 /* Move to STATUS OUT */ 2741 dwc2_hsotg_ep0_zlp(hsotg, false); 2742 return; 2743 } 2744 2745 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2746 } 2747 2748 /** 2749 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2750 * @hsotg: The device state. 2751 * @idx: Index of ep. 2752 * @dir_in: Endpoint direction 1-in 0-out. 2753 * 2754 * Reads for endpoint with given index and direction, by masking 2755 * epint_reg with coresponding mask. 2756 */ 2757 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2758 unsigned int idx, int dir_in) 2759 { 2760 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2761 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2762 u32 ints; 2763 u32 mask; 2764 u32 diepempmsk; 2765 2766 mask = dwc2_readl(hsotg, epmsk_reg); 2767 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2768 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2769 mask |= DXEPINT_SETUP_RCVD; 2770 2771 ints = dwc2_readl(hsotg, epint_reg); 2772 ints &= mask; 2773 return ints; 2774 } 2775 2776 /** 2777 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2778 * @hs_ep: The endpoint on which interrupt is asserted. 2779 * 2780 * This interrupt indicates that the endpoint has been disabled per the 2781 * application's request. 2782 * 2783 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2784 * in case of ISOC completes current request. 2785 * 2786 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2787 * request starts it. 2788 */ 2789 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2790 { 2791 struct dwc2_hsotg *hsotg = hs_ep->parent; 2792 struct dwc2_hsotg_req *hs_req; 2793 unsigned char idx = hs_ep->index; 2794 int dir_in = hs_ep->dir_in; 2795 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2796 int dctl = dwc2_readl(hsotg, DCTL); 2797 2798 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2799 2800 if (dir_in) { 2801 int epctl = dwc2_readl(hsotg, epctl_reg); 2802 2803 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2804 2805 if (hs_ep->isochronous) { 2806 dwc2_hsotg_complete_in(hsotg, hs_ep); 2807 return; 2808 } 2809 2810 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2811 int dctl = dwc2_readl(hsotg, DCTL); 2812 2813 dctl |= DCTL_CGNPINNAK; 2814 dwc2_writel(hsotg, dctl, DCTL); 2815 } 2816 return; 2817 } 2818 2819 if (dctl & DCTL_GOUTNAKSTS) { 2820 dctl |= DCTL_CGOUTNAK; 2821 dwc2_writel(hsotg, dctl, DCTL); 2822 } 2823 2824 if (!hs_ep->isochronous) 2825 return; 2826 2827 if (list_empty(&hs_ep->queue)) { 2828 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2829 __func__, hs_ep); 2830 return; 2831 } 2832 2833 do { 2834 hs_req = get_ep_head(hs_ep); 2835 if (hs_req) 2836 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2837 -ENODATA); 2838 dwc2_gadget_incr_frame_num(hs_ep); 2839 /* Update current frame number value. */ 2840 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2841 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2842 2843 dwc2_gadget_start_next_request(hs_ep); 2844 } 2845 2846 /** 2847 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2848 * @ep: The endpoint on which interrupt is asserted. 2849 * 2850 * This is starting point for ISOC-OUT transfer, synchronization done with 2851 * first out token received from host while corresponding EP is disabled. 2852 * 2853 * Device does not know initial frame in which out token will come. For this 2854 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2855 * getting this interrupt SW starts calculation for next transfer frame. 2856 */ 2857 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2858 { 2859 struct dwc2_hsotg *hsotg = ep->parent; 2860 int dir_in = ep->dir_in; 2861 u32 doepmsk; 2862 2863 if (dir_in || !ep->isochronous) 2864 return; 2865 2866 if (using_desc_dma(hsotg)) { 2867 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2868 /* Start first ISO Out */ 2869 ep->target_frame = hsotg->frame_number; 2870 dwc2_gadget_start_isoc_ddma(ep); 2871 } 2872 return; 2873 } 2874 2875 if (ep->interval > 1 && 2876 ep->target_frame == TARGET_FRAME_INITIAL) { 2877 u32 ctrl; 2878 2879 ep->target_frame = hsotg->frame_number; 2880 dwc2_gadget_incr_frame_num(ep); 2881 2882 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2883 if (ep->target_frame & 0x1) 2884 ctrl |= DXEPCTL_SETODDFR; 2885 else 2886 ctrl |= DXEPCTL_SETEVENFR; 2887 2888 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2889 } 2890 2891 dwc2_gadget_start_next_request(ep); 2892 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2893 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2894 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2895 } 2896 2897 /** 2898 * dwc2_gadget_handle_nak - handle NAK interrupt 2899 * @hs_ep: The endpoint on which interrupt is asserted. 2900 * 2901 * This is starting point for ISOC-IN transfer, synchronization done with 2902 * first IN token received from host while corresponding EP is disabled. 2903 * 2904 * Device does not know when first one token will arrive from host. On first 2905 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2906 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2907 * sent in response to that as there was no data in FIFO. SW is basing on this 2908 * interrupt to obtain frame in which token has come and then based on the 2909 * interval calculates next frame for transfer. 2910 */ 2911 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2912 { 2913 struct dwc2_hsotg *hsotg = hs_ep->parent; 2914 int dir_in = hs_ep->dir_in; 2915 2916 if (!dir_in || !hs_ep->isochronous) 2917 return; 2918 2919 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2920 2921 if (using_desc_dma(hsotg)) { 2922 hs_ep->target_frame = hsotg->frame_number; 2923 dwc2_gadget_incr_frame_num(hs_ep); 2924 2925 /* In service interval mode target_frame must 2926 * be set to last (u)frame of the service interval. 2927 */ 2928 if (hsotg->params.service_interval) { 2929 /* Set target_frame to the first (u)frame of 2930 * the service interval 2931 */ 2932 hs_ep->target_frame &= ~hs_ep->interval + 1; 2933 2934 /* Set target_frame to the last (u)frame of 2935 * the service interval 2936 */ 2937 dwc2_gadget_incr_frame_num(hs_ep); 2938 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2939 } 2940 2941 dwc2_gadget_start_isoc_ddma(hs_ep); 2942 return; 2943 } 2944 2945 hs_ep->target_frame = hsotg->frame_number; 2946 if (hs_ep->interval > 1) { 2947 u32 ctrl = dwc2_readl(hsotg, 2948 DIEPCTL(hs_ep->index)); 2949 if (hs_ep->target_frame & 0x1) 2950 ctrl |= DXEPCTL_SETODDFR; 2951 else 2952 ctrl |= DXEPCTL_SETEVENFR; 2953 2954 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2955 } 2956 2957 dwc2_hsotg_complete_request(hsotg, hs_ep, 2958 get_ep_head(hs_ep), 0); 2959 } 2960 2961 if (!using_desc_dma(hsotg)) 2962 dwc2_gadget_incr_frame_num(hs_ep); 2963 } 2964 2965 /** 2966 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2967 * @hsotg: The driver state 2968 * @idx: The index for the endpoint (0..15) 2969 * @dir_in: Set if this is an IN endpoint 2970 * 2971 * Process and clear any interrupt pending for an individual endpoint 2972 */ 2973 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2974 int dir_in) 2975 { 2976 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2977 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2978 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2979 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2980 u32 ints; 2981 2982 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2983 2984 /* Clear endpoint interrupts */ 2985 dwc2_writel(hsotg, ints, epint_reg); 2986 2987 if (!hs_ep) { 2988 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2989 __func__, idx, dir_in ? "in" : "out"); 2990 return; 2991 } 2992 2993 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2994 __func__, idx, dir_in ? "in" : "out", ints); 2995 2996 /* Don't process XferCompl interrupt if it is a setup packet */ 2997 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2998 ints &= ~DXEPINT_XFERCOMPL; 2999 3000 /* 3001 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3002 * stage and xfercomplete was generated without SETUP phase done 3003 * interrupt. SW should parse received setup packet only after host's 3004 * exit from setup phase of control transfer. 3005 */ 3006 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3007 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3008 ints &= ~DXEPINT_XFERCOMPL; 3009 3010 if (ints & DXEPINT_XFERCOMPL) { 3011 dev_dbg(hsotg->dev, 3012 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3013 __func__, dwc2_readl(hsotg, epctl_reg), 3014 dwc2_readl(hsotg, epsiz_reg)); 3015 3016 /* In DDMA handle isochronous requests separately */ 3017 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3018 /* XferCompl set along with BNA */ 3019 if (!(ints & DXEPINT_BNAINTR)) 3020 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3021 } else if (dir_in) { 3022 /* 3023 * We get OutDone from the FIFO, so we only 3024 * need to look at completing IN requests here 3025 * if operating slave mode 3026 */ 3027 if (hs_ep->isochronous && hs_ep->interval > 1) 3028 dwc2_gadget_incr_frame_num(hs_ep); 3029 3030 dwc2_hsotg_complete_in(hsotg, hs_ep); 3031 if (ints & DXEPINT_NAKINTRPT) 3032 ints &= ~DXEPINT_NAKINTRPT; 3033 3034 if (idx == 0 && !hs_ep->req) 3035 dwc2_hsotg_enqueue_setup(hsotg); 3036 } else if (using_dma(hsotg)) { 3037 /* 3038 * We're using DMA, we need to fire an OutDone here 3039 * as we ignore the RXFIFO. 