1 /** 2 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright 2008 Openmoko, Inc. 6 * Copyright 2008 Simtec Electronics 7 * Ben Dooks <ben@simtec.co.uk> 8 * http://armlinux.simtec.co.uk/ 9 * 10 * S3C USB2.0 High-speed / OtG driver 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/interrupt.h> 21 #include <linux/platform_device.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/delay.h> 26 #include <linux/io.h> 27 #include <linux/slab.h> 28 #include <linux/clk.h> 29 #include <linux/regulator/consumer.h> 30 #include <linux/of_platform.h> 31 #include <linux/phy/phy.h> 32 33 #include <linux/usb/ch9.h> 34 #include <linux/usb/gadget.h> 35 #include <linux/usb/phy.h> 36 #include <linux/platform_data/s3c-hsotg.h> 37 38 #include "core.h" 39 40 /* conversion functions */ 41 static inline struct s3c_hsotg_req *our_req(struct usb_request *req) 42 { 43 return container_of(req, struct s3c_hsotg_req, req); 44 } 45 46 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep) 47 { 48 return container_of(ep, struct s3c_hsotg_ep, ep); 49 } 50 51 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget) 52 { 53 return container_of(gadget, struct s3c_hsotg, gadget); 54 } 55 56 static inline void __orr32(void __iomem *ptr, u32 val) 57 { 58 writel(readl(ptr) | val, ptr); 59 } 60 61 static inline void __bic32(void __iomem *ptr, u32 val) 62 { 63 writel(readl(ptr) & ~val, ptr); 64 } 65 66 /* forward decleration of functions */ 67 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg); 68 69 /** 70 * using_dma - return the DMA status of the driver. 71 * @hsotg: The driver state. 72 * 73 * Return true if we're using DMA. 74 * 75 * Currently, we have the DMA support code worked into everywhere 76 * that needs it, but the AMBA DMA implementation in the hardware can 77 * only DMA from 32bit aligned addresses. This means that gadgets such 78 * as the CDC Ethernet cannot work as they often pass packets which are 79 * not 32bit aligned. 80 * 81 * Unfortunately the choice to use DMA or not is global to the controller 82 * and seems to be only settable when the controller is being put through 83 * a core reset. This means we either need to fix the gadgets to take 84 * account of DMA alignment, or add bounce buffers (yuerk). 85 * 86 * Until this issue is sorted out, we always return 'false'. 87 */ 88 static inline bool using_dma(struct s3c_hsotg *hsotg) 89 { 90 return false; /* support is not complete */ 91 } 92 93 /** 94 * s3c_hsotg_en_gsint - enable one or more of the general interrupt 95 * @hsotg: The device state 96 * @ints: A bitmask of the interrupts to enable 97 */ 98 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints) 99 { 100 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 101 u32 new_gsintmsk; 102 103 new_gsintmsk = gsintmsk | ints; 104 105 if (new_gsintmsk != gsintmsk) { 106 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 107 writel(new_gsintmsk, hsotg->regs + GINTMSK); 108 } 109 } 110 111 /** 112 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt 113 * @hsotg: The device state 114 * @ints: A bitmask of the interrupts to enable 115 */ 116 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints) 117 { 118 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 119 u32 new_gsintmsk; 120 121 new_gsintmsk = gsintmsk & ~ints; 122 123 if (new_gsintmsk != gsintmsk) 124 writel(new_gsintmsk, hsotg->regs + GINTMSK); 125 } 126 127 /** 128 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq 129 * @hsotg: The device state 130 * @ep: The endpoint index 131 * @dir_in: True if direction is in. 132 * @en: The enable value, true to enable 133 * 134 * Set or clear the mask for an individual endpoint's interrupt 135 * request. 136 */ 137 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg, 138 unsigned int ep, unsigned int dir_in, 139 unsigned int en) 140 { 141 unsigned long flags; 142 u32 bit = 1 << ep; 143 u32 daint; 144 145 if (!dir_in) 146 bit <<= 16; 147 148 local_irq_save(flags); 149 daint = readl(hsotg->regs + DAINTMSK); 150 if (en) 151 daint |= bit; 152 else 153 daint &= ~bit; 154 writel(daint, hsotg->regs + DAINTMSK); 155 local_irq_restore(flags); 156 } 157 158 /** 159 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs 160 * @hsotg: The device instance. 161 */ 162 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg) 163 { 164 unsigned int ep; 165 unsigned int addr; 166 unsigned int size; 167 int timeout; 168 u32 val; 169 170 /* set FIFO sizes to 2048/1024 */ 171 172 writel(2048, hsotg->regs + GRXFSIZ); 173 writel((2048 << FIFOSIZE_STARTADDR_SHIFT) | 174 (1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ); 175 176 /* 177 * arange all the rest of the TX FIFOs, as some versions of this 178 * block have overlapping default addresses. This also ensures 179 * that if the settings have been changed, then they are set to 180 * known values. 181 */ 182 183 /* start at the end of the GNPTXFSIZ, rounded up */ 184 addr = 2048 + 1024; 185 size = 768; 186 187 /* 188 * currently we allocate TX FIFOs for all possible endpoints, 189 * and assume that they are all the same size. 190 */ 191 192 for (ep = 1; ep <= 15; ep++) { 193 val = addr; 194 val |= size << FIFOSIZE_DEPTH_SHIFT; 195 addr += size; 196 197 writel(val, hsotg->regs + DPTXFSIZN(ep)); 198 } 199 200 /* 201 * according to p428 of the design guide, we need to ensure that 202 * all fifos are flushed before continuing 203 */ 204 205 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 206 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 207 208 /* wait until the fifos are both flushed */ 209 timeout = 100; 210 while (1) { 211 val = readl(hsotg->regs + GRSTCTL); 212 213 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 214 break; 215 216 if (--timeout == 0) { 217 dev_err(hsotg->dev, 218 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 219 __func__, val); 220 } 221 222 udelay(1); 223 } 224 225 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 226 } 227 228 /** 229 * @ep: USB endpoint to allocate request for. 230 * @flags: Allocation flags 231 * 232 * Allocate a new USB request structure appropriate for the specified endpoint 233 */ 234 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, 235 gfp_t flags) 236 { 237 struct s3c_hsotg_req *req; 238 239 req = kzalloc(sizeof(struct s3c_hsotg_req), flags); 240 if (!req) 241 return NULL; 242 243 INIT_LIST_HEAD(&req->queue); 244 245 return &req->req; 246 } 247 248 /** 249 * is_ep_periodic - return true if the endpoint is in periodic mode. 250 * @hs_ep: The endpoint to query. 251 * 252 * Returns true if the endpoint is in periodic mode, meaning it is being 253 * used for an Interrupt or ISO transfer. 254 */ 255 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep) 256 { 257 return hs_ep->periodic; 258 } 259 260 /** 261 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request 262 * @hsotg: The device state. 263 * @hs_ep: The endpoint for the request 264 * @hs_req: The request being processed. 265 * 266 * This is the reverse of s3c_hsotg_map_dma(), called for the completion 267 * of a request to ensure the buffer is ready for access by the caller. 268 */ 269 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg, 270 struct s3c_hsotg_ep *hs_ep, 271 struct s3c_hsotg_req *hs_req) 272 { 273 struct usb_request *req = &hs_req->req; 274 275 /* ignore this if we're not moving any data */ 276 if (hs_req->req.length == 0) 277 return; 278 279 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 280 } 281 282 /** 283 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO 284 * @hsotg: The controller state. 285 * @hs_ep: The endpoint we're going to write for. 286 * @hs_req: The request to write data for. 287 * 288 * This is called when the TxFIFO has some space in it to hold a new 289 * transmission and we have something to give it. The actual setup of 290 * the data size is done elsewhere, so all we have to do is to actually 291 * write the data. 292 * 293 * The return value is zero if there is more space (or nothing was done) 294 * otherwise -ENOSPC is returned if the FIFO space was used up. 295 * 296 * This routine is only needed for PIO 297 */ 298 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg, 299 struct s3c_hsotg_ep *hs_ep, 300 struct s3c_hsotg_req *hs_req) 301 { 302 bool periodic = is_ep_periodic(hs_ep); 303 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS); 304 int buf_pos = hs_req->req.actual; 305 int to_write = hs_ep->size_loaded; 306 void *data; 307 int can_write; 308 int pkt_round; 309 int max_transfer; 310 311 to_write -= (buf_pos - hs_ep->last_load); 312 313 /* if there's nothing to write, get out early */ 314 if (to_write == 0) 315 return 0; 316 317 if (periodic && !hsotg->dedicated_fifos) { 318 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 319 int size_left; 320 int size_done; 321 322 /* 323 * work out how much data was loaded so we can calculate 324 * how much data is left in the fifo. 325 */ 326 327 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 328 329 /* 330 * if shared fifo, we cannot write anything until the 331 * previous data has been completely sent. 332 */ 333 if (hs_ep->fifo_load != 0) { 334 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 335 return -ENOSPC; 336 } 337 338 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 339 __func__, size_left, 340 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 341 342 /* how much of the data has moved */ 343 size_done = hs_ep->size_loaded - size_left; 344 345 /* how much data is left in the fifo */ 346 can_write = hs_ep->fifo_load - size_done; 347 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 348 __func__, can_write); 349 350 can_write = hs_ep->fifo_size - can_write; 351 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 352 __func__, can_write); 353 354 if (can_write <= 0) { 355 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 356 return -ENOSPC; 357 } 358 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 359 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index)); 360 361 can_write &= 0xffff; 362 can_write *= 4; 363 } else { 364 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 365 dev_dbg(hsotg->dev, 366 "%s: no queue slots available (0x%08x)\n", 367 __func__, gnptxsts); 368 369 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 370 return -ENOSPC; 371 } 372 373 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 374 can_write *= 4; /* fifo size is in 32bit quantities. */ 375 } 376 377 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 378 379 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 380 __func__, gnptxsts, can_write, to_write, max_transfer); 381 382 /* 383 * limit to 512 bytes of data, it seems at least on the non-periodic 384 * FIFO, requests of >512 cause the endpoint to get stuck with a 385 * fragment of the end of the transfer in it. 386 */ 387 if (can_write > 512 && !periodic) 388 can_write = 512; 389 390 /* 391 * limit the write to one max-packet size worth of data, but allow 392 * the transfer to return that it did not run out of fifo space 393 * doing it. 394 */ 395 if (to_write > max_transfer) { 396 to_write = max_transfer; 397 398 /* it's needed only when we do not use dedicated fifos */ 399 if (!hsotg->dedicated_fifos) 400 s3c_hsotg_en_gsint(hsotg, 401 periodic ? GINTSTS_PTXFEMP : 402 GINTSTS_NPTXFEMP); 403 } 404 405 /* see if we can write data */ 406 407 if (to_write > can_write) { 408 to_write = can_write; 409 pkt_round = to_write % max_transfer; 410 411 /* 412 * Round the write down to an 413 * exact number of packets. 414 * 415 * Note, we do not currently check to see if we can ever 416 * write a full packet or not to the FIFO. 417 */ 418 419 if (pkt_round) 420 to_write -= pkt_round; 421 422 /* 423 * enable correct FIFO interrupt to alert us when there 424 * is more room left. 425 */ 426 427 /* it's needed only when we do not use dedicated fifos */ 428 if (!hsotg->dedicated_fifos) 429 s3c_hsotg_en_gsint(hsotg, 430 periodic ? GINTSTS_PTXFEMP : 431 GINTSTS_NPTXFEMP); 432 } 433 434 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 435 to_write, hs_req->req.length, can_write, buf_pos); 436 437 if (to_write <= 0) 438 return -ENOSPC; 439 440 hs_req->req.actual = buf_pos + to_write; 441 hs_ep->total_data += to_write; 442 443 if (periodic) 444 hs_ep->fifo_load += to_write; 445 446 to_write = DIV_ROUND_UP(to_write, 4); 447 data = hs_req->req.buf + buf_pos; 448 449 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 450 451 return (to_write >= can_write) ? -ENOSPC : 0; 452 } 453 454 /** 455 * get_ep_limit - get the maximum data legnth for this endpoint 456 * @hs_ep: The endpoint 457 * 458 * Return the maximum data that can be queued in one go on a given endpoint 459 * so that transfers that are too long can be split. 