1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 struct dwc2_hsotg *hsotg = hs_ep->parent; 119 u16 limit = DSTS_SOFFN_LIMIT; 120 121 if (hsotg->gadget.speed != USB_SPEED_HIGH) 122 limit >>= 3; 123 124 hs_ep->target_frame += hs_ep->interval; 125 if (hs_ep->target_frame > limit) { 126 hs_ep->frame_overrun = true; 127 hs_ep->target_frame &= limit; 128 } else { 129 hs_ep->frame_overrun = false; 130 } 131 } 132 133 /** 134 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 135 * by one. 136 * @hs_ep: The endpoint. 137 * 138 * This function used in service interval based scheduling flow to calculate 139 * descriptor frame number filed value. For service interval mode frame 140 * number in descriptor should point to last (u)frame in the interval. 141 * 142 */ 143 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 144 { 145 struct dwc2_hsotg *hsotg = hs_ep->parent; 146 u16 limit = DSTS_SOFFN_LIMIT; 147 148 if (hsotg->gadget.speed != USB_SPEED_HIGH) 149 limit >>= 3; 150 151 if (hs_ep->target_frame) 152 hs_ep->target_frame -= 1; 153 else 154 hs_ep->target_frame = limit; 155 } 156 157 /** 158 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 159 * @hsotg: The device state 160 * @ints: A bitmask of the interrupts to enable 161 */ 162 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 163 { 164 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 165 u32 new_gsintmsk; 166 167 new_gsintmsk = gsintmsk | ints; 168 169 if (new_gsintmsk != gsintmsk) { 170 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 171 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 172 } 173 } 174 175 /** 176 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 177 * @hsotg: The device state 178 * @ints: A bitmask of the interrupts to enable 179 */ 180 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 181 { 182 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 183 u32 new_gsintmsk; 184 185 new_gsintmsk = gsintmsk & ~ints; 186 187 if (new_gsintmsk != gsintmsk) 188 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 189 } 190 191 /** 192 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 193 * @hsotg: The device state 194 * @ep: The endpoint index 195 * @dir_in: True if direction is in. 196 * @en: The enable value, true to enable 197 * 198 * Set or clear the mask for an individual endpoint's interrupt 199 * request. 200 */ 201 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 202 unsigned int ep, unsigned int dir_in, 203 unsigned int en) 204 { 205 unsigned long flags; 206 u32 bit = 1 << ep; 207 u32 daint; 208 209 if (!dir_in) 210 bit <<= 16; 211 212 local_irq_save(flags); 213 daint = dwc2_readl(hsotg, DAINTMSK); 214 if (en) 215 daint |= bit; 216 else 217 daint &= ~bit; 218 dwc2_writel(hsotg, daint, DAINTMSK); 219 local_irq_restore(flags); 220 } 221 222 /** 223 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 224 * 225 * @hsotg: Programming view of the DWC_otg controller 226 */ 227 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 228 { 229 if (hsotg->hw_params.en_multiple_tx_fifo) 230 /* In dedicated FIFO mode we need count of IN EPs */ 231 return hsotg->hw_params.num_dev_in_eps; 232 else 233 /* In shared FIFO mode we need count of Periodic IN EPs */ 234 return hsotg->hw_params.num_dev_perio_in_ep; 235 } 236 237 /** 238 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 239 * device mode TX FIFOs 240 * 241 * @hsotg: Programming view of the DWC_otg controller 242 */ 243 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 244 { 245 int addr; 246 int tx_addr_max; 247 u32 np_tx_fifo_size; 248 249 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 250 hsotg->params.g_np_tx_fifo_size); 251 252 /* Get Endpoint Info Control block size in DWORDs. */ 253 tx_addr_max = hsotg->hw_params.total_fifo_size; 254 255 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 256 if (tx_addr_max <= addr) 257 return 0; 258 259 return tx_addr_max - addr; 260 } 261 262 /** 263 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 264 * 265 * @hsotg: Programming view of the DWC_otg controller 266 * 267 */ 268 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 269 { 270 u32 gintsts2; 271 u32 gintmsk2; 272 273 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 274 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 275 gintsts2 &= gintmsk2; 276 277 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 278 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 279 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 280 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 281 } 282 } 283 284 /** 285 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 286 * TX FIFOs 287 * 288 * @hsotg: Programming view of the DWC_otg controller 289 */ 290 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 291 { 292 int tx_fifo_count; 293 int tx_fifo_depth; 294 295 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 296 297 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 298 299 if (!tx_fifo_count) 300 return tx_fifo_depth; 301 else 302 return tx_fifo_depth / tx_fifo_count; 303 } 304 305 /** 306 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 307 * @hsotg: The device instance. 308 */ 309 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 310 { 311 unsigned int ep; 312 unsigned int addr; 313 int timeout; 314 315 u32 val; 316 u32 *txfsz = hsotg->params.g_tx_fifo_size; 317 318 /* Reset fifo map if not correctly cleared during previous session */ 319 WARN_ON(hsotg->fifo_map); 320 hsotg->fifo_map = 0; 321 322 /* set RX/NPTX FIFO sizes */ 323 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 324 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 325 FIFOSIZE_STARTADDR_SHIFT) | 326 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 327 GNPTXFSIZ); 328 329 /* 330 * arange all the rest of the TX FIFOs, as some versions of this 331 * block have overlapping default addresses. This also ensures 332 * that if the settings have been changed, then they are set to 333 * known values. 334 */ 335 336 /* start at the end of the GNPTXFSIZ, rounded up */ 337 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 338 339 /* 340 * Configure fifos sizes from provided configuration and assign 341 * them to endpoints dynamically according to maxpacket size value of 342 * given endpoint. 343 */ 344 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 345 if (!txfsz[ep]) 346 continue; 347 val = addr; 348 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 349 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 350 "insufficient fifo memory"); 351 addr += txfsz[ep]; 352 353 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 354 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 355 } 356 357 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 358 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 359 GDFIFOCFG); 360 /* 361 * according to p428 of the design guide, we need to ensure that 362 * all fifos are flushed before continuing 363 */ 364 365 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 366 GRSTCTL_RXFFLSH, GRSTCTL); 367 368 /* wait until the fifos are both flushed */ 369 timeout = 100; 370 while (1) { 371 val = dwc2_readl(hsotg, GRSTCTL); 372 373 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 374 break; 375 376 if (--timeout == 0) { 377 dev_err(hsotg->dev, 378 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 379 __func__, val); 380 break; 381 } 382 383 udelay(1); 384 } 385 386 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 387 } 388 389 /** 390 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 391 * @ep: USB endpoint to allocate request for. 392 * @flags: Allocation flags 393 * 394 * Allocate a new USB request structure appropriate for the specified endpoint 395 */ 396 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 397 gfp_t flags) 398 { 399 struct dwc2_hsotg_req *req; 400 401 req = kzalloc(sizeof(*req), flags); 402 if (!req) 403 return NULL; 404 405 INIT_LIST_HEAD(&req->queue); 406 407 return &req->req; 408 } 409 410 /** 411 * is_ep_periodic - return true if the endpoint is in periodic mode. 412 * @hs_ep: The endpoint to query. 413 * 414 * Returns true if the endpoint is in periodic mode, meaning it is being 415 * used for an Interrupt or ISO transfer. 416 */ 417 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 418 { 419 return hs_ep->periodic; 420 } 421 422 /** 423 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 424 * @hsotg: The device state. 425 * @hs_ep: The endpoint for the request 426 * @hs_req: The request being processed. 427 * 428 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 429 * of a request to ensure the buffer is ready for access by the caller. 430 */ 431 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 432 struct dwc2_hsotg_ep *hs_ep, 433 struct dwc2_hsotg_req *hs_req) 434 { 435 struct usb_request *req = &hs_req->req; 436 437 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir); 438 } 439 440 /* 441 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 442 * for Control endpoint 443 * @hsotg: The device state. 444 * 445 * This function will allocate 4 descriptor chains for EP 0: 2 for 446 * Setup stage, per one for IN and OUT data/status transactions. 447 */ 448 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 449 { 450 hsotg->setup_desc[0] = 451 dmam_alloc_coherent(hsotg->dev, 452 sizeof(struct dwc2_dma_desc), 453 &hsotg->setup_desc_dma[0], 454 GFP_KERNEL); 455 if (!hsotg->setup_desc[0]) 456 goto fail; 457 458 hsotg->setup_desc[1] = 459 dmam_alloc_coherent(hsotg->dev, 460 sizeof(struct dwc2_dma_desc), 461 &hsotg->setup_desc_dma[1], 462 GFP_KERNEL); 463 if (!hsotg->setup_desc[1]) 464 goto fail; 465 466 hsotg->ctrl_in_desc = 467 dmam_alloc_coherent(hsotg->dev, 468 sizeof(struct dwc2_dma_desc), 469 &hsotg->ctrl_in_desc_dma, 470 GFP_KERNEL); 471 if (!hsotg->ctrl_in_desc) 472 goto fail; 473 474 hsotg->ctrl_out_desc = 475 dmam_alloc_coherent(hsotg->dev, 476 sizeof(struct dwc2_dma_desc), 477 &hsotg->ctrl_out_desc_dma, 478 GFP_KERNEL); 479 if (!hsotg->ctrl_out_desc) 480 goto fail; 481 482 return 0; 483 484 fail: 485 return -ENOMEM; 486 } 487 488 /** 489 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 490 * @hsotg: The controller state. 491 * @hs_ep: The endpoint we're going to write for. 492 * @hs_req: The request to write data for. 493 * 494 * This is called when the TxFIFO has some space in it to hold a new 495 * transmission and we have something to give it. The actual setup of 496 * the data size is done elsewhere, so all we have to do is to actually 497 * write the data. 498 * 499 * The return value is zero if there is more space (or nothing was done) 500 * otherwise -ENOSPC is returned if the FIFO space was used up. 501 * 502 * This routine is only needed for PIO 503 */ 504 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 505 struct dwc2_hsotg_ep *hs_ep, 506 struct dwc2_hsotg_req *hs_req) 507 { 508 bool periodic = is_ep_periodic(hs_ep); 509 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 510 int buf_pos = hs_req->req.actual; 511 int to_write = hs_ep->size_loaded; 512 void *data; 513 int can_write; 514 int pkt_round; 515 int max_transfer; 516 517 to_write -= (buf_pos - hs_ep->last_load); 518 519 /* if there's nothing to write, get out early */ 520 if (to_write == 0) 521 return 0; 522 523 if (periodic && !hsotg->dedicated_fifos) { 524 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 525 int size_left; 526 int size_done; 527 528 /* 529 * work out how much data was loaded so we can calculate 530 * how much data is left in the fifo. 531 */ 532 533 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 534 535 /* 536 * if shared fifo, we cannot write anything until the 537 * previous data has been completely sent. 538 */ 539 if (hs_ep->fifo_load != 0) { 540 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 541 return -ENOSPC; 542 } 543 544 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 545 __func__, size_left, 546 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 547 548 /* how much of the data has moved */ 549 size_done = hs_ep->size_loaded - size_left; 550 551 /* how much data is left in the fifo */ 552 can_write = hs_ep->fifo_load - size_done; 553 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 554 __func__, can_write); 555 556 can_write = hs_ep->fifo_size - can_write; 557 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 558 __func__, can_write); 559 560 if (can_write <= 0) { 561 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 562 return -ENOSPC; 563 } 564 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 565 can_write = dwc2_readl(hsotg, 566 DTXFSTS(hs_ep->fifo_index)); 567 568 can_write &= 0xffff; 569 can_write *= 4; 570 } else { 571 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 572 dev_dbg(hsotg->dev, 573 "%s: no queue slots available (0x%08x)\n", 574 __func__, gnptxsts); 575 576 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 577 return -ENOSPC; 578 } 579 580 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 581 can_write *= 4; /* fifo size is in 32bit quantities. */ 582 } 583 584 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 585 586 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 587 __func__, gnptxsts, can_write, to_write, max_transfer); 588 589 /* 590 * limit to 512 bytes of data, it seems at least on the non-periodic 591 * FIFO, requests of >512 cause the endpoint to get stuck with a 592 * fragment of the end of the transfer in it. 593 */ 594 if (can_write > 512 && !periodic) 595 can_write = 512; 596 597 /* 598 * limit the write to one max-packet size worth of data, but allow 599 * the transfer to return that it did not run out of fifo space 600 * doing it. 601 */ 602 if (to_write > max_transfer) { 603 to_write = max_transfer; 604 605 /* it's needed only when we do not use dedicated fifos */ 606 if (!hsotg->dedicated_fifos) 607 dwc2_hsotg_en_gsint(hsotg, 608 periodic ? GINTSTS_PTXFEMP : 609 GINTSTS_NPTXFEMP); 610 } 611 612 /* see if we can write data */ 613 614 if (to_write > can_write) { 615 to_write = can_write; 616 pkt_round = to_write % max_transfer; 617 618 /* 619 * Round the write down to an 620 * exact number of packets. 621 * 622 * Note, we do not currently check to see if we can ever 623 * write a full packet or not to the FIFO. 624 */ 625 626 if (pkt_round) 627 to_write -= pkt_round; 628 629 /* 630 * enable correct FIFO interrupt to alert us when there 631 * is more room left. 632 */ 633 634 /* it's needed only when we do not use dedicated fifos */ 635 if (!hsotg->dedicated_fifos) 636 dwc2_hsotg_en_gsint(hsotg, 637 periodic ? GINTSTS_PTXFEMP : 638 GINTSTS_NPTXFEMP); 639 } 640 641 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 642 to_write, hs_req->req.length, can_write, buf_pos); 643 644 if (to_write <= 0) 645 return -ENOSPC; 646 647 hs_req->req.actual = buf_pos + to_write; 648 hs_ep->total_data += to_write; 649 650 if (periodic) 651 hs_ep->fifo_load += to_write; 652 653 to_write = DIV_ROUND_UP(to_write, 4); 654 data = hs_req->req.buf + buf_pos; 655 656 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 657 658 return (to_write >= can_write) ? -ENOSPC : 0; 659 } 660 661 /** 662 * get_ep_limit - get the maximum data legnth for this endpoint 663 * @hs_ep: The endpoint 664 * 665 * Return the maximum data that can be queued in one go on a given endpoint 666 * so that transfers that are too long can be split. 667 */ 668 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 669 { 670 int index = hs_ep->index; 671 unsigned int maxsize; 672 unsigned int maxpkt; 673 674 if (index != 0) { 675 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 676 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 677 } else { 678 maxsize = 64 + 64; 679 if (hs_ep->dir_in) 680 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 681 else 682 maxpkt = 2; 683 } 684 685 /* we made the constant loading easier above by using +1 */ 686 maxpkt--; 687 maxsize--; 688 689 /* 690 * constrain by packet count if maxpkts*pktsize is greater 691 * than the length register size. 692 */ 693 694 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 695 maxsize = maxpkt * hs_ep->ep.maxpacket; 696 697 return maxsize; 698 } 699 700 /** 701 * dwc2_hsotg_read_frameno - read current frame number 702 * @hsotg: The device instance 703 * 704 * Return the current frame number 705 */ 706 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 707 { 708 u32 dsts; 709 710 dsts = dwc2_readl(hsotg, DSTS); 711 dsts &= DSTS_SOFFN_MASK; 712 dsts >>= DSTS_SOFFN_SHIFT; 713 714 return dsts; 715 } 716 717 /** 718 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 719 * DMA descriptor chain prepared for specific endpoint 720 * @hs_ep: The endpoint 721 * 722 * Return the maximum data that can be queued in one go on a given endpoint 723 * depending on its descriptor chain capacity so that transfers that 724 * are too long can be split. 725 */ 726 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 727 { 728 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 729 int is_isoc = hs_ep->isochronous; 730 unsigned int maxsize; 731 u32 mps = hs_ep->ep.maxpacket; 732 int dir_in = hs_ep->dir_in; 733 734 if (is_isoc) 735 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 736 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 737 MAX_DMA_DESC_NUM_HS_ISOC; 738 else 739 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 740 741 /* Interrupt OUT EP with mps not multiple of 4 */ 742 if (hs_ep->index) 743 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 744 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; 745 746 return maxsize; 747 } 748 749 /* 750 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 751 * @hs_ep: The endpoint 752 * @mask: RX/TX bytes mask to be defined 753 * 754 * Returns maximum data payload for one descriptor after analyzing endpoint 755 * characteristics. 756 * DMA descriptor transfer bytes limit depends on EP type: 757 * Control out - MPS, 758 * Isochronous - descriptor rx/tx bytes bitfield limit, 759 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 760 * have concatenations from various descriptors within one packet. 761 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds 762 * to a single descriptor. 763 * 764 * Selects corresponding mask for RX/TX bytes as well. 765 */ 766 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 767 { 768 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 769 u32 mps = hs_ep->ep.maxpacket; 770 int dir_in = hs_ep->dir_in; 771 u32 desc_size = 0; 772 773 if (!hs_ep->index && !dir_in) { 774 desc_size = mps; 775 *mask = DEV_DMA_NBYTES_MASK; 776 } else if (hs_ep->isochronous) { 777 if (dir_in) { 778 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 779 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 780 } else { 781 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 782 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 783 } 784 } else { 785 desc_size = DEV_DMA_NBYTES_LIMIT; 786 *mask = DEV_DMA_NBYTES_MASK; 787 788 /* Round down desc_size to be mps multiple */ 789 desc_size -= desc_size % mps; 790 } 791 792 /* Interrupt OUT EP with mps not multiple of 4 */ 793 if (hs_ep->index) 794 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { 795 desc_size = mps; 796 *mask = DEV_DMA_NBYTES_MASK; 797 } 798 799 return desc_size; 800 } 801 802 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 803 struct dwc2_dma_desc **desc, 804 dma_addr_t dma_buff, 805 unsigned int len, 806 bool true_last) 807 { 808 int dir_in = hs_ep->dir_in; 809 u32 mps = hs_ep->ep.maxpacket; 810 u32 maxsize = 0; 811 u32 offset = 0; 812 u32 mask = 0; 813 int i; 814 815 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 816 817 hs_ep->desc_count = (len / maxsize) + 818 ((len % maxsize) ? 1 : 0); 819 if (len == 0) 820 hs_ep->desc_count = 1; 821 822 for (i = 0; i < hs_ep->desc_count; ++i) { 823 (*desc)->status = 0; 824 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 825 << DEV_DMA_BUFF_STS_SHIFT); 826 827 if (len > maxsize) { 828 if (!hs_ep->index && !dir_in) 829 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 830 831 (*desc)->status |= 832 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 833 (*desc)->buf = dma_buff + offset; 834 835 len -= maxsize; 836 offset += maxsize; 837 } else { 838 if (true_last) 839 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 840 841 if (dir_in) 842 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 843 ((hs_ep->send_zlp && true_last) ? 