3040 */ 3041 if (hs_ep->isochronous && hs_ep->interval > 1) 3042 dwc2_gadget_incr_frame_num(hs_ep); 3043 3044 dwc2_hsotg_handle_outdone(hsotg, idx); 3045 } 3046 } 3047 3048 if (ints & DXEPINT_EPDISBLD) 3049 dwc2_gadget_handle_ep_disabled(hs_ep); 3050 3051 if (ints & DXEPINT_OUTTKNEPDIS) 3052 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3053 3054 if (ints & DXEPINT_NAKINTRPT) 3055 dwc2_gadget_handle_nak(hs_ep); 3056 3057 if (ints & DXEPINT_AHBERR) 3058 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3059 3060 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3061 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3062 3063 if (using_dma(hsotg) && idx == 0) { 3064 /* 3065 * this is the notification we've received a 3066 * setup packet. In non-DMA mode we'd get this 3067 * from the RXFIFO, instead we need to process 3068 * the setup here. 3069 */ 3070 3071 if (dir_in) 3072 WARN_ON_ONCE(1); 3073 else 3074 dwc2_hsotg_handle_outdone(hsotg, 0); 3075 } 3076 } 3077 3078 if (ints & DXEPINT_STSPHSERCVD) { 3079 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3080 3081 /* Safety check EP0 state when STSPHSERCVD asserted */ 3082 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3083 /* Move to STATUS IN for DDMA */ 3084 if (using_desc_dma(hsotg)) { 3085 if (!hsotg->delayed_status) 3086 dwc2_hsotg_ep0_zlp(hsotg, true); 3087 else 3088 /* In case of 3 stage Control Write with delayed 3089 * status, when Status IN transfer started 3090 * before STSPHSERCVD asserted, NAKSTS bit not 3091 * cleared by CNAK in dwc2_hsotg_start_req() 3092 * function. Clear now NAKSTS to allow complete 3093 * transfer. 3094 */ 3095 dwc2_set_bit(hsotg, DIEPCTL(0), 3096 DXEPCTL_CNAK); 3097 } 3098 } 3099 3100 } 3101 3102 if (ints & DXEPINT_BACK2BACKSETUP) 3103 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3104 3105 if (ints & DXEPINT_BNAINTR) { 3106 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3107 if (hs_ep->isochronous) 3108 dwc2_gadget_handle_isoc_bna(hs_ep); 3109 } 3110 3111 if (dir_in && !hs_ep->isochronous) { 3112 /* not sure if this is important, but we'll clear it anyway */ 3113 if (ints & DXEPINT_INTKNTXFEMP) { 3114 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3115 __func__, idx); 3116 } 3117 3118 /* this probably means something bad is happening */ 3119 if (ints & DXEPINT_INTKNEPMIS) { 3120 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3121 __func__, idx); 3122 } 3123 3124 /* FIFO has space or is empty (see GAHBCFG) */ 3125 if (hsotg->dedicated_fifos && 3126 ints & DXEPINT_TXFEMP) { 3127 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3128 __func__, idx); 3129 if (!using_dma(hsotg)) 3130 dwc2_hsotg_trytx(hsotg, hs_ep); 3131 } 3132 } 3133 } 3134 3135 /** 3136 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3137 * @hsotg: The device state. 3138 * 3139 * Handle updating the device settings after the enumeration phase has 3140 * been completed. 3141 */ 3142 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3143 { 3144 u32 dsts = dwc2_readl(hsotg, DSTS); 3145 int ep0_mps = 0, ep_mps = 8; 3146 3147 /* 3148 * This should signal the finish of the enumeration phase 3149 * of the USB handshaking, so we should now know what rate 3150 * we connected at. 3151 */ 3152 3153 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3154 3155 /* 3156 * note, since we're limited by the size of transfer on EP0, and 3157 * it seems IN transfers must be a even number of packets we do 3158 * not advertise a 64byte MPS on EP0. 3159 */ 3160 3161 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3162 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3163 case DSTS_ENUMSPD_FS: 3164 case DSTS_ENUMSPD_FS48: 3165 hsotg->gadget.speed = USB_SPEED_FULL; 3166 ep0_mps = EP0_MPS_LIMIT; 3167 ep_mps = 1023; 3168 break; 3169 3170 case DSTS_ENUMSPD_HS: 3171 hsotg->gadget.speed = USB_SPEED_HIGH; 3172 ep0_mps = EP0_MPS_LIMIT; 3173 ep_mps = 1024; 3174 break; 3175 3176 case DSTS_ENUMSPD_LS: 3177 hsotg->gadget.speed = USB_SPEED_LOW; 3178 ep0_mps = 8; 3179 ep_mps = 8; 3180 /* 3181 * note, we don't actually support LS in this driver at the 3182 * moment, and the documentation seems to imply that it isn't 3183 * supported by the PHYs on some of the devices. 3184 */ 3185 break; 3186 } 3187 dev_info(hsotg->dev, "new device is %s\n", 3188 usb_speed_string(hsotg->gadget.speed)); 3189 3190 /* 3191 * we should now know the maximum packet size for an 3192 * endpoint, so set the endpoints to a default value. 3193 */ 3194 3195 if (ep0_mps) { 3196 int i; 3197 /* Initialize ep0 for both in and out directions */ 3198 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3199 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3200 for (i = 1; i < hsotg->num_of_eps; i++) { 3201 if (hsotg->eps_in[i]) 3202 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3203 0, 1); 3204 if (hsotg->eps_out[i]) 3205 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3206 0, 0); 3207 } 3208 } 3209 3210 /* ensure after enumeration our EP0 is active */ 3211 3212 dwc2_hsotg_enqueue_setup(hsotg); 3213 3214 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3215 dwc2_readl(hsotg, DIEPCTL0), 3216 dwc2_readl(hsotg, DOEPCTL0)); 3217 } 3218 3219 /** 3220 * kill_all_requests - remove all requests from the endpoint's queue 3221 * @hsotg: The device state. 3222 * @ep: The endpoint the requests may be on. 3223 * @result: The result code to use. 3224 * 3225 * Go through the requests on the given endpoint and mark them 3226 * completed with the given result code. 3227 */ 3228 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3229 struct dwc2_hsotg_ep *ep, 3230 int result) 3231 { 3232 unsigned int size; 3233 3234 ep->req = NULL; 3235 3236 while (!list_empty(&ep->queue)) { 3237 struct dwc2_hsotg_req *req = get_ep_head(ep); 3238 3239 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3240 } 3241 3242 if (!hsotg->dedicated_fifos) 3243 return; 3244 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3245 if (size < ep->fifo_size) 3246 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3247 } 3248 3249 /** 3250 * dwc2_hsotg_disconnect - disconnect service 3251 * @hsotg: The device state. 3252 * 3253 * The device has been disconnected. Remove all current 3254 * transactions and signal the gadget driver that this 3255 * has happened. 3256 */ 3257 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3258 { 3259 unsigned int ep; 3260 3261 if (!hsotg->connected) 3262 return; 3263 3264 hsotg->connected = 0; 3265 hsotg->test_mode = 0; 3266 3267 /* all endpoints should be shutdown */ 3268 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3269 if (hsotg->eps_in[ep]) 3270 kill_all_requests(hsotg, hsotg->eps_in[ep], 3271 -ESHUTDOWN); 3272 if (hsotg->eps_out[ep]) 3273 kill_all_requests(hsotg, hsotg->eps_out[ep], 3274 -ESHUTDOWN); 3275 } 3276 3277 call_gadget(hsotg, disconnect); 3278 hsotg->lx_state = DWC2_L3; 3279 3280 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3281 } 3282 3283 /** 3284 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3285 * @hsotg: The device state: 3286 * @periodic: True if this is a periodic FIFO interrupt 3287 */ 3288 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3289 { 3290 struct dwc2_hsotg_ep *ep; 3291 int epno, ret; 3292 3293 /* look through for any more data to transmit */ 3294 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3295 ep = index_to_ep(hsotg, epno, 1); 3296 3297 if (!ep) 3298 continue; 3299 3300 if (!ep->dir_in) 3301 continue; 3302 3303 if ((periodic && !ep->periodic) || 3304 (!periodic && ep->periodic)) 3305 continue; 3306 3307 ret = dwc2_hsotg_trytx(hsotg, ep); 3308 if (ret < 0) 3309 break; 3310 } 3311 } 3312 3313 /* IRQ flags which will trigger a retry around the IRQ loop */ 3314 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3315 GINTSTS_PTXFEMP | \ 3316 GINTSTS_RXFLVL) 3317 3318 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3319 /** 3320 * dwc2_hsotg_core_init - issue softreset to the core 3321 * @hsotg: The device state 3322 * @is_usb_reset: Usb resetting flag 3323 * 3324 * Issue a soft reset to the core, and await the core finishing it. 3325 */ 3326 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3327 bool is_usb_reset) 3328 { 3329 u32 intmsk; 3330 u32 val; 3331 u32 usbcfg; 3332 u32 dcfg = 0; 3333 int ep; 3334 3335 /* Kill any ep0 requests as controller will be reinitialized */ 3336 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3337 3338 if (!is_usb_reset) { 3339 if (dwc2_core_reset(hsotg, true)) 3340 return; 3341 } else { 3342 /* all endpoints should be shutdown */ 3343 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3344 if (hsotg->eps_in[ep]) 3345 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3346 if (hsotg->eps_out[ep]) 3347 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3348 } 3349 } 3350 3351 /* 3352 * we must now enable ep0 ready for host detection and then 3353 * set configuration. 