1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 hs_ep->target_frame += hs_ep->interval; 119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 120 hs_ep->frame_overrun = true; 121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 122 } else { 123 hs_ep->frame_overrun = false; 124 } 125 } 126 127 /** 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 129 * by one. 130 * @hs_ep: The endpoint. 131 * 132 * This function used in service interval based scheduling flow to calculate 133 * descriptor frame number filed value. For service interval mode frame 134 * number in descriptor should point to last (u)frame in the interval. 135 * 136 */ 137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 138 { 139 if (hs_ep->target_frame) 140 hs_ep->target_frame -= 1; 141 else 142 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 143 } 144 145 /** 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 147 * @hsotg: The device state 148 * @ints: A bitmask of the interrupts to enable 149 */ 150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 151 { 152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 153 u32 new_gsintmsk; 154 155 new_gsintmsk = gsintmsk | ints; 156 157 if (new_gsintmsk != gsintmsk) { 158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 160 } 161 } 162 163 /** 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 165 * @hsotg: The device state 166 * @ints: A bitmask of the interrupts to enable 167 */ 168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 169 { 170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 171 u32 new_gsintmsk; 172 173 new_gsintmsk = gsintmsk & ~ints; 174 175 if (new_gsintmsk != gsintmsk) 176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 177 } 178 179 /** 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 181 * @hsotg: The device state 182 * @ep: The endpoint index 183 * @dir_in: True if direction is in. 184 * @en: The enable value, true to enable 185 * 186 * Set or clear the mask for an individual endpoint's interrupt 187 * request. 188 */ 189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 190 unsigned int ep, unsigned int dir_in, 191 unsigned int en) 192 { 193 unsigned long flags; 194 u32 bit = 1 << ep; 195 u32 daint; 196 197 if (!dir_in) 198 bit <<= 16; 199 200 local_irq_save(flags); 201 daint = dwc2_readl(hsotg, DAINTMSK); 202 if (en) 203 daint |= bit; 204 else 205 daint &= ~bit; 206 dwc2_writel(hsotg, daint, DAINTMSK); 207 local_irq_restore(flags); 208 } 209 210 /** 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 212 * 213 * @hsotg: Programming view of the DWC_otg controller 214 */ 215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 216 { 217 if (hsotg->hw_params.en_multiple_tx_fifo) 218 /* In dedicated FIFO mode we need count of IN EPs */ 219 return hsotg->hw_params.num_dev_in_eps; 220 else 221 /* In shared FIFO mode we need count of Periodic IN EPs */ 222 return hsotg->hw_params.num_dev_perio_in_ep; 223 } 224 225 /** 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 227 * device mode TX FIFOs 228 * 229 * @hsotg: Programming view of the DWC_otg controller 230 */ 231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 232 { 233 int addr; 234 int tx_addr_max; 235 u32 np_tx_fifo_size; 236 237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 238 hsotg->params.g_np_tx_fifo_size); 239 240 /* Get Endpoint Info Control block size in DWORDs. */ 241 tx_addr_max = hsotg->hw_params.total_fifo_size; 242 243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 244 if (tx_addr_max <= addr) 245 return 0; 246 247 return tx_addr_max - addr; 248 } 249 250 /** 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 252 * 253 * @hsotg: Programming view of the DWC_otg controller 254 * 255 */ 256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 257 { 258 u32 gintsts2; 259 u32 gintmsk2; 260 261 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 263 gintsts2 &= gintmsk2; 264 265 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 266 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 267 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 268 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 269 } 270 } 271 272 /** 273 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 274 * TX FIFOs 275 * 276 * @hsotg: Programming view of the DWC_otg controller 277 */ 278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 279 { 280 int tx_fifo_count; 281 int tx_fifo_depth; 282 283 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 284 285 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 286 287 if (!tx_fifo_count) 288 return tx_fifo_depth; 289 else 290 return tx_fifo_depth / tx_fifo_count; 291 } 292 293 /** 294 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 295 * @hsotg: The device instance. 296 */ 297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 298 { 299 unsigned int ep; 300 unsigned int addr; 301 int timeout; 302 303 u32 val; 304 u32 *txfsz = hsotg->params.g_tx_fifo_size; 305 306 /* Reset fifo map if not correctly cleared during previous session */ 307 WARN_ON(hsotg->fifo_map); 308 hsotg->fifo_map = 0; 309 310 /* set RX/NPTX FIFO sizes */ 311 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 312 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 313 FIFOSIZE_STARTADDR_SHIFT) | 314 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 315 GNPTXFSIZ); 316 317 /* 318 * arange all the rest of the TX FIFOs, as some versions of this 319 * block have overlapping default addresses. This also ensures 320 * that if the settings have been changed, then they are set to 321 * known values. 322 */ 323 324 /* start at the end of the GNPTXFSIZ, rounded up */ 325 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 326 327 /* 328 * Configure fifos sizes from provided configuration and assign 329 * them to endpoints dynamically according to maxpacket size value of 330 * given endpoint. 331 */ 332 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 333 if (!txfsz[ep]) 334 continue; 335 val = addr; 336 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 337 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 338 "insufficient fifo memory"); 339 addr += txfsz[ep]; 340 341 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 342 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 343 } 344 345 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 346 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 347 GDFIFOCFG); 348 /* 349 * according to p428 of the design guide, we need to ensure that 350 * all fifos are flushed before continuing 351 */ 352 353 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 354 GRSTCTL_RXFFLSH, GRSTCTL); 355 356 /* wait until the fifos are both flushed */ 357 timeout = 100; 358 while (1) { 359 val = dwc2_readl(hsotg, GRSTCTL); 360 361 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 362 break; 363 364 if (--timeout == 0) { 365 dev_err(hsotg->dev, 366 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 367 __func__, val); 368 break; 369 } 370 371 udelay(1); 372 } 373 374 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 375 } 376 377 /** 378 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 379 * @ep: USB endpoint to allocate request for. 380 * @flags: Allocation flags 381 * 382 * Allocate a new USB request structure appropriate for the specified endpoint 383 */ 384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 385 gfp_t flags) 386 { 387 struct dwc2_hsotg_req *req; 388 389 req = kzalloc(sizeof(*req), flags); 390 if (!req) 391 return NULL; 392 393 INIT_LIST_HEAD(&req->queue); 394 395 return &req->req; 396 } 397 398 /** 399 * is_ep_periodic - return true if the endpoint is in periodic mode. 400 * @hs_ep: The endpoint to query. 401 * 402 * Returns true if the endpoint is in periodic mode, meaning it is being 403 * used for an Interrupt or ISO transfer. 404 */ 405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 406 { 407 return hs_ep->periodic; 408 } 409 410 /** 411 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 412 * @hsotg: The device state. 413 * @hs_ep: The endpoint for the request 414 * @hs_req: The request being processed. 415 * 416 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 417 * of a request to ensure the buffer is ready for access by the caller. 418 */ 419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 420 struct dwc2_hsotg_ep *hs_ep, 421 struct dwc2_hsotg_req *hs_req) 422 { 423 struct usb_request *req = &hs_req->req; 424 425 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 426 } 427 428 /* 429 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 430 * for Control endpoint 431 * @hsotg: The device state. 432 * 433 * This function will allocate 4 descriptor chains for EP 0: 2 for 434 * Setup stage, per one for IN and OUT data/status transactions. 435 */ 436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 437 { 438 hsotg->setup_desc[0] = 439 dmam_alloc_coherent(hsotg->dev, 440 sizeof(struct dwc2_dma_desc), 441 &hsotg->setup_desc_dma[0], 442 GFP_KERNEL); 443 if (!hsotg->setup_desc[0]) 444 goto fail; 445 446 hsotg->setup_desc[1] = 447 dmam_alloc_coherent(hsotg->dev, 448 sizeof(struct dwc2_dma_desc), 449 &hsotg->setup_desc_dma[1], 450 GFP_KERNEL); 451 if (!hsotg->setup_desc[1]) 452 goto fail; 453 454 hsotg->ctrl_in_desc = 455 dmam_alloc_coherent(hsotg->dev, 456 sizeof(struct dwc2_dma_desc), 457 &hsotg->ctrl_in_desc_dma, 458 GFP_KERNEL); 459 if (!hsotg->ctrl_in_desc) 460 goto fail; 461 462 hsotg->ctrl_out_desc = 463 dmam_alloc_coherent(hsotg->dev, 464 sizeof(struct dwc2_dma_desc), 465 &hsotg->ctrl_out_desc_dma, 466 GFP_KERNEL); 467 if (!hsotg->ctrl_out_desc) 468 goto fail; 469 470 return 0; 471 472 fail: 473 return -ENOMEM; 474 } 475 476 /** 477 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 478 * @hsotg: The controller state. 479 * @hs_ep: The endpoint we're going to write for. 480 * @hs_req: The request to write data for. 481 * 482 * This is called when the TxFIFO has some space in it to hold a new 483 * transmission and we have something to give it. The actual setup of 484 * the data size is done elsewhere, so all we have to do is to actually 485 * write the data. 486 * 487 * The return value is zero if there is more space (or nothing was done) 488 * otherwise -ENOSPC is returned if the FIFO space was used up. 489 * 490 * This routine is only needed for PIO 491 */ 492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 493 struct dwc2_hsotg_ep *hs_ep, 494 struct dwc2_hsotg_req *hs_req) 495 { 496 bool periodic = is_ep_periodic(hs_ep); 497 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 498 int buf_pos = hs_req->req.actual; 499 int to_write = hs_ep->size_loaded; 500 void *data; 501 int can_write; 502 int pkt_round; 503 int max_transfer; 504 505 to_write -= (buf_pos - hs_ep->last_load); 506 507 /* if there's nothing to write, get out early */ 508 if (to_write == 0) 509 return 0; 510 511 if (periodic && !hsotg->dedicated_fifos) { 512 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 513 int size_left; 514 int size_done; 515 516 /* 517 * work out how much data was loaded so we can calculate 518 * how much data is left in the fifo. 519 */ 520 521 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 522 523 /* 524 * if shared fifo, we cannot write anything until the 525 * previous data has been completely sent. 526 */ 527 if (hs_ep->fifo_load != 0) { 528 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 529 return -ENOSPC; 530 } 531 532 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 533 __func__, size_left, 534 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 535 536 /* how much of the data has moved */ 537 size_done = hs_ep->size_loaded - size_left; 538 539 /* how much data is left in the fifo */ 540 can_write = hs_ep->fifo_load - size_done; 541 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 542 __func__, can_write); 543 544 can_write = hs_ep->fifo_size - can_write; 545 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 546 __func__, can_write); 547 548 if (can_write <= 0) { 549 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 550 return -ENOSPC; 551 } 552 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 553 can_write = dwc2_readl(hsotg, 554 DTXFSTS(hs_ep->fifo_index)); 555 556 can_write &= 0xffff; 557 can_write *= 4; 558 } else { 559 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 560 dev_dbg(hsotg->dev, 561 "%s: no queue slots available (0x%08x)\n", 562 __func__, gnptxsts); 563 564 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 565 return -ENOSPC; 566 } 567 568 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 569 can_write *= 4; /* fifo size is in 32bit quantities. */ 570 } 571 572 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 573 574 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 575 __func__, gnptxsts, can_write, to_write, max_transfer); 576 577 /* 578 * limit to 512 bytes of data, it seems at least on the non-periodic 579 * FIFO, requests of >512 cause the endpoint to get stuck with a 580 * fragment of the end of the transfer in it. 581 */ 582 if (can_write > 512 && !periodic) 583 can_write = 512; 584 585 /* 586 * limit the write to one max-packet size worth of data, but allow 587 * the transfer to return that it did not run out of fifo space 588 * doing it. 589 */ 590 if (to_write > max_transfer) { 591 to_write = max_transfer; 592 593 /* it's needed only when we do not use dedicated fifos */ 594 if (!hsotg->dedicated_fifos) 595 dwc2_hsotg_en_gsint(hsotg, 596 periodic ? GINTSTS_PTXFEMP : 597 GINTSTS_NPTXFEMP); 598 } 599 600 /* see if we can write data */ 601 602 if (to_write > can_write) { 603 to_write = can_write; 604 pkt_round = to_write % max_transfer; 605 606 /* 607 * Round the write down to an 608 * exact number of packets. 609 * 610 * Note, we do not currently check to see if we can ever 611 * write a full packet or not to the FIFO. 612 */ 613 614 if (pkt_round) 615 to_write -= pkt_round; 616 617 /* 618 * enable correct FIFO interrupt to alert us when there 619 * is more room left. 620 */ 621 622 /* it's needed only when we do not use dedicated fifos */ 623 if (!hsotg->dedicated_fifos) 624 dwc2_hsotg_en_gsint(hsotg, 625 periodic ? GINTSTS_PTXFEMP : 626 GINTSTS_NPTXFEMP); 627 } 628 629 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 630 to_write, hs_req->req.length, can_write, buf_pos); 631 632 if (to_write <= 0) 633 return -ENOSPC; 634 635 hs_req->req.actual = buf_pos + to_write; 636 hs_ep->total_data += to_write; 637 638 if (periodic) 639 hs_ep->fifo_load += to_write; 640 641 to_write = DIV_ROUND_UP(to_write, 4); 642 data = hs_req->req.buf + buf_pos; 643 644 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 645 646 return (to_write >= can_write) ? -ENOSPC : 0; 647 } 648 649 /** 650 * get_ep_limit - get the maximum data legnth for this endpoint 651 * @hs_ep: The endpoint 652 * 653 * Return the maximum data that can be queued in one go on a given endpoint 654 * so that transfers that are too long can be split. 655 */ 656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 657 { 658 int index = hs_ep->index; 659 unsigned int maxsize; 660 unsigned int maxpkt; 661 662 if (index != 0) { 663 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 664 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 665 } else { 666 maxsize = 64 + 64; 667 if (hs_ep->dir_in) 668 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 669 else 670 maxpkt = 2; 671 } 672 673 /* we made the constant loading easier above by using +1 */ 674 maxpkt--; 675 maxsize--; 676 677 /* 678 * constrain by packet count if maxpkts*pktsize is greater 679 * than the length register size. 680 */ 681 682 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 683 maxsize = maxpkt * hs_ep->ep.maxpacket; 684 685 return maxsize; 686 } 687 688 /** 689 * dwc2_hsotg_read_frameno - read current frame number 690 * @hsotg: The device instance 691 * 692 * Return the current frame number 693 */ 694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 695 { 696 u32 dsts; 697 698 dsts = dwc2_readl(hsotg, DSTS); 699 dsts &= DSTS_SOFFN_MASK; 700 dsts >>= DSTS_SOFFN_SHIFT; 701 702 return dsts; 703 } 704 705 /** 706 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 707 * DMA descriptor chain prepared for specific endpoint 708 * @hs_ep: The endpoint 709 * 710 * Return the maximum data that can be queued in one go on a given endpoint 711 * depending on its descriptor chain capacity so that transfers that 712 * are too long can be split. 713 */ 714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 715 { 716 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 717 int is_isoc = hs_ep->isochronous; 718 unsigned int maxsize; 719 u32 mps = hs_ep->ep.maxpacket; 720 int dir_in = hs_ep->dir_in; 721 722 if (is_isoc) 723 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 724 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 725 MAX_DMA_DESC_NUM_HS_ISOC; 726 else 727 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 728 729 /* Interrupt OUT EP with mps not multiple of 4 */ 730 if (hs_ep->index) 731 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 732 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; 733 734 return maxsize; 735 } 736 737 /* 738 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 739 * @hs_ep: The endpoint 740 * @mask: RX/TX bytes mask to be defined 741 * 742 * Returns maximum data payload for one descriptor after analyzing endpoint 743 * characteristics. 744 * DMA descriptor transfer bytes limit depends on EP type: 745 * Control out - MPS, 746 * Isochronous - descriptor rx/tx bytes bitfield limit, 747 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 748 * have concatenations from various descriptors within one packet. 749 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds 750 * to a single descriptor. 751 * 752 * Selects corresponding mask for RX/TX bytes as well. 753 */ 754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 755 { 756 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 757 u32 mps = hs_ep->ep.maxpacket; 758 int dir_in = hs_ep->dir_in; 759 u32 desc_size = 0; 760 761 if (!hs_ep->index && !dir_in) { 762 desc_size = mps; 763 *mask = DEV_DMA_NBYTES_MASK; 764 } else if (hs_ep->isochronous) { 765 if (dir_in) { 766 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 767 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 768 } else { 769 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 770 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 771 } 772 } else { 773 desc_size = DEV_DMA_NBYTES_LIMIT; 774 *mask = DEV_DMA_NBYTES_MASK; 775 776 /* Round down desc_size to be mps multiple */ 777 desc_size -= desc_size % mps; 778 } 779 780 /* Interrupt OUT EP with mps not multiple of 4 */ 781 if (hs_ep->index) 782 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { 783 desc_size = mps; 784 *mask = DEV_DMA_NBYTES_MASK; 785 } 786 787 return desc_size; 788 } 789 790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 791 struct dwc2_dma_desc **desc, 792 dma_addr_t dma_buff, 793 unsigned int len, 794 bool true_last) 795 { 796 int dir_in = hs_ep->dir_in; 797 u32 mps = hs_ep->ep.maxpacket; 798 u32 maxsize = 0; 799 u32 offset = 0; 800 u32 mask = 0; 801 int i; 802 803 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 804 805 hs_ep->desc_count = (len / maxsize) + 806 ((len % maxsize) ? 1 : 0); 807 if (len == 0) 808 hs_ep->desc_count = 1; 809 810 for (i = 0; i < hs_ep->desc_count; ++i) { 811 (*desc)->status = 0; 812 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 813 << DEV_DMA_BUFF_STS_SHIFT); 814 815 if (len > maxsize) { 816 if (!hs_ep->index && !dir_in) 817 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 818 819 (*desc)->status |= 820 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 821 (*desc)->buf = dma_buff + offset; 822 823 len -= maxsize; 824 offset += maxsize; 825 } else { 826 if (true_last) 827 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 828 829 if (dir_in) 830 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 831 ((hs_ep->send_zlp && true_last) ? 