xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 1a59d1b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 
264 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
265 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
266 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
267 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
268 	}
269 }
270 
271 /**
272  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
273  * TX FIFOs
274  *
275  * @hsotg: Programming view of the DWC_otg controller
276  */
277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
278 {
279 	int tx_fifo_count;
280 	int tx_fifo_depth;
281 
282 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
283 
284 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
285 
286 	if (!tx_fifo_count)
287 		return tx_fifo_depth;
288 	else
289 		return tx_fifo_depth / tx_fifo_count;
290 }
291 
292 /**
293  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
294  * @hsotg: The device instance.
295  */
296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
297 {
298 	unsigned int ep;
299 	unsigned int addr;
300 	int timeout;
301 
302 	u32 val;
303 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
304 
305 	/* Reset fifo map if not correctly cleared during previous session */
306 	WARN_ON(hsotg->fifo_map);
307 	hsotg->fifo_map = 0;
308 
309 	/* set RX/NPTX FIFO sizes */
310 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
311 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
312 		    FIFOSIZE_STARTADDR_SHIFT) |
313 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
314 		    GNPTXFSIZ);
315 
316 	/*
317 	 * arange all the rest of the TX FIFOs, as some versions of this
318 	 * block have overlapping default addresses. This also ensures
319 	 * that if the settings have been changed, then they are set to
320 	 * known values.
321 	 */
322 
323 	/* start at the end of the GNPTXFSIZ, rounded up */
324 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
325 
326 	/*
327 	 * Configure fifos sizes from provided configuration and assign
328 	 * them to endpoints dynamically according to maxpacket size value of
329 	 * given endpoint.
330 	 */
331 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
332 		if (!txfsz[ep])
333 			continue;
334 		val = addr;
335 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
336 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
337 			  "insufficient fifo memory");
338 		addr += txfsz[ep];
339 
340 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
341 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
342 	}
343 
344 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
345 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
346 		    GDFIFOCFG);
347 	/*
348 	 * according to p428 of the design guide, we need to ensure that
349 	 * all fifos are flushed before continuing
350 	 */
351 
352 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
353 	       GRSTCTL_RXFFLSH, GRSTCTL);
354 
355 	/* wait until the fifos are both flushed */
356 	timeout = 100;
357 	while (1) {
358 		val = dwc2_readl(hsotg, GRSTCTL);
359 
360 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
361 			break;
362 
363 		if (--timeout == 0) {
364 			dev_err(hsotg->dev,
365 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
366 				__func__, val);
367 			break;
368 		}
369 
370 		udelay(1);
371 	}
372 
373 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
374 }
375 
376 /**
377  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
378  * @ep: USB endpoint to allocate request for.
379  * @flags: Allocation flags
380  *
381  * Allocate a new USB request structure appropriate for the specified endpoint
382  */
383 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
384 						       gfp_t flags)
385 {
386 	struct dwc2_hsotg_req *req;
387 
388 	req = kzalloc(sizeof(*req), flags);
389 	if (!req)
390 		return NULL;
391 
392 	INIT_LIST_HEAD(&req->queue);
393 
394 	return &req->req;
395 }
396 
397 /**
398  * is_ep_periodic - return true if the endpoint is in periodic mode.
399  * @hs_ep: The endpoint to query.
400  *
401  * Returns true if the endpoint is in periodic mode, meaning it is being
402  * used for an Interrupt or ISO transfer.
403  */
404 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
405 {
406 	return hs_ep->periodic;
407 }
408 
409 /**
410  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
411  * @hsotg: The device state.
412  * @hs_ep: The endpoint for the request
413  * @hs_req: The request being processed.
414  *
415  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
416  * of a request to ensure the buffer is ready for access by the caller.
417  */
418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
419 				 struct dwc2_hsotg_ep *hs_ep,
420 				struct dwc2_hsotg_req *hs_req)
421 {
422 	struct usb_request *req = &hs_req->req;
423 
424 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
425 }
426 
427 /*
428  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
429  * for Control endpoint
430  * @hsotg: The device state.
431  *
432  * This function will allocate 4 descriptor chains for EP 0: 2 for
433  * Setup stage, per one for IN and OUT data/status transactions.
434  */
435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
436 {
437 	hsotg->setup_desc[0] =
438 		dmam_alloc_coherent(hsotg->dev,
439 				    sizeof(struct dwc2_dma_desc),
440 				    &hsotg->setup_desc_dma[0],
441 				    GFP_KERNEL);
442 	if (!hsotg->setup_desc[0])
443 		goto fail;
444 
445 	hsotg->setup_desc[1] =
446 		dmam_alloc_coherent(hsotg->dev,
447 				    sizeof(struct dwc2_dma_desc),
448 				    &hsotg->setup_desc_dma[1],
449 				    GFP_KERNEL);
450 	if (!hsotg->setup_desc[1])
451 		goto fail;
452 
453 	hsotg->ctrl_in_desc =
454 		dmam_alloc_coherent(hsotg->dev,
455 				    sizeof(struct dwc2_dma_desc),
456 				    &hsotg->ctrl_in_desc_dma,
457 				    GFP_KERNEL);
458 	if (!hsotg->ctrl_in_desc)
459 		goto fail;
460 
461 	hsotg->ctrl_out_desc =
462 		dmam_alloc_coherent(hsotg->dev,
463 				    sizeof(struct dwc2_dma_desc),
464 				    &hsotg->ctrl_out_desc_dma,
465 				    GFP_KERNEL);
466 	if (!hsotg->ctrl_out_desc)
467 		goto fail;
468 
469 	return 0;
470 
471 fail:
472 	return -ENOMEM;
473 }
474 
475 /**
476  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
477  * @hsotg: The controller state.
478  * @hs_ep: The endpoint we're going to write for.
479  * @hs_req: The request to write data for.
480  *
481  * This is called when the TxFIFO has some space in it to hold a new
482  * transmission and we have something to give it. The actual setup of
483  * the data size is done elsewhere, so all we have to do is to actually
484  * write the data.
485  *
486  * The return value is zero if there is more space (or nothing was done)
487  * otherwise -ENOSPC is returned if the FIFO space was used up.
488  *
489  * This routine is only needed for PIO
490  */
491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
492 				 struct dwc2_hsotg_ep *hs_ep,
493 				struct dwc2_hsotg_req *hs_req)
494 {
495 	bool periodic = is_ep_periodic(hs_ep);
496 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
497 	int buf_pos = hs_req->req.actual;
498 	int to_write = hs_ep->size_loaded;
499 	void *data;
500 	int can_write;
501 	int pkt_round;
502 	int max_transfer;
503 
504 	to_write -= (buf_pos - hs_ep->last_load);
505 
506 	/* if there's nothing to write, get out early */
507 	if (to_write == 0)
508 		return 0;
509 
510 	if (periodic && !hsotg->dedicated_fifos) {
511 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
512 		int size_left;
513 		int size_done;
514 
515 		/*
516 		 * work out how much data was loaded so we can calculate
517 		 * how much data is left in the fifo.
518 		 */
519 
520 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
521 
522 		/*
523 		 * if shared fifo, we cannot write anything until the
524 		 * previous data has been completely sent.
525 		 */
526 		if (hs_ep->fifo_load != 0) {
527 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
528 			return -ENOSPC;
529 		}
530 
531 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
532 			__func__, size_left,
533 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
534 
535 		/* how much of the data has moved */
536 		size_done = hs_ep->size_loaded - size_left;
537 
538 		/* how much data is left in the fifo */
539 		can_write = hs_ep->fifo_load - size_done;
540 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
541 			__func__, can_write);
542 
543 		can_write = hs_ep->fifo_size - can_write;
544 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
545 			__func__, can_write);
546 
547 		if (can_write <= 0) {
548 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
549 			return -ENOSPC;
550 		}
551 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
552 		can_write = dwc2_readl(hsotg,
553 				       DTXFSTS(hs_ep->fifo_index));
554 
555 		can_write &= 0xffff;
556 		can_write *= 4;
557 	} else {
558 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
559 			dev_dbg(hsotg->dev,
560 				"%s: no queue slots available (0x%08x)\n",
561 				__func__, gnptxsts);
562 
563 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
564 			return -ENOSPC;
565 		}
566 
567 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
568 		can_write *= 4;	/* fifo size is in 32bit quantities. */
569 	}
570 
571 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
572 
573 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
574 		__func__, gnptxsts, can_write, to_write, max_transfer);
575 
576 	/*
577 	 * limit to 512 bytes of data, it seems at least on the non-periodic
578 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
579 	 * fragment of the end of the transfer in it.
580 	 */
581 	if (can_write > 512 && !periodic)
582 		can_write = 512;
583 
584 	/*
585 	 * limit the write to one max-packet size worth of data, but allow
586 	 * the transfer to return that it did not run out of fifo space
587 	 * doing it.
588 	 */
589 	if (to_write > max_transfer) {
590 		to_write = max_transfer;
591 
592 		/* it's needed only when we do not use dedicated fifos */
593 		if (!hsotg->dedicated_fifos)
594 			dwc2_hsotg_en_gsint(hsotg,
595 					    periodic ? GINTSTS_PTXFEMP :
596 					   GINTSTS_NPTXFEMP);
597 	}
598 
599 	/* see if we can write data */
600 
601 	if (to_write > can_write) {
602 		to_write = can_write;
603 		pkt_round = to_write % max_transfer;
604 
605 		/*
606 		 * Round the write down to an
607 		 * exact number of packets.
608 		 *
609 		 * Note, we do not currently check to see if we can ever
610 		 * write a full packet or not to the FIFO.
611 		 */
612 
613 		if (pkt_round)
614 			to_write -= pkt_round;
615 
616 		/*
617 		 * enable correct FIFO interrupt to alert us when there
618 		 * is more room left.