460 */ 461 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep) 462 { 463 int index = hs_ep->index; 464 unsigned maxsize; 465 unsigned maxpkt; 466 467 if (index != 0) { 468 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 469 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 470 } else { 471 maxsize = 64+64; 472 if (hs_ep->dir_in) 473 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 474 else 475 maxpkt = 2; 476 } 477 478 /* we made the constant loading easier above by using +1 */ 479 maxpkt--; 480 maxsize--; 481 482 /* 483 * constrain by packet count if maxpkts*pktsize is greater 484 * than the length register size. 485 */ 486 487 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 488 maxsize = maxpkt * hs_ep->ep.maxpacket; 489 490 return maxsize; 491 } 492 493 /** 494 * s3c_hsotg_start_req - start a USB request from an endpoint's queue 495 * @hsotg: The controller state. 496 * @hs_ep: The endpoint to process a request for 497 * @hs_req: The request to start. 498 * @continuing: True if we are doing more for the current request. 499 * 500 * Start the given request running by setting the endpoint registers 501 * appropriately, and writing any data to the FIFOs. 502 */ 503 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg, 504 struct s3c_hsotg_ep *hs_ep, 505 struct s3c_hsotg_req *hs_req, 506 bool continuing) 507 { 508 struct usb_request *ureq = &hs_req->req; 509 int index = hs_ep->index; 510 int dir_in = hs_ep->dir_in; 511 u32 epctrl_reg; 512 u32 epsize_reg; 513 u32 epsize; 514 u32 ctrl; 515 unsigned length; 516 unsigned packets; 517 unsigned maxreq; 518 519 if (index != 0) { 520 if (hs_ep->req && !continuing) { 521 dev_err(hsotg->dev, "%s: active request\n", __func__); 522 WARN_ON(1); 523 return; 524 } else if (hs_ep->req != hs_req && continuing) { 525 dev_err(hsotg->dev, 526 "%s: continue different req\n", __func__); 527 WARN_ON(1); 528 return; 529 } 530 } 531 532 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 533 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 534 535 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 536 __func__, readl(hsotg->regs + epctrl_reg), index, 537 hs_ep->dir_in ? "in" : "out"); 538 539 /* If endpoint is stalled, we will restart request later */ 540 ctrl = readl(hsotg->regs + epctrl_reg); 541 542 if (ctrl & DXEPCTL_STALL) { 543 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 544 return; 545 } 546 547 length = ureq->length - ureq->actual; 548 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 549 ureq->length, ureq->actual); 550 if (0) 551 dev_dbg(hsotg->dev, 552 "REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n", 553 ureq->buf, length, &ureq->dma, 554 ureq->no_interrupt, ureq->zero, ureq->short_not_ok); 555 556 maxreq = get_ep_limit(hs_ep); 557 if (length > maxreq) { 558 int round = maxreq % hs_ep->ep.maxpacket; 559 560 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 561 __func__, length, maxreq, round); 562 563 /* round down to multiple of packets */ 564 if (round) 565 maxreq -= round; 566 567 length = maxreq; 568 } 569 570 if (length) 571 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 572 else 573 packets = 1; /* send one packet if length is zero. */ 574 575 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 576 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 577 return; 578 } 579 580 if (dir_in && index != 0) 581 if (hs_ep->isochronous) 582 epsize = DXEPTSIZ_MC(packets); 583 else 584 epsize = DXEPTSIZ_MC(1); 585 else 586 epsize = 0; 587 588 if (index != 0 && ureq->zero) { 589 /* 590 * test for the packets being exactly right for the 591 * transfer 592 */ 593 594 if (length == (packets * hs_ep->ep.maxpacket)) 595 packets++; 596 } 597 598 epsize |= DXEPTSIZ_PKTCNT(packets); 599 epsize |= DXEPTSIZ_XFERSIZE(length); 600 601 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 602 __func__, packets, length, ureq->length, epsize, epsize_reg); 603 604 /* store the request as the current one we're doing */ 605 hs_ep->req = hs_req; 606 607 /* write size / packets */ 608 writel(epsize, hsotg->regs + epsize_reg); 609 610 if (using_dma(hsotg) && !continuing) { 611 unsigned int dma_reg; 612 613 /* 614 * write DMA address to control register, buffer already 615 * synced by s3c_hsotg_ep_queue(). 616 */ 617 618 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 619 writel(ureq->dma, hsotg->regs + dma_reg); 620 621 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 622 __func__, &ureq->dma, dma_reg); 623 } 624 625 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 626 ctrl |= DXEPCTL_USBACTEP; 627 628 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup); 629 630 /* For Setup request do not clear NAK */ 631 if (hsotg->setup && index == 0) 632 hsotg->setup = 0; 633 else 634 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 635 636 637 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 638 writel(ctrl, hsotg->regs + epctrl_reg); 639 640 /* 641 * set these, it seems that DMA support increments past the end 642 * of the packet buffer so we need to calculate the length from 643 * this information. 644 */ 645 hs_ep->size_loaded = length; 646 hs_ep->last_load = ureq->actual; 647 648 if (dir_in && !using_dma(hsotg)) { 649 /* set these anyway, we may need them for non-periodic in */ 650 hs_ep->fifo_load = 0; 651 652 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 653 } 654 655 /* 656 * clear the INTknTXFEmpMsk when we start request, more as a aide 657 * to debugging to see what is going on. 658 */ 659 if (dir_in) 660 writel(DIEPMSK_INTKNTXFEMPMSK, 661 hsotg->regs + DIEPINT(index)); 662 663 /* 664 * Note, trying to clear the NAK here causes problems with transmit 665 * on the S3C6400 ending up with the TXFIFO becoming full. 666 */ 667 668 /* check ep is enabled */ 669 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 670 dev_warn(hsotg->dev, 671 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 672 index, readl(hsotg->regs + epctrl_reg)); 673 674 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 675 __func__, readl(hsotg->regs + epctrl_reg)); 676 677 /* enable ep interrupts */ 678 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 679 } 680 681 /** 682 * s3c_hsotg_map_dma - map the DMA memory being used for the request 683 * @hsotg: The device state. 684 * @hs_ep: The endpoint the request is on. 685 * @req: The request being processed. 686 * 687 * We've been asked to queue a request, so ensure that the memory buffer 688 * is correctly setup for DMA. If we've been passed an extant DMA address 689 * then ensure the buffer has been synced to memory. If our buffer has no 690 * DMA memory, then we map the memory and mark our request to allow us to 691 * cleanup on completion. 692 */ 693 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg, 694 struct s3c_hsotg_ep *hs_ep, 695 struct usb_request *req) 696 { 697 struct s3c_hsotg_req *hs_req = our_req(req); 698 int ret; 699 700 /* if the length is zero, ignore the DMA data */ 701 if (hs_req->req.length == 0) 702 return 0; 703 704 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 705 if (ret) 706 goto dma_error; 707 708 return 0; 709 710 dma_error: 711 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 712 __func__, req->buf, req->length); 713 714 return -EIO; 715 } 716 717 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 718 gfp_t gfp_flags) 719 { 720 struct s3c_hsotg_req *hs_req = our_req(req); 721 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 722 struct s3c_hsotg *hs = hs_ep->parent; 723 bool first; 724 725 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 726 ep->name, req, req->length, req->buf, req->no_interrupt, 727 req->zero, req->short_not_ok); 728 729 /* initialise status of the request */ 730 INIT_LIST_HEAD(&hs_req->queue); 731 req->actual = 0; 732 req->status = -EINPROGRESS; 733 734 /* if we're using DMA, sync the buffers as necessary */ 735 if (using_dma(hs)) { 736 int ret = s3c_hsotg_map_dma(hs, hs_ep, req); 737 if (ret) 738 return ret; 739 } 740 741 first = list_empty(&hs_ep->queue); 742 list_add_tail(&hs_req->queue, &hs_ep->queue); 743 744 if (first) 745 s3c_hsotg_start_req(hs, hs_ep, hs_req, false); 746 747 return 0; 748 } 749 750 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 751 gfp_t gfp_flags) 752 { 753 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 754 struct s3c_hsotg *hs = hs_ep->parent; 755 unsigned long flags = 0; 756 int ret = 0; 757 758 spin_lock_irqsave(&hs->lock, flags); 759 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags); 760 spin_unlock_irqrestore(&hs->lock, flags); 761 762 return ret; 763 } 764 765 static void s3c_hsotg_ep_free_request(struct usb_ep *ep, 766 struct usb_request *req) 767 { 768 struct s3c_hsotg_req *hs_req = our_req(req); 769 770 kfree(hs_req); 771 } 772 773 /** 774 * s3c_hsotg_complete_oursetup - setup completion callback 775 * @ep: The endpoint the request was on. 776 * @req: The request completed. 777 * 778 * Called on completion of any requests the driver itself 779 * submitted that need cleaning up. 780 */ 781 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep, 782 struct usb_request *req) 783 { 784 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 785 struct s3c_hsotg *hsotg = hs_ep->parent; 786 787 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 788 789 s3c_hsotg_ep_free_request(ep, req); 790 } 791 792 /** 793 * ep_from_windex - convert control wIndex value to endpoint 794 * @hsotg: The driver state. 795 * @windex: The control request wIndex field (in host order). 796 * 797 * Convert the given wIndex into a pointer to an driver endpoint 798 * structure, or return NULL if it is not a valid endpoint. 799 */ 800 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg, 801 u32 windex) 802 { 803 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F]; 804 int dir = (windex & USB_DIR_IN) ? 1 : 0; 805 int idx = windex & 0x7F; 806 807 if (windex >= 0x100) 808 return NULL; 809 810 if (idx > hsotg->num_of_eps) 811 return NULL; 812 813 if (idx && ep->dir_in != dir) 814 return NULL; 815 816 return ep; 817 } 818 819 /** 820 * s3c_hsotg_send_reply - send reply to control request 821 * @hsotg: The device state 822 * @ep: Endpoint 0 823 * @buff: Buffer for request 824 * @length: Length of reply. 825 * 826 * Create a request and queue it on the given endpoint. This is useful as 827 * an internal method of sending replies to certain control requests, etc. 828 */ 829 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg, 830 struct s3c_hsotg_ep *ep, 831 void *buff, 832 int length) 833 { 834 struct usb_request *req; 835 int ret; 836 837 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 838 839 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 840 hsotg->ep0_reply = req; 841 if (!req) { 842 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 843 return -ENOMEM; 844 } 845 846 req->buf = hsotg->ep0_buff; 847 req->length = length; 848 req->zero = 1; /* always do zero-length final transfer */ 849 req->complete = s3c_hsotg_complete_oursetup; 850 851 if (length) 852 memcpy(req->buf, buff, length); 853 else 854 ep->sent_zlp = 1; 855 856 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 857 if (ret) { 858 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 859 return ret; 860 } 861 862 return 0; 863 } 864 865 /** 866 * s3c_hsotg_process_req_status - process request GET_STATUS 867 * @hsotg: The device state 868 * @ctrl: USB control request 869 */ 870 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg, 871 struct usb_ctrlrequest *ctrl) 872 { 873 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 874 struct s3c_hsotg_ep *ep; 875 __le16 reply; 876 int ret; 877 878 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 879 880 if (!ep0->dir_in) { 881 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 882 return -EINVAL; 883 } 884 885 switch (ctrl->bRequestType & USB_RECIP_MASK) { 886 case USB_RECIP_DEVICE: 887 reply = cpu_to_le16(0); /* bit 0 => self powered, 888 * bit 1 => remote wakeup */ 889 break; 890 891 case USB_RECIP_INTERFACE: 892 /* currently, the data result should be zero */ 893 reply = cpu_to_le16(0); 894 break; 895 896 case USB_RECIP_ENDPOINT: 897 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 898 if (!ep) 899 return -ENOENT; 900 901 reply = cpu_to_le16(ep->halted ? 1 : 0); 902 break; 903 904 default: 905 return 0; 906 } 907 908 if (le16_to_cpu(ctrl->wLength) != 2) 909 return -EINVAL; 910 911 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2); 912 if (ret) { 913 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 914 return ret; 915 } 916 917 return 1; 918 } 919 920 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value); 921 922 /** 923 * get_ep_head - return the first request on the endpoint 924 * @hs_ep: The controller endpoint to get 925 * 926 * Get the first request on the endpoint. 