832 DEV_DMA_SHORT : 0); 833 834 (*desc)->status |= 835 len << DEV_DMA_NBYTES_SHIFT & mask; 836 (*desc)->buf = dma_buff + offset; 837 } 838 839 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 840 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 841 << DEV_DMA_BUFF_STS_SHIFT); 842 (*desc)++; 843 } 844 } 845 846 /* 847 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 848 * @hs_ep: The endpoint 849 * @ureq: Request to transfer 850 * @offset: offset in bytes 851 * @len: Length of the transfer 852 * 853 * This function will iterate over descriptor chain and fill its entries 854 * with corresponding information based on transfer data. 855 */ 856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 857 dma_addr_t dma_buff, 858 unsigned int len) 859 { 860 struct usb_request *ureq = NULL; 861 struct dwc2_dma_desc *desc = hs_ep->desc_list; 862 struct scatterlist *sg; 863 int i; 864 u8 desc_count = 0; 865 866 if (hs_ep->req) 867 ureq = &hs_ep->req->req; 868 869 /* non-DMA sg buffer */ 870 if (!ureq || !ureq->num_sgs) { 871 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 872 dma_buff, len, true); 873 return; 874 } 875 876 /* DMA sg buffer */ 877 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 878 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 879 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 880 sg_is_last(sg)); 881 desc_count += hs_ep->desc_count; 882 } 883 884 hs_ep->desc_count = desc_count; 885 } 886 887 /* 888 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 889 * @hs_ep: The isochronous endpoint. 890 * @dma_buff: usb requests dma buffer. 891 * @len: usb request transfer length. 892 * 893 * Fills next free descriptor with the data of the arrived usb request, 894 * frame info, sets Last and IOC bits increments next_desc. If filled 895 * descriptor is not the first one, removes L bit from the previous descriptor 896 * status. 897 */ 898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 899 dma_addr_t dma_buff, unsigned int len) 900 { 901 struct dwc2_dma_desc *desc; 902 struct dwc2_hsotg *hsotg = hs_ep->parent; 903 u32 index; 904 u32 mask = 0; 905 u8 pid = 0; 906 907 dwc2_gadget_get_desc_params(hs_ep, &mask); 908 909 index = hs_ep->next_desc; 910 desc = &hs_ep->desc_list[index]; 911 912 /* Check if descriptor chain full */ 913 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 914 DEV_DMA_BUFF_STS_HREADY) { 915 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 916 return 1; 917 } 918 919 /* Clear L bit of previous desc if more than one entries in the chain */ 920 if (hs_ep->next_desc) 921 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 922 923 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 924 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 925 926 desc->status = 0; 927 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 928 929 desc->buf = dma_buff; 930 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 931 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 932 933 if (hs_ep->dir_in) { 934 if (len) 935 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 936 else 937 pid = 1; 938 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 939 DEV_DMA_ISOC_PID_MASK) | 940 ((len % hs_ep->ep.maxpacket) ? 941 DEV_DMA_SHORT : 0) | 942 ((hs_ep->target_frame << 943 DEV_DMA_ISOC_FRNUM_SHIFT) & 944 DEV_DMA_ISOC_FRNUM_MASK); 945 } 946 947 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 948 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 949 950 /* Increment frame number by interval for IN */ 951 if (hs_ep->dir_in) 952 dwc2_gadget_incr_frame_num(hs_ep); 953 954 /* Update index of last configured entry in the chain */ 955 hs_ep->next_desc++; 956 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 957 hs_ep->next_desc = 0; 958 959 return 0; 960 } 961 962 /* 963 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 964 * @hs_ep: The isochronous endpoint. 965 * 966 * Prepare descriptor chain for isochronous endpoints. Afterwards 967 * write DMA address to HW and enable the endpoint. 968 */ 969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 970 { 971 struct dwc2_hsotg *hsotg = hs_ep->parent; 972 struct dwc2_hsotg_req *hs_req, *treq; 973 int index = hs_ep->index; 974 int ret; 975 int i; 976 u32 dma_reg; 977 u32 depctl; 978 u32 ctrl; 979 struct dwc2_dma_desc *desc; 980 981 if (list_empty(&hs_ep->queue)) { 982 hs_ep->target_frame = TARGET_FRAME_INITIAL; 983 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 984 return; 985 } 986 987 /* Initialize descriptor chain by Host Busy status */ 988 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 989 desc = &hs_ep->desc_list[i]; 990 desc->status = 0; 991 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 992 << DEV_DMA_BUFF_STS_SHIFT); 993 } 994 995 hs_ep->next_desc = 0; 996 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 997 dma_addr_t dma_addr = hs_req->req.dma; 998 999 if (hs_req->req.num_sgs) { 1000 WARN_ON(hs_req->req.num_sgs > 1); 1001 dma_addr = sg_dma_address(hs_req->req.sg); 1002 } 1003 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1004 hs_req->req.length); 1005 if (ret) 1006 break; 1007 } 1008 1009 hs_ep->compl_desc = 0; 1010 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1011 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 1012 1013 /* write descriptor chain address to control register */ 1014 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1015 1016 ctrl = dwc2_readl(hsotg, depctl); 1017 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1018 dwc2_writel(hsotg, ctrl, depctl); 1019 } 1020 1021 /** 1022 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1023 * @hsotg: The controller state. 1024 * @hs_ep: The endpoint to process a request for 1025 * @hs_req: The request to start. 1026 * @continuing: True if we are doing more for the current request. 1027 * 1028 * Start the given request running by setting the endpoint registers 1029 * appropriately, and writing any data to the FIFOs. 1030 */ 1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1032 struct dwc2_hsotg_ep *hs_ep, 1033 struct dwc2_hsotg_req *hs_req, 1034 bool continuing) 1035 { 1036 struct usb_request *ureq = &hs_req->req; 1037 int index = hs_ep->index; 1038 int dir_in = hs_ep->dir_in; 1039 u32 epctrl_reg; 1040 u32 epsize_reg; 1041 u32 epsize; 1042 u32 ctrl; 1043 unsigned int length; 1044 unsigned int packets; 1045 unsigned int maxreq; 1046 unsigned int dma_reg; 1047 1048 if (index != 0) { 1049 if (hs_ep->req && !continuing) { 1050 dev_err(hsotg->dev, "%s: active request\n", __func__); 1051 WARN_ON(1); 1052 return; 1053 } else if (hs_ep->req != hs_req && continuing) { 1054 dev_err(hsotg->dev, 1055 "%s: continue different req\n", __func__); 1056 WARN_ON(1); 1057 return; 1058 } 1059 } 1060 1061 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1062 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1063 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1064 1065 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1066 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1067 hs_ep->dir_in ? "in" : "out"); 1068 1069 /* If endpoint is stalled, we will restart request later */ 1070 ctrl = dwc2_readl(hsotg, epctrl_reg); 1071 1072 if (index && ctrl & DXEPCTL_STALL) { 1073 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1074 return; 1075 } 1076 1077 length = ureq->length - ureq->actual; 1078 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1079 ureq->length, ureq->actual); 1080 1081 if (!using_desc_dma(hsotg)) 1082 maxreq = get_ep_limit(hs_ep); 1083 else 1084 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1085 1086 if (length > maxreq) { 1087 int round = maxreq % hs_ep->ep.maxpacket; 1088 1089 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1090 __func__, length, maxreq, round); 1091 1092 /* round down to multiple of packets */ 1093 if (round) 1094 maxreq -= round; 1095 1096 length = maxreq; 1097 } 1098 1099 if (length) 1100 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1101 else 1102 packets = 1; /* send one packet if length is zero. */ 1103 1104 if (dir_in && index != 0) 1105 if (hs_ep->isochronous) 1106 epsize = DXEPTSIZ_MC(packets); 1107 else 1108 epsize = DXEPTSIZ_MC(1); 1109 else 1110 epsize = 0; 1111 1112 /* 1113 * zero length packet should be programmed on its own and should not 1114 * be counted in DIEPTSIZ.PktCnt with other packets. 1115 */ 1116 if (dir_in && ureq->zero && !continuing) { 1117 /* Test if zlp is actually required. */ 1118 if ((ureq->length >= hs_ep->ep.maxpacket) && 1119 !(ureq->length % hs_ep->ep.maxpacket)) 1120 hs_ep->send_zlp = 1; 1121 } 1122 1123 epsize |= DXEPTSIZ_PKTCNT(packets); 1124 epsize |= DXEPTSIZ_XFERSIZE(length); 1125 1126 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1127 __func__, packets, length, ureq->length, epsize, epsize_reg); 1128 1129 /* store the request as the current one we're doing */ 1130 hs_ep->req = hs_req; 1131 1132 if (using_desc_dma(hsotg)) { 1133 u32 offset = 0; 1134 u32 mps = hs_ep->ep.maxpacket; 1135 1136 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1137 if (!dir_in) { 1138 if (!index) 1139 length = mps; 1140 else if (length % mps) 1141 length += (mps - (length % mps)); 1142 } 1143 1144 if (continuing) 1145 offset = ureq->actual; 1146 1147 /* Fill DDMA chain entries */ 1148 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1149 length); 1150 1151 /* write descriptor chain address to control register */ 1152 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1153 1154 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1155 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1156 } else { 1157 /* write size / packets */ 1158 dwc2_writel(hsotg, epsize, epsize_reg); 1159 1160 if (using_dma(hsotg) && !continuing && (length != 0)) { 1161 /* 1162 * write DMA address to control register, buffer 1163 * already synced by dwc2_hsotg_ep_queue(). 1164 */ 1165 1166 dwc2_writel(hsotg, ureq->dma, dma_reg); 1167 1168 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1169 __func__, &ureq->dma, dma_reg); 1170 } 1171 } 1172 1173 if (hs_ep->isochronous && hs_ep->interval == 1) { 1174 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1175 dwc2_gadget_incr_frame_num(hs_ep); 1176 1177 if (hs_ep->target_frame & 0x1) 1178 ctrl |= DXEPCTL_SETODDFR; 1179 else 1180 ctrl |= DXEPCTL_SETEVENFR; 1181 } 1182 1183 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1184 1185 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1186 1187 /* For Setup request do not clear NAK */ 1188 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1189 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1190 1191 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1192 dwc2_writel(hsotg, ctrl, epctrl_reg); 1193 1194 /* 1195 * set these, it seems that DMA support increments past the end 1196 * of the packet buffer so we need to calculate the length from 1197 * this information. 1198 */ 1199 hs_ep->size_loaded = length; 1200 hs_ep->last_load = ureq->actual; 1201 1202 if (dir_in && !using_dma(hsotg)) { 1203 /* set these anyway, we may need them for non-periodic in */ 1204 hs_ep->fifo_load = 0; 1205 1206 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1207 } 1208 1209 /* 1210 * Note, trying to clear the NAK here causes problems with transmit 1211 * on the S3C6400 ending up with the TXFIFO becoming full. 1212 */ 1213 1214 /* check ep is enabled */ 1215 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1216 dev_dbg(hsotg->dev, 1217 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1218 index, dwc2_readl(hsotg, epctrl_reg)); 1219 1220 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1221 __func__, dwc2_readl(hsotg, epctrl_reg)); 1222 1223 /* enable ep interrupts */ 1224 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1225 } 1226 1227 /** 1228 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1229 * @hsotg: The device state. 1230 * @hs_ep: The endpoint the request is on. 1231 * @req: The request being processed. 1232 * 1233 * We've been asked to queue a request, so ensure that the memory buffer 1234 * is correctly setup for DMA. If we've been passed an extant DMA address 1235 * then ensure the buffer has been synced to memory. If our buffer has no 1236 * DMA memory, then we map the memory and mark our request to allow us to 1237 * cleanup on completion. 1238 */ 1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1240 struct dwc2_hsotg_ep *hs_ep, 1241 struct usb_request *req) 1242 { 1243 int ret; 1244 1245 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1246 if (ret) 1247 goto dma_error; 1248 1249 return 0; 1250 1251 dma_error: 1252 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1253 __func__, req->buf, req->length); 1254 1255 return -EIO; 1256 } 1257 1258 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1259 struct dwc2_hsotg_ep *hs_ep, 1260 struct dwc2_hsotg_req *hs_req) 1261 { 1262 void *req_buf = hs_req->req.buf; 1263 1264 /* If dma is not being used or buffer is aligned */ 1265 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1266 return 0; 1267 1268 WARN_ON(hs_req->saved_req_buf); 1269 1270 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1271 hs_ep->ep.name, req_buf, hs_req->req.length); 1272 1273 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1274 if (!hs_req->req.buf) { 1275 hs_req->req.buf = req_buf; 1276 dev_err(hsotg->dev, 1277 "%s: unable to allocate memory for bounce buffer\n", 1278 __func__); 1279 return -ENOMEM; 1280 } 1281 1282 /* Save actual buffer */ 1283 hs_req->saved_req_buf = req_buf; 1284 1285 if (hs_ep->dir_in) 1286 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1287 return 0; 1288 } 1289 1290 static void 1291 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1292 struct dwc2_hsotg_ep *hs_ep, 1293 struct dwc2_hsotg_req *hs_req) 1294 { 1295 /* If dma is not being used or buffer was aligned */ 1296 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1297 return; 1298 1299 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1300 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1301 1302 /* Copy data from bounce buffer on successful out transfer */ 1303 if (!hs_ep->dir_in && !hs_req->req.status) 1304 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1305 hs_req->req.actual); 1306 1307 /* Free bounce buffer */ 1308 kfree(hs_req->req.buf); 1309 1310 hs_req->req.buf = hs_req->saved_req_buf; 1311 hs_req->saved_req_buf = NULL; 1312 } 1313 1314 /** 1315 * dwc2_gadget_target_frame_elapsed - Checks target frame 1316 * @hs_ep: The driver endpoint to check 1317 * 1318 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1319 * corresponding transfer. 1320 */ 1321 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1322 { 1323 struct dwc2_hsotg *hsotg = hs_ep->parent; 1324 u32 target_frame = hs_ep->target_frame; 1325 u32 current_frame = hsotg->frame_number; 1326 bool frame_overrun = hs_ep->frame_overrun; 1327 1328 if (!frame_overrun && current_frame >= target_frame) 1329 return true; 1330 1331 if (frame_overrun && current_frame >= target_frame && 1332 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1333 return true; 1334 1335 return false; 1336 } 1337 1338 /* 1339 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1340 * @hsotg: The driver state 1341 * @hs_ep: the ep descriptor chain is for 1342 * 1343 * Called to update EP0 structure's pointers depend on stage of 1344 * control transfer. 1345 */ 1346 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1347 struct dwc2_hsotg_ep *hs_ep) 1348 { 1349 switch (hsotg->ep0_state) { 1350 case DWC2_EP0_SETUP: 1351 case DWC2_EP0_STATUS_OUT: 1352 hs_ep->desc_list = hsotg->setup_desc[0]; 1353 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1354 break; 1355 case DWC2_EP0_DATA_IN: 1356 case DWC2_EP0_STATUS_IN: 1357 hs_ep->desc_list = hsotg->ctrl_in_desc; 1358 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1359 break; 1360 case DWC2_EP0_DATA_OUT: 1361 hs_ep->desc_list = hsotg->ctrl_out_desc; 1362 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1363 break; 1364 default: 1365 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1366 hsotg->ep0_state); 1367 return -EINVAL; 1368 } 1369 1370 return 0; 1371 } 1372 1373 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1374 gfp_t gfp_flags) 1375 { 1376 struct dwc2_hsotg_req *hs_req = our_req(req); 1377 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1378 struct dwc2_hsotg *hs = hs_ep->parent; 1379 bool first; 1380 int ret; 1381 u32 maxsize = 0; 1382 u32 mask = 0; 1383 1384 1385 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1386 ep->name, req, req->length, req->buf, req->no_interrupt, 1387 req->zero, req->short_not_ok); 1388 1389 /* Prevent new request submission when controller is suspended */ 1390 if (hs->lx_state != DWC2_L0) { 1391 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1392 __func__); 1393 return -EAGAIN; 1394 } 1395 1396 /* initialise status of the request */ 1397 INIT_LIST_HEAD(&hs_req->queue); 1398 req->actual = 0; 1399 req->status = -EINPROGRESS; 1400 1401 /* Don't queue ISOC request if length greater than mps*mc */ 1402 if (hs_ep->isochronous && 1403 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1404 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1405 return -EINVAL; 1406 } 1407 1408 /* In DDMA mode for ISOC's don't queue request if length greater 1409 * than descriptor limits. 1410 */ 1411 if (using_desc_dma(hs) && hs_ep->isochronous) { 1412 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1413 if (hs_ep->dir_in && req->length > maxsize) { 1414 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1415 req->length, maxsize); 1416 return -EINVAL; 1417 } 1418 1419 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1420 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1421 req->length, hs_ep->ep.maxpacket); 1422 return -EINVAL; 1423 } 1424 } 1425 1426 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1427 if (ret) 1428 return ret; 1429 1430 /* if we're using DMA, sync the buffers as necessary */ 1431 if (using_dma(hs)) { 1432 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1433 if (ret) 1434 return ret; 1435 } 1436 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1437 if (using_desc_dma(hs) && !hs_ep->index) { 1438 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1439 if (ret) 1440 return ret; 1441 } 1442 1443 first = list_empty(&hs_ep->queue); 1444 list_add_tail(&hs_req->queue, &hs_ep->queue); 1445 1446 /* 1447 * Handle DDMA isochronous transfers separately - just add new entry 1448 * to the descriptor chain. 1449 * Transfer will be started once SW gets either one of NAK or 1450 * OutTknEpDis interrupts. 1451 */ 1452 if (using_desc_dma(hs) && hs_ep->isochronous) { 1453 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1454 dma_addr_t dma_addr = hs_req->req.dma; 1455 1456 if (hs_req->req.num_sgs) { 1457 WARN_ON(hs_req->req.num_sgs > 1); 1458 dma_addr = sg_dma_address(hs_req->req.sg); 1459 } 1460 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1461 hs_req->req.length); 1462 } 1463 return 0; 1464 } 1465 1466 /* Change EP direction if status phase request is after data out */ 1467 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1468 hs->ep0_state == DWC2_EP0_DATA_OUT) 1469 hs_ep->dir_in = 1; 1470 1471 if (first) { 1472 if (!hs_ep->isochronous) { 1473 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1474 return 0; 1475 } 1476 1477 /* Update current frame number value. */ 1478 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1479 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1480 dwc2_gadget_incr_frame_num(hs_ep); 1481 /* Update current frame number value once more as it 1482 * changes here. 1483 */ 1484 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1485 } 1486 1487 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1488 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1489 } 1490 return 0; 1491 } 1492 1493 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1494 gfp_t gfp_flags) 1495 { 1496 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1497 struct dwc2_hsotg *hs = hs_ep->parent; 1498 unsigned long flags = 0; 1499 int ret = 0; 1500 1501 spin_lock_irqsave(&hs->lock, flags); 1502 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1503 spin_unlock_irqrestore(&hs->lock, flags); 1504 1505 return ret; 1506 } 1507 1508 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1509 struct usb_request *req) 1510 { 1511 struct dwc2_hsotg_req *hs_req = our_req(req); 1512 1513 kfree(hs_req); 1514 } 1515 1516 /** 1517 * dwc2_hsotg_complete_oursetup - setup completion callback 1518 * @ep: The endpoint the request was on. 1519 * @req: The request completed. 