844 DEV_DMA_SHORT : 0); 845 846 (*desc)->status |= 847 len << DEV_DMA_NBYTES_SHIFT & mask; 848 (*desc)->buf = dma_buff + offset; 849 } 850 851 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 852 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 853 << DEV_DMA_BUFF_STS_SHIFT); 854 (*desc)++; 855 } 856 } 857 858 /* 859 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 860 * @hs_ep: The endpoint 861 * @ureq: Request to transfer 862 * @offset: offset in bytes 863 * @len: Length of the transfer 864 * 865 * This function will iterate over descriptor chain and fill its entries 866 * with corresponding information based on transfer data. 867 */ 868 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 869 dma_addr_t dma_buff, 870 unsigned int len) 871 { 872 struct usb_request *ureq = NULL; 873 struct dwc2_dma_desc *desc = hs_ep->desc_list; 874 struct scatterlist *sg; 875 int i; 876 u8 desc_count = 0; 877 878 if (hs_ep->req) 879 ureq = &hs_ep->req->req; 880 881 /* non-DMA sg buffer */ 882 if (!ureq || !ureq->num_sgs) { 883 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 884 dma_buff, len, true); 885 return; 886 } 887 888 /* DMA sg buffer */ 889 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 890 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 891 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 892 sg_is_last(sg)); 893 desc_count += hs_ep->desc_count; 894 } 895 896 hs_ep->desc_count = desc_count; 897 } 898 899 /* 900 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 901 * @hs_ep: The isochronous endpoint. 902 * @dma_buff: usb requests dma buffer. 903 * @len: usb request transfer length. 904 * 905 * Fills next free descriptor with the data of the arrived usb request, 906 * frame info, sets Last and IOC bits increments next_desc. If filled 907 * descriptor is not the first one, removes L bit from the previous descriptor 908 * status. 909 */ 910 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 911 dma_addr_t dma_buff, unsigned int len) 912 { 913 struct dwc2_dma_desc *desc; 914 struct dwc2_hsotg *hsotg = hs_ep->parent; 915 u32 index; 916 u32 mask = 0; 917 u8 pid = 0; 918 919 dwc2_gadget_get_desc_params(hs_ep, &mask); 920 921 index = hs_ep->next_desc; 922 desc = &hs_ep->desc_list[index]; 923 924 /* Check if descriptor chain full */ 925 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 926 DEV_DMA_BUFF_STS_HREADY) { 927 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 928 return 1; 929 } 930 931 /* Clear L bit of previous desc if more than one entries in the chain */ 932 if (hs_ep->next_desc) 933 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 934 935 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 936 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 937 938 desc->status = 0; 939 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 940 941 desc->buf = dma_buff; 942 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 943 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 944 945 if (hs_ep->dir_in) { 946 if (len) 947 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 948 else 949 pid = 1; 950 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 951 DEV_DMA_ISOC_PID_MASK) | 952 ((len % hs_ep->ep.maxpacket) ? 953 DEV_DMA_SHORT : 0) | 954 ((hs_ep->target_frame << 955 DEV_DMA_ISOC_FRNUM_SHIFT) & 956 DEV_DMA_ISOC_FRNUM_MASK); 957 } 958 959 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 960 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 961 962 /* Increment frame number by interval for IN */ 963 if (hs_ep->dir_in) 964 dwc2_gadget_incr_frame_num(hs_ep); 965 966 /* Update index of last configured entry in the chain */ 967 hs_ep->next_desc++; 968 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 969 hs_ep->next_desc = 0; 970 971 return 0; 972 } 973 974 /* 975 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 976 * @hs_ep: The isochronous endpoint. 977 * 978 * Prepare descriptor chain for isochronous endpoints. Afterwards 979 * write DMA address to HW and enable the endpoint. 980 */ 981 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 982 { 983 struct dwc2_hsotg *hsotg = hs_ep->parent; 984 struct dwc2_hsotg_req *hs_req, *treq; 985 int index = hs_ep->index; 986 int ret; 987 int i; 988 u32 dma_reg; 989 u32 depctl; 990 u32 ctrl; 991 struct dwc2_dma_desc *desc; 992 993 if (list_empty(&hs_ep->queue)) { 994 hs_ep->target_frame = TARGET_FRAME_INITIAL; 995 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 996 return; 997 } 998 999 /* Initialize descriptor chain by Host Busy status */ 1000 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 1001 desc = &hs_ep->desc_list[i]; 1002 desc->status = 0; 1003 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 1004 << DEV_DMA_BUFF_STS_SHIFT); 1005 } 1006 1007 hs_ep->next_desc = 0; 1008 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 1009 dma_addr_t dma_addr = hs_req->req.dma; 1010 1011 if (hs_req->req.num_sgs) { 1012 WARN_ON(hs_req->req.num_sgs > 1); 1013 dma_addr = sg_dma_address(hs_req->req.sg); 1014 } 1015 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1016 hs_req->req.length); 1017 if (ret) 1018 break; 1019 } 1020 1021 hs_ep->compl_desc = 0; 1022 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1023 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 1024 1025 /* write descriptor chain address to control register */ 1026 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1027 1028 ctrl = dwc2_readl(hsotg, depctl); 1029 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1030 dwc2_writel(hsotg, ctrl, depctl); 1031 } 1032 1033 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep); 1034 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1035 struct dwc2_hsotg_ep *hs_ep, 1036 struct dwc2_hsotg_req *hs_req, 1037 int result); 1038 1039 /** 1040 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1041 * @hsotg: The controller state. 1042 * @hs_ep: The endpoint to process a request for 1043 * @hs_req: The request to start. 1044 * @continuing: True if we are doing more for the current request. 1045 * 1046 * Start the given request running by setting the endpoint registers 1047 * appropriately, and writing any data to the FIFOs. 1048 */ 1049 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1050 struct dwc2_hsotg_ep *hs_ep, 1051 struct dwc2_hsotg_req *hs_req, 1052 bool continuing) 1053 { 1054 struct usb_request *ureq = &hs_req->req; 1055 int index = hs_ep->index; 1056 int dir_in = hs_ep->dir_in; 1057 u32 epctrl_reg; 1058 u32 epsize_reg; 1059 u32 epsize; 1060 u32 ctrl; 1061 unsigned int length; 1062 unsigned int packets; 1063 unsigned int maxreq; 1064 unsigned int dma_reg; 1065 1066 if (index != 0) { 1067 if (hs_ep->req && !continuing) { 1068 dev_err(hsotg->dev, "%s: active request\n", __func__); 1069 WARN_ON(1); 1070 return; 1071 } else if (hs_ep->req != hs_req && continuing) { 1072 dev_err(hsotg->dev, 1073 "%s: continue different req\n", __func__); 1074 WARN_ON(1); 1075 return; 1076 } 1077 } 1078 1079 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1080 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1081 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1082 1083 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1084 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1085 hs_ep->dir_in ? "in" : "out"); 1086 1087 /* If endpoint is stalled, we will restart request later */ 1088 ctrl = dwc2_readl(hsotg, epctrl_reg); 1089 1090 if (index && ctrl & DXEPCTL_STALL) { 1091 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1092 return; 1093 } 1094 1095 length = ureq->length - ureq->actual; 1096 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1097 ureq->length, ureq->actual); 1098 1099 if (!using_desc_dma(hsotg)) 1100 maxreq = get_ep_limit(hs_ep); 1101 else 1102 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1103 1104 if (length > maxreq) { 1105 int round = maxreq % hs_ep->ep.maxpacket; 1106 1107 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1108 __func__, length, maxreq, round); 1109 1110 /* round down to multiple of packets */ 1111 if (round) 1112 maxreq -= round; 1113 1114 length = maxreq; 1115 } 1116 1117 if (length) 1118 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1119 else 1120 packets = 1; /* send one packet if length is zero. */ 1121 1122 if (dir_in && index != 0) 1123 if (hs_ep->isochronous) 1124 epsize = DXEPTSIZ_MC(packets); 1125 else 1126 epsize = DXEPTSIZ_MC(1); 1127 else 1128 epsize = 0; 1129 1130 /* 1131 * zero length packet should be programmed on its own and should not 1132 * be counted in DIEPTSIZ.PktCnt with other packets. 1133 */ 1134 if (dir_in && ureq->zero && !continuing) { 1135 /* Test if zlp is actually required. */ 1136 if ((ureq->length >= hs_ep->ep.maxpacket) && 1137 !(ureq->length % hs_ep->ep.maxpacket)) 1138 hs_ep->send_zlp = 1; 1139 } 1140 1141 epsize |= DXEPTSIZ_PKTCNT(packets); 1142 epsize |= DXEPTSIZ_XFERSIZE(length); 1143 1144 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1145 __func__, packets, length, ureq->length, epsize, epsize_reg); 1146 1147 /* store the request as the current one we're doing */ 1148 hs_ep->req = hs_req; 1149 1150 if (using_desc_dma(hsotg)) { 1151 u32 offset = 0; 1152 u32 mps = hs_ep->ep.maxpacket; 1153 1154 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1155 if (!dir_in) { 1156 if (!index) 1157 length = mps; 1158 else if (length % mps) 1159 length += (mps - (length % mps)); 1160 } 1161 1162 if (continuing) 1163 offset = ureq->actual; 1164 1165 /* Fill DDMA chain entries */ 1166 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1167 length); 1168 1169 /* write descriptor chain address to control register */ 1170 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1171 1172 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1173 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1174 } else { 1175 /* write size / packets */ 1176 dwc2_writel(hsotg, epsize, epsize_reg); 1177 1178 if (using_dma(hsotg) && !continuing && (length != 0)) { 1179 /* 1180 * write DMA address to control register, buffer 1181 * already synced by dwc2_hsotg_ep_queue(). 1182 */ 1183 1184 dwc2_writel(hsotg, ureq->dma, dma_reg); 1185 1186 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1187 __func__, &ureq->dma, dma_reg); 1188 } 1189 } 1190 1191 if (hs_ep->isochronous) { 1192 if (!dwc2_gadget_target_frame_elapsed(hs_ep)) { 1193 if (hs_ep->interval == 1) { 1194 if (hs_ep->target_frame & 0x1) 1195 ctrl |= DXEPCTL_SETODDFR; 1196 else 1197 ctrl |= DXEPCTL_SETEVENFR; 1198 } 1199 ctrl |= DXEPCTL_CNAK; 1200 } else { 1201 hs_req->req.frame_number = hs_ep->target_frame; 1202 hs_req->req.actual = 0; 1203 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); 1204 return; 1205 } 1206 } 1207 1208 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1209 1210 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1211 1212 /* For Setup request do not clear NAK */ 1213 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1214 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1215 1216 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1217 dwc2_writel(hsotg, ctrl, epctrl_reg); 1218 1219 /* 1220 * set these, it seems that DMA support increments past the end 1221 * of the packet buffer so we need to calculate the length from 1222 * this information. 1223 */ 1224 hs_ep->size_loaded = length; 1225 hs_ep->last_load = ureq->actual; 1226 1227 if (dir_in && !using_dma(hsotg)) { 1228 /* set these anyway, we may need them for non-periodic in */ 1229 hs_ep->fifo_load = 0; 1230 1231 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1232 } 1233 1234 /* 1235 * Note, trying to clear the NAK here causes problems with transmit 1236 * on the S3C6400 ending up with the TXFIFO becoming full. 1237 */ 1238 1239 /* check ep is enabled */ 1240 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1241 dev_dbg(hsotg->dev, 1242 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1243 index, dwc2_readl(hsotg, epctrl_reg)); 1244 1245 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1246 __func__, dwc2_readl(hsotg, epctrl_reg)); 1247 1248 /* enable ep interrupts */ 1249 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1250 } 1251 1252 /** 1253 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1254 * @hsotg: The device state. 1255 * @hs_ep: The endpoint the request is on. 1256 * @req: The request being processed. 1257 * 1258 * We've been asked to queue a request, so ensure that the memory buffer 1259 * is correctly setup for DMA. If we've been passed an extant DMA address 1260 * then ensure the buffer has been synced to memory. If our buffer has no 1261 * DMA memory, then we map the memory and mark our request to allow us to 1262 * cleanup on completion. 1263 */ 1264 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1265 struct dwc2_hsotg_ep *hs_ep, 1266 struct usb_request *req) 1267 { 1268 int ret; 1269 1270 hs_ep->map_dir = hs_ep->dir_in; 1271 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1272 if (ret) 1273 goto dma_error; 1274 1275 return 0; 1276 1277 dma_error: 1278 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1279 __func__, req->buf, req->length); 1280 1281 return -EIO; 1282 } 1283 1284 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1285 struct dwc2_hsotg_ep *hs_ep, 1286 struct dwc2_hsotg_req *hs_req) 1287 { 1288 void *req_buf = hs_req->req.buf; 1289 1290 /* If dma is not being used or buffer is aligned */ 1291 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1292 return 0; 1293 1294 WARN_ON(hs_req->saved_req_buf); 1295 1296 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1297 hs_ep->ep.name, req_buf, hs_req->req.length); 1298 1299 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1300 if (!hs_req->req.buf) { 1301 hs_req->req.buf = req_buf; 1302 dev_err(hsotg->dev, 1303 "%s: unable to allocate memory for bounce buffer\n", 1304 __func__); 1305 return -ENOMEM; 1306 } 1307 1308 /* Save actual buffer */ 1309 hs_req->saved_req_buf = req_buf; 1310 1311 if (hs_ep->dir_in) 1312 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1313 return 0; 1314 } 1315 1316 static void 1317 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1318 struct dwc2_hsotg_ep *hs_ep, 1319 struct dwc2_hsotg_req *hs_req) 1320 { 1321 /* If dma is not being used or buffer was aligned */ 1322 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1323 return; 1324 1325 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1326 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1327 1328 /* Copy data from bounce buffer on successful out transfer */ 1329 if (!hs_ep->dir_in && !hs_req->req.status) 1330 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1331 hs_req->req.actual); 1332 1333 /* Free bounce buffer */ 1334 kfree(hs_req->req.buf); 1335 1336 hs_req->req.buf = hs_req->saved_req_buf; 1337 hs_req->saved_req_buf = NULL; 1338 } 1339 1340 /** 1341 * dwc2_gadget_target_frame_elapsed - Checks target frame 1342 * @hs_ep: The driver endpoint to check 1343 * 1344 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1345 * corresponding transfer. 1346 */ 1347 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1348 { 1349 struct dwc2_hsotg *hsotg = hs_ep->parent; 1350 u32 target_frame = hs_ep->target_frame; 1351 u32 current_frame = hsotg->frame_number; 1352 bool frame_overrun = hs_ep->frame_overrun; 1353 u16 limit = DSTS_SOFFN_LIMIT; 1354 1355 if (hsotg->gadget.speed != USB_SPEED_HIGH) 1356 limit >>= 3; 1357 1358 if (!frame_overrun && current_frame >= target_frame) 1359 return true; 1360 1361 if (frame_overrun && current_frame >= target_frame && 1362 ((current_frame - target_frame) < limit / 2)) 1363 return true; 1364 1365 return false; 1366 } 1367 1368 /* 1369 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1370 * @hsotg: The driver state 1371 * @hs_ep: the ep descriptor chain is for 1372 * 1373 * Called to update EP0 structure's pointers depend on stage of 1374 * control transfer. 1375 */ 1376 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1377 struct dwc2_hsotg_ep *hs_ep) 1378 { 1379 switch (hsotg->ep0_state) { 1380 case DWC2_EP0_SETUP: 1381 case DWC2_EP0_STATUS_OUT: 1382 hs_ep->desc_list = hsotg->setup_desc[0]; 1383 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1384 break; 1385 case DWC2_EP0_DATA_IN: 1386 case DWC2_EP0_STATUS_IN: 1387 hs_ep->desc_list = hsotg->ctrl_in_desc; 1388 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1389 break; 1390 case DWC2_EP0_DATA_OUT: 1391 hs_ep->desc_list = hsotg->ctrl_out_desc; 1392 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1393 break; 1394 default: 1395 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1396 hsotg->ep0_state); 1397 return -EINVAL; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1404 gfp_t gfp_flags) 1405 { 1406 struct dwc2_hsotg_req *hs_req = our_req(req); 1407 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1408 struct dwc2_hsotg *hs = hs_ep->parent; 1409 bool first; 1410 int ret; 1411 u32 maxsize = 0; 1412 u32 mask = 0; 1413 1414 1415 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1416 ep->name, req, req->length, req->buf, req->no_interrupt, 1417 req->zero, req->short_not_ok); 1418 1419 /* Prevent new request submission when controller is suspended */ 1420 if (hs->lx_state != DWC2_L0) { 1421 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1422 __func__); 1423 return -EAGAIN; 1424 } 1425 1426 /* initialise status of the request */ 1427 INIT_LIST_HEAD(&hs_req->queue); 1428 req->actual = 0; 1429 req->status = -EINPROGRESS; 1430 1431 /* Don't queue ISOC request if length greater than mps*mc */ 1432 if (hs_ep->isochronous && 1433 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1434 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1435 return -EINVAL; 1436 } 1437 1438 /* In DDMA mode for ISOC's don't queue request if length greater 1439 * than descriptor limits. 1440 */ 1441 if (using_desc_dma(hs) && hs_ep->isochronous) { 1442 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1443 if (hs_ep->dir_in && req->length > maxsize) { 1444 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1445 req->length, maxsize); 1446 return -EINVAL; 1447 } 1448 1449 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1450 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1451 req->length, hs_ep->ep.maxpacket); 1452 return -EINVAL; 1453 } 1454 } 1455 1456 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1457 if (ret) 1458 return ret; 1459 1460 /* if we're using DMA, sync the buffers as necessary */ 1461 if (using_dma(hs)) { 1462 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1463 if (ret) 1464 return ret; 1465 } 1466 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1467 if (using_desc_dma(hs) && !hs_ep->index) { 1468 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1469 if (ret) 1470 return ret; 1471 } 1472 1473 first = list_empty(&hs_ep->queue); 1474 list_add_tail(&hs_req->queue, &hs_ep->queue); 1475 1476 /* 1477 * Handle DDMA isochronous transfers separately - just add new entry 1478 * to the descriptor chain. 1479 * Transfer will be started once SW gets either one of NAK or 1480 * OutTknEpDis interrupts. 1481 */ 1482 if (using_desc_dma(hs) && hs_ep->isochronous) { 1483 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1484 dma_addr_t dma_addr = hs_req->req.dma; 1485 1486 if (hs_req->req.num_sgs) { 1487 WARN_ON(hs_req->req.num_sgs > 1); 1488 dma_addr = sg_dma_address(hs_req->req.sg); 1489 } 1490 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1491 hs_req->req.length); 1492 } 1493 return 0; 1494 } 1495 1496 /* Change EP direction if status phase request is after data out */ 1497 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1498 hs->ep0_state == DWC2_EP0_DATA_OUT) 1499 hs_ep->dir_in = 1; 1500 1501 if (first) { 1502 if (!hs_ep->isochronous) { 1503 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1504 return 0; 1505 } 1506 1507 /* Update current frame number value. */ 1508 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1509 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1510 dwc2_gadget_incr_frame_num(hs_ep); 1511 /* Update current frame number value once more as it 1512 * changes here. 1513 */ 1514 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1515 } 1516 1517 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1518 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1519 } 1520 return 0; 1521 } 1522 1523 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1524 gfp_t gfp_flags) 1525 { 1526 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1527 struct dwc2_hsotg *hs = hs_ep->parent; 1528 unsigned long flags; 1529 int ret; 1530 1531 spin_lock_irqsave(&hs->lock, flags); 1532 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1533 spin_unlock_irqrestore(&hs->lock, flags); 1534 1535 return ret; 1536 } 1537 1538 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1539 struct usb_request *req) 1540 { 1541 struct dwc2_hsotg_req *hs_req = our_req(req); 1542 1543 kfree(hs_req); 1544 } 1545 1546 /** 1547 * dwc2_hsotg_complete_oursetup - setup completion callback 1548 * @ep: The endpoint the request was on. 1549 * @req: The request completed. 