927 */ 928 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep) 929 { 930 if (list_empty(&hs_ep->queue)) 931 return NULL; 932 933 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue); 934 } 935 936 /** 937 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE 938 * @hsotg: The device state 939 * @ctrl: USB control request 940 */ 941 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg, 942 struct usb_ctrlrequest *ctrl) 943 { 944 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 945 struct s3c_hsotg_req *hs_req; 946 bool restart; 947 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 948 struct s3c_hsotg_ep *ep; 949 int ret; 950 bool halted; 951 952 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 953 __func__, set ? "SET" : "CLEAR"); 954 955 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) { 956 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 957 if (!ep) { 958 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 959 __func__, le16_to_cpu(ctrl->wIndex)); 960 return -ENOENT; 961 } 962 963 switch (le16_to_cpu(ctrl->wValue)) { 964 case USB_ENDPOINT_HALT: 965 halted = ep->halted; 966 967 s3c_hsotg_ep_sethalt(&ep->ep, set); 968 969 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 970 if (ret) { 971 dev_err(hsotg->dev, 972 "%s: failed to send reply\n", __func__); 973 return ret; 974 } 975 976 /* 977 * we have to complete all requests for ep if it was 978 * halted, and the halt was cleared by CLEAR_FEATURE 979 */ 980 981 if (!set && halted) { 982 /* 983 * If we have request in progress, 984 * then complete it 985 */ 986 if (ep->req) { 987 hs_req = ep->req; 988 ep->req = NULL; 989 list_del_init(&hs_req->queue); 990 hs_req->req.complete(&ep->ep, 991 &hs_req->req); 992 } 993 994 /* If we have pending request, then start it */ 995 restart = !list_empty(&ep->queue); 996 if (restart) { 997 hs_req = get_ep_head(ep); 998 s3c_hsotg_start_req(hsotg, ep, 999 hs_req, false); 1000 } 1001 } 1002 1003 break; 1004 1005 default: 1006 return -ENOENT; 1007 } 1008 } else 1009 return -ENOENT; /* currently only deal with endpoint */ 1010 1011 return 1; 1012 } 1013 1014 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg); 1015 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg); 1016 1017 /** 1018 * s3c_hsotg_stall_ep0 - stall ep0 1019 * @hsotg: The device state 1020 * 1021 * Set stall for ep0 as response for setup request. 1022 */ 1023 static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg) 1024 { 1025 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 1026 u32 reg; 1027 u32 ctrl; 1028 1029 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1030 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1031 1032 /* 1033 * DxEPCTL_Stall will be cleared by EP once it has 1034 * taken effect, so no need to clear later. 1035 */ 1036 1037 ctrl = readl(hsotg->regs + reg); 1038 ctrl |= DXEPCTL_STALL; 1039 ctrl |= DXEPCTL_CNAK; 1040 writel(ctrl, hsotg->regs + reg); 1041 1042 dev_dbg(hsotg->dev, 1043 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1044 ctrl, reg, readl(hsotg->regs + reg)); 1045 1046 /* 1047 * complete won't be called, so we enqueue 1048 * setup request here 1049 */ 1050 s3c_hsotg_enqueue_setup(hsotg); 1051 } 1052 1053 /** 1054 * s3c_hsotg_process_control - process a control request 1055 * @hsotg: The device state 1056 * @ctrl: The control request received 1057 * 1058 * The controller has received the SETUP phase of a control request, and 1059 * needs to work out what to do next (and whether to pass it on to the 1060 * gadget driver). 1061 */ 1062 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg, 1063 struct usb_ctrlrequest *ctrl) 1064 { 1065 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 1066 int ret = 0; 1067 u32 dcfg; 1068 1069 ep0->sent_zlp = 0; 1070 1071 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n", 1072 ctrl->bRequest, ctrl->bRequestType, 1073 ctrl->wValue, ctrl->wLength); 1074 1075 /* 1076 * record the direction of the request, for later use when enquing 1077 * packets onto EP0. 1078 */ 1079 1080 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0; 1081 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in); 1082 1083 /* 1084 * if we've no data with this request, then the last part of the 1085 * transaction is going to implicitly be IN. 1086 */ 1087 if (ctrl->wLength == 0) 1088 ep0->dir_in = 1; 1089 1090 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1091 switch (ctrl->bRequest) { 1092 case USB_REQ_SET_ADDRESS: 1093 s3c_hsotg_disconnect(hsotg); 1094 dcfg = readl(hsotg->regs + DCFG); 1095 dcfg &= ~DCFG_DEVADDR_MASK; 1096 dcfg |= (le16_to_cpu(ctrl->wValue) << 1097 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1098 writel(dcfg, hsotg->regs + DCFG); 1099 1100 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1101 1102 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 1103 return; 1104 1105 case USB_REQ_GET_STATUS: 1106 ret = s3c_hsotg_process_req_status(hsotg, ctrl); 1107 break; 1108 1109 case USB_REQ_CLEAR_FEATURE: 1110 case USB_REQ_SET_FEATURE: 1111 ret = s3c_hsotg_process_req_feature(hsotg, ctrl); 1112 break; 1113 } 1114 } 1115 1116 /* as a fallback, try delivering it to the driver to deal with */ 1117 1118 if (ret == 0 && hsotg->driver) { 1119 spin_unlock(&hsotg->lock); 1120 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1121 spin_lock(&hsotg->lock); 1122 if (ret < 0) 1123 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1124 } 1125 1126 /* 1127 * the request is either unhandlable, or is not formatted correctly 1128 * so respond with a STALL for the status stage to indicate failure. 1129 */ 1130 1131 if (ret < 0) 1132 s3c_hsotg_stall_ep0(hsotg); 1133 } 1134 1135 /** 1136 * s3c_hsotg_complete_setup - completion of a setup transfer 1137 * @ep: The endpoint the request was on. 1138 * @req: The request completed. 1139 * 1140 * Called on completion of any requests the driver itself submitted for 1141 * EP0 setup packets 1142 */ 1143 static void s3c_hsotg_complete_setup(struct usb_ep *ep, 1144 struct usb_request *req) 1145 { 1146 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 1147 struct s3c_hsotg *hsotg = hs_ep->parent; 1148 1149 if (req->status < 0) { 1150 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1151 return; 1152 } 1153 1154 spin_lock(&hsotg->lock); 1155 if (req->actual == 0) 1156 s3c_hsotg_enqueue_setup(hsotg); 1157 else 1158 s3c_hsotg_process_control(hsotg, req->buf); 1159 spin_unlock(&hsotg->lock); 1160 } 1161 1162 /** 1163 * s3c_hsotg_enqueue_setup - start a request for EP0 packets 1164 * @hsotg: The device state. 1165 * 1166 * Enqueue a request on EP0 if necessary to received any SETUP packets 1167 * received from the host. 1168 */ 1169 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg) 1170 { 1171 struct usb_request *req = hsotg->ctrl_req; 1172 struct s3c_hsotg_req *hs_req = our_req(req); 1173 int ret; 1174 1175 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1176 1177 req->zero = 0; 1178 req->length = 8; 1179 req->buf = hsotg->ctrl_buff; 1180 req->complete = s3c_hsotg_complete_setup; 1181 1182 if (!list_empty(&hs_req->queue)) { 1183 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1184 return; 1185 } 1186 1187 hsotg->eps[0].dir_in = 0; 1188 1189 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC); 1190 if (ret < 0) { 1191 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1192 /* 1193 * Don't think there's much we can do other than watch the 1194 * driver fail. 1195 */ 1196 } 1197 } 1198 1199 /** 1200 * s3c_hsotg_complete_request - complete a request given to us 1201 * @hsotg: The device state. 1202 * @hs_ep: The endpoint the request was on. 1203 * @hs_req: The request to complete. 1204 * @result: The result code (0 => Ok, otherwise errno) 1205 * 1206 * The given request has finished, so call the necessary completion 1207 * if it has one and then look to see if we can start a new request 1208 * on the endpoint. 1209 * 1210 * Note, expects the ep to already be locked as appropriate. 1211 */ 1212 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg, 1213 struct s3c_hsotg_ep *hs_ep, 1214 struct s3c_hsotg_req *hs_req, 1215 int result) 1216 { 1217 bool restart; 1218 1219 if (!hs_req) { 1220 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1221 return; 1222 } 1223 1224 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1225 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1226 1227 /* 1228 * only replace the status if we've not already set an error 1229 * from a previous transaction 1230 */ 1231 1232 if (hs_req->req.status == -EINPROGRESS) 1233 hs_req->req.status = result; 1234 1235 hs_ep->req = NULL; 1236 list_del_init(&hs_req->queue); 1237 1238 if (using_dma(hsotg)) 1239 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1240 1241 /* 1242 * call the complete request with the locks off, just in case the 1243 * request tries to queue more work for this endpoint. 1244 */ 1245 1246 if (hs_req->req.complete) { 1247 spin_unlock(&hsotg->lock); 1248 hs_req->req.complete(&hs_ep->ep, &hs_req->req); 1249 spin_lock(&hsotg->lock); 1250 } 1251 1252 /* 1253 * Look to see if there is anything else to do. Note, the completion 1254 * of the previous request may have caused a new request to be started 1255 * so be careful when doing this. 1256 */ 1257 1258 if (!hs_ep->req && result >= 0) { 1259 restart = !list_empty(&hs_ep->queue); 1260 if (restart) { 1261 hs_req = get_ep_head(hs_ep); 1262 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1263 } 1264 } 1265 } 1266 1267 /** 1268 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint 1269 * @hsotg: The device state. 1270 * @ep_idx: The endpoint index for the data 1271 * @size: The size of data in the fifo, in bytes 1272 * 1273 * The FIFO status shows there is data to read from the FIFO for a given 1274 * endpoint, so sort out whether we need to read the data into a request 1275 * that has been made for that endpoint. 1276 */ 1277 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size) 1278 { 1279 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx]; 1280 struct s3c_hsotg_req *hs_req = hs_ep->req; 1281 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 1282 int to_read; 1283 int max_req; 1284 int read_ptr; 1285 1286 1287 if (!hs_req) { 1288 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx)); 1289 int ptr; 1290 1291 dev_warn(hsotg->dev, 1292 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 1293 __func__, size, ep_idx, epctl); 1294 1295 /* dump the data from the FIFO, we've nothing we can do */ 1296 for (ptr = 0; ptr < size; ptr += 4) 1297 (void)readl(fifo); 1298 1299 return; 1300 } 1301 1302 to_read = size; 1303 read_ptr = hs_req->req.actual; 1304 max_req = hs_req->req.length - read_ptr; 1305 1306 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 1307 __func__, to_read, max_req, read_ptr, hs_req->req.length); 1308 1309 if (to_read > max_req) { 1310 /* 1311 * more data appeared than we where willing 1312 * to deal with in this request. 1313 */ 1314 1315 /* currently we don't deal this */ 1316 WARN_ON_ONCE(1); 1317 } 1318 1319 hs_ep->total_data += to_read; 1320 hs_req->req.actual += to_read; 1321 to_read = DIV_ROUND_UP(to_read, 4); 1322 1323 /* 1324 * note, we might over-write the buffer end by 3 bytes depending on 1325 * alignment of the data. 1326 */ 1327 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 1328 } 1329 1330 /** 1331 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint 1332 * @hsotg: The device instance 1333 * @req: The request currently on this endpoint 1334 * 1335 * Generate a zero-length IN packet request for terminating a SETUP 1336 * transaction. 1337 * 1338 * Note, since we don't write any data to the TxFIFO, then it is 1339 * currently believed that we do not need to wait for any space in 1340 * the TxFIFO. 1341 */ 1342 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg, 1343 struct s3c_hsotg_req *req) 1344 { 1345 u32 ctrl; 1346 1347 if (!req) { 1348 dev_warn(hsotg->dev, "%s: no request?\n", __func__); 1349 return; 1350 } 1351 1352 if (req->req.length == 0) { 1353 hsotg->eps[0].sent_zlp = 1; 1354 s3c_hsotg_enqueue_setup(hsotg); 1355 return; 1356 } 1357 1358 hsotg->eps[0].dir_in = 1; 1359 hsotg->eps[0].sent_zlp = 1; 1360 1361 dev_dbg(hsotg->dev, "sending zero-length packet\n"); 1362 1363 /* issue a zero-sized packet to terminate this */ 1364 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1365 DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0)); 1366 1367 ctrl = readl(hsotg->regs + DIEPCTL0); 1368 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1369 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1370 ctrl |= DXEPCTL_USBACTEP; 1371 writel(ctrl, hsotg->regs + DIEPCTL0); 1372 } 1373 1374 /** 1375 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 1376 * @hsotg: The device instance 1377 * @epnum: The endpoint received from 1378 * @was_setup: Set if processing a SetupDone event. 1379 * 1380 * The RXFIFO has delivered an OutDone event, which means that the data 1381 * transfer for an OUT endpoint has been completed, either by a short 1382 * packet or by the finish of a transfer. 1383 */ 1384 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg, 1385 int epnum, bool was_setup) 1386 { 1387 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum)); 1388 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum]; 1389 struct s3c_hsotg_req *hs_req = hs_ep->req; 1390 struct usb_request *req = &hs_req->req; 1391 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1392 int result = 0; 1393 1394 if (!hs_req) { 1395 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 1396 return; 1397 } 1398 1399 if (using_dma(hsotg)) { 1400 unsigned size_done; 1401 1402 /* 1403 * Calculate the size of the transfer by checking how much 1404 * is left in the endpoint size register and then working it 1405 * out from the amount we loaded for the transfer. 