1520 * 1521 * Called on completion of any requests the driver itself 1522 * submitted that need cleaning up. 1523 */ 1524 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1525 struct usb_request *req) 1526 { 1527 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1528 struct dwc2_hsotg *hsotg = hs_ep->parent; 1529 1530 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1531 1532 dwc2_hsotg_ep_free_request(ep, req); 1533 } 1534 1535 /** 1536 * ep_from_windex - convert control wIndex value to endpoint 1537 * @hsotg: The driver state. 1538 * @windex: The control request wIndex field (in host order). 1539 * 1540 * Convert the given wIndex into a pointer to an driver endpoint 1541 * structure, or return NULL if it is not a valid endpoint. 1542 */ 1543 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1544 u32 windex) 1545 { 1546 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1547 int idx = windex & 0x7F; 1548 1549 if (windex >= 0x100) 1550 return NULL; 1551 1552 if (idx > hsotg->num_of_eps) 1553 return NULL; 1554 1555 return index_to_ep(hsotg, idx, dir); 1556 } 1557 1558 /** 1559 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1560 * @hsotg: The driver state. 1561 * @testmode: requested usb test mode 1562 * Enable usb Test Mode requested by the Host. 1563 */ 1564 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1565 { 1566 int dctl = dwc2_readl(hsotg, DCTL); 1567 1568 dctl &= ~DCTL_TSTCTL_MASK; 1569 switch (testmode) { 1570 case USB_TEST_J: 1571 case USB_TEST_K: 1572 case USB_TEST_SE0_NAK: 1573 case USB_TEST_PACKET: 1574 case USB_TEST_FORCE_ENABLE: 1575 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1576 break; 1577 default: 1578 return -EINVAL; 1579 } 1580 dwc2_writel(hsotg, dctl, DCTL); 1581 return 0; 1582 } 1583 1584 /** 1585 * dwc2_hsotg_send_reply - send reply to control request 1586 * @hsotg: The device state 1587 * @ep: Endpoint 0 1588 * @buff: Buffer for request 1589 * @length: Length of reply. 1590 * 1591 * Create a request and queue it on the given endpoint. This is useful as 1592 * an internal method of sending replies to certain control requests, etc. 1593 */ 1594 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1595 struct dwc2_hsotg_ep *ep, 1596 void *buff, 1597 int length) 1598 { 1599 struct usb_request *req; 1600 int ret; 1601 1602 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1603 1604 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1605 hsotg->ep0_reply = req; 1606 if (!req) { 1607 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1608 return -ENOMEM; 1609 } 1610 1611 req->buf = hsotg->ep0_buff; 1612 req->length = length; 1613 /* 1614 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1615 * STATUS stage. 1616 */ 1617 req->zero = 0; 1618 req->complete = dwc2_hsotg_complete_oursetup; 1619 1620 if (length) 1621 memcpy(req->buf, buff, length); 1622 1623 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1624 if (ret) { 1625 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1626 return ret; 1627 } 1628 1629 return 0; 1630 } 1631 1632 /** 1633 * dwc2_hsotg_process_req_status - process request GET_STATUS 1634 * @hsotg: The device state 1635 * @ctrl: USB control request 1636 */ 1637 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1638 struct usb_ctrlrequest *ctrl) 1639 { 1640 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1641 struct dwc2_hsotg_ep *ep; 1642 __le16 reply; 1643 u16 status; 1644 int ret; 1645 1646 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1647 1648 if (!ep0->dir_in) { 1649 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1650 return -EINVAL; 1651 } 1652 1653 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1654 case USB_RECIP_DEVICE: 1655 status = hsotg->gadget.is_selfpowered << 1656 USB_DEVICE_SELF_POWERED; 1657 status |= hsotg->remote_wakeup_allowed << 1658 USB_DEVICE_REMOTE_WAKEUP; 1659 reply = cpu_to_le16(status); 1660 break; 1661 1662 case USB_RECIP_INTERFACE: 1663 /* currently, the data result should be zero */ 1664 reply = cpu_to_le16(0); 1665 break; 1666 1667 case USB_RECIP_ENDPOINT: 1668 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1669 if (!ep) 1670 return -ENOENT; 1671 1672 reply = cpu_to_le16(ep->halted ? 1 : 0); 1673 break; 1674 1675 default: 1676 return 0; 1677 } 1678 1679 if (le16_to_cpu(ctrl->wLength) != 2) 1680 return -EINVAL; 1681 1682 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1683 if (ret) { 1684 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1685 return ret; 1686 } 1687 1688 return 1; 1689 } 1690 1691 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1692 1693 /** 1694 * get_ep_head - return the first request on the endpoint 1695 * @hs_ep: The controller endpoint to get 1696 * 1697 * Get the first request on the endpoint. 1698 */ 1699 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1700 { 1701 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1702 queue); 1703 } 1704 1705 /** 1706 * dwc2_gadget_start_next_request - Starts next request from ep queue 1707 * @hs_ep: Endpoint structure 1708 * 1709 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1710 * in its handler. Hence we need to unmask it here to be able to do 1711 * resynchronization. 1712 */ 1713 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1714 { 1715 u32 mask; 1716 struct dwc2_hsotg *hsotg = hs_ep->parent; 1717 int dir_in = hs_ep->dir_in; 1718 struct dwc2_hsotg_req *hs_req; 1719 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1720 1721 if (!list_empty(&hs_ep->queue)) { 1722 hs_req = get_ep_head(hs_ep); 1723 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1724 return; 1725 } 1726 if (!hs_ep->isochronous) 1727 return; 1728 1729 if (dir_in) { 1730 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1731 __func__); 1732 } else { 1733 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1734 __func__); 1735 mask = dwc2_readl(hsotg, epmsk_reg); 1736 mask |= DOEPMSK_OUTTKNEPDISMSK; 1737 dwc2_writel(hsotg, mask, epmsk_reg); 1738 } 1739 } 1740 1741 /** 1742 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1743 * @hsotg: The device state 1744 * @ctrl: USB control request 1745 */ 1746 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1747 struct usb_ctrlrequest *ctrl) 1748 { 1749 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1750 struct dwc2_hsotg_req *hs_req; 1751 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1752 struct dwc2_hsotg_ep *ep; 1753 int ret; 1754 bool halted; 1755 u32 recip; 1756 u32 wValue; 1757 u32 wIndex; 1758 1759 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1760 __func__, set ? "SET" : "CLEAR"); 1761 1762 wValue = le16_to_cpu(ctrl->wValue); 1763 wIndex = le16_to_cpu(ctrl->wIndex); 1764 recip = ctrl->bRequestType & USB_RECIP_MASK; 1765 1766 switch (recip) { 1767 case USB_RECIP_DEVICE: 1768 switch (wValue) { 1769 case USB_DEVICE_REMOTE_WAKEUP: 1770 if (set) 1771 hsotg->remote_wakeup_allowed = 1; 1772 else 1773 hsotg->remote_wakeup_allowed = 0; 1774 break; 1775 1776 case USB_DEVICE_TEST_MODE: 1777 if ((wIndex & 0xff) != 0) 1778 return -EINVAL; 1779 if (!set) 1780 return -EINVAL; 1781 1782 hsotg->test_mode = wIndex >> 8; 1783 break; 1784 default: 1785 return -ENOENT; 1786 } 1787 1788 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1789 if (ret) { 1790 dev_err(hsotg->dev, 1791 "%s: failed to send reply\n", __func__); 1792 return ret; 1793 } 1794 break; 1795 1796 case USB_RECIP_ENDPOINT: 1797 ep = ep_from_windex(hsotg, wIndex); 1798 if (!ep) { 1799 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1800 __func__, wIndex); 1801 return -ENOENT; 1802 } 1803 1804 switch (wValue) { 1805 case USB_ENDPOINT_HALT: 1806 halted = ep->halted; 1807 1808 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1809 1810 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1811 if (ret) { 1812 dev_err(hsotg->dev, 1813 "%s: failed to send reply\n", __func__); 1814 return ret; 1815 } 1816 1817 /* 1818 * we have to complete all requests for ep if it was 1819 * halted, and the halt was cleared by CLEAR_FEATURE 1820 */ 1821 1822 if (!set && halted) { 1823 /* 1824 * If we have request in progress, 1825 * then complete it 1826 */ 1827 if (ep->req) { 1828 hs_req = ep->req; 1829 ep->req = NULL; 1830 list_del_init(&hs_req->queue); 1831 if (hs_req->req.complete) { 1832 spin_unlock(&hsotg->lock); 1833 usb_gadget_giveback_request( 1834 &ep->ep, &hs_req->req); 1835 spin_lock(&hsotg->lock); 1836 } 1837 } 1838 1839 /* If we have pending request, then start it */ 1840 if (!ep->req) 1841 dwc2_gadget_start_next_request(ep); 1842 } 1843 1844 break; 1845 1846 default: 1847 return -ENOENT; 1848 } 1849 break; 1850 default: 1851 return -ENOENT; 1852 } 1853 return 1; 1854 } 1855 1856 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1857 1858 /** 1859 * dwc2_hsotg_stall_ep0 - stall ep0 1860 * @hsotg: The device state 1861 * 1862 * Set stall for ep0 as response for setup request. 1863 */ 1864 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1865 { 1866 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1867 u32 reg; 1868 u32 ctrl; 1869 1870 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1871 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1872 1873 /* 1874 * DxEPCTL_Stall will be cleared by EP once it has 1875 * taken effect, so no need to clear later. 1876 */ 1877 1878 ctrl = dwc2_readl(hsotg, reg); 1879 ctrl |= DXEPCTL_STALL; 1880 ctrl |= DXEPCTL_CNAK; 1881 dwc2_writel(hsotg, ctrl, reg); 1882 1883 dev_dbg(hsotg->dev, 1884 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1885 ctrl, reg, dwc2_readl(hsotg, reg)); 1886 1887 /* 1888 * complete won't be called, so we enqueue 1889 * setup request here 1890 */ 1891 dwc2_hsotg_enqueue_setup(hsotg); 1892 } 1893 1894 /** 1895 * dwc2_hsotg_process_control - process a control request 1896 * @hsotg: The device state 1897 * @ctrl: The control request received 1898 * 1899 * The controller has received the SETUP phase of a control request, and 1900 * needs to work out what to do next (and whether to pass it on to the 1901 * gadget driver). 1902 */ 1903 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1904 struct usb_ctrlrequest *ctrl) 1905 { 1906 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1907 int ret = 0; 1908 u32 dcfg; 1909 1910 dev_dbg(hsotg->dev, 1911 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1912 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1913 ctrl->wIndex, ctrl->wLength); 1914 1915 if (ctrl->wLength == 0) { 1916 ep0->dir_in = 1; 1917 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1918 } else if (ctrl->bRequestType & USB_DIR_IN) { 1919 ep0->dir_in = 1; 1920 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1921 } else { 1922 ep0->dir_in = 0; 1923 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1924 } 1925 1926 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1927 switch (ctrl->bRequest) { 1928 case USB_REQ_SET_ADDRESS: 1929 hsotg->connected = 1; 1930 dcfg = dwc2_readl(hsotg, DCFG); 1931 dcfg &= ~DCFG_DEVADDR_MASK; 1932 dcfg |= (le16_to_cpu(ctrl->wValue) << 1933 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1934 dwc2_writel(hsotg, dcfg, DCFG); 1935 1936 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1937 1938 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1939 return; 1940 1941 case USB_REQ_GET_STATUS: 1942 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1943 break; 1944 1945 case USB_REQ_CLEAR_FEATURE: 1946 case USB_REQ_SET_FEATURE: 1947 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1948 break; 1949 } 1950 } 1951 1952 /* as a fallback, try delivering it to the driver to deal with */ 1953 1954 if (ret == 0 && hsotg->driver) { 1955 spin_unlock(&hsotg->lock); 1956 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1957 spin_lock(&hsotg->lock); 1958 if (ret < 0) 1959 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1960 } 1961 1962 hsotg->delayed_status = false; 1963 if (ret == USB_GADGET_DELAYED_STATUS) 1964 hsotg->delayed_status = true; 1965 1966 /* 1967 * the request is either unhandlable, or is not formatted correctly 1968 * so respond with a STALL for the status stage to indicate failure. 1969 */ 1970 1971 if (ret < 0) 1972 dwc2_hsotg_stall_ep0(hsotg); 1973 } 1974 1975 /** 1976 * dwc2_hsotg_complete_setup - completion of a setup transfer 1977 * @ep: The endpoint the request was on. 1978 * @req: The request completed. 1979 * 1980 * Called on completion of any requests the driver itself submitted for 1981 * EP0 setup packets 1982 */ 1983 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1984 struct usb_request *req) 1985 { 1986 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1987 struct dwc2_hsotg *hsotg = hs_ep->parent; 1988 1989 if (req->status < 0) { 1990 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1991 return; 1992 } 1993 1994 spin_lock(&hsotg->lock); 1995 if (req->actual == 0) 1996 dwc2_hsotg_enqueue_setup(hsotg); 1997 else 1998 dwc2_hsotg_process_control(hsotg, req->buf); 1999 spin_unlock(&hsotg->lock); 2000 } 2001 2002 /** 2003 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 2004 * @hsotg: The device state. 2005 * 2006 * Enqueue a request on EP0 if necessary to received any SETUP packets 2007 * received from the host. 2008 */ 2009 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2010 { 2011 struct usb_request *req = hsotg->ctrl_req; 2012 struct dwc2_hsotg_req *hs_req = our_req(req); 2013 int ret; 2014 2015 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2016 2017 req->zero = 0; 2018 req->length = 8; 2019 req->buf = hsotg->ctrl_buff; 2020 req->complete = dwc2_hsotg_complete_setup; 2021 2022 if (!list_empty(&hs_req->queue)) { 2023 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2024 return; 2025 } 2026 2027 hsotg->eps_out[0]->dir_in = 0; 2028 hsotg->eps_out[0]->send_zlp = 0; 2029 hsotg->ep0_state = DWC2_EP0_SETUP; 2030 2031 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2032 if (ret < 0) { 2033 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2034 /* 2035 * Don't think there's much we can do other than watch the 2036 * driver fail. 2037 */ 2038 } 2039 } 2040 2041 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2042 struct dwc2_hsotg_ep *hs_ep) 2043 { 2044 u32 ctrl; 2045 u8 index = hs_ep->index; 2046 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2047 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2048 2049 if (hs_ep->dir_in) 2050 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2051 index); 2052 else 2053 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2054 index); 2055 if (using_desc_dma(hsotg)) { 2056 /* Not specific buffer needed for ep0 ZLP */ 2057 dma_addr_t dma = hs_ep->desc_list_dma; 2058 2059 if (!index) 2060 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2061 2062 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2063 } else { 2064 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2065 DXEPTSIZ_XFERSIZE(0), 2066 epsiz_reg); 2067 } 2068 2069 ctrl = dwc2_readl(hsotg, epctl_reg); 2070 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2071 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2072 ctrl |= DXEPCTL_USBACTEP; 2073 dwc2_writel(hsotg, ctrl, epctl_reg); 2074 } 2075 2076 /** 2077 * dwc2_hsotg_complete_request - complete a request given to us 2078 * @hsotg: The device state. 2079 * @hs_ep: The endpoint the request was on. 2080 * @hs_req: The request to complete. 2081 * @result: The result code (0 => Ok, otherwise errno) 2082 * 2083 * The given request has finished, so call the necessary completion 2084 * if it has one and then look to see if we can start a new request 2085 * on the endpoint. 2086 * 2087 * Note, expects the ep to already be locked as appropriate. 2088 */ 2089 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2090 struct dwc2_hsotg_ep *hs_ep, 2091 struct dwc2_hsotg_req *hs_req, 2092 int result) 2093 { 2094 if (!hs_req) { 2095 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2096 return; 2097 } 2098 2099 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2100 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2101 2102 /* 2103 * only replace the status if we've not already set an error 2104 * from a previous transaction 2105 */ 2106 2107 if (hs_req->req.status == -EINPROGRESS) 2108 hs_req->req.status = result; 2109 2110 if (using_dma(hsotg)) 2111 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2112 2113 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2114 2115 hs_ep->req = NULL; 2116 list_del_init(&hs_req->queue); 2117 2118 /* 2119 * call the complete request with the locks off, just in case the 2120 * request tries to queue more work for this endpoint. 2121 */ 2122 2123 if (hs_req->req.complete) { 2124 spin_unlock(&hsotg->lock); 2125 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2126 spin_lock(&hsotg->lock); 2127 } 2128 2129 /* In DDMA don't need to proceed to starting of next ISOC request */ 2130 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2131 return; 2132 2133 /* 2134 * Look to see if there is anything else to do. Note, the completion 2135 * of the previous request may have caused a new request to be started 2136 * so be careful when doing this. 2137 */ 2138 2139 if (!hs_ep->req && result >= 0) 2140 dwc2_gadget_start_next_request(hs_ep); 2141 } 2142 2143 /* 2144 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2145 * @hs_ep: The endpoint the request was on. 2146 * 2147 * Get first request from the ep queue, determine descriptor on which complete 2148 * happened. SW discovers which descriptor currently in use by HW, adjusts 2149 * dma_address and calculates index of completed descriptor based on the value 2150 * of DEPDMA register. Update actual length of request, giveback to gadget. 2151 */ 2152 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2153 { 2154 struct dwc2_hsotg *hsotg = hs_ep->parent; 2155 struct dwc2_hsotg_req *hs_req; 2156 struct usb_request *ureq; 2157 u32 desc_sts; 2158 u32 mask; 2159 2160 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2161 2162 /* Process only descriptors with buffer status set to DMA done */ 2163 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2164 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2165 2166 hs_req = get_ep_head(hs_ep); 2167 if (!hs_req) { 2168 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2169 return; 2170 } 2171 ureq = &hs_req->req; 2172 2173 /* Check completion status */ 2174 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2175 DEV_DMA_STS_SUCC) { 2176 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2177 DEV_DMA_ISOC_RX_NBYTES_MASK; 2178 ureq->actual = ureq->length - ((desc_sts & mask) >> 2179 DEV_DMA_ISOC_NBYTES_SHIFT); 2180 2181 /* Adjust actual len for ISOC Out if len is 2182 * not align of 4 2183 */ 2184 if (!hs_ep->dir_in && ureq->length & 0x3) 2185 ureq->actual += 4 - (ureq->length & 0x3); 2186 2187 /* Set actual frame number for completed transfers */ 2188 ureq->frame_number = 2189 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2190 DEV_DMA_ISOC_FRNUM_SHIFT; 2191 } 2192 2193 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2194 2195 hs_ep->compl_desc++; 2196 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2197 hs_ep->compl_desc = 0; 2198 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2199 } 2200 } 2201 2202 /* 2203 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2204 * @hs_ep: The isochronous endpoint. 2205 * 2206 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2207 * interrupt. Reset target frame and next_desc to allow to start 2208 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2209 * interrupt for OUT direction. 