619 		 */
620 
621 		/* it's needed only when we do not use dedicated fifos */
622 		if (!hsotg->dedicated_fifos)
623 			dwc2_hsotg_en_gsint(hsotg,
624 					    periodic ? GINTSTS_PTXFEMP :
625 					   GINTSTS_NPTXFEMP);
626 	}
627 
628 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
629 		to_write, hs_req->req.length, can_write, buf_pos);
630 
631 	if (to_write <= 0)
632 		return -ENOSPC;
633 
634 	hs_req->req.actual = buf_pos + to_write;
635 	hs_ep->total_data += to_write;
636 
637 	if (periodic)
638 		hs_ep->fifo_load += to_write;
639 
640 	to_write = DIV_ROUND_UP(to_write, 4);
641 	data = hs_req->req.buf + buf_pos;
642 
643 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
644 
645 	return (to_write >= can_write) ? -ENOSPC : 0;
646 }
647 
648 /**
649  * get_ep_limit - get the maximum data legnth for this endpoint
650  * @hs_ep: The endpoint
651  *
652  * Return the maximum data that can be queued in one go on a given endpoint
653  * so that transfers that are too long can be split.
654  */
655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
656 {
657 	int index = hs_ep->index;
658 	unsigned int maxsize;
659 	unsigned int maxpkt;
660 
661 	if (index != 0) {
662 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
663 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
664 	} else {
665 		maxsize = 64 + 64;
666 		if (hs_ep->dir_in)
667 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
668 		else
669 			maxpkt = 2;
670 	}
671 
672 	/* we made the constant loading easier above by using +1 */
673 	maxpkt--;
674 	maxsize--;
675 
676 	/*
677 	 * constrain by packet count if maxpkts*pktsize is greater
678 	 * than the length register size.
679 	 */
680 
681 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
682 		maxsize = maxpkt * hs_ep->ep.maxpacket;
683 
684 	return maxsize;
685 }
686 
687 /**
688  * dwc2_hsotg_read_frameno - read current frame number
689  * @hsotg: The device instance
690  *
691  * Return the current frame number
692  */
693 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
694 {
695 	u32 dsts;
696 
697 	dsts = dwc2_readl(hsotg, DSTS);
698 	dsts &= DSTS_SOFFN_MASK;
699 	dsts >>= DSTS_SOFFN_SHIFT;
700 
701 	return dsts;
702 }
703 
704 /**
705  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
706  * DMA descriptor chain prepared for specific endpoint
707  * @hs_ep: The endpoint
708  *
709  * Return the maximum data that can be queued in one go on a given endpoint
710  * depending on its descriptor chain capacity so that transfers that
711  * are too long can be split.
712  */
713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
714 {
715 	int is_isoc = hs_ep->isochronous;
716 	unsigned int maxsize;
717 
718 	if (is_isoc)
719 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
720 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
721 					   MAX_DMA_DESC_NUM_HS_ISOC;
722 	else
723 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
724 
725 	return maxsize;
726 }
727 
728 /*
729  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
730  * @hs_ep: The endpoint
731  * @mask: RX/TX bytes mask to be defined
732  *
733  * Returns maximum data payload for one descriptor after analyzing endpoint
734  * characteristics.
735  * DMA descriptor transfer bytes limit depends on EP type:
736  * Control out - MPS,
737  * Isochronous - descriptor rx/tx bytes bitfield limit,
738  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
739  * have concatenations from various descriptors within one packet.
740  *
741  * Selects corresponding mask for RX/TX bytes as well.
742  */
743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
744 {
745 	u32 mps = hs_ep->ep.maxpacket;
746 	int dir_in = hs_ep->dir_in;
747 	u32 desc_size = 0;
748 
749 	if (!hs_ep->index && !dir_in) {
750 		desc_size = mps;
751 		*mask = DEV_DMA_NBYTES_MASK;
752 	} else if (hs_ep->isochronous) {
753 		if (dir_in) {
754 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
755 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
756 		} else {
757 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
758 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
759 		}
760 	} else {
761 		desc_size = DEV_DMA_NBYTES_LIMIT;
762 		*mask = DEV_DMA_NBYTES_MASK;
763 
764 		/* Round down desc_size to be mps multiple */
765 		desc_size -= desc_size % mps;
766 	}
767 
768 	return desc_size;
769 }
770 
771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
772 						 struct dwc2_dma_desc **desc,
773 						 dma_addr_t dma_buff,
774 						 unsigned int len,
775 						 bool true_last)
776 {
777 	int dir_in = hs_ep->dir_in;
778 	u32 mps = hs_ep->ep.maxpacket;
779 	u32 maxsize = 0;
780 	u32 offset = 0;
781 	u32 mask = 0;
782 	int i;
783 
784 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
785 
786 	hs_ep->desc_count = (len / maxsize) +
787 				((len % maxsize) ? 1 : 0);
788 	if (len == 0)
789 		hs_ep->desc_count = 1;
790 
791 	for (i = 0; i < hs_ep->desc_count; ++i) {
792 		(*desc)->status = 0;
793 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
794 				 << DEV_DMA_BUFF_STS_SHIFT);
795 
796 		if (len > maxsize) {
797 			if (!hs_ep->index && !dir_in)
798 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
799 
800 			(*desc)->status |=
801 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
802 			(*desc)->buf = dma_buff + offset;
803 
804 			len -= maxsize;
805 			offset += maxsize;
806 		} else {
807 			if (true_last)
808 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
809 
810 			if (dir_in)
811 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
812 					((hs_ep->send_zlp && true_last) ?
813 					DEV_DMA_SHORT : 0);
814 
815 			(*desc)->status |=
816 				len << DEV_DMA_NBYTES_SHIFT & mask;
817 			(*desc)->buf = dma_buff + offset;
818 		}
819 
820 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
821 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
822 				 << DEV_DMA_BUFF_STS_SHIFT);
823 		(*desc)++;
824 	}
825 }
826 
827 /*
828  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
829  * @hs_ep: The endpoint
830  * @ureq: Request to transfer
831  * @offset: offset in bytes
832  * @len: Length of the transfer
833  *
834  * This function will iterate over descriptor chain and fill its entries
835  * with corresponding information based on transfer data.
836  */
837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
838 						 struct usb_request *ureq,
839 						 unsigned int offset,
840 						 unsigned int len)
841 {
842 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
843 	struct scatterlist *sg;
844 	int i;
845 	u8 desc_count = 0;
846 
847 	/* non-DMA sg buffer */
848 	if (!ureq->num_sgs) {
849 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
850 			ureq->dma + offset, len, true);
851 		return;
852 	}
853 
854 	/* DMA sg buffer */
855 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
856 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
857 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
858 			sg_is_last(sg));
859 		desc_count += hs_ep->desc_count;
860 	}
861 
862 	hs_ep->desc_count = desc_count;
863 }
864 
865 /*
866  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
867  * @hs_ep: The isochronous endpoint.
868  * @dma_buff: usb requests dma buffer.
869  * @len: usb request transfer length.
870  *
871  * Fills next free descriptor with the data of the arrived usb request,
872  * frame info, sets Last and IOC bits increments next_desc. If filled
873  * descriptor is not the first one, removes L bit from the previous descriptor
874  * status.
875  */
876 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
877 				      dma_addr_t dma_buff, unsigned int len)
878 {
879 	struct dwc2_dma_desc *desc;
880 	struct dwc2_hsotg *hsotg = hs_ep->parent;
881 	u32 index;
882 	u32 maxsize = 0;
883 	u32 mask = 0;
884 	u8 pid = 0;
885 
886 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
887 
888 	index = hs_ep->next_desc;
889 	desc = &hs_ep->desc_list[index];
890 
891 	/* Check if descriptor chain full */
892 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
893 	    DEV_DMA_BUFF_STS_HREADY) {
894 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
895 		return 1;
896 	}
897 
898 	/* Clear L bit of previous desc if more than one entries in the chain */
899 	if (hs_ep->next_desc)
900 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
901 
902 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
903 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
904 
905 	desc->status = 0;
906 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
907 
908 	desc->buf = dma_buff;
909 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
910 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
911 
912 	if (hs_ep->dir_in) {
913 		if (len)
914 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
915 		else
916 			pid = 1;
917 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
918 				 DEV_DMA_ISOC_PID_MASK) |
919 				((len % hs_ep->ep.maxpacket) ?
920 				 DEV_DMA_SHORT : 0) |
921 				((hs_ep->target_frame <<
922 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
923 				 DEV_DMA_ISOC_FRNUM_MASK);
924 	}
925 
926 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
927 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
928 
929 	/* Increment frame number by interval for IN */
930 	if (hs_ep->dir_in)
931 		dwc2_gadget_incr_frame_num(hs_ep);
932 
933 	/* Update index of last configured entry in the chain */
934 	hs_ep->next_desc++;
935 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
936 		hs_ep->next_desc = 0;
937 
938 	return 0;
939 }
940 
941 /*
942  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
943  * @hs_ep: The isochronous endpoint.
944  *
945  * Prepare descriptor chain for isochronous endpoints. Afterwards
946  * write DMA address to HW and enable the endpoint.
947  */
948 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
949 {
950 	struct dwc2_hsotg *hsotg = hs_ep->parent;
951 	struct dwc2_hsotg_req *hs_req, *treq;
952 	int index = hs_ep->index;
953 	int ret;
954 	int i;
955 	u32 dma_reg;
956 	u32 depctl;
957 	u32 ctrl;
958 	struct dwc2_dma_desc *desc;
959 
960 	if (list_empty(&hs_ep->queue)) {
961 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
962 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
963 		return;
964 	}
965 
966 	/* Initialize descriptor chain by Host Busy status */
967 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
968 		desc = &hs_ep->desc_list[i];
969 		desc->status = 0;
970 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
971 				    << DEV_DMA_BUFF_STS_SHIFT);
972 	}
973 
974 	hs_ep->next_desc = 0;
975 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
976 		dma_addr_t dma_addr = hs_req->req.dma;
977 
978 		if (hs_req->req.num_sgs) {
979 			WARN_ON(hs_req->req.num_sgs > 1);
980 			dma_addr = sg_dma_address(hs_req->req.sg);
981 		}
982 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
983 						 hs_req->req.length);
984 		if (ret)
985 			break;
986 	}
987 
988 	hs_ep->compl_desc = 0;
989 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
990 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
991 
992 	/* write descriptor chain address to control register */
993 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
994 
995 	ctrl = dwc2_readl(hsotg, depctl);
996 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
997 	dwc2_writel(hsotg, ctrl, depctl);
998 }
999 
1000 /**
1001  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1002  * @hsotg: The controller state.
