xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 	gintsts2 &= gintmsk2;
264 
265 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
266 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
267 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
268 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
269 	}
270 }
271 
272 /**
273  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
274  * TX FIFOs
275  *
276  * @hsotg: Programming view of the DWC_otg controller
277  */
278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
279 {
280 	int tx_fifo_count;
281 	int tx_fifo_depth;
282 
283 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
284 
285 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
286 
287 	if (!tx_fifo_count)
288 		return tx_fifo_depth;
289 	else
290 		return tx_fifo_depth / tx_fifo_count;
291 }
292 
293 /**
294  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
295  * @hsotg: The device instance.
296  */
297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
298 {
299 	unsigned int ep;
300 	unsigned int addr;
301 	int timeout;
302 
303 	u32 val;
304 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
305 
306 	/* Reset fifo map if not correctly cleared during previous session */
307 	WARN_ON(hsotg->fifo_map);
308 	hsotg->fifo_map = 0;
309 
310 	/* set RX/NPTX FIFO sizes */
311 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
312 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
313 		    FIFOSIZE_STARTADDR_SHIFT) |
314 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
315 		    GNPTXFSIZ);
316 
317 	/*
318 	 * arange all the rest of the TX FIFOs, as some versions of this
319 	 * block have overlapping default addresses. This also ensures
320 	 * that if the settings have been changed, then they are set to
321 	 * known values.
322 	 */
323 
324 	/* start at the end of the GNPTXFSIZ, rounded up */
325 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
326 
327 	/*
328 	 * Configure fifos sizes from provided configuration and assign
329 	 * them to endpoints dynamically according to maxpacket size value of
330 	 * given endpoint.
331 	 */
332 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
333 		if (!txfsz[ep])
334 			continue;
335 		val = addr;
336 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
337 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
338 			  "insufficient fifo memory");
339 		addr += txfsz[ep];
340 
341 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
342 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
343 	}
344 
345 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
346 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
347 		    GDFIFOCFG);
348 	/*
349 	 * according to p428 of the design guide, we need to ensure that
350 	 * all fifos are flushed before continuing
351 	 */
352 
353 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
354 	       GRSTCTL_RXFFLSH, GRSTCTL);
355 
356 	/* wait until the fifos are both flushed */
357 	timeout = 100;
358 	while (1) {
359 		val = dwc2_readl(hsotg, GRSTCTL);
360 
361 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
362 			break;
363 
364 		if (--timeout == 0) {
365 			dev_err(hsotg->dev,
366 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
367 				__func__, val);
368 			break;
369 		}
370 
371 		udelay(1);
372 	}
373 
374 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 }
376 
377 /**
378  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
379  * @ep: USB endpoint to allocate request for.
380  * @flags: Allocation flags
381  *
382  * Allocate a new USB request structure appropriate for the specified endpoint
383  */
384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
385 						       gfp_t flags)
386 {
387 	struct dwc2_hsotg_req *req;
388 
389 	req = kzalloc(sizeof(*req), flags);
390 	if (!req)
391 		return NULL;
392 
393 	INIT_LIST_HEAD(&req->queue);
394 
395 	return &req->req;
396 }
397 
398 /**
399  * is_ep_periodic - return true if the endpoint is in periodic mode.
400  * @hs_ep: The endpoint to query.
401  *
402  * Returns true if the endpoint is in periodic mode, meaning it is being
403  * used for an Interrupt or ISO transfer.
404  */
405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
406 {
407 	return hs_ep->periodic;
408 }
409 
410 /**
411  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
412  * @hsotg: The device state.
413  * @hs_ep: The endpoint for the request
414  * @hs_req: The request being processed.
415  *
416  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
417  * of a request to ensure the buffer is ready for access by the caller.
418  */
419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
420 				 struct dwc2_hsotg_ep *hs_ep,
421 				struct dwc2_hsotg_req *hs_req)
422 {
423 	struct usb_request *req = &hs_req->req;
424 
425 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
426 }
427 
428 /*
429  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
430  * for Control endpoint
431  * @hsotg: The device state.
432  *
433  * This function will allocate 4 descriptor chains for EP 0: 2 for
434  * Setup stage, per one for IN and OUT data/status transactions.
435  */
436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
437 {
438 	hsotg->setup_desc[0] =
439 		dmam_alloc_coherent(hsotg->dev,
440 				    sizeof(struct dwc2_dma_desc),
441 				    &hsotg->setup_desc_dma[0],
442 				    GFP_KERNEL);
443 	if (!hsotg->setup_desc[0])
444 		goto fail;
445 
446 	hsotg->setup_desc[1] =
447 		dmam_alloc_coherent(hsotg->dev,
448 				    sizeof(struct dwc2_dma_desc),
449 				    &hsotg->setup_desc_dma[1],
450 				    GFP_KERNEL);
451 	if (!hsotg->setup_desc[1])
452 		goto fail;
453 
454 	hsotg->ctrl_in_desc =
455 		dmam_alloc_coherent(hsotg->dev,
456 				    sizeof(struct dwc2_dma_desc),
457 				    &hsotg->ctrl_in_desc_dma,
458 				    GFP_KERNEL);
459 	if (!hsotg->ctrl_in_desc)
460 		goto fail;
461 
462 	hsotg->ctrl_out_desc =
463 		dmam_alloc_coherent(hsotg->dev,
464 				    sizeof(struct dwc2_dma_desc),
465 				    &hsotg->ctrl_out_desc_dma,
466 				    GFP_KERNEL);
467 	if (!hsotg->ctrl_out_desc)
468 		goto fail;
469 
470 	return 0;
471 
472 fail:
473 	return -ENOMEM;
474 }
475 
476 /**
477  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
478  * @hsotg: The controller state.
479  * @hs_ep: The endpoint we're going to write for.
480  * @hs_req: The request to write data for.
481  *
482  * This is called when the TxFIFO has some space in it to hold a new
483  * transmission and we have something to give it. The actual setup of
484  * the data size is done elsewhere, so all we have to do is to actually
485  * write the data.
486  *
487  * The return value is zero if there is more space (or nothing was done)
488  * otherwise -ENOSPC is returned if the FIFO space was used up.
489  *
490  * This routine is only needed for PIO
491  */
492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
493 				 struct dwc2_hsotg_ep *hs_ep,
494 				struct dwc2_hsotg_req *hs_req)
495 {
496 	bool periodic = is_ep_periodic(hs_ep);
497 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
498 	int buf_pos = hs_req->req.actual;
499 	int to_write = hs_ep->size_loaded;
500 	void *data;
501 	int can_write;
502 	int pkt_round;
503 	int max_transfer;
504 
505 	to_write -= (buf_pos - hs_ep->last_load);
506 
507 	/* if there's nothing to write, get out early */
508 	if (to_write == 0)
509 		return 0;
510 
511 	if (periodic && !hsotg->dedicated_fifos) {
512 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
513 		int size_left;
514 		int size_done;
515 
516 		/*
517 		 * work out how much data was loaded so we can calculate
518 		 * how much data is left in the fifo.
519 		 */
520 
521 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
522 
523 		/*
524 		 * if shared fifo, we cannot write anything until the
525 		 * previous data has been completely sent.
526 		 */
527 		if (hs_ep->fifo_load != 0) {
528 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
529 			return -ENOSPC;
530 		}
531 
532 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
533 			__func__, size_left,
534 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
535 
536 		/* how much of the data has moved */
537 		size_done = hs_ep->size_loaded - size_left;
538 
539 		/* how much data is left in the fifo */
540 		can_write = hs_ep->fifo_load - size_done;
541 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
542 			__func__, can_write);
543 
544 		can_write = hs_ep->fifo_size - can_write;
545 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
546 			__func__, can_write);
547 
548 		if (can_write <= 0) {
549 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
550 			return -ENOSPC;
551 		}
552 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
553 		can_write = dwc2_readl(hsotg,
554 				       DTXFSTS(hs_ep->fifo_index));
555 
556 		can_write &= 0xffff;
557 		can_write *= 4;
558 	} else {
559 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
560 			dev_dbg(hsotg->dev,
561 				"%s: no queue slots available (0x%08x)\n",
562 				__func__, gnptxsts);
563 
564 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
565 			return -ENOSPC;
566 		}
567 
568 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
569 		can_write *= 4;	/* fifo size is in 32bit quantities. */
570 	}
571 
572 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
573 
574 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
575 		__func__, gnptxsts, can_write, to_write, max_transfer);
576 
577 	/*
578 	 * limit to 512 bytes of data, it seems at least on the non-periodic
579 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
580 	 * fragment of the end of the transfer in it.
581 	 */
582 	if (can_write > 512 && !periodic)
583 		can_write = 512;
584 
585 	/*
586 	 * limit the write to one max-packet size worth of data, but allow
587 	 * the transfer to return that it did not run out of fifo space
588 	 * doing it.
589 	 */
590 	if (to_write > max_transfer) {
591 		to_write = max_transfer;
592 
593 		/* it's needed only when we do not use dedicated fifos */
594 		if (!hsotg->dedicated_fifos)
595 			dwc2_hsotg_en_gsint(hsotg,
596 					    periodic ? GINTSTS_PTXFEMP :
597 					   GINTSTS_NPTXFEMP);
598 	}
599 
600 	/* see if we can write data */
601 
602 	if (to_write > can_write) {
603 		to_write = can_write;
604 		pkt_round = to_write % max_transfer;
605 
606 		/*
607 		 * Round the write down to an
608 		 * exact number of packets.
609 		 *
610 		 * Note, we do not currently check to see if we can ever
611 		 * write a full packet or not to the FIFO.
612 		 */
613 
614 		if (pkt_round)
615 			to_write -= pkt_round;
616 
617 		/*
618 		 * enable correct FIFO interrupt to alert us when there
619 		 * is more room left.
620 		 */
621 
622 		/* it's needed only when we do not use dedicated fifos */
623 		if (!hsotg->dedicated_fifos)
624 			dwc2_hsotg_en_gsint(hsotg,
625 					    periodic ? GINTSTS_PTXFEMP :
626 					   GINTSTS_NPTXFEMP);
627 	}
628 
629 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
630 		to_write, hs_req->req.length, can_write, buf_pos);
631 
632 	if (to_write <= 0)
633 		return -ENOSPC;
634 
635 	hs_req->req.actual = buf_pos + to_write;
636 	hs_ep->total_data += to_write;
637 
638 	if (periodic)
639 		hs_ep->fifo_load += to_write;
640 
641 	to_write = DIV_ROUND_UP(to_write, 4);
642 	data = hs_req->req.buf + buf_pos;
643 
644 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
645 
646 	return (to_write >= can_write) ? -ENOSPC : 0;
647 }
648 
649 /**
650  * get_ep_limit - get the maximum data legnth for this endpoint
651  * @hs_ep: The endpoint
652  *
653  * Return the maximum data that can be queued in one go on a given endpoint
654  * so that transfers that are too long can be split.
655  */
656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
657 {
658 	int index = hs_ep->index;
659 	unsigned int maxsize;
660 	unsigned int maxpkt;
661 
662 	if (index != 0) {
663 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
664 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
665 	} else {
666 		maxsize = 64 + 64;
667 		if (hs_ep->dir_in)
668 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
669 		else
670 			maxpkt = 2;
671 	}
672 
673 	/* we made the constant loading easier above by using +1 */
674 	maxpkt--;
675 	maxsize--;
676 
677 	/*
678 	 * constrain by packet count if maxpkts*pktsize is greater
679 	 * than the length register size.
680 	 */
681 
682 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
683 		maxsize = maxpkt * hs_ep->ep.maxpacket;
684 
685 	return maxsize;
686 }
687 
688 /**
689  * dwc2_hsotg_read_frameno - read current frame number
690  * @hsotg: The device instance
691  *
692  * Return the current frame number
693  */
694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
695 {
696 	u32 dsts;
697 
698 	dsts = dwc2_readl(hsotg, DSTS);
699 	dsts &= DSTS_SOFFN_MASK;
700 	dsts >>= DSTS_SOFFN_SHIFT;
701 
702 	return dsts;
703 }
704 
705 /**
706  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
707  * DMA descriptor chain prepared for specific endpoint
708  * @hs_ep: The endpoint
709  *
710  * Return the maximum data that can be queued in one go on a given endpoint
711  * depending on its descriptor chain capacity so that transfers that
712  * are too long can be split.
713  */
714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
715 {
716 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
717 	int is_isoc = hs_ep->isochronous;
718 	unsigned int maxsize;
719 	u32 mps = hs_ep->ep.maxpacket;
720 	int dir_in = hs_ep->dir_in;
721 
722 	if (is_isoc)
723 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
724 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
725 					   MAX_DMA_DESC_NUM_HS_ISOC;
726 	else
727 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
728 
729 	/* Interrupt OUT EP with mps not multiple of 4 */
730 	if (hs_ep->index)
731 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
732 			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
733 
734 	return maxsize;
735 }
736 
737 /*
738  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
739  * @hs_ep: The endpoint
740  * @mask: RX/TX bytes mask to be defined
741  *
742  * Returns maximum data payload for one descriptor after analyzing endpoint
743  * characteristics.
744  * DMA descriptor transfer bytes limit depends on EP type:
745  * Control out - MPS,
746  * Isochronous - descriptor rx/tx bytes bitfield limit,
747  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
748  * have concatenations from various descriptors within one packet.
749  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
750  * to a single descriptor.
751  *
752  * Selects corresponding mask for RX/TX bytes as well.
753  */
754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
755 {
756 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
757 	u32 mps = hs_ep->ep.maxpacket;
758 	int dir_in = hs_ep->dir_in;
759 	u32 desc_size = 0;
760 
761 	if (!hs_ep->index && !dir_in) {
762 		desc_size = mps;
763 		*mask = DEV_DMA_NBYTES_MASK;
764 	} else if (hs_ep->isochronous) {
765 		if (dir_in) {
766 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
767 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
768 		} else {
769 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
770 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
771 		}
772 	} else {
773 		desc_size = DEV_DMA_NBYTES_LIMIT;
774 		*mask = DEV_DMA_NBYTES_MASK;
775 
776 		/* Round down desc_size to be mps multiple */
777 		desc_size -= desc_size % mps;
778 	}
779 
780 	/* Interrupt OUT EP with mps not multiple of 4 */
781 	if (hs_ep->index)
782 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
783 			desc_size = mps;
784 			*mask = DEV_DMA_NBYTES_MASK;
785 		}
786 
787 	return desc_size;
788 }
789 
790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
791 						 struct dwc2_dma_desc **desc,
792 						 dma_addr_t dma_buff,
793 						 unsigned int len,
794 						 bool true_last)
795 {
796 	int dir_in = hs_ep->dir_in;
797 	u32 mps = hs_ep->ep.maxpacket;
798 	u32 maxsize = 0;
799 	u32 offset = 0;
800 	u32 mask = 0;
801 	int i;
802 
803 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
804 
805 	hs_ep->desc_count = (len / maxsize) +
806 				((len % maxsize) ? 1 : 0);
807 	if (len == 0)
808 		hs_ep->desc_count = 1;
809 
810 	for (i = 0; i < hs_ep->desc_count; ++i) {
811 		(*desc)->status = 0;
812 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
813 				 << DEV_DMA_BUFF_STS_SHIFT);
814 
815 		if (len > maxsize) {
816 			if (!hs_ep->index && !dir_in)
817 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
818 
819 			(*desc)->status |=
820 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
821 			(*desc)->buf = dma_buff + offset;
822 
823 			len -= maxsize;
824 			offset += maxsize;
825 		} else {
826 			if (true_last)
827 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
828 
829 			if (dir_in)
830 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
831 					((hs_ep->send_zlp && true_last) ?
832 					DEV_DMA_SHORT : 0);
833 
834 			(*desc)->status |=
835 				len << DEV_DMA_NBYTES_SHIFT & mask;
836 			(*desc)->buf = dma_buff + offset;
837 		}
838 
839 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
840 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
841 				 << DEV_DMA_BUFF_STS_SHIFT);
842 		(*desc)++;
843 	}
844 }
845 
846 /*
847  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
848  * @hs_ep: The endpoint
849  * @ureq: Request to transfer
850  * @offset: offset in bytes
851  * @len: Length of the transfer
852  *
853  * This function will iterate over descriptor chain and fill its entries
854  * with corresponding information based on transfer data.
855  */
856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
857 						 dma_addr_t dma_buff,
858 						 unsigned int len)
859 {
860 	struct usb_request *ureq = NULL;
861 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
862 	struct scatterlist *sg;
863 	int i;
864 	u8 desc_count = 0;
865 
866 	if (hs_ep->req)
867 		ureq = &hs_ep->req->req;
868 
869 	/* non-DMA sg buffer */
870 	if (!ureq || !ureq->num_sgs) {
871 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
872 			dma_buff, len, true);
873 		return;
874 	}
875 
876 	/* DMA sg buffer */
877 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
878 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
879 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
880 			sg_is_last(sg));
881 		desc_count += hs_ep->desc_count;
882 	}
883 
884 	hs_ep->desc_count = desc_count;
885 }
886 
887 /*
888  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
889  * @hs_ep: The isochronous endpoint.
890  * @dma_buff: usb requests dma buffer.
891  * @len: usb request transfer length.
892  *
893  * Fills next free descriptor with the data of the arrived usb request,
894  * frame info, sets Last and IOC bits increments next_desc. If filled
895  * descriptor is not the first one, removes L bit from the previous descriptor
896  * status.
897  */
898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
899 				      dma_addr_t dma_buff, unsigned int len)
900 {
901 	struct dwc2_dma_desc *desc;
902 	struct dwc2_hsotg *hsotg = hs_ep->parent;
903 	u32 index;
904 	u32 mask = 0;
905 	u8 pid = 0;
906 
907 	dwc2_gadget_get_desc_params(hs_ep, &mask);
908 
909 	index = hs_ep->next_desc;
910 	desc = &hs_ep->desc_list[index];
911 
912 	/* Check if descriptor chain full */
913 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
914 	    DEV_DMA_BUFF_STS_HREADY) {
915 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
916 		return 1;
917 	}
918 
919 	/* Clear L bit of previous desc if more than one entries in the chain */
920 	if (hs_ep->next_desc)
921 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
922 
923 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
924 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
925 
926 	desc->status = 0;
927 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
928 
929 	desc->buf = dma_buff;
930 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
931 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
932 
933 	if (hs_ep->dir_in) {
934 		if (len)
935 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
936 		else
937 			pid = 1;
938 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
939 				 DEV_DMA_ISOC_PID_MASK) |
940 				((len % hs_ep->ep.maxpacket) ?