1550 * 1551 * Called on completion of any requests the driver itself 1552 * submitted that need cleaning up. 1553 */ 1554 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1555 struct usb_request *req) 1556 { 1557 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1558 struct dwc2_hsotg *hsotg = hs_ep->parent; 1559 1560 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1561 1562 dwc2_hsotg_ep_free_request(ep, req); 1563 } 1564 1565 /** 1566 * ep_from_windex - convert control wIndex value to endpoint 1567 * @hsotg: The driver state. 1568 * @windex: The control request wIndex field (in host order). 1569 * 1570 * Convert the given wIndex into a pointer to an driver endpoint 1571 * structure, or return NULL if it is not a valid endpoint. 1572 */ 1573 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1574 u32 windex) 1575 { 1576 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1577 int idx = windex & 0x7F; 1578 1579 if (windex >= 0x100) 1580 return NULL; 1581 1582 if (idx > hsotg->num_of_eps) 1583 return NULL; 1584 1585 return index_to_ep(hsotg, idx, dir); 1586 } 1587 1588 /** 1589 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1590 * @hsotg: The driver state. 1591 * @testmode: requested usb test mode 1592 * Enable usb Test Mode requested by the Host. 1593 */ 1594 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1595 { 1596 int dctl = dwc2_readl(hsotg, DCTL); 1597 1598 dctl &= ~DCTL_TSTCTL_MASK; 1599 switch (testmode) { 1600 case USB_TEST_J: 1601 case USB_TEST_K: 1602 case USB_TEST_SE0_NAK: 1603 case USB_TEST_PACKET: 1604 case USB_TEST_FORCE_ENABLE: 1605 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1606 break; 1607 default: 1608 return -EINVAL; 1609 } 1610 dwc2_writel(hsotg, dctl, DCTL); 1611 return 0; 1612 } 1613 1614 /** 1615 * dwc2_hsotg_send_reply - send reply to control request 1616 * @hsotg: The device state 1617 * @ep: Endpoint 0 1618 * @buff: Buffer for request 1619 * @length: Length of reply. 1620 * 1621 * Create a request and queue it on the given endpoint. This is useful as 1622 * an internal method of sending replies to certain control requests, etc. 1623 */ 1624 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1625 struct dwc2_hsotg_ep *ep, 1626 void *buff, 1627 int length) 1628 { 1629 struct usb_request *req; 1630 int ret; 1631 1632 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1633 1634 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1635 hsotg->ep0_reply = req; 1636 if (!req) { 1637 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1638 return -ENOMEM; 1639 } 1640 1641 req->buf = hsotg->ep0_buff; 1642 req->length = length; 1643 /* 1644 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1645 * STATUS stage. 1646 */ 1647 req->zero = 0; 1648 req->complete = dwc2_hsotg_complete_oursetup; 1649 1650 if (length) 1651 memcpy(req->buf, buff, length); 1652 1653 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1654 if (ret) { 1655 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1656 return ret; 1657 } 1658 1659 return 0; 1660 } 1661 1662 /** 1663 * dwc2_hsotg_process_req_status - process request GET_STATUS 1664 * @hsotg: The device state 1665 * @ctrl: USB control request 1666 */ 1667 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1668 struct usb_ctrlrequest *ctrl) 1669 { 1670 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1671 struct dwc2_hsotg_ep *ep; 1672 __le16 reply; 1673 u16 status; 1674 int ret; 1675 1676 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1677 1678 if (!ep0->dir_in) { 1679 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1680 return -EINVAL; 1681 } 1682 1683 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1684 case USB_RECIP_DEVICE: 1685 status = hsotg->gadget.is_selfpowered << 1686 USB_DEVICE_SELF_POWERED; 1687 status |= hsotg->remote_wakeup_allowed << 1688 USB_DEVICE_REMOTE_WAKEUP; 1689 reply = cpu_to_le16(status); 1690 break; 1691 1692 case USB_RECIP_INTERFACE: 1693 /* currently, the data result should be zero */ 1694 reply = cpu_to_le16(0); 1695 break; 1696 1697 case USB_RECIP_ENDPOINT: 1698 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1699 if (!ep) 1700 return -ENOENT; 1701 1702 reply = cpu_to_le16(ep->halted ? 1 : 0); 1703 break; 1704 1705 default: 1706 return 0; 1707 } 1708 1709 if (le16_to_cpu(ctrl->wLength) != 2) 1710 return -EINVAL; 1711 1712 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1713 if (ret) { 1714 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1715 return ret; 1716 } 1717 1718 return 1; 1719 } 1720 1721 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1722 1723 /** 1724 * get_ep_head - return the first request on the endpoint 1725 * @hs_ep: The controller endpoint to get 1726 * 1727 * Get the first request on the endpoint. 1728 */ 1729 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1730 { 1731 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1732 queue); 1733 } 1734 1735 /** 1736 * dwc2_gadget_start_next_request - Starts next request from ep queue 1737 * @hs_ep: Endpoint structure 1738 * 1739 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1740 * in its handler. Hence we need to unmask it here to be able to do 1741 * resynchronization. 1742 */ 1743 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1744 { 1745 struct dwc2_hsotg *hsotg = hs_ep->parent; 1746 int dir_in = hs_ep->dir_in; 1747 struct dwc2_hsotg_req *hs_req; 1748 1749 if (!list_empty(&hs_ep->queue)) { 1750 hs_req = get_ep_head(hs_ep); 1751 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1752 return; 1753 } 1754 if (!hs_ep->isochronous) 1755 return; 1756 1757 if (dir_in) { 1758 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1759 __func__); 1760 } else { 1761 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1762 __func__); 1763 } 1764 } 1765 1766 /** 1767 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1768 * @hsotg: The device state 1769 * @ctrl: USB control request 1770 */ 1771 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1772 struct usb_ctrlrequest *ctrl) 1773 { 1774 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1775 struct dwc2_hsotg_req *hs_req; 1776 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1777 struct dwc2_hsotg_ep *ep; 1778 int ret; 1779 bool halted; 1780 u32 recip; 1781 u32 wValue; 1782 u32 wIndex; 1783 1784 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1785 __func__, set ? "SET" : "CLEAR"); 1786 1787 wValue = le16_to_cpu(ctrl->wValue); 1788 wIndex = le16_to_cpu(ctrl->wIndex); 1789 recip = ctrl->bRequestType & USB_RECIP_MASK; 1790 1791 switch (recip) { 1792 case USB_RECIP_DEVICE: 1793 switch (wValue) { 1794 case USB_DEVICE_REMOTE_WAKEUP: 1795 if (set) 1796 hsotg->remote_wakeup_allowed = 1; 1797 else 1798 hsotg->remote_wakeup_allowed = 0; 1799 break; 1800 1801 case USB_DEVICE_TEST_MODE: 1802 if ((wIndex & 0xff) != 0) 1803 return -EINVAL; 1804 if (!set) 1805 return -EINVAL; 1806 1807 hsotg->test_mode = wIndex >> 8; 1808 break; 1809 default: 1810 return -ENOENT; 1811 } 1812 1813 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1814 if (ret) { 1815 dev_err(hsotg->dev, 1816 "%s: failed to send reply\n", __func__); 1817 return ret; 1818 } 1819 break; 1820 1821 case USB_RECIP_ENDPOINT: 1822 ep = ep_from_windex(hsotg, wIndex); 1823 if (!ep) { 1824 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1825 __func__, wIndex); 1826 return -ENOENT; 1827 } 1828 1829 switch (wValue) { 1830 case USB_ENDPOINT_HALT: 1831 halted = ep->halted; 1832 1833 if (!ep->wedged) 1834 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1835 1836 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1837 if (ret) { 1838 dev_err(hsotg->dev, 1839 "%s: failed to send reply\n", __func__); 1840 return ret; 1841 } 1842 1843 /* 1844 * we have to complete all requests for ep if it was 1845 * halted, and the halt was cleared by CLEAR_FEATURE 1846 */ 1847 1848 if (!set && halted) { 1849 /* 1850 * If we have request in progress, 1851 * then complete it 1852 */ 1853 if (ep->req) { 1854 hs_req = ep->req; 1855 ep->req = NULL; 1856 list_del_init(&hs_req->queue); 1857 if (hs_req->req.complete) { 1858 spin_unlock(&hsotg->lock); 1859 usb_gadget_giveback_request( 1860 &ep->ep, &hs_req->req); 1861 spin_lock(&hsotg->lock); 1862 } 1863 } 1864 1865 /* If we have pending request, then start it */ 1866 if (!ep->req) 1867 dwc2_gadget_start_next_request(ep); 1868 } 1869 1870 break; 1871 1872 default: 1873 return -ENOENT; 1874 } 1875 break; 1876 default: 1877 return -ENOENT; 1878 } 1879 return 1; 1880 } 1881 1882 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1883 1884 /** 1885 * dwc2_hsotg_stall_ep0 - stall ep0 1886 * @hsotg: The device state 1887 * 1888 * Set stall for ep0 as response for setup request. 1889 */ 1890 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1891 { 1892 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1893 u32 reg; 1894 u32 ctrl; 1895 1896 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1897 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1898 1899 /* 1900 * DxEPCTL_Stall will be cleared by EP once it has 1901 * taken effect, so no need to clear later. 1902 */ 1903 1904 ctrl = dwc2_readl(hsotg, reg); 1905 ctrl |= DXEPCTL_STALL; 1906 ctrl |= DXEPCTL_CNAK; 1907 dwc2_writel(hsotg, ctrl, reg); 1908 1909 dev_dbg(hsotg->dev, 1910 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1911 ctrl, reg, dwc2_readl(hsotg, reg)); 1912 1913 /* 1914 * complete won't be called, so we enqueue 1915 * setup request here 1916 */ 1917 dwc2_hsotg_enqueue_setup(hsotg); 1918 } 1919 1920 /** 1921 * dwc2_hsotg_process_control - process a control request 1922 * @hsotg: The device state 1923 * @ctrl: The control request received 1924 * 1925 * The controller has received the SETUP phase of a control request, and 1926 * needs to work out what to do next (and whether to pass it on to the 1927 * gadget driver). 1928 */ 1929 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1930 struct usb_ctrlrequest *ctrl) 1931 { 1932 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1933 int ret = 0; 1934 u32 dcfg; 1935 1936 dev_dbg(hsotg->dev, 1937 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1938 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1939 ctrl->wIndex, ctrl->wLength); 1940 1941 if (ctrl->wLength == 0) { 1942 ep0->dir_in = 1; 1943 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1944 } else if (ctrl->bRequestType & USB_DIR_IN) { 1945 ep0->dir_in = 1; 1946 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1947 } else { 1948 ep0->dir_in = 0; 1949 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1950 } 1951 1952 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1953 switch (ctrl->bRequest) { 1954 case USB_REQ_SET_ADDRESS: 1955 hsotg->connected = 1; 1956 dcfg = dwc2_readl(hsotg, DCFG); 1957 dcfg &= ~DCFG_DEVADDR_MASK; 1958 dcfg |= (le16_to_cpu(ctrl->wValue) << 1959 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1960 dwc2_writel(hsotg, dcfg, DCFG); 1961 1962 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1963 1964 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1965 return; 1966 1967 case USB_REQ_GET_STATUS: 1968 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1969 break; 1970 1971 case USB_REQ_CLEAR_FEATURE: 1972 case USB_REQ_SET_FEATURE: 1973 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1974 break; 1975 } 1976 } 1977 1978 /* as a fallback, try delivering it to the driver to deal with */ 1979 1980 if (ret == 0 && hsotg->driver) { 1981 spin_unlock(&hsotg->lock); 1982 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1983 spin_lock(&hsotg->lock); 1984 if (ret < 0) 1985 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1986 } 1987 1988 hsotg->delayed_status = false; 1989 if (ret == USB_GADGET_DELAYED_STATUS) 1990 hsotg->delayed_status = true; 1991 1992 /* 1993 * the request is either unhandlable, or is not formatted correctly 1994 * so respond with a STALL for the status stage to indicate failure. 1995 */ 1996 1997 if (ret < 0) 1998 dwc2_hsotg_stall_ep0(hsotg); 1999 } 2000 2001 /** 2002 * dwc2_hsotg_complete_setup - completion of a setup transfer 2003 * @ep: The endpoint the request was on. 2004 * @req: The request completed. 2005 * 2006 * Called on completion of any requests the driver itself submitted for 2007 * EP0 setup packets 2008 */ 2009 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 2010 struct usb_request *req) 2011 { 2012 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 2013 struct dwc2_hsotg *hsotg = hs_ep->parent; 2014 2015 if (req->status < 0) { 2016 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 2017 return; 2018 } 2019 2020 spin_lock(&hsotg->lock); 2021 if (req->actual == 0) 2022 dwc2_hsotg_enqueue_setup(hsotg); 2023 else 2024 dwc2_hsotg_process_control(hsotg, req->buf); 2025 spin_unlock(&hsotg->lock); 2026 } 2027 2028 /** 2029 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 2030 * @hsotg: The device state. 2031 * 2032 * Enqueue a request on EP0 if necessary to received any SETUP packets 2033 * received from the host. 2034 */ 2035 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2036 { 2037 struct usb_request *req = hsotg->ctrl_req; 2038 struct dwc2_hsotg_req *hs_req = our_req(req); 2039 int ret; 2040 2041 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2042 2043 req->zero = 0; 2044 req->length = 8; 2045 req->buf = hsotg->ctrl_buff; 2046 req->complete = dwc2_hsotg_complete_setup; 2047 2048 if (!list_empty(&hs_req->queue)) { 2049 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2050 return; 2051 } 2052 2053 hsotg->eps_out[0]->dir_in = 0; 2054 hsotg->eps_out[0]->send_zlp = 0; 2055 hsotg->ep0_state = DWC2_EP0_SETUP; 2056 2057 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2058 if (ret < 0) { 2059 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2060 /* 2061 * Don't think there's much we can do other than watch the 2062 * driver fail. 2063 */ 2064 } 2065 } 2066 2067 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2068 struct dwc2_hsotg_ep *hs_ep) 2069 { 2070 u32 ctrl; 2071 u8 index = hs_ep->index; 2072 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2073 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2074 2075 if (hs_ep->dir_in) 2076 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2077 index); 2078 else 2079 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2080 index); 2081 if (using_desc_dma(hsotg)) { 2082 /* Not specific buffer needed for ep0 ZLP */ 2083 dma_addr_t dma = hs_ep->desc_list_dma; 2084 2085 if (!index) 2086 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2087 2088 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2089 } else { 2090 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2091 DXEPTSIZ_XFERSIZE(0), 2092 epsiz_reg); 2093 } 2094 2095 ctrl = dwc2_readl(hsotg, epctl_reg); 2096 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2097 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2098 ctrl |= DXEPCTL_USBACTEP; 2099 dwc2_writel(hsotg, ctrl, epctl_reg); 2100 } 2101 2102 /** 2103 * dwc2_hsotg_complete_request - complete a request given to us 2104 * @hsotg: The device state. 2105 * @hs_ep: The endpoint the request was on. 2106 * @hs_req: The request to complete. 2107 * @result: The result code (0 => Ok, otherwise errno) 2108 * 2109 * The given request has finished, so call the necessary completion 2110 * if it has one and then look to see if we can start a new request 2111 * on the endpoint. 2112 * 2113 * Note, expects the ep to already be locked as appropriate. 2114 */ 2115 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2116 struct dwc2_hsotg_ep *hs_ep, 2117 struct dwc2_hsotg_req *hs_req, 2118 int result) 2119 { 2120 if (!hs_req) { 2121 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2122 return; 2123 } 2124 2125 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2126 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2127 2128 /* 2129 * only replace the status if we've not already set an error 2130 * from a previous transaction 2131 */ 2132 2133 if (hs_req->req.status == -EINPROGRESS) 2134 hs_req->req.status = result; 2135 2136 if (using_dma(hsotg)) 2137 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2138 2139 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2140 2141 hs_ep->req = NULL; 2142 list_del_init(&hs_req->queue); 2143 2144 /* 2145 * call the complete request with the locks off, just in case the 2146 * request tries to queue more work for this endpoint. 2147 */ 2148 2149 if (hs_req->req.complete) { 2150 spin_unlock(&hsotg->lock); 2151 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2152 spin_lock(&hsotg->lock); 2153 } 2154 2155 /* In DDMA don't need to proceed to starting of next ISOC request */ 2156 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2157 return; 2158 2159 /* 2160 * Look to see if there is anything else to do. Note, the completion 2161 * of the previous request may have caused a new request to be started 2162 * so be careful when doing this. 2163 */ 2164 2165 if (!hs_ep->req && result >= 0) 2166 dwc2_gadget_start_next_request(hs_ep); 2167 } 2168 2169 /* 2170 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2171 * @hs_ep: The endpoint the request was on. 2172 * 2173 * Get first request from the ep queue, determine descriptor on which complete 2174 * happened. SW discovers which descriptor currently in use by HW, adjusts 2175 * dma_address and calculates index of completed descriptor based on the value 2176 * of DEPDMA register. Update actual length of request, giveback to gadget. 2177 */ 2178 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2179 { 2180 struct dwc2_hsotg *hsotg = hs_ep->parent; 2181 struct dwc2_hsotg_req *hs_req; 2182 struct usb_request *ureq; 2183 u32 desc_sts; 2184 u32 mask; 2185 2186 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2187 2188 /* Process only descriptors with buffer status set to DMA done */ 2189 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2190 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2191 2192 hs_req = get_ep_head(hs_ep); 2193 if (!hs_req) { 2194 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2195 return; 2196 } 2197 ureq = &hs_req->req; 2198 2199 /* Check completion status */ 2200 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2201 DEV_DMA_STS_SUCC) { 2202 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2203 DEV_DMA_ISOC_RX_NBYTES_MASK; 2204 ureq->actual = ureq->length - ((desc_sts & mask) >> 2205 DEV_DMA_ISOC_NBYTES_SHIFT); 2206 2207 /* Adjust actual len for ISOC Out if len is 2208 * not align of 4 2209 */ 2210 if (!hs_ep->dir_in && ureq->length & 0x3) 2211 ureq->actual += 4 - (ureq->length & 0x3); 2212 2213 /* Set actual frame number for completed transfers */ 2214 ureq->frame_number = 2215 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2216 DEV_DMA_ISOC_FRNUM_SHIFT; 2217 } 2218 2219 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2220 2221 hs_ep->compl_desc++; 2222 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2223 hs_ep->compl_desc = 0; 2224 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2225 } 2226 } 2227 2228 /* 2229 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2230 * @hs_ep: The isochronous endpoint. 2231 * 2232 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2233 * interrupt. Reset target frame and next_desc to allow to start 2234 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2235 * interrupt for OUT direction. 2236 */ 2237 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2238 { 2239 struct dwc2_hsotg *hsotg = hs_ep->parent; 2240 2241 if (!hs_ep->dir_in) 2242 dwc2_flush_rx_fifo(hsotg); 2243 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2244 2245 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2246 hs_ep->next_desc = 0; 2247 hs_ep->compl_desc = 0; 2248 } 2249 2250 /** 2251 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2252 * @hsotg: The device state. 2253 * @ep_idx: The endpoint index for the data 2254 * @size: The size of data in the fifo, in bytes 2255 * 2256 * The FIFO status shows there is data to read from the FIFO for a given 2257 * endpoint, so sort out whether we need to read the data into a request 2258 * that has been made for that endpoint. 