1406 * 1407 * We need to do this as DMA pointers are always 32bit aligned 1408 * so may overshoot/undershoot the transfer. 1409 */ 1410 1411 size_done = hs_ep->size_loaded - size_left; 1412 size_done += hs_ep->last_load; 1413 1414 req->actual = size_done; 1415 } 1416 1417 /* if there is more request to do, schedule new transfer */ 1418 if (req->actual < req->length && size_left == 0) { 1419 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1420 return; 1421 } else if (epnum == 0) { 1422 /* 1423 * After was_setup = 1 => 1424 * set CNAK for non Setup requests 1425 */ 1426 hsotg->setup = was_setup ? 0 : 1; 1427 } 1428 1429 if (req->actual < req->length && req->short_not_ok) { 1430 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 1431 __func__, req->actual, req->length); 1432 1433 /* 1434 * todo - what should we return here? there's no one else 1435 * even bothering to check the status. 1436 */ 1437 } 1438 1439 if (epnum == 0) { 1440 /* 1441 * Condition req->complete != s3c_hsotg_complete_setup says: 1442 * send ZLP when we have an asynchronous request from gadget 1443 */ 1444 if (!was_setup && req->complete != s3c_hsotg_complete_setup) 1445 s3c_hsotg_send_zlp(hsotg, hs_req); 1446 } 1447 1448 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 1449 } 1450 1451 /** 1452 * s3c_hsotg_read_frameno - read current frame number 1453 * @hsotg: The device instance 1454 * 1455 * Return the current frame number 1456 */ 1457 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg) 1458 { 1459 u32 dsts; 1460 1461 dsts = readl(hsotg->regs + DSTS); 1462 dsts &= DSTS_SOFFN_MASK; 1463 dsts >>= DSTS_SOFFN_SHIFT; 1464 1465 return dsts; 1466 } 1467 1468 /** 1469 * s3c_hsotg_handle_rx - RX FIFO has data 1470 * @hsotg: The device instance 1471 * 1472 * The IRQ handler has detected that the RX FIFO has some data in it 1473 * that requires processing, so find out what is in there and do the 1474 * appropriate read. 1475 * 1476 * The RXFIFO is a true FIFO, the packets coming out are still in packet 1477 * chunks, so if you have x packets received on an endpoint you'll get x 1478 * FIFO events delivered, each with a packet's worth of data in it. 1479 * 1480 * When using DMA, we should not be processing events from the RXFIFO 1481 * as the actual data should be sent to the memory directly and we turn 1482 * on the completion interrupts to get notifications of transfer completion. 1483 */ 1484 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg) 1485 { 1486 u32 grxstsr = readl(hsotg->regs + GRXSTSP); 1487 u32 epnum, status, size; 1488 1489 WARN_ON(using_dma(hsotg)); 1490 1491 epnum = grxstsr & GRXSTS_EPNUM_MASK; 1492 status = grxstsr & GRXSTS_PKTSTS_MASK; 1493 1494 size = grxstsr & GRXSTS_BYTECNT_MASK; 1495 size >>= GRXSTS_BYTECNT_SHIFT; 1496 1497 if (1) 1498 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 1499 __func__, grxstsr, size, epnum); 1500 1501 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 1502 case GRXSTS_PKTSTS_GLOBALOUTNAK: 1503 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 1504 break; 1505 1506 case GRXSTS_PKTSTS_OUTDONE: 1507 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 1508 s3c_hsotg_read_frameno(hsotg)); 1509 1510 if (!using_dma(hsotg)) 1511 s3c_hsotg_handle_outdone(hsotg, epnum, false); 1512 break; 1513 1514 case GRXSTS_PKTSTS_SETUPDONE: 1515 dev_dbg(hsotg->dev, 1516 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1517 s3c_hsotg_read_frameno(hsotg), 1518 readl(hsotg->regs + DOEPCTL(0))); 1519 1520 s3c_hsotg_handle_outdone(hsotg, epnum, true); 1521 break; 1522 1523 case GRXSTS_PKTSTS_OUTRX: 1524 s3c_hsotg_rx_data(hsotg, epnum, size); 1525 break; 1526 1527 case GRXSTS_PKTSTS_SETUPRX: 1528 dev_dbg(hsotg->dev, 1529 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1530 s3c_hsotg_read_frameno(hsotg), 1531 readl(hsotg->regs + DOEPCTL(0))); 1532 1533 s3c_hsotg_rx_data(hsotg, epnum, size); 1534 break; 1535 1536 default: 1537 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 1538 __func__, grxstsr); 1539 1540 s3c_hsotg_dump(hsotg); 1541 break; 1542 } 1543 } 1544 1545 /** 1546 * s3c_hsotg_ep0_mps - turn max packet size into register setting 1547 * @mps: The maximum packet size in bytes. 1548 */ 1549 static u32 s3c_hsotg_ep0_mps(unsigned int mps) 1550 { 1551 switch (mps) { 1552 case 64: 1553 return D0EPCTL_MPS_64; 1554 case 32: 1555 return D0EPCTL_MPS_32; 1556 case 16: 1557 return D0EPCTL_MPS_16; 1558 case 8: 1559 return D0EPCTL_MPS_8; 1560 } 1561 1562 /* bad max packet size, warn and return invalid result */ 1563 WARN_ON(1); 1564 return (u32)-1; 1565 } 1566 1567 /** 1568 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field 1569 * @hsotg: The driver state. 1570 * @ep: The index number of the endpoint 1571 * @mps: The maximum packet size in bytes 1572 * 1573 * Configure the maximum packet size for the given endpoint, updating 1574 * the hardware control registers to reflect this. 1575 */ 1576 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg, 1577 unsigned int ep, unsigned int mps) 1578 { 1579 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep]; 1580 void __iomem *regs = hsotg->regs; 1581 u32 mpsval; 1582 u32 mcval; 1583 u32 reg; 1584 1585 if (ep == 0) { 1586 /* EP0 is a special case */ 1587 mpsval = s3c_hsotg_ep0_mps(mps); 1588 if (mpsval > 3) 1589 goto bad_mps; 1590 hs_ep->ep.maxpacket = mps; 1591 hs_ep->mc = 1; 1592 } else { 1593 mpsval = mps & DXEPCTL_MPS_MASK; 1594 if (mpsval > 1024) 1595 goto bad_mps; 1596 mcval = ((mps >> 11) & 0x3) + 1; 1597 hs_ep->mc = mcval; 1598 if (mcval > 3) 1599 goto bad_mps; 1600 hs_ep->ep.maxpacket = mpsval; 1601 } 1602 1603 /* 1604 * update both the in and out endpoint controldir_ registers, even 1605 * if one of the directions may not be in use. 1606 */ 1607 1608 reg = readl(regs + DIEPCTL(ep)); 1609 reg &= ~DXEPCTL_MPS_MASK; 1610 reg |= mpsval; 1611 writel(reg, regs + DIEPCTL(ep)); 1612 1613 if (ep) { 1614 reg = readl(regs + DOEPCTL(ep)); 1615 reg &= ~DXEPCTL_MPS_MASK; 1616 reg |= mpsval; 1617 writel(reg, regs + DOEPCTL(ep)); 1618 } 1619 1620 return; 1621 1622 bad_mps: 1623 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 1624 } 1625 1626 /** 1627 * s3c_hsotg_txfifo_flush - flush Tx FIFO 1628 * @hsotg: The driver state 1629 * @idx: The index for the endpoint (0..15) 1630 */ 1631 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx) 1632 { 1633 int timeout; 1634 int val; 1635 1636 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 1637 hsotg->regs + GRSTCTL); 1638 1639 /* wait until the fifo is flushed */ 1640 timeout = 100; 1641 1642 while (1) { 1643 val = readl(hsotg->regs + GRSTCTL); 1644 1645 if ((val & (GRSTCTL_TXFFLSH)) == 0) 1646 break; 1647 1648 if (--timeout == 0) { 1649 dev_err(hsotg->dev, 1650 "%s: timeout flushing fifo (GRSTCTL=%08x)\n", 1651 __func__, val); 1652 } 1653 1654 udelay(1); 1655 } 1656 } 1657 1658 /** 1659 * s3c_hsotg_trytx - check to see if anything needs transmitting 1660 * @hsotg: The driver state 1661 * @hs_ep: The driver endpoint to check. 1662 * 1663 * Check to see if there is a request that has data to send, and if so 1664 * make an attempt to write data into the FIFO. 1665 */ 1666 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg, 1667 struct s3c_hsotg_ep *hs_ep) 1668 { 1669 struct s3c_hsotg_req *hs_req = hs_ep->req; 1670 1671 if (!hs_ep->dir_in || !hs_req) { 1672 /** 1673 * if request is not enqueued, we disable interrupts 1674 * for endpoints, excepting ep0 1675 */ 1676 if (hs_ep->index != 0) 1677 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, 1678 hs_ep->dir_in, 0); 1679 return 0; 1680 } 1681 1682 if (hs_req->req.actual < hs_req->req.length) { 1683 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 1684 hs_ep->index); 1685 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1686 } 1687 1688 return 0; 1689 } 1690 1691 /** 1692 * s3c_hsotg_complete_in - complete IN transfer 1693 * @hsotg: The device state. 1694 * @hs_ep: The endpoint that has just completed. 1695 * 1696 * An IN transfer has been completed, update the transfer's state and then 1697 * call the relevant completion routines. 1698 */ 1699 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg, 1700 struct s3c_hsotg_ep *hs_ep) 1701 { 1702 struct s3c_hsotg_req *hs_req = hs_ep->req; 1703 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 1704 int size_left, size_done; 1705 1706 if (!hs_req) { 1707 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 1708 return; 1709 } 1710 1711 /* Finish ZLP handling for IN EP0 transactions */ 1712 if (hsotg->eps[0].sent_zlp) { 1713 dev_dbg(hsotg->dev, "zlp packet received\n"); 1714 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1715 return; 1716 } 1717 1718 /* 1719 * Calculate the size of the transfer by checking how much is left 1720 * in the endpoint size register and then working it out from 1721 * the amount we loaded for the transfer. 1722 * 1723 * We do this even for DMA, as the transfer may have incremented 1724 * past the end of the buffer (DMA transfers are always 32bit 1725 * aligned). 1726 */ 1727 1728 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1729 1730 size_done = hs_ep->size_loaded - size_left; 1731 size_done += hs_ep->last_load; 1732 1733 if (hs_req->req.actual != size_done) 1734 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 1735 __func__, hs_req->req.actual, size_done); 1736 1737 hs_req->req.actual = size_done; 1738 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 1739 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 1740 1741 /* 1742 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0 1743 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B 1744 * ,256B ... ), after last MPS sized packet send IN ZLP packet to 1745 * inform the host that no more data is available. 1746 * The state of req.zero member is checked to be sure that the value to 1747 * send is smaller than wValue expected from host. 1748 * Check req.length to NOT send another ZLP when the current one is 1749 * under completion (the one for which this completion has been called). 1750 */ 1751 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero && 1752 hs_req->req.length == hs_req->req.actual && 1753 !(hs_req->req.length % hs_ep->ep.maxpacket)) { 1754 1755 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n"); 1756 s3c_hsotg_send_zlp(hsotg, hs_req); 1757 1758 return; 1759 } 1760 1761 if (!size_left && hs_req->req.actual < hs_req->req.length) { 1762 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 1763 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1764 } else 1765 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1766 } 1767 1768 /** 1769 * s3c_hsotg_epint - handle an in/out endpoint interrupt 1770 * @hsotg: The driver state 1771 * @idx: The index for the endpoint (0..15) 1772 * @dir_in: Set if this is an IN endpoint 1773 * 1774 * Process and clear any interrupt pending for an individual endpoint 1775 */ 1776 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx, 1777 int dir_in) 1778 { 1779 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx]; 1780 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 1781 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 1782 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 1783 u32 ints; 1784 u32 ctrl; 1785 1786 ints = readl(hsotg->regs + epint_reg); 1787 ctrl = readl(hsotg->regs + epctl_reg); 1788 1789 /* Clear endpoint interrupts */ 1790 writel(ints, hsotg->regs + epint_reg); 1791 1792 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 1793 __func__, idx, dir_in ? "in" : "out", ints); 1794 1795 if (ints & DXEPINT_XFERCOMPL) { 1796 if (hs_ep->isochronous && hs_ep->interval == 1) { 1797 if (ctrl & DXEPCTL_EOFRNUM) 1798 ctrl |= DXEPCTL_SETEVENFR; 1799 else 1800 ctrl |= DXEPCTL_SETODDFR; 1801 writel(ctrl, hsotg->regs + epctl_reg); 1802 } 1803 1804 dev_dbg(hsotg->dev, 1805 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 1806 __func__, readl(hsotg->regs + epctl_reg), 1807 readl(hsotg->regs + epsiz_reg)); 1808 1809 /* 1810 * we get OutDone from the FIFO, so we only need to look 1811 * at completing IN requests here 1812 */ 1813 if (dir_in) { 1814 s3c_hsotg_complete_in(hsotg, hs_ep); 1815 1816 if (idx == 0 && !hs_ep->req) 1817 s3c_hsotg_enqueue_setup(hsotg); 1818 } else if (using_dma(hsotg)) { 1819 /* 1820 * We're using DMA, we need to fire an OutDone here 1821 * as we ignore the RXFIFO. 