1003  * @hs_ep: The endpoint to process a request for
1004  * @hs_req: The request to start.
1005  * @continuing: True if we are doing more for the current request.
1006  *
1007  * Start the given request running by setting the endpoint registers
1008  * appropriately, and writing any data to the FIFOs.
1009  */
1010 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1011 				 struct dwc2_hsotg_ep *hs_ep,
1012 				struct dwc2_hsotg_req *hs_req,
1013 				bool continuing)
1014 {
1015 	struct usb_request *ureq = &hs_req->req;
1016 	int index = hs_ep->index;
1017 	int dir_in = hs_ep->dir_in;
1018 	u32 epctrl_reg;
1019 	u32 epsize_reg;
1020 	u32 epsize;
1021 	u32 ctrl;
1022 	unsigned int length;
1023 	unsigned int packets;
1024 	unsigned int maxreq;
1025 	unsigned int dma_reg;
1026 
1027 	if (index != 0) {
1028 		if (hs_ep->req && !continuing) {
1029 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1030 			WARN_ON(1);
1031 			return;
1032 		} else if (hs_ep->req != hs_req && continuing) {
1033 			dev_err(hsotg->dev,
1034 				"%s: continue different req\n", __func__);
1035 			WARN_ON(1);
1036 			return;
1037 		}
1038 	}
1039 
1040 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1041 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1042 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1043 
1044 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1045 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1046 		hs_ep->dir_in ? "in" : "out");
1047 
1048 	/* If endpoint is stalled, we will restart request later */
1049 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1050 
1051 	if (index && ctrl & DXEPCTL_STALL) {
1052 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1053 		return;
1054 	}
1055 
1056 	length = ureq->length - ureq->actual;
1057 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1058 		ureq->length, ureq->actual);
1059 
1060 	if (!using_desc_dma(hsotg))
1061 		maxreq = get_ep_limit(hs_ep);
1062 	else
1063 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1064 
1065 	if (length > maxreq) {
1066 		int round = maxreq % hs_ep->ep.maxpacket;
1067 
1068 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1069 			__func__, length, maxreq, round);
1070 
1071 		/* round down to multiple of packets */
1072 		if (round)
1073 			maxreq -= round;
1074 
1075 		length = maxreq;
1076 	}
1077 
1078 	if (length)
1079 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1080 	else
1081 		packets = 1;	/* send one packet if length is zero. */
1082 
1083 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1084 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1085 		return;
1086 	}
1087 
1088 	if (dir_in && index != 0)
1089 		if (hs_ep->isochronous)
1090 			epsize = DXEPTSIZ_MC(packets);
1091 		else
1092 			epsize = DXEPTSIZ_MC(1);
1093 	else
1094 		epsize = 0;
1095 
1096 	/*
1097 	 * zero length packet should be programmed on its own and should not
1098 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1099 	 */
1100 	if (dir_in && ureq->zero && !continuing) {
1101 		/* Test if zlp is actually required. */
1102 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1103 		    !(ureq->length % hs_ep->ep.maxpacket))
1104 			hs_ep->send_zlp = 1;
1105 	}
1106 
1107 	epsize |= DXEPTSIZ_PKTCNT(packets);
1108 	epsize |= DXEPTSIZ_XFERSIZE(length);
1109 
1110 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1111 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1112 
1113 	/* store the request as the current one we're doing */
1114 	hs_ep->req = hs_req;
1115 
1116 	if (using_desc_dma(hsotg)) {
1117 		u32 offset = 0;
1118 		u32 mps = hs_ep->ep.maxpacket;
1119 
1120 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1121 		if (!dir_in) {
1122 			if (!index)
1123 				length = mps;
1124 			else if (length % mps)
1125 				length += (mps - (length % mps));
1126 		}
1127 
1128 		/*
1129 		 * If more data to send, adjust DMA for EP0 out data stage.
1130 		 * ureq->dma stays unchanged, hence increment it by already
1131 		 * passed passed data count before starting new transaction.
1132 		 */
1133 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1134 		    continuing)
1135 			offset = ureq->actual;
1136 
1137 		/* Fill DDMA chain entries */
1138 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq, offset,
1139 						     length);
1140 
1141 		/* write descriptor chain address to control register */
1142 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1143 
1144 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1145 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1146 	} else {
1147 		/* write size / packets */
1148 		dwc2_writel(hsotg, epsize, epsize_reg);
1149 
1150 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1151 			/*
1152 			 * write DMA address to control register, buffer
1153 			 * already synced by dwc2_hsotg_ep_queue().
1154 			 */
1155 
1156 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1157 
1158 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1159 				__func__, &ureq->dma, dma_reg);
1160 		}
1161 	}
1162 
1163 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1164 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1165 		dwc2_gadget_incr_frame_num(hs_ep);
1166 
1167 		if (hs_ep->target_frame & 0x1)
1168 			ctrl |= DXEPCTL_SETODDFR;
1169 		else
1170 			ctrl |= DXEPCTL_SETEVENFR;
1171 	}
1172 
1173 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1174 
1175 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1176 
1177 	/* For Setup request do not clear NAK */
1178 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1179 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1180 
1181 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1182 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1183 
1184 	/*
1185 	 * set these, it seems that DMA support increments past the end
1186 	 * of the packet buffer so we need to calculate the length from
1187 	 * this information.
1188 	 */
1189 	hs_ep->size_loaded = length;
1190 	hs_ep->last_load = ureq->actual;
1191 
1192 	if (dir_in && !using_dma(hsotg)) {
1193 		/* set these anyway, we may need them for non-periodic in */
1194 		hs_ep->fifo_load = 0;
1195 
1196 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1197 	}
1198 
1199 	/*
1200 	 * Note, trying to clear the NAK here causes problems with transmit
1201 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1202 	 */
1203 
1204 	/* check ep is enabled */
1205 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1206 		dev_dbg(hsotg->dev,
1207 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1208 			 index, dwc2_readl(hsotg, epctrl_reg));
1209 
1210 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1211 		__func__, dwc2_readl(hsotg, epctrl_reg));
1212 
1213 	/* enable ep interrupts */
1214 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1215 }
1216 
1217 /**
1218  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1219  * @hsotg: The device state.
1220  * @hs_ep: The endpoint the request is on.
1221  * @req: The request being processed.
1222  *
1223  * We've been asked to queue a request, so ensure that the memory buffer
1224  * is correctly setup for DMA. If we've been passed an extant DMA address
1225  * then ensure the buffer has been synced to memory. If our buffer has no
1226  * DMA memory, then we map the memory and mark our request to allow us to
1227  * cleanup on completion.
1228  */
1229 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1230 			      struct dwc2_hsotg_ep *hs_ep,
1231 			     struct usb_request *req)
1232 {
1233 	int ret;
1234 
1235 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1236 	if (ret)
1237 		goto dma_error;
1238 
1239 	return 0;
1240 
1241 dma_error:
1242 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1243 		__func__, req->buf, req->length);
1244 
1245 	return -EIO;
1246 }
1247 
1248 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1249 						 struct dwc2_hsotg_ep *hs_ep,
1250 						 struct dwc2_hsotg_req *hs_req)
1251 {
1252 	void *req_buf = hs_req->req.buf;
1253 
1254 	/* If dma is not being used or buffer is aligned */
1255 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1256 		return 0;
1257 
1258 	WARN_ON(hs_req->saved_req_buf);
1259 
1260 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1261 		hs_ep->ep.name, req_buf, hs_req->req.length);
1262 
1263 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1264 	if (!hs_req->req.buf) {
1265 		hs_req->req.buf = req_buf;
1266 		dev_err(hsotg->dev,
1267 			"%s: unable to allocate memory for bounce buffer\n",
1268 			__func__);
1269 		return -ENOMEM;
1270 	}
1271 
1272 	/* Save actual buffer */
1273 	hs_req->saved_req_buf = req_buf;
1274 
1275 	if (hs_ep->dir_in)
1276 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1277 	return 0;
1278 }
1279 
1280 static void
1281 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1282 					 struct dwc2_hsotg_ep *hs_ep,
1283 					 struct dwc2_hsotg_req *hs_req)
1284 {
1285 	/* If dma is not being used or buffer was aligned */
1286 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1287 		return;
1288 
1289 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1290 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1291 
1292 	/* Copy data from bounce buffer on successful out transfer */
1293 	if (!hs_ep->dir_in && !hs_req->req.status)
1294 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1295 		       hs_req->req.actual);
1296 
1297 	/* Free bounce buffer */
1298 	kfree(hs_req->req.buf);
1299 
1300 	hs_req->req.buf = hs_req->saved_req_buf;
1301 	hs_req->saved_req_buf = NULL;
1302 }
1303 
1304 /**
1305  * dwc2_gadget_target_frame_elapsed - Checks target frame
1306  * @hs_ep: The driver endpoint to check
1307  *
1308  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1309  * corresponding transfer.
1310  */
1311 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1312 {
1313 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1314 	u32 target_frame = hs_ep->target_frame;
1315 	u32 current_frame = hsotg->frame_number;
1316 	bool frame_overrun = hs_ep->frame_overrun;
1317 
1318 	if (!frame_overrun && current_frame >= target_frame)
1319 		return true;
1320 
1321 	if (frame_overrun && current_frame >= target_frame &&
1322 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1323 		return true;
1324 
1325 	return false;
1326 }
1327 
1328 /*
1329  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1330  * @hsotg: The driver state
1331  * @hs_ep: the ep descriptor chain is for
1332  *
1333  * Called to update EP0 structure's pointers depend on stage of
1334  * control transfer.