3354 */ 3355 3356 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3357 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3358 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3359 usbcfg |= GUSBCFG_TOUTCAL(7); 3360 3361 /* remove the HNP/SRP and set the PHY */ 3362 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3363 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3364 3365 dwc2_phy_init(hsotg, true); 3366 3367 dwc2_hsotg_init_fifo(hsotg); 3368 3369 if (!is_usb_reset) 3370 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3371 3372 dcfg |= DCFG_EPMISCNT(1); 3373 3374 switch (hsotg->params.speed) { 3375 case DWC2_SPEED_PARAM_LOW: 3376 dcfg |= DCFG_DEVSPD_LS; 3377 break; 3378 case DWC2_SPEED_PARAM_FULL: 3379 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3380 dcfg |= DCFG_DEVSPD_FS48; 3381 else 3382 dcfg |= DCFG_DEVSPD_FS; 3383 break; 3384 default: 3385 dcfg |= DCFG_DEVSPD_HS; 3386 } 3387 3388 if (hsotg->params.ipg_isoc_en) 3389 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3390 3391 dwc2_writel(hsotg, dcfg, DCFG); 3392 3393 /* Clear any pending OTG interrupts */ 3394 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3395 3396 /* Clear any pending interrupts */ 3397 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3398 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3399 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3400 GINTSTS_USBRST | GINTSTS_RESETDET | 3401 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3402 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3403 GINTSTS_LPMTRANRCVD; 3404 3405 if (!using_desc_dma(hsotg)) 3406 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3407 3408 if (!hsotg->params.external_id_pin_ctl) 3409 intmsk |= GINTSTS_CONIDSTSCHNG; 3410 3411 dwc2_writel(hsotg, intmsk, GINTMSK); 3412 3413 if (using_dma(hsotg)) { 3414 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3415 hsotg->params.ahbcfg, 3416 GAHBCFG); 3417 3418 /* Set DDMA mode support in the core if needed */ 3419 if (using_desc_dma(hsotg)) 3420 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3421 3422 } else { 3423 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3424 (GAHBCFG_NP_TXF_EMP_LVL | 3425 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3426 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3427 } 3428 3429 /* 3430 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3431 * when we have no data to transfer. Otherwise we get being flooded by 3432 * interrupts. 3433 */ 3434 3435 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3436 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3437 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3438 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3439 DIEPMSK); 3440 3441 /* 3442 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3443 * DMA mode we may need this and StsPhseRcvd. 3444 */ 3445 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3446 DOEPMSK_STSPHSERCVDMSK) : 0) | 3447 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3448 DOEPMSK_SETUPMSK, 3449 DOEPMSK); 3450 3451 /* Enable BNA interrupt for DDMA */ 3452 if (using_desc_dma(hsotg)) { 3453 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3454 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3455 } 3456 3457 /* Enable Service Interval mode if supported */ 3458 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3459 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3460 3461 dwc2_writel(hsotg, 0, DAINTMSK); 3462 3463 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3464 dwc2_readl(hsotg, DIEPCTL0), 3465 dwc2_readl(hsotg, DOEPCTL0)); 3466 3467 /* enable in and out endpoint interrupts */ 3468 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3469 3470 /* 3471 * Enable the RXFIFO when in slave mode, as this is how we collect 3472 * the data. In DMA mode, we get events from the FIFO but also 3473 * things we cannot process, so do not use it. 3474 */ 3475 if (!using_dma(hsotg)) 3476 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3477 3478 /* Enable interrupts for EP0 in and out */ 3479 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3480 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3481 3482 if (!is_usb_reset) { 3483 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3484 udelay(10); /* see openiboot */ 3485 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3486 } 3487 3488 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3489 3490 /* 3491 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3492 * writing to the EPCTL register.. 3493 */ 3494 3495 /* set to read 1 8byte packet */ 3496 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3497 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3498 3499 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3500 DXEPCTL_CNAK | DXEPCTL_EPENA | 3501 DXEPCTL_USBACTEP, 3502 DOEPCTL0); 3503 3504 /* enable, but don't activate EP0in */ 3505 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3506 DXEPCTL_USBACTEP, DIEPCTL0); 3507 3508 /* clear global NAKs */ 3509 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3510 if (!is_usb_reset) 3511 val |= DCTL_SFTDISCON; 3512 dwc2_set_bit(hsotg, DCTL, val); 3513 3514 /* configure the core to support LPM */ 3515 dwc2_gadget_init_lpm(hsotg); 3516 3517 /* program GREFCLK register if needed */ 3518 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3519 dwc2_gadget_program_ref_clk(hsotg); 3520 3521 /* must be at-least 3ms to allow bus to see disconnect */ 3522 mdelay(3); 3523 3524 hsotg->lx_state = DWC2_L0; 3525 3526 dwc2_hsotg_enqueue_setup(hsotg); 3527 3528 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3529 dwc2_readl(hsotg, DIEPCTL0), 3530 dwc2_readl(hsotg, DOEPCTL0)); 3531 } 3532 3533 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3534 { 3535 /* set the soft-disconnect bit */ 3536 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3537 } 3538 3539 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3540 { 3541 /* remove the soft-disconnect and let's go */ 3542 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3543 } 3544 3545 /** 3546 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3547 * @hsotg: The device state: 3548 * 3549 * This interrupt indicates one of the following conditions occurred while 3550 * transmitting an ISOC transaction. 3551 * - Corrupted IN Token for ISOC EP. 3552 * - Packet not complete in FIFO. 3553 * 3554 * The following actions will be taken: 3555 * - Determine the EP 3556 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3557 */ 3558 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3559 { 3560 struct dwc2_hsotg_ep *hs_ep; 3561 u32 epctrl; 3562 u32 daintmsk; 3563 u32 idx; 3564 3565 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3566 3567 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3568 3569 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3570 hs_ep = hsotg->eps_in[idx]; 3571 /* Proceed only unmasked ISOC EPs */ 3572 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3573 continue; 3574 3575 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3576 if ((epctrl & DXEPCTL_EPENA) && 3577 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3578 epctrl |= DXEPCTL_SNAK; 3579 epctrl |= DXEPCTL_EPDIS; 3580 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3581 } 3582 } 3583 3584 /* Clear interrupt */ 3585 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3586 } 3587 3588 /** 3589 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3590 * @hsotg: The device state: 3591 * 3592 * This interrupt indicates one of the following conditions occurred while 3593 * transmitting an ISOC transaction. 3594 * - Corrupted OUT Token for ISOC EP. 3595 * - Packet not complete in FIFO. 3596 * 3597 * The following actions will be taken: 3598 * - Determine the EP 3599 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3600 */ 3601 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3602 { 3603 u32 gintsts; 3604 u32 gintmsk; 3605 u32 daintmsk; 3606 u32 epctrl; 3607 struct dwc2_hsotg_ep *hs_ep; 3608 int idx; 3609 3610 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3611 3612 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3613 daintmsk >>= DAINT_OUTEP_SHIFT; 3614 3615 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3616 hs_ep = hsotg->eps_out[idx]; 3617 /* Proceed only unmasked ISOC EPs */ 3618 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3619 continue; 3620 3621 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3622 if ((epctrl & DXEPCTL_EPENA) && 3623 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3624 /* Unmask GOUTNAKEFF interrupt */ 3625 gintmsk = dwc2_readl(hsotg, GINTMSK); 3626 gintmsk |= GINTSTS_GOUTNAKEFF; 3627 dwc2_writel(hsotg, gintmsk, GINTMSK); 3628 3629 gintsts = dwc2_readl(hsotg, GINTSTS); 3630 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3631 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3632 break; 3633 } 3634 } 3635 } 3636 3637 /* Clear interrupt */ 3638 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3639 } 3640 3641 /** 3642 * dwc2_hsotg_irq - handle device interrupt 3643 * @irq: The IRQ number triggered 3644 * @pw: The pw value when registered the handler. 3645 */ 3646 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3647 { 3648 struct dwc2_hsotg *hsotg = pw; 3649 int retry_count = 8; 3650 u32 gintsts; 3651 u32 gintmsk; 3652 3653 if (!dwc2_is_device_mode(hsotg)) 3654 return IRQ_NONE; 3655 3656 spin_lock(&hsotg->lock); 3657 irq_retry: 3658 gintsts = dwc2_readl(hsotg, GINTSTS); 3659 gintmsk = dwc2_readl(hsotg, GINTMSK); 3660 3661 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3662 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3663 3664 gintsts &= gintmsk; 3665 3666 if (gintsts & GINTSTS_RESETDET) { 3667 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3668 3669 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3670 3671 /* This event must be used only if controller is suspended */ 3672 if (hsotg->lx_state == DWC2_L2) { 3673 dwc2_exit_partial_power_down(hsotg, true); 3674 hsotg->lx_state = DWC2_L0; 3675 } 3676 } 3677 3678 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3679 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3680 u32 connected = hsotg->connected; 3681 3682 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3683 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3684 dwc2_readl(hsotg, GNPTXSTS)); 3685 3686 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3687 3688 /* Report disconnection if it is not already done. */ 3689 dwc2_hsotg_disconnect(hsotg); 3690 3691 /* Reset device address to zero */ 3692 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3693 3694 if (usb_status & GOTGCTL_BSESVLD && connected) 3695 dwc2_hsotg_core_init_disconnected(hsotg, true); 3696 } 3697 3698 if (gintsts & GINTSTS_ENUMDONE) { 3699 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3700 3701 dwc2_hsotg_irq_enumdone(hsotg); 