2210 */ 2211 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2212 { 2213 struct dwc2_hsotg *hsotg = hs_ep->parent; 2214 2215 if (!hs_ep->dir_in) 2216 dwc2_flush_rx_fifo(hsotg); 2217 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2218 2219 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2220 hs_ep->next_desc = 0; 2221 hs_ep->compl_desc = 0; 2222 } 2223 2224 /** 2225 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2226 * @hsotg: The device state. 2227 * @ep_idx: The endpoint index for the data 2228 * @size: The size of data in the fifo, in bytes 2229 * 2230 * The FIFO status shows there is data to read from the FIFO for a given 2231 * endpoint, so sort out whether we need to read the data into a request 2232 * that has been made for that endpoint. 2233 */ 2234 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2235 { 2236 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2237 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2238 int to_read; 2239 int max_req; 2240 int read_ptr; 2241 2242 if (!hs_req) { 2243 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2244 int ptr; 2245 2246 dev_dbg(hsotg->dev, 2247 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2248 __func__, size, ep_idx, epctl); 2249 2250 /* dump the data from the FIFO, we've nothing we can do */ 2251 for (ptr = 0; ptr < size; ptr += 4) 2252 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2253 2254 return; 2255 } 2256 2257 to_read = size; 2258 read_ptr = hs_req->req.actual; 2259 max_req = hs_req->req.length - read_ptr; 2260 2261 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2262 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2263 2264 if (to_read > max_req) { 2265 /* 2266 * more data appeared than we where willing 2267 * to deal with in this request. 2268 */ 2269 2270 /* currently we don't deal this */ 2271 WARN_ON_ONCE(1); 2272 } 2273 2274 hs_ep->total_data += to_read; 2275 hs_req->req.actual += to_read; 2276 to_read = DIV_ROUND_UP(to_read, 4); 2277 2278 /* 2279 * note, we might over-write the buffer end by 3 bytes depending on 2280 * alignment of the data. 2281 */ 2282 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2283 hs_req->req.buf + read_ptr, to_read); 2284 } 2285 2286 /** 2287 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2288 * @hsotg: The device instance 2289 * @dir_in: If IN zlp 2290 * 2291 * Generate a zero-length IN packet request for terminating a SETUP 2292 * transaction. 2293 * 2294 * Note, since we don't write any data to the TxFIFO, then it is 2295 * currently believed that we do not need to wait for any space in 2296 * the TxFIFO. 2297 */ 2298 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2299 { 2300 /* eps_out[0] is used in both directions */ 2301 hsotg->eps_out[0]->dir_in = dir_in; 2302 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2303 2304 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2305 } 2306 2307 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2308 u32 epctl_reg) 2309 { 2310 u32 ctrl; 2311 2312 ctrl = dwc2_readl(hsotg, epctl_reg); 2313 if (ctrl & DXEPCTL_EOFRNUM) 2314 ctrl |= DXEPCTL_SETEVENFR; 2315 else 2316 ctrl |= DXEPCTL_SETODDFR; 2317 dwc2_writel(hsotg, ctrl, epctl_reg); 2318 } 2319 2320 /* 2321 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2322 * @hs_ep - The endpoint on which transfer went 2323 * 2324 * Iterate over endpoints descriptor chain and get info on bytes remained 2325 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2326 */ 2327 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2328 { 2329 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 2330 struct dwc2_hsotg *hsotg = hs_ep->parent; 2331 unsigned int bytes_rem = 0; 2332 unsigned int bytes_rem_correction = 0; 2333 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2334 int i; 2335 u32 status; 2336 u32 mps = hs_ep->ep.maxpacket; 2337 int dir_in = hs_ep->dir_in; 2338 2339 if (!desc) 2340 return -EINVAL; 2341 2342 /* Interrupt OUT EP with mps not multiple of 4 */ 2343 if (hs_ep->index) 2344 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 2345 bytes_rem_correction = 4 - (mps % 4); 2346 2347 for (i = 0; i < hs_ep->desc_count; ++i) { 2348 status = desc->status; 2349 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2350 bytes_rem -= bytes_rem_correction; 2351 2352 if (status & DEV_DMA_STS_MASK) 2353 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2354 i, status & DEV_DMA_STS_MASK); 2355 2356 if (status & DEV_DMA_L) 2357 break; 2358 2359 desc++; 2360 } 2361 2362 return bytes_rem; 2363 } 2364 2365 /** 2366 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2367 * @hsotg: The device instance 2368 * @epnum: The endpoint received from 2369 * 2370 * The RXFIFO has delivered an OutDone event, which means that the data 2371 * transfer for an OUT endpoint has been completed, either by a short 2372 * packet or by the finish of a transfer. 2373 */ 2374 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2375 { 2376 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2377 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2378 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2379 struct usb_request *req = &hs_req->req; 2380 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2381 int result = 0; 2382 2383 if (!hs_req) { 2384 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2385 return; 2386 } 2387 2388 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2389 dev_dbg(hsotg->dev, "zlp packet received\n"); 2390 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2391 dwc2_hsotg_enqueue_setup(hsotg); 2392 return; 2393 } 2394 2395 if (using_desc_dma(hsotg)) 2396 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2397 2398 if (using_dma(hsotg)) { 2399 unsigned int size_done; 2400 2401 /* 2402 * Calculate the size of the transfer by checking how much 2403 * is left in the endpoint size register and then working it 2404 * out from the amount we loaded for the transfer. 2405 * 2406 * We need to do this as DMA pointers are always 32bit aligned 2407 * so may overshoot/undershoot the transfer. 2408 */ 2409 2410 size_done = hs_ep->size_loaded - size_left; 2411 size_done += hs_ep->last_load; 2412 2413 req->actual = size_done; 2414 } 2415 2416 /* if there is more request to do, schedule new transfer */ 2417 if (req->actual < req->length && size_left == 0) { 2418 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2419 return; 2420 } 2421 2422 if (req->actual < req->length && req->short_not_ok) { 2423 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2424 __func__, req->actual, req->length); 2425 2426 /* 2427 * todo - what should we return here? there's no one else 2428 * even bothering to check the status. 2429 */ 2430 } 2431 2432 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2433 if (!using_desc_dma(hsotg) && epnum == 0 && 2434 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2435 /* Move to STATUS IN */ 2436 if (!hsotg->delayed_status) 2437 dwc2_hsotg_ep0_zlp(hsotg, true); 2438 } 2439 2440 /* 2441 * Slave mode OUT transfers do not go through XferComplete so 2442 * adjust the ISOC parity here. 2443 */ 2444 if (!using_dma(hsotg)) { 2445 if (hs_ep->isochronous && hs_ep->interval == 1) 2446 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2447 else if (hs_ep->isochronous && hs_ep->interval > 1) 2448 dwc2_gadget_incr_frame_num(hs_ep); 2449 } 2450 2451 /* Set actual frame number for completed transfers */ 2452 if (!using_desc_dma(hsotg) && hs_ep->isochronous) 2453 req->frame_number = hsotg->frame_number; 2454 2455 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2456 } 2457 2458 /** 2459 * dwc2_hsotg_handle_rx - RX FIFO has data 2460 * @hsotg: The device instance 2461 * 2462 * The IRQ handler has detected that the RX FIFO has some data in it 2463 * that requires processing, so find out what is in there and do the 2464 * appropriate read. 2465 * 2466 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2467 * chunks, so if you have x packets received on an endpoint you'll get x 2468 * FIFO events delivered, each with a packet's worth of data in it. 2469 * 2470 * When using DMA, we should not be processing events from the RXFIFO 2471 * as the actual data should be sent to the memory directly and we turn 2472 * on the completion interrupts to get notifications of transfer completion. 2473 */ 2474 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2475 { 2476 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2477 u32 epnum, status, size; 2478 2479 WARN_ON(using_dma(hsotg)); 2480 2481 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2482 status = grxstsr & GRXSTS_PKTSTS_MASK; 2483 2484 size = grxstsr & GRXSTS_BYTECNT_MASK; 2485 size >>= GRXSTS_BYTECNT_SHIFT; 2486 2487 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2488 __func__, grxstsr, size, epnum); 2489 2490 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2491 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2492 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2493 break; 2494 2495 case GRXSTS_PKTSTS_OUTDONE: 2496 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2497 dwc2_hsotg_read_frameno(hsotg)); 2498 2499 if (!using_dma(hsotg)) 2500 dwc2_hsotg_handle_outdone(hsotg, epnum); 2501 break; 2502 2503 case GRXSTS_PKTSTS_SETUPDONE: 2504 dev_dbg(hsotg->dev, 2505 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2506 dwc2_hsotg_read_frameno(hsotg), 2507 dwc2_readl(hsotg, DOEPCTL(0))); 2508 /* 2509 * Call dwc2_hsotg_handle_outdone here if it was not called from 2510 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2511 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2512 */ 2513 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2514 dwc2_hsotg_handle_outdone(hsotg, epnum); 2515 break; 2516 2517 case GRXSTS_PKTSTS_OUTRX: 2518 dwc2_hsotg_rx_data(hsotg, epnum, size); 2519 break; 2520 2521 case GRXSTS_PKTSTS_SETUPRX: 2522 dev_dbg(hsotg->dev, 2523 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2524 dwc2_hsotg_read_frameno(hsotg), 2525 dwc2_readl(hsotg, DOEPCTL(0))); 2526 2527 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2528 2529 dwc2_hsotg_rx_data(hsotg, epnum, size); 2530 break; 2531 2532 default: 2533 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2534 __func__, grxstsr); 2535 2536 dwc2_hsotg_dump(hsotg); 2537 break; 2538 } 2539 } 2540 2541 /** 2542 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2543 * @mps: The maximum packet size in bytes. 2544 */ 2545 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2546 { 2547 switch (mps) { 2548 case 64: 2549 return D0EPCTL_MPS_64; 2550 case 32: 2551 return D0EPCTL_MPS_32; 2552 case 16: 2553 return D0EPCTL_MPS_16; 2554 case 8: 2555 return D0EPCTL_MPS_8; 2556 } 2557 2558 /* bad max packet size, warn and return invalid result */ 2559 WARN_ON(1); 2560 return (u32)-1; 2561 } 2562 2563 /** 2564 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2565 * @hsotg: The driver state. 2566 * @ep: The index number of the endpoint 2567 * @mps: The maximum packet size in bytes 2568 * @mc: The multicount value 2569 * @dir_in: True if direction is in. 2570 * 2571 * Configure the maximum packet size for the given endpoint, updating 2572 * the hardware control registers to reflect this. 2573 */ 2574 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2575 unsigned int ep, unsigned int mps, 2576 unsigned int mc, unsigned int dir_in) 2577 { 2578 struct dwc2_hsotg_ep *hs_ep; 2579 u32 reg; 2580 2581 hs_ep = index_to_ep(hsotg, ep, dir_in); 2582 if (!hs_ep) 2583 return; 2584 2585 if (ep == 0) { 2586 u32 mps_bytes = mps; 2587 2588 /* EP0 is a special case */ 2589 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2590 if (mps > 3) 2591 goto bad_mps; 2592 hs_ep->ep.maxpacket = mps_bytes; 2593 hs_ep->mc = 1; 2594 } else { 2595 if (mps > 1024) 2596 goto bad_mps; 2597 hs_ep->mc = mc; 2598 if (mc > 3) 2599 goto bad_mps; 2600 hs_ep->ep.maxpacket = mps; 2601 } 2602 2603 if (dir_in) { 2604 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2605 reg &= ~DXEPCTL_MPS_MASK; 2606 reg |= mps; 2607 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2608 } else { 2609 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2610 reg &= ~DXEPCTL_MPS_MASK; 2611 reg |= mps; 2612 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2613 } 2614 2615 return; 2616 2617 bad_mps: 2618 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2619 } 2620 2621 /** 2622 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2623 * @hsotg: The driver state 2624 * @idx: The index for the endpoint (0..15) 2625 */ 2626 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2627 { 2628 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2629 GRSTCTL); 2630 2631 /* wait until the fifo is flushed */ 2632 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2633 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2634 __func__); 2635 } 2636 2637 /** 2638 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2639 * @hsotg: The driver state 2640 * @hs_ep: The driver endpoint to check. 2641 * 2642 * Check to see if there is a request that has data to send, and if so 2643 * make an attempt to write data into the FIFO. 2644 */ 2645 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2646 struct dwc2_hsotg_ep *hs_ep) 2647 { 2648 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2649 2650 if (!hs_ep->dir_in || !hs_req) { 2651 /** 2652 * if request is not enqueued, we disable interrupts 2653 * for endpoints, excepting ep0 2654 */ 2655 if (hs_ep->index != 0) 2656 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2657 hs_ep->dir_in, 0); 2658 return 0; 2659 } 2660 2661 if (hs_req->req.actual < hs_req->req.length) { 2662 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2663 hs_ep->index); 2664 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2665 } 2666 2667 return 0; 2668 } 2669 2670 /** 2671 * dwc2_hsotg_complete_in - complete IN transfer 2672 * @hsotg: The device state. 2673 * @hs_ep: The endpoint that has just completed. 2674 * 2675 * An IN transfer has been completed, update the transfer's state and then 2676 * call the relevant completion routines. 2677 */ 2678 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2679 struct dwc2_hsotg_ep *hs_ep) 2680 { 2681 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2682 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2683 int size_left, size_done; 2684 2685 if (!hs_req) { 2686 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2687 return; 2688 } 2689 2690 /* Finish ZLP handling for IN EP0 transactions */ 2691 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2692 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2693 2694 /* 2695 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2696 * changed to IN. Change back to complete OUT transfer request 2697 */ 2698 hs_ep->dir_in = 0; 2699 2700 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2701 if (hsotg->test_mode) { 2702 int ret; 2703 2704 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2705 if (ret < 0) { 2706 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2707 hsotg->test_mode); 2708 dwc2_hsotg_stall_ep0(hsotg); 2709 return; 2710 } 2711 } 2712 dwc2_hsotg_enqueue_setup(hsotg); 2713 return; 2714 } 2715 2716 /* 2717 * Calculate the size of the transfer by checking how much is left 2718 * in the endpoint size register and then working it out from 2719 * the amount we loaded for the transfer. 2720 * 2721 * We do this even for DMA, as the transfer may have incremented 2722 * past the end of the buffer (DMA transfers are always 32bit 2723 * aligned). 2724 */ 2725 if (using_desc_dma(hsotg)) { 2726 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2727 if (size_left < 0) 2728 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2729 size_left); 2730 } else { 2731 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2732 } 2733 2734 size_done = hs_ep->size_loaded - size_left; 2735 size_done += hs_ep->last_load; 2736 2737 if (hs_req->req.actual != size_done) 2738 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2739 __func__, hs_req->req.actual, size_done); 2740 2741 hs_req->req.actual = size_done; 2742 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2743 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2744 2745 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2746 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2747 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2748 return; 2749 } 2750 2751 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2752 if (hs_ep->send_zlp) { 2753 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2754 hs_ep->send_zlp = 0; 2755 /* transfer will be completed on next complete interrupt */ 2756 return; 2757 } 2758 2759 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2760 /* Move to STATUS OUT */ 2761 dwc2_hsotg_ep0_zlp(hsotg, false); 2762 return; 2763 } 2764 2765 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2766 } 2767 2768 /** 2769 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2770 * @hsotg: The device state. 2771 * @idx: Index of ep. 2772 * @dir_in: Endpoint direction 1-in 0-out. 2773 * 2774 * Reads for endpoint with given index and direction, by masking 2775 * epint_reg with coresponding mask. 2776 */ 2777 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2778 unsigned int idx, int dir_in) 2779 { 2780 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2781 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2782 u32 ints; 2783 u32 mask; 2784 u32 diepempmsk; 2785 2786 mask = dwc2_readl(hsotg, epmsk_reg); 2787 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2788 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2789 mask |= DXEPINT_SETUP_RCVD; 2790 2791 ints = dwc2_readl(hsotg, epint_reg); 2792 ints &= mask; 2793 return ints; 2794 } 2795 2796 /** 2797 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2798 * @hs_ep: The endpoint on which interrupt is asserted. 2799 * 2800 * This interrupt indicates that the endpoint has been disabled per the 2801 * application's request. 2802 * 2803 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2804 * in case of ISOC completes current request. 2805 * 2806 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2807 * request starts it. 2808 */ 2809 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2810 { 2811 struct dwc2_hsotg *hsotg = hs_ep->parent; 2812 struct dwc2_hsotg_req *hs_req; 2813 unsigned char idx = hs_ep->index; 2814 int dir_in = hs_ep->dir_in; 2815 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2816 int dctl = dwc2_readl(hsotg, DCTL); 2817 2818 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2819 2820 if (dir_in) { 2821 int epctl = dwc2_readl(hsotg, epctl_reg); 2822 2823 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2824 2825 if (hs_ep->isochronous) { 2826 dwc2_hsotg_complete_in(hsotg, hs_ep); 2827 return; 2828 } 2829 2830 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2831 int dctl = dwc2_readl(hsotg, DCTL); 2832 2833 dctl |= DCTL_CGNPINNAK; 2834 dwc2_writel(hsotg, dctl, DCTL); 2835 } 2836 return; 2837 } 2838 2839 if (dctl & DCTL_GOUTNAKSTS) { 2840 dctl |= DCTL_CGOUTNAK; 2841 dwc2_writel(hsotg, dctl, DCTL); 2842 } 2843 2844 if (!hs_ep->isochronous) 2845 return; 2846 2847 if (list_empty(&hs_ep->queue)) { 2848 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2849 __func__, hs_ep); 2850 return; 2851 } 2852 2853 do { 2854 hs_req = get_ep_head(hs_ep); 2855 if (hs_req) 2856 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2857 -ENODATA); 2858 dwc2_gadget_incr_frame_num(hs_ep); 2859 /* Update current frame number value. */ 2860 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2861 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2862 2863 dwc2_gadget_start_next_request(hs_ep); 2864 } 2865 2866 /** 2867 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2868 * @ep: The endpoint on which interrupt is asserted. 2869 * 2870 * This is starting point for ISOC-OUT transfer, synchronization done with 2871 * first out token received from host while corresponding EP is disabled. 2872 * 2873 * Device does not know initial frame in which out token will come. For this 2874 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2875 * getting this interrupt SW starts calculation for next transfer frame. 