941 				 DEV_DMA_SHORT : 0) |
942 				((hs_ep->target_frame <<
943 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
944 				 DEV_DMA_ISOC_FRNUM_MASK);
945 	}
946 
947 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
948 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
949 
950 	/* Increment frame number by interval for IN */
951 	if (hs_ep->dir_in)
952 		dwc2_gadget_incr_frame_num(hs_ep);
953 
954 	/* Update index of last configured entry in the chain */
955 	hs_ep->next_desc++;
956 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
957 		hs_ep->next_desc = 0;
958 
959 	return 0;
960 }
961 
962 /*
963  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
964  * @hs_ep: The isochronous endpoint.
965  *
966  * Prepare descriptor chain for isochronous endpoints. Afterwards
967  * write DMA address to HW and enable the endpoint.
968  */
969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
970 {
971 	struct dwc2_hsotg *hsotg = hs_ep->parent;
972 	struct dwc2_hsotg_req *hs_req, *treq;
973 	int index = hs_ep->index;
974 	int ret;
975 	int i;
976 	u32 dma_reg;
977 	u32 depctl;
978 	u32 ctrl;
979 	struct dwc2_dma_desc *desc;
980 
981 	if (list_empty(&hs_ep->queue)) {
982 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
983 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
984 		return;
985 	}
986 
987 	/* Initialize descriptor chain by Host Busy status */
988 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
989 		desc = &hs_ep->desc_list[i];
990 		desc->status = 0;
991 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
992 				    << DEV_DMA_BUFF_STS_SHIFT);
993 	}
994 
995 	hs_ep->next_desc = 0;
996 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
997 		dma_addr_t dma_addr = hs_req->req.dma;
998 
999 		if (hs_req->req.num_sgs) {
1000 			WARN_ON(hs_req->req.num_sgs > 1);
1001 			dma_addr = sg_dma_address(hs_req->req.sg);
1002 		}
1003 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1004 						 hs_req->req.length);
1005 		if (ret)
1006 			break;
1007 	}
1008 
1009 	hs_ep->compl_desc = 0;
1010 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1011 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1012 
1013 	/* write descriptor chain address to control register */
1014 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1015 
1016 	ctrl = dwc2_readl(hsotg, depctl);
1017 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1018 	dwc2_writel(hsotg, ctrl, depctl);
1019 }
1020 
1021 /**
1022  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1023  * @hsotg: The controller state.
1024  * @hs_ep: The endpoint to process a request for
1025  * @hs_req: The request to start.
1026  * @continuing: True if we are doing more for the current request.
1027  *
1028  * Start the given request running by setting the endpoint registers
1029  * appropriately, and writing any data to the FIFOs.
1030  */
1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1032 				 struct dwc2_hsotg_ep *hs_ep,
1033 				struct dwc2_hsotg_req *hs_req,
1034 				bool continuing)
1035 {
1036 	struct usb_request *ureq = &hs_req->req;
1037 	int index = hs_ep->index;
1038 	int dir_in = hs_ep->dir_in;
1039 	u32 epctrl_reg;
1040 	u32 epsize_reg;
1041 	u32 epsize;
1042 	u32 ctrl;
1043 	unsigned int length;
1044 	unsigned int packets;
1045 	unsigned int maxreq;
1046 	unsigned int dma_reg;
1047 
1048 	if (index != 0) {
1049 		if (hs_ep->req && !continuing) {
1050 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1051 			WARN_ON(1);
1052 			return;
1053 		} else if (hs_ep->req != hs_req && continuing) {
1054 			dev_err(hsotg->dev,
1055 				"%s: continue different req\n", __func__);
1056 			WARN_ON(1);
1057 			return;
1058 		}
1059 	}
1060 
1061 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1062 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1063 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1064 
1065 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1066 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1067 		hs_ep->dir_in ? "in" : "out");
1068 
1069 	/* If endpoint is stalled, we will restart request later */
1070 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1071 
1072 	if (index && ctrl & DXEPCTL_STALL) {
1073 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1074 		return;
1075 	}
1076 
1077 	length = ureq->length - ureq->actual;
1078 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1079 		ureq->length, ureq->actual);
1080 
1081 	if (!using_desc_dma(hsotg))
1082 		maxreq = get_ep_limit(hs_ep);
1083 	else
1084 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1085 
1086 	if (length > maxreq) {
1087 		int round = maxreq % hs_ep->ep.maxpacket;
1088 
1089 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1090 			__func__, length, maxreq, round);
1091 
1092 		/* round down to multiple of packets */
1093 		if (round)
1094 			maxreq -= round;
1095 
1096 		length = maxreq;
1097 	}
1098 
1099 	if (length)
1100 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1101 	else
1102 		packets = 1;	/* send one packet if length is zero. */
1103 
1104 	if (dir_in && index != 0)
1105 		if (hs_ep->isochronous)
1106 			epsize = DXEPTSIZ_MC(packets);
1107 		else
1108 			epsize = DXEPTSIZ_MC(1);
1109 	else
1110 		epsize = 0;
1111 
1112 	/*
1113 	 * zero length packet should be programmed on its own and should not
1114 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1115 	 */
1116 	if (dir_in && ureq->zero && !continuing) {
1117 		/* Test if zlp is actually required. */
1118 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1119 		    !(ureq->length % hs_ep->ep.maxpacket))
1120 			hs_ep->send_zlp = 1;
1121 	}
1122 
1123 	epsize |= DXEPTSIZ_PKTCNT(packets);
1124 	epsize |= DXEPTSIZ_XFERSIZE(length);
1125 
1126 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1127 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1128 
1129 	/* store the request as the current one we're doing */
1130 	hs_ep->req = hs_req;
1131 
1132 	if (using_desc_dma(hsotg)) {
1133 		u32 offset = 0;
1134 		u32 mps = hs_ep->ep.maxpacket;
1135 
1136 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1137 		if (!dir_in) {
1138 			if (!index)
1139 				length = mps;
1140 			else if (length % mps)
1141 				length += (mps - (length % mps));
1142 		}
1143 
1144 		if (continuing)
1145 			offset = ureq->actual;
1146 
1147 		/* Fill DDMA chain entries */
1148 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1149 						     length);
1150 
1151 		/* write descriptor chain address to control register */
1152 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1153 
1154 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1155 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1156 	} else {
1157 		/* write size / packets */
1158 		dwc2_writel(hsotg, epsize, epsize_reg);
1159 
1160 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1161 			/*
1162 			 * write DMA address to control register, buffer
1163 			 * already synced by dwc2_hsotg_ep_queue().
1164 			 */
1165 
1166 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1167 
1168 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1169 				__func__, &ureq->dma, dma_reg);
1170 		}
1171 	}
1172 
1173 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1174 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1175 		dwc2_gadget_incr_frame_num(hs_ep);
1176 
1177 		if (hs_ep->target_frame & 0x1)
1178 			ctrl |= DXEPCTL_SETODDFR;
1179 		else
1180 			ctrl |= DXEPCTL_SETEVENFR;
1181 	}
1182 
1183 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1184 
1185 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1186 
1187 	/* For Setup request do not clear NAK */
1188 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1189 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1190 
1191 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1192 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1193 
1194 	/*
1195 	 * set these, it seems that DMA support increments past the end
1196 	 * of the packet buffer so we need to calculate the length from
1197 	 * this information.
1198 	 */
1199 	hs_ep->size_loaded = length;
1200 	hs_ep->last_load = ureq->actual;
1201 
1202 	if (dir_in && !using_dma(hsotg)) {
1203 		/* set these anyway, we may need them for non-periodic in */
1204 		hs_ep->fifo_load = 0;
1205 
1206 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1207 	}
1208 
1209 	/*
1210 	 * Note, trying to clear the NAK here causes problems with transmit
1211 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1212 	 */
1213 
1214 	/* check ep is enabled */
1215 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1216 		dev_dbg(hsotg->dev,
1217 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1218 			 index, dwc2_readl(hsotg, epctrl_reg));
1219 
1220 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1221 		__func__, dwc2_readl(hsotg, epctrl_reg));
1222 
1223 	/* enable ep interrupts */
1224 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1225 }
1226 
1227 /**
1228  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1229  * @hsotg: The device state.
1230  * @hs_ep: The endpoint the request is on.
1231  * @req: The request being processed.
1232  *
1233  * We've been asked to queue a request, so ensure that the memory buffer
1234  * is correctly setup for DMA. If we've been passed an extant DMA address
1235  * then ensure the buffer has been synced to memory. If our buffer has no
1236  * DMA memory, then we map the memory and mark our request to allow us to
1237  * cleanup on completion.
1238  */
1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1240 			      struct dwc2_hsotg_ep *hs_ep,
1241 			     struct usb_request *req)
1242 {
1243 	int ret;
1244 
1245 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1246 	if (ret)
1247 		goto dma_error;
1248 
1249 	return 0;
1250 
1251 dma_error:
1252 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1253 		__func__, req->buf, req->length);
1254 
1255 	return -EIO;
1256 }
1257 
1258 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1259 						 struct dwc2_hsotg_ep *hs_ep,
1260 						 struct dwc2_hsotg_req *hs_req)
1261 {
1262 	void *req_buf = hs_req->req.buf;
1263 
1264 	/* If dma is not being used or buffer is aligned */
1265 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1266 		return 0;
1267 
1268 	WARN_ON(hs_req->saved_req_buf);
1269 
1270 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1271 		hs_ep->ep.name, req_buf, hs_req->req.length);
1272 
1273 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1274 	if (!hs_req->req.buf) {
1275 		hs_req->req.buf = req_buf;
1276 		dev_err(hsotg->dev,
1277 			"%s: unable to allocate memory for bounce buffer\n",
1278 			__func__);
1279 		return -ENOMEM;
1280 	}
1281 
1282 	/* Save actual buffer */
1283 	hs_req->saved_req_buf = req_buf;
1284 
1285 	if (hs_ep->dir_in)
1286 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1287 	return 0;
1288 }
1289 
1290 static void
1291 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1292 					 struct dwc2_hsotg_ep *hs_ep,
1293 					 struct dwc2_hsotg_req *hs_req)
1294 {
1295 	/* If dma is not being used or buffer was aligned */
1296 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1297 		return;
1298 
1299 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1300 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1301 
1302 	/* Copy data from bounce buffer on successful out transfer */
1303 	if (!hs_ep->dir_in && !hs_req->req.status)
1304 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1305 		       hs_req->req.actual);
1306 
1307 	/* Free bounce buffer */
1308 	kfree(hs_req->req.buf);
1309 
1310 	hs_req->req.buf = hs_req->saved_req_buf;
1311 	hs_req->saved_req_buf = NULL;
1312 }
1313 
1314 /**
1315  * dwc2_gadget_target_frame_elapsed - Checks target frame
1316  * @hs_ep: The driver endpoint to check
1317  *
1318  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1319  * corresponding transfer.
1320  */
1321 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1322 {
1323 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1324 	u32 target_frame = hs_ep->target_frame;
1325 	u32 current_frame = hsotg->frame_number;
1326 	bool frame_overrun = hs_ep->frame_overrun;
1327 
1328 	if (!frame_overrun && current_frame >= target_frame)
1329 		return true;
1330 
1331 	if (frame_overrun && current_frame >= target_frame &&
1332 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1333 		return true;
1334 
1335 	return false;
1336 }
1337 
1338 /*
1339  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1340  * @hsotg: The driver state
1341  * @hs_ep: the ep descriptor chain is for
1342  *
1343  * Called to update EP0 structure's pointers depend on stage of
1344  * control transfer.
1345  */
1346 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1347 					  struct dwc2_hsotg_ep *hs_ep)
1348 {
1349 	switch (hsotg->ep0_state) {
1350 	case DWC2_EP0_SETUP:
1351 	case DWC2_EP0_STATUS_OUT:
1352 		hs_ep->desc_list = hsotg->setup_desc[0];
1353 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1354 		break;
1355 	case DWC2_EP0_DATA_IN:
1356 	case DWC2_EP0_STATUS_IN:
1357 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1358 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1359 		break;
1360 	case DWC2_EP0_DATA_OUT:
1361 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1362 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1363 		break;
1364 	default:
1365 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1366 			hsotg->ep0_state);
1367 		return -EINVAL;
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1374 			       gfp_t gfp_flags)
1375 {
1376 	struct dwc2_hsotg_req *hs_req = our_req(req);
1377 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1378 	struct dwc2_hsotg *hs = hs_ep->parent;
1379 	bool first;
1380 	int ret;
1381 	u32 maxsize = 0;
1382 	u32 mask = 0;
1383 
1384 
1385 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1386 		ep->name, req, req->length, req->buf, req->no_interrupt,
1387 		req->zero, req->short_not_ok);
1388 
1389 	/* Prevent new request submission when controller is suspended */
1390 	if (hs->lx_state != DWC2_L0) {
1391 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1392 			__func__);
1393 		return -EAGAIN;
1394 	}
1395 
1396 	/* initialise status of the request */
1397 	INIT_LIST_HEAD(&hs_req->queue);
1398 	req->actual = 0;
1399 	req->status = -EINPROGRESS;
1400 
1401 	/* Don't queue ISOC request if length greater than mps*mc */
1402 	if (hs_ep->isochronous &&
1403 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1404 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1405 		return -EINVAL;
1406 	}
1407 
1408 	/* In DDMA mode for ISOC's don't queue request if length greater
1409 	 * than descriptor limits.
1410 	 */
1411 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1412 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1413 		if (hs_ep->dir_in && req->length > maxsize) {
1414 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1415 				req->length, maxsize);
1416 			return -EINVAL;
1417 		}
1418 
1419 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1420 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1421 				req->length, hs_ep->ep.maxpacket);
1422 			return -EINVAL;
1423 		}
1424 	}
1425 
1426 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1427 	if (ret)
1428 		return ret;
1429 
1430 	/* if we're using DMA, sync the buffers as necessary */
1431 	if (using_dma(hs)) {
1432 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1433 		if (ret)
1434 			return ret;
1435 	}
1436 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1437 	if (using_desc_dma(hs) && !hs_ep->index) {
1438 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1439 		if (ret)
1440 			return ret;
1441 	}
1442 
1443 	first = list_empty(&hs_ep->queue);
1444 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1445 
1446 	/*
1447 	 * Handle DDMA isochronous transfers separately - just add new entry
1448 	 * to the descriptor chain.
1449 	 * Transfer will be started once SW gets either one of NAK or
1450 	 * OutTknEpDis interrupts.
1451 	 */
1452 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1453 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1454 			dma_addr_t dma_addr = hs_req->req.dma;
1455 
1456 			if (hs_req->req.num_sgs) {
1457 				WARN_ON(hs_req->req.num_sgs > 1);
1458 				dma_addr = sg_dma_address(hs_req->req.sg);
1459 			}
1460 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1461 						   hs_req->req.length);
1462 		}
1463 		return 0;
1464 	}
1465 
1466 	/* Change EP direction if status phase request is after data out */
1467 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1468 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1469 		hs_ep->dir_in = 1;
1470 
1471 	if (first) {
1472 		if (!hs_ep->isochronous) {
1473 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1474 			return 0;
1475 		}
1476 
1477 		/* Update current frame number value. */
1478 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1479 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1480 			dwc2_gadget_incr_frame_num(hs_ep);
1481 			/* Update current frame number value once more as it
1482 			 * changes here.
1483 			 */
1484 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1485 		}
1486 
1487 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1488 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1489 	}
1490 	return 0;
1491 }
1492 
1493 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1494 				    gfp_t gfp_flags)
1495 {
1496 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1497 	struct dwc2_hsotg *hs = hs_ep->parent;
1498 	unsigned long flags = 0;
1499 	int ret = 0;
1500 
1501 	spin_lock_irqsave(&hs->lock, flags);
1502 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1503 	spin_unlock_irqrestore(&hs->lock, flags);
1504 
1505 	return ret;
1506 }
1507 
1508 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1509 				       struct usb_request *req)
1510 {
1511 	struct dwc2_hsotg_req *hs_req = our_req(req);
1512 
1513 	kfree(hs_req);
1514 }
1515 
1516 /**
1517  * dwc2_hsotg_complete_oursetup - setup completion callback
1518  * @ep: The endpoint the request was on.
1519  * @req: The request completed.
1520  *
1521  * Called on completion of any requests the driver itself
1522  * submitted that need cleaning up.
1523  */
1524 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1525 					 struct usb_request *req)
1526 {
1527 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1528 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1529 
1530 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1531 
1532 	dwc2_hsotg_ep_free_request(ep, req);
1533 }
1534 
1535 /**
1536  * ep_from_windex - convert control wIndex value to endpoint
1537  * @hsotg: The driver state.
1538  * @windex: The control request wIndex field (in host order).
1539  *
1540  * Convert the given wIndex into a pointer to an driver endpoint
1541  * structure, or return NULL if it is not a valid endpoint.
1542  */
1543 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1544 					    u32 windex)
1545 {
1546 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1547 	int idx = windex & 0x7F;
1548 
1549 	if (windex >= 0x100)
1550 		return NULL;
1551 
1552 	if (idx > hsotg->num_of_eps)
1553 		return NULL;
1554 
1555 	return index_to_ep(hsotg, idx, dir);
1556 }
1557 
1558 /**
1559  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1560  * @hsotg: The driver state.
1561  * @testmode: requested usb test mode
1562  * Enable usb Test Mode requested by the Host.
1563  */
1564 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1565 {
1566 	int dctl = dwc2_readl(hsotg, DCTL);
1567 
1568 	dctl &= ~DCTL_TSTCTL_MASK;
1569 	switch (testmode) {
1570 	case USB_TEST_J:
1571 	case USB_TEST_K:
1572 	case USB_TEST_SE0_NAK:
1573 	case USB_TEST_PACKET:
1574 	case USB_TEST_FORCE_ENABLE:
1575 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1576 		break;
1577 	default:
1578 		return -EINVAL;
1579 	}
1580 	dwc2_writel(hsotg, dctl, DCTL);
1581 	return 0;
1582 }
1583 
1584 /**
1585  * dwc2_hsotg_send_reply - send reply to control request
1586  * @hsotg: The device state
1587  * @ep: Endpoint 0
1588  * @buff: Buffer for request
1589  * @length: Length of reply.