3702 } 3703 3704 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3705 u32 daint = dwc2_readl(hsotg, DAINT); 3706 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3707 u32 daint_out, daint_in; 3708 int ep; 3709 3710 daint &= daintmsk; 3711 daint_out = daint >> DAINT_OUTEP_SHIFT; 3712 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3713 3714 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3715 3716 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3717 ep++, daint_out >>= 1) { 3718 if (daint_out & 1) 3719 dwc2_hsotg_epint(hsotg, ep, 0); 3720 } 3721 3722 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3723 ep++, daint_in >>= 1) { 3724 if (daint_in & 1) 3725 dwc2_hsotg_epint(hsotg, ep, 1); 3726 } 3727 } 3728 3729 /* check both FIFOs */ 3730 3731 if (gintsts & GINTSTS_NPTXFEMP) { 3732 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3733 3734 /* 3735 * Disable the interrupt to stop it happening again 3736 * unless one of these endpoint routines decides that 3737 * it needs re-enabling 3738 */ 3739 3740 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3741 dwc2_hsotg_irq_fifoempty(hsotg, false); 3742 } 3743 3744 if (gintsts & GINTSTS_PTXFEMP) { 3745 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3746 3747 /* See note in GINTSTS_NPTxFEmp */ 3748 3749 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3750 dwc2_hsotg_irq_fifoempty(hsotg, true); 3751 } 3752 3753 if (gintsts & GINTSTS_RXFLVL) { 3754 /* 3755 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3756 * we need to retry dwc2_hsotg_handle_rx if this is still 3757 * set. 3758 */ 3759 3760 dwc2_hsotg_handle_rx(hsotg); 3761 } 3762 3763 if (gintsts & GINTSTS_ERLYSUSP) { 3764 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3765 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3766 } 3767 3768 /* 3769 * these next two seem to crop-up occasionally causing the core 3770 * to shutdown the USB transfer, so try clearing them and logging 3771 * the occurrence. 3772 */ 3773 3774 if (gintsts & GINTSTS_GOUTNAKEFF) { 3775 u8 idx; 3776 u32 epctrl; 3777 u32 gintmsk; 3778 u32 daintmsk; 3779 struct dwc2_hsotg_ep *hs_ep; 3780 3781 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3782 daintmsk >>= DAINT_OUTEP_SHIFT; 3783 /* Mask this interrupt */ 3784 gintmsk = dwc2_readl(hsotg, GINTMSK); 3785 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3786 dwc2_writel(hsotg, gintmsk, GINTMSK); 3787 3788 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3789 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3790 hs_ep = hsotg->eps_out[idx]; 3791 /* Proceed only unmasked ISOC EPs */ 3792 if (BIT(idx) & ~daintmsk) 3793 continue; 3794 3795 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3796 3797 //ISOC Ep's only 3798 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3799 epctrl |= DXEPCTL_SNAK; 3800 epctrl |= DXEPCTL_EPDIS; 3801 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3802 continue; 3803 } 3804 3805 //Non-ISOC EP's 3806 if (hs_ep->halted) { 3807 if (!(epctrl & DXEPCTL_EPENA)) 3808 epctrl |= DXEPCTL_EPENA; 3809 epctrl |= DXEPCTL_EPDIS; 3810 epctrl |= DXEPCTL_STALL; 3811 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3812 } 3813 } 3814 3815 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3816 } 3817 3818 if (gintsts & GINTSTS_GINNAKEFF) { 3819 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3820 3821 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3822 3823 dwc2_hsotg_dump(hsotg); 3824 } 3825 3826 if (gintsts & GINTSTS_INCOMPL_SOIN) 3827 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3828 3829 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3830 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3831 3832 /* 3833 * if we've had fifo events, we should try and go around the 3834 * loop again to see if there's any point in returning yet. 3835 */ 3836 3837 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3838 goto irq_retry; 3839 3840 /* Check WKUP_ALERT interrupt*/ 3841 if (hsotg->params.service_interval) 3842 dwc2_gadget_wkup_alert_handler(hsotg); 3843 3844 spin_unlock(&hsotg->lock); 3845 3846 return IRQ_HANDLED; 3847 } 3848 3849 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3850 struct dwc2_hsotg_ep *hs_ep) 3851 { 3852 u32 epctrl_reg; 3853 u32 epint_reg; 3854 3855 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3856 DOEPCTL(hs_ep->index); 3857 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3858 DOEPINT(hs_ep->index); 3859 3860 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3861 hs_ep->name); 3862 3863 if (hs_ep->dir_in) { 3864 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3865 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3866 /* Wait for Nak effect */ 3867 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3868 DXEPINT_INEPNAKEFF, 100)) 3869 dev_warn(hsotg->dev, 3870 "%s: timeout DIEPINT.NAKEFF\n", 3871 __func__); 3872 } else { 3873 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3874 /* Wait for Nak effect */ 3875 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3876 GINTSTS_GINNAKEFF, 100)) 3877 dev_warn(hsotg->dev, 3878 "%s: timeout GINTSTS.GINNAKEFF\n", 3879 __func__); 3880 } 3881 } else { 3882 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3883 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3884 3885 /* Wait for global nak to take effect */ 3886 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3887 GINTSTS_GOUTNAKEFF, 100)) 3888 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3889 __func__); 3890 } 3891 3892 /* Disable ep */ 3893 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3894 3895 /* Wait for ep to be disabled */ 3896 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3897 dev_warn(hsotg->dev, 3898 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3899 3900 /* Clear EPDISBLD interrupt */ 3901 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3902 3903 if (hs_ep->dir_in) { 3904 unsigned short fifo_index; 3905 3906 if (hsotg->dedicated_fifos || hs_ep->periodic) 3907 fifo_index = hs_ep->fifo_index; 3908 else 3909 fifo_index = 0; 3910 3911 /* Flush TX FIFO */ 3912 dwc2_flush_tx_fifo(hsotg, fifo_index); 3913 3914 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3915 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3916 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3917 3918 } else { 3919 /* Remove global NAKs */ 3920 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3921 } 3922 } 3923 3924 /** 3925 * dwc2_hsotg_ep_enable - enable the given endpoint 3926 * @ep: The USB endpint to configure 3927 * @desc: The USB endpoint descriptor to configure with. 3928 * 3929 * This is called from the USB gadget code's usb_ep_enable(). 3930 */ 3931 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3932 const struct usb_endpoint_descriptor *desc) 3933 { 3934 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3935 struct dwc2_hsotg *hsotg = hs_ep->parent; 3936 unsigned long flags; 3937 unsigned int index = hs_ep->index; 3938 u32 epctrl_reg; 3939 u32 epctrl; 3940 u32 mps; 3941 u32 mc; 3942 u32 mask; 3943 unsigned int dir_in; 3944 unsigned int i, val, size; 3945 int ret = 0; 3946 unsigned char ep_type; 3947 int desc_num; 3948 3949 dev_dbg(hsotg->dev, 3950 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3951 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3952 desc->wMaxPacketSize, desc->bInterval); 3953 3954 /* not to be called for EP0 */ 3955 if (index == 0) { 3956 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3957 return -EINVAL; 3958 } 3959 3960 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3961 if (dir_in != hs_ep->dir_in) { 3962 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3963 return -EINVAL; 3964 } 3965 3966 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 3967 mps = usb_endpoint_maxp(desc); 3968 mc = usb_endpoint_maxp_mult(desc); 3969 3970 /* ISOC IN in DDMA supported bInterval up to 10 */ 3971 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3972 dir_in && desc->bInterval > 10) { 3973 dev_err(hsotg->dev, 3974 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 3975 return -EINVAL; 3976 } 3977 3978 /* High bandwidth ISOC OUT in DDMA not supported */ 3979 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3980 !dir_in && mc > 1) { 3981 dev_err(hsotg->dev, 3982 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 3983 return -EINVAL; 3984 } 3985 3986 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3987 3988 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3989 epctrl = dwc2_readl(hsotg, epctrl_reg); 3990 3991 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3992 __func__, epctrl, epctrl_reg); 3993 3994 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 3995 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 3996 else 3997 desc_num = MAX_DMA_DESC_NUM_GENERIC; 3998 3999 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4000 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4001 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4002 desc_num * sizeof(struct dwc2_dma_desc), 4003 &hs_ep->desc_list_dma, GFP_ATOMIC); 4004 if (!hs_ep->desc_list) { 4005 ret = -ENOMEM; 4006 goto error2; 4007 } 4008 } 4009 4010 spin_lock_irqsave(&hsotg->lock, flags); 4011 4012 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4013 epctrl |= DXEPCTL_MPS(mps); 4014 4015 /* 4016 * mark the endpoint as active, otherwise the core may ignore 4017 * transactions entirely for this endpoint 4018 */ 4019 epctrl |= DXEPCTL_USBACTEP; 4020 4021 /* update the endpoint state */ 4022 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4023 4024 /* default, set to non-periodic */ 4025 hs_ep->isochronous = 0; 4026 hs_ep->periodic = 0; 4027 hs_ep->halted = 0; 4028 hs_ep->interval = desc->bInterval; 4029 4030 switch (ep_type) { 4031 case USB_ENDPOINT_XFER_ISOC: 4032 epctrl |= DXEPCTL_EPTYPE_ISO; 4033 epctrl |= DXEPCTL_SETEVENFR; 4034 hs_ep->isochronous = 1; 4035 hs_ep->interval = 1 << (desc->bInterval - 1); 4036 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4037 hs_ep->next_desc = 0; 4038 hs_ep->compl_desc = 0; 4039 if (dir_in) { 4040 hs_ep->periodic = 1; 4041 mask = dwc2_readl(hsotg, DIEPMSK); 4042 mask |= DIEPMSK_NAKMSK; 4043 dwc2_writel(hsotg, mask, DIEPMSK); 4044 } else { 4045 mask = dwc2_readl(hsotg, DOEPMSK); 4046 mask |= DOEPMSK_OUTTKNEPDISMSK; 4047 dwc2_writel(hsotg, mask, DOEPMSK); 4048 } 4049 break; 4050 4051 case USB_ENDPOINT_XFER_BULK: 4052 epctrl |= DXEPCTL_EPTYPE_BULK; 4053 break; 4054 4055 case USB_ENDPOINT_XFER_INT: 4056 if (dir_in) 4057 hs_ep->periodic = 1; 4058 4059 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4060 hs_ep->interval = 1 << (desc->bInterval - 1); 4061 4062 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4063 break; 4064 4065 case USB_ENDPOINT_XFER_CONTROL: 4066 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4067 break; 4068 } 4069 4070 /* 4071 * if the hardware has dedicated fifos, we must give each IN EP 4072 * a unique tx-fifo even if it is non-periodic. 