2876 */ 2877 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2878 { 2879 struct dwc2_hsotg *hsotg = ep->parent; 2880 int dir_in = ep->dir_in; 2881 u32 doepmsk; 2882 2883 if (dir_in || !ep->isochronous) 2884 return; 2885 2886 if (using_desc_dma(hsotg)) { 2887 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2888 /* Start first ISO Out */ 2889 ep->target_frame = hsotg->frame_number; 2890 dwc2_gadget_start_isoc_ddma(ep); 2891 } 2892 return; 2893 } 2894 2895 if (ep->interval > 1 && 2896 ep->target_frame == TARGET_FRAME_INITIAL) { 2897 u32 ctrl; 2898 2899 ep->target_frame = hsotg->frame_number; 2900 dwc2_gadget_incr_frame_num(ep); 2901 2902 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2903 if (ep->target_frame & 0x1) 2904 ctrl |= DXEPCTL_SETODDFR; 2905 else 2906 ctrl |= DXEPCTL_SETEVENFR; 2907 2908 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2909 } 2910 2911 dwc2_gadget_start_next_request(ep); 2912 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2913 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2914 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2915 } 2916 2917 /** 2918 * dwc2_gadget_handle_nak - handle NAK interrupt 2919 * @hs_ep: The endpoint on which interrupt is asserted. 2920 * 2921 * This is starting point for ISOC-IN transfer, synchronization done with 2922 * first IN token received from host while corresponding EP is disabled. 2923 * 2924 * Device does not know when first one token will arrive from host. On first 2925 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2926 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2927 * sent in response to that as there was no data in FIFO. SW is basing on this 2928 * interrupt to obtain frame in which token has come and then based on the 2929 * interval calculates next frame for transfer. 2930 */ 2931 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2932 { 2933 struct dwc2_hsotg *hsotg = hs_ep->parent; 2934 int dir_in = hs_ep->dir_in; 2935 2936 if (!dir_in || !hs_ep->isochronous) 2937 return; 2938 2939 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2940 2941 if (using_desc_dma(hsotg)) { 2942 hs_ep->target_frame = hsotg->frame_number; 2943 dwc2_gadget_incr_frame_num(hs_ep); 2944 2945 /* In service interval mode target_frame must 2946 * be set to last (u)frame of the service interval. 2947 */ 2948 if (hsotg->params.service_interval) { 2949 /* Set target_frame to the first (u)frame of 2950 * the service interval 2951 */ 2952 hs_ep->target_frame &= ~hs_ep->interval + 1; 2953 2954 /* Set target_frame to the last (u)frame of 2955 * the service interval 2956 */ 2957 dwc2_gadget_incr_frame_num(hs_ep); 2958 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2959 } 2960 2961 dwc2_gadget_start_isoc_ddma(hs_ep); 2962 return; 2963 } 2964 2965 hs_ep->target_frame = hsotg->frame_number; 2966 if (hs_ep->interval > 1) { 2967 u32 ctrl = dwc2_readl(hsotg, 2968 DIEPCTL(hs_ep->index)); 2969 if (hs_ep->target_frame & 0x1) 2970 ctrl |= DXEPCTL_SETODDFR; 2971 else 2972 ctrl |= DXEPCTL_SETEVENFR; 2973 2974 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2975 } 2976 2977 dwc2_hsotg_complete_request(hsotg, hs_ep, 2978 get_ep_head(hs_ep), 0); 2979 } 2980 2981 if (!using_desc_dma(hsotg)) 2982 dwc2_gadget_incr_frame_num(hs_ep); 2983 } 2984 2985 /** 2986 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2987 * @hsotg: The driver state 2988 * @idx: The index for the endpoint (0..15) 2989 * @dir_in: Set if this is an IN endpoint 2990 * 2991 * Process and clear any interrupt pending for an individual endpoint 2992 */ 2993 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2994 int dir_in) 2995 { 2996 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2997 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2998 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2999 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 3000 u32 ints; 3001 3002 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 3003 3004 /* Clear endpoint interrupts */ 3005 dwc2_writel(hsotg, ints, epint_reg); 3006 3007 if (!hs_ep) { 3008 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 3009 __func__, idx, dir_in ? "in" : "out"); 3010 return; 3011 } 3012 3013 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 3014 __func__, idx, dir_in ? "in" : "out", ints); 3015 3016 /* Don't process XferCompl interrupt if it is a setup packet */ 3017 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3018 ints &= ~DXEPINT_XFERCOMPL; 3019 3020 /* 3021 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3022 * stage and xfercomplete was generated without SETUP phase done 3023 * interrupt. SW should parse received setup packet only after host's 3024 * exit from setup phase of control transfer. 3025 */ 3026 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3027 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3028 ints &= ~DXEPINT_XFERCOMPL; 3029 3030 if (ints & DXEPINT_XFERCOMPL) { 3031 dev_dbg(hsotg->dev, 3032 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3033 __func__, dwc2_readl(hsotg, epctl_reg), 3034 dwc2_readl(hsotg, epsiz_reg)); 3035 3036 /* In DDMA handle isochronous requests separately */ 3037 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3038 /* XferCompl set along with BNA */ 3039 if (!(ints & DXEPINT_BNAINTR)) 3040 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3041 } else if (dir_in) { 3042 /* 3043 * We get OutDone from the FIFO, so we only 3044 * need to look at completing IN requests here 3045 * if operating slave mode 3046 */ 3047 if (hs_ep->isochronous && hs_ep->interval > 1) 3048 dwc2_gadget_incr_frame_num(hs_ep); 3049 3050 dwc2_hsotg_complete_in(hsotg, hs_ep); 3051 if (ints & DXEPINT_NAKINTRPT) 3052 ints &= ~DXEPINT_NAKINTRPT; 3053 3054 if (idx == 0 && !hs_ep->req) 3055 dwc2_hsotg_enqueue_setup(hsotg); 3056 } else if (using_dma(hsotg)) { 3057 /* 3058 * We're using DMA, we need to fire an OutDone here 3059 * as we ignore the RXFIFO. 3060 */ 3061 if (hs_ep->isochronous && hs_ep->interval > 1) 3062 dwc2_gadget_incr_frame_num(hs_ep); 3063 3064 dwc2_hsotg_handle_outdone(hsotg, idx); 3065 } 3066 } 3067 3068 if (ints & DXEPINT_EPDISBLD) 3069 dwc2_gadget_handle_ep_disabled(hs_ep); 3070 3071 if (ints & DXEPINT_OUTTKNEPDIS) 3072 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3073 3074 if (ints & DXEPINT_NAKINTRPT) 3075 dwc2_gadget_handle_nak(hs_ep); 3076 3077 if (ints & DXEPINT_AHBERR) 3078 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3079 3080 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3081 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3082 3083 if (using_dma(hsotg) && idx == 0) { 3084 /* 3085 * this is the notification we've received a 3086 * setup packet. In non-DMA mode we'd get this 3087 * from the RXFIFO, instead we need to process 3088 * the setup here. 3089 */ 3090 3091 if (dir_in) 3092 WARN_ON_ONCE(1); 3093 else 3094 dwc2_hsotg_handle_outdone(hsotg, 0); 3095 } 3096 } 3097 3098 if (ints & DXEPINT_STSPHSERCVD) { 3099 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3100 3101 /* Safety check EP0 state when STSPHSERCVD asserted */ 3102 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3103 /* Move to STATUS IN for DDMA */ 3104 if (using_desc_dma(hsotg)) { 3105 if (!hsotg->delayed_status) 3106 dwc2_hsotg_ep0_zlp(hsotg, true); 3107 else 3108 /* In case of 3 stage Control Write with delayed 3109 * status, when Status IN transfer started 3110 * before STSPHSERCVD asserted, NAKSTS bit not 3111 * cleared by CNAK in dwc2_hsotg_start_req() 3112 * function. Clear now NAKSTS to allow complete 3113 * transfer. 3114 */ 3115 dwc2_set_bit(hsotg, DIEPCTL(0), 3116 DXEPCTL_CNAK); 3117 } 3118 } 3119 3120 } 3121 3122 if (ints & DXEPINT_BACK2BACKSETUP) 3123 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3124 3125 if (ints & DXEPINT_BNAINTR) { 3126 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3127 if (hs_ep->isochronous) 3128 dwc2_gadget_handle_isoc_bna(hs_ep); 3129 } 3130 3131 if (dir_in && !hs_ep->isochronous) { 3132 /* not sure if this is important, but we'll clear it anyway */ 3133 if (ints & DXEPINT_INTKNTXFEMP) { 3134 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3135 __func__, idx); 3136 } 3137 3138 /* this probably means something bad is happening */ 3139 if (ints & DXEPINT_INTKNEPMIS) { 3140 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3141 __func__, idx); 3142 } 3143 3144 /* FIFO has space or is empty (see GAHBCFG) */ 3145 if (hsotg->dedicated_fifos && 3146 ints & DXEPINT_TXFEMP) { 3147 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3148 __func__, idx); 3149 if (!using_dma(hsotg)) 3150 dwc2_hsotg_trytx(hsotg, hs_ep); 3151 } 3152 } 3153 } 3154 3155 /** 3156 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3157 * @hsotg: The device state. 3158 * 3159 * Handle updating the device settings after the enumeration phase has 3160 * been completed. 3161 */ 3162 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3163 { 3164 u32 dsts = dwc2_readl(hsotg, DSTS); 3165 int ep0_mps = 0, ep_mps = 8; 3166 3167 /* 3168 * This should signal the finish of the enumeration phase 3169 * of the USB handshaking, so we should now know what rate 3170 * we connected at. 3171 */ 3172 3173 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3174 3175 /* 3176 * note, since we're limited by the size of transfer on EP0, and 3177 * it seems IN transfers must be a even number of packets we do 3178 * not advertise a 64byte MPS on EP0. 3179 */ 3180 3181 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3182 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3183 case DSTS_ENUMSPD_FS: 3184 case DSTS_ENUMSPD_FS48: 3185 hsotg->gadget.speed = USB_SPEED_FULL; 3186 ep0_mps = EP0_MPS_LIMIT; 3187 ep_mps = 1023; 3188 break; 3189 3190 case DSTS_ENUMSPD_HS: 3191 hsotg->gadget.speed = USB_SPEED_HIGH; 3192 ep0_mps = EP0_MPS_LIMIT; 3193 ep_mps = 1024; 3194 break; 3195 3196 case DSTS_ENUMSPD_LS: 3197 hsotg->gadget.speed = USB_SPEED_LOW; 3198 ep0_mps = 8; 3199 ep_mps = 8; 3200 /* 3201 * note, we don't actually support LS in this driver at the 3202 * moment, and the documentation seems to imply that it isn't 3203 * supported by the PHYs on some of the devices. 3204 */ 3205 break; 3206 } 3207 dev_info(hsotg->dev, "new device is %s\n", 3208 usb_speed_string(hsotg->gadget.speed)); 3209 3210 /* 3211 * we should now know the maximum packet size for an 3212 * endpoint, so set the endpoints to a default value. 3213 */ 3214 3215 if (ep0_mps) { 3216 int i; 3217 /* Initialize ep0 for both in and out directions */ 3218 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3219 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3220 for (i = 1; i < hsotg->num_of_eps; i++) { 3221 if (hsotg->eps_in[i]) 3222 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3223 0, 1); 3224 if (hsotg->eps_out[i]) 3225 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3226 0, 0); 3227 } 3228 } 3229 3230 /* ensure after enumeration our EP0 is active */ 3231 3232 dwc2_hsotg_enqueue_setup(hsotg); 3233 3234 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3235 dwc2_readl(hsotg, DIEPCTL0), 3236 dwc2_readl(hsotg, DOEPCTL0)); 3237 } 3238 3239 /** 3240 * kill_all_requests - remove all requests from the endpoint's queue 3241 * @hsotg: The device state. 3242 * @ep: The endpoint the requests may be on. 3243 * @result: The result code to use. 3244 * 3245 * Go through the requests on the given endpoint and mark them 3246 * completed with the given result code. 3247 */ 3248 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3249 struct dwc2_hsotg_ep *ep, 3250 int result) 3251 { 3252 unsigned int size; 3253 3254 ep->req = NULL; 3255 3256 while (!list_empty(&ep->queue)) { 3257 struct dwc2_hsotg_req *req = get_ep_head(ep); 3258 3259 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3260 } 3261 3262 if (!hsotg->dedicated_fifos) 3263 return; 3264 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3265 if (size < ep->fifo_size) 3266 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3267 } 3268 3269 /** 3270 * dwc2_hsotg_disconnect - disconnect service 3271 * @hsotg: The device state. 3272 * 3273 * The device has been disconnected. Remove all current 3274 * transactions and signal the gadget driver that this 3275 * has happened. 3276 */ 3277 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3278 { 3279 unsigned int ep; 3280 3281 if (!hsotg->connected) 3282 return; 3283 3284 hsotg->connected = 0; 3285 hsotg->test_mode = 0; 3286 3287 /* all endpoints should be shutdown */ 3288 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3289 if (hsotg->eps_in[ep]) 3290 kill_all_requests(hsotg, hsotg->eps_in[ep], 3291 -ESHUTDOWN); 3292 if (hsotg->eps_out[ep]) 3293 kill_all_requests(hsotg, hsotg->eps_out[ep], 3294 -ESHUTDOWN); 3295 } 3296 3297 call_gadget(hsotg, disconnect); 3298 hsotg->lx_state = DWC2_L3; 3299 3300 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3301 } 3302 3303 /** 3304 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3305 * @hsotg: The device state: 3306 * @periodic: True if this is a periodic FIFO interrupt 3307 */ 3308 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3309 { 3310 struct dwc2_hsotg_ep *ep; 3311 int epno, ret; 3312 3313 /* look through for any more data to transmit */ 3314 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3315 ep = index_to_ep(hsotg, epno, 1); 3316 3317 if (!ep) 3318 continue; 3319 3320 if (!ep->dir_in) 3321 continue; 3322 3323 if ((periodic && !ep->periodic) || 3324 (!periodic && ep->periodic)) 3325 continue; 3326 3327 ret = dwc2_hsotg_trytx(hsotg, ep); 3328 if (ret < 0) 3329 break; 3330 } 3331 } 3332 3333 /* IRQ flags which will trigger a retry around the IRQ loop */ 3334 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3335 GINTSTS_PTXFEMP | \ 3336 GINTSTS_RXFLVL) 3337 3338 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3339 /** 3340 * dwc2_hsotg_core_init - issue softreset to the core 3341 * @hsotg: The device state 3342 * @is_usb_reset: Usb resetting flag 3343 * 3344 * Issue a soft reset to the core, and await the core finishing it. 3345 */ 3346 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3347 bool is_usb_reset) 3348 { 3349 u32 intmsk; 3350 u32 val; 3351 u32 usbcfg; 3352 u32 dcfg = 0; 3353 int ep; 3354 3355 /* Kill any ep0 requests as controller will be reinitialized */ 3356 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3357 3358 if (!is_usb_reset) { 3359 if (dwc2_core_reset(hsotg, true)) 3360 return; 3361 } else { 3362 /* all endpoints should be shutdown */ 3363 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3364 if (hsotg->eps_in[ep]) 3365 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3366 if (hsotg->eps_out[ep]) 3367 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3368 } 3369 } 3370 3371 /* 3372 * we must now enable ep0 ready for host detection and then 3373 * set configuration. 3374 */ 3375 3376 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3377 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3378 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3379 usbcfg |= GUSBCFG_TOUTCAL(7); 3380 3381 /* remove the HNP/SRP and set the PHY */ 3382 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3383 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3384 3385 dwc2_phy_init(hsotg, true); 3386 3387 dwc2_hsotg_init_fifo(hsotg); 3388 3389 if (!is_usb_reset) 3390 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3391 3392 dcfg |= DCFG_EPMISCNT(1); 3393 3394 switch (hsotg->params.speed) { 3395 case DWC2_SPEED_PARAM_LOW: 3396 dcfg |= DCFG_DEVSPD_LS; 3397 break; 3398 case DWC2_SPEED_PARAM_FULL: 3399 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3400 dcfg |= DCFG_DEVSPD_FS48; 3401 else 3402 dcfg |= DCFG_DEVSPD_FS; 3403 break; 3404 default: 3405 dcfg |= DCFG_DEVSPD_HS; 3406 } 3407 3408 if (hsotg->params.ipg_isoc_en) 3409 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3410 3411 dwc2_writel(hsotg, dcfg, DCFG); 3412 3413 /* Clear any pending OTG interrupts */ 3414 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3415 3416 /* Clear any pending interrupts */ 3417 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3418 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3419 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3420 GINTSTS_USBRST | GINTSTS_RESETDET | 3421 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3422 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3423 GINTSTS_LPMTRANRCVD; 3424 3425 if (!using_desc_dma(hsotg)) 3426 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3427 3428 if (!hsotg->params.external_id_pin_ctl) 3429 intmsk |= GINTSTS_CONIDSTSCHNG; 3430 3431 dwc2_writel(hsotg, intmsk, GINTMSK); 3432 3433 if (using_dma(hsotg)) { 3434 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3435 hsotg->params.ahbcfg, 3436 GAHBCFG); 3437 3438 /* Set DDMA mode support in the core if needed */ 3439 if (using_desc_dma(hsotg)) 3440 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3441 3442 } else { 3443 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3444 (GAHBCFG_NP_TXF_EMP_LVL | 3445 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3446 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3447 } 3448 3449 /* 3450 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3451 * when we have no data to transfer. Otherwise we get being flooded by 3452 * interrupts. 3453 */ 3454 3455 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3456 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3457 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3458 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3459 DIEPMSK); 3460 3461 /* 3462 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3463 * DMA mode we may need this and StsPhseRcvd. 3464 */ 3465 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3466 DOEPMSK_STSPHSERCVDMSK) : 0) | 3467 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3468 DOEPMSK_SETUPMSK, 3469 DOEPMSK); 3470 3471 /* Enable BNA interrupt for DDMA */ 3472 if (using_desc_dma(hsotg)) { 3473 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3474 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3475 } 3476 3477 /* Enable Service Interval mode if supported */ 3478 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3479 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3480 3481 dwc2_writel(hsotg, 0, DAINTMSK); 3482 3483 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3484 dwc2_readl(hsotg, DIEPCTL0), 3485 dwc2_readl(hsotg, DOEPCTL0)); 3486 3487 /* enable in and out endpoint interrupts */ 3488 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3489 3490 /* 3491 * Enable the RXFIFO when in slave mode, as this is how we collect 3492 * the data. In DMA mode, we get events from the FIFO but also 3493 * things we cannot process, so do not use it. 3494 */ 3495 if (!using_dma(hsotg)) 3496 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3497 3498 /* Enable interrupts for EP0 in and out */ 3499 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3500 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3501 3502 if (!is_usb_reset) { 3503 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3504 udelay(10); /* see openiboot */ 3505 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3506 } 3507 3508 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3509 3510 /* 3511 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3512 * writing to the EPCTL register.. 