1590  *
1591  * Create a request and queue it on the given endpoint. This is useful as
1592  * an internal method of sending replies to certain control requests, etc.
1593  */
1594 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1595 				 struct dwc2_hsotg_ep *ep,
1596 				void *buff,
1597 				int length)
1598 {
1599 	struct usb_request *req;
1600 	int ret;
1601 
1602 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1603 
1604 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1605 	hsotg->ep0_reply = req;
1606 	if (!req) {
1607 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1608 		return -ENOMEM;
1609 	}
1610 
1611 	req->buf = hsotg->ep0_buff;
1612 	req->length = length;
1613 	/*
1614 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1615 	 * STATUS stage.
1616 	 */
1617 	req->zero = 0;
1618 	req->complete = dwc2_hsotg_complete_oursetup;
1619 
1620 	if (length)
1621 		memcpy(req->buf, buff, length);
1622 
1623 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1624 	if (ret) {
1625 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1626 		return ret;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 /**
1633  * dwc2_hsotg_process_req_status - process request GET_STATUS
1634  * @hsotg: The device state
1635  * @ctrl: USB control request
1636  */
1637 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1638 					 struct usb_ctrlrequest *ctrl)
1639 {
1640 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1641 	struct dwc2_hsotg_ep *ep;
1642 	__le16 reply;
1643 	u16 status;
1644 	int ret;
1645 
1646 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1647 
1648 	if (!ep0->dir_in) {
1649 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1650 		return -EINVAL;
1651 	}
1652 
1653 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1654 	case USB_RECIP_DEVICE:
1655 		status = hsotg->gadget.is_selfpowered <<
1656 			 USB_DEVICE_SELF_POWERED;
1657 		status |= hsotg->remote_wakeup_allowed <<
1658 			  USB_DEVICE_REMOTE_WAKEUP;
1659 		reply = cpu_to_le16(status);
1660 		break;
1661 
1662 	case USB_RECIP_INTERFACE:
1663 		/* currently, the data result should be zero */
1664 		reply = cpu_to_le16(0);
1665 		break;
1666 
1667 	case USB_RECIP_ENDPOINT:
1668 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1669 		if (!ep)
1670 			return -ENOENT;
1671 
1672 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1673 		break;
1674 
1675 	default:
1676 		return 0;
1677 	}
1678 
1679 	if (le16_to_cpu(ctrl->wLength) != 2)
1680 		return -EINVAL;
1681 
1682 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1683 	if (ret) {
1684 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1685 		return ret;
1686 	}
1687 
1688 	return 1;
1689 }
1690 
1691 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1692 
1693 /**
1694  * get_ep_head - return the first request on the endpoint
1695  * @hs_ep: The controller endpoint to get
1696  *
1697  * Get the first request on the endpoint.
1698  */
1699 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1700 {
1701 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1702 					queue);
1703 }
1704 
1705 /**
1706  * dwc2_gadget_start_next_request - Starts next request from ep queue
1707  * @hs_ep: Endpoint structure
1708  *
1709  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1710  * in its handler. Hence we need to unmask it here to be able to do
1711  * resynchronization.
1712  */
1713 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1714 {
1715 	u32 mask;
1716 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1717 	int dir_in = hs_ep->dir_in;
1718 	struct dwc2_hsotg_req *hs_req;
1719 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1720 
1721 	if (!list_empty(&hs_ep->queue)) {
1722 		hs_req = get_ep_head(hs_ep);
1723 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1724 		return;
1725 	}
1726 	if (!hs_ep->isochronous)
1727 		return;
1728 
1729 	if (dir_in) {
1730 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1731 			__func__);
1732 	} else {
1733 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1734 			__func__);
1735 		mask = dwc2_readl(hsotg, epmsk_reg);
1736 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1737 		dwc2_writel(hsotg, mask, epmsk_reg);
1738 	}
1739 }
1740 
1741 /**
1742  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1743  * @hsotg: The device state
1744  * @ctrl: USB control request
1745  */
1746 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1747 					  struct usb_ctrlrequest *ctrl)
1748 {
1749 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1750 	struct dwc2_hsotg_req *hs_req;
1751 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1752 	struct dwc2_hsotg_ep *ep;
1753 	int ret;
1754 	bool halted;
1755 	u32 recip;
1756 	u32 wValue;
1757 	u32 wIndex;
1758 
1759 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1760 		__func__, set ? "SET" : "CLEAR");
1761 
1762 	wValue = le16_to_cpu(ctrl->wValue);
1763 	wIndex = le16_to_cpu(ctrl->wIndex);
1764 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1765 
1766 	switch (recip) {
1767 	case USB_RECIP_DEVICE:
1768 		switch (wValue) {
1769 		case USB_DEVICE_REMOTE_WAKEUP:
1770 			if (set)
1771 				hsotg->remote_wakeup_allowed = 1;
1772 			else
1773 				hsotg->remote_wakeup_allowed = 0;
1774 			break;
1775 
1776 		case USB_DEVICE_TEST_MODE:
1777 			if ((wIndex & 0xff) != 0)
1778 				return -EINVAL;
1779 			if (!set)
1780 				return -EINVAL;
1781 
1782 			hsotg->test_mode = wIndex >> 8;
1783 			break;
1784 		default:
1785 			return -ENOENT;
1786 		}
1787 
1788 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1789 		if (ret) {
1790 			dev_err(hsotg->dev,
1791 				"%s: failed to send reply\n", __func__);
1792 			return ret;
1793 		}
1794 		break;
1795 
1796 	case USB_RECIP_ENDPOINT:
1797 		ep = ep_from_windex(hsotg, wIndex);
1798 		if (!ep) {
1799 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1800 				__func__, wIndex);
1801 			return -ENOENT;
1802 		}
1803 
1804 		switch (wValue) {
1805 		case USB_ENDPOINT_HALT:
1806 			halted = ep->halted;
1807 
1808 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1809 
1810 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1811 			if (ret) {
1812 				dev_err(hsotg->dev,
1813 					"%s: failed to send reply\n", __func__);
1814 				return ret;
1815 			}
1816 
1817 			/*
1818 			 * we have to complete all requests for ep if it was
1819 			 * halted, and the halt was cleared by CLEAR_FEATURE
1820 			 */
1821 
1822 			if (!set && halted) {
1823 				/*
1824 				 * If we have request in progress,
1825 				 * then complete it
1826 				 */
1827 				if (ep->req) {
1828 					hs_req = ep->req;
1829 					ep->req = NULL;
1830 					list_del_init(&hs_req->queue);
1831 					if (hs_req->req.complete) {
1832 						spin_unlock(&hsotg->lock);
1833 						usb_gadget_giveback_request(
1834 							&ep->ep, &hs_req->req);
1835 						spin_lock(&hsotg->lock);
1836 					}
1837 				}
1838 
1839 				/* If we have pending request, then start it */
1840 				if (!ep->req)
1841 					dwc2_gadget_start_next_request(ep);
1842 			}
1843 
1844 			break;
1845 
1846 		default:
1847 			return -ENOENT;
1848 		}
1849 		break;
1850 	default:
1851 		return -ENOENT;
1852 	}
1853 	return 1;
1854 }
1855 
1856 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1857 
1858 /**
1859  * dwc2_hsotg_stall_ep0 - stall ep0
1860  * @hsotg: The device state
1861  *
1862  * Set stall for ep0 as response for setup request.
1863  */
1864 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1865 {
1866 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1867 	u32 reg;
1868 	u32 ctrl;
1869 
1870 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1871 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1872 
1873 	/*
1874 	 * DxEPCTL_Stall will be cleared by EP once it has
1875 	 * taken effect, so no need to clear later.
1876 	 */
1877 
1878 	ctrl = dwc2_readl(hsotg, reg);
1879 	ctrl |= DXEPCTL_STALL;
1880 	ctrl |= DXEPCTL_CNAK;
1881 	dwc2_writel(hsotg, ctrl, reg);
1882 
1883 	dev_dbg(hsotg->dev,
1884 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1885 		ctrl, reg, dwc2_readl(hsotg, reg));
1886 
1887 	 /*
1888 	  * complete won't be called, so we enqueue
1889 	  * setup request here
1890 	  */
1891 	 dwc2_hsotg_enqueue_setup(hsotg);
1892 }
1893 
1894 /**
1895  * dwc2_hsotg_process_control - process a control request
1896  * @hsotg: The device state
1897  * @ctrl: The control request received
1898  *
1899  * The controller has received the SETUP phase of a control request, and
1900  * needs to work out what to do next (and whether to pass it on to the
1901  * gadget driver).
1902  */
1903 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1904 				       struct usb_ctrlrequest *ctrl)
1905 {
1906 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1907 	int ret = 0;
1908 	u32 dcfg;
1909 
1910 	dev_dbg(hsotg->dev,
1911 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1912 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1913 		ctrl->wIndex, ctrl->wLength);
1914 
1915 	if (ctrl->wLength == 0) {
1916 		ep0->dir_in = 1;
1917 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1918 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1919 		ep0->dir_in = 1;
1920 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1921 	} else {
1922 		ep0->dir_in = 0;
1923 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1924 	}
1925 
1926 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1927 		switch (ctrl->bRequest) {
1928 		case USB_REQ_SET_ADDRESS:
1929 			hsotg->connected = 1;
1930 			dcfg = dwc2_readl(hsotg, DCFG);
1931 			dcfg &= ~DCFG_DEVADDR_MASK;
1932 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1933 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1934 			dwc2_writel(hsotg, dcfg, DCFG);
1935 
1936 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1937 
1938 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1939 			return;
1940 
1941 		case USB_REQ_GET_STATUS:
1942 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1943 			break;
1944 
1945 		case USB_REQ_CLEAR_FEATURE:
1946 		case USB_REQ_SET_FEATURE:
1947 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1948 			break;
1949 		}
1950 	}
1951 
1952 	/* as a fallback, try delivering it to the driver to deal with */
1953 
1954 	if (ret == 0 && hsotg->driver) {
1955 		spin_unlock(&hsotg->lock);
1956 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1957 		spin_lock(&hsotg->lock);
1958 		if (ret < 0)
1959 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1960 	}
1961 
1962 	hsotg->delayed_status = false;
1963 	if (ret == USB_GADGET_DELAYED_STATUS)
1964 		hsotg->delayed_status = true;
1965 
1966 	/*
1967 	 * the request is either unhandlable, or is not formatted correctly
1968 	 * so respond with a STALL for the status stage to indicate failure.
1969 	 */
1970 
1971 	if (ret < 0)
1972 		dwc2_hsotg_stall_ep0(hsotg);
1973 }
1974 
1975 /**
1976  * dwc2_hsotg_complete_setup - completion of a setup transfer
1977  * @ep: The endpoint the request was on.
1978  * @req: The request completed.
1979  *
1980  * Called on completion of any requests the driver itself submitted for
1981  * EP0 setup packets
1982  */
1983 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1984 				      struct usb_request *req)
1985 {
1986 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1987 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1988 
1989 	if (req->status < 0) {
1990 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1991 		return;
1992 	}
1993 
1994 	spin_lock(&hsotg->lock);
1995 	if (req->actual == 0)
1996 		dwc2_hsotg_enqueue_setup(hsotg);
1997 	else
1998 		dwc2_hsotg_process_control(hsotg, req->buf);
1999 	spin_unlock(&hsotg->lock);
2000 }
2001 
2002 /**
2003  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2004  * @hsotg: The device state.
2005  *
2006  * Enqueue a request on EP0 if necessary to received any SETUP packets
2007  * received from the host.
2008  */
2009 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2010 {
2011 	struct usb_request *req = hsotg->ctrl_req;
2012 	struct dwc2_hsotg_req *hs_req = our_req(req);
2013 	int ret;
2014 
2015 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2016 
2017 	req->zero = 0;
2018 	req->length = 8;
2019 	req->buf = hsotg->ctrl_buff;
2020 	req->complete = dwc2_hsotg_complete_setup;
2021 
2022 	if (!list_empty(&hs_req->queue)) {
2023 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2024 		return;
2025 	}
2026 
2027 	hsotg->eps_out[0]->dir_in = 0;
2028 	hsotg->eps_out[0]->send_zlp = 0;
2029 	hsotg->ep0_state = DWC2_EP0_SETUP;
2030 
2031 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2032 	if (ret < 0) {
2033 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2034 		/*
2035 		 * Don't think there's much we can do other than watch the
2036 		 * driver fail.
2037 		 */
2038 	}
2039 }
2040 
2041 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2042 				   struct dwc2_hsotg_ep *hs_ep)
2043 {
2044 	u32 ctrl;
2045 	u8 index = hs_ep->index;
2046 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2047 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2048 
2049 	if (hs_ep->dir_in)
2050 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2051 			index);
2052 	else
2053 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2054 			index);
2055 	if (using_desc_dma(hsotg)) {
2056 		/* Not specific buffer needed for ep0 ZLP */
2057 		dma_addr_t dma = hs_ep->desc_list_dma;
2058 
2059 		if (!index)
2060 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2061 
2062 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2063 	} else {
2064 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2065 			    DXEPTSIZ_XFERSIZE(0),
2066 			    epsiz_reg);
2067 	}
2068 
2069 	ctrl = dwc2_readl(hsotg, epctl_reg);
2070 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2071 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2072 	ctrl |= DXEPCTL_USBACTEP;
2073 	dwc2_writel(hsotg, ctrl, epctl_reg);
2074 }
2075 
2076 /**
2077  * dwc2_hsotg_complete_request - complete a request given to us
2078  * @hsotg: The device state.
2079  * @hs_ep: The endpoint the request was on.
2080  * @hs_req: The request to complete.
2081  * @result: The result code (0 => Ok, otherwise errno)
2082  *
2083  * The given request has finished, so call the necessary completion
2084  * if it has one and then look to see if we can start a new request
2085  * on the endpoint.
2086  *
2087  * Note, expects the ep to already be locked as appropriate.
2088  */
2089 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2090 					struct dwc2_hsotg_ep *hs_ep,
2091 				       struct dwc2_hsotg_req *hs_req,
2092 				       int result)
2093 {
2094 	if (!hs_req) {
2095 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2096 		return;
2097 	}
2098 
2099 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2100 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2101 
2102 	/*
2103 	 * only replace the status if we've not already set an error
2104 	 * from a previous transaction
2105 	 */
2106 
2107 	if (hs_req->req.status == -EINPROGRESS)
2108 		hs_req->req.status = result;
2109 
2110 	if (using_dma(hsotg))
2111 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2112 
2113 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2114 
2115 	hs_ep->req = NULL;
2116 	list_del_init(&hs_req->queue);
2117 
2118 	/*
2119 	 * call the complete request with the locks off, just in case the
2120 	 * request tries to queue more work for this endpoint.
2121 	 */
2122 
2123 	if (hs_req->req.complete) {
2124 		spin_unlock(&hsotg->lock);
2125 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2126 		spin_lock(&hsotg->lock);
2127 	}
2128 
2129 	/* In DDMA don't need to proceed to starting of next ISOC request */
2130 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2131 		return;
2132 
2133 	/*
2134 	 * Look to see if there is anything else to do. Note, the completion
2135 	 * of the previous request may have caused a new request to be started
2136 	 * so be careful when doing this.
2137 	 */
2138 
2139 	if (!hs_ep->req && result >= 0)
2140 		dwc2_gadget_start_next_request(hs_ep);
2141 }
2142 
2143 /*
2144  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2145  * @hs_ep: The endpoint the request was on.
2146  *
2147  * Get first request from the ep queue, determine descriptor on which complete
2148  * happened. SW discovers which descriptor currently in use by HW, adjusts
2149  * dma_address and calculates index of completed descriptor based on the value
2150  * of DEPDMA register. Update actual length of request, giveback to gadget.
2151  */
2152 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2153 {
2154 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2155 	struct dwc2_hsotg_req *hs_req;
2156 	struct usb_request *ureq;
2157 	u32 desc_sts;
2158 	u32 mask;
2159 
2160 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2161 
2162 	/* Process only descriptors with buffer status set to DMA done */
2163 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2164 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2165 
2166 		hs_req = get_ep_head(hs_ep);
2167 		if (!hs_req) {
2168 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2169 			return;
2170 		}
2171 		ureq = &hs_req->req;
2172 
2173 		/* Check completion status */
2174 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2175 			DEV_DMA_STS_SUCC) {
2176 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2177 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2178 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2179 				DEV_DMA_ISOC_NBYTES_SHIFT);
2180 
2181 			/* Adjust actual len for ISOC Out if len is
2182 			 * not align of 4
2183 			 */
2184 			if (!hs_ep->dir_in && ureq->length & 0x3)
2185 				ureq->actual += 4 - (ureq->length & 0x3);
2186 
2187 			/* Set actual frame number for completed transfers */
2188 			ureq->frame_number =
2189 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2190 				DEV_DMA_ISOC_FRNUM_SHIFT;
2191 		}
2192 
2193 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2194 
2195 		hs_ep->compl_desc++;
2196 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2197 			hs_ep->compl_desc = 0;
2198 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2199 	}
2200 }
2201 
2202 /*
2203  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2204  * @hs_ep: The isochronous endpoint.
2205  *
2206  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2207  * interrupt. Reset target frame and next_desc to allow to start
2208  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2209  * interrupt for OUT direction.
2210  */
2211 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2212 {
2213 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2214 
2215 	if (!hs_ep->dir_in)
2216 		dwc2_flush_rx_fifo(hsotg);
2217 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2218 
2219 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2220 	hs_ep->next_desc = 0;
2221 	hs_ep->compl_desc = 0;
2222 }
2223 
2224 /**
2225  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2226  * @hsotg: The device state.
2227  * @ep_idx: The endpoint index for the data
2228  * @size: The size of data in the fifo, in bytes
2229  *
2230  * The FIFO status shows there is data to read from the FIFO for a given
2231  * endpoint, so sort out whether we need to read the data into a request
2232  * that has been made for that endpoint.
2233  */
2234 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2235 {
2236 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2237 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2238 	int to_read;
2239 	int max_req;
2240 	int read_ptr;
2241 
2242 	if (!hs_req) {
2243 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2244 		int ptr;
2245 
2246 		dev_dbg(hsotg->dev,
2247 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2248 			 __func__, size, ep_idx, epctl);
2249 
2250 		/* dump the data from the FIFO, we've nothing we can do */
2251 		for (ptr = 0; ptr < size; ptr += 4)
2252 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2253 
2254 		return;
2255 	}
2256 
2257 	to_read = size;
2258 	read_ptr = hs_req->req.actual;
2259 	max_req = hs_req->req.length - read_ptr;
2260 
2261 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2262 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2263 
2264 	if (to_read > max_req) {
2265 		/*
2266 		 * more data appeared than we where willing
2267 		 * to deal with in this request.