4073 */ 4074 if (dir_in && hsotg->dedicated_fifos) { 4075 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4076 u32 fifo_index = 0; 4077 u32 fifo_size = UINT_MAX; 4078 4079 size = hs_ep->ep.maxpacket * hs_ep->mc; 4080 for (i = 1; i <= fifo_count; ++i) { 4081 if (hsotg->fifo_map & (1 << i)) 4082 continue; 4083 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4084 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4085 if (val < size) 4086 continue; 4087 /* Search for smallest acceptable fifo */ 4088 if (val < fifo_size) { 4089 fifo_size = val; 4090 fifo_index = i; 4091 } 4092 } 4093 if (!fifo_index) { 4094 dev_err(hsotg->dev, 4095 "%s: No suitable fifo found\n", __func__); 4096 ret = -ENOMEM; 4097 goto error1; 4098 } 4099 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4100 hsotg->fifo_map |= 1 << fifo_index; 4101 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4102 hs_ep->fifo_index = fifo_index; 4103 hs_ep->fifo_size = fifo_size; 4104 } 4105 4106 /* for non control endpoints, set PID to D0 */ 4107 if (index && !hs_ep->isochronous) 4108 epctrl |= DXEPCTL_SETD0PID; 4109 4110 /* WA for Full speed ISOC IN in DDMA mode. 4111 * By Clear NAK status of EP, core will send ZLP 4112 * to IN token and assert NAK interrupt relying 4113 * on TxFIFO status only 4114 */ 4115 4116 if (hsotg->gadget.speed == USB_SPEED_FULL && 4117 hs_ep->isochronous && dir_in) { 4118 /* The WA applies only to core versions from 2.72a 4119 * to 4.00a (including both). Also for FS_IOT_1.00a 4120 * and HS_IOT_1.00a. 4121 */ 4122 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4123 4124 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4125 gsnpsid <= DWC2_CORE_REV_4_00a) || 4126 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4127 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4128 epctrl |= DXEPCTL_CNAK; 4129 } 4130 4131 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4132 __func__, epctrl); 4133 4134 dwc2_writel(hsotg, epctrl, epctrl_reg); 4135 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4136 __func__, dwc2_readl(hsotg, epctrl_reg)); 4137 4138 /* enable the endpoint interrupt */ 4139 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4140 4141 error1: 4142 spin_unlock_irqrestore(&hsotg->lock, flags); 4143 4144 error2: 4145 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4146 dmam_free_coherent(hsotg->dev, desc_num * 4147 sizeof(struct dwc2_dma_desc), 4148 hs_ep->desc_list, hs_ep->desc_list_dma); 4149 hs_ep->desc_list = NULL; 4150 } 4151 4152 return ret; 4153 } 4154 4155 /** 4156 * dwc2_hsotg_ep_disable - disable given endpoint 4157 * @ep: The endpoint to disable. 4158 */ 4159 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4160 { 4161 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4162 struct dwc2_hsotg *hsotg = hs_ep->parent; 4163 int dir_in = hs_ep->dir_in; 4164 int index = hs_ep->index; 4165 u32 epctrl_reg; 4166 u32 ctrl; 4167 4168 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4169 4170 if (ep == &hsotg->eps_out[0]->ep) { 4171 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4172 return -EINVAL; 4173 } 4174 4175 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4176 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4177 return -EINVAL; 4178 } 4179 4180 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4181 4182 ctrl = dwc2_readl(hsotg, epctrl_reg); 4183 4184 if (ctrl & DXEPCTL_EPENA) 4185 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4186 4187 ctrl &= ~DXEPCTL_EPENA; 4188 ctrl &= ~DXEPCTL_USBACTEP; 4189 ctrl |= DXEPCTL_SNAK; 4190 4191 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4192 dwc2_writel(hsotg, ctrl, epctrl_reg); 4193 4194 /* disable endpoint interrupts */ 4195 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4196 4197 /* terminate all requests with shutdown */ 4198 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4199 4200 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4201 hs_ep->fifo_index = 0; 4202 hs_ep->fifo_size = 0; 4203 4204 return 0; 4205 } 4206 4207 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4208 { 4209 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4210 struct dwc2_hsotg *hsotg = hs_ep->parent; 4211 unsigned long flags; 4212 int ret; 4213 4214 spin_lock_irqsave(&hsotg->lock, flags); 4215 ret = dwc2_hsotg_ep_disable(ep); 4216 spin_unlock_irqrestore(&hsotg->lock, flags); 4217 return ret; 4218 } 4219 4220 /** 4221 * on_list - check request is on the given endpoint 4222 * @ep: The endpoint to check. 4223 * @test: The request to test if it is on the endpoint. 4224 */ 4225 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4226 { 4227 struct dwc2_hsotg_req *req, *treq; 4228 4229 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4230 if (req == test) 4231 return true; 4232 } 4233 4234 return false; 4235 } 4236 4237 /** 4238 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4239 * @ep: The endpoint to dequeue. 4240 * @req: The request to be removed from a queue. 4241 */ 4242 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4243 { 4244 struct dwc2_hsotg_req *hs_req = our_req(req); 4245 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4246 struct dwc2_hsotg *hs = hs_ep->parent; 4247 unsigned long flags; 4248 4249 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4250 4251 spin_lock_irqsave(&hs->lock, flags); 4252 4253 if (!on_list(hs_ep, hs_req)) { 4254 spin_unlock_irqrestore(&hs->lock, flags); 4255 return -EINVAL; 4256 } 4257 4258 /* Dequeue already started request */ 4259 if (req == &hs_ep->req->req) 4260 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4261 4262 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4263 spin_unlock_irqrestore(&hs->lock, flags); 4264 4265 return 0; 4266 } 4267 4268 /** 4269 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4270 * @ep: The endpoint to set halt. 4271 * @value: Set or unset the halt. 4272 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4273 * the endpoint is busy processing requests. 4274 * 4275 * We need to stall the endpoint immediately if request comes from set_feature 4276 * protocol command handler. 4277 */ 4278 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4279 { 4280 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4281 struct dwc2_hsotg *hs = hs_ep->parent; 4282 int index = hs_ep->index; 4283 u32 epreg; 4284 u32 epctl; 4285 u32 xfertype; 4286 4287 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4288 4289 if (index == 0) { 4290 if (value) 4291 dwc2_hsotg_stall_ep0(hs); 4292 else 4293 dev_warn(hs->dev, 4294 "%s: can't clear halt on ep0\n", __func__); 4295 return 0; 4296 } 4297 4298 if (hs_ep->isochronous) { 4299 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4300 return -EINVAL; 4301 } 4302 4303 if (!now && value && !list_empty(&hs_ep->queue)) { 4304 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4305 ep->name); 4306 return -EAGAIN; 4307 } 4308 4309 if (hs_ep->dir_in) { 4310 epreg = DIEPCTL(index); 4311 epctl = dwc2_readl(hs, epreg); 4312 4313 if (value) { 4314 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4315 if (epctl & DXEPCTL_EPENA) 4316 epctl |= DXEPCTL_EPDIS; 4317 } else { 4318 epctl &= ~DXEPCTL_STALL; 4319 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4320 if (xfertype == DXEPCTL_EPTYPE_BULK || 4321 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4322 epctl |= DXEPCTL_SETD0PID; 4323 } 4324 dwc2_writel(hs, epctl, epreg); 4325 } else { 4326 epreg = DOEPCTL(index); 4327 epctl = dwc2_readl(hs, epreg); 4328 4329 if (value) { 4330 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4331 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4332 // STALL bit will be set in GOUTNAKEFF interrupt handler 4333 } else { 4334 epctl &= ~DXEPCTL_STALL; 4335 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4336 if (xfertype == DXEPCTL_EPTYPE_BULK || 4337 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4338 epctl |= DXEPCTL_SETD0PID; 4339 dwc2_writel(hs, epctl, epreg); 4340 } 4341 } 4342 4343 hs_ep->halted = value; 4344 return 0; 4345 } 4346 4347 /** 4348 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4349 * @ep: The endpoint to set halt. 4350 * @value: Set or unset the halt. 4351 */ 4352 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4353 { 4354 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4355 struct dwc2_hsotg *hs = hs_ep->parent; 4356 unsigned long flags = 0; 4357 int ret = 0; 4358 4359 spin_lock_irqsave(&hs->lock, flags); 4360 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4361 