3513 */ 3514 3515 /* set to read 1 8byte packet */ 3516 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3517 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3518 3519 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3520 DXEPCTL_CNAK | DXEPCTL_EPENA | 3521 DXEPCTL_USBACTEP, 3522 DOEPCTL0); 3523 3524 /* enable, but don't activate EP0in */ 3525 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3526 DXEPCTL_USBACTEP, DIEPCTL0); 3527 3528 /* clear global NAKs */ 3529 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3530 if (!is_usb_reset) 3531 val |= DCTL_SFTDISCON; 3532 dwc2_set_bit(hsotg, DCTL, val); 3533 3534 /* configure the core to support LPM */ 3535 dwc2_gadget_init_lpm(hsotg); 3536 3537 /* program GREFCLK register if needed */ 3538 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3539 dwc2_gadget_program_ref_clk(hsotg); 3540 3541 /* must be at-least 3ms to allow bus to see disconnect */ 3542 mdelay(3); 3543 3544 hsotg->lx_state = DWC2_L0; 3545 3546 dwc2_hsotg_enqueue_setup(hsotg); 3547 3548 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3549 dwc2_readl(hsotg, DIEPCTL0), 3550 dwc2_readl(hsotg, DOEPCTL0)); 3551 } 3552 3553 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3554 { 3555 /* set the soft-disconnect bit */ 3556 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3557 } 3558 3559 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3560 { 3561 /* remove the soft-disconnect and let's go */ 3562 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3563 } 3564 3565 /** 3566 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3567 * @hsotg: The device state: 3568 * 3569 * This interrupt indicates one of the following conditions occurred while 3570 * transmitting an ISOC transaction. 3571 * - Corrupted IN Token for ISOC EP. 3572 * - Packet not complete in FIFO. 3573 * 3574 * The following actions will be taken: 3575 * - Determine the EP 3576 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3577 */ 3578 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3579 { 3580 struct dwc2_hsotg_ep *hs_ep; 3581 u32 epctrl; 3582 u32 daintmsk; 3583 u32 idx; 3584 3585 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3586 3587 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3588 3589 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3590 hs_ep = hsotg->eps_in[idx]; 3591 /* Proceed only unmasked ISOC EPs */ 3592 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3593 continue; 3594 3595 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3596 if ((epctrl & DXEPCTL_EPENA) && 3597 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3598 epctrl |= DXEPCTL_SNAK; 3599 epctrl |= DXEPCTL_EPDIS; 3600 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3601 } 3602 } 3603 3604 /* Clear interrupt */ 3605 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3606 } 3607 3608 /** 3609 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3610 * @hsotg: The device state: 3611 * 3612 * This interrupt indicates one of the following conditions occurred while 3613 * transmitting an ISOC transaction. 3614 * - Corrupted OUT Token for ISOC EP. 3615 * - Packet not complete in FIFO. 3616 * 3617 * The following actions will be taken: 3618 * - Determine the EP 3619 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3620 */ 3621 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3622 { 3623 u32 gintsts; 3624 u32 gintmsk; 3625 u32 daintmsk; 3626 u32 epctrl; 3627 struct dwc2_hsotg_ep *hs_ep; 3628 int idx; 3629 3630 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3631 3632 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3633 daintmsk >>= DAINT_OUTEP_SHIFT; 3634 3635 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3636 hs_ep = hsotg->eps_out[idx]; 3637 /* Proceed only unmasked ISOC EPs */ 3638 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3639 continue; 3640 3641 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3642 if ((epctrl & DXEPCTL_EPENA) && 3643 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3644 /* Unmask GOUTNAKEFF interrupt */ 3645 gintmsk = dwc2_readl(hsotg, GINTMSK); 3646 gintmsk |= GINTSTS_GOUTNAKEFF; 3647 dwc2_writel(hsotg, gintmsk, GINTMSK); 3648 3649 gintsts = dwc2_readl(hsotg, GINTSTS); 3650 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3651 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3652 break; 3653 } 3654 } 3655 } 3656 3657 /* Clear interrupt */ 3658 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3659 } 3660 3661 /** 3662 * dwc2_hsotg_irq - handle device interrupt 3663 * @irq: The IRQ number triggered 3664 * @pw: The pw value when registered the handler. 3665 */ 3666 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3667 { 3668 struct dwc2_hsotg *hsotg = pw; 3669 int retry_count = 8; 3670 u32 gintsts; 3671 u32 gintmsk; 3672 3673 if (!dwc2_is_device_mode(hsotg)) 3674 return IRQ_NONE; 3675 3676 spin_lock(&hsotg->lock); 3677 irq_retry: 3678 gintsts = dwc2_readl(hsotg, GINTSTS); 3679 gintmsk = dwc2_readl(hsotg, GINTMSK); 3680 3681 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3682 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3683 3684 gintsts &= gintmsk; 3685 3686 if (gintsts & GINTSTS_RESETDET) { 3687 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3688 3689 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3690 3691 /* This event must be used only if controller is suspended */ 3692 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2) 3693 dwc2_exit_partial_power_down(hsotg, 0, true); 3694 3695 hsotg->lx_state = DWC2_L0; 3696 } 3697 3698 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3699 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3700 u32 connected = hsotg->connected; 3701 3702 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3703 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3704 dwc2_readl(hsotg, GNPTXSTS)); 3705 3706 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3707 3708 /* Report disconnection if it is not already done. */ 3709 dwc2_hsotg_disconnect(hsotg); 3710 3711 /* Reset device address to zero */ 3712 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3713 3714 if (usb_status & GOTGCTL_BSESVLD && connected) 3715 dwc2_hsotg_core_init_disconnected(hsotg, true); 3716 } 3717 3718 if (gintsts & GINTSTS_ENUMDONE) { 3719 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3720 3721 dwc2_hsotg_irq_enumdone(hsotg); 3722 } 3723 3724 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3725 u32 daint = dwc2_readl(hsotg, DAINT); 3726 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3727 u32 daint_out, daint_in; 3728 int ep; 3729 3730 daint &= daintmsk; 3731 daint_out = daint >> DAINT_OUTEP_SHIFT; 3732 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3733 3734 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3735 3736 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3737 ep++, daint_out >>= 1) { 3738 if (daint_out & 1) 3739 dwc2_hsotg_epint(hsotg, ep, 0); 3740 } 3741 3742 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3743 ep++, daint_in >>= 1) { 3744 if (daint_in & 1) 3745 dwc2_hsotg_epint(hsotg, ep, 1); 3746 } 3747 } 3748 3749 /* check both FIFOs */ 3750 3751 if (gintsts & GINTSTS_NPTXFEMP) { 3752 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3753 3754 /* 3755 * Disable the interrupt to stop it happening again 3756 * unless one of these endpoint routines decides that 3757 * it needs re-enabling 3758 */ 3759 3760 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3761 dwc2_hsotg_irq_fifoempty(hsotg, false); 3762 } 3763 3764 if (gintsts & GINTSTS_PTXFEMP) { 3765 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3766 3767 /* See note in GINTSTS_NPTxFEmp */ 3768 3769 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3770 dwc2_hsotg_irq_fifoempty(hsotg, true); 3771 } 3772 3773 if (gintsts & GINTSTS_RXFLVL) { 3774 /* 3775 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3776 * we need to retry dwc2_hsotg_handle_rx if this is still 3777 * set. 3778 */ 3779 3780 dwc2_hsotg_handle_rx(hsotg); 3781 } 3782 3783 if (gintsts & GINTSTS_ERLYSUSP) { 3784 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3785 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3786 } 3787 3788 /* 3789 * these next two seem to crop-up occasionally causing the core 3790 * to shutdown the USB transfer, so try clearing them and logging 3791 * the occurrence. 3792 */ 3793 3794 if (gintsts & GINTSTS_GOUTNAKEFF) { 3795 u8 idx; 3796 u32 epctrl; 3797 u32 gintmsk; 3798 u32 daintmsk; 3799 struct dwc2_hsotg_ep *hs_ep; 3800 3801 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3802 daintmsk >>= DAINT_OUTEP_SHIFT; 3803 /* Mask this interrupt */ 3804 gintmsk = dwc2_readl(hsotg, GINTMSK); 3805 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3806 dwc2_writel(hsotg, gintmsk, GINTMSK); 3807 3808 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3809 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3810 hs_ep = hsotg->eps_out[idx]; 3811 /* Proceed only unmasked ISOC EPs */ 3812 if (BIT(idx) & ~daintmsk) 3813 continue; 3814 3815 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3816 3817 //ISOC Ep's only 3818 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3819 epctrl |= DXEPCTL_SNAK; 3820 epctrl |= DXEPCTL_EPDIS; 3821 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3822 continue; 3823 } 3824 3825 //Non-ISOC EP's 3826 if (hs_ep->halted) { 3827 if (!(epctrl & DXEPCTL_EPENA)) 3828 epctrl |= DXEPCTL_EPENA; 3829 epctrl |= DXEPCTL_EPDIS; 3830 epctrl |= DXEPCTL_STALL; 3831 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3832 } 3833 } 3834 3835 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3836 } 3837 3838 if (gintsts & GINTSTS_GINNAKEFF) { 3839 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3840 3841 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3842 3843 dwc2_hsotg_dump(hsotg); 3844 } 3845 3846 if (gintsts & GINTSTS_INCOMPL_SOIN) 3847 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3848 3849 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3850 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3851 3852 /* 3853 * if we've had fifo events, we should try and go around the 3854 * loop again to see if there's any point in returning yet. 3855 */ 3856 3857 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3858 goto irq_retry; 3859 3860 /* Check WKUP_ALERT interrupt*/ 3861 if (hsotg->params.service_interval) 3862 dwc2_gadget_wkup_alert_handler(hsotg); 3863 3864 spin_unlock(&hsotg->lock); 3865 3866 return IRQ_HANDLED; 3867 } 3868 3869 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3870 struct dwc2_hsotg_ep *hs_ep) 3871 { 3872 u32 epctrl_reg; 3873 u32 epint_reg; 3874 3875 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3876 DOEPCTL(hs_ep->index); 3877 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3878 DOEPINT(hs_ep->index); 3879 3880 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3881 hs_ep->name); 3882 3883 if (hs_ep->dir_in) { 3884 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3885 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3886 /* Wait for Nak effect */ 3887 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3888 DXEPINT_INEPNAKEFF, 100)) 3889 dev_warn(hsotg->dev, 3890 "%s: timeout DIEPINT.NAKEFF\n", 3891 __func__); 3892 } else { 3893 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3894 /* Wait for Nak effect */ 3895 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3896 GINTSTS_GINNAKEFF, 100)) 3897 dev_warn(hsotg->dev, 3898 "%s: timeout GINTSTS.GINNAKEFF\n", 3899 __func__); 3900 } 3901 } else { 3902 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3903 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3904 3905 /* Wait for global nak to take effect */ 3906 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3907 GINTSTS_GOUTNAKEFF, 100)) 3908 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3909 __func__); 3910 } 3911 3912 /* Disable ep */ 3913 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3914 3915 /* Wait for ep to be disabled */ 3916 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3917 dev_warn(hsotg->dev, 3918 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3919 3920 /* Clear EPDISBLD interrupt */ 3921 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3922 3923 if (hs_ep->dir_in) { 3924 unsigned short fifo_index; 3925 3926 if (hsotg->dedicated_fifos || hs_ep->periodic) 3927 fifo_index = hs_ep->fifo_index; 3928 else 3929 fifo_index = 0; 3930 3931 /* Flush TX FIFO */ 3932 dwc2_flush_tx_fifo(hsotg, fifo_index); 3933 3934 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3935 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3936 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3937 3938 } else { 3939 /* Remove global NAKs */ 3940 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3941 } 3942 } 3943 3944 /** 3945 * dwc2_hsotg_ep_enable - enable the given endpoint 3946 * @ep: The USB endpint to configure 3947 * @desc: The USB endpoint descriptor to configure with. 3948 * 3949 * This is called from the USB gadget code's usb_ep_enable(). 3950 */ 3951 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3952 const struct usb_endpoint_descriptor *desc) 3953 { 3954 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3955 struct dwc2_hsotg *hsotg = hs_ep->parent; 3956 unsigned long flags; 3957 unsigned int index = hs_ep->index; 3958 u32 epctrl_reg; 3959 u32 epctrl; 3960 u32 mps; 3961 u32 mc; 3962 u32 mask; 3963 unsigned int dir_in; 3964 unsigned int i, val, size; 3965 int ret = 0; 3966 unsigned char ep_type; 3967 int desc_num; 3968 3969 dev_dbg(hsotg->dev, 3970 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3971 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3972 desc->wMaxPacketSize, desc->bInterval); 3973 3974 /* not to be called for EP0 */ 3975 if (index == 0) { 3976 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3977 return -EINVAL; 3978 } 3979 3980 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3981 if (dir_in != hs_ep->dir_in) { 3982 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3983 return -EINVAL; 3984 } 3985 3986 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 3987 mps = usb_endpoint_maxp(desc); 3988 mc = usb_endpoint_maxp_mult(desc); 3989 3990 /* ISOC IN in DDMA supported bInterval up to 10 */ 3991 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3992 dir_in && desc->bInterval > 10) { 3993 dev_err(hsotg->dev, 3994 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 3995 return -EINVAL; 3996 } 3997 3998 /* High bandwidth ISOC OUT in DDMA not supported */ 3999 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4000 !dir_in && mc > 1) { 4001 dev_err(hsotg->dev, 4002 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 4003 return -EINVAL; 4004 } 4005 4006 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 4007 4008 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4009 epctrl = dwc2_readl(hsotg, epctrl_reg); 4010 4011 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 4012 __func__, epctrl, epctrl_reg); 4013 4014 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 4015 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 4016 else 4017 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4018 4019 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4020 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4021 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4022 desc_num * sizeof(struct dwc2_dma_desc), 4023 &hs_ep->desc_list_dma, GFP_ATOMIC); 4024 if (!hs_ep->desc_list) { 4025 ret = -ENOMEM; 4026 goto error2; 4027 } 4028 } 4029 4030 spin_lock_irqsave(&hsotg->lock, flags); 4031 4032 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4033 epctrl |= DXEPCTL_MPS(mps); 4034 4035 /* 4036 * mark the endpoint as active, otherwise the core may ignore 4037 * transactions entirely for this endpoint 4038 */ 4039 epctrl |= DXEPCTL_USBACTEP; 4040 4041 /* update the endpoint state */ 4042 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4043 4044 /* default, set to non-periodic */ 4045 hs_ep->isochronous = 0; 4046 hs_ep->periodic = 0; 4047 hs_ep->halted = 0; 4048 hs_ep->interval = desc->bInterval; 4049 4050 switch (ep_type) { 4051 case USB_ENDPOINT_XFER_ISOC: 4052 epctrl |= DXEPCTL_EPTYPE_ISO; 4053 epctrl |= DXEPCTL_SETEVENFR; 4054 hs_ep->isochronous = 1; 4055 hs_ep->interval = 1 << (desc->bInterval - 1); 4056 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4057 hs_ep->next_desc = 0; 4058 hs_ep->compl_desc = 0; 4059 if (dir_in) { 4060 hs_ep->periodic = 1; 4061 mask = dwc2_readl(hsotg, DIEPMSK); 4062 mask |= DIEPMSK_NAKMSK; 4063 dwc2_writel(hsotg, mask, DIEPMSK); 4064 } else { 4065 mask = dwc2_readl(hsotg, DOEPMSK); 4066 mask |= DOEPMSK_OUTTKNEPDISMSK; 4067 dwc2_writel(hsotg, mask, DOEPMSK); 4068 } 4069 break; 4070 4071 case USB_ENDPOINT_XFER_BULK: 4072 epctrl |= DXEPCTL_EPTYPE_BULK; 4073 break; 4074 4075 case USB_ENDPOINT_XFER_INT: 4076 if (dir_in) 4077 hs_ep->periodic = 1; 4078 4079 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4080 hs_ep->interval = 1 << (desc->bInterval - 1); 4081 4082 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4083 break; 4084 4085 case USB_ENDPOINT_XFER_CONTROL: 4086 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4087 break; 4088 } 4089 4090 /* 4091 * if the hardware has dedicated fifos, we must give each IN EP 4092 * a unique tx-fifo even if it is non-periodic. 4093 */ 4094 if (dir_in && hsotg->dedicated_fifos) { 4095 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4096 u32 fifo_index = 0; 4097 u32 fifo_size = UINT_MAX; 4098 4099 size = hs_ep->ep.maxpacket * hs_ep->mc; 4100 for (i = 1; i <= fifo_count; ++i) { 4101 if (hsotg->fifo_map & (1 << i)) 4102 continue; 4103 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4104 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4105 if (val < size) 4106 continue; 4107 /* Search for smallest acceptable fifo */ 4108 if (val < fifo_size) { 4109 fifo_size = val; 4110 fifo_index = i; 4111 } 4112 } 4113 if (!fifo_index) { 4114 dev_err(hsotg->dev, 4115 "%s: No suitable fifo found\n", __func__); 4116 ret = -ENOMEM; 4117 goto error1; 4118 } 4119 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4120 hsotg->fifo_map |= 1 << fifo_index; 4121 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4122 hs_ep->fifo_index = fifo_index; 4123 hs_ep->fifo_size = fifo_size; 4124 } 4125 4126 /* for non control endpoints, set PID to D0 */ 4127 if (index && !hs_ep->isochronous) 4128 epctrl |= DXEPCTL_SETD0PID; 4129 4130 /* WA for Full speed ISOC IN in DDMA mode. 4131 * By Clear NAK status of EP, core will send ZLP 4132 * to IN token and assert NAK interrupt relying 4133 * on TxFIFO status only 4134 */ 4135 4136 if (hsotg->gadget.speed == USB_SPEED_FULL && 4137 hs_ep->isochronous && dir_in) { 4138 /* The WA applies only to core versions from 2.72a 4139 * to 4.00a (including both). Also for FS_IOT_1.00a 4140 * and HS_IOT_1.00a. 4141 */ 4142 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4143 4144 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4145 gsnpsid <= DWC2_CORE_REV_4_00a) || 4146 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4147 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4148 epctrl |= DXEPCTL_CNAK; 4149 } 4150 4151 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4152 __func__, epctrl); 4153 4154 dwc2_writel(hsotg, epctrl, epctrl_reg); 4155 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4156 __func__, dwc2_readl(hsotg, epctrl_reg)); 4157 4158 /* enable the endpoint interrupt */ 4159 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4160 4161 error1: 4162 spin_unlock_irqrestore(&hsotg->lock, flags); 4163 4164 error2: 4165 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4166 dmam_free_coherent(hsotg->dev, desc_num * 4167 sizeof(struct dwc2_dma_desc), 4168 hs_ep->desc_list, hs_ep->desc_list_dma); 4169 hs_ep->desc_list = NULL; 4170 } 4171 4172 return ret; 4173 } 4174 4175 /** 4176 * dwc2_hsotg_ep_disable - disable given endpoint 4177 * @ep: The endpoint to disable. 