1822 */ 1823 1824 s3c_hsotg_handle_outdone(hsotg, idx, false); 1825 } 1826 } 1827 1828 if (ints & DXEPINT_EPDISBLD) { 1829 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 1830 1831 if (dir_in) { 1832 int epctl = readl(hsotg->regs + epctl_reg); 1833 1834 s3c_hsotg_txfifo_flush(hsotg, idx); 1835 1836 if ((epctl & DXEPCTL_STALL) && 1837 (epctl & DXEPCTL_EPTYPE_BULK)) { 1838 int dctl = readl(hsotg->regs + DCTL); 1839 1840 dctl |= DCTL_CGNPINNAK; 1841 writel(dctl, hsotg->regs + DCTL); 1842 } 1843 } 1844 } 1845 1846 if (ints & DXEPINT_AHBERR) 1847 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 1848 1849 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 1850 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 1851 1852 if (using_dma(hsotg) && idx == 0) { 1853 /* 1854 * this is the notification we've received a 1855 * setup packet. In non-DMA mode we'd get this 1856 * from the RXFIFO, instead we need to process 1857 * the setup here. 1858 */ 1859 1860 if (dir_in) 1861 WARN_ON_ONCE(1); 1862 else 1863 s3c_hsotg_handle_outdone(hsotg, 0, true); 1864 } 1865 } 1866 1867 if (ints & DXEPINT_BACK2BACKSETUP) 1868 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 1869 1870 if (dir_in && !hs_ep->isochronous) { 1871 /* not sure if this is important, but we'll clear it anyway */ 1872 if (ints & DIEPMSK_INTKNTXFEMPMSK) { 1873 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 1874 __func__, idx); 1875 } 1876 1877 /* this probably means something bad is happening */ 1878 if (ints & DIEPMSK_INTKNEPMISMSK) { 1879 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 1880 __func__, idx); 1881 } 1882 1883 /* FIFO has space or is empty (see GAHBCFG) */ 1884 if (hsotg->dedicated_fifos && 1885 ints & DIEPMSK_TXFIFOEMPTY) { 1886 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 1887 __func__, idx); 1888 if (!using_dma(hsotg)) 1889 s3c_hsotg_trytx(hsotg, hs_ep); 1890 } 1891 } 1892 } 1893 1894 /** 1895 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 1896 * @hsotg: The device state. 1897 * 1898 * Handle updating the device settings after the enumeration phase has 1899 * been completed. 1900 */ 1901 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg) 1902 { 1903 u32 dsts = readl(hsotg->regs + DSTS); 1904 int ep0_mps = 0, ep_mps; 1905 1906 /* 1907 * This should signal the finish of the enumeration phase 1908 * of the USB handshaking, so we should now know what rate 1909 * we connected at. 1910 */ 1911 1912 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 1913 1914 /* 1915 * note, since we're limited by the size of transfer on EP0, and 1916 * it seems IN transfers must be a even number of packets we do 1917 * not advertise a 64byte MPS on EP0. 1918 */ 1919 1920 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 1921 switch (dsts & DSTS_ENUMSPD_MASK) { 1922 case DSTS_ENUMSPD_FS: 1923 case DSTS_ENUMSPD_FS48: 1924 hsotg->gadget.speed = USB_SPEED_FULL; 1925 ep0_mps = EP0_MPS_LIMIT; 1926 ep_mps = 1023; 1927 break; 1928 1929 case DSTS_ENUMSPD_HS: 1930 hsotg->gadget.speed = USB_SPEED_HIGH; 1931 ep0_mps = EP0_MPS_LIMIT; 1932 ep_mps = 1024; 1933 break; 1934 1935 case DSTS_ENUMSPD_LS: 1936 hsotg->gadget.speed = USB_SPEED_LOW; 1937 /* 1938 * note, we don't actually support LS in this driver at the 1939 * moment, and the documentation seems to imply that it isn't 1940 * supported by the PHYs on some of the devices. 1941 */ 1942 break; 1943 } 1944 dev_info(hsotg->dev, "new device is %s\n", 1945 usb_speed_string(hsotg->gadget.speed)); 1946 1947 /* 1948 * we should now know the maximum packet size for an 1949 * endpoint, so set the endpoints to a default value. 1950 */ 1951 1952 if (ep0_mps) { 1953 int i; 1954 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps); 1955 for (i = 1; i < hsotg->num_of_eps; i++) 1956 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps); 1957 } 1958 1959 /* ensure after enumeration our EP0 is active */ 1960 1961 s3c_hsotg_enqueue_setup(hsotg); 1962 1963 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 1964 readl(hsotg->regs + DIEPCTL0), 1965 readl(hsotg->regs + DOEPCTL0)); 1966 } 1967 1968 /** 1969 * kill_all_requests - remove all requests from the endpoint's queue 1970 * @hsotg: The device state. 1971 * @ep: The endpoint the requests may be on. 1972 * @result: The result code to use. 1973 * @force: Force removal of any current requests 1974 * 1975 * Go through the requests on the given endpoint and mark them 1976 * completed with the given result code. 1977 */ 1978 static void kill_all_requests(struct s3c_hsotg *hsotg, 1979 struct s3c_hsotg_ep *ep, 1980 int result, bool force) 1981 { 1982 struct s3c_hsotg_req *req, *treq; 1983 1984 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 1985 /* 1986 * currently, we can't do much about an already 1987 * running request on an in endpoint 1988 */ 1989 1990 if (ep->req == req && ep->dir_in && !force) 1991 continue; 1992 1993 s3c_hsotg_complete_request(hsotg, ep, req, 1994 result); 1995 } 1996 if (hsotg->dedicated_fifos) 1997 if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072) 1998 s3c_hsotg_txfifo_flush(hsotg, ep->index); 1999 } 2000 2001 /** 2002 * s3c_hsotg_disconnect - disconnect service 2003 * @hsotg: The device state. 2004 * 2005 * The device has been disconnected. Remove all current 2006 * transactions and signal the gadget driver that this 2007 * has happened. 2008 */ 2009 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg) 2010 { 2011 unsigned ep; 2012 2013 for (ep = 0; ep < hsotg->num_of_eps; ep++) 2014 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true); 2015 2016 call_gadget(hsotg, disconnect); 2017 } 2018 2019 /** 2020 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 2021 * @hsotg: The device state: 2022 * @periodic: True if this is a periodic FIFO interrupt 2023 */ 2024 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic) 2025 { 2026 struct s3c_hsotg_ep *ep; 2027 int epno, ret; 2028 2029 /* look through for any more data to transmit */ 2030 2031 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 2032 ep = &hsotg->eps[epno]; 2033 2034 if (!ep->dir_in) 2035 continue; 2036 2037 if ((periodic && !ep->periodic) || 2038 (!periodic && ep->periodic)) 2039 continue; 2040 2041 ret = s3c_hsotg_trytx(hsotg, ep); 2042 if (ret < 0) 2043 break; 2044 } 2045 } 2046 2047 /* IRQ flags which will trigger a retry around the IRQ loop */ 2048 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 2049 GINTSTS_PTXFEMP | \ 2050 GINTSTS_RXFLVL) 2051 2052 /** 2053 * s3c_hsotg_corereset - issue softreset to the core 2054 * @hsotg: The device state 2055 * 2056 * Issue a soft reset to the core, and await the core finishing it. 2057 */ 2058 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg) 2059 { 2060 int timeout; 2061 u32 grstctl; 2062 2063 dev_dbg(hsotg->dev, "resetting core\n"); 2064 2065 /* issue soft reset */ 2066 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL); 2067 2068 timeout = 10000; 2069 do { 2070 grstctl = readl(hsotg->regs + GRSTCTL); 2071 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0); 2072 2073 if (grstctl & GRSTCTL_CSFTRST) { 2074 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n"); 2075 return -EINVAL; 2076 } 2077 2078 timeout = 10000; 2079 2080 while (1) { 2081 u32 grstctl = readl(hsotg->regs + GRSTCTL); 2082 2083 if (timeout-- < 0) { 2084 dev_info(hsotg->dev, 2085 "%s: reset failed, GRSTCTL=%08x\n", 2086 __func__, grstctl); 2087 return -ETIMEDOUT; 2088 } 2089 2090 if (!(grstctl & GRSTCTL_AHBIDLE)) 2091 continue; 2092 2093 break; /* reset done */ 2094 } 2095 2096 dev_dbg(hsotg->dev, "reset successful\n"); 2097 return 0; 2098 } 2099 2100 /** 2101 * s3c_hsotg_core_init - issue softreset to the core 2102 * @hsotg: The device state 2103 * 2104 * Issue a soft reset to the core, and await the core finishing it. 2105 */ 2106 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg) 2107 { 2108 s3c_hsotg_corereset(hsotg); 2109 2110 /* 2111 * we must now enable ep0 ready for host detection and then 2112 * set configuration. 2113 */ 2114 2115 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2116 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) | 2117 (0x5 << 10), hsotg->regs + GUSBCFG); 2118 2119 s3c_hsotg_init_fifo(hsotg); 2120 2121 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2122 2123 writel(1 << 18 | DCFG_DEVSPD_HS, hsotg->regs + DCFG); 2124 2125 /* Clear any pending OTG interrupts */ 2126 writel(0xffffffff, hsotg->regs + GOTGINT); 2127 2128 /* Clear any pending interrupts */ 2129 writel(0xffffffff, hsotg->regs + GINTSTS); 2130 2131 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 2132 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 2133 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST | 2134 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 2135 GINTSTS_USBSUSP | GINTSTS_WKUPINT, 2136 hsotg->regs + GINTMSK); 2137 2138 if (using_dma(hsotg)) 2139 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 2140 GAHBCFG_HBSTLEN_INCR4, 2141 hsotg->regs + GAHBCFG); 2142 else 2143 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL | 2144 GAHBCFG_P_TXF_EMP_LVL) : 0) | 2145 GAHBCFG_GLBL_INTR_EN, 2146 hsotg->regs + GAHBCFG); 2147 2148 /* 2149 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 2150 * when we have no data to transfer. Otherwise we get being flooded by 2151 * interrupts. 2152 */ 2153 2154 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY | 2155 DIEPMSK_INTKNTXFEMPMSK : 0) | 2156 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 2157 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2158 DIEPMSK_INTKNEPMISMSK, 2159 hsotg->regs + DIEPMSK); 2160 2161 /* 2162 * don't need XferCompl, we get that from RXFIFO in slave mode. In 2163 * DMA mode we may need this. 2164 */ 2165 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 2166 DIEPMSK_TIMEOUTMSK) : 0) | 2167 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 2168 DOEPMSK_SETUPMSK, 2169 hsotg->regs + DOEPMSK); 2170 2171 writel(0, hsotg->regs + DAINTMSK); 2172 2173 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2174 readl(hsotg->regs + DIEPCTL0), 2175 readl(hsotg->regs + DOEPCTL0)); 2176 2177 /* enable in and out endpoint interrupts */ 2178 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 2179 2180 /* 2181 * Enable the RXFIFO when in slave mode, as this is how we collect 2182 * the data. In DMA mode, we get events from the FIFO but also 2183 * things we cannot process, so do not use it. 2184 */ 2185 if (!using_dma(hsotg)) 2186 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 2187 2188 /* Enable interrupts for EP0 in and out */ 2189 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1); 2190 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1); 2191 2192 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2193 udelay(10); /* see openiboot */ 2194 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2195 2196 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL)); 2197 2198 /* 2199 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 2200 * writing to the EPCTL register.. 2201 */ 2202 2203 /* set to read 1 8byte packet */ 2204 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2205 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 2206 2207 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | 2208 DXEPCTL_CNAK | DXEPCTL_EPENA | 2209 DXEPCTL_USBACTEP, 2210 hsotg->regs + DOEPCTL0); 2211 2212 /* enable, but don't activate EP0in */ 2213 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | 2214 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 2215 2216 s3c_hsotg_enqueue_setup(hsotg); 2217 2218 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2219 readl(hsotg->regs + DIEPCTL0), 2220 readl(hsotg->regs + DOEPCTL0)); 2221 2222 /* clear global NAKs */ 2223 writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK, 2224 hsotg->regs + DCTL); 2225 2226 /* must be at-least 3ms to allow bus to see disconnect */ 2227 mdelay(3); 2228 2229 /* remove the soft-disconnect and let's go */ 2230 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2231 } 2232 2233 /** 2234 * s3c_hsotg_irq - handle device interrupt 2235 * @irq: The IRQ number triggered 2236 * @pw: The pw value when registered the handler. 