spin_unlock_irqrestore(&hs->lock, flags); 4362 4363 return ret; 4364 } 4365 4366 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4367 .enable = dwc2_hsotg_ep_enable, 4368 .disable = dwc2_hsotg_ep_disable_lock, 4369 .alloc_request = dwc2_hsotg_ep_alloc_request, 4370 .free_request = dwc2_hsotg_ep_free_request, 4371 .queue = dwc2_hsotg_ep_queue_lock, 4372 .dequeue = dwc2_hsotg_ep_dequeue, 4373 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4374 /* note, don't believe we have any call for the fifo routines */ 4375 }; 4376 4377 /** 4378 * dwc2_hsotg_init - initialize the usb core 4379 * @hsotg: The driver state 4380 */ 4381 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4382 { 4383 /* unmask subset of endpoint interrupts */ 4384 4385 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4386 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4387 DIEPMSK); 4388 4389 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4390 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4391 DOEPMSK); 4392 4393 dwc2_writel(hsotg, 0, DAINTMSK); 4394 4395 /* Be in disconnected state until gadget is registered */ 4396 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4397 4398 /* setup fifos */ 4399 4400 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4401 dwc2_readl(hsotg, GRXFSIZ), 4402 dwc2_readl(hsotg, GNPTXFSIZ)); 4403 4404 dwc2_hsotg_init_fifo(hsotg); 4405 4406 if (using_dma(hsotg)) 4407 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4408 } 4409 4410 /** 4411 * dwc2_hsotg_udc_start - prepare the udc for work 4412 * @gadget: The usb gadget state 4413 * @driver: The usb gadget driver 4414 * 4415 * Perform initialization to prepare udc device and driver 4416 * to work. 4417 */ 4418 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4419 struct usb_gadget_driver *driver) 4420 { 4421 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4422 unsigned long flags; 4423 int ret; 4424 4425 if (!hsotg) { 4426 pr_err("%s: called with no device\n", __func__); 4427 return -ENODEV; 4428 } 4429 4430 if (!driver) { 4431 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4432 return -EINVAL; 4433 } 4434 4435 if (driver->max_speed < USB_SPEED_FULL) 4436 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4437 4438 if (!driver->setup) { 4439 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4440 return -EINVAL; 4441 } 4442 4443 WARN_ON(hsotg->driver); 4444 4445 driver->driver.bus = NULL; 4446 hsotg->driver = driver; 4447 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4448 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4449 4450 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4451 ret = dwc2_lowlevel_hw_enable(hsotg); 4452 if (ret) 4453 goto err; 4454 } 4455 4456 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4457 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4458 4459 spin_lock_irqsave(&hsotg->lock, flags); 4460 if (dwc2_hw_is_device(hsotg)) { 4461 dwc2_hsotg_init(hsotg); 4462 dwc2_hsotg_core_init_disconnected(hsotg, false); 4463 } 4464 4465 hsotg->enabled = 0; 4466 spin_unlock_irqrestore(&hsotg->lock, flags); 4467 4468 gadget->sg_supported = using_desc_dma(hsotg); 4469 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4470 4471 return 0; 4472 4473 err: 4474 hsotg->driver = NULL; 4475 return ret; 4476 } 4477 4478 /** 4479 * dwc2_hsotg_udc_stop - stop the udc 4480 * @gadget: The usb gadget state 4481 * 4482 * Stop udc hw block and stay tunned for future transmissions 4483 */ 4484 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4485 { 4486 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4487 unsigned long flags = 0; 4488 int ep; 4489 4490 if (!hsotg) 4491 return -ENODEV; 4492 4493 /* all endpoints should be shutdown */ 4494 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4495 if (hsotg->eps_in[ep]) 4496 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4497 if (hsotg->eps_out[ep]) 4498 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4499 } 4500 4501 spin_lock_irqsave(&hsotg->lock, flags); 4502 4503 hsotg->driver = NULL; 4504 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4505 hsotg->enabled = 0; 4506 4507 spin_unlock_irqrestore(&hsotg->lock, flags); 4508 4509 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4510 otg_set_peripheral(hsotg->uphy->otg, NULL); 4511 4512 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4513 dwc2_lowlevel_hw_disable(hsotg); 4514 4515 return 0; 4516 } 4517 4518 /** 4519 * dwc2_hsotg_gadget_getframe - read the frame number 4520 * @gadget: The usb gadget state 4521 * 4522 * Read the {micro} frame number 4523 */ 4524 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4525 { 4526 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4527 } 4528 4529 /** 4530 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4531 * @gadget: The usb gadget state 4532 * @is_selfpowered: Whether the device is self-powered 4533 * 4534 * Set if the device is self or bus powered. 4535 */ 4536 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4537 int is_selfpowered) 4538 { 4539 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4540 unsigned long flags; 4541 4542 spin_lock_irqsave(&hsotg->lock, flags); 4543 gadget->is_selfpowered = !!is_selfpowered; 4544 spin_unlock_irqrestore(&hsotg->lock, flags); 4545 4546 return 0; 4547 } 4548 4549 /** 4550 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4551 * @gadget: The usb gadget state 4552 * @is_on: Current state of the USB PHY 4553 * 4554 * Connect/Disconnect the USB PHY pullup 4555 */ 4556 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4557 { 4558 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4559 unsigned long flags = 0; 4560 4561 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4562 hsotg->op_state); 4563 4564 /* Don't modify pullup state while in host mode */ 4565 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4566 hsotg->enabled = is_on; 4567 return 0; 4568 } 4569 4570 spin_lock_irqsave(&hsotg->lock, flags); 4571 if (is_on) { 4572 hsotg->enabled = 1; 4573 dwc2_hsotg_core_init_disconnected(hsotg, false); 4574 /* Enable ACG feature in device mode,if supported */ 4575 dwc2_enable_acg(hsotg); 4576 dwc2_hsotg_core_connect(hsotg); 4577 } else { 4578 dwc2_hsotg_core_disconnect(hsotg); 4579 dwc2_hsotg_disconnect(hsotg); 4580 hsotg->enabled = 0; 4581 } 4582 4583 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4584 spin_unlock_irqrestore(&hsotg->lock, flags); 4585 4586 return 0; 4587 } 4588 4589 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4590 { 4591 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4592 unsigned long flags; 4593 4594 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4595 spin_lock_irqsave(&hsotg->lock, flags); 4596 4597 /* 4598 * If controller is hibernated, it must exit from power_down 4599 * before being initialized / de-initialized 4600 */ 4601 if (hsotg->lx_state == DWC2_L2) 4602 dwc2_exit_partial_power_down(hsotg, false); 4603 4604 if (is_active) { 4605 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4606 4607 dwc2_hsotg_core_init_disconnected(hsotg, false); 4608 if (hsotg->enabled) { 4609 /* Enable ACG feature in device mode,if supported */ 4610 dwc2_enable_acg(hsotg); 4611 dwc2_hsotg_core_connect(hsotg); 4612 } 4613 } else { 4614 dwc2_hsotg_core_disconnect(hsotg); 4615 dwc2_hsotg_disconnect(hsotg); 4616 } 4617 4618 spin_unlock_irqrestore(&hsotg->lock, flags); 4619 return 0; 4620 } 4621 4622 /** 4623 * dwc2_hsotg_vbus_draw - report bMaxPower field 4624 * @gadget: The usb gadget state 4625 * @mA: Amount of current 4626 * 4627 * Report how much power the device may consume to the phy. 4628 */ 4629 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4630 { 4631 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4632 4633 if (IS_ERR_OR_NULL(hsotg->uphy)) 4634 return -ENOTSUPP; 4635 return usb_phy_set_power(hsotg->uphy, mA); 4636 } 4637 4638 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4639 .get_frame = dwc2_hsotg_gadget_getframe, 4640 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4641 .udc_start = dwc2_hsotg_udc_start, 4642 .udc_stop = dwc2_hsotg_udc_stop, 4643 .pullup = dwc2_hsotg_pullup, 4644 .vbus_session = dwc2_hsotg_vbus_session, 4645 .vbus_draw = dwc2_hsotg_vbus_draw, 4646 }; 4647 4648 /** 4649 * dwc2_hsotg_initep - initialise a single endpoint 4650 * @hsotg: The device state. 4651 * @hs_ep: The endpoint to be initialised. 4652 * @epnum: The endpoint number 4653 * @dir_in: True if direction is in. 4654 * 4655 * Initialise the given endpoint (as part of the probe and device state 4656 * creation) to give to the gadget driver. Setup the endpoint name, any 4657 * direction information and other state that may be required. 4658 */ 4659 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4660 struct dwc2_hsotg_ep *hs_ep, 4661 int epnum, 4662 bool dir_in) 4663 { 4664 char *dir; 4665 4666 if (epnum == 0) 4667 dir = ""; 4668 else if (dir_in) 4669 dir = "in"; 4670 else 4671 dir = "out"; 4672 4673 hs_ep->dir_in = dir_in; 4674 hs_ep->index = epnum; 4675 4676 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4677 4678 INIT_LIST_HEAD(&hs_ep->queue); 4679 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4680 4681 /* add to the list of endpoints known by the gadget driver */ 4682 if (epnum) 4683 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4684 4685 hs_ep->parent = hsotg; 4686 hs_ep->ep.name = hs_ep->name; 4687 4688 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4689 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4690 else 4691 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4692 epnum ? 