4178 */ 4179 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4180 { 4181 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4182 struct dwc2_hsotg *hsotg = hs_ep->parent; 4183 int dir_in = hs_ep->dir_in; 4184 int index = hs_ep->index; 4185 u32 epctrl_reg; 4186 u32 ctrl; 4187 4188 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4189 4190 if (ep == &hsotg->eps_out[0]->ep) { 4191 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4192 return -EINVAL; 4193 } 4194 4195 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4196 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4197 return -EINVAL; 4198 } 4199 4200 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4201 4202 ctrl = dwc2_readl(hsotg, epctrl_reg); 4203 4204 if (ctrl & DXEPCTL_EPENA) 4205 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4206 4207 ctrl &= ~DXEPCTL_EPENA; 4208 ctrl &= ~DXEPCTL_USBACTEP; 4209 ctrl |= DXEPCTL_SNAK; 4210 4211 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4212 dwc2_writel(hsotg, ctrl, epctrl_reg); 4213 4214 /* disable endpoint interrupts */ 4215 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4216 4217 /* terminate all requests with shutdown */ 4218 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4219 4220 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4221 hs_ep->fifo_index = 0; 4222 hs_ep->fifo_size = 0; 4223 4224 return 0; 4225 } 4226 4227 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4228 { 4229 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4230 struct dwc2_hsotg *hsotg = hs_ep->parent; 4231 unsigned long flags; 4232 int ret; 4233 4234 spin_lock_irqsave(&hsotg->lock, flags); 4235 ret = dwc2_hsotg_ep_disable(ep); 4236 spin_unlock_irqrestore(&hsotg->lock, flags); 4237 return ret; 4238 } 4239 4240 /** 4241 * on_list - check request is on the given endpoint 4242 * @ep: The endpoint to check. 4243 * @test: The request to test if it is on the endpoint. 4244 */ 4245 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4246 { 4247 struct dwc2_hsotg_req *req, *treq; 4248 4249 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4250 if (req == test) 4251 return true; 4252 } 4253 4254 return false; 4255 } 4256 4257 /** 4258 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4259 * @ep: The endpoint to dequeue. 4260 * @req: The request to be removed from a queue. 4261 */ 4262 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4263 { 4264 struct dwc2_hsotg_req *hs_req = our_req(req); 4265 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4266 struct dwc2_hsotg *hs = hs_ep->parent; 4267 unsigned long flags; 4268 4269 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4270 4271 spin_lock_irqsave(&hs->lock, flags); 4272 4273 if (!on_list(hs_ep, hs_req)) { 4274 spin_unlock_irqrestore(&hs->lock, flags); 4275 return -EINVAL; 4276 } 4277 4278 /* Dequeue already started request */ 4279 if (req == &hs_ep->req->req) 4280 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4281 4282 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4283 spin_unlock_irqrestore(&hs->lock, flags); 4284 4285 return 0; 4286 } 4287 4288 /** 4289 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4290 * @ep: The endpoint to set halt. 4291 * @value: Set or unset the halt. 4292 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4293 * the endpoint is busy processing requests. 4294 * 4295 * We need to stall the endpoint immediately if request comes from set_feature 4296 * protocol command handler. 4297 */ 4298 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4299 { 4300 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4301 struct dwc2_hsotg *hs = hs_ep->parent; 4302 int index = hs_ep->index; 4303 u32 epreg; 4304 u32 epctl; 4305 u32 xfertype; 4306 4307 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4308 4309 if (index == 0) { 4310 if (value) 4311 dwc2_hsotg_stall_ep0(hs); 4312 else 4313 dev_warn(hs->dev, 4314 "%s: can't clear halt on ep0\n", __func__); 4315 return 0; 4316 } 4317 4318 if (hs_ep->isochronous) { 4319 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4320 return -EINVAL; 4321 } 4322 4323 if (!now && value && !list_empty(&hs_ep->queue)) { 4324 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4325 ep->name); 4326 return -EAGAIN; 4327 } 4328 4329 if (hs_ep->dir_in) { 4330 epreg = DIEPCTL(index); 4331 epctl = dwc2_readl(hs, epreg); 4332 4333 if (value) { 4334 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4335 if (epctl & DXEPCTL_EPENA) 4336 epctl |= DXEPCTL_EPDIS; 4337 } else { 4338 epctl &= ~DXEPCTL_STALL; 4339 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4340 if (xfertype == DXEPCTL_EPTYPE_BULK || 4341 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4342 epctl |= DXEPCTL_SETD0PID; 4343 } 4344 dwc2_writel(hs, epctl, epreg); 4345 } else { 4346 epreg = DOEPCTL(index); 4347 epctl = dwc2_readl(hs, epreg); 4348 4349 if (value) { 4350 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4351 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4352 // STALL bit will be set in GOUTNAKEFF interrupt handler 4353 } else { 4354 epctl &= ~DXEPCTL_STALL; 4355 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4356 if (xfertype == DXEPCTL_EPTYPE_BULK || 4357 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4358 epctl |= DXEPCTL_SETD0PID; 4359 dwc2_writel(hs, epctl, epreg); 4360 } 4361 } 4362 4363 hs_ep->halted = value; 4364 return 0; 4365 } 4366 4367 /** 4368 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4369 * @ep: The endpoint to set halt. 4370 * @value: Set or unset the halt. 4371 */ 4372 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4373 { 4374 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4375 struct dwc2_hsotg *hs = hs_ep->parent; 4376 unsigned long flags = 0; 4377 int ret = 0; 4378 4379 spin_lock_irqsave(&hs->lock, flags); 4380 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4381 spin_unlock_irqrestore(&hs->lock, flags); 4382 4383 return ret; 4384 } 4385 4386 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4387 .enable = dwc2_hsotg_ep_enable, 4388 .disable = dwc2_hsotg_ep_disable_lock, 4389 .alloc_request = dwc2_hsotg_ep_alloc_request, 4390 .free_request = dwc2_hsotg_ep_free_request, 4391 .queue = dwc2_hsotg_ep_queue_lock, 4392 .dequeue = dwc2_hsotg_ep_dequeue, 4393 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4394 /* note, don't believe we have any call for the fifo routines */ 4395 }; 4396 4397 /** 4398 * dwc2_hsotg_init - initialize the usb core 4399 * @hsotg: The driver state 4400 */ 4401 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4402 { 4403 /* unmask subset of endpoint interrupts */ 4404 4405 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4406 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4407 DIEPMSK); 4408 4409 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4410 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4411 DOEPMSK); 4412 4413 dwc2_writel(hsotg, 0, DAINTMSK); 4414 4415 /* Be in disconnected state until gadget is registered */ 4416 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4417 4418 /* setup fifos */ 4419 4420 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4421 dwc2_readl(hsotg, GRXFSIZ), 4422 dwc2_readl(hsotg, GNPTXFSIZ)); 4423 4424 dwc2_hsotg_init_fifo(hsotg); 4425 4426 if (using_dma(hsotg)) 4427 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4428 } 4429 4430 /** 4431 * dwc2_hsotg_udc_start - prepare the udc for work 4432 * @gadget: The usb gadget state 4433 * @driver: The usb gadget driver 4434 * 4435 * Perform initialization to prepare udc device and driver 4436 * to work. 4437 */ 4438 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4439 struct usb_gadget_driver *driver) 4440 { 4441 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4442 unsigned long flags; 4443 int ret; 4444 4445 if (!hsotg) { 4446 pr_err("%s: called with no device\n", __func__); 4447 return -ENODEV; 4448 } 4449 4450 if (!driver) { 4451 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4452 return -EINVAL; 4453 } 4454 4455 if (driver->max_speed < USB_SPEED_FULL) 4456 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4457 4458 if (!driver->setup) { 4459 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4460 return -EINVAL; 4461 } 4462 4463 WARN_ON(hsotg->driver); 4464 4465 driver->driver.bus = NULL; 4466 hsotg->driver = driver; 4467 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4468 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4469 4470 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4471 ret = dwc2_lowlevel_hw_enable(hsotg); 4472 if (ret) 4473 goto err; 4474 } 4475 4476 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4477 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4478 4479 spin_lock_irqsave(&hsotg->lock, flags); 4480 if (dwc2_hw_is_device(hsotg)) { 4481 dwc2_hsotg_init(hsotg); 4482 dwc2_hsotg_core_init_disconnected(hsotg, false); 4483 } 4484 4485 hsotg->enabled = 0; 4486 spin_unlock_irqrestore(&hsotg->lock, flags); 4487 4488 gadget->sg_supported = using_desc_dma(hsotg); 4489 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4490 4491 return 0; 4492 4493 err: 4494 hsotg->driver = NULL; 4495 return ret; 4496 } 4497 4498 /** 4499 * dwc2_hsotg_udc_stop - stop the udc 4500 * @gadget: The usb gadget state 4501 * 4502 * Stop udc hw block and stay tunned for future transmissions 4503 */ 4504 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4505 { 4506 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4507 unsigned long flags = 0; 4508 int ep; 4509 4510 if (!hsotg) 4511 return -ENODEV; 4512 4513 /* all endpoints should be shutdown */ 4514 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4515 if (hsotg->eps_in[ep]) 4516 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4517 if (hsotg->eps_out[ep]) 4518 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4519 } 4520 4521 spin_lock_irqsave(&hsotg->lock, flags); 4522 4523 hsotg->driver = NULL; 4524 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4525 hsotg->enabled = 0; 4526 4527 spin_unlock_irqrestore(&hsotg->lock, flags); 4528 4529 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4530 otg_set_peripheral(hsotg->uphy->otg, NULL); 4531 4532 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4533 dwc2_lowlevel_hw_disable(hsotg); 4534 4535 return 0; 4536 } 4537 4538 /** 4539 * dwc2_hsotg_gadget_getframe - read the frame number 4540 * @gadget: The usb gadget state 4541 * 4542 * Read the {micro} frame number 4543 */ 4544 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4545 { 4546 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4547 } 4548 4549 /** 4550 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4551 * @gadget: The usb gadget state 4552 * @is_selfpowered: Whether the device is self-powered 4553 * 4554 * Set if the device is self or bus powered. 4555 */ 4556 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4557 int is_selfpowered) 4558 { 4559 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4560 unsigned long flags; 4561 4562 spin_lock_irqsave(&hsotg->lock, flags); 4563 gadget->is_selfpowered = !!is_selfpowered; 4564 spin_unlock_irqrestore(&hsotg->lock, flags); 4565 4566 return 0; 4567 } 4568 4569 /** 4570 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4571 * @gadget: The usb gadget state 4572 * @is_on: Current state of the USB PHY 4573 * 4574 * Connect/Disconnect the USB PHY pullup 4575 */ 4576 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4577 { 4578 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4579 unsigned long flags = 0; 4580 4581 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4582 hsotg->op_state); 4583 4584 /* Don't modify pullup state while in host mode */ 4585 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4586 hsotg->enabled = is_on; 4587 return 0; 4588 } 4589 4590 spin_lock_irqsave(&hsotg->lock, flags); 4591 if (is_on) { 4592 hsotg->enabled = 1; 4593 dwc2_hsotg_core_init_disconnected(hsotg, false); 4594 /* Enable ACG feature in device mode,if supported */ 4595 dwc2_enable_acg(hsotg); 4596 dwc2_hsotg_core_connect(hsotg); 4597 } else { 4598 dwc2_hsotg_core_disconnect(hsotg); 4599 dwc2_hsotg_disconnect(hsotg); 4600 hsotg->enabled = 0; 4601 } 4602 4603 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4604 spin_unlock_irqrestore(&hsotg->lock, flags); 4605 4606 return 0; 4607 } 4608 4609 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4610 { 4611 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4612 unsigned long flags; 4613 4614 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4615 spin_lock_irqsave(&hsotg->lock, flags); 4616 4617 /* 4618 * If controller is in partial power down state, it must exit from 4619 * that state before being initialized / de-initialized 4620 */ 4621 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd) 4622 /* 4623 * No need to check the return value as 4624 * registers are not being restored. 4625 */ 4626 dwc2_exit_partial_power_down(hsotg, 0, false); 4627 4628 if (is_active) { 4629 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4630 4631 dwc2_hsotg_core_init_disconnected(hsotg, false); 4632 if (hsotg->enabled) { 4633 /* Enable ACG feature in device mode,if supported */ 4634 dwc2_enable_acg(hsotg); 4635 dwc2_hsotg_core_connect(hsotg); 4636 } 4637 } else { 4638 dwc2_hsotg_core_disconnect(hsotg); 4639 dwc2_hsotg_disconnect(hsotg); 4640 } 4641 4642 spin_unlock_irqrestore(&hsotg->lock, flags); 4643 return 0; 4644 } 4645 4646 /** 4647 * dwc2_hsotg_vbus_draw - report bMaxPower field 4648 * @gadget: The usb gadget state 4649 * @mA: Amount of current 4650 * 4651 * Report how much power the device may consume to the phy. 4652 */ 4653 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4654 { 4655 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4656 4657 if (IS_ERR_OR_NULL(hsotg->uphy)) 4658 return -ENOTSUPP; 4659 return usb_phy_set_power(hsotg->uphy, mA); 4660 } 4661 4662 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4663 .get_frame = dwc2_hsotg_gadget_getframe, 4664 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4665 .udc_start = dwc2_hsotg_udc_start, 4666 .udc_stop = dwc2_hsotg_udc_stop, 4667 .pullup = dwc2_hsotg_pullup, 4668 .vbus_session = dwc2_hsotg_vbus_session, 4669 .vbus_draw = dwc2_hsotg_vbus_draw, 4670 }; 4671 4672 /** 4673 * dwc2_hsotg_initep - initialise a single endpoint 4674 * @hsotg: The device state. 4675 * @hs_ep: The endpoint to be initialised. 4676 * @epnum: The endpoint number 4677 * @dir_in: True if direction is in. 4678 * 4679 * Initialise the given endpoint (as part of the probe and device state 4680 * creation) to give to the gadget driver. Setup the endpoint name, any 4681 * direction information and other state that may be required. 4682 */ 4683 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4684 struct dwc2_hsotg_ep *hs_ep, 4685 int epnum, 4686 bool dir_in) 4687 { 4688 char *dir; 4689 4690 if (epnum == 0) 4691 dir = ""; 4692 else if (dir_in) 4693 dir = "in"; 4694 else 4695 dir = "out"; 4696 4697 hs_ep->dir_in = dir_in; 4698 hs_ep->index = epnum; 4699 4700 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4701 4702 INIT_LIST_HEAD(&hs_ep->queue); 4703 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4704 4705 /* add to the list of endpoints known by the gadget driver */ 4706 if (epnum) 4707 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4708 4709 hs_ep->parent = hsotg; 4710 hs_ep->ep.name = hs_ep->name; 4711 4712 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4713 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4714 else 4715 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4716 epnum ? 1024 : EP0_MPS_LIMIT); 4717 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4718 4719 if (epnum == 0) { 4720 hs_ep->ep.caps.type_control = true; 4721 } else { 4722 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4723 hs_ep->ep.caps.type_iso = true; 4724 hs_ep->ep.caps.type_bulk = true; 4725 } 4726 hs_ep->ep.caps.type_int = true; 4727 } 4728 4729 if (dir_in) 4730 hs_ep->ep.caps.dir_in = true; 4731 else 4732 hs_ep->ep.caps.dir_out = true; 4733 4734 /* 4735 * if we're using dma, we need to set the next-endpoint pointer 4736 * to be something valid. 4737 */ 4738 4739 if (using_dma(hsotg)) { 4740 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4741 4742 if (dir_in) 4743 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4744 else 4745 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4746 } 4747 } 4748 4749 /** 4750 * dwc2_hsotg_hw_cfg - read HW configuration registers 4751 * @hsotg: Programming view of the DWC_otg controller 4752 * 4753 * Read the USB core HW configuration registers 4754 */ 4755 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4756 { 4757 u32 cfg; 4758 u32 ep_type; 4759 u32 i; 4760 4761 /* check hardware configuration */ 4762 4763 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4764 4765 /* Add ep0 */ 4766 hsotg->num_of_eps++; 4767 4768 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4769 sizeof(struct dwc2_hsotg_ep), 4770 GFP_KERNEL); 4771 if (!hsotg->eps_in[0]) 4772 return -ENOMEM; 4773 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4774 hsotg->eps_out[0] = hsotg->eps_in[0]; 4775 4776 cfg = hsotg->hw_params.dev_ep_dirs; 4777 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4778 ep_type = cfg & 3; 4779 /* Direction in or both */ 4780 if (!(ep_type & 2)) { 4781 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4782 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4783 if (!hsotg->eps_in[i]) 4784 return -ENOMEM; 4785 } 4786 /* Direction out or both */ 4787 if (!(ep_type & 1)) { 4788 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4789 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4790 if (!hsotg->eps_out[i]) 4791 return -ENOMEM; 4792 } 4793 } 4794 4795 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4796 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4797 4798 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4799 hsotg->num_of_eps, 4800 hsotg->dedicated_fifos ? "dedicated" : "shared", 4801 hsotg->fifo_mem); 4802 return 0; 4803 } 4804 4805 /** 4806 * dwc2_hsotg_dump - dump state of the udc 4807 * @hsotg: Programming view of the DWC_otg controller 4808 * 4809 */ 4810 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4811 { 4812 #ifdef DEBUG 4813 struct device *dev = hsotg->dev; 4814 u32 val; 4815 int idx; 4816 4817 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4818 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4819 dwc2_readl(hsotg, DIEPMSK)); 4820 4821 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4822 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4823 4824 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4825 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4826 4827 /* show periodic fifo settings */ 4828 4829 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4830 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4831 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4832 val >> FIFOSIZE_DEPTH_SHIFT, 4833 val & FIFOSIZE_STARTADDR_MASK); 4834 } 4835 4836 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4837 dev_info(dev, 4838 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4839 dwc2_readl(hsotg, DIEPCTL(idx)), 4840 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4841 dwc2_readl(hsotg, DIEPDMA(idx))); 4842 4843 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4844 dev_info(dev, 4845 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4846 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4847 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4848 dwc2_readl(hsotg, DOEPDMA(idx))); 4849 } 4850 4851 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4852 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4853 #endif 4854 } 4855 4856 /** 4857 * dwc2_gadget_init - init function for gadget 4858 * @hsotg: Programming view of the DWC_otg controller 4859 * 4860 */ 4861 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4862 { 4863 struct device *dev = hsotg->dev; 4864 int epnum; 4865 int ret; 4866 4867 /* Dump fifo information */ 4868 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4869 hsotg->params.g_np_tx_fifo_size); 4870 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4871 4872 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4873 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4874 hsotg->gadget.name = dev_name(dev); 4875 hsotg->remote_wakeup_allowed = 0; 4876 4877 if (hsotg->params.lpm) 4878 hsotg->gadget.lpm_capable = true; 4879 4880 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4881 hsotg->gadget.is_otg = 1; 4882 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4883 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4884 4885 ret = dwc2_hsotg_hw_cfg(hsotg); 4886 if (ret) { 4887 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4888 return ret; 4889 } 4890 4891 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4892 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4893 if (!hsotg->ctrl_buff) 4894 return -ENOMEM; 4895 4896 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4897 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4898 if (!hsotg->ep0_buff) 4899 return -ENOMEM; 4900 4901 if (using_desc_dma(hsotg)) { 4902 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4903 if (ret < 0) 4904 return ret; 4905 } 4906 4907 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4908 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4909 if (ret < 0) { 4910 dev_err(dev, "cannot claim IRQ for gadget\n"); 4911 return ret; 4912 } 4913 4914 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4915 4916 if (hsotg->num_of_eps == 0) { 4917 dev_err(dev, "wrong number of EPs (zero)\n"); 4918 return -EINVAL; 4919 } 4920 4921 /* setup endpoint information */ 4922 4923 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4924 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4925 4926 /* allocate EP0 request */ 4927 4928 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4929 GFP_KERNEL); 4930 if (!hsotg->ctrl_req) { 4931 dev_err(dev, "failed to allocate ctrl req\n"); 4932 return -ENOMEM; 4933 } 4934 4935 /* initialise the endpoints now the core has been initialised */ 4936 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4937 if (hsotg->eps_in[epnum]) 4938 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4939 epnum, 1); 4940 if (hsotg->eps_out[epnum]) 4941 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4942 epnum, 0); 4943 } 4944 4945 dwc2_hsotg_dump(hsotg); 4946 4947 return 0; 4948 } 4949 4950 /** 4951 * dwc2_hsotg_remove - remove function for hsotg driver 4952 * @hsotg: Programming view of the DWC_otg controller 4953 * 4954 */ 4955 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4956 { 4957 usb_del_gadget_udc(&hsotg->gadget); 4958 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4959 4960 return 0; 4961 } 4962 4963 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4964 { 4965 unsigned long flags; 4966 4967 if (hsotg->lx_state != DWC2_L0) 4968 return 0; 4969 4970 if (hsotg->driver) { 4971 int ep; 4972 4973 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4974 hsotg->driver->driver.name); 4975 4976 spin_lock_irqsave(&hsotg->lock, flags); 4977 if (hsotg->enabled) 4978 dwc2_hsotg_core_disconnect(hsotg); 4979 dwc2_hsotg_disconnect(hsotg); 4980 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4981 spin_unlock_irqrestore(&hsotg->lock, flags); 4982 4983 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4984 if (hsotg->eps_in[ep]) 4985 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4986 if (hsotg->eps_out[ep]) 4987 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4988 } 4989 } 4990 4991 return 0; 4992 } 4993 4994 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4995 { 4996 unsigned long flags; 4997 4998 if (hsotg->lx_state == DWC2_L2) 4999 return 0; 5000 5001 if (hsotg->driver) { 5002 dev_info(hsotg->dev, "resuming usb gadget %s\n", 5003 hsotg->driver->driver.name); 5004 5005 spin_lock_irqsave(&hsotg->lock, flags); 5006 dwc2_hsotg_core_init_disconnected(hsotg, false); 5007 if (hsotg->enabled) { 5008 /* Enable ACG feature in device mode,if supported */ 5009 dwc2_enable_acg(hsotg); 5010 dwc2_hsotg_core_connect(hsotg); 5011 } 5012 spin_unlock_irqrestore(&hsotg->lock, flags); 5013 } 5014 5015 return 0; 5016 } 5017 5018 /** 5019 * dwc2_backup_device_registers() - Backup controller device registers. 5020 * When suspending usb bus, registers needs to be backuped 5021 * if controller power is disabled once suspended. 5022 * 5023 * @hsotg: Programming view of the DWC_otg controller 5024 */ 5025 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5026 { 5027 struct dwc2_dregs_backup *dr; 5028 int i; 5029 5030 dev_dbg(hsotg->dev, "%s\n", __func__); 5031 5032 /* Backup dev regs */ 5033 dr = &hsotg->dr_backup; 5034 5035 dr->dcfg = dwc2_readl(hsotg, DCFG); 5036 dr->dctl = dwc2_readl(hsotg, DCTL); 5037 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5038 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5039 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5040 5041 for (i = 0; i < hsotg->num_of_eps; i++) { 5042 /* Backup IN EPs */ 5043 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5044 5045 /* Ensure DATA PID is correctly configured */ 5046 if (dr->diepctl[i] & DXEPCTL_DPID) 5047 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5048 else 5049 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5050 5051 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5052 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5053 5054 /* Backup OUT EPs */ 5055 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5056 5057 /* Ensure DATA PID is correctly configured */ 5058 if (dr->doepctl[i] & DXEPCTL_DPID) 5059 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5060 else 5061 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5062 5063 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5064 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5065 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5066 } 5067 dr->valid = true; 5068 return 0; 5069 } 5070 5071 /** 5072 * dwc2_restore_device_registers() - Restore controller device registers. 5073 * When resuming usb bus, device registers needs to be restored 5074 * if controller power were disabled. 5075 * 5076 * @hsotg: Programming view of the DWC_otg controller 5077 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5078 * 5079 * Return: 0 if successful, negative error code otherwise 5080 */ 5081 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5082 { 5083 struct dwc2_dregs_backup *dr; 5084 int i; 5085 5086 dev_dbg(hsotg->dev, "%s\n", __func__); 5087 5088 /* Restore dev regs */ 5089 dr = &hsotg->dr_backup; 5090 if (!dr->valid) { 5091 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5092 __func__); 5093 return -EINVAL; 5094 } 5095 dr->valid = false; 5096 5097 if (!remote_wakeup) 5098 dwc2_writel(hsotg, dr->dctl, DCTL); 5099 5100 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5101 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5102 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5103 5104 for (i = 0; i < hsotg->num_of_eps; i++) { 5105 /* Restore IN EPs */ 5106 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5107 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5108 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5109 /** WA for enabled EPx's IN in DDMA mode. On entering to 5110 * hibernation wrong value read and saved from DIEPDMAx, 5111 * as result BNA interrupt asserted on hibernation exit 5112 * by restoring from saved area. 5113 */ 5114 if (hsotg->params.g_dma_desc && 5115 (dr->diepctl[i] & DXEPCTL_EPENA)) 5116 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5117 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5118 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5119 /* Restore OUT EPs */ 5120 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5121 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5122 * hibernation wrong value read and saved from DOEPDMAx, 5123 * as result BNA interrupt asserted on hibernation exit 5124 * by restoring from saved area. 5125 */ 5126 if (hsotg->params.g_dma_desc && 5127 (dr->doepctl[i] & DXEPCTL_EPENA)) 5128 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5129 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5130 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5131 } 5132 5133 return 0; 5134 } 5135 5136 /** 5137 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5138 * 5139 * @hsotg: Programming view of DWC_otg controller 5140 * 5141 */ 5142 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5143 { 5144 u32 val; 5145 5146 if (!hsotg->params.lpm) 5147 return; 5148 5149 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5150 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5151 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5152 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5153 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5154 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5155 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5156 dwc2_writel(hsotg, val, GLPMCFG); 5157 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5158 5159 /* Unmask WKUP_ALERT Interrupt */ 5160 if (hsotg->params.service_interval) 5161 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5162 } 5163 5164 /** 5165 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5166 * 5167 * @hsotg: Programming view of DWC_otg controller 5168 * 5169 */ 5170 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5171 { 5172 u32 val = 0; 5173 5174 val |= GREFCLK_REF_CLK_MODE; 5175 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5176 val |= hsotg->params.sof_cnt_wkup_alert << 5177 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5178 5179 dwc2_writel(hsotg, val, GREFCLK); 5180 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5181 } 5182 5183 /** 5184 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5185 * 5186 * @hsotg: Programming view of the DWC_otg controller 5187 * 5188 * Return non-zero if failed to enter to hibernation. 5189 */ 5190 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5191 { 5192 u32 gpwrdn; 5193 int ret = 0; 5194 5195 /* Change to L2(suspend) state */ 5196 hsotg->lx_state = DWC2_L2; 5197 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5198 ret = dwc2_backup_global_registers(hsotg); 5199 if (ret) { 5200 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5201 __func__); 5202 return ret; 5203 } 5204 ret = dwc2_backup_device_registers(hsotg); 5205 if (ret) { 5206 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5207 __func__); 5208 return ret; 5209 } 5210 5211 gpwrdn = GPWRDN_PWRDNRSTN; 5212 gpwrdn |= GPWRDN_PMUACTV; 5213 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5214 udelay(10); 5215 5216 /* Set flag to indicate that we are in hibernation */ 5217 hsotg->hibernated = 1; 5218 5219 /* Enable interrupts from wake up logic */ 5220 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5221 gpwrdn |= GPWRDN_PMUINTSEL; 5222 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5223 udelay(10); 5224 5225 /* Unmask device mode interrupts in GPWRDN */ 5226 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5227 gpwrdn |= GPWRDN_RST_DET_MSK; 5228 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5229 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5230 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5231 udelay(10); 5232 5233 /* Enable Power Down Clamp */ 5234 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5235 gpwrdn |= GPWRDN_PWRDNCLMP; 5236 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5237 udelay(10); 5238 5239 /* Switch off VDD */ 5240 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5241 gpwrdn |= GPWRDN_PWRDNSWTCH; 5242 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5243 udelay(10); 5244 5245 /* Save gpwrdn register for further usage if stschng interrupt */ 5246 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5247 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5248 5249 return ret; 5250 } 5251 5252 /** 5253 * dwc2_gadget_exit_hibernation() 5254 * This function is for exiting from Device mode hibernation by host initiated 5255 * resume/reset and device initiated remote-wakeup. 5256 * 5257 * @hsotg: Programming view of the DWC_otg controller 5258 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5259 * @reset: indicates whether resume is initiated by Reset. 5260 * 5261 * Return non-zero if failed to exit from hibernation. 5262 */ 5263 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5264 int rem_wakeup, int reset) 5265 { 5266 u32 pcgcctl; 5267 u32 gpwrdn; 5268 u32 dctl; 5269 int ret = 0; 5270 struct dwc2_gregs_backup *gr; 5271 struct dwc2_dregs_backup *dr; 5272 5273 gr = &hsotg->gr_backup; 5274 dr = &hsotg->dr_backup; 5275 5276 if (!hsotg->hibernated) { 5277 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5278 return 1; 5279 } 5280 dev_dbg(hsotg->dev, 5281 "%s: called with rem_wakeup = %d reset = %d\n", 5282 __func__, rem_wakeup, reset); 5283 5284 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5285 5286 if (!reset) { 5287 /* Clear all pending interupts */ 5288 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5289 } 5290 5291 /* De-assert Restore */ 5292 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5293 gpwrdn &= ~GPWRDN_RESTORE; 5294 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5295 udelay(10); 5296 5297 if (!rem_wakeup) { 5298 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5299 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5300 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5301 } 5302 5303 /* Restore GUSBCFG, DCFG and DCTL */ 5304 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5305 dwc2_writel(hsotg, dr->dcfg, DCFG); 5306 dwc2_writel(hsotg, dr->dctl, DCTL); 5307 5308 /* On USB Reset, reset device address to zero */ 5309 if (reset) 5310 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 5311 5312 /* De-assert Wakeup Logic */ 5313 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5314 gpwrdn &= ~GPWRDN_PMUACTV; 5315 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5316 5317 if (rem_wakeup) { 5318 udelay(10); 5319 /* Start Remote Wakeup Signaling */ 5320 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5321 } else { 5322 udelay(50); 5323 /* Set Device programming done bit */ 5324 dctl = dwc2_readl(hsotg, DCTL); 5325 dctl |= DCTL_PWRONPRGDONE; 5326 dwc2_writel(hsotg, dctl, DCTL); 5327 } 5328 /* Wait for interrupts which must be cleared */ 5329 mdelay(2); 5330 /* Clear all pending interupts */ 5331 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5332 5333 /* Restore global registers */ 5334 ret = dwc2_restore_global_registers(hsotg); 5335 if (ret) { 5336 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5337 __func__); 5338 return ret; 5339 } 5340 5341 /* Restore device registers */ 5342 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5343 if (ret) { 5344 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5345 __func__); 5346 return ret; 5347 } 5348 5349 if (rem_wakeup) { 5350 mdelay(10); 5351 dctl = dwc2_readl(hsotg, DCTL); 5352 dctl &= ~DCTL_RMTWKUPSIG; 5353 dwc2_writel(hsotg, dctl, DCTL); 5354 } 5355 5356 hsotg->hibernated = 0; 5357 hsotg->lx_state = DWC2_L0; 5358 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5359 5360 return ret; 5361 } 5362 5363 /** 5364 * dwc2_gadget_enter_partial_power_down() - Put controller in partial 5365 * power down. 5366 * 5367 * @hsotg: Programming view of the DWC_otg controller 5368 * 5369 * Return: non-zero if failed to enter device partial power down. 5370 * 5371 * This function is for entering device mode partial power down. 5372 */ 5373 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 5374 { 5375 u32 pcgcctl; 5376 int ret = 0; 5377 5378 dev_dbg(hsotg->dev, "Entering device partial power down started.\n"); 5379 5380 /* Backup all registers */ 5381 ret = dwc2_backup_global_registers(hsotg); 5382 if (ret) { 5383 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5384 __func__); 5385 return ret; 5386 } 5387 5388 ret = dwc2_backup_device_registers(hsotg); 5389 if (ret) { 5390 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5391 __func__); 5392 return ret; 5393 } 5394 5395 /* 5396 * Clear any pending interrupts since dwc2 will not be able to 5397 * clear them after entering partial_power_down. 5398 */ 5399 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5400 5401 /* Put the controller in low power state */ 5402 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5403 5404 pcgcctl |= PCGCTL_PWRCLMP; 5405 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5406 udelay(5); 5407 5408 pcgcctl |= PCGCTL_RSTPDWNMODULE; 5409 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5410 udelay(5); 5411 5412 pcgcctl |= PCGCTL_STOPPCLK; 5413 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5414 5415 /* Set in_ppd flag to 1 as here core enters suspend. */ 5416 hsotg->in_ppd = 1; 5417 hsotg->lx_state = DWC2_L2; 5418 5419 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n"); 5420 5421 return ret; 5422 } 5423 5424 /* 5425 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial 5426 * power down. 5427 * 5428 * @hsotg: Programming view of the DWC_otg controller 5429 * @restore: indicates whether need to restore the registers or not. 5430 * 5431 * Return: non-zero if failed to exit device partial power down. 5432 * 5433 * This function is for exiting from device mode partial power down. 5434 */ 5435 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 5436 bool restore) 5437 { 5438 u32 pcgcctl; 5439 u32 dctl; 5440 struct dwc2_dregs_backup *dr; 5441 int ret = 0; 5442 5443 dr = &hsotg->dr_backup; 5444 5445 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n"); 5446 5447 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5448 pcgcctl &= ~PCGCTL_STOPPCLK; 5449 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5450 5451 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5452 pcgcctl &= ~PCGCTL_PWRCLMP; 5453 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5454 5455 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5456 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5457 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5458 5459 udelay(100); 5460 if (restore) { 5461 ret = dwc2_restore_global_registers(hsotg); 5462 if (ret) { 5463 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5464 __func__); 5465 return ret; 5466 } 5467 /* Restore DCFG */ 5468 dwc2_writel(hsotg, dr->dcfg, DCFG); 5469 5470 ret = dwc2_restore_device_registers(hsotg, 0); 5471 if (ret) { 5472 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5473 __func__); 5474 return ret; 5475 } 5476 } 5477 5478 /* Set the Power-On Programming done bit */ 5479 dctl = dwc2_readl(hsotg, DCTL); 5480 dctl |= DCTL_PWRONPRGDONE; 5481 dwc2_writel(hsotg, dctl, DCTL); 5482 5483 /* Set in_ppd flag to 0 as here core exits from suspend. */ 5484 hsotg->in_ppd = 0; 5485 hsotg->lx_state = DWC2_L0; 5486 5487 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n"); 5488 return ret; 5489 } 5490 5491 /** 5492 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating. 5493 * 5494 * @hsotg: Programming view of the DWC_otg controller 5495 * 5496 * Return: non-zero if failed to enter device partial power down. 5497 * 5498 * This function is for entering device mode clock gating. 5499 */ 5500 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) 5501 { 5502 u32 pcgctl; 5503 5504 dev_dbg(hsotg->dev, "Entering device clock gating.\n"); 5505 5506 /* Set the Phy Clock bit as suspend is received. */ 5507 pcgctl = dwc2_readl(hsotg, PCGCTL); 5508 pcgctl |= PCGCTL_STOPPCLK; 5509 dwc2_writel(hsotg, pcgctl, PCGCTL); 5510 udelay(5); 5511 5512 /* Set the Gate hclk as suspend is received. */ 5513 pcgctl = dwc2_readl(hsotg, PCGCTL); 5514 pcgctl |= PCGCTL_GATEHCLK; 5515 dwc2_writel(hsotg, pcgctl, PCGCTL); 5516 udelay(5); 5517 5518 hsotg->lx_state = DWC2_L2; 5519 hsotg->bus_suspended = true; 5520 } 5521 5522 /* 5523 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating. 5524 * 5525 * @hsotg: Programming view of the DWC_otg controller 5526 * @rem_wakeup: indicates whether remote wake up is enabled. 5527 * 5528 * This function is for exiting from device mode clock gating. 5529 */ 5530 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup) 5531 { 5532 u32 pcgctl; 5533 u32 dctl; 5534 5535 dev_dbg(hsotg->dev, "Exiting device clock gating.\n"); 5536 5537 /* Clear the Gate hclk. */ 5538 pcgctl = dwc2_readl(hsotg, PCGCTL); 5539 pcgctl &= ~PCGCTL_GATEHCLK; 5540 dwc2_writel(hsotg, pcgctl, PCGCTL); 5541 udelay(5); 5542 5543 /* Phy Clock bit. */ 5544 pcgctl = dwc2_readl(hsotg, PCGCTL); 5545 pcgctl &= ~PCGCTL_STOPPCLK; 5546 dwc2_writel(hsotg, pcgctl, PCGCTL); 5547 udelay(5); 5548 5549 if (rem_wakeup) { 5550 /* Set Remote Wakeup Signaling */ 5551 dctl = dwc2_readl(hsotg, DCTL); 5552 dctl |= DCTL_RMTWKUPSIG; 5553 dwc2_writel(hsotg, dctl, DCTL); 5554 } 5555 5556 /* Change to L0 state */ 5557 call_gadget(hsotg, resume); 5558 hsotg->lx_state = DWC2_L0; 5559 hsotg->bus_suspended = false; 5560 } 5561