2237 */ 2238 static irqreturn_t s3c_hsotg_irq(int irq, void *pw) 2239 { 2240 struct s3c_hsotg *hsotg = pw; 2241 int retry_count = 8; 2242 u32 gintsts; 2243 u32 gintmsk; 2244 2245 spin_lock(&hsotg->lock); 2246 irq_retry: 2247 gintsts = readl(hsotg->regs + GINTSTS); 2248 gintmsk = readl(hsotg->regs + GINTMSK); 2249 2250 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 2251 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 2252 2253 gintsts &= gintmsk; 2254 2255 if (gintsts & GINTSTS_OTGINT) { 2256 u32 otgint = readl(hsotg->regs + GOTGINT); 2257 2258 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint); 2259 2260 writel(otgint, hsotg->regs + GOTGINT); 2261 } 2262 2263 if (gintsts & GINTSTS_SESSREQINT) { 2264 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__); 2265 writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS); 2266 } 2267 2268 if (gintsts & GINTSTS_ENUMDONE) { 2269 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 2270 2271 s3c_hsotg_irq_enumdone(hsotg); 2272 } 2273 2274 if (gintsts & GINTSTS_CONIDSTSCHNG) { 2275 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n", 2276 readl(hsotg->regs + DSTS), 2277 readl(hsotg->regs + GOTGCTL)); 2278 2279 writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS); 2280 } 2281 2282 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 2283 u32 daint = readl(hsotg->regs + DAINT); 2284 u32 daintmsk = readl(hsotg->regs + DAINTMSK); 2285 u32 daint_out, daint_in; 2286 int ep; 2287 2288 daint &= daintmsk; 2289 daint_out = daint >> DAINT_OUTEP_SHIFT; 2290 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 2291 2292 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 2293 2294 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) { 2295 if (daint_out & 1) 2296 s3c_hsotg_epint(hsotg, ep, 0); 2297 } 2298 2299 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) { 2300 if (daint_in & 1) 2301 s3c_hsotg_epint(hsotg, ep, 1); 2302 } 2303 } 2304 2305 if (gintsts & GINTSTS_USBRST) { 2306 2307 u32 usb_status = readl(hsotg->regs + GOTGCTL); 2308 2309 dev_info(hsotg->dev, "%s: USBRst\n", __func__); 2310 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 2311 readl(hsotg->regs + GNPTXSTS)); 2312 2313 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 2314 2315 if (usb_status & GOTGCTL_BSESVLD) { 2316 if (time_after(jiffies, hsotg->last_rst + 2317 msecs_to_jiffies(200))) { 2318 2319 kill_all_requests(hsotg, &hsotg->eps[0], 2320 -ECONNRESET, true); 2321 2322 s3c_hsotg_core_init(hsotg); 2323 hsotg->last_rst = jiffies; 2324 } 2325 } 2326 } 2327 2328 /* check both FIFOs */ 2329 2330 if (gintsts & GINTSTS_NPTXFEMP) { 2331 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 2332 2333 /* 2334 * Disable the interrupt to stop it happening again 2335 * unless one of these endpoint routines decides that 2336 * it needs re-enabling 2337 */ 2338 2339 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 2340 s3c_hsotg_irq_fifoempty(hsotg, false); 2341 } 2342 2343 if (gintsts & GINTSTS_PTXFEMP) { 2344 dev_dbg(hsotg->dev, "PTxFEmp\n"); 2345 2346 /* See note in GINTSTS_NPTxFEmp */ 2347 2348 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 2349 s3c_hsotg_irq_fifoempty(hsotg, true); 2350 } 2351 2352 if (gintsts & GINTSTS_RXFLVL) { 2353 /* 2354 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 2355 * we need to retry s3c_hsotg_handle_rx if this is still 2356 * set. 2357 */ 2358 2359 s3c_hsotg_handle_rx(hsotg); 2360 } 2361 2362 if (gintsts & GINTSTS_MODEMIS) { 2363 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n"); 2364 writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS); 2365 } 2366 2367 if (gintsts & GINTSTS_USBSUSP) { 2368 dev_info(hsotg->dev, "GINTSTS_USBSusp\n"); 2369 writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS); 2370 2371 call_gadget(hsotg, suspend); 2372 } 2373 2374 if (gintsts & GINTSTS_WKUPINT) { 2375 dev_info(hsotg->dev, "GINTSTS_WkUpIn\n"); 2376 writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS); 2377 2378 call_gadget(hsotg, resume); 2379 } 2380 2381 if (gintsts & GINTSTS_ERLYSUSP) { 2382 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 2383 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 2384 } 2385 2386 /* 2387 * these next two seem to crop-up occasionally causing the core 2388 * to shutdown the USB transfer, so try clearing them and logging 2389 * the occurrence. 2390 */ 2391 2392 if (gintsts & GINTSTS_GOUTNAKEFF) { 2393 dev_info(hsotg->dev, "GOUTNakEff triggered\n"); 2394 2395 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL); 2396 2397 s3c_hsotg_dump(hsotg); 2398 } 2399 2400 if (gintsts & GINTSTS_GINNAKEFF) { 2401 dev_info(hsotg->dev, "GINNakEff triggered\n"); 2402 2403 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL); 2404 2405 s3c_hsotg_dump(hsotg); 2406 } 2407 2408 /* 2409 * if we've had fifo events, we should try and go around the 2410 * loop again to see if there's any point in returning yet. 2411 */ 2412 2413 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 2414 goto irq_retry; 2415 2416 spin_unlock(&hsotg->lock); 2417 2418 return IRQ_HANDLED; 2419 } 2420 2421 /** 2422 * s3c_hsotg_ep_enable - enable the given endpoint 2423 * @ep: The USB endpint to configure 2424 * @desc: The USB endpoint descriptor to configure with. 2425 * 2426 * This is called from the USB gadget code's usb_ep_enable(). 2427 */ 2428 static int s3c_hsotg_ep_enable(struct usb_ep *ep, 2429 const struct usb_endpoint_descriptor *desc) 2430 { 2431 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2432 struct s3c_hsotg *hsotg = hs_ep->parent; 2433 unsigned long flags; 2434 int index = hs_ep->index; 2435 u32 epctrl_reg; 2436 u32 epctrl; 2437 u32 mps; 2438 int dir_in; 2439 int ret = 0; 2440 2441 dev_dbg(hsotg->dev, 2442 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 2443 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 2444 desc->wMaxPacketSize, desc->bInterval); 2445 2446 /* not to be called for EP0 */ 2447 WARN_ON(index == 0); 2448 2449 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 2450 if (dir_in != hs_ep->dir_in) { 2451 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 2452 return -EINVAL; 2453 } 2454 2455 mps = usb_endpoint_maxp(desc); 2456 2457 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */ 2458 2459 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2460 epctrl = readl(hsotg->regs + epctrl_reg); 2461 2462 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 2463 __func__, epctrl, epctrl_reg); 2464 2465 spin_lock_irqsave(&hsotg->lock, flags); 2466 2467 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 2468 epctrl |= DXEPCTL_MPS(mps); 2469 2470 /* 2471 * mark the endpoint as active, otherwise the core may ignore 2472 * transactions entirely for this endpoint 2473 */ 2474 epctrl |= DXEPCTL_USBACTEP; 2475 2476 /* 2477 * set the NAK status on the endpoint, otherwise we might try and 2478 * do something with data that we've yet got a request to process 2479 * since the RXFIFO will take data for an endpoint even if the 2480 * size register hasn't been set. 2481 */ 2482 2483 epctrl |= DXEPCTL_SNAK; 2484 2485 /* update the endpoint state */ 2486 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps); 2487 2488 /* default, set to non-periodic */ 2489 hs_ep->isochronous = 0; 2490 hs_ep->periodic = 0; 2491 hs_ep->halted = 0; 2492 hs_ep->interval = desc->bInterval; 2493 2494 if (hs_ep->interval > 1 && hs_ep->mc > 1) 2495 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n"); 2496 2497 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 2498 case USB_ENDPOINT_XFER_ISOC: 2499 epctrl |= DXEPCTL_EPTYPE_ISO; 2500 epctrl |= DXEPCTL_SETEVENFR; 2501 hs_ep->isochronous = 1; 2502 if (dir_in) 2503 hs_ep->periodic = 1; 2504 break; 2505 2506 case USB_ENDPOINT_XFER_BULK: 2507 epctrl |= DXEPCTL_EPTYPE_BULK; 2508 break; 2509 2510 case USB_ENDPOINT_XFER_INT: 2511 if (dir_in) { 2512 /* 2513 * Allocate our TxFNum by simply using the index 2514 * of the endpoint for the moment. We could do 2515 * something better if the host indicates how 2516 * many FIFOs we are expecting to use. 2517 */ 2518 2519 hs_ep->periodic = 1; 2520 epctrl |= DXEPCTL_TXFNUM(index); 2521 } 2522 2523 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 2524 break; 2525 2526 case USB_ENDPOINT_XFER_CONTROL: 2527 epctrl |= DXEPCTL_EPTYPE_CONTROL; 2528 break; 2529 } 2530 2531 /* 2532 * if the hardware has dedicated fifos, we must give each IN EP 2533 * a unique tx-fifo even if it is non-periodic. 2534 */ 2535 if (dir_in && hsotg->dedicated_fifos) 2536 epctrl |= DXEPCTL_TXFNUM(index); 2537 2538 /* for non control endpoints, set PID to D0 */ 2539 if (index) 2540 epctrl |= DXEPCTL_SETD0PID; 2541 2542 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 2543 __func__, epctrl); 2544 2545 writel(epctrl, hsotg->regs + epctrl_reg); 2546 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 2547 __func__, readl(hsotg->regs + epctrl_reg)); 2548 2549 /* enable the endpoint interrupt */ 2550 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 2551 2552 spin_unlock_irqrestore(&hsotg->lock, flags); 2553 return ret; 2554 } 2555 2556 /** 2557 * s3c_hsotg_ep_disable - disable given endpoint 2558 * @ep: The endpoint to disable. 2559 */ 2560 static int s3c_hsotg_ep_disable(struct usb_ep *ep) 2561 { 2562 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2563 struct s3c_hsotg *hsotg = hs_ep->parent; 2564 int dir_in = hs_ep->dir_in; 2565 int index = hs_ep->index; 2566 unsigned long flags; 2567 u32 epctrl_reg; 2568 u32 ctrl; 2569 2570 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep); 2571 2572 if (ep == &hsotg->eps[0].ep) { 2573 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 2574 return -EINVAL; 2575 } 2576 2577 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2578 2579 spin_lock_irqsave(&hsotg->lock, flags); 2580 /* terminate all requests with shutdown */ 2581 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false); 2582 2583 2584 ctrl = readl(hsotg->regs + epctrl_reg); 2585 ctrl &= ~DXEPCTL_EPENA; 2586 ctrl &= ~DXEPCTL_USBACTEP; 2587 ctrl |= DXEPCTL_SNAK; 2588 2589 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 2590 writel(ctrl, hsotg->regs + epctrl_reg); 2591 2592 /* disable endpoint interrupts */ 2593 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 2594 2595 spin_unlock_irqrestore(&hsotg->lock, flags); 2596 return 0; 2597 } 2598 2599 /** 2600 * on_list - check request is on the given endpoint 2601 * @ep: The endpoint to check. 2602 * @test: The request to test if it is on the endpoint. 2603 */ 2604 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test) 2605 { 2606 struct s3c_hsotg_req *req, *treq; 2607 2608 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 2609 if (req == test) 2610 return true; 2611 } 2612 2613 return false; 2614 } 2615 2616 /** 2617 * s3c_hsotg_ep_dequeue - dequeue given endpoint 2618 * @ep: The endpoint to dequeue. 2619 * @req: The request to be removed from a queue. 2620 */ 2621 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 2622 { 2623 struct s3c_hsotg_req *hs_req = our_req(req); 2624 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2625 struct s3c_hsotg *hs = hs_ep->parent; 2626 unsigned long flags; 2627 2628 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 2629 2630 spin_lock_irqsave(&hs->lock, flags); 2631 2632 if (!on_list(hs_ep, hs_req)) { 2633 spin_unlock_irqrestore(&hs->lock, flags); 2634 return -EINVAL; 2635 } 2636 2637 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 2638 spin_unlock_irqrestore(&hs->lock, flags); 2639 2640 return 0; 2641 } 2642 2643 /** 2644 * s3c_hsotg_ep_sethalt - set halt on a given endpoint 2645 * @ep: The endpoint to set halt. 2646 * @value: Set or unset the halt. 2647 */ 2648 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value) 2649 { 2650 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2651 struct s3c_hsotg *hs = hs_ep->parent; 2652 int index = hs_ep->index; 2653 u32 epreg; 2654 u32 epctl; 2655 u32 xfertype; 2656 2657 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 2658 2659 if (index == 0) { 2660 if (value) 2661 s3c_hsotg_stall_ep0(hs); 2662 else 2663 dev_warn(hs->dev, 2664 "%s: can't clear halt on ep0\n", __func__); 2665 return 0; 2666 } 2667 2668 /* write both IN and OUT control registers */ 2669 2670 epreg = DIEPCTL(index); 2671 epctl = readl(hs->regs + epreg); 2672 2673 if (value) { 2674 epctl |= DXEPCTL_STALL + DXEPCTL_SNAK; 2675 if (epctl & DXEPCTL_EPENA) 2676 epctl |= DXEPCTL_EPDIS; 2677 } else { 2678 epctl &= ~DXEPCTL_STALL; 2679 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2680 if (xfertype == DXEPCTL_EPTYPE_BULK || 2681 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2682 epctl |= DXEPCTL_SETD0PID; 2683 } 2684 2685 writel(epctl, hs->regs + epreg); 2686 2687 epreg = DOEPCTL(index); 2688 epctl = readl(hs->regs + epreg); 2689 2690 if (value) 2691 epctl |= DXEPCTL_STALL; 2692 else { 2693 epctl &= ~DXEPCTL_STALL; 2694 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2695 if (xfertype == DXEPCTL_EPTYPE_BULK || 2696 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2697 epctl |= DXEPCTL_SETD0PID; 2698 } 2699 2700 writel(epctl, hs->regs + epreg); 2701 2702 hs_ep->halted = value; 2703 2704 return 0; 2705 } 2706 2707 /** 2708 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 2709 * @ep: The endpoint to set halt. 2710 * @value: Set or unset the halt. 2711 */ 2712 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 2713 { 2714 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2715 struct s3c_hsotg *hs = hs_ep->parent; 2716 unsigned long flags = 0; 2717 int ret = 0; 2718 2719 spin_lock_irqsave(&hs->lock, flags); 2720 ret = s3c_hsotg_ep_sethalt(ep, value); 2721 spin_unlock_irqrestore(&hs->lock, flags); 2722 2723 return ret; 2724 } 2725 2726 static struct usb_ep_ops s3c_hsotg_ep_ops = { 2727 .enable = s3c_hsotg_ep_enable, 2728 .disable = s3c_hsotg_ep_disable, 2729 .alloc_request = s3c_hsotg_ep_alloc_request, 2730 .free_request = s3c_hsotg_ep_free_request, 2731 .queue = s3c_hsotg_ep_queue_lock, 2732 .dequeue = s3c_hsotg_ep_dequeue, 2733 .set_halt = s3c_hsotg_ep_sethalt_lock, 2734 /* note, don't believe we have any call for the fifo routines */ 2735 }; 2736 2737 /** 2738 * s3c_hsotg_phy_enable - enable platform phy dev 2739 * @hsotg: The driver state 2740 * 2741 * A wrapper for platform code responsible for controlling 2742 * low-level USB code 2743 */ 2744 