2259 */ 2260 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2261 { 2262 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2263 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2264 int to_read; 2265 int max_req; 2266 int read_ptr; 2267 2268 if (!hs_req) { 2269 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2270 int ptr; 2271 2272 dev_dbg(hsotg->dev, 2273 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2274 __func__, size, ep_idx, epctl); 2275 2276 /* dump the data from the FIFO, we've nothing we can do */ 2277 for (ptr = 0; ptr < size; ptr += 4) 2278 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2279 2280 return; 2281 } 2282 2283 to_read = size; 2284 read_ptr = hs_req->req.actual; 2285 max_req = hs_req->req.length - read_ptr; 2286 2287 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2288 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2289 2290 if (to_read > max_req) { 2291 /* 2292 * more data appeared than we where willing 2293 * to deal with in this request. 2294 */ 2295 2296 /* currently we don't deal this */ 2297 WARN_ON_ONCE(1); 2298 } 2299 2300 hs_ep->total_data += to_read; 2301 hs_req->req.actual += to_read; 2302 to_read = DIV_ROUND_UP(to_read, 4); 2303 2304 /* 2305 * note, we might over-write the buffer end by 3 bytes depending on 2306 * alignment of the data. 2307 */ 2308 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2309 hs_req->req.buf + read_ptr, to_read); 2310 } 2311 2312 /** 2313 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2314 * @hsotg: The device instance 2315 * @dir_in: If IN zlp 2316 * 2317 * Generate a zero-length IN packet request for terminating a SETUP 2318 * transaction. 2319 * 2320 * Note, since we don't write any data to the TxFIFO, then it is 2321 * currently believed that we do not need to wait for any space in 2322 * the TxFIFO. 2323 */ 2324 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2325 { 2326 /* eps_out[0] is used in both directions */ 2327 hsotg->eps_out[0]->dir_in = dir_in; 2328 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2329 2330 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2331 } 2332 2333 /* 2334 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2335 * @hs_ep - The endpoint on which transfer went 2336 * 2337 * Iterate over endpoints descriptor chain and get info on bytes remained 2338 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2339 */ 2340 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2341 { 2342 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 2343 struct dwc2_hsotg *hsotg = hs_ep->parent; 2344 unsigned int bytes_rem = 0; 2345 unsigned int bytes_rem_correction = 0; 2346 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2347 int i; 2348 u32 status; 2349 u32 mps = hs_ep->ep.maxpacket; 2350 int dir_in = hs_ep->dir_in; 2351 2352 if (!desc) 2353 return -EINVAL; 2354 2355 /* Interrupt OUT EP with mps not multiple of 4 */ 2356 if (hs_ep->index) 2357 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 2358 bytes_rem_correction = 4 - (mps % 4); 2359 2360 for (i = 0; i < hs_ep->desc_count; ++i) { 2361 status = desc->status; 2362 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2363 bytes_rem -= bytes_rem_correction; 2364 2365 if (status & DEV_DMA_STS_MASK) 2366 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2367 i, status & DEV_DMA_STS_MASK); 2368 2369 if (status & DEV_DMA_L) 2370 break; 2371 2372 desc++; 2373 } 2374 2375 return bytes_rem; 2376 } 2377 2378 /** 2379 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2380 * @hsotg: The device instance 2381 * @epnum: The endpoint received from 2382 * 2383 * The RXFIFO has delivered an OutDone event, which means that the data 2384 * transfer for an OUT endpoint has been completed, either by a short 2385 * packet or by the finish of a transfer. 2386 */ 2387 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2388 { 2389 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2390 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2391 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2392 struct usb_request *req = &hs_req->req; 2393 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2394 int result = 0; 2395 2396 if (!hs_req) { 2397 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2398 return; 2399 } 2400 2401 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2402 dev_dbg(hsotg->dev, "zlp packet received\n"); 2403 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2404 dwc2_hsotg_enqueue_setup(hsotg); 2405 return; 2406 } 2407 2408 if (using_desc_dma(hsotg)) 2409 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2410 2411 if (using_dma(hsotg)) { 2412 unsigned int size_done; 2413 2414 /* 2415 * Calculate the size of the transfer by checking how much 2416 * is left in the endpoint size register and then working it 2417 * out from the amount we loaded for the transfer. 2418 * 2419 * We need to do this as DMA pointers are always 32bit aligned 2420 * so may overshoot/undershoot the transfer. 2421 */ 2422 2423 size_done = hs_ep->size_loaded - size_left; 2424 size_done += hs_ep->last_load; 2425 2426 req->actual = size_done; 2427 } 2428 2429 /* if there is more request to do, schedule new transfer */ 2430 if (req->actual < req->length && size_left == 0) { 2431 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2432 return; 2433 } 2434 2435 if (req->actual < req->length && req->short_not_ok) { 2436 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2437 __func__, req->actual, req->length); 2438 2439 /* 2440 * todo - what should we return here? there's no one else 2441 * even bothering to check the status. 2442 */ 2443 } 2444 2445 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2446 if (!using_desc_dma(hsotg) && epnum == 0 && 2447 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2448 /* Move to STATUS IN */ 2449 if (!hsotg->delayed_status) 2450 dwc2_hsotg_ep0_zlp(hsotg, true); 2451 } 2452 2453 /* Set actual frame number for completed transfers */ 2454 if (!using_desc_dma(hsotg) && hs_ep->isochronous) { 2455 req->frame_number = hs_ep->target_frame; 2456 dwc2_gadget_incr_frame_num(hs_ep); 2457 } 2458 2459 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2460 } 2461 2462 /** 2463 * dwc2_hsotg_handle_rx - RX FIFO has data 2464 * @hsotg: The device instance 2465 * 2466 * The IRQ handler has detected that the RX FIFO has some data in it 2467 * that requires processing, so find out what is in there and do the 2468 * appropriate read. 2469 * 2470 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2471 * chunks, so if you have x packets received on an endpoint you'll get x 2472 * FIFO events delivered, each with a packet's worth of data in it. 2473 * 2474 * When using DMA, we should not be processing events from the RXFIFO 2475 * as the actual data should be sent to the memory directly and we turn 2476 * on the completion interrupts to get notifications of transfer completion. 2477 */ 2478 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2479 { 2480 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2481 u32 epnum, status, size; 2482 2483 WARN_ON(using_dma(hsotg)); 2484 2485 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2486 status = grxstsr & GRXSTS_PKTSTS_MASK; 2487 2488 size = grxstsr & GRXSTS_BYTECNT_MASK; 2489 size >>= GRXSTS_BYTECNT_SHIFT; 2490 2491 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2492 __func__, grxstsr, size, epnum); 2493 2494 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2495 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2496 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2497 break; 2498 2499 case GRXSTS_PKTSTS_OUTDONE: 2500 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2501 dwc2_hsotg_read_frameno(hsotg)); 2502 2503 if (!using_dma(hsotg)) 2504 dwc2_hsotg_handle_outdone(hsotg, epnum); 2505 break; 2506 2507 case GRXSTS_PKTSTS_SETUPDONE: 2508 dev_dbg(hsotg->dev, 2509 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2510 dwc2_hsotg_read_frameno(hsotg), 2511 dwc2_readl(hsotg, DOEPCTL(0))); 2512 /* 2513 * Call dwc2_hsotg_handle_outdone here if it was not called from 2514 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2515 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2516 */ 2517 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2518 dwc2_hsotg_handle_outdone(hsotg, epnum); 2519 break; 2520 2521 case GRXSTS_PKTSTS_OUTRX: 2522 dwc2_hsotg_rx_data(hsotg, epnum, size); 2523 break; 2524 2525 case GRXSTS_PKTSTS_SETUPRX: 2526 dev_dbg(hsotg->dev, 2527 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2528 dwc2_hsotg_read_frameno(hsotg), 2529 dwc2_readl(hsotg, DOEPCTL(0))); 2530 2531 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2532 2533 dwc2_hsotg_rx_data(hsotg, epnum, size); 2534 break; 2535 2536 default: 2537 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2538 __func__, grxstsr); 2539 2540 dwc2_hsotg_dump(hsotg); 2541 break; 2542 } 2543 } 2544 2545 /** 2546 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2547 * @mps: The maximum packet size in bytes. 2548 */ 2549 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2550 { 2551 switch (mps) { 2552 case 64: 2553 return D0EPCTL_MPS_64; 2554 case 32: 2555 return D0EPCTL_MPS_32; 2556 case 16: 2557 return D0EPCTL_MPS_16; 2558 case 8: 2559 return D0EPCTL_MPS_8; 2560 } 2561 2562 /* bad max packet size, warn and return invalid result */ 2563 WARN_ON(1); 2564 return (u32)-1; 2565 } 2566 2567 /** 2568 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2569 * @hsotg: The driver state. 2570 * @ep: The index number of the endpoint 2571 * @mps: The maximum packet size in bytes 2572 * @mc: The multicount value 2573 * @dir_in: True if direction is in. 2574 * 2575 * Configure the maximum packet size for the given endpoint, updating 2576 * the hardware control registers to reflect this. 2577 */ 2578 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2579 unsigned int ep, unsigned int mps, 2580 unsigned int mc, unsigned int dir_in) 2581 { 2582 struct dwc2_hsotg_ep *hs_ep; 2583 u32 reg; 2584 2585 hs_ep = index_to_ep(hsotg, ep, dir_in); 2586 if (!hs_ep) 2587 return; 2588 2589 if (ep == 0) { 2590 u32 mps_bytes = mps; 2591 2592 /* EP0 is a special case */ 2593 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2594 if (mps > 3) 2595 goto bad_mps; 2596 hs_ep->ep.maxpacket = mps_bytes; 2597 hs_ep->mc = 1; 2598 } else { 2599 if (mps > 1024) 2600 goto bad_mps; 2601 hs_ep->mc = mc; 2602 if (mc > 3) 2603 goto bad_mps; 2604 hs_ep->ep.maxpacket = mps; 2605 } 2606 2607 if (dir_in) { 2608 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2609 reg &= ~DXEPCTL_MPS_MASK; 2610 reg |= mps; 2611 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2612 } else { 2613 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2614 reg &= ~DXEPCTL_MPS_MASK; 2615 reg |= mps; 2616 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2617 } 2618 2619 return; 2620 2621 bad_mps: 2622 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2623 } 2624 2625 /** 2626 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2627 * @hsotg: The driver state 2628 * @idx: The index for the endpoint (0..15) 2629 */ 2630 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2631 { 2632 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2633 GRSTCTL); 2634 2635 /* wait until the fifo is flushed */ 2636 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2637 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2638 __func__); 2639 } 2640 2641 /** 2642 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2643 * @hsotg: The driver state 2644 * @hs_ep: The driver endpoint to check. 2645 * 2646 * Check to see if there is a request that has data to send, and if so 2647 * make an attempt to write data into the FIFO. 2648 */ 2649 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2650 struct dwc2_hsotg_ep *hs_ep) 2651 { 2652 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2653 2654 if (!hs_ep->dir_in || !hs_req) { 2655 /** 2656 * if request is not enqueued, we disable interrupts 2657 * for endpoints, excepting ep0 2658 */ 2659 if (hs_ep->index != 0) 2660 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2661 hs_ep->dir_in, 0); 2662 return 0; 2663 } 2664 2665 if (hs_req->req.actual < hs_req->req.length) { 2666 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2667 hs_ep->index); 2668 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2669 } 2670 2671 return 0; 2672 } 2673 2674 /** 2675 * dwc2_hsotg_complete_in - complete IN transfer 2676 * @hsotg: The device state. 2677 * @hs_ep: The endpoint that has just completed. 2678 * 2679 * An IN transfer has been completed, update the transfer's state and then 2680 * call the relevant completion routines. 2681 */ 2682 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2683 struct dwc2_hsotg_ep *hs_ep) 2684 { 2685 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2686 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2687 int size_left, size_done; 2688 2689 if (!hs_req) { 2690 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2691 return; 2692 } 2693 2694 /* Finish ZLP handling for IN EP0 transactions */ 2695 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2696 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2697 2698 /* 2699 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2700 * changed to IN. Change back to complete OUT transfer request 2701 */ 2702 hs_ep->dir_in = 0; 2703 2704 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2705 if (hsotg->test_mode) { 2706 int ret; 2707 2708 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2709 if (ret < 0) { 2710 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2711 hsotg->test_mode); 2712 dwc2_hsotg_stall_ep0(hsotg); 2713 return; 2714 } 2715 } 2716 dwc2_hsotg_enqueue_setup(hsotg); 2717 return; 2718 } 2719 2720 /* 2721 * Calculate the size of the transfer by checking how much is left 2722 * in the endpoint size register and then working it out from 2723 * the amount we loaded for the transfer. 2724 * 2725 * We do this even for DMA, as the transfer may have incremented 2726 * past the end of the buffer (DMA transfers are always 32bit 2727 * aligned). 2728 */ 2729 if (using_desc_dma(hsotg)) { 2730 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2731 if (size_left < 0) 2732 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2733 size_left); 2734 } else { 2735 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2736 } 2737 2738 size_done = hs_ep->size_loaded - size_left; 2739 size_done += hs_ep->last_load; 2740 2741 if (hs_req->req.actual != size_done) 2742 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2743 __func__, hs_req->req.actual, size_done); 2744 2745 hs_req->req.actual = size_done; 2746 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2747 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2748 2749 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2750 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2751 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2752 return; 2753 } 2754 2755 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */ 2756 if (hs_ep->send_zlp) { 2757 hs_ep->send_zlp = 0; 2758 if (!using_desc_dma(hsotg)) { 2759 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2760 /* transfer will be completed on next complete interrupt */ 2761 return; 2762 } 2763 } 2764 2765 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2766 /* Move to STATUS OUT */ 2767 dwc2_hsotg_ep0_zlp(hsotg, false); 2768 return; 2769 } 2770 2771 /* Set actual frame number for completed transfers */ 2772 if (!using_desc_dma(hsotg) && hs_ep->isochronous) { 2773 hs_req->req.frame_number = hs_ep->target_frame; 2774 dwc2_gadget_incr_frame_num(hs_ep); 2775 } 2776 2777 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2778 } 2779 2780 /** 2781 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2782 * @hsotg: The device state. 2783 * @idx: Index of ep. 2784 * @dir_in: Endpoint direction 1-in 0-out. 2785 * 2786 * Reads for endpoint with given index and direction, by masking 2787 * epint_reg with coresponding mask. 2788 */ 2789 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2790 unsigned int idx, int dir_in) 2791 { 2792 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2793 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2794 u32 ints; 2795 u32 mask; 2796 u32 diepempmsk; 2797 2798 mask = dwc2_readl(hsotg, epmsk_reg); 2799 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2800 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2801 mask |= DXEPINT_SETUP_RCVD; 2802 2803 ints = dwc2_readl(hsotg, epint_reg); 2804 ints &= mask; 2805 return ints; 2806 } 2807 2808 /** 2809 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2810 * @hs_ep: The endpoint on which interrupt is asserted. 2811 * 2812 * This interrupt indicates that the endpoint has been disabled per the 2813 * application's request. 2814 * 2815 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2816 * in case of ISOC completes current request. 2817 * 2818 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2819 * request starts it. 2820 */ 2821 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2822 { 2823 struct dwc2_hsotg *hsotg = hs_ep->parent; 2824 struct dwc2_hsotg_req *hs_req; 2825 unsigned char idx = hs_ep->index; 2826 int dir_in = hs_ep->dir_in; 2827 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2828 int dctl = dwc2_readl(hsotg, DCTL); 2829 2830 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2831 2832 if (dir_in) { 2833 int epctl = dwc2_readl(hsotg, epctl_reg); 2834 2835 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2836 2837 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2838 int dctl = dwc2_readl(hsotg, DCTL); 2839 2840 dctl |= DCTL_CGNPINNAK; 2841 dwc2_writel(hsotg, dctl, DCTL); 2842 } 2843 } else { 2844 2845 if (dctl & DCTL_GOUTNAKSTS) { 2846 dctl |= DCTL_CGOUTNAK; 2847 dwc2_writel(hsotg, dctl, DCTL); 2848 } 2849 } 2850 2851 if (!hs_ep->isochronous) 2852 return; 2853 2854 if (list_empty(&hs_ep->queue)) { 2855 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2856 __func__, hs_ep); 2857 return; 2858 } 2859 2860 do { 2861 hs_req = get_ep_head(hs_ep); 2862 if (hs_req) { 2863 hs_req->req.frame_number = hs_ep->target_frame; 2864 hs_req->req.actual = 0; 2865 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2866 -ENODATA); 2867 } 2868 dwc2_gadget_incr_frame_num(hs_ep); 2869 /* Update current frame number value. */ 2870 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2871 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2872 } 2873 2874 /** 2875 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2876 * @ep: The endpoint on which interrupt is asserted. 2877 * 2878 * This is starting point for ISOC-OUT transfer, synchronization done with 2879 * first out token received from host while corresponding EP is disabled. 2880 * 2881 * Device does not know initial frame in which out token will come. For this 2882 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2883 * getting this interrupt SW starts calculation for next transfer frame. 2884 */ 2885 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2886 { 2887 struct dwc2_hsotg *hsotg = ep->parent; 2888 struct dwc2_hsotg_req *hs_req; 2889 int dir_in = ep->dir_in; 2890 2891 if (dir_in || !ep->isochronous) 2892 return; 2893 2894 if (using_desc_dma(hsotg)) { 2895 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2896 /* Start first ISO Out */ 2897 ep->target_frame = hsotg->frame_number; 2898 dwc2_gadget_start_isoc_ddma(ep); 2899 } 2900 return; 2901 } 2902 2903 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2904 u32 ctrl; 2905 2906 ep->target_frame = hsotg->frame_number; 2907 if (ep->interval > 1) { 2908 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2909 if (ep->target_frame & 0x1) 2910 ctrl |= DXEPCTL_SETODDFR; 2911 else 2912 ctrl |= DXEPCTL_SETEVENFR; 2913 2914 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2915 } 2916 } 2917 2918 while (dwc2_gadget_target_frame_elapsed(ep)) { 2919 hs_req = get_ep_head(ep); 2920 if (hs_req) { 2921 hs_req->req.frame_number = ep->target_frame; 2922 hs_req->req.actual = 0; 2923 dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA); 2924 } 2925 2926 dwc2_gadget_incr_frame_num(ep); 2927 /* Update current frame number value. */ 2928 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2929 } 2930 2931 if (!ep->req) 2932 dwc2_gadget_start_next_request(ep); 2933 2934 } 2935 2936 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 2937 struct dwc2_hsotg_ep *hs_ep); 2938 2939 /** 2940 * dwc2_gadget_handle_nak - handle NAK interrupt 2941 * @hs_ep: The endpoint on which interrupt is asserted. 