1335  */
1336 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1337 					  struct dwc2_hsotg_ep *hs_ep)
1338 {
1339 	switch (hsotg->ep0_state) {
1340 	case DWC2_EP0_SETUP:
1341 	case DWC2_EP0_STATUS_OUT:
1342 		hs_ep->desc_list = hsotg->setup_desc[0];
1343 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1344 		break;
1345 	case DWC2_EP0_DATA_IN:
1346 	case DWC2_EP0_STATUS_IN:
1347 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1348 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1349 		break;
1350 	case DWC2_EP0_DATA_OUT:
1351 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1352 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1353 		break;
1354 	default:
1355 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1356 			hsotg->ep0_state);
1357 		return -EINVAL;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1364 			       gfp_t gfp_flags)
1365 {
1366 	struct dwc2_hsotg_req *hs_req = our_req(req);
1367 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1368 	struct dwc2_hsotg *hs = hs_ep->parent;
1369 	bool first;
1370 	int ret;
1371 	u32 maxsize = 0;
1372 	u32 mask = 0;
1373 
1374 
1375 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1376 		ep->name, req, req->length, req->buf, req->no_interrupt,
1377 		req->zero, req->short_not_ok);
1378 
1379 	/* Prevent new request submission when controller is suspended */
1380 	if (hs->lx_state != DWC2_L0) {
1381 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1382 			__func__);
1383 		return -EAGAIN;
1384 	}
1385 
1386 	/* initialise status of the request */
1387 	INIT_LIST_HEAD(&hs_req->queue);
1388 	req->actual = 0;
1389 	req->status = -EINPROGRESS;
1390 
1391 	/* In DDMA mode for ISOC's don't queue request if length greater
1392 	 * than descriptor limits.
1393 	 */
1394 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1395 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1396 		if (hs_ep->dir_in && req->length > maxsize) {
1397 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1398 				req->length, maxsize);
1399 			return -EINVAL;
1400 		}
1401 
1402 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1403 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1404 				req->length, hs_ep->ep.maxpacket);
1405 			return -EINVAL;
1406 		}
1407 	}
1408 
1409 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1410 	if (ret)
1411 		return ret;
1412 
1413 	/* if we're using DMA, sync the buffers as necessary */
1414 	if (using_dma(hs)) {
1415 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1416 		if (ret)
1417 			return ret;
1418 	}
1419 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1420 	if (using_desc_dma(hs) && !hs_ep->index) {
1421 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1422 		if (ret)
1423 			return ret;
1424 	}
1425 
1426 	first = list_empty(&hs_ep->queue);
1427 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1428 
1429 	/*
1430 	 * Handle DDMA isochronous transfers separately - just add new entry
1431 	 * to the descriptor chain.
1432 	 * Transfer will be started once SW gets either one of NAK or
1433 	 * OutTknEpDis interrupts.
1434 	 */
1435 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1436 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1437 			dma_addr_t dma_addr = hs_req->req.dma;
1438 
1439 			if (hs_req->req.num_sgs) {
1440 				WARN_ON(hs_req->req.num_sgs > 1);
1441 				dma_addr = sg_dma_address(hs_req->req.sg);
1442 			}
1443 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1444 						   hs_req->req.length);
1445 		}
1446 		return 0;
1447 	}
1448 
1449 	/* Change EP direction if status phase request is after data out */
1450 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1451 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1452 		hs_ep->dir_in = 1;
1453 
1454 	if (first) {
1455 		if (!hs_ep->isochronous) {
1456 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1457 			return 0;
1458 		}
1459 
1460 		/* Update current frame number value. */
1461 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1462 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1463 			dwc2_gadget_incr_frame_num(hs_ep);
1464 			/* Update current frame number value once more as it
1465 			 * changes here.
1466 			 */
1467 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1468 		}
1469 
1470 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1471 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1472 	}
1473 	return 0;
1474 }
1475 
1476 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1477 				    gfp_t gfp_flags)
1478 {
1479 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1480 	struct dwc2_hsotg *hs = hs_ep->parent;
1481 	unsigned long flags = 0;
1482 	int ret = 0;
1483 
1484 	spin_lock_irqsave(&hs->lock, flags);
1485 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1486 	spin_unlock_irqrestore(&hs->lock, flags);
1487 
1488 	return ret;
1489 }
1490 
1491 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1492 				       struct usb_request *req)
1493 {
1494 	struct dwc2_hsotg_req *hs_req = our_req(req);
1495 
1496 	kfree(hs_req);
1497 }
1498 
1499 /**
1500  * dwc2_hsotg_complete_oursetup - setup completion callback
1501  * @ep: The endpoint the request was on.
1502  * @req: The request completed.
1503  *
1504  * Called on completion of any requests the driver itself
1505  * submitted that need cleaning up.
1506  */
1507 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1508 					 struct usb_request *req)
1509 {
1510 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1511 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1512 
1513 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1514 
1515 	dwc2_hsotg_ep_free_request(ep, req);
1516 }
1517 
1518 /**
1519  * ep_from_windex - convert control wIndex value to endpoint
1520  * @hsotg: The driver state.
1521  * @windex: The control request wIndex field (in host order).
1522  *
1523  * Convert the given wIndex into a pointer to an driver endpoint
1524  * structure, or return NULL if it is not a valid endpoint.
1525  */
1526 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1527 					    u32 windex)
1528 {
1529 	struct dwc2_hsotg_ep *ep;
1530 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1531 	int idx = windex & 0x7F;
1532 
1533 	if (windex >= 0x100)
1534 		return NULL;
1535 
1536 	if (idx > hsotg->num_of_eps)
1537 		return NULL;
1538 
1539 	ep = index_to_ep(hsotg, idx, dir);
1540 
1541 	if (idx && ep->dir_in != dir)
1542 		return NULL;
1543 
1544 	return ep;
1545 }
1546 
1547 /**
1548  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1549  * @hsotg: The driver state.
1550  * @testmode: requested usb test mode
1551  * Enable usb Test Mode requested by the Host.
1552  */
1553 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1554 {
1555 	int dctl = dwc2_readl(hsotg, DCTL);
1556 
1557 	dctl &= ~DCTL_TSTCTL_MASK;
1558 	switch (testmode) {
1559 	case TEST_J:
1560 	case TEST_K:
1561 	case TEST_SE0_NAK:
1562 	case TEST_PACKET:
1563 	case TEST_FORCE_EN:
1564 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1565 		break;
1566 	default:
1567 		return -EINVAL;
1568 	}
1569 	dwc2_writel(hsotg, dctl, DCTL);
1570 	return 0;
1571 }
1572 
1573 /**
1574  * dwc2_hsotg_send_reply - send reply to control request
1575  * @hsotg: The device state
1576  * @ep: Endpoint 0
1577  * @buff: Buffer for request
1578  * @length: Length of reply.
1579  *
1580  * Create a request and queue it on the given endpoint. This is useful as
1581  * an internal method of sending replies to certain control requests, etc.
1582  */
1583 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1584 				 struct dwc2_hsotg_ep *ep,
1585 				void *buff,
1586 				int length)
1587 {
1588 	struct usb_request *req;
1589 	int ret;
1590 
1591 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1592 
1593 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1594 	hsotg->ep0_reply = req;
1595 	if (!req) {
1596 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1597 		return -ENOMEM;
1598 	}
1599 
1600 	req->buf = hsotg->ep0_buff;
1601 	req->length = length;
1602 	/*
1603 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1604 	 * STATUS stage.
1605 	 */
1606 	req->zero = 0;
1607 	req->complete = dwc2_hsotg_complete_oursetup;
1608 
1609 	if (length)
1610 		memcpy(req->buf, buff, length);
1611 
1612 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1613 	if (ret) {
1614 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1615 		return ret;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 /**
1622  * dwc2_hsotg_process_req_status - process request GET_STATUS
1623  * @hsotg: The device state
1624  * @ctrl: USB control request
1625  */
1626 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1627 					 struct usb_ctrlrequest *ctrl)
1628 {
1629 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1630 	struct dwc2_hsotg_ep *ep;
1631 	__le16 reply;
1632 	int ret;
1633 
1634 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1635 
1636 	if (!ep0->dir_in) {
1637 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1638 		return -EINVAL;
1639 	}
1640 
1641 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1642 	case USB_RECIP_DEVICE:
1643 		/*
1644 		 * bit 0 => self powered
1645 		 * bit 1 => remote wakeup
1646 		 */
1647 		reply = cpu_to_le16(0);
1648 		break;
1649 
1650 	case USB_RECIP_INTERFACE:
1651 		/* currently, the data result should be zero */
1652 		reply = cpu_to_le16(0);
1653 		break;
1654 
1655 	case USB_RECIP_ENDPOINT:
1656 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1657 		if (!ep)
1658 			return -ENOENT;
1659 
1660 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1661 		break;
1662 
1663 	default:
1664 		return 0;
1665 	}
1666 
1667 	if (le16_to_cpu(ctrl->wLength) != 2)
1668 		return -EINVAL;
1669 
1670 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1671 	if (ret) {
1672 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1673 		return ret;
1674 	}
1675 
1676 	return 1;
1677 }
1678 
1679 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1680 
1681 /**
1682  * get_ep_head - return the first request on the endpoint
1683  * @hs_ep: The controller endpoint to get
1684  *
1685  * Get the first request on the endpoint.
1686  */
1687 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1688 {
1689 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1690 					queue);
1691 }
1692 
1693 /**
1694  * dwc2_gadget_start_next_request - Starts next request from ep queue
1695  * @hs_ep: Endpoint structure
1696  *
1697  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1698  * in its handler. Hence we need to unmask it here to be able to do
1699  * resynchronization.