2268 		 */
2269 
2270 		/* currently we don't deal this */
2271 		WARN_ON_ONCE(1);
2272 	}
2273 
2274 	hs_ep->total_data += to_read;
2275 	hs_req->req.actual += to_read;
2276 	to_read = DIV_ROUND_UP(to_read, 4);
2277 
2278 	/*
2279 	 * note, we might over-write the buffer end by 3 bytes depending on
2280 	 * alignment of the data.
2281 	 */
2282 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2283 		       hs_req->req.buf + read_ptr, to_read);
2284 }
2285 
2286 /**
2287  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2288  * @hsotg: The device instance
2289  * @dir_in: If IN zlp
2290  *
2291  * Generate a zero-length IN packet request for terminating a SETUP
2292  * transaction.
2293  *
2294  * Note, since we don't write any data to the TxFIFO, then it is
2295  * currently believed that we do not need to wait for any space in
2296  * the TxFIFO.
2297  */
2298 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2299 {
2300 	/* eps_out[0] is used in both directions */
2301 	hsotg->eps_out[0]->dir_in = dir_in;
2302 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2303 
2304 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2305 }
2306 
2307 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2308 					    u32 epctl_reg)
2309 {
2310 	u32 ctrl;
2311 
2312 	ctrl = dwc2_readl(hsotg, epctl_reg);
2313 	if (ctrl & DXEPCTL_EOFRNUM)
2314 		ctrl |= DXEPCTL_SETEVENFR;
2315 	else
2316 		ctrl |= DXEPCTL_SETODDFR;
2317 	dwc2_writel(hsotg, ctrl, epctl_reg);
2318 }
2319 
2320 /*
2321  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2322  * @hs_ep - The endpoint on which transfer went
2323  *
2324  * Iterate over endpoints descriptor chain and get info on bytes remained
2325  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2326  */
2327 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2328 {
2329 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2330 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2331 	unsigned int bytes_rem = 0;
2332 	unsigned int bytes_rem_correction = 0;
2333 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2334 	int i;
2335 	u32 status;
2336 	u32 mps = hs_ep->ep.maxpacket;
2337 	int dir_in = hs_ep->dir_in;
2338 
2339 	if (!desc)
2340 		return -EINVAL;
2341 
2342 	/* Interrupt OUT EP with mps not multiple of 4 */
2343 	if (hs_ep->index)
2344 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2345 			bytes_rem_correction = 4 - (mps % 4);
2346 
2347 	for (i = 0; i < hs_ep->desc_count; ++i) {
2348 		status = desc->status;
2349 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2350 		bytes_rem -= bytes_rem_correction;
2351 
2352 		if (status & DEV_DMA_STS_MASK)
2353 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2354 				i, status & DEV_DMA_STS_MASK);
2355 
2356 		if (status & DEV_DMA_L)
2357 			break;
2358 
2359 		desc++;
2360 	}
2361 
2362 	return bytes_rem;
2363 }
2364 
2365 /**
2366  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2367  * @hsotg: The device instance
2368  * @epnum: The endpoint received from
2369  *
2370  * The RXFIFO has delivered an OutDone event, which means that the data
2371  * transfer for an OUT endpoint has been completed, either by a short
2372  * packet or by the finish of a transfer.
2373  */
2374 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2375 {
2376 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2377 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2378 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2379 	struct usb_request *req = &hs_req->req;
2380 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2381 	int result = 0;
2382 
2383 	if (!hs_req) {
2384 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2385 		return;
2386 	}
2387 
2388 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2389 		dev_dbg(hsotg->dev, "zlp packet received\n");
2390 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2391 		dwc2_hsotg_enqueue_setup(hsotg);
2392 		return;
2393 	}
2394 
2395 	if (using_desc_dma(hsotg))
2396 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2397 
2398 	if (using_dma(hsotg)) {
2399 		unsigned int size_done;
2400 
2401 		/*
2402 		 * Calculate the size of the transfer by checking how much
2403 		 * is left in the endpoint size register and then working it
2404 		 * out from the amount we loaded for the transfer.
2405 		 *
2406 		 * We need to do this as DMA pointers are always 32bit aligned
2407 		 * so may overshoot/undershoot the transfer.
2408 		 */
2409 
2410 		size_done = hs_ep->size_loaded - size_left;
2411 		size_done += hs_ep->last_load;
2412 
2413 		req->actual = size_done;
2414 	}
2415 
2416 	/* if there is more request to do, schedule new transfer */
2417 	if (req->actual < req->length && size_left == 0) {
2418 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2419 		return;
2420 	}
2421 
2422 	if (req->actual < req->length && req->short_not_ok) {
2423 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2424 			__func__, req->actual, req->length);
2425 
2426 		/*
2427 		 * todo - what should we return here? there's no one else
2428 		 * even bothering to check the status.
2429 		 */
2430 	}
2431 
2432 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2433 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2434 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2435 		/* Move to STATUS IN */
2436 		if (!hsotg->delayed_status)
2437 			dwc2_hsotg_ep0_zlp(hsotg, true);
2438 	}
2439 
2440 	/*
2441 	 * Slave mode OUT transfers do not go through XferComplete so
2442 	 * adjust the ISOC parity here.
2443 	 */
2444 	if (!using_dma(hsotg)) {
2445 		if (hs_ep->isochronous && hs_ep->interval == 1)
2446 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2447 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2448 			dwc2_gadget_incr_frame_num(hs_ep);
2449 	}
2450 
2451 	/* Set actual frame number for completed transfers */
2452 	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2453 		req->frame_number = hsotg->frame_number;
2454 
2455 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2456 }
2457 
2458 /**
2459  * dwc2_hsotg_handle_rx - RX FIFO has data
2460  * @hsotg: The device instance
2461  *
2462  * The IRQ handler has detected that the RX FIFO has some data in it
2463  * that requires processing, so find out what is in there and do the
2464  * appropriate read.
2465  *
2466  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2467  * chunks, so if you have x packets received on an endpoint you'll get x
2468  * FIFO events delivered, each with a packet's worth of data in it.
2469  *
2470  * When using DMA, we should not be processing events from the RXFIFO
2471  * as the actual data should be sent to the memory directly and we turn
2472  * on the completion interrupts to get notifications of transfer completion.
2473  */
2474 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2475 {
2476 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2477 	u32 epnum, status, size;
2478 
2479 	WARN_ON(using_dma(hsotg));
2480 
2481 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2482 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2483 
2484 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2485 	size >>= GRXSTS_BYTECNT_SHIFT;
2486 
2487 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2488 		__func__, grxstsr, size, epnum);
2489 
2490 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2491 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2492 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2493 		break;
2494 
2495 	case GRXSTS_PKTSTS_OUTDONE:
2496 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2497 			dwc2_hsotg_read_frameno(hsotg));
2498 
2499 		if (!using_dma(hsotg))
2500 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2501 		break;
2502 
2503 	case GRXSTS_PKTSTS_SETUPDONE:
2504 		dev_dbg(hsotg->dev,
2505 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2506 			dwc2_hsotg_read_frameno(hsotg),
2507 			dwc2_readl(hsotg, DOEPCTL(0)));
2508 		/*
2509 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2510 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2511 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2512 		 */
2513 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2514 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2515 		break;
2516 
2517 	case GRXSTS_PKTSTS_OUTRX:
2518 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2519 		break;
2520 
2521 	case GRXSTS_PKTSTS_SETUPRX:
2522 		dev_dbg(hsotg->dev,
2523 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2524 			dwc2_hsotg_read_frameno(hsotg),
2525 			dwc2_readl(hsotg, DOEPCTL(0)));
2526 
2527 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2528 
2529 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2530 		break;
2531 
2532 	default:
2533 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2534 			 __func__, grxstsr);
2535 
2536 		dwc2_hsotg_dump(hsotg);
2537 		break;
2538 	}
2539 }
2540 
2541 /**
2542  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2543  * @mps: The maximum packet size in bytes.
2544  */
2545 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2546 {
2547 	switch (mps) {
2548 	case 64:
2549 		return D0EPCTL_MPS_64;
2550 	case 32:
2551 		return D0EPCTL_MPS_32;
2552 	case 16:
2553 		return D0EPCTL_MPS_16;
2554 	case 8:
2555 		return D0EPCTL_MPS_8;
2556 	}
2557 
2558 	/* bad max packet size, warn and return invalid result */
2559 	WARN_ON(1);
2560 	return (u32)-1;
2561 }
2562 
2563 /**
2564  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2565  * @hsotg: The driver state.
2566  * @ep: The index number of the endpoint
2567  * @mps: The maximum packet size in bytes
2568  * @mc: The multicount value
2569  * @dir_in: True if direction is in.
2570  *
2571  * Configure the maximum packet size for the given endpoint, updating
2572  * the hardware control registers to reflect this.
2573  */
2574 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2575 					unsigned int ep, unsigned int mps,
2576 					unsigned int mc, unsigned int dir_in)
2577 {
2578 	struct dwc2_hsotg_ep *hs_ep;
2579 	u32 reg;
2580 
2581 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2582 	if (!hs_ep)
2583 		return;
2584 
2585 	if (ep == 0) {
2586 		u32 mps_bytes = mps;
2587 
2588 		/* EP0 is a special case */
2589 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2590 		if (mps > 3)
2591 			goto bad_mps;
2592 		hs_ep->ep.maxpacket = mps_bytes;
2593 		hs_ep->mc = 1;
2594 	} else {
2595 		if (mps > 1024)
2596 			goto bad_mps;
2597 		hs_ep->mc = mc;
2598 		if (mc > 3)
2599 			goto bad_mps;
2600 		hs_ep->ep.maxpacket = mps;
2601 	}
2602 
2603 	if (dir_in) {
2604 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2605 		reg &= ~DXEPCTL_MPS_MASK;
2606 		reg |= mps;
2607 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2608 	} else {
2609 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2610 		reg &= ~DXEPCTL_MPS_MASK;
2611 		reg |= mps;
2612 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2613 	}
2614 
2615 	return;
2616 
2617 bad_mps:
2618 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2619 }
2620 
2621 /**
2622  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2623  * @hsotg: The driver state
2624  * @idx: The index for the endpoint (0..15)
2625  */
2626 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2627 {
2628 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2629 		    GRSTCTL);
2630 
2631 	/* wait until the fifo is flushed */
2632 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2633 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2634 			 __func__);
2635 }
2636 
2637 /**
2638  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2639  * @hsotg: The driver state
2640  * @hs_ep: The driver endpoint to check.
2641  *
2642  * Check to see if there is a request that has data to send, and if so
2643  * make an attempt to write data into the FIFO.
2644  */
2645 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2646 			    struct dwc2_hsotg_ep *hs_ep)
2647 {
2648 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2649 
2650 	if (!hs_ep->dir_in || !hs_req) {
2651 		/**
2652 		 * if request is not enqueued, we disable interrupts
2653 		 * for endpoints, excepting ep0
2654 		 */
2655 		if (hs_ep->index != 0)
2656 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2657 					      hs_ep->dir_in, 0);
2658 		return 0;
2659 	}
2660 
2661 	if (hs_req->req.actual < hs_req->req.length) {
2662 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2663 			hs_ep->index);
2664 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  * dwc2_hsotg_complete_in - complete IN transfer
2672  * @hsotg: The device state.
2673  * @hs_ep: The endpoint that has just completed.
2674  *
2675  * An IN transfer has been completed, update the transfer's state and then
2676  * call the relevant completion routines.
2677  */
2678 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2679 				   struct dwc2_hsotg_ep *hs_ep)
2680 {
2681 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2682 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2683 	int size_left, size_done;
2684 
2685 	if (!hs_req) {
2686 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2687 		return;
2688 	}
2689 
2690 	/* Finish ZLP handling for IN EP0 transactions */
2691 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2692 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2693 
2694 		/*
2695 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2696 		 * changed to IN. Change back to complete OUT transfer request
2697 		 */
2698 		hs_ep->dir_in = 0;
2699 
2700 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2701 		if (hsotg->test_mode) {
2702 			int ret;
2703 
2704 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2705 			if (ret < 0) {
2706 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2707 					hsotg->test_mode);
2708 				dwc2_hsotg_stall_ep0(hsotg);
2709 				return;
2710 			}
2711 		}
2712 		dwc2_hsotg_enqueue_setup(hsotg);
2713 		return;
2714 	}
2715 
2716 	/*
2717 	 * Calculate the size of the transfer by checking how much is left
2718 	 * in the endpoint size register and then working it out from
2719 	 * the amount we loaded for the transfer.
2720 	 *
2721 	 * We do this even for DMA, as the transfer may have incremented
2722 	 * past the end of the buffer (DMA transfers are always 32bit
2723 	 * aligned).
2724 	 */
2725 	if (using_desc_dma(hsotg)) {
2726 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2727 		if (size_left < 0)
2728 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2729 				size_left);
2730 	} else {
2731 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2732 	}
2733 
2734 	size_done = hs_ep->size_loaded - size_left;
2735 	size_done += hs_ep->last_load;
2736 
2737 	if (hs_req->req.actual != size_done)
2738 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2739 			__func__, hs_req->req.actual, size_done);
2740 
2741 	hs_req->req.actual = size_done;
2742 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2743 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2744 
2745 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2746 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2747 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2748 		return;
2749 	}
2750 
2751 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2752 	if (hs_ep->send_zlp) {
2753 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2754 		hs_ep->send_zlp = 0;
2755 		/* transfer will be completed on next complete interrupt */
2756 		return;
2757 	}
2758 
2759 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2760 		/* Move to STATUS OUT */
2761 		dwc2_hsotg_ep0_zlp(hsotg, false);
2762 		return;
2763 	}
2764 
2765 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2766 }
2767 
2768 /**
2769  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2770  * @hsotg: The device state.
2771  * @idx: Index of ep.
2772  * @dir_in: Endpoint direction 1-in 0-out.
2773  *
2774  * Reads for endpoint with given index and direction, by masking
2775  * epint_reg with coresponding mask.
2776  */
2777 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2778 					  unsigned int idx, int dir_in)
2779 {
2780 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2781 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2782 	u32 ints;
2783 	u32 mask;
2784 	u32 diepempmsk;
2785 
2786 	mask = dwc2_readl(hsotg, epmsk_reg);
2787 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2788 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2789 	mask |= DXEPINT_SETUP_RCVD;
2790 
2791 	ints = dwc2_readl(hsotg, epint_reg);
2792 	ints &= mask;
2793 	return ints;
2794 }
2795 
2796 /**
2797  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2798  * @hs_ep: The endpoint on which interrupt is asserted.
2799  *
2800  * This interrupt indicates that the endpoint has been disabled per the
2801  * application's request.
2802  *
2803  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2804  * in case of ISOC completes current request.
2805  *
2806  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2807  * request starts it.
2808  */
2809 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2810 {
2811 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2812 	struct dwc2_hsotg_req *hs_req;
2813 	unsigned char idx = hs_ep->index;
2814 	int dir_in = hs_ep->dir_in;
2815 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2816 	int dctl = dwc2_readl(hsotg, DCTL);
2817 
2818 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2819 
2820 	if (dir_in) {
2821 		int epctl = dwc2_readl(hsotg, epctl_reg);
2822 
2823 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2824 
2825 		if (hs_ep->isochronous) {
2826 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2827 			return;
2828 		}
2829 
2830 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2831 			int dctl = dwc2_readl(hsotg, DCTL);
2832 
2833 			dctl |= DCTL_CGNPINNAK;
2834 			dwc2_writel(hsotg, dctl, DCTL);
2835 		}
2836 		return;
2837 	}
2838 
2839 	if (dctl & DCTL_GOUTNAKSTS) {
2840 		dctl |= DCTL_CGOUTNAK;
2841 		dwc2_writel(hsotg, dctl, DCTL);
2842 	}
2843 
2844 	if (!hs_ep->isochronous)
2845 		return;
2846 
2847 	if (list_empty(&hs_ep->queue)) {
2848 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2849 			__func__, hs_ep);
2850 		return;
2851 	}
2852 
2853 	do {
2854 		hs_req = get_ep_head(hs_ep);
2855 		if (hs_req)
2856 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2857 						    -ENODATA);
2858 		dwc2_gadget_incr_frame_num(hs_ep);
2859 		/* Update current frame number value. */
2860 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2861 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2862 
2863 	dwc2_gadget_start_next_request(hs_ep);
2864 }
2865 
2866 /**
2867  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2868  * @ep: The endpoint on which interrupt is asserted.
2869  *
2870  * This is starting point for ISOC-OUT transfer, synchronization done with
2871  * first out token received from host while corresponding EP is disabled.
2872  *
2873  * Device does not know initial frame in which out token will come. For this
2874  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2875  * getting this interrupt SW starts calculation for next transfer frame.
2876  */
2877 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2878 {
2879 	struct dwc2_hsotg *hsotg = ep->parent;
2880 	int dir_in = ep->dir_in;
2881 	u32 doepmsk;
2882 
2883 	if (dir_in || !ep->isochronous)
2884 		return;
2885 
2886 	if (using_desc_dma(hsotg)) {
2887 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2888 			/* Start first ISO Out */
2889 			ep->target_frame = hsotg->frame_number;
2890 			dwc2_gadget_start_isoc_ddma(ep);
2891 		}
2892 		return;
2893 	}
2894 
2895 	if (ep->interval > 1 &&
2896 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2897 		u32 ctrl;
2898 
2899 		ep->target_frame = hsotg->frame_number;
2900 		dwc2_gadget_incr_frame_num(ep);
2901 
2902 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2903 		if (ep->target_frame & 0x1)
2904 			ctrl |= DXEPCTL_SETODDFR;
2905 		else
2906 			ctrl |= DXEPCTL_SETEVENFR;
2907 
2908 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2909 	}
2910 
2911 	dwc2_gadget_start_next_request(ep);
2912 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2913 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2914 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2915 }
2916 
2917 /**
2918  * dwc2_gadget_handle_nak - handle NAK interrupt
2919  * @hs_ep: The endpoint on which interrupt is asserted.
2920  *
2921  * This is starting point for ISOC-IN transfer, synchronization done with
2922  * first IN token received from host while corresponding EP is disabled.