2942 * 2943 * This is starting point for ISOC-IN transfer, synchronization done with 2944 * first IN token received from host while corresponding EP is disabled. 2945 * 2946 * Device does not know when first one token will arrive from host. On first 2947 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2948 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2949 * sent in response to that as there was no data in FIFO. SW is basing on this 2950 * interrupt to obtain frame in which token has come and then based on the 2951 * interval calculates next frame for transfer. 2952 */ 2953 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2954 { 2955 struct dwc2_hsotg *hsotg = hs_ep->parent; 2956 struct dwc2_hsotg_req *hs_req; 2957 int dir_in = hs_ep->dir_in; 2958 u32 ctrl; 2959 2960 if (!dir_in || !hs_ep->isochronous) 2961 return; 2962 2963 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2964 2965 if (using_desc_dma(hsotg)) { 2966 hs_ep->target_frame = hsotg->frame_number; 2967 dwc2_gadget_incr_frame_num(hs_ep); 2968 2969 /* In service interval mode target_frame must 2970 * be set to last (u)frame of the service interval. 2971 */ 2972 if (hsotg->params.service_interval) { 2973 /* Set target_frame to the first (u)frame of 2974 * the service interval 2975 */ 2976 hs_ep->target_frame &= ~hs_ep->interval + 1; 2977 2978 /* Set target_frame to the last (u)frame of 2979 * the service interval 2980 */ 2981 dwc2_gadget_incr_frame_num(hs_ep); 2982 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2983 } 2984 2985 dwc2_gadget_start_isoc_ddma(hs_ep); 2986 return; 2987 } 2988 2989 hs_ep->target_frame = hsotg->frame_number; 2990 if (hs_ep->interval > 1) { 2991 u32 ctrl = dwc2_readl(hsotg, 2992 DIEPCTL(hs_ep->index)); 2993 if (hs_ep->target_frame & 0x1) 2994 ctrl |= DXEPCTL_SETODDFR; 2995 else 2996 ctrl |= DXEPCTL_SETEVENFR; 2997 2998 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2999 } 3000 } 3001 3002 if (using_desc_dma(hsotg)) 3003 return; 3004 3005 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index)); 3006 if (ctrl & DXEPCTL_EPENA) 3007 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 3008 else 3009 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 3010 3011 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 3012 hs_req = get_ep_head(hs_ep); 3013 if (hs_req) { 3014 hs_req->req.frame_number = hs_ep->target_frame; 3015 hs_req->req.actual = 0; 3016 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); 3017 } 3018 3019 dwc2_gadget_incr_frame_num(hs_ep); 3020 /* Update current frame number value. */ 3021 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 3022 } 3023 3024 if (!hs_ep->req) 3025 dwc2_gadget_start_next_request(hs_ep); 3026 } 3027 3028 /** 3029 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 3030 * @hsotg: The driver state 3031 * @idx: The index for the endpoint (0..15) 3032 * @dir_in: Set if this is an IN endpoint 3033 * 3034 * Process and clear any interrupt pending for an individual endpoint 3035 */ 3036 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 3037 int dir_in) 3038 { 3039 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 3040 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 3041 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 3042 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 3043 u32 ints; 3044 3045 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 3046 3047 /* Clear endpoint interrupts */ 3048 dwc2_writel(hsotg, ints, epint_reg); 3049 3050 if (!hs_ep) { 3051 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 3052 __func__, idx, dir_in ? "in" : "out"); 3053 return; 3054 } 3055 3056 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 3057 __func__, idx, dir_in ? "in" : "out", ints); 3058 3059 /* Don't process XferCompl interrupt if it is a setup packet */ 3060 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3061 ints &= ~DXEPINT_XFERCOMPL; 3062 3063 /* 3064 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3065 * stage and xfercomplete was generated without SETUP phase done 3066 * interrupt. SW should parse received setup packet only after host's 3067 * exit from setup phase of control transfer. 3068 */ 3069 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3070 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3071 ints &= ~DXEPINT_XFERCOMPL; 3072 3073 if (ints & DXEPINT_XFERCOMPL) { 3074 dev_dbg(hsotg->dev, 3075 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3076 __func__, dwc2_readl(hsotg, epctl_reg), 3077 dwc2_readl(hsotg, epsiz_reg)); 3078 3079 /* In DDMA handle isochronous requests separately */ 3080 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3081 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3082 } else if (dir_in) { 3083 /* 3084 * We get OutDone from the FIFO, so we only 3085 * need to look at completing IN requests here 3086 * if operating slave mode 3087 */ 3088 if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT)) 3089 dwc2_hsotg_complete_in(hsotg, hs_ep); 3090 3091 if (idx == 0 && !hs_ep->req) 3092 dwc2_hsotg_enqueue_setup(hsotg); 3093 } else if (using_dma(hsotg)) { 3094 /* 3095 * We're using DMA, we need to fire an OutDone here 3096 * as we ignore the RXFIFO. 3097 */ 3098 if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS)) 3099 dwc2_hsotg_handle_outdone(hsotg, idx); 3100 } 3101 } 3102 3103 if (ints & DXEPINT_EPDISBLD) 3104 dwc2_gadget_handle_ep_disabled(hs_ep); 3105 3106 if (ints & DXEPINT_OUTTKNEPDIS) 3107 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3108 3109 if (ints & DXEPINT_NAKINTRPT) 3110 dwc2_gadget_handle_nak(hs_ep); 3111 3112 if (ints & DXEPINT_AHBERR) 3113 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3114 3115 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3116 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3117 3118 if (using_dma(hsotg) && idx == 0) { 3119 /* 3120 * this is the notification we've received a 3121 * setup packet. In non-DMA mode we'd get this 3122 * from the RXFIFO, instead we need to process 3123 * the setup here. 3124 */ 3125 3126 if (dir_in) 3127 WARN_ON_ONCE(1); 3128 else 3129 dwc2_hsotg_handle_outdone(hsotg, 0); 3130 } 3131 } 3132 3133 if (ints & DXEPINT_STSPHSERCVD) { 3134 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3135 3136 /* Safety check EP0 state when STSPHSERCVD asserted */ 3137 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3138 /* Move to STATUS IN for DDMA */ 3139 if (using_desc_dma(hsotg)) { 3140 if (!hsotg->delayed_status) 3141 dwc2_hsotg_ep0_zlp(hsotg, true); 3142 else 3143 /* In case of 3 stage Control Write with delayed 3144 * status, when Status IN transfer started 3145 * before STSPHSERCVD asserted, NAKSTS bit not 3146 * cleared by CNAK in dwc2_hsotg_start_req() 3147 * function. Clear now NAKSTS to allow complete 3148 * transfer. 3149 */ 3150 dwc2_set_bit(hsotg, DIEPCTL(0), 3151 DXEPCTL_CNAK); 3152 } 3153 } 3154 3155 } 3156 3157 if (ints & DXEPINT_BACK2BACKSETUP) 3158 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3159 3160 if (ints & DXEPINT_BNAINTR) { 3161 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3162 if (hs_ep->isochronous) 3163 dwc2_gadget_handle_isoc_bna(hs_ep); 3164 } 3165 3166 if (dir_in && !hs_ep->isochronous) { 3167 /* not sure if this is important, but we'll clear it anyway */ 3168 if (ints & DXEPINT_INTKNTXFEMP) { 3169 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3170 __func__, idx); 3171 } 3172 3173 /* this probably means something bad is happening */ 3174 if (ints & DXEPINT_INTKNEPMIS) { 3175 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3176 __func__, idx); 3177 } 3178 3179 /* FIFO has space or is empty (see GAHBCFG) */ 3180 if (hsotg->dedicated_fifos && 3181 ints & DXEPINT_TXFEMP) { 3182 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3183 __func__, idx); 3184 if (!using_dma(hsotg)) 3185 dwc2_hsotg_trytx(hsotg, hs_ep); 3186 } 3187 } 3188 } 3189 3190 /** 3191 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3192 * @hsotg: The device state. 3193 * 3194 * Handle updating the device settings after the enumeration phase has 3195 * been completed. 3196 */ 3197 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3198 { 3199 u32 dsts = dwc2_readl(hsotg, DSTS); 3200 int ep0_mps = 0, ep_mps = 8; 3201 3202 /* 3203 * This should signal the finish of the enumeration phase 3204 * of the USB handshaking, so we should now know what rate 3205 * we connected at. 3206 */ 3207 3208 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3209 3210 /* 3211 * note, since we're limited by the size of transfer on EP0, and 3212 * it seems IN transfers must be a even number of packets we do 3213 * not advertise a 64byte MPS on EP0. 3214 */ 3215 3216 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3217 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3218 case DSTS_ENUMSPD_FS: 3219 case DSTS_ENUMSPD_FS48: 3220 hsotg->gadget.speed = USB_SPEED_FULL; 3221 ep0_mps = EP0_MPS_LIMIT; 3222 ep_mps = 1023; 3223 break; 3224 3225 case DSTS_ENUMSPD_HS: 3226 hsotg->gadget.speed = USB_SPEED_HIGH; 3227 ep0_mps = EP0_MPS_LIMIT; 3228 ep_mps = 1024; 3229 break; 3230 3231 case DSTS_ENUMSPD_LS: 3232 hsotg->gadget.speed = USB_SPEED_LOW; 3233 ep0_mps = 8; 3234 ep_mps = 8; 3235 /* 3236 * note, we don't actually support LS in this driver at the 3237 * moment, and the documentation seems to imply that it isn't 3238 * supported by the PHYs on some of the devices. 3239 */ 3240 break; 3241 } 3242 dev_info(hsotg->dev, "new device is %s\n", 3243 usb_speed_string(hsotg->gadget.speed)); 3244 3245 /* 3246 * we should now know the maximum packet size for an 3247 * endpoint, so set the endpoints to a default value. 3248 */ 3249 3250 if (ep0_mps) { 3251 int i; 3252 /* Initialize ep0 for both in and out directions */ 3253 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3254 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3255 for (i = 1; i < hsotg->num_of_eps; i++) { 3256 if (hsotg->eps_in[i]) 3257 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3258 0, 1); 3259 if (hsotg->eps_out[i]) 3260 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3261 0, 0); 3262 } 3263 } 3264 3265 /* ensure after enumeration our EP0 is active */ 3266 3267 dwc2_hsotg_enqueue_setup(hsotg); 3268 3269 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3270 dwc2_readl(hsotg, DIEPCTL0), 3271 dwc2_readl(hsotg, DOEPCTL0)); 3272 } 3273 3274 /** 3275 * kill_all_requests - remove all requests from the endpoint's queue 3276 * @hsotg: The device state. 3277 * @ep: The endpoint the requests may be on. 3278 * @result: The result code to use. 3279 * 3280 * Go through the requests on the given endpoint and mark them 3281 * completed with the given result code. 3282 */ 3283 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3284 struct dwc2_hsotg_ep *ep, 3285 int result) 3286 { 3287 unsigned int size; 3288 3289 ep->req = NULL; 3290 3291 while (!list_empty(&ep->queue)) { 3292 struct dwc2_hsotg_req *req = get_ep_head(ep); 3293 3294 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3295 } 3296 3297 if (!hsotg->dedicated_fifos) 3298 return; 3299 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3300 if (size < ep->fifo_size) 3301 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3302 } 3303 3304 /** 3305 * dwc2_hsotg_disconnect - disconnect service 3306 * @hsotg: The device state. 3307 * 3308 * The device has been disconnected. Remove all current 3309 * transactions and signal the gadget driver that this 3310 * has happened. 3311 */ 3312 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3313 { 3314 unsigned int ep; 3315 3316 if (!hsotg->connected) 3317 return; 3318 3319 hsotg->connected = 0; 3320 hsotg->test_mode = 0; 3321 3322 /* all endpoints should be shutdown */ 3323 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3324 if (hsotg->eps_in[ep]) 3325 kill_all_requests(hsotg, hsotg->eps_in[ep], 3326 -ESHUTDOWN); 3327 if (hsotg->eps_out[ep]) 3328 kill_all_requests(hsotg, hsotg->eps_out[ep], 3329 -ESHUTDOWN); 3330 } 3331 3332 call_gadget(hsotg, disconnect); 3333 hsotg->lx_state = DWC2_L3; 3334 3335 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3336 } 3337 3338 /** 3339 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3340 * @hsotg: The device state: 3341 * @periodic: True if this is a periodic FIFO interrupt 3342 */ 3343 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3344 { 3345 struct dwc2_hsotg_ep *ep; 3346 int epno, ret; 3347 3348 /* look through for any more data to transmit */ 3349 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3350 ep = index_to_ep(hsotg, epno, 1); 3351 3352 if (!ep) 3353 continue; 3354 3355 if (!ep->dir_in) 3356 continue; 3357 3358 if ((periodic && !ep->periodic) || 3359 (!periodic && ep->periodic)) 3360 continue; 3361 3362 ret = dwc2_hsotg_trytx(hsotg, ep); 3363 if (ret < 0) 3364 break; 3365 } 3366 } 3367 3368 /* IRQ flags which will trigger a retry around the IRQ loop */ 3369 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3370 GINTSTS_PTXFEMP | \ 3371 GINTSTS_RXFLVL) 3372 3373 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3374 /** 3375 * dwc2_hsotg_core_init_disconnected - issue softreset to the core 3376 * @hsotg: The device state 3377 * @is_usb_reset: Usb resetting flag 3378 * 3379 * Issue a soft reset to the core, and await the core finishing it. 3380 */ 3381 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3382 bool is_usb_reset) 3383 { 3384 u32 intmsk; 3385 u32 val; 3386 u32 usbcfg; 3387 u32 dcfg = 0; 3388 int ep; 3389 3390 /* Kill any ep0 requests as controller will be reinitialized */ 3391 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3392 3393 if (!is_usb_reset) { 3394 if (dwc2_core_reset(hsotg, true)) 3395 return; 3396 } else { 3397 /* all endpoints should be shutdown */ 3398 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3399 if (hsotg->eps_in[ep]) 3400 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3401 if (hsotg->eps_out[ep]) 3402 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3403 } 3404 } 3405 3406 /* 3407 * we must now enable ep0 ready for host detection and then 3408 * set configuration. 3409 */ 3410 3411 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3412 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3413 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3414 usbcfg |= GUSBCFG_TOUTCAL(7); 3415 3416 /* remove the HNP/SRP and set the PHY */ 3417 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3418 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3419 3420 dwc2_phy_init(hsotg, true); 3421 3422 dwc2_hsotg_init_fifo(hsotg); 3423 3424 if (!is_usb_reset) 3425 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3426 3427 dcfg |= DCFG_EPMISCNT(1); 3428 3429 switch (hsotg->params.speed) { 3430 case DWC2_SPEED_PARAM_LOW: 3431 dcfg |= DCFG_DEVSPD_LS; 3432 break; 3433 case DWC2_SPEED_PARAM_FULL: 3434 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3435 dcfg |= DCFG_DEVSPD_FS48; 3436 else 3437 dcfg |= DCFG_DEVSPD_FS; 3438 break; 3439 default: 3440 dcfg |= DCFG_DEVSPD_HS; 3441 } 3442 3443 if (hsotg->params.ipg_isoc_en) 3444 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3445 3446 dwc2_writel(hsotg, dcfg, DCFG); 3447 3448 /* Clear any pending OTG interrupts */ 3449 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3450 3451 /* Clear any pending interrupts */ 3452 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3453 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3454 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3455 GINTSTS_USBRST | GINTSTS_RESETDET | 3456 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3457 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3458 GINTSTS_LPMTRANRCVD; 3459 3460 if (!using_desc_dma(hsotg)) 3461 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3462 3463 if (!hsotg->params.external_id_pin_ctl) 3464 intmsk |= GINTSTS_CONIDSTSCHNG; 3465 3466 dwc2_writel(hsotg, intmsk, GINTMSK); 3467 3468 if (using_dma(hsotg)) { 3469 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3470 hsotg->params.ahbcfg, 3471 GAHBCFG); 3472 3473 /* Set DDMA mode support in the core if needed */ 3474 if (using_desc_dma(hsotg)) 3475 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3476 3477 } else { 3478 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3479 (GAHBCFG_NP_TXF_EMP_LVL | 3480 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3481 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3482 } 3483 3484 /* 3485 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3486 * when we have no data to transfer. Otherwise we get being flooded by 3487 * interrupts. 3488 */ 3489 3490 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3491 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3492 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3493 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3494 DIEPMSK); 3495 3496 /* 3497 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3498 * DMA mode we may need this and StsPhseRcvd. 3499 */ 3500 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3501 DOEPMSK_STSPHSERCVDMSK) : 0) | 3502 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3503 DOEPMSK_SETUPMSK, 3504 DOEPMSK); 3505 3506 /* Enable BNA interrupt for DDMA */ 3507 if (using_desc_dma(hsotg)) { 3508 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3509 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3510 } 3511 3512 /* Enable Service Interval mode if supported */ 3513 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3514 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3515 3516 dwc2_writel(hsotg, 0, DAINTMSK); 3517 3518 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3519 dwc2_readl(hsotg, DIEPCTL0), 3520 dwc2_readl(hsotg, DOEPCTL0)); 3521 3522 /* enable in and out endpoint interrupts */ 3523 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3524 3525 /* 3526 * Enable the RXFIFO when in slave mode, as this is how we collect 3527 * the data. In DMA mode, we get events from the FIFO but also 3528 * things we cannot process, so do not use it. 3529 */ 3530 if (!using_dma(hsotg)) 3531 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3532 3533 /* Enable interrupts for EP0 in and out */ 3534 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3535 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3536 3537 if (!is_usb_reset) { 3538 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3539 udelay(10); /* see openiboot */ 3540 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3541 } 3542 3543 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3544 3545 /* 3546 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3547 * writing to the EPCTL register.. 3548 */ 3549 3550 /* set to read 1 8byte packet */ 3551 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3552 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3553 3554 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3555 DXEPCTL_CNAK | DXEPCTL_EPENA | 3556 DXEPCTL_USBACTEP, 3557 DOEPCTL0); 3558 3559 /* enable, but don't activate EP0in */ 3560 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3561 DXEPCTL_USBACTEP, DIEPCTL0); 3562 3563 /* clear global NAKs */ 3564 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3565 if (!is_usb_reset) 3566 val |= DCTL_SFTDISCON; 3567 dwc2_set_bit(hsotg, DCTL, val); 3568 3569 /* configure the core to support LPM */ 3570 dwc2_gadget_init_lpm(hsotg); 3571 3572 /* program GREFCLK register if needed */ 3573 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3574 dwc2_gadget_program_ref_clk(hsotg); 3575 3576 /* must be at-least 3ms to allow bus to see disconnect */ 3577 mdelay(3); 3578 3579 hsotg->lx_state = DWC2_L0; 3580 3581 dwc2_hsotg_enqueue_setup(hsotg); 3582 3583 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3584 dwc2_readl(hsotg, DIEPCTL0), 3585 dwc2_readl(hsotg, DOEPCTL0)); 3586 } 3587 3588 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3589 { 3590 /* set the soft-disconnect bit */ 3591 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3592 } 3593 3594 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3595 { 3596 /* remove the soft-disconnect and let's go */ 3597 if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD)) 3598 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3599 } 3600 3601 /** 3602 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3603 * @hsotg: The device state: 3604 * 3605 * This interrupt indicates one of the following conditions occurred while 3606 * transmitting an ISOC transaction. 