1700  */
1701 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1702 {
1703 	u32 mask;
1704 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1705 	int dir_in = hs_ep->dir_in;
1706 	struct dwc2_hsotg_req *hs_req;
1707 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1708 
1709 	if (!list_empty(&hs_ep->queue)) {
1710 		hs_req = get_ep_head(hs_ep);
1711 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1712 		return;
1713 	}
1714 	if (!hs_ep->isochronous)
1715 		return;
1716 
1717 	if (dir_in) {
1718 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1719 			__func__);
1720 	} else {
1721 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1722 			__func__);
1723 		mask = dwc2_readl(hsotg, epmsk_reg);
1724 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1725 		dwc2_writel(hsotg, mask, epmsk_reg);
1726 	}
1727 }
1728 
1729 /**
1730  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1731  * @hsotg: The device state
1732  * @ctrl: USB control request
1733  */
1734 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1735 					  struct usb_ctrlrequest *ctrl)
1736 {
1737 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1738 	struct dwc2_hsotg_req *hs_req;
1739 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1740 	struct dwc2_hsotg_ep *ep;
1741 	int ret;
1742 	bool halted;
1743 	u32 recip;
1744 	u32 wValue;
1745 	u32 wIndex;
1746 
1747 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1748 		__func__, set ? "SET" : "CLEAR");
1749 
1750 	wValue = le16_to_cpu(ctrl->wValue);
1751 	wIndex = le16_to_cpu(ctrl->wIndex);
1752 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1753 
1754 	switch (recip) {
1755 	case USB_RECIP_DEVICE:
1756 		switch (wValue) {
1757 		case USB_DEVICE_REMOTE_WAKEUP:
1758 			hsotg->remote_wakeup_allowed = 1;
1759 			break;
1760 
1761 		case USB_DEVICE_TEST_MODE:
1762 			if ((wIndex & 0xff) != 0)
1763 				return -EINVAL;
1764 			if (!set)
1765 				return -EINVAL;
1766 
1767 			hsotg->test_mode = wIndex >> 8;
1768 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1769 			if (ret) {
1770 				dev_err(hsotg->dev,
1771 					"%s: failed to send reply\n", __func__);
1772 				return ret;
1773 			}
1774 			break;
1775 		default:
1776 			return -ENOENT;
1777 		}
1778 		break;
1779 
1780 	case USB_RECIP_ENDPOINT:
1781 		ep = ep_from_windex(hsotg, wIndex);
1782 		if (!ep) {
1783 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1784 				__func__, wIndex);
1785 			return -ENOENT;
1786 		}
1787 
1788 		switch (wValue) {
1789 		case USB_ENDPOINT_HALT:
1790 			halted = ep->halted;
1791 
1792 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1793 
1794 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1795 			if (ret) {
1796 				dev_err(hsotg->dev,
1797 					"%s: failed to send reply\n", __func__);
1798 				return ret;
1799 			}
1800 
1801 			/*
1802 			 * we have to complete all requests for ep if it was
1803 			 * halted, and the halt was cleared by CLEAR_FEATURE
1804 			 */
1805 
1806 			if (!set && halted) {
1807 				/*
1808 				 * If we have request in progress,
1809 				 * then complete it
1810 				 */
1811 				if (ep->req) {
1812 					hs_req = ep->req;
1813 					ep->req = NULL;
1814 					list_del_init(&hs_req->queue);
1815 					if (hs_req->req.complete) {
1816 						spin_unlock(&hsotg->lock);
1817 						usb_gadget_giveback_request(
1818 							&ep->ep, &hs_req->req);
1819 						spin_lock(&hsotg->lock);
1820 					}
1821 				}
1822 
1823 				/* If we have pending request, then start it */
1824 				if (!ep->req)
1825 					dwc2_gadget_start_next_request(ep);
1826 			}
1827 
1828 			break;
1829 
1830 		default:
1831 			return -ENOENT;
1832 		}
1833 		break;
1834 	default:
1835 		return -ENOENT;
1836 	}
1837 	return 1;
1838 }
1839 
1840 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1841 
1842 /**
1843  * dwc2_hsotg_stall_ep0 - stall ep0
1844  * @hsotg: The device state
1845  *
1846  * Set stall for ep0 as response for setup request.
1847  */
1848 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1849 {
1850 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1851 	u32 reg;
1852 	u32 ctrl;
1853 
1854 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1855 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1856 
1857 	/*
1858 	 * DxEPCTL_Stall will be cleared by EP once it has
1859 	 * taken effect, so no need to clear later.
1860 	 */
1861 
1862 	ctrl = dwc2_readl(hsotg, reg);
1863 	ctrl |= DXEPCTL_STALL;
1864 	ctrl |= DXEPCTL_CNAK;
1865 	dwc2_writel(hsotg, ctrl, reg);
1866 
1867 	dev_dbg(hsotg->dev,
1868 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1869 		ctrl, reg, dwc2_readl(hsotg, reg));
1870 
1871 	 /*
1872 	  * complete won't be called, so we enqueue
1873 	  * setup request here
1874 	  */
1875 	 dwc2_hsotg_enqueue_setup(hsotg);
1876 }
1877 
1878 /**
1879  * dwc2_hsotg_process_control - process a control request
1880  * @hsotg: The device state
1881  * @ctrl: The control request received
1882  *
1883  * The controller has received the SETUP phase of a control request, and
1884  * needs to work out what to do next (and whether to pass it on to the
1885  * gadget driver).
1886  */
1887 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1888 				       struct usb_ctrlrequest *ctrl)
1889 {
1890 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1891 	int ret = 0;
1892 	u32 dcfg;
1893 
1894 	dev_dbg(hsotg->dev,
1895 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1896 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1897 		ctrl->wIndex, ctrl->wLength);
1898 
1899 	if (ctrl->wLength == 0) {
1900 		ep0->dir_in = 1;
1901 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1902 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1903 		ep0->dir_in = 1;
1904 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1905 	} else {
1906 		ep0->dir_in = 0;
1907 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1908 	}
1909 
1910 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1911 		switch (ctrl->bRequest) {
1912 		case USB_REQ_SET_ADDRESS:
1913 			hsotg->connected = 1;
1914 			dcfg = dwc2_readl(hsotg, DCFG);
1915 			dcfg &= ~DCFG_DEVADDR_MASK;
1916 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1917 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1918 			dwc2_writel(hsotg, dcfg, DCFG);
1919 
1920 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1921 
1922 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1923 			return;
1924 
1925 		case USB_REQ_GET_STATUS:
1926 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1927 			break;
1928 
1929 		case USB_REQ_CLEAR_FEATURE:
1930 		case USB_REQ_SET_FEATURE:
1931 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1932 			break;
1933 		}
1934 	}
1935 
1936 	/* as a fallback, try delivering it to the driver to deal with */
1937 
1938 	if (ret == 0 && hsotg->driver) {
1939 		spin_unlock(&hsotg->lock);
1940 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1941 		spin_lock(&hsotg->lock);
1942 		if (ret < 0)
1943 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1944 	}
1945 
1946 	hsotg->delayed_status = false;
1947 	if (ret == USB_GADGET_DELAYED_STATUS)
1948 		hsotg->delayed_status = true;
1949 
1950 	/*
1951 	 * the request is either unhandlable, or is not formatted correctly
1952 	 * so respond with a STALL for the status stage to indicate failure.
1953 	 */
1954 
1955 	if (ret < 0)
1956 		dwc2_hsotg_stall_ep0(hsotg);
1957 }
1958 
1959 /**
1960  * dwc2_hsotg_complete_setup - completion of a setup transfer
1961  * @ep: The endpoint the request was on.
1962  * @req: The request completed.
1963  *
1964  * Called on completion of any requests the driver itself submitted for
1965  * EP0 setup packets
1966  */
1967 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1968 				      struct usb_request *req)
1969 {
1970 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1971 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1972 
1973 	if (req->status < 0) {
1974 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1975 		return;
1976 	}
1977 
1978 	spin_lock(&hsotg->lock);
1979 	if (req->actual == 0)
1980 		dwc2_hsotg_enqueue_setup(hsotg);
1981 	else
1982 		dwc2_hsotg_process_control(hsotg, req->buf);
1983 	spin_unlock(&hsotg->lock);
1984 }
1985 
1986 /**
1987  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1988  * @hsotg: The device state.
1989  *
1990  * Enqueue a request on EP0 if necessary to received any SETUP packets
1991  * received from the host.
1992  */
1993 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1994 {
1995 	struct usb_request *req = hsotg->ctrl_req;
1996 	struct dwc2_hsotg_req *hs_req = our_req(req);
1997 	int ret;
1998 
1999 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2000 
2001 	req->zero = 0;
2002 	req->length = 8;
2003 	req->buf = hsotg->ctrl_buff;
2004 	req->complete = dwc2_hsotg_complete_setup;
2005 
2006 	if (!list_empty(&hs_req->queue)) {
2007 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2008 		return;
2009 	}
2010 
2011 	hsotg->eps_out[0]->dir_in = 0;
2012 	hsotg->eps_out[0]->send_zlp = 0;
2013 	hsotg->ep0_state = DWC2_EP0_SETUP;
2014 
2015 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2016 	if (ret < 0) {
2017 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2018 		/*
2019 		 * Don't think there's much we can do other than watch the
2020 		 * driver fail.
2021 		 */
2022 	}
2023 }
2024 
2025 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2026 				   struct dwc2_hsotg_ep *hs_ep)
2027 {
2028 	u32 ctrl;
2029 	u8 index = hs_ep->index;
2030 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2031 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2032 
2033 	if (hs_ep->dir_in)
2034 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2035 			index);
2036 	else
2037 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2038 			index);
2039 	if (using_desc_dma(hsotg)) {
2040 		if (!index)
2041 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2042 
2043 		/* Not specific buffer needed for ep0 ZLP */
2044 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &hs_ep->desc_list,
2045 			hs_ep->desc_list_dma, 0, true);
2046 	} else {
2047 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2048 			    DXEPTSIZ_XFERSIZE(0),
2049 			    epsiz_reg);
2050 	}
2051 
2052 	ctrl = dwc2_readl(hsotg, epctl_reg);
2053 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2054 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2055 	ctrl |= DXEPCTL_USBACTEP;
2056 	dwc2_writel(hsotg, ctrl, epctl_reg);
2057 }
2058 
2059 /**
2060  * dwc2_hsotg_complete_request - complete a request given to us
2061  * @hsotg: The device state.