1024 : EP0_MPS_LIMIT); 4693 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4694 4695 if (epnum == 0) { 4696 hs_ep->ep.caps.type_control = true; 4697 } else { 4698 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4699 hs_ep->ep.caps.type_iso = true; 4700 hs_ep->ep.caps.type_bulk = true; 4701 } 4702 hs_ep->ep.caps.type_int = true; 4703 } 4704 4705 if (dir_in) 4706 hs_ep->ep.caps.dir_in = true; 4707 else 4708 hs_ep->ep.caps.dir_out = true; 4709 4710 /* 4711 * if we're using dma, we need to set the next-endpoint pointer 4712 * to be something valid. 4713 */ 4714 4715 if (using_dma(hsotg)) { 4716 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4717 4718 if (dir_in) 4719 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4720 else 4721 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4722 } 4723 } 4724 4725 /** 4726 * dwc2_hsotg_hw_cfg - read HW configuration registers 4727 * @hsotg: Programming view of the DWC_otg controller 4728 * 4729 * Read the USB core HW configuration registers 4730 */ 4731 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4732 { 4733 u32 cfg; 4734 u32 ep_type; 4735 u32 i; 4736 4737 /* check hardware configuration */ 4738 4739 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4740 4741 /* Add ep0 */ 4742 hsotg->num_of_eps++; 4743 4744 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4745 sizeof(struct dwc2_hsotg_ep), 4746 GFP_KERNEL); 4747 if (!hsotg->eps_in[0]) 4748 return -ENOMEM; 4749 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4750 hsotg->eps_out[0] = hsotg->eps_in[0]; 4751 4752 cfg = hsotg->hw_params.dev_ep_dirs; 4753 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4754 ep_type = cfg & 3; 4755 /* Direction in or both */ 4756 if (!(ep_type & 2)) { 4757 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4758 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4759 if (!hsotg->eps_in[i]) 4760 return -ENOMEM; 4761 } 4762 /* Direction out or both */ 4763 if (!(ep_type & 1)) { 4764 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4765 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4766 if (!hsotg->eps_out[i]) 4767 return -ENOMEM; 4768 } 4769 } 4770 4771 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4772 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4773 4774 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4775 hsotg->num_of_eps, 4776 hsotg->dedicated_fifos ? "dedicated" : "shared", 4777 hsotg->fifo_mem); 4778 return 0; 4779 } 4780 4781 /** 4782 * dwc2_hsotg_dump - dump state of the udc 4783 * @hsotg: Programming view of the DWC_otg controller 4784 * 4785 */ 4786 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4787 { 4788 #ifdef DEBUG 4789 struct device *dev = hsotg->dev; 4790 u32 val; 4791 int idx; 4792 4793 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4794 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4795 dwc2_readl(hsotg, DIEPMSK)); 4796 4797 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4798 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4799 4800 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4801 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4802 4803 /* show periodic fifo settings */ 4804 4805 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4806 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4807 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4808 val >> FIFOSIZE_DEPTH_SHIFT, 4809 val & FIFOSIZE_STARTADDR_MASK); 4810 } 4811 4812 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4813 dev_info(dev, 4814 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4815 dwc2_readl(hsotg, DIEPCTL(idx)), 4816 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4817 dwc2_readl(hsotg, DIEPDMA(idx))); 4818 4819 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4820 dev_info(dev, 4821 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4822 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4823 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4824 dwc2_readl(hsotg, DOEPDMA(idx))); 4825 } 4826 4827 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4828 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4829 #endif 4830 } 4831 4832 /** 4833 * dwc2_gadget_init - init function for gadget 4834 * @hsotg: Programming view of the DWC_otg controller 4835 * 4836 */ 4837 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4838 { 4839 struct device *dev = hsotg->dev; 4840 int epnum; 4841 int ret; 4842 4843 /* Dump fifo information */ 4844 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4845 hsotg->params.g_np_tx_fifo_size); 4846 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4847 4848 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4849 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4850 hsotg->gadget.name = dev_name(dev); 4851 hsotg->remote_wakeup_allowed = 0; 4852 4853 if (hsotg->params.lpm) 4854 hsotg->gadget.lpm_capable = true; 4855 4856 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4857 hsotg->gadget.is_otg = 1; 4858 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4859 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4860 4861 ret = dwc2_hsotg_hw_cfg(hsotg); 4862 if (ret) { 4863 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4864 return ret; 4865 } 4866 4867 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4868 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4869 if (!hsotg->ctrl_buff) 4870 return -ENOMEM; 4871 4872 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4873 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4874 if (!hsotg->ep0_buff) 4875 return -ENOMEM; 4876 4877 if (using_desc_dma(hsotg)) { 4878 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4879 if (ret < 0) 4880 return ret; 4881 } 4882 4883 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4884 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4885 if (ret < 0) { 4886 dev_err(dev, "cannot claim IRQ for gadget\n"); 4887 return ret; 4888 } 4889 4890 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4891 4892 if (hsotg->num_of_eps == 0) { 4893 dev_err(dev, "wrong number of EPs (zero)\n"); 4894 return -EINVAL; 4895 } 4896 4897 /* setup endpoint information */ 4898 4899 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4900 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4901 4902 /* allocate EP0 request */ 4903 4904 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4905 GFP_KERNEL); 4906 if (!hsotg->ctrl_req) { 4907 dev_err(dev, "failed to allocate ctrl req\n"); 4908 return -ENOMEM; 4909 } 4910 4911 /* initialise the endpoints now the core has been initialised */ 4912 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4913 if (hsotg->eps_in[epnum]) 4914 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4915 epnum, 1); 4916 if (hsotg->eps_out[epnum]) 4917 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4918 epnum, 0); 4919 } 4920 4921 dwc2_hsotg_dump(hsotg); 4922 4923 return 0; 4924 } 4925 4926 /** 4927 * dwc2_hsotg_remove - remove function for hsotg driver 4928 * @hsotg: Programming view of the DWC_otg controller 4929 * 4930 */ 4931 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4932 { 4933 usb_del_gadget_udc(&hsotg->gadget); 4934 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4935 4936 return 0; 4937 } 4938 4939 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4940 { 4941 unsigned long flags; 4942 4943 if (hsotg->lx_state != DWC2_L0) 4944 return 0; 4945 4946 if (hsotg->driver) { 4947 int ep; 4948 4949 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4950 hsotg->driver->driver.name); 4951 4952 spin_lock_irqsave(&hsotg->lock, flags); 4953 if (hsotg->enabled) 4954 dwc2_hsotg_core_disconnect(hsotg); 4955 dwc2_hsotg_disconnect(hsotg); 4956 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4957 spin_unlock_irqrestore(&hsotg->lock, flags); 4958 4959 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4960 if (hsotg->eps_in[ep]) 4961 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4962 if (hsotg->eps_out[ep]) 4963 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4964 } 4965 } 4966 4967 return 0; 4968 } 4969 4970 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4971 { 4972 unsigned long flags; 4973 4974 if (hsotg->lx_state == DWC2_L2) 4975 return 0; 4976 4977 if (hsotg->driver) { 4978 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4979 hsotg->driver->driver.name); 4980 4981 spin_lock_irqsave(&hsotg->lock, flags); 4982 dwc2_hsotg_core_init_disconnected(hsotg, false); 4983 if (hsotg->enabled) { 4984 /* Enable ACG feature in device mode,if supported */ 4985 dwc2_enable_acg(hsotg); 4986 dwc2_hsotg_core_connect(hsotg); 4987 } 4988 spin_unlock_irqrestore(&hsotg->lock, flags); 4989 } 4990 4991 return 0; 4992 } 4993 4994 /** 4995 * dwc2_backup_device_registers() - Backup controller device registers. 4996 * When suspending usb bus, registers needs to be backuped 4997 * if controller power is disabled once suspended. 4998 * 4999 * @hsotg: Programming view of the DWC_otg controller 5000 */ 5001 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5002 { 5003 struct dwc2_dregs_backup *dr; 5004 int i; 5005 5006 dev_dbg(hsotg->dev, "%s\n", __func__); 5007 5008 /* Backup dev regs */ 5009 dr = &hsotg->dr_backup; 5010 5011 dr->dcfg = dwc2_readl(hsotg, DCFG); 5012 dr->dctl = dwc2_readl(hsotg, DCTL); 5013 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5014 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5015 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5016 5017 for (i = 0; i < hsotg->num_of_eps; i++) { 5018 /* Backup IN EPs */ 5019 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5020 5021 /* Ensure DATA PID is correctly configured */ 5022 if (dr->diepctl[i] & DXEPCTL_DPID) 5023 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5024 else 5025 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5026 5027 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5028 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5029 5030 /* Backup OUT EPs */ 5031 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5032 5033 /* Ensure DATA PID is correctly configured */ 5034 if (dr->doepctl[i] & DXEPCTL_DPID) 5035 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5036 else 5037 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5038 5039 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5040 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5041 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5042 } 5043 dr->valid = true; 5044 return 0; 5045 } 5046 5047 /** 5048 * dwc2_restore_device_registers() - Restore controller device registers. 