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg) 2745 { 2746 struct platform_device *pdev = to_platform_device(hsotg->dev); 2747 2748 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev); 2749 2750 if (hsotg->phy) { 2751 phy_init(hsotg->phy); 2752 phy_power_on(hsotg->phy); 2753 } else if (hsotg->uphy) 2754 usb_phy_init(hsotg->uphy); 2755 else if (hsotg->plat->phy_init) 2756 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type); 2757 } 2758 2759 /** 2760 * s3c_hsotg_phy_disable - disable platform phy dev 2761 * @hsotg: The driver state 2762 * 2763 * A wrapper for platform code responsible for controlling 2764 * low-level USB code 2765 */ 2766 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg) 2767 { 2768 struct platform_device *pdev = to_platform_device(hsotg->dev); 2769 2770 if (hsotg->phy) { 2771 phy_power_off(hsotg->phy); 2772 phy_exit(hsotg->phy); 2773 } else if (hsotg->uphy) 2774 usb_phy_shutdown(hsotg->uphy); 2775 else if (hsotg->plat->phy_exit) 2776 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type); 2777 } 2778 2779 /** 2780 * s3c_hsotg_init - initalize the usb core 2781 * @hsotg: The driver state 2782 */ 2783 static void s3c_hsotg_init(struct s3c_hsotg *hsotg) 2784 { 2785 /* unmask subset of endpoint interrupts */ 2786 2787 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2788 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 2789 hsotg->regs + DIEPMSK); 2790 2791 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 2792 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 2793 hsotg->regs + DOEPMSK); 2794 2795 writel(0, hsotg->regs + DAINTMSK); 2796 2797 /* Be in disconnected state until gadget is registered */ 2798 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2799 2800 if (0) { 2801 /* post global nak until we're ready */ 2802 writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK, 2803 hsotg->regs + DCTL); 2804 } 2805 2806 /* setup fifos */ 2807 2808 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 2809 readl(hsotg->regs + GRXFSIZ), 2810 readl(hsotg->regs + GNPTXFSIZ)); 2811 2812 s3c_hsotg_init_fifo(hsotg); 2813 2814 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2815 writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10), 2816 hsotg->regs + GUSBCFG); 2817 2818 writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0, 2819 hsotg->regs + GAHBCFG); 2820 } 2821 2822 /** 2823 * s3c_hsotg_udc_start - prepare the udc for work 2824 * @gadget: The usb gadget state 2825 * @driver: The usb gadget driver 2826 * 2827 * Perform initialization to prepare udc device and driver 2828 * to work. 2829 */ 2830 static int s3c_hsotg_udc_start(struct usb_gadget *gadget, 2831 struct usb_gadget_driver *driver) 2832 { 2833 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2834 int ret; 2835 2836 if (!hsotg) { 2837 pr_err("%s: called with no device\n", __func__); 2838 return -ENODEV; 2839 } 2840 2841 if (!driver) { 2842 dev_err(hsotg->dev, "%s: no driver\n", __func__); 2843 return -EINVAL; 2844 } 2845 2846 if (driver->max_speed < USB_SPEED_FULL) 2847 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 2848 2849 if (!driver->setup) { 2850 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 2851 return -EINVAL; 2852 } 2853 2854 WARN_ON(hsotg->driver); 2855 2856 driver->driver.bus = NULL; 2857 hsotg->driver = driver; 2858 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 2859 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2860 2861 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 2862 hsotg->supplies); 2863 if (ret) { 2864 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret); 2865 goto err; 2866 } 2867 2868 hsotg->last_rst = jiffies; 2869 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 2870 return 0; 2871 2872 err: 2873 hsotg->driver = NULL; 2874 return ret; 2875 } 2876 2877 /** 2878 * s3c_hsotg_udc_stop - stop the udc 2879 * @gadget: The usb gadget state 2880 * @driver: The usb gadget driver 2881 * 2882 * Stop udc hw block and stay tunned for future transmissions 2883 */ 2884 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget, 2885 struct usb_gadget_driver *driver) 2886 { 2887 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2888 unsigned long flags = 0; 2889 int ep; 2890 2891 if (!hsotg) 2892 return -ENODEV; 2893 2894 /* all endpoints should be shutdown */ 2895 for (ep = 0; ep < hsotg->num_of_eps; ep++) 2896 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); 2897 2898 spin_lock_irqsave(&hsotg->lock, flags); 2899 2900 s3c_hsotg_phy_disable(hsotg); 2901 2902 if (!driver) 2903 hsotg->driver = NULL; 2904 2905 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2906 2907 spin_unlock_irqrestore(&hsotg->lock, flags); 2908 2909 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies); 2910 2911 return 0; 2912 } 2913 2914 /** 2915 * s3c_hsotg_gadget_getframe - read the frame number 2916 * @gadget: The usb gadget state 2917 * 2918 * Read the {micro} frame number 2919 */ 2920 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget) 2921 { 2922 return s3c_hsotg_read_frameno(to_hsotg(gadget)); 2923 } 2924 2925 /** 2926 * s3c_hsotg_pullup - connect/disconnect the USB PHY 2927 * @gadget: The usb gadget state 2928 * @is_on: Current state of the USB PHY 2929 * 2930 * Connect/Disconnect the USB PHY pullup 2931 */ 2932 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on) 2933 { 2934 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2935 unsigned long flags = 0; 2936 2937 dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on); 2938 2939 spin_lock_irqsave(&hsotg->lock, flags); 2940 if (is_on) { 2941 s3c_hsotg_phy_enable(hsotg); 2942 s3c_hsotg_core_init(hsotg); 2943 } else { 2944 s3c_hsotg_disconnect(hsotg); 2945 s3c_hsotg_phy_disable(hsotg); 2946 } 2947 2948 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2949 spin_unlock_irqrestore(&hsotg->lock, flags); 2950 2951 return 0; 2952 } 2953 2954 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = { 2955 .get_frame = s3c_hsotg_gadget_getframe, 2956 .udc_start = s3c_hsotg_udc_start, 2957 .udc_stop = s3c_hsotg_udc_stop, 2958 .pullup = s3c_hsotg_pullup, 2959 }; 2960 2961 /** 2962 * s3c_hsotg_initep - initialise a single endpoint 2963 * @hsotg: The device state. 2964 * @hs_ep: The endpoint to be initialised. 2965 * @epnum: The endpoint number 2966 * 2967 * Initialise the given endpoint (as part of the probe and device state 2968 * creation) to give to the gadget driver. Setup the endpoint name, any 2969 * direction information and other state that may be required. 2970 */ 2971 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg, 2972 struct s3c_hsotg_ep *hs_ep, 2973 int epnum) 2974 { 2975 u32 ptxfifo; 2976 char *dir; 2977 2978 if (epnum == 0) 2979 dir = ""; 2980 else if ((epnum % 2) == 0) { 2981 dir = "out"; 2982 } else { 2983 dir = "in"; 2984 hs_ep->dir_in = 1; 2985 } 2986 2987 hs_ep->index = epnum; 2988 2989 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 2990 2991 INIT_LIST_HEAD(&hs_ep->queue); 2992 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 2993 2994 /* add to the list of endpoints known by the gadget driver */ 2995 if (epnum) 2996 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 2997 2998 hs_ep->parent = hsotg; 2999 hs_ep->ep.name = hs_ep->name; 3000 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT); 3001 hs_ep->ep.ops = &s3c_hsotg_ep_ops; 3002 3003 /* 3004 * Read the FIFO size for the Periodic TX FIFO, even if we're 3005 * an OUT endpoint, we may as well do this if in future the 3006 * code is changed to make each endpoint's direction changeable. 3007 */ 3008 3009 ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum)); 3010 hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4; 3011 3012 /* 3013 * if we're using dma, we need to set the next-endpoint pointer 3014 * to be something valid. 3015 */ 3016 3017 if (using_dma(hsotg)) { 3018 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 3019 writel(next, hsotg->regs + DIEPCTL(epnum)); 3020 writel(next, hsotg->regs + DOEPCTL(epnum)); 3021 } 3022 } 3023 3024 /** 3025 * s3c_hsotg_hw_cfg - read HW configuration registers 3026 * @param: The device state 3027 * 3028 * Read the USB core HW configuration registers 3029 */ 3030 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg) 3031 { 3032 u32 cfg2, cfg4; 3033 /* check hardware configuration */ 3034 3035 cfg2 = readl(hsotg->regs + 0x48); 3036 hsotg->num_of_eps = (cfg2 >> 10) & 0xF; 3037 3038 dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps); 3039 3040 cfg4 = readl(hsotg->regs + 0x50); 3041 hsotg->dedicated_fifos = (cfg4 >> 25) & 1; 3042 3043 dev_info(hsotg->dev, "%s fifos\n", 3044 hsotg->dedicated_fifos ? "dedicated" : "shared"); 3045 } 3046 3047 /** 3048 * s3c_hsotg_dump - dump state of the udc 3049 * @param: The device state 3050 */ 3051 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg) 3052 { 3053 #ifdef DEBUG 3054 struct device *dev = hsotg->dev; 3055 void __iomem *regs = hsotg->regs; 3056 u32 val; 3057 int idx; 3058 3059 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 3060 readl(regs + DCFG), readl(regs + DCTL), 3061 readl(regs + DIEPMSK)); 3062 3063 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n", 3064 readl(regs + GAHBCFG), readl(regs + 0x44)); 3065 3066 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 3067 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ)); 3068 3069 /* show periodic fifo settings */ 3070 3071 for (idx = 1; idx <= 15; idx++) { 3072 val = readl(regs + DPTXFSIZN(idx)); 3073 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 3074 val >> FIFOSIZE_DEPTH_SHIFT, 3075 val & FIFOSIZE_STARTADDR_MASK); 3076 } 3077 3078 for (idx = 0; idx < 15; idx++) { 3079 dev_info(dev, 3080 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 3081 readl(regs + DIEPCTL(idx)), 3082 readl(regs + DIEPTSIZ(idx)), 3083 readl(regs + DIEPDMA(idx))); 3084 3085 val = readl(regs + DOEPCTL(idx)); 3086 dev_info(dev, 3087 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 3088 idx, readl(regs + DOEPCTL(idx)), 3089 readl(regs + DOEPTSIZ(idx)), 3090 readl(regs + DOEPDMA(idx))); 3091 3092 } 3093 3094 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 3095 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE)); 3096 #endif 3097 } 3098 3099 /** 3100 * state_show - debugfs: show overall driver and device state. 3101 * @seq: The seq file to write to. 3102 * @v: Unused parameter. 3103 * 3104 * This debugfs entry shows the overall state of the hardware and 3105 * some general information about each of the endpoints available 3106 * to the system. 3107 */ 3108 static int state_show(struct seq_file *seq, void *v) 3109 { 3110 struct s3c_hsotg *hsotg = seq->private; 3111 void __iomem *regs = hsotg->regs; 3112 int idx; 3113 3114 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n", 3115 readl(regs + DCFG), 3116 readl(regs + DCTL), 3117 readl(regs + DSTS)); 3118 3119 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n", 3120 readl(regs + DIEPMSK), readl(regs + DOEPMSK)); 3121 3122 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n", 3123 readl(regs + GINTMSK), 3124 readl(regs + GINTSTS)); 3125 3126 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n", 3127 readl(regs + DAINTMSK), 3128 readl(regs + DAINT)); 3129 3130 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n", 3131 readl(regs + GNPTXSTS), 3132 readl(regs + GRXSTSR)); 3133 3134 seq_puts(seq, "\nEndpoint status:\n"); 3135 3136 for (idx = 0; idx < 15; idx++) { 3137 u32 in, out; 3138 3139 in = readl(regs + DIEPCTL(idx)); 3140 out = readl(regs + DOEPCTL(idx)); 3141 3142 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x", 3143 idx, in, out); 3144 3145 in = readl(regs + DIEPTSIZ(idx)); 3146 out = readl(regs + DOEPTSIZ(idx)); 3147 3148 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x", 3149 in, out); 3150 3151 seq_puts(seq, "\n"); 3152 } 3153 3154 return 0; 3155 } 3156 3157 static int state_open(struct inode *inode, struct file *file) 3158 { 3159 return single_open(file, state_show, inode->i_private); 3160 } 3161 3162 static const struct file_operations state_fops = { 3163 .owner = THIS_MODULE, 3164 .open = state_open, 3165 .read = seq_read, 3166 .llseek = seq_lseek, 3167 .release = single_release, 3168 }; 3169 3170 /** 3171 * fifo_show - debugfs: show the fifo information 3172 * @seq: The seq_file to write data to. 3173 * @v: Unused parameter. 3174 * 3175 * Show the FIFO information for the overall fifo and all the 3176 * periodic transmission FIFOs. 