2062  * @hs_ep: The endpoint the request was on.
2063  * @hs_req: The request to complete.
2064  * @result: The result code (0 => Ok, otherwise errno)
2065  *
2066  * The given request has finished, so call the necessary completion
2067  * if it has one and then look to see if we can start a new request
2068  * on the endpoint.
2069  *
2070  * Note, expects the ep to already be locked as appropriate.
2071  */
2072 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2073 					struct dwc2_hsotg_ep *hs_ep,
2074 				       struct dwc2_hsotg_req *hs_req,
2075 				       int result)
2076 {
2077 	if (!hs_req) {
2078 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2079 		return;
2080 	}
2081 
2082 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2083 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2084 
2085 	/*
2086 	 * only replace the status if we've not already set an error
2087 	 * from a previous transaction
2088 	 */
2089 
2090 	if (hs_req->req.status == -EINPROGRESS)
2091 		hs_req->req.status = result;
2092 
2093 	if (using_dma(hsotg))
2094 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2095 
2096 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2097 
2098 	hs_ep->req = NULL;
2099 	list_del_init(&hs_req->queue);
2100 
2101 	/*
2102 	 * call the complete request with the locks off, just in case the
2103 	 * request tries to queue more work for this endpoint.
2104 	 */
2105 
2106 	if (hs_req->req.complete) {
2107 		spin_unlock(&hsotg->lock);
2108 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2109 		spin_lock(&hsotg->lock);
2110 	}
2111 
2112 	/* In DDMA don't need to proceed to starting of next ISOC request */
2113 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2114 		return;
2115 
2116 	/*
2117 	 * Look to see if there is anything else to do. Note, the completion
2118 	 * of the previous request may have caused a new request to be started
2119 	 * so be careful when doing this.
2120 	 */
2121 
2122 	if (!hs_ep->req && result >= 0)
2123 		dwc2_gadget_start_next_request(hs_ep);
2124 }
2125 
2126 /*
2127  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2128  * @hs_ep: The endpoint the request was on.
2129  *
2130  * Get first request from the ep queue, determine descriptor on which complete
2131  * happened. SW discovers which descriptor currently in use by HW, adjusts
2132  * dma_address and calculates index of completed descriptor based on the value
2133  * of DEPDMA register. Update actual length of request, giveback to gadget.
2134  */
2135 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2136 {
2137 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2138 	struct dwc2_hsotg_req *hs_req;
2139 	struct usb_request *ureq;
2140 	u32 desc_sts;
2141 	u32 mask;
2142 
2143 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2144 
2145 	/* Process only descriptors with buffer status set to DMA done */
2146 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2147 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2148 
2149 		hs_req = get_ep_head(hs_ep);
2150 		if (!hs_req) {
2151 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2152 			return;
2153 		}
2154 		ureq = &hs_req->req;
2155 
2156 		/* Check completion status */
2157 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2158 			DEV_DMA_STS_SUCC) {
2159 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2160 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2161 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2162 				DEV_DMA_ISOC_NBYTES_SHIFT);
2163 
2164 			/* Adjust actual len for ISOC Out if len is
2165 			 * not align of 4
2166 			 */
2167 			if (!hs_ep->dir_in && ureq->length & 0x3)
2168 				ureq->actual += 4 - (ureq->length & 0x3);
2169 
2170 			/* Set actual frame number for completed transfers */
2171 			ureq->frame_number =
2172 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2173 				DEV_DMA_ISOC_FRNUM_SHIFT;
2174 		}
2175 
2176 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2177 
2178 		hs_ep->compl_desc++;
2179 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2180 			hs_ep->compl_desc = 0;
2181 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2182 	}
2183 }
2184 
2185 /*
2186  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2187  * @hs_ep: The isochronous endpoint.
2188  *
2189  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2190  * interrupt. Reset target frame and next_desc to allow to start
2191  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2192  * interrupt for OUT direction.
2193  */
2194 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2195 {
2196 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2197 
2198 	if (!hs_ep->dir_in)
2199 		dwc2_flush_rx_fifo(hsotg);
2200 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2201 
2202 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2203 	hs_ep->next_desc = 0;
2204 	hs_ep->compl_desc = 0;
2205 }
2206 
2207 /**
2208  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2209  * @hsotg: The device state.
2210  * @ep_idx: The endpoint index for the data
2211  * @size: The size of data in the fifo, in bytes
2212  *
2213  * The FIFO status shows there is data to read from the FIFO for a given
2214  * endpoint, so sort out whether we need to read the data into a request
2215  * that has been made for that endpoint.
2216  */
2217 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2218 {
2219 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2220 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2221 	int to_read;
2222 	int max_req;
2223 	int read_ptr;
2224 
2225 	if (!hs_req) {
2226 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2227 		int ptr;
2228 
2229 		dev_dbg(hsotg->dev,
2230 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2231 			 __func__, size, ep_idx, epctl);
2232 
2233 		/* dump the data from the FIFO, we've nothing we can do */
2234 		for (ptr = 0; ptr < size; ptr += 4)
2235 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2236 
2237 		return;
2238 	}
2239 
2240 	to_read = size;
2241 	read_ptr = hs_req->req.actual;
2242 	max_req = hs_req->req.length - read_ptr;
2243 
2244 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2245 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2246 
2247 	if (to_read > max_req) {
2248 		/*
2249 		 * more data appeared than we where willing
2250 		 * to deal with in this request.
2251 		 */
2252 
2253 		/* currently we don't deal this */
2254 		WARN_ON_ONCE(1);
2255 	}
2256 
2257 	hs_ep->total_data += to_read;
2258 	hs_req->req.actual += to_read;
2259 	to_read = DIV_ROUND_UP(to_read, 4);
2260 
2261 	/*
2262 	 * note, we might over-write the buffer end by 3 bytes depending on
2263 	 * alignment of the data.
2264 	 */
2265 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2266 		       hs_req->req.buf + read_ptr, to_read);
2267 }
2268 
2269 /**
2270  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2271  * @hsotg: The device instance
2272  * @dir_in: If IN zlp
2273  *
2274  * Generate a zero-length IN packet request for terminating a SETUP
2275  * transaction.
2276  *
2277  * Note, since we don't write any data to the TxFIFO, then it is
2278  * currently believed that we do not need to wait for any space in
2279  * the TxFIFO.
2280  */
2281 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2282 {
2283 	/* eps_out[0] is used in both directions */
2284 	hsotg->eps_out[0]->dir_in = dir_in;
2285 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2286 
2287 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2288 }
2289 
2290 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2291 					    u32 epctl_reg)
2292 {
2293 	u32 ctrl;
2294 
2295 	ctrl = dwc2_readl(hsotg, epctl_reg);
2296 	if (ctrl & DXEPCTL_EOFRNUM)
2297 		ctrl |= DXEPCTL_SETEVENFR;
2298 	else
2299 		ctrl |= DXEPCTL_SETODDFR;
2300 	dwc2_writel(hsotg, ctrl, epctl_reg);
2301 }
2302 
2303 /*
2304  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2305  * @hs_ep - The endpoint on which transfer went
2306  *
2307  * Iterate over endpoints descriptor chain and get info on bytes remained
2308  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2309  */
2310 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2311 {
2312 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2313 	unsigned int bytes_rem = 0;
2314 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2315 	int i;
2316 	u32 status;
2317 
2318 	if (!desc)
2319 		return -EINVAL;
2320 
2321 	for (i = 0; i < hs_ep->desc_count; ++i) {
2322 		status = desc->status;
2323 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2324 
2325 		if (status & DEV_DMA_STS_MASK)
2326 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2327 				i, status & DEV_DMA_STS_MASK);
2328 		desc++;
2329 	}
2330 
2331 	return bytes_rem;
2332 }
2333 
2334 /**
2335  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2336  * @hsotg: The device instance
2337  * @epnum: The endpoint received from
2338  *
2339  * The RXFIFO has delivered an OutDone event, which means that the data
2340  * transfer for an OUT endpoint has been completed, either by a short
2341  * packet or by the finish of a transfer.
2342  */
2343 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2344 {
2345 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2346 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2347 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2348 	struct usb_request *req = &hs_req->req;
2349 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2350 	int result = 0;
2351 
2352 	if (!hs_req) {
2353 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2354 		return;
2355 	}
2356 
2357 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2358 		dev_dbg(hsotg->dev, "zlp packet received\n");
2359 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2360 		dwc2_hsotg_enqueue_setup(hsotg);
2361 		return;
2362 	}
2363 
2364 	if (using_desc_dma(hsotg))
2365 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2366 
2367 	if (using_dma(hsotg)) {
2368 		unsigned int size_done;
2369 
2370 		/*
2371 		 * Calculate the size of the transfer by checking how much
2372 		 * is left in the endpoint size register and then working it
2373 		 * out from the amount we loaded for the transfer.
2374 		 *
2375 		 * We need to do this as DMA pointers are always 32bit aligned
2376 		 * so may overshoot/undershoot the transfer.
2377 		 */
2378 
2379 		size_done = hs_ep->size_loaded - size_left;
2380 		size_done += hs_ep->last_load;
2381 
2382 		req->actual = size_done;
2383 	}
2384 
2385 	/* if there is more request to do, schedule new transfer */
2386 	if (req->actual < req->length && size_left == 0) {
2387 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2388 		return;
2389 	}
2390 
2391 	if (req->actual < req->length && req->short_not_ok) {
2392 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2393 			__func__, req->actual, req->length);
2394 
2395 		/*
2396 		 * todo - what should we return here? there's no one else
2397 		 * even bothering to check the status.