5049 * When resuming usb bus, device registers needs to be restored 5050 * if controller power were disabled. 5051 * 5052 * @hsotg: Programming view of the DWC_otg controller 5053 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5054 * 5055 * Return: 0 if successful, negative error code otherwise 5056 */ 5057 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5058 { 5059 struct dwc2_dregs_backup *dr; 5060 int i; 5061 5062 dev_dbg(hsotg->dev, "%s\n", __func__); 5063 5064 /* Restore dev regs */ 5065 dr = &hsotg->dr_backup; 5066 if (!dr->valid) { 5067 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5068 __func__); 5069 return -EINVAL; 5070 } 5071 dr->valid = false; 5072 5073 if (!remote_wakeup) 5074 dwc2_writel(hsotg, dr->dctl, DCTL); 5075 5076 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5077 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5078 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5079 5080 for (i = 0; i < hsotg->num_of_eps; i++) { 5081 /* Restore IN EPs */ 5082 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5083 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5084 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5085 /** WA for enabled EPx's IN in DDMA mode. On entering to 5086 * hibernation wrong value read and saved from DIEPDMAx, 5087 * as result BNA interrupt asserted on hibernation exit 5088 * by restoring from saved area. 5089 */ 5090 if (hsotg->params.g_dma_desc && 5091 (dr->diepctl[i] & DXEPCTL_EPENA)) 5092 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5093 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5094 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5095 /* Restore OUT EPs */ 5096 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5097 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5098 * hibernation wrong value read and saved from DOEPDMAx, 5099 * as result BNA interrupt asserted on hibernation exit 5100 * by restoring from saved area. 5101 */ 5102 if (hsotg->params.g_dma_desc && 5103 (dr->doepctl[i] & DXEPCTL_EPENA)) 5104 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5105 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5106 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5107 } 5108 5109 return 0; 5110 } 5111 5112 /** 5113 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5114 * 5115 * @hsotg: Programming view of DWC_otg controller 5116 * 5117 */ 5118 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5119 { 5120 u32 val; 5121 5122 if (!hsotg->params.lpm) 5123 return; 5124 5125 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5126 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5127 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5128 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5129 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5130 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5131 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5132 dwc2_writel(hsotg, val, GLPMCFG); 5133 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5134 5135 /* Unmask WKUP_ALERT Interrupt */ 5136 if (hsotg->params.service_interval) 5137 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5138 } 5139 5140 /** 5141 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5142 * 5143 * @hsotg: Programming view of DWC_otg controller 5144 * 5145 */ 5146 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5147 { 5148 u32 val = 0; 5149 5150 val |= GREFCLK_REF_CLK_MODE; 5151 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5152 val |= hsotg->params.sof_cnt_wkup_alert << 5153 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5154 5155 dwc2_writel(hsotg, val, GREFCLK); 5156 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5157 } 5158 5159 /** 5160 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5161 * 5162 * @hsotg: Programming view of the DWC_otg controller 5163 * 5164 * Return non-zero if failed to enter to hibernation. 5165 */ 5166 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5167 { 5168 u32 gpwrdn; 5169 int ret = 0; 5170 5171 /* Change to L2(suspend) state */ 5172 hsotg->lx_state = DWC2_L2; 5173 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5174 ret = dwc2_backup_global_registers(hsotg); 5175 if (ret) { 5176 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5177 __func__); 5178 return ret; 5179 } 5180 ret = dwc2_backup_device_registers(hsotg); 5181 if (ret) { 5182 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5183 __func__); 5184 return ret; 5185 } 5186 5187 gpwrdn = GPWRDN_PWRDNRSTN; 5188 gpwrdn |= GPWRDN_PMUACTV; 5189 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5190 udelay(10); 5191 5192 /* Set flag to indicate that we are in hibernation */ 5193 hsotg->hibernated = 1; 5194 5195 /* Enable interrupts from wake up logic */ 5196 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5197 gpwrdn |= GPWRDN_PMUINTSEL; 5198 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5199 udelay(10); 5200 5201 /* Unmask device mode interrupts in GPWRDN */ 5202 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5203 gpwrdn |= GPWRDN_RST_DET_MSK; 5204 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5205 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5206 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5207 udelay(10); 5208 5209 /* Enable Power Down Clamp */ 5210 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5211 gpwrdn |= GPWRDN_PWRDNCLMP; 5212 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5213 udelay(10); 5214 5215 /* Switch off VDD */ 5216 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5217 gpwrdn |= GPWRDN_PWRDNSWTCH; 5218 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5219 udelay(10); 5220 5221 /* Save gpwrdn register for further usage if stschng interrupt */ 5222 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5223 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5224 5225 return ret; 5226 } 5227 5228 /** 5229 * dwc2_gadget_exit_hibernation() 5230 * This function is for exiting from Device mode hibernation by host initiated 5231 * resume/reset and device initiated remote-wakeup. 5232 * 5233 * @hsotg: Programming view of the DWC_otg controller 5234 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5235 * @reset: indicates whether resume is initiated by Reset. 5236 * 5237 * Return non-zero if failed to exit from hibernation. 5238 */ 5239 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5240 int rem_wakeup, int reset) 5241 { 5242 u32 pcgcctl; 5243 u32 gpwrdn; 5244 u32 dctl; 5245 int ret = 0; 5246 struct dwc2_gregs_backup *gr; 5247 struct dwc2_dregs_backup *dr; 5248 5249 gr = &hsotg->gr_backup; 5250 dr = &hsotg->dr_backup; 5251 5252 if (!hsotg->hibernated) { 5253 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5254 return 1; 5255 } 5256 dev_dbg(hsotg->dev, 5257 "%s: called with rem_wakeup = %d reset = %d\n", 5258 __func__, rem_wakeup, reset); 5259 5260 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5261 5262 if (!reset) { 5263 /* Clear all pending interupts */ 5264 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5265 } 5266 5267 /* De-assert Restore */ 5268 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5269 gpwrdn &= ~GPWRDN_RESTORE; 5270 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5271 udelay(10); 5272 5273 if (!rem_wakeup) { 5274 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5275 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5276 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5277 } 5278 5279 /* Restore GUSBCFG, DCFG and DCTL */ 5280 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5281 dwc2_writel(hsotg, dr->dcfg, DCFG); 5282 dwc2_writel(hsotg, dr->dctl, DCTL); 5283 5284 /* De-assert Wakeup Logic */ 5285 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5286 gpwrdn &= ~GPWRDN_PMUACTV; 5287 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5288 5289 if (rem_wakeup) { 5290 udelay(10); 5291 /* Start Remote Wakeup Signaling */ 5292 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5293 } else { 5294 udelay(50); 5295 /* Set Device programming done bit */ 5296 dctl = dwc2_readl(hsotg, DCTL); 5297 dctl |= DCTL_PWRONPRGDONE; 5298 dwc2_writel(hsotg, dctl, DCTL); 5299 } 5300 /* Wait for interrupts which must be cleared */ 5301 mdelay(2); 5302 /* Clear all pending interupts */ 5303 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5304 5305 /* Restore global registers */ 5306 ret = dwc2_restore_global_registers(hsotg); 5307 if (ret) { 5308 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5309 __func__); 5310 return ret; 5311 } 5312 5313 /* Restore device registers */ 5314 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5315 if (ret) { 5316 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5317 __func__); 5318 return ret; 5319 } 5320 5321 if (rem_wakeup) { 5322 mdelay(10); 5323 dctl = dwc2_readl(hsotg, DCTL); 5324 dctl &= ~DCTL_RMTWKUPSIG; 5325 dwc2_writel(hsotg, dctl, DCTL); 5326 } 5327 5328 hsotg->hibernated = 0; 5329 hsotg->lx_state = DWC2_L0; 5330 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5331 5332 return ret; 5333 } 5334