2923  *
2924  * Device does not know when first one token will arrive from host. On first
2925  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2926  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2927  * sent in response to that as there was no data in FIFO. SW is basing on this
2928  * interrupt to obtain frame in which token has come and then based on the
2929  * interval calculates next frame for transfer.
2930  */
2931 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2932 {
2933 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2934 	int dir_in = hs_ep->dir_in;
2935 
2936 	if (!dir_in || !hs_ep->isochronous)
2937 		return;
2938 
2939 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2940 
2941 		if (using_desc_dma(hsotg)) {
2942 			hs_ep->target_frame = hsotg->frame_number;
2943 			dwc2_gadget_incr_frame_num(hs_ep);
2944 
2945 			/* In service interval mode target_frame must
2946 			 * be set to last (u)frame of the service interval.
2947 			 */
2948 			if (hsotg->params.service_interval) {
2949 				/* Set target_frame to the first (u)frame of
2950 				 * the service interval
2951 				 */
2952 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2953 
2954 				/* Set target_frame to the last (u)frame of
2955 				 * the service interval
2956 				 */
2957 				dwc2_gadget_incr_frame_num(hs_ep);
2958 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2959 			}
2960 
2961 			dwc2_gadget_start_isoc_ddma(hs_ep);
2962 			return;
2963 		}
2964 
2965 		hs_ep->target_frame = hsotg->frame_number;
2966 		if (hs_ep->interval > 1) {
2967 			u32 ctrl = dwc2_readl(hsotg,
2968 					      DIEPCTL(hs_ep->index));
2969 			if (hs_ep->target_frame & 0x1)
2970 				ctrl |= DXEPCTL_SETODDFR;
2971 			else
2972 				ctrl |= DXEPCTL_SETEVENFR;
2973 
2974 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2975 		}
2976 
2977 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2978 					    get_ep_head(hs_ep), 0);
2979 	}
2980 
2981 	if (!using_desc_dma(hsotg))
2982 		dwc2_gadget_incr_frame_num(hs_ep);
2983 }
2984 
2985 /**
2986  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2987  * @hsotg: The driver state
2988  * @idx: The index for the endpoint (0..15)
2989  * @dir_in: Set if this is an IN endpoint
2990  *
2991  * Process and clear any interrupt pending for an individual endpoint
2992  */
2993 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2994 			     int dir_in)
2995 {
2996 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2997 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2998 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2999 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3000 	u32 ints;
3001 
3002 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3003 
3004 	/* Clear endpoint interrupts */
3005 	dwc2_writel(hsotg, ints, epint_reg);
3006 
3007 	if (!hs_ep) {
3008 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3009 			__func__, idx, dir_in ? "in" : "out");
3010 		return;
3011 	}
3012 
3013 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3014 		__func__, idx, dir_in ? "in" : "out", ints);
3015 
3016 	/* Don't process XferCompl interrupt if it is a setup packet */
3017 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3018 		ints &= ~DXEPINT_XFERCOMPL;
3019 
3020 	/*
3021 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3022 	 * stage and xfercomplete was generated without SETUP phase done
3023 	 * interrupt. SW should parse received setup packet only after host's
3024 	 * exit from setup phase of control transfer.
3025 	 */
3026 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3027 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3028 		ints &= ~DXEPINT_XFERCOMPL;
3029 
3030 	if (ints & DXEPINT_XFERCOMPL) {
3031 		dev_dbg(hsotg->dev,
3032 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3033 			__func__, dwc2_readl(hsotg, epctl_reg),
3034 			dwc2_readl(hsotg, epsiz_reg));
3035 
3036 		/* In DDMA handle isochronous requests separately */
3037 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3038 			/* XferCompl set along with BNA */
3039 			if (!(ints & DXEPINT_BNAINTR))
3040 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3041 		} else if (dir_in) {
3042 			/*
3043 			 * We get OutDone from the FIFO, so we only
3044 			 * need to look at completing IN requests here
3045 			 * if operating slave mode
3046 			 */
3047 			if (hs_ep->isochronous && hs_ep->interval > 1)
3048 				dwc2_gadget_incr_frame_num(hs_ep);
3049 
3050 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3051 			if (ints & DXEPINT_NAKINTRPT)
3052 				ints &= ~DXEPINT_NAKINTRPT;
3053 
3054 			if (idx == 0 && !hs_ep->req)
3055 				dwc2_hsotg_enqueue_setup(hsotg);
3056 		} else if (using_dma(hsotg)) {
3057 			/*
3058 			 * We're using DMA, we need to fire an OutDone here
3059 			 * as we ignore the RXFIFO.
3060 			 */
3061 			if (hs_ep->isochronous && hs_ep->interval > 1)
3062 				dwc2_gadget_incr_frame_num(hs_ep);
3063 
3064 			dwc2_hsotg_handle_outdone(hsotg, idx);
3065 		}
3066 	}
3067 
3068 	if (ints & DXEPINT_EPDISBLD)
3069 		dwc2_gadget_handle_ep_disabled(hs_ep);
3070 
3071 	if (ints & DXEPINT_OUTTKNEPDIS)
3072 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3073 
3074 	if (ints & DXEPINT_NAKINTRPT)
3075 		dwc2_gadget_handle_nak(hs_ep);
3076 
3077 	if (ints & DXEPINT_AHBERR)
3078 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3079 
3080 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3081 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3082 
3083 		if (using_dma(hsotg) && idx == 0) {
3084 			/*
3085 			 * this is the notification we've received a
3086 			 * setup packet. In non-DMA mode we'd get this
3087 			 * from the RXFIFO, instead we need to process
3088 			 * the setup here.
3089 			 */
3090 
3091 			if (dir_in)
3092 				WARN_ON_ONCE(1);
3093 			else
3094 				dwc2_hsotg_handle_outdone(hsotg, 0);
3095 		}
3096 	}
3097 
3098 	if (ints & DXEPINT_STSPHSERCVD) {
3099 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3100 
3101 		/* Safety check EP0 state when STSPHSERCVD asserted */
3102 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3103 			/* Move to STATUS IN for DDMA */
3104 			if (using_desc_dma(hsotg)) {
3105 				if (!hsotg->delayed_status)
3106 					dwc2_hsotg_ep0_zlp(hsotg, true);
3107 				else
3108 				/* In case of 3 stage Control Write with delayed
3109 				 * status, when Status IN transfer started
3110 				 * before STSPHSERCVD asserted, NAKSTS bit not
3111 				 * cleared by CNAK in dwc2_hsotg_start_req()
3112 				 * function. Clear now NAKSTS to allow complete
3113 				 * transfer.
3114 				 */
3115 					dwc2_set_bit(hsotg, DIEPCTL(0),
3116 						     DXEPCTL_CNAK);
3117 			}
3118 		}
3119 
3120 	}
3121 
3122 	if (ints & DXEPINT_BACK2BACKSETUP)
3123 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3124 
3125 	if (ints & DXEPINT_BNAINTR) {
3126 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3127 		if (hs_ep->isochronous)
3128 			dwc2_gadget_handle_isoc_bna(hs_ep);
3129 	}
3130 
3131 	if (dir_in && !hs_ep->isochronous) {
3132 		/* not sure if this is important, but we'll clear it anyway */
3133 		if (ints & DXEPINT_INTKNTXFEMP) {
3134 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3135 				__func__, idx);
3136 		}
3137 
3138 		/* this probably means something bad is happening */
3139 		if (ints & DXEPINT_INTKNEPMIS) {
3140 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3141 				 __func__, idx);
3142 		}
3143 
3144 		/* FIFO has space or is empty (see GAHBCFG) */
3145 		if (hsotg->dedicated_fifos &&
3146 		    ints & DXEPINT_TXFEMP) {
3147 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3148 				__func__, idx);
3149 			if (!using_dma(hsotg))
3150 				dwc2_hsotg_trytx(hsotg, hs_ep);
3151 		}
3152 	}
3153 }
3154 
3155 /**
3156  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3157  * @hsotg: The device state.
3158  *
3159  * Handle updating the device settings after the enumeration phase has
3160  * been completed.
3161  */
3162 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3163 {
3164 	u32 dsts = dwc2_readl(hsotg, DSTS);
3165 	int ep0_mps = 0, ep_mps = 8;
3166 
3167 	/*
3168 	 * This should signal the finish of the enumeration phase
3169 	 * of the USB handshaking, so we should now know what rate
3170 	 * we connected at.
3171 	 */
3172 
3173 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3174 
3175 	/*
3176 	 * note, since we're limited by the size of transfer on EP0, and
3177 	 * it seems IN transfers must be a even number of packets we do
3178 	 * not advertise a 64byte MPS on EP0.
3179 	 */
3180 
3181 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3182 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3183 	case DSTS_ENUMSPD_FS:
3184 	case DSTS_ENUMSPD_FS48:
3185 		hsotg->gadget.speed = USB_SPEED_FULL;
3186 		ep0_mps = EP0_MPS_LIMIT;
3187 		ep_mps = 1023;
3188 		break;
3189 
3190 	case DSTS_ENUMSPD_HS:
3191 		hsotg->gadget.speed = USB_SPEED_HIGH;
3192 		ep0_mps = EP0_MPS_LIMIT;
3193 		ep_mps = 1024;
3194 		break;
3195 
3196 	case DSTS_ENUMSPD_LS:
3197 		hsotg->gadget.speed = USB_SPEED_LOW;
3198 		ep0_mps = 8;
3199 		ep_mps = 8;
3200 		/*
3201 		 * note, we don't actually support LS in this driver at the
3202 		 * moment, and the documentation seems to imply that it isn't
3203 		 * supported by the PHYs on some of the devices.
3204 		 */
3205 		break;
3206 	}
3207 	dev_info(hsotg->dev, "new device is %s\n",
3208 		 usb_speed_string(hsotg->gadget.speed));
3209 
3210 	/*
3211 	 * we should now know the maximum packet size for an
3212 	 * endpoint, so set the endpoints to a default value.
3213 	 */
3214 
3215 	if (ep0_mps) {
3216 		int i;
3217 		/* Initialize ep0 for both in and out directions */
3218 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3219 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3220 		for (i = 1; i < hsotg->num_of_eps; i++) {
3221 			if (hsotg->eps_in[i])
3222 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3223 							    0, 1);
3224 			if (hsotg->eps_out[i])
3225 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3226 							    0, 0);
3227 		}
3228 	}
3229 
3230 	/* ensure after enumeration our EP0 is active */
3231 
3232 	dwc2_hsotg_enqueue_setup(hsotg);
3233 
3234 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3235 		dwc2_readl(hsotg, DIEPCTL0),
3236 		dwc2_readl(hsotg, DOEPCTL0));
3237 }
3238 
3239 /**
3240  * kill_all_requests - remove all requests from the endpoint's queue
3241  * @hsotg: The device state.
3242  * @ep: The endpoint the requests may be on.
3243  * @result: The result code to use.
3244  *
3245  * Go through the requests on the given endpoint and mark them
3246  * completed with the given result code.
3247  */
3248 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3249 			      struct dwc2_hsotg_ep *ep,
3250 			      int result)
3251 {
3252 	unsigned int size;
3253 
3254 	ep->req = NULL;
3255 
3256 	while (!list_empty(&ep->queue)) {
3257 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3258 
3259 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3260 	}
3261 
3262 	if (!hsotg->dedicated_fifos)
3263 		return;
3264 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3265 	if (size < ep->fifo_size)
3266 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3267 }
3268 
3269 /**
3270  * dwc2_hsotg_disconnect - disconnect service
3271  * @hsotg: The device state.
3272  *
3273  * The device has been disconnected. Remove all current
3274  * transactions and signal the gadget driver that this
3275  * has happened.
3276  */
3277 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3278 {
3279 	unsigned int ep;
3280 
3281 	if (!hsotg->connected)
3282 		return;
3283 
3284 	hsotg->connected = 0;
3285 	hsotg->test_mode = 0;
3286 
3287 	/* all endpoints should be shutdown */
3288 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3289 		if (hsotg->eps_in[ep])
3290 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3291 					  -ESHUTDOWN);
3292 		if (hsotg->eps_out[ep])
3293 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3294 					  -ESHUTDOWN);
3295 	}
3296 
3297 	call_gadget(hsotg, disconnect);
3298 	hsotg->lx_state = DWC2_L3;
3299 
3300 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3301 }
3302 
3303 /**
3304  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3305  * @hsotg: The device state:
3306  * @periodic: True if this is a periodic FIFO interrupt
3307  */
3308 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3309 {
3310 	struct dwc2_hsotg_ep *ep;
3311 	int epno, ret;
3312 
3313 	/* look through for any more data to transmit */
3314 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3315 		ep = index_to_ep(hsotg, epno, 1);
3316 
3317 		if (!ep)
3318 			continue;
3319 
3320 		if (!ep->dir_in)
3321 			continue;
3322 
3323 		if ((periodic && !ep->periodic) ||
3324 		    (!periodic && ep->periodic))
3325 			continue;
3326 
3327 		ret = dwc2_hsotg_trytx(hsotg, ep);
3328 		if (ret < 0)
3329 			break;
3330 	}
3331 }
3332 
3333 /* IRQ flags which will trigger a retry around the IRQ loop */
3334 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3335 			GINTSTS_PTXFEMP |  \
3336 			GINTSTS_RXFLVL)
3337 
3338 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3339 /**
3340  * dwc2_hsotg_core_init - issue softreset to the core
3341  * @hsotg: The device state
3342  * @is_usb_reset: Usb resetting flag
3343  *
3344  * Issue a soft reset to the core, and await the core finishing it.
3345  */
3346 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3347 				       bool is_usb_reset)
3348 {
3349 	u32 intmsk;
3350 	u32 val;
3351 	u32 usbcfg;
3352 	u32 dcfg = 0;
3353 	int ep;
3354 
3355 	/* Kill any ep0 requests as controller will be reinitialized */
3356 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3357 
3358 	if (!is_usb_reset) {
3359 		if (dwc2_core_reset(hsotg, true))
3360 			return;
3361 	} else {
3362 		/* all endpoints should be shutdown */
3363 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3364 			if (hsotg->eps_in[ep])
3365 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3366 			if (hsotg->eps_out[ep])
3367 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3368 		}
3369 	}
3370 
3371 	/*
3372 	 * we must now enable ep0 ready for host detection and then
3373 	 * set configuration.
3374 	 */
3375 
3376 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3377 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3378 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3379 	usbcfg |= GUSBCFG_TOUTCAL(7);
3380 
3381 	/* remove the HNP/SRP and set the PHY */
3382 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3383         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3384 
3385 	dwc2_phy_init(hsotg, true);
3386 
3387 	dwc2_hsotg_init_fifo(hsotg);
3388 
3389 	if (!is_usb_reset)
3390 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3391 
3392 	dcfg |= DCFG_EPMISCNT(1);
3393 
3394 	switch (hsotg->params.speed) {
3395 	case DWC2_SPEED_PARAM_LOW:
3396 		dcfg |= DCFG_DEVSPD_LS;
3397 		break;
3398 	case DWC2_SPEED_PARAM_FULL:
3399 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3400 			dcfg |= DCFG_DEVSPD_FS48;
3401 		else
3402 			dcfg |= DCFG_DEVSPD_FS;
3403 		break;
3404 	default:
3405 		dcfg |= DCFG_DEVSPD_HS;
3406 	}
3407 
3408 	if (hsotg->params.ipg_isoc_en)
3409 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3410 
3411 	dwc2_writel(hsotg, dcfg,  DCFG);
3412 
3413 	/* Clear any pending OTG interrupts */
3414 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3415 
3416 	/* Clear any pending interrupts */
3417 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3418 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3419 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3420 		GINTSTS_USBRST | GINTSTS_RESETDET |
3421 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3422 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3423 		GINTSTS_LPMTRANRCVD;
3424 
3425 	if (!using_desc_dma(hsotg))
3426 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3427 
3428 	if (!hsotg->params.external_id_pin_ctl)
3429 		intmsk |= GINTSTS_CONIDSTSCHNG;
3430 
3431 	dwc2_writel(hsotg, intmsk, GINTMSK);
3432 
3433 	if (using_dma(hsotg)) {
3434 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3435 			    hsotg->params.ahbcfg,
3436 			    GAHBCFG);
3437 
3438 		/* Set DDMA mode support in the core if needed */
3439 		if (using_desc_dma(hsotg))
3440 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3441 
3442 	} else {
3443 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3444 						(GAHBCFG_NP_TXF_EMP_LVL |
3445 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3446 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3447 	}
3448 
3449 	/*
3450 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3451 	 * when we have no data to transfer. Otherwise we get being flooded by
3452 	 * interrupts.
3453 	 */
3454 
3455 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3456 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3457 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3458 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3459 		DIEPMSK);
3460 
3461 	/*
3462 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3463 	 * DMA mode we may need this and StsPhseRcvd.
3464 	 */
3465 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3466 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3467 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3468 		DOEPMSK_SETUPMSK,
3469 		DOEPMSK);
3470 
3471 	/* Enable BNA interrupt for DDMA */
3472 	if (using_desc_dma(hsotg)) {
3473 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3474 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3475 	}
3476 
3477 	/* Enable Service Interval mode if supported */
3478 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3479 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3480 
3481 	dwc2_writel(hsotg, 0, DAINTMSK);
3482 
3483 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3484 		dwc2_readl(hsotg, DIEPCTL0),
3485 		dwc2_readl(hsotg, DOEPCTL0));
3486 
3487 	/* enable in and out endpoint interrupts */
3488 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3489 
3490 	/*
3491 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3492 	 * the data. In DMA mode, we get events from the FIFO but also
3493 	 * things we cannot process, so do not use it.
3494 	 */
3495 	if (!using_dma(hsotg))
3496 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3497 
3498 	/* Enable interrupts for EP0 in and out */
3499 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3500 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3501 
3502 	if (!is_usb_reset) {
3503 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3504 		udelay(10);  /* see openiboot */
3505 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3506 	}
3507 
3508 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3509 
3510 	/*
3511 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3512 	 * writing to the EPCTL register..