2398 		 */
2399 	}
2400 
2401 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2402 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2403 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2404 		/* Move to STATUS IN */
2405 		if (!hsotg->delayed_status)
2406 			dwc2_hsotg_ep0_zlp(hsotg, true);
2407 	}
2408 
2409 	/*
2410 	 * Slave mode OUT transfers do not go through XferComplete so
2411 	 * adjust the ISOC parity here.
2412 	 */
2413 	if (!using_dma(hsotg)) {
2414 		if (hs_ep->isochronous && hs_ep->interval == 1)
2415 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2416 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2417 			dwc2_gadget_incr_frame_num(hs_ep);
2418 	}
2419 
2420 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2421 }
2422 
2423 /**
2424  * dwc2_hsotg_handle_rx - RX FIFO has data
2425  * @hsotg: The device instance
2426  *
2427  * The IRQ handler has detected that the RX FIFO has some data in it
2428  * that requires processing, so find out what is in there and do the
2429  * appropriate read.
2430  *
2431  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2432  * chunks, so if you have x packets received on an endpoint you'll get x
2433  * FIFO events delivered, each with a packet's worth of data in it.
2434  *
2435  * When using DMA, we should not be processing events from the RXFIFO
2436  * as the actual data should be sent to the memory directly and we turn
2437  * on the completion interrupts to get notifications of transfer completion.
2438  */
2439 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2440 {
2441 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2442 	u32 epnum, status, size;
2443 
2444 	WARN_ON(using_dma(hsotg));
2445 
2446 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2447 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2448 
2449 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2450 	size >>= GRXSTS_BYTECNT_SHIFT;
2451 
2452 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2453 		__func__, grxstsr, size, epnum);
2454 
2455 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2456 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2457 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2458 		break;
2459 
2460 	case GRXSTS_PKTSTS_OUTDONE:
2461 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2462 			dwc2_hsotg_read_frameno(hsotg));
2463 
2464 		if (!using_dma(hsotg))
2465 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2466 		break;
2467 
2468 	case GRXSTS_PKTSTS_SETUPDONE:
2469 		dev_dbg(hsotg->dev,
2470 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2471 			dwc2_hsotg_read_frameno(hsotg),
2472 			dwc2_readl(hsotg, DOEPCTL(0)));
2473 		/*
2474 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2475 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2476 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2477 		 */
2478 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2479 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2480 		break;
2481 
2482 	case GRXSTS_PKTSTS_OUTRX:
2483 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2484 		break;
2485 
2486 	case GRXSTS_PKTSTS_SETUPRX:
2487 		dev_dbg(hsotg->dev,
2488 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2489 			dwc2_hsotg_read_frameno(hsotg),
2490 			dwc2_readl(hsotg, DOEPCTL(0)));
2491 
2492 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2493 
2494 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2495 		break;
2496 
2497 	default:
2498 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2499 			 __func__, grxstsr);
2500 
2501 		dwc2_hsotg_dump(hsotg);
2502 		break;
2503 	}
2504 }
2505 
2506 /**
2507  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2508  * @mps: The maximum packet size in bytes.
2509  */
2510 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2511 {
2512 	switch (mps) {
2513 	case 64:
2514 		return D0EPCTL_MPS_64;
2515 	case 32:
2516 		return D0EPCTL_MPS_32;
2517 	case 16:
2518 		return D0EPCTL_MPS_16;
2519 	case 8:
2520 		return D0EPCTL_MPS_8;
2521 	}
2522 
2523 	/* bad max packet size, warn and return invalid result */
2524 	WARN_ON(1);
2525 	return (u32)-1;
2526 }
2527 
2528 /**
2529  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2530  * @hsotg: The driver state.
2531  * @ep: The index number of the endpoint
2532  * @mps: The maximum packet size in bytes
2533  * @mc: The multicount value
2534  * @dir_in: True if direction is in.
2535  *
2536  * Configure the maximum packet size for the given endpoint, updating
2537  * the hardware control registers to reflect this.
2538  */
2539 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2540 					unsigned int ep, unsigned int mps,
2541 					unsigned int mc, unsigned int dir_in)
2542 {
2543 	struct dwc2_hsotg_ep *hs_ep;
2544 	u32 reg;
2545 
2546 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2547 	if (!hs_ep)
2548 		return;
2549 
2550 	if (ep == 0) {
2551 		u32 mps_bytes = mps;
2552 
2553 		/* EP0 is a special case */
2554 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2555 		if (mps > 3)
2556 			goto bad_mps;
2557 		hs_ep->ep.maxpacket = mps_bytes;
2558 		hs_ep->mc = 1;
2559 	} else {
2560 		if (mps > 1024)
2561 			goto bad_mps;
2562 		hs_ep->mc = mc;
2563 		if (mc > 3)
2564 			goto bad_mps;
2565 		hs_ep->ep.maxpacket = mps;
2566 	}
2567 
2568 	if (dir_in) {
2569 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2570 		reg &= ~DXEPCTL_MPS_MASK;
2571 		reg |= mps;
2572 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2573 	} else {
2574 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2575 		reg &= ~DXEPCTL_MPS_MASK;
2576 		reg |= mps;
2577 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2578 	}
2579 
2580 	return;
2581 
2582 bad_mps:
2583 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2584 }
2585 
2586 /**
2587  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2588  * @hsotg: The driver state
2589  * @idx: The index for the endpoint (0..15)
2590  */
2591 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2592 {
2593 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2594 		    GRSTCTL);
2595 
2596 	/* wait until the fifo is flushed */
2597 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2598 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2599 			 __func__);
2600 }
2601 
2602 /**
2603  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2604  * @hsotg: The driver state
2605  * @hs_ep: The driver endpoint to check.
2606  *
2607  * Check to see if there is a request that has data to send, and if so
2608  * make an attempt to write data into the FIFO.
2609  */
2610 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2611 			    struct dwc2_hsotg_ep *hs_ep)
2612 {
2613 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2614 
2615 	if (!hs_ep->dir_in || !hs_req) {
2616 		/**
2617 		 * if request is not enqueued, we disable interrupts
2618 		 * for endpoints, excepting ep0
2619 		 */
2620 		if (hs_ep->index != 0)
2621 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2622 					      hs_ep->dir_in, 0);
2623 		return 0;
2624 	}
2625 
2626 	if (hs_req->req.actual < hs_req->req.length) {
2627 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2628 			hs_ep->index);
2629 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2630 	}
2631 
2632 	return 0;
2633 }
2634 
2635 /**
2636  * dwc2_hsotg_complete_in - complete IN transfer
2637  * @hsotg: The device state.
2638  * @hs_ep: The endpoint that has just completed.
2639  *
2640  * An IN transfer has been completed, update the transfer's state and then
2641  * call the relevant completion routines.
2642  */
2643 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2644 				   struct dwc2_hsotg_ep *hs_ep)
2645 {
2646 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2647 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2648 	int size_left, size_done;
2649 
2650 	if (!hs_req) {
2651 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2652 		return;
2653 	}
2654 
2655 	/* Finish ZLP handling for IN EP0 transactions */
2656 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2657 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2658 
2659 		/*
2660 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2661 		 * changed to IN. Change back to complete OUT transfer request
2662 		 */
2663 		hs_ep->dir_in = 0;
2664 
2665 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2666 		if (hsotg->test_mode) {
2667 			int ret;
2668 
2669 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2670 			if (ret < 0) {
2671 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2672 					hsotg->test_mode);
2673 				dwc2_hsotg_stall_ep0(hsotg);
2674 				return;
2675 			}
2676 		}
2677 		dwc2_hsotg_enqueue_setup(hsotg);
2678 		return;
2679 	}
2680 
2681 	/*
2682 	 * Calculate the size of the transfer by checking how much is left
2683 	 * in the endpoint size register and then working it out from
2684 	 * the amount we loaded for the transfer.
2685 	 *
2686 	 * We do this even for DMA, as the transfer may have incremented
2687 	 * past the end of the buffer (DMA transfers are always 32bit
2688 	 * aligned).
2689 	 */
2690 	if (using_desc_dma(hsotg)) {
2691 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2692 		if (size_left < 0)
2693 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2694 				size_left);
2695 	} else {
2696 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2697 	}
2698 
2699 	size_done = hs_ep->size_loaded - size_left;
2700 	size_done += hs_ep->last_load;
2701 
2702 	if (hs_req->req.actual != size_done)
2703 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2704 			__func__, hs_req->req.actual, size_done);
2705 
2706 	hs_req->req.actual = size_done;
2707 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2708 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2709 
2710 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2711 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2712 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2713 		return;
2714 	}
2715 
2716 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2717 	if (hs_ep->send_zlp) {
2718 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2719 		hs_ep->send_zlp = 0;
2720 		/* transfer will be completed on next complete interrupt */
2721 		return;
2722 	}
2723 
2724 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2725 		/* Move to STATUS OUT */
2726 		dwc2_hsotg_ep0_zlp(hsotg, false);
2727 		return;
2728 	}
2729 
2730 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2731 }
2732 
2733 /**
2734  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2735  * @hsotg: The device state.
2736  * @idx: Index of ep.
2737  * @dir_in: Endpoint direction 1-in 0-out.
2738  *
2739  * Reads for endpoint with given index and direction, by masking
2740  * epint_reg with coresponding mask.
2741  */
2742 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2743 					  unsigned int idx, int dir_in)
2744 {
2745 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2746 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2747 	u32 ints;
2748 	u32 mask;
2749 	u32 diepempmsk;
2750 
2751 	mask = dwc2_readl(hsotg, epmsk_reg);
2752 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2753 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2754 	mask |= DXEPINT_SETUP_RCVD;
2755 
2756 	ints = dwc2_readl(hsotg, epint_reg);
2757 	ints &= mask;
2758 	return ints;
2759 }
2760 
2761 /**
2762  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2763  * @hs_ep: The endpoint on which interrupt is asserted.