3607 * - Corrupted IN Token for ISOC EP. 3608 * - Packet not complete in FIFO. 3609 * 3610 * The following actions will be taken: 3611 * - Determine the EP 3612 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3613 */ 3614 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3615 { 3616 struct dwc2_hsotg_ep *hs_ep; 3617 u32 epctrl; 3618 u32 daintmsk; 3619 u32 idx; 3620 3621 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3622 3623 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3624 3625 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3626 hs_ep = hsotg->eps_in[idx]; 3627 /* Proceed only unmasked ISOC EPs */ 3628 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3629 continue; 3630 3631 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3632 if ((epctrl & DXEPCTL_EPENA) && 3633 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3634 epctrl |= DXEPCTL_SNAK; 3635 epctrl |= DXEPCTL_EPDIS; 3636 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3637 } 3638 } 3639 3640 /* Clear interrupt */ 3641 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3642 } 3643 3644 /** 3645 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3646 * @hsotg: The device state: 3647 * 3648 * This interrupt indicates one of the following conditions occurred while 3649 * transmitting an ISOC transaction. 3650 * - Corrupted OUT Token for ISOC EP. 3651 * - Packet not complete in FIFO. 3652 * 3653 * The following actions will be taken: 3654 * - Determine the EP 3655 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3656 */ 3657 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3658 { 3659 u32 gintsts; 3660 u32 gintmsk; 3661 u32 daintmsk; 3662 u32 epctrl; 3663 struct dwc2_hsotg_ep *hs_ep; 3664 int idx; 3665 3666 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3667 3668 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3669 daintmsk >>= DAINT_OUTEP_SHIFT; 3670 3671 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3672 hs_ep = hsotg->eps_out[idx]; 3673 /* Proceed only unmasked ISOC EPs */ 3674 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3675 continue; 3676 3677 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3678 if ((epctrl & DXEPCTL_EPENA) && 3679 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3680 /* Unmask GOUTNAKEFF interrupt */ 3681 gintmsk = dwc2_readl(hsotg, GINTMSK); 3682 gintmsk |= GINTSTS_GOUTNAKEFF; 3683 dwc2_writel(hsotg, gintmsk, GINTMSK); 3684 3685 gintsts = dwc2_readl(hsotg, GINTSTS); 3686 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3687 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3688 break; 3689 } 3690 } 3691 } 3692 3693 /* Clear interrupt */ 3694 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3695 } 3696 3697 /** 3698 * dwc2_hsotg_irq - handle device interrupt 3699 * @irq: The IRQ number triggered 3700 * @pw: The pw value when registered the handler. 3701 */ 3702 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3703 { 3704 struct dwc2_hsotg *hsotg = pw; 3705 int retry_count = 8; 3706 u32 gintsts; 3707 u32 gintmsk; 3708 3709 if (!dwc2_is_device_mode(hsotg)) 3710 return IRQ_NONE; 3711 3712 spin_lock(&hsotg->lock); 3713 irq_retry: 3714 gintsts = dwc2_readl(hsotg, GINTSTS); 3715 gintmsk = dwc2_readl(hsotg, GINTMSK); 3716 3717 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3718 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3719 3720 gintsts &= gintmsk; 3721 3722 if (gintsts & GINTSTS_RESETDET) { 3723 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3724 3725 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3726 3727 /* This event must be used only if controller is suspended */ 3728 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2) 3729 dwc2_exit_partial_power_down(hsotg, 0, true); 3730 3731 hsotg->lx_state = DWC2_L0; 3732 } 3733 3734 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3735 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3736 u32 connected = hsotg->connected; 3737 3738 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3739 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3740 dwc2_readl(hsotg, GNPTXSTS)); 3741 3742 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3743 3744 /* Report disconnection if it is not already done. */ 3745 dwc2_hsotg_disconnect(hsotg); 3746 3747 /* Reset device address to zero */ 3748 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3749 3750 if (usb_status & GOTGCTL_BSESVLD && connected) 3751 dwc2_hsotg_core_init_disconnected(hsotg, true); 3752 } 3753 3754 if (gintsts & GINTSTS_ENUMDONE) { 3755 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3756 3757 dwc2_hsotg_irq_enumdone(hsotg); 3758 } 3759 3760 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3761 u32 daint = dwc2_readl(hsotg, DAINT); 3762 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3763 u32 daint_out, daint_in; 3764 int ep; 3765 3766 daint &= daintmsk; 3767 daint_out = daint >> DAINT_OUTEP_SHIFT; 3768 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3769 3770 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3771 3772 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3773 ep++, daint_out >>= 1) { 3774 if (daint_out & 1) 3775 dwc2_hsotg_epint(hsotg, ep, 0); 3776 } 3777 3778 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3779 ep++, daint_in >>= 1) { 3780 if (daint_in & 1) 3781 dwc2_hsotg_epint(hsotg, ep, 1); 3782 } 3783 } 3784 3785 /* check both FIFOs */ 3786 3787 if (gintsts & GINTSTS_NPTXFEMP) { 3788 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3789 3790 /* 3791 * Disable the interrupt to stop it happening again 3792 * unless one of these endpoint routines decides that 3793 * it needs re-enabling 3794 */ 3795 3796 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3797 dwc2_hsotg_irq_fifoempty(hsotg, false); 3798 } 3799 3800 if (gintsts & GINTSTS_PTXFEMP) { 3801 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3802 3803 /* See note in GINTSTS_NPTxFEmp */ 3804 3805 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3806 dwc2_hsotg_irq_fifoempty(hsotg, true); 3807 } 3808 3809 if (gintsts & GINTSTS_RXFLVL) { 3810 /* 3811 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3812 * we need to retry dwc2_hsotg_handle_rx if this is still 3813 * set. 3814 */ 3815 3816 dwc2_hsotg_handle_rx(hsotg); 3817 } 3818 3819 if (gintsts & GINTSTS_ERLYSUSP) { 3820 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3821 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3822 } 3823 3824 /* 3825 * these next two seem to crop-up occasionally causing the core 3826 * to shutdown the USB transfer, so try clearing them and logging 3827 * the occurrence. 3828 */ 3829 3830 if (gintsts & GINTSTS_GOUTNAKEFF) { 3831 u8 idx; 3832 u32 epctrl; 3833 u32 gintmsk; 3834 u32 daintmsk; 3835 struct dwc2_hsotg_ep *hs_ep; 3836 3837 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3838 daintmsk >>= DAINT_OUTEP_SHIFT; 3839 /* Mask this interrupt */ 3840 gintmsk = dwc2_readl(hsotg, GINTMSK); 3841 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3842 dwc2_writel(hsotg, gintmsk, GINTMSK); 3843 3844 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3845 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3846 hs_ep = hsotg->eps_out[idx]; 3847 /* Proceed only unmasked ISOC EPs */ 3848 if (BIT(idx) & ~daintmsk) 3849 continue; 3850 3851 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3852 3853 //ISOC Ep's only 3854 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3855 epctrl |= DXEPCTL_SNAK; 3856 epctrl |= DXEPCTL_EPDIS; 3857 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3858 continue; 3859 } 3860 3861 //Non-ISOC EP's 3862 if (hs_ep->halted) { 3863 if (!(epctrl & DXEPCTL_EPENA)) 3864 epctrl |= DXEPCTL_EPENA; 3865 epctrl |= DXEPCTL_EPDIS; 3866 epctrl |= DXEPCTL_STALL; 3867 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3868 } 3869 } 3870 3871 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3872 } 3873 3874 if (gintsts & GINTSTS_GINNAKEFF) { 3875 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3876 3877 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3878 3879 dwc2_hsotg_dump(hsotg); 3880 } 3881 3882 if (gintsts & GINTSTS_INCOMPL_SOIN) 3883 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3884 3885 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3886 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3887 3888 /* 3889 * if we've had fifo events, we should try and go around the 3890 * loop again to see if there's any point in returning yet. 3891 */ 3892 3893 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3894 goto irq_retry; 3895 3896 /* Check WKUP_ALERT interrupt*/ 3897 if (hsotg->params.service_interval) 3898 dwc2_gadget_wkup_alert_handler(hsotg); 3899 3900 spin_unlock(&hsotg->lock); 3901 3902 return IRQ_HANDLED; 3903 } 3904 3905 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3906 struct dwc2_hsotg_ep *hs_ep) 3907 { 3908 u32 epctrl_reg; 3909 u32 epint_reg; 3910 3911 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3912 DOEPCTL(hs_ep->index); 3913 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3914 DOEPINT(hs_ep->index); 3915 3916 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3917 hs_ep->name); 3918 3919 if (hs_ep->dir_in) { 3920 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3921 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3922 /* Wait for Nak effect */ 3923 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3924 DXEPINT_INEPNAKEFF, 100)) 3925 dev_warn(hsotg->dev, 3926 "%s: timeout DIEPINT.NAKEFF\n", 3927 __func__); 3928 } else { 3929 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3930 /* Wait for Nak effect */ 3931 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3932 GINTSTS_GINNAKEFF, 100)) 3933 dev_warn(hsotg->dev, 3934 "%s: timeout GINTSTS.GINNAKEFF\n", 3935 __func__); 3936 } 3937 } else { 3938 /* Mask GINTSTS_GOUTNAKEFF interrupt */ 3939 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF); 3940 3941 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3942 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3943 3944 if (!using_dma(hsotg)) { 3945 /* Wait for GINTSTS_RXFLVL interrupt */ 3946 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3947 GINTSTS_RXFLVL, 100)) { 3948 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n", 3949 __func__); 3950 } else { 3951 /* 3952 * Pop GLOBAL OUT NAK status packet from RxFIFO 3953 * to assert GOUTNAKEFF interrupt 3954 */ 3955 dwc2_readl(hsotg, GRXSTSP); 3956 } 3957 } 3958 3959 /* Wait for global nak to take effect */ 3960 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3961 GINTSTS_GOUTNAKEFF, 100)) 3962 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3963 __func__); 3964 } 3965 3966 /* Disable ep */ 3967 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3968 3969 /* Wait for ep to be disabled */ 3970 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3971 dev_warn(hsotg->dev, 3972 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3973 3974 /* Clear EPDISBLD interrupt */ 3975 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3976 3977 if (hs_ep->dir_in) { 3978 unsigned short fifo_index; 3979 3980 if (hsotg->dedicated_fifos || hs_ep->periodic) 3981 fifo_index = hs_ep->fifo_index; 3982 else 3983 fifo_index = 0; 3984 3985 /* Flush TX FIFO */ 3986 dwc2_flush_tx_fifo(hsotg, fifo_index); 3987 3988 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3989 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3990 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3991 3992 } else { 3993 /* Remove global NAKs */ 3994 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3995 } 3996 } 3997 3998 /** 3999 * dwc2_hsotg_ep_enable - enable the given endpoint 4000 * @ep: The USB endpint to configure 4001 * @desc: The USB endpoint descriptor to configure with. 4002 * 4003 * This is called from the USB gadget code's usb_ep_enable(). 4004 */ 4005 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 4006 const struct usb_endpoint_descriptor *desc) 4007 { 4008 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4009 struct dwc2_hsotg *hsotg = hs_ep->parent; 4010 unsigned long flags; 4011 unsigned int index = hs_ep->index; 4012 u32 epctrl_reg; 4013 u32 epctrl; 4014 u32 mps; 4015 u32 mc; 4016 u32 mask; 4017 unsigned int dir_in; 4018 unsigned int i, val, size; 4019 int ret = 0; 4020 unsigned char ep_type; 4021 int desc_num; 4022 4023 dev_dbg(hsotg->dev, 4024 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 4025 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 4026 desc->wMaxPacketSize, desc->bInterval); 4027 4028 /* not to be called for EP0 */ 4029 if (index == 0) { 4030 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 4031 return -EINVAL; 4032 } 4033 4034 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 4035 if (dir_in != hs_ep->dir_in) { 4036 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 4037 return -EINVAL; 4038 } 4039 4040 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 4041 mps = usb_endpoint_maxp(desc); 4042 mc = usb_endpoint_maxp_mult(desc); 4043 4044 /* ISOC IN in DDMA supported bInterval up to 10 */ 4045 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4046 dir_in && desc->bInterval > 10) { 4047 dev_err(hsotg->dev, 4048 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 4049 return -EINVAL; 4050 } 4051 4052 /* High bandwidth ISOC OUT in DDMA not supported */ 4053 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4054 !dir_in && mc > 1) { 4055 dev_err(hsotg->dev, 4056 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 4057 return -EINVAL; 4058 } 4059 4060 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 4061 4062 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4063 epctrl = dwc2_readl(hsotg, epctrl_reg); 4064 4065 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 4066 __func__, epctrl, epctrl_reg); 4067 4068 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 4069 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 4070 else 4071 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4072 4073 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4074 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4075 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4076 desc_num * sizeof(struct dwc2_dma_desc), 4077 &hs_ep->desc_list_dma, GFP_ATOMIC); 4078 if (!hs_ep->desc_list) { 4079 ret = -ENOMEM; 4080 goto error2; 4081 } 4082 } 4083 4084 spin_lock_irqsave(&hsotg->lock, flags); 4085 4086 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4087 epctrl |= DXEPCTL_MPS(mps); 4088 4089 /* 4090 * mark the endpoint as active, otherwise the core may ignore 4091 * transactions entirely for this endpoint 4092 */ 4093 epctrl |= DXEPCTL_USBACTEP; 4094 4095 /* update the endpoint state */ 4096 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4097 4098 /* default, set to non-periodic */ 4099 hs_ep->isochronous = 0; 4100 hs_ep->periodic = 0; 4101 hs_ep->halted = 0; 4102 hs_ep->wedged = 0; 4103 hs_ep->interval = desc->bInterval; 4104 4105 switch (ep_type) { 4106 case USB_ENDPOINT_XFER_ISOC: 4107 epctrl |= DXEPCTL_EPTYPE_ISO; 4108 epctrl |= DXEPCTL_SETEVENFR; 4109 hs_ep->isochronous = 1; 4110 hs_ep->interval = 1 << (desc->bInterval - 1); 4111 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4112 hs_ep->next_desc = 0; 4113 hs_ep->compl_desc = 0; 4114 if (dir_in) { 4115 hs_ep->periodic = 1; 4116 mask = dwc2_readl(hsotg, DIEPMSK); 4117 mask |= DIEPMSK_NAKMSK; 4118 dwc2_writel(hsotg, mask, DIEPMSK); 4119 } else { 4120 epctrl |= DXEPCTL_SNAK; 4121 mask = dwc2_readl(hsotg, DOEPMSK); 4122 mask |= DOEPMSK_OUTTKNEPDISMSK; 4123 dwc2_writel(hsotg, mask, DOEPMSK); 4124 } 4125 break; 4126 4127 case USB_ENDPOINT_XFER_BULK: 4128 epctrl |= DXEPCTL_EPTYPE_BULK; 4129 break; 4130 4131 case USB_ENDPOINT_XFER_INT: 4132 if (dir_in) 4133 hs_ep->periodic = 1; 4134 4135 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4136 hs_ep->interval = 1 << (desc->bInterval - 1); 4137 4138 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4139 break; 4140 4141 case USB_ENDPOINT_XFER_CONTROL: 4142 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4143 break; 4144 } 4145 4146 /* 4147 * if the hardware has dedicated fifos, we must give each IN EP 4148 * a unique tx-fifo even if it is non-periodic. 4149 */ 4150 if (dir_in && hsotg->dedicated_fifos) { 4151 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4152 u32 fifo_index = 0; 4153 u32 fifo_size = UINT_MAX; 4154 4155 size = hs_ep->ep.maxpacket * hs_ep->mc; 4156 for (i = 1; i <= fifo_count; ++i) { 4157 if (hsotg->fifo_map & (1 << i)) 4158 continue; 4159 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4160 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4161 if (val < size) 4162 continue; 4163 /* Search for smallest acceptable fifo */ 4164 if (val < fifo_size) { 4165 fifo_size = val; 4166 fifo_index = i; 4167 } 4168 } 4169 if (!fifo_index) { 4170 dev_err(hsotg->dev, 4171 "%s: No suitable fifo found\n", __func__); 4172 ret = -ENOMEM; 4173 goto error1; 4174 } 4175 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4176 hsotg->fifo_map |= 1 << fifo_index; 4177 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4178 hs_ep->fifo_index = fifo_index; 4179 hs_ep->fifo_size = fifo_size; 4180 } 4181 4182 /* for non control endpoints, set PID to D0 */ 4183 if (index && !hs_ep->isochronous) 4184 epctrl |= DXEPCTL_SETD0PID; 4185 4186 /* WA for Full speed ISOC IN in DDMA mode. 4187 * By Clear NAK status of EP, core will send ZLP 4188 * to IN token and assert NAK interrupt relying 4189 * on TxFIFO status only 4190 */ 4191 4192 if (hsotg->gadget.speed == USB_SPEED_FULL && 4193 hs_ep->isochronous && dir_in) { 4194 /* The WA applies only to core versions from 2.72a 4195 * to 4.00a (including both). Also for FS_IOT_1.00a 4196 * and HS_IOT_1.00a. 4197 */ 4198 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4199 4200 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4201 gsnpsid <= DWC2_CORE_REV_4_00a) || 4202 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4203 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4204 epctrl |= DXEPCTL_CNAK; 4205 } 4206 4207 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4208 __func__, epctrl); 4209 4210 dwc2_writel(hsotg, epctrl, epctrl_reg); 4211 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4212 __func__, dwc2_readl(hsotg, epctrl_reg)); 4213 4214 /* enable the endpoint interrupt */ 4215 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4216 4217 error1: 4218 spin_unlock_irqrestore(&hsotg->lock, flags); 4219 4220 error2: 4221 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4222 dmam_free_coherent(hsotg->dev, desc_num * 4223 sizeof(struct dwc2_dma_desc), 4224 hs_ep->desc_list, hs_ep->desc_list_dma); 4225 hs_ep->desc_list = NULL; 4226 } 4227 4228 return ret; 4229 } 4230 4231 /** 4232 * dwc2_hsotg_ep_disable - disable given endpoint 4233 * @ep: The endpoint to disable. 4234 */ 4235 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4236 { 4237 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4238 struct dwc2_hsotg *hsotg = hs_ep->parent; 4239 int dir_in = hs_ep->dir_in; 4240 int index = hs_ep->index; 4241 u32 epctrl_reg; 4242 u32 ctrl; 4243 4244 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4245 4246 if (ep == &hsotg->eps_out[0]->ep) { 4247 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4248 return -EINVAL; 4249 } 4250 4251 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4252 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4253 return -EINVAL; 4254 } 4255 4256 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4257 4258 ctrl = dwc2_readl(hsotg, epctrl_reg); 4259 4260 if (ctrl & DXEPCTL_EPENA) 4261 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4262 4263 ctrl &= ~DXEPCTL_EPENA; 4264 ctrl &= ~DXEPCTL_USBACTEP; 4265 ctrl |= DXEPCTL_SNAK; 4266 4267 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4268 dwc2_writel(hsotg, ctrl, epctrl_reg); 4269 4270 /* disable endpoint interrupts */ 4271 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4272 4273 /* terminate all requests with shutdown */ 4274 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4275 4276 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4277 hs_ep->fifo_index = 0; 4278 hs_ep->fifo_size = 0; 4279 4280 return 0; 4281 } 4282 4283 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4284 { 4285 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4286 struct dwc2_hsotg *hsotg = hs_ep->parent; 4287 unsigned long flags; 4288 int ret; 4289 4290 spin_lock_irqsave(&hsotg->lock, flags); 4291 ret = dwc2_hsotg_ep_disable(ep); 4292 spin_unlock_irqrestore(&hsotg->lock, flags); 4293 return ret; 4294 } 4295 4296 /** 4297 * on_list - check request is on the given endpoint 4298 * @ep: The endpoint to check. 