3513 	 */
3514 
3515 	/* set to read 1 8byte packet */
3516 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3517 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3518 
3519 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3520 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3521 	       DXEPCTL_USBACTEP,
3522 	       DOEPCTL0);
3523 
3524 	/* enable, but don't activate EP0in */
3525 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3526 	       DXEPCTL_USBACTEP, DIEPCTL0);
3527 
3528 	/* clear global NAKs */
3529 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3530 	if (!is_usb_reset)
3531 		val |= DCTL_SFTDISCON;
3532 	dwc2_set_bit(hsotg, DCTL, val);
3533 
3534 	/* configure the core to support LPM */
3535 	dwc2_gadget_init_lpm(hsotg);
3536 
3537 	/* program GREFCLK register if needed */
3538 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3539 		dwc2_gadget_program_ref_clk(hsotg);
3540 
3541 	/* must be at-least 3ms to allow bus to see disconnect */
3542 	mdelay(3);
3543 
3544 	hsotg->lx_state = DWC2_L0;
3545 
3546 	dwc2_hsotg_enqueue_setup(hsotg);
3547 
3548 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3549 		dwc2_readl(hsotg, DIEPCTL0),
3550 		dwc2_readl(hsotg, DOEPCTL0));
3551 }
3552 
3553 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3554 {
3555 	/* set the soft-disconnect bit */
3556 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3557 }
3558 
3559 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3560 {
3561 	/* remove the soft-disconnect and let's go */
3562 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3563 }
3564 
3565 /**
3566  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3567  * @hsotg: The device state:
3568  *
3569  * This interrupt indicates one of the following conditions occurred while
3570  * transmitting an ISOC transaction.
3571  * - Corrupted IN Token for ISOC EP.
3572  * - Packet not complete in FIFO.
3573  *
3574  * The following actions will be taken:
3575  * - Determine the EP
3576  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3577  */
3578 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3579 {
3580 	struct dwc2_hsotg_ep *hs_ep;
3581 	u32 epctrl;
3582 	u32 daintmsk;
3583 	u32 idx;
3584 
3585 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3586 
3587 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3588 
3589 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3590 		hs_ep = hsotg->eps_in[idx];
3591 		/* Proceed only unmasked ISOC EPs */
3592 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3593 			continue;
3594 
3595 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3596 		if ((epctrl & DXEPCTL_EPENA) &&
3597 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3598 			epctrl |= DXEPCTL_SNAK;
3599 			epctrl |= DXEPCTL_EPDIS;
3600 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3601 		}
3602 	}
3603 
3604 	/* Clear interrupt */
3605 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3606 }
3607 
3608 /**
3609  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3610  * @hsotg: The device state:
3611  *
3612  * This interrupt indicates one of the following conditions occurred while
3613  * transmitting an ISOC transaction.
3614  * - Corrupted OUT Token for ISOC EP.
3615  * - Packet not complete in FIFO.
3616  *
3617  * The following actions will be taken:
3618  * - Determine the EP
3619  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3620  */
3621 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3622 {
3623 	u32 gintsts;
3624 	u32 gintmsk;
3625 	u32 daintmsk;
3626 	u32 epctrl;
3627 	struct dwc2_hsotg_ep *hs_ep;
3628 	int idx;
3629 
3630 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3631 
3632 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3633 	daintmsk >>= DAINT_OUTEP_SHIFT;
3634 
3635 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3636 		hs_ep = hsotg->eps_out[idx];
3637 		/* Proceed only unmasked ISOC EPs */
3638 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3639 			continue;
3640 
3641 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3642 		if ((epctrl & DXEPCTL_EPENA) &&
3643 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3644 			/* Unmask GOUTNAKEFF interrupt */
3645 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3646 			gintmsk |= GINTSTS_GOUTNAKEFF;
3647 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3648 
3649 			gintsts = dwc2_readl(hsotg, GINTSTS);
3650 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3651 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3652 				break;
3653 			}
3654 		}
3655 	}
3656 
3657 	/* Clear interrupt */
3658 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3659 }
3660 
3661 /**
3662  * dwc2_hsotg_irq - handle device interrupt
3663  * @irq: The IRQ number triggered
3664  * @pw: The pw value when registered the handler.
3665  */
3666 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3667 {
3668 	struct dwc2_hsotg *hsotg = pw;
3669 	int retry_count = 8;
3670 	u32 gintsts;
3671 	u32 gintmsk;
3672 
3673 	if (!dwc2_is_device_mode(hsotg))
3674 		return IRQ_NONE;
3675 
3676 	spin_lock(&hsotg->lock);
3677 irq_retry:
3678 	gintsts = dwc2_readl(hsotg, GINTSTS);
3679 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3680 
3681 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3682 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3683 
3684 	gintsts &= gintmsk;
3685 
3686 	if (gintsts & GINTSTS_RESETDET) {
3687 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3688 
3689 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3690 
3691 		/* This event must be used only if controller is suspended */
3692 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3693 			dwc2_exit_partial_power_down(hsotg, 0, true);
3694 
3695 		hsotg->lx_state = DWC2_L0;
3696 	}
3697 
3698 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3699 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3700 		u32 connected = hsotg->connected;
3701 
3702 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3703 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3704 			dwc2_readl(hsotg, GNPTXSTS));
3705 
3706 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3707 
3708 		/* Report disconnection if it is not already done. */
3709 		dwc2_hsotg_disconnect(hsotg);
3710 
3711 		/* Reset device address to zero */
3712 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3713 
3714 		if (usb_status & GOTGCTL_BSESVLD && connected)
3715 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3716 	}
3717 
3718 	if (gintsts & GINTSTS_ENUMDONE) {
3719 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3720 
3721 		dwc2_hsotg_irq_enumdone(hsotg);
3722 	}
3723 
3724 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3725 		u32 daint = dwc2_readl(hsotg, DAINT);
3726 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3727 		u32 daint_out, daint_in;
3728 		int ep;
3729 
3730 		daint &= daintmsk;
3731 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3732 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3733 
3734 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3735 
3736 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3737 						ep++, daint_out >>= 1) {
3738 			if (daint_out & 1)
3739 				dwc2_hsotg_epint(hsotg, ep, 0);
3740 		}
3741 
3742 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3743 						ep++, daint_in >>= 1) {
3744 			if (daint_in & 1)
3745 				dwc2_hsotg_epint(hsotg, ep, 1);
3746 		}
3747 	}
3748 
3749 	/* check both FIFOs */
3750 
3751 	if (gintsts & GINTSTS_NPTXFEMP) {
3752 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3753 
3754 		/*
3755 		 * Disable the interrupt to stop it happening again
3756 		 * unless one of these endpoint routines decides that
3757 		 * it needs re-enabling
3758 		 */
3759 
3760 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3761 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3762 	}
3763 
3764 	if (gintsts & GINTSTS_PTXFEMP) {
3765 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3766 
3767 		/* See note in GINTSTS_NPTxFEmp */
3768 
3769 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3770 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3771 	}
3772 
3773 	if (gintsts & GINTSTS_RXFLVL) {
3774 		/*
3775 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3776 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3777 		 * set.
3778 		 */
3779 
3780 		dwc2_hsotg_handle_rx(hsotg);
3781 	}
3782 
3783 	if (gintsts & GINTSTS_ERLYSUSP) {
3784 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3785 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3786 	}
3787 
3788 	/*
3789 	 * these next two seem to crop-up occasionally causing the core
3790 	 * to shutdown the USB transfer, so try clearing them and logging
3791 	 * the occurrence.
3792 	 */
3793 
3794 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3795 		u8 idx;
3796 		u32 epctrl;
3797 		u32 gintmsk;
3798 		u32 daintmsk;
3799 		struct dwc2_hsotg_ep *hs_ep;
3800 
3801 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3802 		daintmsk >>= DAINT_OUTEP_SHIFT;
3803 		/* Mask this interrupt */
3804 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3805 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3806 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3807 
3808 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3809 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3810 			hs_ep = hsotg->eps_out[idx];
3811 			/* Proceed only unmasked ISOC EPs */
3812 			if (BIT(idx) & ~daintmsk)
3813 				continue;
3814 
3815 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3816 
3817 			//ISOC Ep's only
3818 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3819 				epctrl |= DXEPCTL_SNAK;
3820 				epctrl |= DXEPCTL_EPDIS;
3821 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3822 				continue;
3823 			}
3824 
3825 			//Non-ISOC EP's
3826 			if (hs_ep->halted) {
3827 				if (!(epctrl & DXEPCTL_EPENA))
3828 					epctrl |= DXEPCTL_EPENA;
3829 				epctrl |= DXEPCTL_EPDIS;
3830 				epctrl |= DXEPCTL_STALL;
3831 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3832 			}
3833 		}
3834 
3835 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3836 	}
3837 
3838 	if (gintsts & GINTSTS_GINNAKEFF) {
3839 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3840 
3841 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3842 
3843 		dwc2_hsotg_dump(hsotg);
3844 	}
3845 
3846 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3847 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3848 
3849 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3850 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3851 
3852 	/*
3853 	 * if we've had fifo events, we should try and go around the
3854 	 * loop again to see if there's any point in returning yet.
3855 	 */
3856 
3857 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3858 		goto irq_retry;
3859 
3860 	/* Check WKUP_ALERT interrupt*/
3861 	if (hsotg->params.service_interval)
3862 		dwc2_gadget_wkup_alert_handler(hsotg);
3863 
3864 	spin_unlock(&hsotg->lock);
3865 
3866 	return IRQ_HANDLED;
3867 }
3868 
3869 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3870 				   struct dwc2_hsotg_ep *hs_ep)
3871 {
3872 	u32 epctrl_reg;
3873 	u32 epint_reg;
3874 
3875 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3876 		DOEPCTL(hs_ep->index);
3877 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3878 		DOEPINT(hs_ep->index);
3879 
3880 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3881 		hs_ep->name);
3882 
3883 	if (hs_ep->dir_in) {
3884 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3885 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3886 			/* Wait for Nak effect */
3887 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3888 						    DXEPINT_INEPNAKEFF, 100))
3889 				dev_warn(hsotg->dev,
3890 					 "%s: timeout DIEPINT.NAKEFF\n",
3891 					 __func__);
3892 		} else {
3893 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3894 			/* Wait for Nak effect */
3895 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3896 						    GINTSTS_GINNAKEFF, 100))
3897 				dev_warn(hsotg->dev,
3898 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3899 					 __func__);
3900 		}
3901 	} else {
3902 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3903 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3904 
3905 		/* Wait for global nak to take effect */
3906 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3907 					    GINTSTS_GOUTNAKEFF, 100))
3908 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3909 				 __func__);
3910 	}
3911 
3912 	/* Disable ep */
3913 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3914 
3915 	/* Wait for ep to be disabled */
3916 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3917 		dev_warn(hsotg->dev,
3918 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3919 
3920 	/* Clear EPDISBLD interrupt */
3921 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3922 
3923 	if (hs_ep->dir_in) {
3924 		unsigned short fifo_index;
3925 
3926 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3927 			fifo_index = hs_ep->fifo_index;
3928 		else
3929 			fifo_index = 0;
3930 
3931 		/* Flush TX FIFO */
3932 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3933 
3934 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3935 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3936 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3937 
3938 	} else {
3939 		/* Remove global NAKs */
3940 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3941 	}
3942 }
3943 
3944 /**
3945  * dwc2_hsotg_ep_enable - enable the given endpoint
3946  * @ep: The USB endpint to configure
3947  * @desc: The USB endpoint descriptor to configure with.
3948  *
3949  * This is called from the USB gadget code's usb_ep_enable().
3950  */
3951 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3952 				const struct usb_endpoint_descriptor *desc)
3953 {
3954 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3955 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3956 	unsigned long flags;
3957 	unsigned int index = hs_ep->index;
3958 	u32 epctrl_reg;
3959 	u32 epctrl;
3960 	u32 mps;
3961 	u32 mc;
3962 	u32 mask;
3963 	unsigned int dir_in;
3964 	unsigned int i, val, size;
3965 	int ret = 0;
3966 	unsigned char ep_type;
3967 	int desc_num;
3968 
3969 	dev_dbg(hsotg->dev,
3970 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3971 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3972 		desc->wMaxPacketSize, desc->bInterval);
3973 
3974 	/* not to be called for EP0 */
3975 	if (index == 0) {
3976 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3977 		return -EINVAL;
3978 	}
3979 
3980 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3981 	if (dir_in != hs_ep->dir_in) {
3982 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3983 		return -EINVAL;
3984 	}
3985 
3986 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3987 	mps = usb_endpoint_maxp(desc);
3988 	mc = usb_endpoint_maxp_mult(desc);
3989 
3990 	/* ISOC IN in DDMA supported bInterval up to 10 */
3991 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3992 	    dir_in && desc->bInterval > 10) {
3993 		dev_err(hsotg->dev,
3994 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3995 		return -EINVAL;
3996 	}
3997 
3998 	/* High bandwidth ISOC OUT in DDMA not supported */
3999 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4000 	    !dir_in && mc > 1) {
4001 		dev_err(hsotg->dev,
4002 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4003 		return -EINVAL;
4004 	}
4005 
4006 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4007 
4008 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4009 	epctrl = dwc2_readl(hsotg, epctrl_reg);
4010 
4011 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4012 		__func__, epctrl, epctrl_reg);
4013 
4014 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4015 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4016 	else
4017 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4018 
4019 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4020 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4021 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4022 			desc_num * sizeof(struct dwc2_dma_desc),
4023 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4024 		if (!hs_ep->desc_list) {
4025 			ret = -ENOMEM;
4026 			goto error2;
4027 		}
4028 	}
4029 
4030 	spin_lock_irqsave(&hsotg->lock, flags);
4031 
4032 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4033 	epctrl |= DXEPCTL_MPS(mps);
4034 
4035 	/*
4036 	 * mark the endpoint as active, otherwise the core may ignore
4037 	 * transactions entirely for this endpoint
4038 	 */
4039 	epctrl |= DXEPCTL_USBACTEP;
4040 
4041 	/* update the endpoint state */
4042 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4043 
4044 	/* default, set to non-periodic */
4045 	hs_ep->isochronous = 0;
4046 	hs_ep->periodic = 0;
4047 	hs_ep->halted = 0;
4048 	hs_ep->interval = desc->bInterval;
4049 
4050 	switch (ep_type) {
4051 	case USB_ENDPOINT_XFER_ISOC:
4052 		epctrl |= DXEPCTL_EPTYPE_ISO;
4053 		epctrl |= DXEPCTL_SETEVENFR;
4054 		hs_ep->isochronous = 1;
4055 		hs_ep->interval = 1 << (desc->bInterval - 1);
4056 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4057 		hs_ep->next_desc = 0;
4058 		hs_ep->compl_desc = 0;
4059 		if (dir_in) {
4060 			hs_ep->periodic = 1;
4061 			mask = dwc2_readl(hsotg, DIEPMSK);
4062 			mask |= DIEPMSK_NAKMSK;
4063 			dwc2_writel(hsotg, mask, DIEPMSK);
4064 		} else {
4065 			mask = dwc2_readl(hsotg, DOEPMSK);
4066 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4067 			dwc2_writel(hsotg, mask, DOEPMSK);
4068 		}
4069 		break;
4070 
4071 	case USB_ENDPOINT_XFER_BULK:
4072 		epctrl |= DXEPCTL_EPTYPE_BULK;
4073 		break;
4074 
4075 	case USB_ENDPOINT_XFER_INT:
4076 		if (dir_in)
4077 			hs_ep->periodic = 1;
4078 
4079 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4080 			hs_ep->interval = 1 << (desc->bInterval - 1);
4081 
4082 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4083 		break;
4084 
4085 	case USB_ENDPOINT_XFER_CONTROL:
4086 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4087 		break;
4088 	}
4089 
4090 	/*
4091 	 * if the hardware has dedicated fifos, we must give each IN EP
4092 	 * a unique tx-fifo even if it is non-periodic.
4093 	 */
4094 	if (dir_in && hsotg->dedicated_fifos) {
4095 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4096 		u32 fifo_index = 0;
4097 		u32 fifo_size = UINT_MAX;
4098 
4099 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4100 		for (i = 1; i <= fifo_count; ++i) {
4101 			if (hsotg->fifo_map & (1 << i))
4102 				continue;
4103 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4104 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4105 			if (val < size)
4106 				continue;
4107 			/* Search for smallest acceptable fifo */
4108 			if (val < fifo_size) {
4109 				fifo_size = val;
4110 				fifo_index = i;
4111 			}
4112 		}
4113 		if (!fifo_index) {
4114 			dev_err(hsotg->dev,
4115 				"%s: No suitable fifo found\n", __func__);
4116 			ret = -ENOMEM;
4117 			goto error1;
4118 		}
4119 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4120 		hsotg->fifo_map |= 1 << fifo_index;
4121 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4122 		hs_ep->fifo_index = fifo_index;
4123 		hs_ep->fifo_size = fifo_size;
4124 	}
4125 
4126 	/* for non control endpoints, set PID to D0 */
4127 	if (index && !hs_ep->isochronous)
4128 		epctrl |= DXEPCTL_SETD0PID;
4129 
4130 	/* WA for Full speed ISOC IN in DDMA mode.
4131 	 * By Clear NAK status of EP, core will send ZLP
4132 	 * to IN token and assert NAK interrupt relying
4133 	 * on TxFIFO status only
4134 	 */
4135 
4136 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4137 	    hs_ep->isochronous && dir_in) {
4138 		/* The WA applies only to core versions from 2.72a
4139 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4140 		 * and HS_IOT_1.00a.
4141 		 */
4142 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4143 
4144 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4145 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4146 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4147 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4148 			epctrl |= DXEPCTL_CNAK;
4149 	}
4150 
4151 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4152 		__func__, epctrl);
4153 
4154 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4155 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4156 		__func__, dwc2_readl(hsotg, epctrl_reg));
4157 
4158 	/* enable the endpoint interrupt */
4159 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4160 
4161 error1:
4162 	spin_unlock_irqrestore(&hsotg->lock, flags);
4163 
4164 error2:
4165 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4166 		dmam_free_coherent(hsotg->dev, desc_num *
4167 			sizeof(struct dwc2_dma_desc),
4168 			hs_ep->desc_list, hs_ep->desc_list_dma);
4169 		hs_ep->desc_list = NULL;
4170 	}
4171 
4172 	return ret;
4173 }
4174 
4175 /**
4176  * dwc2_hsotg_ep_disable - disable given endpoint
4177  * @ep: The endpoint to disable.