3177 */ 3178 static int fifo_show(struct seq_file *seq, void *v) 3179 { 3180 struct s3c_hsotg *hsotg = seq->private; 3181 void __iomem *regs = hsotg->regs; 3182 u32 val; 3183 int idx; 3184 3185 seq_puts(seq, "Non-periodic FIFOs:\n"); 3186 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ)); 3187 3188 val = readl(regs + GNPTXFSIZ); 3189 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n", 3190 val >> FIFOSIZE_DEPTH_SHIFT, 3191 val & FIFOSIZE_DEPTH_MASK); 3192 3193 seq_puts(seq, "\nPeriodic TXFIFOs:\n"); 3194 3195 for (idx = 1; idx <= 15; idx++) { 3196 val = readl(regs + DPTXFSIZN(idx)); 3197 3198 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx, 3199 val >> FIFOSIZE_DEPTH_SHIFT, 3200 val & FIFOSIZE_STARTADDR_MASK); 3201 } 3202 3203 return 0; 3204 } 3205 3206 static int fifo_open(struct inode *inode, struct file *file) 3207 { 3208 return single_open(file, fifo_show, inode->i_private); 3209 } 3210 3211 static const struct file_operations fifo_fops = { 3212 .owner = THIS_MODULE, 3213 .open = fifo_open, 3214 .read = seq_read, 3215 .llseek = seq_lseek, 3216 .release = single_release, 3217 }; 3218 3219 3220 static const char *decode_direction(int is_in) 3221 { 3222 return is_in ? "in" : "out"; 3223 } 3224 3225 /** 3226 * ep_show - debugfs: show the state of an endpoint. 3227 * @seq: The seq_file to write data to. 3228 * @v: Unused parameter. 3229 * 3230 * This debugfs entry shows the state of the given endpoint (one is 3231 * registered for each available). 3232 */ 3233 static int ep_show(struct seq_file *seq, void *v) 3234 { 3235 struct s3c_hsotg_ep *ep = seq->private; 3236 struct s3c_hsotg *hsotg = ep->parent; 3237 struct s3c_hsotg_req *req; 3238 void __iomem *regs = hsotg->regs; 3239 int index = ep->index; 3240 int show_limit = 15; 3241 unsigned long flags; 3242 3243 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n", 3244 ep->index, ep->ep.name, decode_direction(ep->dir_in)); 3245 3246 /* first show the register state */ 3247 3248 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n", 3249 readl(regs + DIEPCTL(index)), 3250 readl(regs + DOEPCTL(index))); 3251 3252 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n", 3253 readl(regs + DIEPDMA(index)), 3254 readl(regs + DOEPDMA(index))); 3255 3256 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n", 3257 readl(regs + DIEPINT(index)), 3258 readl(regs + DOEPINT(index))); 3259 3260 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n", 3261 readl(regs + DIEPTSIZ(index)), 3262 readl(regs + DOEPTSIZ(index))); 3263 3264 seq_puts(seq, "\n"); 3265 seq_printf(seq, "mps %d\n", ep->ep.maxpacket); 3266 seq_printf(seq, "total_data=%ld\n", ep->total_data); 3267 3268 seq_printf(seq, "request list (%p,%p):\n", 3269 ep->queue.next, ep->queue.prev); 3270 3271 spin_lock_irqsave(&hsotg->lock, flags); 3272 3273 list_for_each_entry(req, &ep->queue, queue) { 3274 if (--show_limit < 0) { 3275 seq_puts(seq, "not showing more requests...\n"); 3276 break; 3277 } 3278 3279 seq_printf(seq, "%c req %p: %d bytes @%p, ", 3280 req == ep->req ? '*' : ' ', 3281 req, req->req.length, req->req.buf); 3282 seq_printf(seq, "%d done, res %d\n", 3283 req->req.actual, req->req.status); 3284 } 3285 3286 spin_unlock_irqrestore(&hsotg->lock, flags); 3287 3288 return 0; 3289 } 3290 3291 static int ep_open(struct inode *inode, struct file *file) 3292 { 3293 return single_open(file, ep_show, inode->i_private); 3294 } 3295 3296 static const struct file_operations ep_fops = { 3297 .owner = THIS_MODULE, 3298 .open = ep_open, 3299 .read = seq_read, 3300 .llseek = seq_lseek, 3301 .release = single_release, 3302 }; 3303 3304 /** 3305 * s3c_hsotg_create_debug - create debugfs directory and files 3306 * @hsotg: The driver state 3307 * 3308 * Create the debugfs files to allow the user to get information 3309 * about the state of the system. The directory name is created 3310 * with the same name as the device itself, in case we end up 3311 * with multiple blocks in future systems. 3312 */ 3313 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg) 3314 { 3315 struct dentry *root; 3316 unsigned epidx; 3317 3318 root = debugfs_create_dir(dev_name(hsotg->dev), NULL); 3319 hsotg->debug_root = root; 3320 if (IS_ERR(root)) { 3321 dev_err(hsotg->dev, "cannot create debug root\n"); 3322 return; 3323 } 3324 3325 /* create general state file */ 3326 3327 hsotg->debug_file = debugfs_create_file("state", 0444, root, 3328 hsotg, &state_fops); 3329 3330 if (IS_ERR(hsotg->debug_file)) 3331 dev_err(hsotg->dev, "%s: failed to create state\n", __func__); 3332 3333 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root, 3334 hsotg, &fifo_fops); 3335 3336 if (IS_ERR(hsotg->debug_fifo)) 3337 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__); 3338 3339 /* create one file for each endpoint */ 3340 3341 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3342 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; 3343 3344 ep->debugfs = debugfs_create_file(ep->name, 0444, 3345 root, ep, &ep_fops); 3346 3347 if (IS_ERR(ep->debugfs)) 3348 dev_err(hsotg->dev, "failed to create %s debug file\n", 3349 ep->name); 3350 } 3351 } 3352 3353 /** 3354 * s3c_hsotg_delete_debug - cleanup debugfs entries 3355 * @hsotg: The driver state 3356 * 3357 * Cleanup (remove) the debugfs files for use on module exit. 3358 */ 3359 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg) 3360 { 3361 unsigned epidx; 3362 3363 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3364 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; 3365 debugfs_remove(ep->debugfs); 3366 } 3367 3368 debugfs_remove(hsotg->debug_file); 3369 debugfs_remove(hsotg->debug_fifo); 3370 debugfs_remove(hsotg->debug_root); 3371 } 3372 3373 /** 3374 * s3c_hsotg_probe - probe function for hsotg driver 3375 * @pdev: The platform information for the driver 3376 */ 3377 3378 static int s3c_hsotg_probe(struct platform_device *pdev) 3379 { 3380 struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev); 3381 struct phy *phy; 3382 struct usb_phy *uphy; 3383 struct device *dev = &pdev->dev; 3384 struct s3c_hsotg_ep *eps; 3385 struct s3c_hsotg *hsotg; 3386 struct resource *res; 3387 int epnum; 3388 int ret; 3389 int i; 3390 3391 hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL); 3392 if (!hsotg) 3393 return -ENOMEM; 3394 3395 /* 3396 * Attempt to find a generic PHY, then look for an old style 3397 * USB PHY, finally fall back to pdata 3398 */ 3399 phy = devm_phy_get(&pdev->dev, "usb2-phy"); 3400 if (IS_ERR(phy)) { 3401 uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); 3402 if (IS_ERR(uphy)) { 3403 /* Fallback for pdata */ 3404 plat = dev_get_platdata(&pdev->dev); 3405 if (!plat) { 3406 dev_err(&pdev->dev, 3407 "no platform data or transceiver defined\n"); 3408 return -EPROBE_DEFER; 3409 } 3410 hsotg->plat = plat; 3411 } else 3412 hsotg->uphy = uphy; 3413 } else 3414 hsotg->phy = phy; 3415 3416 hsotg->dev = dev; 3417 3418 hsotg->clk = devm_clk_get(&pdev->dev, "otg"); 3419 if (IS_ERR(hsotg->clk)) { 3420 dev_err(dev, "cannot get otg clock\n"); 3421 return PTR_ERR(hsotg->clk); 3422 } 3423 3424 platform_set_drvdata(pdev, hsotg); 3425 3426 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3427 3428 hsotg->regs = devm_ioremap_resource(&pdev->dev, res); 3429 if (IS_ERR(hsotg->regs)) { 3430 ret = PTR_ERR(hsotg->regs); 3431 goto err_clk; 3432 } 3433 3434 ret = platform_get_irq(pdev, 0); 3435 if (ret < 0) { 3436 dev_err(dev, "cannot find IRQ\n"); 3437 goto err_clk; 3438 } 3439 3440 spin_lock_init(&hsotg->lock); 3441 3442 hsotg->irq = ret; 3443 3444 ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0, 3445 dev_name(dev), hsotg); 3446 if (ret < 0) { 3447 dev_err(dev, "cannot claim IRQ\n"); 3448 goto err_clk; 3449 } 3450 3451 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq); 3452 3453 hsotg->gadget.max_speed = USB_SPEED_HIGH; 3454 hsotg->gadget.ops = &s3c_hsotg_gadget_ops; 3455 hsotg->gadget.name = dev_name(dev); 3456 3457 /* reset the system */ 3458 3459 clk_prepare_enable(hsotg->clk); 3460 3461 /* regulators */ 3462 3463 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++) 3464 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i]; 3465 3466 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies), 3467 hsotg->supplies); 3468 if (ret) { 3469 dev_err(dev, "failed to request supplies: %d\n", ret); 3470 goto err_clk; 3471 } 3472 3473 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3474 hsotg->supplies); 3475 3476 if (ret) { 3477 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret); 3478 goto err_supplies; 3479 } 3480 3481 /* Set default UTMI width */ 3482 hsotg->phyif = GUSBCFG_PHYIF16; 3483 3484 /* 3485 * If using the generic PHY framework, check if the PHY bus 3486 * width is 8-bit and set the phyif appropriately. 3487 */ 3488 if (hsotg->phy && (phy_get_bus_width(phy) == 8)) 3489 hsotg->phyif = GUSBCFG_PHYIF8; 3490 3491 if (hsotg->phy) 3492 phy_init(hsotg->phy); 3493 3494 /* usb phy enable */ 3495 s3c_hsotg_phy_enable(hsotg); 3496 3497 s3c_hsotg_corereset(hsotg); 3498 s3c_hsotg_init(hsotg); 3499 s3c_hsotg_hw_cfg(hsotg); 3500 3501 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 3502 3503 if (hsotg->num_of_eps == 0) { 3504 dev_err(dev, "wrong number of EPs (zero)\n"); 3505 ret = -EINVAL; 3506 goto err_supplies; 3507 } 3508 3509 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep), 3510 GFP_KERNEL); 3511 if (!eps) { 3512 ret = -ENOMEM; 3513 goto err_supplies; 3514 } 3515 3516 hsotg->eps = eps; 3517 3518 /* setup endpoint information */ 3519 3520 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 3521 hsotg->gadget.ep0 = &hsotg->eps[0].ep; 3522 3523 /* allocate EP0 request */ 3524 3525 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep, 3526 GFP_KERNEL); 3527 if (!hsotg->ctrl_req) { 3528 dev_err(dev, "failed to allocate ctrl req\n"); 3529 ret = -ENOMEM; 3530 goto err_ep_mem; 3531 } 3532 3533 /* initialise the endpoints now the core has been initialised */ 3534 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) 3535 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum); 3536 3537 /* disable power and clock */ 3538 3539 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3540 hsotg->supplies); 3541 if (ret) { 3542 dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret); 3543 goto err_ep_mem; 3544 } 3545 3546 s3c_hsotg_phy_disable(hsotg); 3547 3548 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget); 3549 if (ret) 3550 goto err_ep_mem; 3551 3552 s3c_hsotg_create_debug(hsotg); 3553 3554 s3c_hsotg_dump(hsotg); 3555 3556 return 0; 3557 3558 err_ep_mem: 3559 kfree(eps); 3560 err_supplies: 3561 s3c_hsotg_phy_disable(hsotg); 3562 err_clk: 3563 clk_disable_unprepare(hsotg->clk); 3564 3565 return ret; 3566 } 3567 3568 /** 3569 * s3c_hsotg_remove - remove function for hsotg driver 3570 * @pdev: The platform information for the driver 3571 */ 3572 static int s3c_hsotg_remove(struct platform_device *pdev) 3573 { 3574 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3575 3576 usb_del_gadget_udc(&hsotg->gadget); 3577 3578 s3c_hsotg_delete_debug(hsotg); 3579 3580 if (hsotg->driver) { 3581 /* should have been done already by driver model core */ 3582 usb_gadget_unregister_driver(hsotg->driver); 3583 } 3584 3585 s3c_hsotg_phy_disable(hsotg); 3586 if (hsotg->phy) 3587 phy_exit(hsotg->phy); 3588 clk_disable_unprepare(hsotg->clk); 3589 3590 return 0; 3591 } 3592 3593 static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state) 3594 { 3595 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3596 unsigned long flags; 3597 int ret = 0; 3598 3599 if (hsotg->driver) 3600 dev_info(hsotg->dev, "suspending usb gadget %s\n", 3601 hsotg->driver->driver.name); 3602 3603 spin_lock_irqsave(&hsotg->lock, flags); 3604 s3c_hsotg_disconnect(hsotg); 3605 s3c_hsotg_phy_disable(hsotg); 3606 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 3607 spin_unlock_irqrestore(&hsotg->lock, flags); 3608 3609 if (hsotg->driver) { 3610 int ep; 3611 for (ep = 0; ep < hsotg->num_of_eps; ep++) 3612 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); 3613 3614 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3615 hsotg->supplies); 3616 } 3617 3618 return ret; 3619 } 3620 3621 static int s3c_hsotg_resume(struct platform_device *pdev) 3622 { 3623 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3624 unsigned long flags; 3625 int ret = 0; 3626 3627 if (hsotg->driver) { 3628 dev_info(hsotg->dev, "resuming usb gadget %s\n", 3629 hsotg->driver->driver.name); 3630 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3631 hsotg->supplies); 3632 } 3633 3634 spin_lock_irqsave(&hsotg->lock, flags); 3635 hsotg->last_rst = jiffies; 3636 s3c_hsotg_phy_enable(hsotg); 3637 s3c_hsotg_core_init(hsotg); 3638 spin_unlock_irqrestore(&hsotg->lock, flags); 3639 3640 return ret; 3641 } 3642 3643 #ifdef CONFIG_OF 3644 static const struct of_device_id s3c_hsotg_of_ids[] = { 3645 { .compatible = "samsung,s3c6400-hsotg", }, 3646 { .compatible = "snps,dwc2", }, 3647 { /* sentinel */ } 3648 }; 3649 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids); 3650 #endif 3651 3652 static struct platform_driver s3c_hsotg_driver = { 3653 .driver = { 3654 .name = "s3c-hsotg", 3655 .owner = THIS_MODULE, 3656 .of_match_table = of_match_ptr(s3c_hsotg_of_ids), 3657 }, 3658 .probe = s3c_hsotg_probe, 3659 .remove = s3c_hsotg_remove, 3660 .suspend = s3c_hsotg_suspend, 3661 .resume = s3c_hsotg_resume, 3662 }; 3663 3664 module_platform_driver(s3c_hsotg_driver); 3665 3666 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device"); 3667 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); 3668 MODULE_LICENSE("GPL"); 3669 MODULE_ALIAS("platform:s3c-hsotg"); 3670