4299 * @test: The request to test if it is on the endpoint. 4300 */ 4301 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4302 { 4303 struct dwc2_hsotg_req *req, *treq; 4304 4305 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4306 if (req == test) 4307 return true; 4308 } 4309 4310 return false; 4311 } 4312 4313 /** 4314 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4315 * @ep: The endpoint to dequeue. 4316 * @req: The request to be removed from a queue. 4317 */ 4318 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4319 { 4320 struct dwc2_hsotg_req *hs_req = our_req(req); 4321 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4322 struct dwc2_hsotg *hs = hs_ep->parent; 4323 unsigned long flags; 4324 4325 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4326 4327 spin_lock_irqsave(&hs->lock, flags); 4328 4329 if (!on_list(hs_ep, hs_req)) { 4330 spin_unlock_irqrestore(&hs->lock, flags); 4331 return -EINVAL; 4332 } 4333 4334 /* Dequeue already started request */ 4335 if (req == &hs_ep->req->req) 4336 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4337 4338 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4339 spin_unlock_irqrestore(&hs->lock, flags); 4340 4341 return 0; 4342 } 4343 4344 /** 4345 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint 4346 * @ep: The endpoint to be wedged. 4347 * 4348 */ 4349 static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep) 4350 { 4351 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4352 struct dwc2_hsotg *hs = hs_ep->parent; 4353 4354 unsigned long flags; 4355 int ret; 4356 4357 spin_lock_irqsave(&hs->lock, flags); 4358 hs_ep->wedged = 1; 4359 ret = dwc2_hsotg_ep_sethalt(ep, 1, false); 4360 spin_unlock_irqrestore(&hs->lock, flags); 4361 4362 return ret; 4363 } 4364 4365 /** 4366 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4367 * @ep: The endpoint to set halt. 4368 * @value: Set or unset the halt. 4369 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4370 * the endpoint is busy processing requests. 4371 * 4372 * We need to stall the endpoint immediately if request comes from set_feature 4373 * protocol command handler. 4374 */ 4375 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4376 { 4377 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4378 struct dwc2_hsotg *hs = hs_ep->parent; 4379 int index = hs_ep->index; 4380 u32 epreg; 4381 u32 epctl; 4382 u32 xfertype; 4383 4384 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4385 4386 if (index == 0) { 4387 if (value) 4388 dwc2_hsotg_stall_ep0(hs); 4389 else 4390 dev_warn(hs->dev, 4391 "%s: can't clear halt on ep0\n", __func__); 4392 return 0; 4393 } 4394 4395 if (hs_ep->isochronous) { 4396 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4397 return -EINVAL; 4398 } 4399 4400 if (!now && value && !list_empty(&hs_ep->queue)) { 4401 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4402 ep->name); 4403 return -EAGAIN; 4404 } 4405 4406 if (hs_ep->dir_in) { 4407 epreg = DIEPCTL(index); 4408 epctl = dwc2_readl(hs, epreg); 4409 4410 if (value) { 4411 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4412 if (epctl & DXEPCTL_EPENA) 4413 epctl |= DXEPCTL_EPDIS; 4414 } else { 4415 epctl &= ~DXEPCTL_STALL; 4416 hs_ep->wedged = 0; 4417 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4418 if (xfertype == DXEPCTL_EPTYPE_BULK || 4419 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4420 epctl |= DXEPCTL_SETD0PID; 4421 } 4422 dwc2_writel(hs, epctl, epreg); 4423 } else { 4424 epreg = DOEPCTL(index); 4425 epctl = dwc2_readl(hs, epreg); 4426 4427 if (value) { 4428 /* Unmask GOUTNAKEFF interrupt */ 4429 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF); 4430 4431 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4432 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4433 // STALL bit will be set in GOUTNAKEFF interrupt handler 4434 } else { 4435 epctl &= ~DXEPCTL_STALL; 4436 hs_ep->wedged = 0; 4437 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4438 if (xfertype == DXEPCTL_EPTYPE_BULK || 4439 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4440 epctl |= DXEPCTL_SETD0PID; 4441 dwc2_writel(hs, epctl, epreg); 4442 } 4443 } 4444 4445 hs_ep->halted = value; 4446 return 0; 4447 } 4448 4449 /** 4450 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4451 * @ep: The endpoint to set halt. 4452 * @value: Set or unset the halt. 4453 */ 4454 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4455 { 4456 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4457 struct dwc2_hsotg *hs = hs_ep->parent; 4458 unsigned long flags; 4459 int ret; 4460 4461 spin_lock_irqsave(&hs->lock, flags); 4462 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4463 spin_unlock_irqrestore(&hs->lock, flags); 4464 4465 return ret; 4466 } 4467 4468 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4469 .enable = dwc2_hsotg_ep_enable, 4470 .disable = dwc2_hsotg_ep_disable_lock, 4471 .alloc_request = dwc2_hsotg_ep_alloc_request, 4472 .free_request = dwc2_hsotg_ep_free_request, 4473 .queue = dwc2_hsotg_ep_queue_lock, 4474 .dequeue = dwc2_hsotg_ep_dequeue, 4475 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4476 .set_wedge = dwc2_gadget_ep_set_wedge, 4477 /* note, don't believe we have any call for the fifo routines */ 4478 }; 4479 4480 /** 4481 * dwc2_hsotg_init - initialize the usb core 4482 * @hsotg: The driver state 4483 */ 4484 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4485 { 4486 /* unmask subset of endpoint interrupts */ 4487 4488 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4489 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4490 DIEPMSK); 4491 4492 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4493 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4494 DOEPMSK); 4495 4496 dwc2_writel(hsotg, 0, DAINTMSK); 4497 4498 /* Be in disconnected state until gadget is registered */ 4499 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4500 4501 /* setup fifos */ 4502 4503 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4504 dwc2_readl(hsotg, GRXFSIZ), 4505 dwc2_readl(hsotg, GNPTXFSIZ)); 4506 4507 dwc2_hsotg_init_fifo(hsotg); 4508 4509 if (using_dma(hsotg)) 4510 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4511 } 4512 4513 /** 4514 * dwc2_hsotg_udc_start - prepare the udc for work 4515 * @gadget: The usb gadget state 4516 * @driver: The usb gadget driver 4517 * 4518 * Perform initialization to prepare udc device and driver 4519 * to work. 4520 */ 4521 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4522 struct usb_gadget_driver *driver) 4523 { 4524 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4525 unsigned long flags; 4526 int ret; 4527 4528 if (!hsotg) { 4529 pr_err("%s: called with no device\n", __func__); 4530 return -ENODEV; 4531 } 4532 4533 if (!driver) { 4534 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4535 return -EINVAL; 4536 } 4537 4538 if (driver->max_speed < USB_SPEED_FULL) 4539 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4540 4541 if (!driver->setup) { 4542 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4543 return -EINVAL; 4544 } 4545 4546 WARN_ON(hsotg->driver); 4547 4548 hsotg->driver = driver; 4549 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4550 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4551 4552 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4553 ret = dwc2_lowlevel_hw_enable(hsotg); 4554 if (ret) 4555 goto err; 4556 } 4557 4558 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4559 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4560 4561 spin_lock_irqsave(&hsotg->lock, flags); 4562 if (dwc2_hw_is_device(hsotg)) { 4563 dwc2_hsotg_init(hsotg); 4564 dwc2_hsotg_core_init_disconnected(hsotg, false); 4565 } 4566 4567 hsotg->enabled = 0; 4568 spin_unlock_irqrestore(&hsotg->lock, flags); 4569 4570 gadget->sg_supported = using_desc_dma(hsotg); 4571 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4572 4573 return 0; 4574 4575 err: 4576 hsotg->driver = NULL; 4577 return ret; 4578 } 4579 4580 /** 4581 * dwc2_hsotg_udc_stop - stop the udc 4582 * @gadget: The usb gadget state 4583 * 4584 * Stop udc hw block and stay tunned for future transmissions 4585 */ 4586 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4587 { 4588 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4589 unsigned long flags; 4590 int ep; 4591 4592 if (!hsotg) 4593 return -ENODEV; 4594 4595 /* all endpoints should be shutdown */ 4596 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4597 if (hsotg->eps_in[ep]) 4598 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4599 if (hsotg->eps_out[ep]) 4600 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4601 } 4602 4603 spin_lock_irqsave(&hsotg->lock, flags); 4604 4605 hsotg->driver = NULL; 4606 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4607 hsotg->enabled = 0; 4608 4609 spin_unlock_irqrestore(&hsotg->lock, flags); 4610 4611 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4612 otg_set_peripheral(hsotg->uphy->otg, NULL); 4613 4614 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4615 dwc2_lowlevel_hw_disable(hsotg); 4616 4617 return 0; 4618 } 4619 4620 /** 4621 * dwc2_hsotg_gadget_getframe - read the frame number 4622 * @gadget: The usb gadget state 4623 * 4624 * Read the {micro} frame number 4625 */ 4626 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4627 { 4628 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4629 } 4630 4631 /** 4632 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4633 * @gadget: The usb gadget state 4634 * @is_selfpowered: Whether the device is self-powered 4635 * 4636 * Set if the device is self or bus powered. 4637 */ 4638 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4639 int is_selfpowered) 4640 { 4641 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4642 unsigned long flags; 4643 4644 spin_lock_irqsave(&hsotg->lock, flags); 4645 gadget->is_selfpowered = !!is_selfpowered; 4646 spin_unlock_irqrestore(&hsotg->lock, flags); 4647 4648 return 0; 4649 } 4650 4651 /** 4652 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4653 * @gadget: The usb gadget state 4654 * @is_on: Current state of the USB PHY 4655 * 4656 * Connect/Disconnect the USB PHY pullup 4657 */ 4658 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4659 { 4660 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4661 unsigned long flags; 4662 4663 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4664 hsotg->op_state); 4665 4666 /* Don't modify pullup state while in host mode */ 4667 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4668 hsotg->enabled = is_on; 4669 return 0; 4670 } 4671 4672 spin_lock_irqsave(&hsotg->lock, flags); 4673 if (is_on) { 4674 hsotg->enabled = 1; 4675 dwc2_hsotg_core_init_disconnected(hsotg, false); 4676 /* Enable ACG feature in device mode,if supported */ 4677 dwc2_enable_acg(hsotg); 4678 dwc2_hsotg_core_connect(hsotg); 4679 } else { 4680 dwc2_hsotg_core_disconnect(hsotg); 4681 dwc2_hsotg_disconnect(hsotg); 4682 hsotg->enabled = 0; 4683 } 4684 4685 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4686 spin_unlock_irqrestore(&hsotg->lock, flags); 4687 4688 return 0; 4689 } 4690 4691 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4692 { 4693 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4694 unsigned long flags; 4695 4696 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4697 spin_lock_irqsave(&hsotg->lock, flags); 4698 4699 /* 4700 * If controller is in partial power down state, it must exit from 4701 * that state before being initialized / de-initialized 4702 */ 4703 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd) 4704 /* 4705 * No need to check the return value as 4706 * registers are not being restored. 4707 */ 4708 dwc2_exit_partial_power_down(hsotg, 0, false); 4709 4710 if (is_active) { 4711 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4712 4713 dwc2_hsotg_core_init_disconnected(hsotg, false); 4714 if (hsotg->enabled) { 4715 /* Enable ACG feature in device mode,if supported */ 4716 dwc2_enable_acg(hsotg); 4717 dwc2_hsotg_core_connect(hsotg); 4718 } 4719 } else { 4720 dwc2_hsotg_core_disconnect(hsotg); 4721 dwc2_hsotg_disconnect(hsotg); 4722 } 4723 4724 spin_unlock_irqrestore(&hsotg->lock, flags); 4725 return 0; 4726 } 4727 4728 /** 4729 * dwc2_hsotg_vbus_draw - report bMaxPower field 4730 * @gadget: The usb gadget state 4731 * @mA: Amount of current 4732 * 4733 * Report how much power the device may consume to the phy. 4734 */ 4735 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4736 { 4737 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4738 4739 if (IS_ERR_OR_NULL(hsotg->uphy)) 4740 return -ENOTSUPP; 4741 return usb_phy_set_power(hsotg->uphy, mA); 4742 } 4743 4744 static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed) 4745 { 4746 struct dwc2_hsotg *hsotg = to_hsotg(g); 4747 unsigned long flags; 4748 4749 spin_lock_irqsave(&hsotg->lock, flags); 4750 switch (speed) { 4751 case USB_SPEED_HIGH: 4752 hsotg->params.speed = DWC2_SPEED_PARAM_HIGH; 4753 break; 4754 case USB_SPEED_FULL: 4755 hsotg->params.speed = DWC2_SPEED_PARAM_FULL; 4756 break; 4757 case USB_SPEED_LOW: 4758 hsotg->params.speed = DWC2_SPEED_PARAM_LOW; 4759 break; 4760 default: 4761 dev_err(hsotg->dev, "invalid speed (%d)\n", speed); 4762 } 4763 spin_unlock_irqrestore(&hsotg->lock, flags); 4764 } 4765 4766 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4767 .get_frame = dwc2_hsotg_gadget_getframe, 4768 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4769 .udc_start = dwc2_hsotg_udc_start, 4770 .udc_stop = dwc2_hsotg_udc_stop, 4771 .pullup = dwc2_hsotg_pullup, 4772 .udc_set_speed = dwc2_gadget_set_speed, 4773 .vbus_session = dwc2_hsotg_vbus_session, 4774 .vbus_draw = dwc2_hsotg_vbus_draw, 4775 }; 4776 4777 /** 4778 * dwc2_hsotg_initep - initialise a single endpoint 4779 * @hsotg: The device state. 4780 * @hs_ep: The endpoint to be initialised. 4781 * @epnum: The endpoint number 4782 * @dir_in: True if direction is in. 4783 * 4784 * Initialise the given endpoint (as part of the probe and device state 4785 * creation) to give to the gadget driver. Setup the endpoint name, any 4786 * direction information and other state that may be required. 4787 */ 4788 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4789 struct dwc2_hsotg_ep *hs_ep, 4790 int epnum, 4791 bool dir_in) 4792 { 4793 char *dir; 4794 4795 if (epnum == 0) 4796 dir = ""; 4797 else if (dir_in) 4798 dir = "in"; 4799 else 4800 dir = "out"; 4801 4802 hs_ep->dir_in = dir_in; 4803 hs_ep->index = epnum; 4804 4805 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4806 4807 INIT_LIST_HEAD(&hs_ep->queue); 4808 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4809 4810 /* add to the list of endpoints known by the gadget driver */ 4811 if (epnum) 4812 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4813 4814 hs_ep->parent = hsotg; 4815 hs_ep->ep.name = hs_ep->name; 4816 4817 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4818 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4819 else 4820 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4821 epnum ? 1024 : EP0_MPS_LIMIT); 4822 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4823 4824 if (epnum == 0) { 4825 hs_ep->ep.caps.type_control = true; 4826 } else { 4827 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4828 hs_ep->ep.caps.type_iso = true; 4829 hs_ep->ep.caps.type_bulk = true; 4830 } 4831 hs_ep->ep.caps.type_int = true; 4832 } 4833 4834 if (dir_in) 4835 hs_ep->ep.caps.dir_in = true; 4836 else 4837 hs_ep->ep.caps.dir_out = true; 4838 4839 /* 4840 * if we're using dma, we need to set the next-endpoint pointer 4841 * to be something valid. 4842 */ 4843 4844 if (using_dma(hsotg)) { 4845 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4846 4847 if (dir_in) 4848 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4849 else 4850 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4851 } 4852 } 4853 4854 /** 4855 * dwc2_hsotg_hw_cfg - read HW configuration registers 4856 * @hsotg: Programming view of the DWC_otg controller 4857 * 4858 * Read the USB core HW configuration registers 4859 */ 4860 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4861 { 4862 u32 cfg; 4863 u32 ep_type; 4864 u32 i; 4865 4866 /* check hardware configuration */ 4867 4868 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4869 4870 /* Add ep0 */ 4871 hsotg->num_of_eps++; 4872 4873 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4874 sizeof(struct dwc2_hsotg_ep), 4875 GFP_KERNEL); 4876 if (!hsotg->eps_in[0]) 4877 return -ENOMEM; 4878 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4879 hsotg->eps_out[0] = hsotg->eps_in[0]; 4880 4881 cfg = hsotg->hw_params.dev_ep_dirs; 4882 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4883 ep_type = cfg & 3; 4884 /* Direction in or both */ 4885 if (!(ep_type & 2)) { 4886 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4887 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4888 if (!hsotg->eps_in[i]) 4889 return -ENOMEM; 4890 } 4891 /* Direction out or both */ 4892 if (!(ep_type & 1)) { 4893 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4894 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4895 if (!hsotg->eps_out[i]) 4896 return -ENOMEM; 4897 } 4898 } 4899 4900 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4901 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4902 4903 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4904 hsotg->num_of_eps, 4905 hsotg->dedicated_fifos ? "dedicated" : "shared", 4906 hsotg->fifo_mem); 4907 return 0; 4908 } 4909 4910 /** 4911 * dwc2_hsotg_dump - dump state of the udc 4912 * @hsotg: Programming view of the DWC_otg controller 4913 * 4914 */ 4915 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4916 { 4917 #ifdef DEBUG 4918 struct device *dev = hsotg->dev; 4919 u32 val; 4920 int idx; 4921 4922 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4923 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4924 dwc2_readl(hsotg, DIEPMSK)); 4925 4926 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4927 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4928 4929 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4930 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4931 4932 /* show periodic fifo settings */ 4933 4934 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4935 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4936 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4937 val >> FIFOSIZE_DEPTH_SHIFT, 4938 val & FIFOSIZE_STARTADDR_MASK); 4939 } 4940 4941 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4942 dev_info(dev, 4943 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4944 dwc2_readl(hsotg, DIEPCTL(idx)), 4945 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4946 dwc2_readl(hsotg, DIEPDMA(idx))); 4947 4948 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4949 dev_info(dev, 4950 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4951 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4952 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4953 dwc2_readl(hsotg, DOEPDMA(idx))); 4954 } 4955 4956 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4957 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4958 #endif 4959 } 4960 4961 /** 4962 * dwc2_gadget_init - init function for gadget 4963 * @hsotg: Programming view of the DWC_otg controller 4964 * 4965 */ 4966 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4967 { 4968 struct device *dev = hsotg->dev; 4969 int epnum; 4970 int ret; 4971 4972 /* Dump fifo information */ 4973 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4974 hsotg->params.g_np_tx_fifo_size); 4975 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4976 4977 switch (hsotg->params.speed) { 4978 case DWC2_SPEED_PARAM_LOW: 4979 hsotg->gadget.max_speed = USB_SPEED_LOW; 4980 break; 4981 case DWC2_SPEED_PARAM_FULL: 4982 hsotg->gadget.max_speed = USB_SPEED_FULL; 4983 break; 4984 default: 4985 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4986 break; 4987 } 4988 4989 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4990 hsotg->gadget.name = dev_name(dev); 4991 hsotg->gadget.otg_caps = &hsotg->params.otg_caps; 4992 hsotg->remote_wakeup_allowed = 0; 4993 4994 if (hsotg->params.lpm) 4995 hsotg->gadget.lpm_capable = true; 4996 4997 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4998 hsotg->gadget.is_otg = 1; 