4178  */
4179 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4180 {
4181 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4182 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4183 	int dir_in = hs_ep->dir_in;
4184 	int index = hs_ep->index;
4185 	u32 epctrl_reg;
4186 	u32 ctrl;
4187 
4188 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4189 
4190 	if (ep == &hsotg->eps_out[0]->ep) {
4191 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4192 		return -EINVAL;
4193 	}
4194 
4195 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4196 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4197 		return -EINVAL;
4198 	}
4199 
4200 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4201 
4202 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4203 
4204 	if (ctrl & DXEPCTL_EPENA)
4205 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4206 
4207 	ctrl &= ~DXEPCTL_EPENA;
4208 	ctrl &= ~DXEPCTL_USBACTEP;
4209 	ctrl |= DXEPCTL_SNAK;
4210 
4211 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4212 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4213 
4214 	/* disable endpoint interrupts */
4215 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4216 
4217 	/* terminate all requests with shutdown */
4218 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4219 
4220 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4221 	hs_ep->fifo_index = 0;
4222 	hs_ep->fifo_size = 0;
4223 
4224 	return 0;
4225 }
4226 
4227 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4228 {
4229 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4230 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4231 	unsigned long flags;
4232 	int ret;
4233 
4234 	spin_lock_irqsave(&hsotg->lock, flags);
4235 	ret = dwc2_hsotg_ep_disable(ep);
4236 	spin_unlock_irqrestore(&hsotg->lock, flags);
4237 	return ret;
4238 }
4239 
4240 /**
4241  * on_list - check request is on the given endpoint
4242  * @ep: The endpoint to check.
4243  * @test: The request to test if it is on the endpoint.
4244  */
4245 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4246 {
4247 	struct dwc2_hsotg_req *req, *treq;
4248 
4249 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4250 		if (req == test)
4251 			return true;
4252 	}
4253 
4254 	return false;
4255 }
4256 
4257 /**
4258  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4259  * @ep: The endpoint to dequeue.
4260  * @req: The request to be removed from a queue.
4261  */
4262 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4263 {
4264 	struct dwc2_hsotg_req *hs_req = our_req(req);
4265 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4266 	struct dwc2_hsotg *hs = hs_ep->parent;
4267 	unsigned long flags;
4268 
4269 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4270 
4271 	spin_lock_irqsave(&hs->lock, flags);
4272 
4273 	if (!on_list(hs_ep, hs_req)) {
4274 		spin_unlock_irqrestore(&hs->lock, flags);
4275 		return -EINVAL;
4276 	}
4277 
4278 	/* Dequeue already started request */
4279 	if (req == &hs_ep->req->req)
4280 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4281 
4282 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4283 	spin_unlock_irqrestore(&hs->lock, flags);
4284 
4285 	return 0;
4286 }
4287 
4288 /**
4289  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4290  * @ep: The endpoint to set halt.
4291  * @value: Set or unset the halt.
4292  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4293  *       the endpoint is busy processing requests.
4294  *
4295  * We need to stall the endpoint immediately if request comes from set_feature
4296  * protocol command handler.
4297  */
4298 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4299 {
4300 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4301 	struct dwc2_hsotg *hs = hs_ep->parent;
4302 	int index = hs_ep->index;
4303 	u32 epreg;
4304 	u32 epctl;
4305 	u32 xfertype;
4306 
4307 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4308 
4309 	if (index == 0) {
4310 		if (value)
4311 			dwc2_hsotg_stall_ep0(hs);
4312 		else
4313 			dev_warn(hs->dev,
4314 				 "%s: can't clear halt on ep0\n", __func__);
4315 		return 0;
4316 	}
4317 
4318 	if (hs_ep->isochronous) {
4319 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4320 		return -EINVAL;
4321 	}
4322 
4323 	if (!now && value && !list_empty(&hs_ep->queue)) {
4324 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4325 			ep->name);
4326 		return -EAGAIN;
4327 	}
4328 
4329 	if (hs_ep->dir_in) {
4330 		epreg = DIEPCTL(index);
4331 		epctl = dwc2_readl(hs, epreg);
4332 
4333 		if (value) {
4334 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4335 			if (epctl & DXEPCTL_EPENA)
4336 				epctl |= DXEPCTL_EPDIS;
4337 		} else {
4338 			epctl &= ~DXEPCTL_STALL;
4339 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4340 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4341 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4342 				epctl |= DXEPCTL_SETD0PID;
4343 		}
4344 		dwc2_writel(hs, epctl, epreg);
4345 	} else {
4346 		epreg = DOEPCTL(index);
4347 		epctl = dwc2_readl(hs, epreg);
4348 
4349 		if (value) {
4350 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4351 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4352 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4353 		} else {
4354 			epctl &= ~DXEPCTL_STALL;
4355 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4356 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4357 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4358 				epctl |= DXEPCTL_SETD0PID;
4359 			dwc2_writel(hs, epctl, epreg);
4360 		}
4361 	}
4362 
4363 	hs_ep->halted = value;
4364 	return 0;
4365 }
4366 
4367 /**
4368  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4369  * @ep: The endpoint to set halt.
4370  * @value: Set or unset the halt.
4371  */
4372 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4373 {
4374 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4375 	struct dwc2_hsotg *hs = hs_ep->parent;
4376 	unsigned long flags = 0;
4377 	int ret = 0;
4378 
4379 	spin_lock_irqsave(&hs->lock, flags);
4380 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4381 	spin_unlock_irqrestore(&hs->lock, flags);
4382 
4383 	return ret;
4384 }
4385 
4386 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4387 	.enable		= dwc2_hsotg_ep_enable,
4388 	.disable	= dwc2_hsotg_ep_disable_lock,
4389 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4390 	.free_request	= dwc2_hsotg_ep_free_request,
4391 	.queue		= dwc2_hsotg_ep_queue_lock,
4392 	.dequeue	= dwc2_hsotg_ep_dequeue,
4393 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4394 	/* note, don't believe we have any call for the fifo routines */
4395 };
4396 
4397 /**
4398  * dwc2_hsotg_init - initialize the usb core
4399  * @hsotg: The driver state
4400  */
4401 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4402 {
4403 	/* unmask subset of endpoint interrupts */
4404 
4405 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4406 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4407 		    DIEPMSK);
4408 
4409 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4410 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4411 		    DOEPMSK);
4412 
4413 	dwc2_writel(hsotg, 0, DAINTMSK);
4414 
4415 	/* Be in disconnected state until gadget is registered */
4416 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4417 
4418 	/* setup fifos */
4419 
4420 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4421 		dwc2_readl(hsotg, GRXFSIZ),
4422 		dwc2_readl(hsotg, GNPTXFSIZ));
4423 
4424 	dwc2_hsotg_init_fifo(hsotg);
4425 
4426 	if (using_dma(hsotg))
4427 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4428 }
4429 
4430 /**
4431  * dwc2_hsotg_udc_start - prepare the udc for work
4432  * @gadget: The usb gadget state
4433  * @driver: The usb gadget driver
4434  *
4435  * Perform initialization to prepare udc device and driver
4436  * to work.
4437  */
4438 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4439 				struct usb_gadget_driver *driver)
4440 {
4441 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4442 	unsigned long flags;
4443 	int ret;
4444 
4445 	if (!hsotg) {
4446 		pr_err("%s: called with no device\n", __func__);
4447 		return -ENODEV;
4448 	}
4449 
4450 	if (!driver) {
4451 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4452 		return -EINVAL;
4453 	}
4454 
4455 	if (driver->max_speed < USB_SPEED_FULL)
4456 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4457 
4458 	if (!driver->setup) {
4459 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4460 		return -EINVAL;
4461 	}
4462 
4463 	WARN_ON(hsotg->driver);
4464 
4465 	driver->driver.bus = NULL;
4466 	hsotg->driver = driver;
4467 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4468 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4469 
4470 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4471 		ret = dwc2_lowlevel_hw_enable(hsotg);
4472 		if (ret)
4473 			goto err;
4474 	}
4475 
4476 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4477 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4478 
4479 	spin_lock_irqsave(&hsotg->lock, flags);
4480 	if (dwc2_hw_is_device(hsotg)) {
4481 		dwc2_hsotg_init(hsotg);
4482 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4483 	}
4484 
4485 	hsotg->enabled = 0;
4486 	spin_unlock_irqrestore(&hsotg->lock, flags);
4487 
4488 	gadget->sg_supported = using_desc_dma(hsotg);
4489 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4490 
4491 	return 0;
4492 
4493 err:
4494 	hsotg->driver = NULL;
4495 	return ret;
4496 }
4497 
4498 /**
4499  * dwc2_hsotg_udc_stop - stop the udc
4500  * @gadget: The usb gadget state
4501  *
4502  * Stop udc hw block and stay tunned for future transmissions
4503  */
4504 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4505 {
4506 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4507 	unsigned long flags = 0;
4508 	int ep;
4509 
4510 	if (!hsotg)
4511 		return -ENODEV;
4512 
4513 	/* all endpoints should be shutdown */
4514 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4515 		if (hsotg->eps_in[ep])
4516 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4517 		if (hsotg->eps_out[ep])
4518 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4519 	}
4520 
4521 	spin_lock_irqsave(&hsotg->lock, flags);
4522 
4523 	hsotg->driver = NULL;
4524 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4525 	hsotg->enabled = 0;
4526 
4527 	spin_unlock_irqrestore(&hsotg->lock, flags);
4528 
4529 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4530 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4531 
4532 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4533 		dwc2_lowlevel_hw_disable(hsotg);
4534 
4535 	return 0;
4536 }
4537 
4538 /**
4539  * dwc2_hsotg_gadget_getframe - read the frame number
4540  * @gadget: The usb gadget state
4541  *
4542  * Read the {micro} frame number
4543  */
4544 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4545 {
4546 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4547 }
4548 
4549 /**
4550  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4551  * @gadget: The usb gadget state
4552  * @is_selfpowered: Whether the device is self-powered
4553  *
4554  * Set if the device is self or bus powered.
4555  */
4556 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4557 				      int is_selfpowered)
4558 {
4559 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4560 	unsigned long flags;
4561 
4562 	spin_lock_irqsave(&hsotg->lock, flags);
4563 	gadget->is_selfpowered = !!is_selfpowered;
4564 	spin_unlock_irqrestore(&hsotg->lock, flags);
4565 
4566 	return 0;
4567 }
4568 
4569 /**
4570  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4571  * @gadget: The usb gadget state
4572  * @is_on: Current state of the USB PHY
4573  *
4574  * Connect/Disconnect the USB PHY pullup
4575  */
4576 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4577 {
4578 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4579 	unsigned long flags = 0;
4580 
4581 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4582 		hsotg->op_state);
4583 
4584 	/* Don't modify pullup state while in host mode */
4585 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4586 		hsotg->enabled = is_on;
4587 		return 0;
4588 	}
4589 
4590 	spin_lock_irqsave(&hsotg->lock, flags);
4591 	if (is_on) {
4592 		hsotg->enabled = 1;
4593 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4594 		/* Enable ACG feature in device mode,if supported */
4595 		dwc2_enable_acg(hsotg);
4596 		dwc2_hsotg_core_connect(hsotg);
4597 	} else {
4598 		dwc2_hsotg_core_disconnect(hsotg);
4599 		dwc2_hsotg_disconnect(hsotg);
4600 		hsotg->enabled = 0;
4601 	}
4602 
4603 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4604 	spin_unlock_irqrestore(&hsotg->lock, flags);
4605 
4606 	return 0;
4607 }
4608 
4609 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4610 {
4611 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4612 	unsigned long flags;
4613 
4614 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4615 	spin_lock_irqsave(&hsotg->lock, flags);
4616 
4617 	/*
4618 	 * If controller is in partial power down state, it must exit from
4619 	 * that state before being initialized / de-initialized
4620 	 */
4621 	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4622 		/*
4623 		 * No need to check the return value as
4624 		 * registers are not being restored.
4625 		 */
4626 		dwc2_exit_partial_power_down(hsotg, 0, false);
4627 
4628 	if (is_active) {
4629 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4630 
4631 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4632 		if (hsotg->enabled) {
4633 			/* Enable ACG feature in device mode,if supported */
4634 			dwc2_enable_acg(hsotg);
4635 			dwc2_hsotg_core_connect(hsotg);
4636 		}
4637 	} else {
4638 		dwc2_hsotg_core_disconnect(hsotg);
4639 		dwc2_hsotg_disconnect(hsotg);
4640 	}
4641 
4642 	spin_unlock_irqrestore(&hsotg->lock, flags);
4643 	return 0;
4644 }
4645 
4646 /**
4647  * dwc2_hsotg_vbus_draw - report bMaxPower field
4648  * @gadget: The usb gadget state
4649  * @mA: Amount of current
4650  *
4651  * Report how much power the device may consume to the phy.
4652  */
4653 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4654 {
4655 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4656 
4657 	if (IS_ERR_OR_NULL(hsotg->uphy))
4658 		return -ENOTSUPP;
4659 	return usb_phy_set_power(hsotg->uphy, mA);
4660 }
4661 
4662 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4663 	.get_frame	= dwc2_hsotg_gadget_getframe,
4664 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4665 	.udc_start		= dwc2_hsotg_udc_start,
4666 	.udc_stop		= dwc2_hsotg_udc_stop,
4667 	.pullup                 = dwc2_hsotg_pullup,
4668 	.vbus_session		= dwc2_hsotg_vbus_session,
4669 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4670 };
4671 
4672 /**
4673  * dwc2_hsotg_initep - initialise a single endpoint
4674  * @hsotg: The device state.
4675  * @hs_ep: The endpoint to be initialised.
4676  * @epnum: The endpoint number
4677  * @dir_in: True if direction is in.
4678  *
4679  * Initialise the given endpoint (as part of the probe and device state
4680  * creation) to give to the gadget driver. Setup the endpoint name, any
4681  * direction information and other state that may be required.
4682  */
4683 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4684 			      struct dwc2_hsotg_ep *hs_ep,
4685 				       int epnum,
4686 				       bool dir_in)
4687 {
4688 	char *dir;
4689 
4690 	if (epnum == 0)
4691 		dir = "";
4692 	else if (dir_in)
4693 		dir = "in";
4694 	else
4695 		dir = "out";
4696 
4697 	hs_ep->dir_in = dir_in;
4698 	hs_ep->index = epnum;
4699 
4700 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4701 
4702 	INIT_LIST_HEAD(&hs_ep->queue);
4703 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4704 
4705 	/* add to the list of endpoints known by the gadget driver */
4706 	if (epnum)
4707 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4708 
4709 	hs_ep->parent = hsotg;
4710 	hs_ep->ep.name = hs_ep->name;
4711 
4712 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4713 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4714 	else
4715 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4716 					   epnum ? 1024 : EP0_MPS_LIMIT);
4717 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4718 
4719 	if (epnum == 0) {
4720 		hs_ep->ep.caps.type_control = true;
4721 	} else {
4722 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4723 			hs_ep->ep.caps.type_iso = true;
4724 			hs_ep->ep.caps.type_bulk = true;
4725 		}
4726 		hs_ep->ep.caps.type_int = true;
4727 	}
4728 
4729 	if (dir_in)
4730 		hs_ep->ep.caps.dir_in = true;
4731 	else
4732 		hs_ep->ep.caps.dir_out = true;
4733 
4734 	/*
4735 	 * if we're using dma, we need to set the next-endpoint pointer
4736 	 * to be something valid.
4737 	 */
4738 
4739 	if (using_dma(hsotg)) {
4740 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4741 
4742 		if (dir_in)
4743 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4744 		else
4745 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4746 	}
4747 }
4748 
4749 /**
4750  * dwc2_hsotg_hw_cfg - read HW configuration registers
4751  * @hsotg: Programming view of the DWC_otg controller
4752  *
4753  * Read the USB core HW configuration registers
4754  */
4755 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4756 {
4757 	u32 cfg;
4758 	u32 ep_type;
4759 	u32 i;
4760 
4761 	/* check hardware configuration */
4762 
4763 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4764 
4765 	/* Add ep0 */
4766 	hsotg->num_of_eps++;
4767 
4768 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4769 					sizeof(struct dwc2_hsotg_ep),
4770 					GFP_KERNEL);
4771 	if (!hsotg->eps_in[0])
4772 		return -ENOMEM;
4773 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4774 	hsotg->eps_out[0] = hsotg->eps_in[0];
4775 
4776 	cfg = hsotg->hw_params.dev_ep_dirs;
4777 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4778 		ep_type = cfg & 3;
4779 		/* Direction in or both */
4780 		if (!(ep_type & 2)) {
4781 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4782 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4783 			if (!hsotg->eps_in[i])
4784 				return -ENOMEM;
4785 		}
4786 		/* Direction out or both */
4787 		if (!(ep_type & 1)) {
4788 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4789 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4790 			if (!hsotg->eps_out[i])
4791 				return -ENOMEM;
4792 		}
4793 	}
4794 
4795 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4796 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4797 
4798 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4799 		 hsotg->num_of_eps,
4800 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4801 		 hsotg->fifo_mem);
4802 	return 0;
4803 }
4804 
4805 /**
4806  * dwc2_hsotg_dump - dump state of the udc
4807  * @hsotg: Programming view of the DWC_otg controller
4808  *
4809  */
4810 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4811 {
4812 #ifdef DEBUG
4813 	struct device *dev = hsotg->dev;
4814 	u32 val;
4815 	int idx;
4816 
4817 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4818 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4819 		 dwc2_readl(hsotg, DIEPMSK));
4820 
4821 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4822 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4823 
4824 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4825 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4826 
4827 	/* show periodic fifo settings */
4828 
4829 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4830 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4831 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4832 			 val >> FIFOSIZE_DEPTH_SHIFT,
4833 			 val & FIFOSIZE_STARTADDR_MASK);
4834 	}
4835 
4836 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4837 		dev_info(dev,
4838 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4839 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4840 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4841 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4842 
4843 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4844 		dev_info(dev,
4845 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4846 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4847 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4848 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4849 	}
4850 
4851 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4852 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4853 #endif
4854 }
4855 
4856 /**
4857  * dwc2_gadget_init - init function for gadget
4858  * @hsotg: Programming view of the DWC_otg controller
4859  *
4860  */
4861 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4862 {
4863 	struct device *dev = hsotg->dev;
4864 	int epnum;
4865 	int ret;
4866 
4867 	/* Dump fifo information */
4868 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4869 		hsotg->params.g_np_tx_fifo_size);
4870 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4871 
4872 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4873 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4874 	hsotg->gadget.name = dev_name(dev);
4875 	hsotg->remote_wakeup_allowed = 0;
4876 
4877 	if (hsotg->params.lpm)
4878 		hsotg->gadget.lpm_capable = true;
4879 
4880 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4881 		hsotg->gadget.is_otg = 1;
4882 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4883 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4884 
4885 	ret = dwc2_hsotg_hw_cfg(hsotg);
4886 	if (ret) {
4887 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4888 		return ret;
4889 	}
4890 
4891 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4892 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4893 	if (!hsotg->ctrl_buff)
4894 		return -ENOMEM;
4895 
4896 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4897 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4898 	if (!hsotg->ep0_buff)
4899 		return -ENOMEM;
4900 
4901 	if (using_desc_dma(hsotg)) {
4902 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4903 		if (ret < 0)
4904 			return ret;
4905 	}
4906 
4907 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4908 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4909 	if (ret < 0) {
4910 		dev_err(dev, "cannot claim IRQ for gadget\n");
4911 		return ret;
4912 	}
4913 
4914 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4915 
4916 	if (hsotg->num_of_eps == 0) {
4917 		dev_err(dev, "wrong number of EPs (zero)\n");
4918 		return -EINVAL;
4919 	}
4920 
4921 	/* setup endpoint information */
4922 
4923 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4924 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4925 
4926 	/* allocate EP0 request */
4927 
4928 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4929 						     GFP_KERNEL);
4930 	if (!hsotg->ctrl_req) {
4931 		dev_err(dev, "failed to allocate ctrl req\n");
4932 		return -ENOMEM;
4933 	}
4934 
4935 	/* initialise the endpoints now the core has been initialised */
4936 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4937 		if (hsotg->eps_in[epnum])
4938 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4939 					  epnum, 1);
4940 		if (hsotg->eps_out[epnum])
4941 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4942 					  epnum, 0);
4943 	}
4944 
4945 	dwc2_hsotg_dump(hsotg);
4946 
4947 	return 0;
4948 }
4949 
4950 /**
4951  * dwc2_hsotg_remove - remove function for hsotg driver
4952  * @hsotg: Programming view of the DWC_otg controller
4953  *
4954  */
4955 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4956 {
4957 	usb_del_gadget_udc(&hsotg->gadget);
4958 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4959 
4960 	return 0;
4961 }
4962 
4963 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4964 {
4965 	unsigned long flags;
4966 
4967 	if (hsotg->lx_state != DWC2_L0)
4968 		return 0;
4969 
4970 	if (hsotg->driver) {
4971 		int ep;
4972 
4973 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4974 			 hsotg->driver->driver.name);
4975 
4976 		spin_lock_irqsave(&hsotg->lock, flags);
4977 		if (hsotg->enabled)
4978 			dwc2_hsotg_core_disconnect(hsotg);
4979 		dwc2_hsotg_disconnect(hsotg);
4980 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4981 		spin_unlock_irqrestore(&hsotg->lock, flags);
4982 
4983 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4984 			if (hsotg->eps_in[ep])
4985 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4986 			if (hsotg->eps_out[ep])
4987 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4988 		}
4989 	}
4990 
4991 	return 0;
4992 }
4993 
4994 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4995 {
4996 	unsigned long flags;
4997 
4998 	if (hsotg->lx_state == DWC2_L2)
4999 		return 0;
5000 
5001 	if (hsotg->driver) {
5002 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5003 			 hsotg->driver->driver.name);
5004 
5005 		spin_lock_irqsave(&hsotg->lock, flags);
5006 		dwc2_hsotg_core_init_disconnected(hsotg, false);
5007 		if (hsotg->enabled) {
5008 			/* Enable ACG feature in device mode,if supported */
5009 			dwc2_enable_acg(hsotg);
5010 			dwc2_hsotg_core_connect(hsotg);
5011 		}
5012 		spin_unlock_irqrestore(&hsotg->lock, flags);
5013 	}
5014 
5015 	return 0;
5016 }
5017 
5018 /**
5019  * dwc2_backup_device_registers() - Backup controller device registers.
5020  * When suspending usb bus, registers needs to be backuped
5021  * if controller power is disabled once suspended.
5022  *
5023  * @hsotg: Programming view of the DWC_otg controller
5024  */
5025 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5026 {
5027 	struct dwc2_dregs_backup *dr;
5028 	int i;
5029 
5030 	dev_dbg(hsotg->dev, "%s\n", __func__);
5031 
5032 	/* Backup dev regs */
5033 	dr = &hsotg->dr_backup;
5034 
5035 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5036 	dr->dctl = dwc2_readl(hsotg, DCTL);
5037 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5038 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5039 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5040 
5041 	for (i = 0; i < hsotg->num_of_eps; i++) {
5042 		/* Backup IN EPs */
5043 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5044 
5045 		/* Ensure DATA PID is correctly configured */
5046 		if (dr->diepctl[i] & DXEPCTL_DPID)
5047 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5048 		else
5049 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5050 
5051 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5052 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5053 
5054 		/* Backup OUT EPs */
5055 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5056 
5057 		/* Ensure DATA PID is correctly configured */
5058 		if (dr->doepctl[i] & DXEPCTL_DPID)
5059 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5060 		else
5061 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5062 
5063 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5064 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5065 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5066 	}
5067 	dr->valid = true;
5068 	return 0;
5069 }
5070 
5071 /**
5072  * dwc2_restore_device_registers() - Restore controller device registers.
5073  * When resuming usb bus, device registers needs to be restored
5074  * if controller power were disabled.
5075  *
5076  * @hsotg: Programming view of the DWC_otg controller
5077  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5078  *
5079  * Return: 0 if successful, negative error code otherwise
5080  */
5081 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5082 {
5083 	struct dwc2_dregs_backup *dr;
5084 	int i;
5085 
5086 	dev_dbg(hsotg->dev, "%s\n", __func__);
5087 
5088 	/* Restore dev regs */
5089 	dr = &hsotg->dr_backup;
5090 	if (!dr->valid) {
5091 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5092 			__func__);
5093 		return -EINVAL;
5094 	}
5095 	dr->valid = false;
5096 
5097 	if (!remote_wakeup)
5098 		dwc2_writel(hsotg, dr->dctl, DCTL);
5099 
5100 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5101 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5102 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5103 
5104 	for (i = 0; i < hsotg->num_of_eps; i++) {
5105 		/* Restore IN EPs */
5106 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5107 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5108 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5109 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5110 		 * hibernation wrong value read and saved from DIEPDMAx,
5111 		 * as result BNA interrupt asserted on hibernation exit
5112 		 * by restoring from saved area.
5113 		 */
5114 		if (hsotg->params.g_dma_desc &&
5115 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5116 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5117 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5118 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5119 		/* Restore OUT EPs */
5120 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5121 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5122 		 * hibernation wrong value read and saved from DOEPDMAx,
5123 		 * as result BNA interrupt asserted on hibernation exit
5124 		 * by restoring from saved area.
5125 		 */
5126 		if (hsotg->params.g_dma_desc &&
5127 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5128 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5129 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5130 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5131 	}
5132 
5133 	return 0;
5134 }
5135 
5136 /**
5137  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5138  *
5139  * @hsotg: Programming view of DWC_otg controller
5140  *
5141  */
5142 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5143 {
5144 	u32 val;
5145 
5146 	if (!hsotg->params.lpm)
5147 		return;
5148 
5149 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5150 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5151 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5152 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5153 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5154 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5155 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5156 	dwc2_writel(hsotg, val, GLPMCFG);
5157 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5158 
5159 	/* Unmask WKUP_ALERT Interrupt */
5160 	if (hsotg->params.service_interval)
5161 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5162 }
5163 
5164 /**
5165  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5166  *
5167  * @hsotg: Programming view of DWC_otg controller
5168  *
5169  */
5170 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5171 {
5172 	u32 val = 0;
5173 
5174 	val |= GREFCLK_REF_CLK_MODE;
5175 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5176 	val |= hsotg->params.sof_cnt_wkup_alert <<
5177 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5178 
5179 	dwc2_writel(hsotg, val, GREFCLK);
5180 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5181 }
5182 
5183 /**
5184  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5185  *
5186  * @hsotg: Programming view of the DWC_otg controller
5187  *
5188  * Return non-zero if failed to enter to hibernation.
5189  */
5190 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5191 {
5192 	u32 gpwrdn;
5193 	int ret = 0;
5194 
5195 	/* Change to L2(suspend) state */
5196 	hsotg->lx_state = DWC2_L2;
5197 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5198 	ret = dwc2_backup_global_registers(hsotg);
5199 	if (ret) {
5200 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5201 			__func__);
5202 		return ret;
5203 	}
5204 	ret = dwc2_backup_device_registers(hsotg);
5205 	if (ret) {
5206 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5207 			__func__);
5208 		return ret;
5209 	}
5210 
5211 	gpwrdn = GPWRDN_PWRDNRSTN;
5212 	gpwrdn |= GPWRDN_PMUACTV;
5213 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5214 	udelay(10);
5215 
5216 	/* Set flag to indicate that we are in hibernation */
5217 	hsotg->hibernated = 1;
5218 
5219 	/* Enable interrupts from wake up logic */
5220 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5221 	gpwrdn |= GPWRDN_PMUINTSEL;
5222 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5223 	udelay(10);
5224 
5225 	/* Unmask device mode interrupts in GPWRDN */
5226 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5227 	gpwrdn |= GPWRDN_RST_DET_MSK;
5228 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5229 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5230 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5231 	udelay(10);
5232 
5233 	/* Enable Power Down Clamp */
5234 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5235 	gpwrdn |= GPWRDN_PWRDNCLMP;
5236 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5237 	udelay(10);
5238 
5239 	/* Switch off VDD */
5240 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5241 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5242 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5243 	udelay(10);
5244 
5245 	/* Save gpwrdn register for further usage if stschng interrupt */
5246 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5247 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5248 
5249 	return ret;
5250 }
5251 
5252 /**
5253  * dwc2_gadget_exit_hibernation()
5254  * This function is for exiting from Device mode hibernation by host initiated
5255  * resume/reset and device initiated remote-wakeup.
5256  *
5257  * @hsotg: Programming view of the DWC_otg controller
5258  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5259  * @reset: indicates whether resume is initiated by Reset.
5260  *
5261  * Return non-zero if failed to exit from hibernation.
5262  */
5263 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5264 				 int rem_wakeup, int reset)
5265 {
5266 	u32 pcgcctl;
5267 	u32 gpwrdn;
5268 	u32 dctl;
5269 	int ret = 0;
5270 	struct dwc2_gregs_backup *gr;
5271 	struct dwc2_dregs_backup *dr;
5272 
5273 	gr = &hsotg->gr_backup;
5274 	dr = &hsotg->dr_backup;
5275 
5276 	if (!hsotg->hibernated) {
5277 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5278 		return 1;
5279 	}
5280 	dev_dbg(hsotg->dev,
5281 		"%s: called with rem_wakeup = %d reset = %d\n",
5282 		__func__, rem_wakeup, reset);
5283 
5284 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5285 
5286 	if (!reset) {
5287 		/* Clear all pending interupts */
5288 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5289 	}
5290 
5291 	/* De-assert Restore */
5292 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5293 	gpwrdn &= ~GPWRDN_RESTORE;
5294 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5295 	udelay(10);
5296 
5297 	if (!rem_wakeup) {
5298 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5299 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5300 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5301 	}
5302 
5303 	/* Restore GUSBCFG, DCFG and DCTL */
5304 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5305 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5306 	dwc2_writel(hsotg, dr->dctl, DCTL);
5307 
5308 	/* On USB Reset, reset device address to zero */
5309 	if (reset)
5310 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5311 
5312 	/* De-assert Wakeup Logic */
5313 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5314 	gpwrdn &= ~GPWRDN_PMUACTV;
5315 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5316 
5317 	if (rem_wakeup) {
5318 		udelay(10);
5319 		/* Start Remote Wakeup Signaling */
5320 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5321 	} else {
5322 		udelay(50);
5323 		/* Set Device programming done bit */
5324 		dctl = dwc2_readl(hsotg, DCTL);
5325 		dctl |= DCTL_PWRONPRGDONE;
5326 		dwc2_writel(hsotg, dctl, DCTL);
5327 	}
5328 	/* Wait for interrupts which must be cleared */
5329 	mdelay(2);
5330 	/* Clear all pending interupts */
5331 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5332 
5333 	/* Restore global registers */
5334 	ret = dwc2_restore_global_registers(hsotg);
5335 	if (ret) {
5336 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5337 			__func__);
5338 		return ret;
5339 	}
5340 
5341 	/* Restore device registers */
5342 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5343 	if (ret) {
5344 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5345 			__func__);
5346 		return ret;
5347 	}
5348 
5349 	if (rem_wakeup) {
5350 		mdelay(10);
5351 		dctl = dwc2_readl(hsotg, DCTL);
5352 		dctl &= ~DCTL_RMTWKUPSIG;
5353 		dwc2_writel(hsotg, dctl, DCTL);
5354 	}
5355 
5356 	hsotg->hibernated = 0;
5357 	hsotg->lx_state = DWC2_L0;
5358 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5359 
5360 	return ret;
5361 }
5362 
5363 /**
5364  * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5365  * power down.
5366  *
5367  * @hsotg: Programming view of the DWC_otg controller
5368  *
5369  * Return: non-zero if failed to enter device partial power down.
5370  *
5371  * This function is for entering device mode partial power down.
5372  */
5373 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5374 {
5375 	u32 pcgcctl;
5376 	int ret = 0;
5377 
5378 	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5379 
5380 	/* Backup all registers */
5381 	ret = dwc2_backup_global_registers(hsotg);
5382 	if (ret) {
5383 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5384 			__func__);
5385 		return ret;
5386 	}
5387 
5388 	ret = dwc2_backup_device_registers(hsotg);
5389 	if (ret) {
5390 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5391 			__func__);
5392 		return ret;
5393 	}
5394 
5395 	/*
5396 	 * Clear any pending interrupts since dwc2 will not be able to
5397 	 * clear them after entering partial_power_down.
5398 	 */
5399 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5400 
5401 	/* Put the controller in low power state */
5402 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5403 
5404 	pcgcctl |= PCGCTL_PWRCLMP;
5405 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5406 	udelay(5);
5407 
5408 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5409 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5410 	udelay(5);
5411 
5412 	pcgcctl |= PCGCTL_STOPPCLK;
5413 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5414 
5415 	/* Set in_ppd flag to 1 as here core enters suspend. */
5416 	hsotg->in_ppd = 1;
5417 	hsotg->lx_state = DWC2_L2;
5418 
5419 	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5420 
5421 	return ret;
5422 }
5423 
5424 /*
5425  * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5426  * power down.
5427  *
5428  * @hsotg: Programming view of the DWC_otg controller
5429  * @restore: indicates whether need to restore the registers or not.
5430  *
5431  * Return: non-zero if failed to exit device partial power down.
5432  *
5433  * This function is for exiting from device mode partial power down.
5434  */
5435 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5436 					bool restore)
5437 {
5438 	u32 pcgcctl;
5439 	u32 dctl;
5440 	struct dwc2_dregs_backup *dr;
5441 	int ret = 0;
5442 
5443 	dr = &hsotg->dr_backup;
5444 
5445 	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5446 
5447 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5448 	pcgcctl &= ~PCGCTL_STOPPCLK;
5449 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5450 
5451 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5452 	pcgcctl &= ~PCGCTL_PWRCLMP;
5453 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5454 
5455 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5456 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5457 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5458 
5459 	udelay(100);
5460 	if (restore) {
5461 		ret = dwc2_restore_global_registers(hsotg);
5462 		if (ret) {
5463 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5464 				__func__);
5465 			return ret;
5466 		}
5467 		/* Restore DCFG */
5468 		dwc2_writel(hsotg, dr->dcfg, DCFG);
5469 
5470 		ret = dwc2_restore_device_registers(hsotg, 0);
5471 		if (ret) {
5472 			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5473 				__func__);
5474 			return ret;
5475 		}
5476 	}
5477 
5478 	/* Set the Power-On Programming done bit */
5479 	dctl = dwc2_readl(hsotg, DCTL);
5480 	dctl |= DCTL_PWRONPRGDONE;
5481 	dwc2_writel(hsotg, dctl, DCTL);
5482 
5483 	/* Set in_ppd flag to 0 as here core exits from suspend. */
5484 	hsotg->in_ppd = 0;
5485 	hsotg->lx_state = DWC2_L0;
5486 
5487 	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5488 	return ret;
5489 }
5490 
5491 /**
5492  * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5493  *
5494  * @hsotg: Programming view of the DWC_otg controller
5495  *
5496  * Return: non-zero if failed to enter device partial power down.
5497  *
5498  * This function is for entering device mode clock gating.
5499  */
5500 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5501 {
5502 	u32 pcgctl;
5503 
5504 	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5505 
5506 	/* Set the Phy Clock bit as suspend is received. */
5507 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5508 	pcgctl |= PCGCTL_STOPPCLK;
5509 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5510 	udelay(5);
5511 
5512 	/* Set the Gate hclk as suspend is received. */
5513 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5514 	pcgctl |= PCGCTL_GATEHCLK;
5515 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5516 	udelay(5);
5517 
5518 	hsotg->lx_state = DWC2_L2;
5519 	hsotg->bus_suspended = true;
5520 }
5521 
5522 /*
5523  * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5524  *
5525  * @hsotg: Programming view of the DWC_otg controller
5526  * @rem_wakeup: indicates whether remote wake up is enabled.
5527  *
5528  * This function is for exiting from device mode clock gating.
5529  */
5530 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5531 {
5532 	u32 pcgctl;
5533 	u32 dctl;
5534 
5535 	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5536 
5537 	/* Clear the Gate hclk. */
5538 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5539 	pcgctl &= ~PCGCTL_GATEHCLK;
5540 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5541 	udelay(5);
5542 
5543 	/* Phy Clock bit. */
5544 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5545 	pcgctl &= ~PCGCTL_STOPPCLK;
5546 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5547 	udelay(5);
5548 
5549 	if (rem_wakeup) {
5550 		/* Set Remote Wakeup Signaling */
5551 		dctl = dwc2_readl(hsotg, DCTL);
5552 		dctl |= DCTL_RMTWKUPSIG;
5553 		dwc2_writel(hsotg, dctl, DCTL);
5554 	}
5555 
5556 	/* Change to L0 state */
5557 	call_gadget(hsotg, resume);
5558 	hsotg->lx_state = DWC2_L0;
5559 	hsotg->bus_suspended = false;
5560 }
5561