4999 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 5000 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 5001 5002 ret = dwc2_hsotg_hw_cfg(hsotg); 5003 if (ret) { 5004 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 5005 return ret; 5006 } 5007 5008 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 5009 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 5010 if (!hsotg->ctrl_buff) 5011 return -ENOMEM; 5012 5013 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 5014 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 5015 if (!hsotg->ep0_buff) 5016 return -ENOMEM; 5017 5018 if (using_desc_dma(hsotg)) { 5019 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 5020 if (ret < 0) 5021 return ret; 5022 } 5023 5024 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 5025 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 5026 if (ret < 0) { 5027 dev_err(dev, "cannot claim IRQ for gadget\n"); 5028 return ret; 5029 } 5030 5031 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 5032 5033 if (hsotg->num_of_eps == 0) { 5034 dev_err(dev, "wrong number of EPs (zero)\n"); 5035 return -EINVAL; 5036 } 5037 5038 /* setup endpoint information */ 5039 5040 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 5041 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 5042 5043 /* allocate EP0 request */ 5044 5045 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 5046 GFP_KERNEL); 5047 if (!hsotg->ctrl_req) { 5048 dev_err(dev, "failed to allocate ctrl req\n"); 5049 return -ENOMEM; 5050 } 5051 5052 /* initialise the endpoints now the core has been initialised */ 5053 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 5054 if (hsotg->eps_in[epnum]) 5055 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 5056 epnum, 1); 5057 if (hsotg->eps_out[epnum]) 5058 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 5059 epnum, 0); 5060 } 5061 5062 dwc2_hsotg_dump(hsotg); 5063 5064 return 0; 5065 } 5066 5067 /** 5068 * dwc2_hsotg_remove - remove function for hsotg driver 5069 * @hsotg: Programming view of the DWC_otg controller 5070 * 5071 */ 5072 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 5073 { 5074 usb_del_gadget_udc(&hsotg->gadget); 5075 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 5076 5077 return 0; 5078 } 5079 5080 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 5081 { 5082 unsigned long flags; 5083 5084 if (hsotg->lx_state != DWC2_L0) 5085 return 0; 5086 5087 if (hsotg->driver) { 5088 int ep; 5089 5090 dev_info(hsotg->dev, "suspending usb gadget %s\n", 5091 hsotg->driver->driver.name); 5092 5093 spin_lock_irqsave(&hsotg->lock, flags); 5094 if (hsotg->enabled) 5095 dwc2_hsotg_core_disconnect(hsotg); 5096 dwc2_hsotg_disconnect(hsotg); 5097 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 5098 spin_unlock_irqrestore(&hsotg->lock, flags); 5099 5100 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 5101 if (hsotg->eps_in[ep]) 5102 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 5103 if (hsotg->eps_out[ep]) 5104 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 5105 } 5106 } 5107 5108 return 0; 5109 } 5110 5111 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 5112 { 5113 unsigned long flags; 5114 5115 if (hsotg->lx_state == DWC2_L2) 5116 return 0; 5117 5118 if (hsotg->driver) { 5119 dev_info(hsotg->dev, "resuming usb gadget %s\n", 5120 hsotg->driver->driver.name); 5121 5122 spin_lock_irqsave(&hsotg->lock, flags); 5123 dwc2_hsotg_core_init_disconnected(hsotg, false); 5124 if (hsotg->enabled) { 5125 /* Enable ACG feature in device mode,if supported */ 5126 dwc2_enable_acg(hsotg); 5127 dwc2_hsotg_core_connect(hsotg); 5128 } 5129 spin_unlock_irqrestore(&hsotg->lock, flags); 5130 } 5131 5132 return 0; 5133 } 5134 5135 /** 5136 * dwc2_backup_device_registers() - Backup controller device registers. 5137 * When suspending usb bus, registers needs to be backuped 5138 * if controller power is disabled once suspended. 5139 * 5140 * @hsotg: Programming view of the DWC_otg controller 5141 */ 5142 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5143 { 5144 struct dwc2_dregs_backup *dr; 5145 int i; 5146 5147 dev_dbg(hsotg->dev, "%s\n", __func__); 5148 5149 /* Backup dev regs */ 5150 dr = &hsotg->dr_backup; 5151 5152 dr->dcfg = dwc2_readl(hsotg, DCFG); 5153 dr->dctl = dwc2_readl(hsotg, DCTL); 5154 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5155 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5156 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5157 5158 for (i = 0; i < hsotg->num_of_eps; i++) { 5159 /* Backup IN EPs */ 5160 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5161 5162 /* Ensure DATA PID is correctly configured */ 5163 if (dr->diepctl[i] & DXEPCTL_DPID) 5164 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5165 else 5166 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5167 5168 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5169 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5170 5171 /* Backup OUT EPs */ 5172 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5173 5174 /* Ensure DATA PID is correctly configured */ 5175 if (dr->doepctl[i] & DXEPCTL_DPID) 5176 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5177 else 5178 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5179 5180 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5181 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5182 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5183 } 5184 dr->valid = true; 5185 return 0; 5186 } 5187 5188 /** 5189 * dwc2_restore_device_registers() - Restore controller device registers. 5190 * When resuming usb bus, device registers needs to be restored 5191 * if controller power were disabled. 5192 * 5193 * @hsotg: Programming view of the DWC_otg controller 5194 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5195 * 5196 * Return: 0 if successful, negative error code otherwise 5197 */ 5198 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5199 { 5200 struct dwc2_dregs_backup *dr; 5201 int i; 5202 5203 dev_dbg(hsotg->dev, "%s\n", __func__); 5204 5205 /* Restore dev regs */ 5206 dr = &hsotg->dr_backup; 5207 if (!dr->valid) { 5208 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5209 __func__); 5210 return -EINVAL; 5211 } 5212 dr->valid = false; 5213 5214 if (!remote_wakeup) 5215 dwc2_writel(hsotg, dr->dctl, DCTL); 5216 5217 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5218 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5219 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5220 5221 for (i = 0; i < hsotg->num_of_eps; i++) { 5222 /* Restore IN EPs */ 5223 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5224 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5225 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5226 /** WA for enabled EPx's IN in DDMA mode. On entering to 5227 * hibernation wrong value read and saved from DIEPDMAx, 5228 * as result BNA interrupt asserted on hibernation exit 5229 * by restoring from saved area. 5230 */ 5231 if (using_desc_dma(hsotg) && 5232 (dr->diepctl[i] & DXEPCTL_EPENA)) 5233 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5234 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5235 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5236 /* Restore OUT EPs */ 5237 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5238 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5239 * hibernation wrong value read and saved from DOEPDMAx, 5240 * as result BNA interrupt asserted on hibernation exit 5241 * by restoring from saved area. 5242 */ 5243 if (using_desc_dma(hsotg) && 5244 (dr->doepctl[i] & DXEPCTL_EPENA)) 5245 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5246 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5247 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5248 } 5249 5250 return 0; 5251 } 5252 5253 /** 5254 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5255 * 5256 * @hsotg: Programming view of DWC_otg controller 5257 * 5258 */ 5259 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5260 { 5261 u32 val; 5262 5263 if (!hsotg->params.lpm) 5264 return; 5265 5266 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5267 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5268 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5269 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5270 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5271 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5272 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5273 dwc2_writel(hsotg, val, GLPMCFG); 5274 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5275 5276 /* Unmask WKUP_ALERT Interrupt */ 5277 if (hsotg->params.service_interval) 5278 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5279 } 5280 5281 /** 5282 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5283 * 5284 * @hsotg: Programming view of DWC_otg controller 5285 * 5286 */ 5287 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5288 { 5289 u32 val = 0; 5290 5291 val |= GREFCLK_REF_CLK_MODE; 5292 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5293 val |= hsotg->params.sof_cnt_wkup_alert << 5294 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5295 5296 dwc2_writel(hsotg, val, GREFCLK); 5297 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5298 } 5299 5300 /** 5301 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5302 * 5303 * @hsotg: Programming view of the DWC_otg controller 5304 * 5305 * Return non-zero if failed to enter to hibernation. 5306 */ 5307 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5308 { 5309 u32 gpwrdn; 5310 int ret = 0; 5311 5312 /* Change to L2(suspend) state */ 5313 hsotg->lx_state = DWC2_L2; 5314 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5315 ret = dwc2_backup_global_registers(hsotg); 5316 if (ret) { 5317 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5318 __func__); 5319 return ret; 5320 } 5321 ret = dwc2_backup_device_registers(hsotg); 5322 if (ret) { 5323 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5324 __func__); 5325 return ret; 5326 } 5327 5328 gpwrdn = GPWRDN_PWRDNRSTN; 5329 gpwrdn |= GPWRDN_PMUACTV; 5330 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5331 udelay(10); 5332 5333 /* Set flag to indicate that we are in hibernation */ 5334 hsotg->hibernated = 1; 5335 5336 /* Enable interrupts from wake up logic */ 5337 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5338 gpwrdn |= GPWRDN_PMUINTSEL; 5339 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5340 udelay(10); 5341 5342 /* Unmask device mode interrupts in GPWRDN */ 5343 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5344 gpwrdn |= GPWRDN_RST_DET_MSK; 5345 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5346 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5347 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5348 udelay(10); 5349 5350 /* Enable Power Down Clamp */ 5351 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5352 gpwrdn |= GPWRDN_PWRDNCLMP; 5353 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5354 udelay(10); 5355 5356 /* Switch off VDD */ 5357 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5358 gpwrdn |= GPWRDN_PWRDNSWTCH; 5359 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5360 udelay(10); 5361 5362 /* Save gpwrdn register for further usage if stschng interrupt */ 5363 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5364 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5365 5366 return ret; 5367 } 5368 5369 /** 5370 * dwc2_gadget_exit_hibernation() 5371 * This function is for exiting from Device mode hibernation by host initiated 5372 * resume/reset and device initiated remote-wakeup. 5373 * 5374 * @hsotg: Programming view of the DWC_otg controller 5375 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5376 * @reset: indicates whether resume is initiated by Reset. 5377 * 5378 * Return non-zero if failed to exit from hibernation. 5379 */ 5380 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5381 int rem_wakeup, int reset) 5382 { 5383 u32 pcgcctl; 5384 u32 gpwrdn; 5385 u32 dctl; 5386 int ret = 0; 5387 struct dwc2_gregs_backup *gr; 5388 struct dwc2_dregs_backup *dr; 5389 5390 gr = &hsotg->gr_backup; 5391 dr = &hsotg->dr_backup; 5392 5393 if (!hsotg->hibernated) { 5394 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5395 return 1; 5396 } 5397 dev_dbg(hsotg->dev, 5398 "%s: called with rem_wakeup = %d reset = %d\n", 5399 __func__, rem_wakeup, reset); 5400 5401 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5402 5403 if (!reset) { 5404 /* Clear all pending interupts */ 5405 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5406 } 5407 5408 /* De-assert Restore */ 5409 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5410 gpwrdn &= ~GPWRDN_RESTORE; 5411 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5412 udelay(10); 5413 5414 if (!rem_wakeup) { 5415 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5416 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5417 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5418 } 5419 5420 /* Restore GUSBCFG, DCFG and DCTL */ 5421 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5422 dwc2_writel(hsotg, dr->dcfg, DCFG); 5423 dwc2_writel(hsotg, dr->dctl, DCTL); 5424 5425 /* On USB Reset, reset device address to zero */ 5426 if (reset) 5427 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 5428 5429 /* De-assert Wakeup Logic */ 5430 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5431 gpwrdn &= ~GPWRDN_PMUACTV; 5432 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5433 5434 if (rem_wakeup) { 5435 udelay(10); 5436 /* Start Remote Wakeup Signaling */ 5437 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5438 } else { 5439 udelay(50); 5440 /* Set Device programming done bit */ 5441 dctl = dwc2_readl(hsotg, DCTL); 5442 dctl |= DCTL_PWRONPRGDONE; 5443 dwc2_writel(hsotg, dctl, DCTL); 5444 } 5445 /* Wait for interrupts which must be cleared */ 5446 mdelay(2); 5447 /* Clear all pending interupts */ 5448 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5449 5450 /* Restore global registers */ 5451 ret = dwc2_restore_global_registers(hsotg); 5452 if (ret) { 5453 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5454 __func__); 5455 return ret; 5456 } 5457 5458 /* Restore device registers */ 5459 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5460 if (ret) { 5461 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5462 __func__); 5463 return ret; 5464 } 5465 5466 if (rem_wakeup) { 5467 mdelay(10); 5468 dctl = dwc2_readl(hsotg, DCTL); 5469 dctl &= ~DCTL_RMTWKUPSIG; 5470 dwc2_writel(hsotg, dctl, DCTL); 5471 } 5472 5473 hsotg->hibernated = 0; 5474 hsotg->lx_state = DWC2_L0; 5475 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5476 5477 return ret; 5478 } 5479 5480 /** 5481 * dwc2_gadget_enter_partial_power_down() - Put controller in partial 5482 * power down. 5483 * 5484 * @hsotg: Programming view of the DWC_otg controller 5485 * 5486 * Return: non-zero if failed to enter device partial power down. 5487 * 5488 * This function is for entering device mode partial power down. 5489 */ 5490 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 5491 { 5492 u32 pcgcctl; 5493 int ret = 0; 5494 5495 dev_dbg(hsotg->dev, "Entering device partial power down started.\n"); 5496 5497 /* Backup all registers */ 5498 ret = dwc2_backup_global_registers(hsotg); 5499 if (ret) { 5500 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5501 __func__); 5502 return ret; 5503 } 5504 5505 ret = dwc2_backup_device_registers(hsotg); 5506 if (ret) { 5507 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5508 __func__); 5509 return ret; 5510 } 5511 5512 /* 5513 * Clear any pending interrupts since dwc2 will not be able to 5514 * clear them after entering partial_power_down. 5515 */ 5516 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5517 5518 /* Put the controller in low power state */ 5519 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5520 5521 pcgcctl |= PCGCTL_PWRCLMP; 5522 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5523 udelay(5); 5524 5525 pcgcctl |= PCGCTL_RSTPDWNMODULE; 5526 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5527 udelay(5); 5528 5529 pcgcctl |= PCGCTL_STOPPCLK; 5530 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5531 5532 /* Set in_ppd flag to 1 as here core enters suspend. */ 5533 hsotg->in_ppd = 1; 5534 hsotg->lx_state = DWC2_L2; 5535 5536 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n"); 5537 5538 return ret; 5539 } 5540 5541 /* 5542 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial 5543 * power down. 5544 * 5545 * @hsotg: Programming view of the DWC_otg controller 5546 * @restore: indicates whether need to restore the registers or not. 5547 * 5548 * Return: non-zero if failed to exit device partial power down. 5549 * 5550 * This function is for exiting from device mode partial power down. 5551 */ 5552 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 5553 bool restore) 5554 { 5555 u32 pcgcctl; 5556 u32 dctl; 5557 struct dwc2_dregs_backup *dr; 5558 int ret = 0; 5559 5560 dr = &hsotg->dr_backup; 5561 5562 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n"); 5563 5564 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5565 pcgcctl &= ~PCGCTL_STOPPCLK; 5566 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5567 5568 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5569 pcgcctl &= ~PCGCTL_PWRCLMP; 5570 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5571 5572 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5573 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5574 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5575 5576 udelay(100); 5577 if (restore) { 5578 ret = dwc2_restore_global_registers(hsotg); 5579 if (ret) { 5580 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5581 __func__); 5582 return ret; 5583 } 5584 /* Restore DCFG */ 5585 dwc2_writel(hsotg, dr->dcfg, DCFG); 5586 5587 ret = dwc2_restore_device_registers(hsotg, 0); 5588 if (ret) { 5589 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5590 __func__); 5591 return ret; 5592 } 5593 } 5594 5595 /* Set the Power-On Programming done bit */ 5596 dctl = dwc2_readl(hsotg, DCTL); 5597 dctl |= DCTL_PWRONPRGDONE; 5598 dwc2_writel(hsotg, dctl, DCTL); 5599 5600 /* Set in_ppd flag to 0 as here core exits from suspend. */ 5601 hsotg->in_ppd = 0; 5602 hsotg->lx_state = DWC2_L0; 5603 5604 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n"); 5605 return ret; 5606 } 5607 5608 /** 5609 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating. 5610 * 5611 * @hsotg: Programming view of the DWC_otg controller 5612 * 5613 * Return: non-zero if failed to enter device partial power down. 5614 * 5615 * This function is for entering device mode clock gating. 5616 */ 5617 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) 5618 { 5619 u32 pcgctl; 5620 5621 dev_dbg(hsotg->dev, "Entering device clock gating.\n"); 5622 5623 /* Set the Phy Clock bit as suspend is received. */ 5624 pcgctl = dwc2_readl(hsotg, PCGCTL); 5625 pcgctl |= PCGCTL_STOPPCLK; 5626 dwc2_writel(hsotg, pcgctl, PCGCTL); 5627 udelay(5); 5628 5629 /* Set the Gate hclk as suspend is received. */ 5630 pcgctl = dwc2_readl(hsotg, PCGCTL); 5631 pcgctl |= PCGCTL_GATEHCLK; 5632 dwc2_writel(hsotg, pcgctl, PCGCTL); 5633 udelay(5); 5634 5635 hsotg->lx_state = DWC2_L2; 5636 hsotg->bus_suspended = true; 5637 } 5638 5639 /* 5640 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating. 5641 * 5642 * @hsotg: Programming view of the DWC_otg controller 5643 * @rem_wakeup: indicates whether remote wake up is enabled. 5644 * 5645 * This function is for exiting from device mode clock gating. 5646 */ 5647 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup) 5648 { 5649 u32 pcgctl; 5650 u32 dctl; 5651 5652 dev_dbg(hsotg->dev, "Exiting device clock gating.\n"); 5653 5654 /* Clear the Gate hclk. */ 5655 pcgctl = dwc2_readl(hsotg, PCGCTL); 5656 pcgctl &= ~PCGCTL_GATEHCLK; 5657 dwc2_writel(hsotg, pcgctl, PCGCTL); 5658 udelay(5); 5659 5660 /* Phy Clock bit. */ 5661 pcgctl = dwc2_readl(hsotg, PCGCTL); 5662 pcgctl &= ~PCGCTL_STOPPCLK; 5663 dwc2_writel(hsotg, pcgctl, PCGCTL); 5664 udelay(5); 5665 5666 if (rem_wakeup) { 5667 /* Set Remote Wakeup Signaling */ 5668 dctl = dwc2_readl(hsotg, DCTL); 5669 dctl |= DCTL_RMTWKUPSIG; 5670 dwc2_writel(hsotg, dctl, DCTL); 5671 } 5672 5673 /* Change to L0 state */ 5674 call_gadget(hsotg, resume); 5675 hsotg->lx_state = DWC2_L0; 5676 hsotg->bus_suspended = false; 5677 } 5678