2764  *
2765  * This interrupt indicates that the endpoint has been disabled per the
2766  * application's request.
2767  *
2768  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2769  * in case of ISOC completes current request.
2770  *
2771  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2772  * request starts it.
2773  */
2774 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2775 {
2776 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2777 	struct dwc2_hsotg_req *hs_req;
2778 	unsigned char idx = hs_ep->index;
2779 	int dir_in = hs_ep->dir_in;
2780 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2781 	int dctl = dwc2_readl(hsotg, DCTL);
2782 
2783 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2784 
2785 	if (dir_in) {
2786 		int epctl = dwc2_readl(hsotg, epctl_reg);
2787 
2788 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2789 
2790 		if (hs_ep->isochronous) {
2791 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2792 			return;
2793 		}
2794 
2795 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2796 			int dctl = dwc2_readl(hsotg, DCTL);
2797 
2798 			dctl |= DCTL_CGNPINNAK;
2799 			dwc2_writel(hsotg, dctl, DCTL);
2800 		}
2801 		return;
2802 	}
2803 
2804 	if (dctl & DCTL_GOUTNAKSTS) {
2805 		dctl |= DCTL_CGOUTNAK;
2806 		dwc2_writel(hsotg, dctl, DCTL);
2807 	}
2808 
2809 	if (!hs_ep->isochronous)
2810 		return;
2811 
2812 	if (list_empty(&hs_ep->queue)) {
2813 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2814 			__func__, hs_ep);
2815 		return;
2816 	}
2817 
2818 	do {
2819 		hs_req = get_ep_head(hs_ep);
2820 		if (hs_req)
2821 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2822 						    -ENODATA);
2823 		dwc2_gadget_incr_frame_num(hs_ep);
2824 		/* Update current frame number value. */
2825 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2826 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2827 
2828 	dwc2_gadget_start_next_request(hs_ep);
2829 }
2830 
2831 /**
2832  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2833  * @ep: The endpoint on which interrupt is asserted.
2834  *
2835  * This is starting point for ISOC-OUT transfer, synchronization done with
2836  * first out token received from host while corresponding EP is disabled.
2837  *
2838  * Device does not know initial frame in which out token will come. For this
2839  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2840  * getting this interrupt SW starts calculation for next transfer frame.
2841  */
2842 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2843 {
2844 	struct dwc2_hsotg *hsotg = ep->parent;
2845 	int dir_in = ep->dir_in;
2846 	u32 doepmsk;
2847 
2848 	if (dir_in || !ep->isochronous)
2849 		return;
2850 
2851 	if (using_desc_dma(hsotg)) {
2852 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2853 			/* Start first ISO Out */
2854 			ep->target_frame = hsotg->frame_number;
2855 			dwc2_gadget_start_isoc_ddma(ep);
2856 		}
2857 		return;
2858 	}
2859 
2860 	if (ep->interval > 1 &&
2861 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2862 		u32 ctrl;
2863 
2864 		ep->target_frame = hsotg->frame_number;
2865 		dwc2_gadget_incr_frame_num(ep);
2866 
2867 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2868 		if (ep->target_frame & 0x1)
2869 			ctrl |= DXEPCTL_SETODDFR;
2870 		else
2871 			ctrl |= DXEPCTL_SETEVENFR;
2872 
2873 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2874 	}
2875 
2876 	dwc2_gadget_start_next_request(ep);
2877 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2878 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2879 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2880 }
2881 
2882 /**
2883  * dwc2_gadget_handle_nak - handle NAK interrupt
2884  * @hs_ep: The endpoint on which interrupt is asserted.
2885  *
2886  * This is starting point for ISOC-IN transfer, synchronization done with
2887  * first IN token received from host while corresponding EP is disabled.
2888  *
2889  * Device does not know when first one token will arrive from host. On first
2890  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2891  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2892  * sent in response to that as there was no data in FIFO. SW is basing on this
2893  * interrupt to obtain frame in which token has come and then based on the
2894  * interval calculates next frame for transfer.
2895  */
2896 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2897 {
2898 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2899 	int dir_in = hs_ep->dir_in;
2900 
2901 	if (!dir_in || !hs_ep->isochronous)
2902 		return;
2903 
2904 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2905 
2906 		if (using_desc_dma(hsotg)) {
2907 			hs_ep->target_frame = hsotg->frame_number;
2908 			dwc2_gadget_incr_frame_num(hs_ep);
2909 
2910 			/* In service interval mode target_frame must
2911 			 * be set to last (u)frame of the service interval.
2912 			 */
2913 			if (hsotg->params.service_interval) {
2914 				/* Set target_frame to the first (u)frame of
2915 				 * the service interval
2916 				 */
2917 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2918 
2919 				/* Set target_frame to the last (u)frame of
2920 				 * the service interval
2921 				 */
2922 				dwc2_gadget_incr_frame_num(hs_ep);
2923 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2924 			}
2925 
2926 			dwc2_gadget_start_isoc_ddma(hs_ep);
2927 			return;
2928 		}
2929 
2930 		hs_ep->target_frame = hsotg->frame_number;
2931 		if (hs_ep->interval > 1) {
2932 			u32 ctrl = dwc2_readl(hsotg,
2933 					      DIEPCTL(hs_ep->index));
2934 			if (hs_ep->target_frame & 0x1)
2935 				ctrl |= DXEPCTL_SETODDFR;
2936 			else
2937 				ctrl |= DXEPCTL_SETEVENFR;
2938 
2939 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2940 		}
2941 
2942 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2943 					    get_ep_head(hs_ep), 0);
2944 	}
2945 
2946 	if (!using_desc_dma(hsotg))
2947 		dwc2_gadget_incr_frame_num(hs_ep);
2948 }
2949 
2950 /**
2951  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2952  * @hsotg: The driver state
2953  * @idx: The index for the endpoint (0..15)
2954  * @dir_in: Set if this is an IN endpoint
2955  *
2956  * Process and clear any interrupt pending for an individual endpoint
2957  */
2958 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2959 			     int dir_in)
2960 {
2961 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2962 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2963 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2964 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2965 	u32 ints;
2966 	u32 ctrl;
2967 
2968 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2969 	ctrl = dwc2_readl(hsotg, epctl_reg);
2970 
2971 	/* Clear endpoint interrupts */
2972 	dwc2_writel(hsotg, ints, epint_reg);
2973 
2974 	if (!hs_ep) {
2975 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2976 			__func__, idx, dir_in ? "in" : "out");
2977 		return;
2978 	}
2979 
2980 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2981 		__func__, idx, dir_in ? "in" : "out", ints);
2982 
2983 	/* Don't process XferCompl interrupt if it is a setup packet */
2984 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2985 		ints &= ~DXEPINT_XFERCOMPL;
2986 
2987 	/*
2988 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2989 	 * stage and xfercomplete was generated without SETUP phase done
2990 	 * interrupt. SW should parse received setup packet only after host's
2991 	 * exit from setup phase of control transfer.
2992 	 */
2993 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2994 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2995 		ints &= ~DXEPINT_XFERCOMPL;
2996 
2997 	if (ints & DXEPINT_XFERCOMPL) {
2998 		dev_dbg(hsotg->dev,
2999 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3000 			__func__, dwc2_readl(hsotg, epctl_reg),
3001 			dwc2_readl(hsotg, epsiz_reg));
3002 
3003 		/* In DDMA handle isochronous requests separately */
3004 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3005 			/* XferCompl set along with BNA */
3006 			if (!(ints & DXEPINT_BNAINTR))
3007 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3008 		} else if (dir_in) {
3009 			/*
3010 			 * We get OutDone from the FIFO, so we only
3011 			 * need to look at completing IN requests here
3012 			 * if operating slave mode
3013 			 */
3014 			if (hs_ep->isochronous && hs_ep->interval > 1)
3015 				dwc2_gadget_incr_frame_num(hs_ep);
3016 
3017 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3018 			if (ints & DXEPINT_NAKINTRPT)
3019 				ints &= ~DXEPINT_NAKINTRPT;
3020 
3021 			if (idx == 0 && !hs_ep->req)
3022 				dwc2_hsotg_enqueue_setup(hsotg);
3023 		} else if (using_dma(hsotg)) {
3024 			/*
3025 			 * We're using DMA, we need to fire an OutDone here
3026 			 * as we ignore the RXFIFO.
3027 			 */
3028 			if (hs_ep->isochronous && hs_ep->interval > 1)
3029 				dwc2_gadget_incr_frame_num(hs_ep);
3030 
3031 			dwc2_hsotg_handle_outdone(hsotg, idx);
3032 		}
3033 	}
3034 
3035 	if (ints & DXEPINT_EPDISBLD)
3036 		dwc2_gadget_handle_ep_disabled(hs_ep);
3037 
3038 	if (ints & DXEPINT_OUTTKNEPDIS)
3039 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3040 
3041 	if (ints & DXEPINT_NAKINTRPT)
3042 		dwc2_gadget_handle_nak(hs_ep);
3043 
3044 	if (ints & DXEPINT_AHBERR)
3045 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3046 
3047 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3048 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3049 
3050 		if (using_dma(hsotg) && idx == 0) {
3051 			/*
3052 			 * this is the notification we've received a
3053 			 * setup packet. In non-DMA mode we'd get this
3054 			 * from the RXFIFO, instead we need to process
3055 			 * the setup here.
3056 			 */
3057 
3058 			if (dir_in)
3059 				WARN_ON_ONCE(1);
3060 			else
3061 				dwc2_hsotg_handle_outdone(hsotg, 0);
3062 		}
3063 	}
3064 
3065 	if (ints & DXEPINT_STSPHSERCVD) {
3066 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3067 
3068 		/* Safety check EP0 state when STSPHSERCVD asserted */
3069 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3070 			/* Move to STATUS IN for DDMA */
3071 			if (using_desc_dma(hsotg)) {
3072 				if (!hsotg->delayed_status)
3073 					dwc2_hsotg_ep0_zlp(hsotg, true);
3074 				else
3075 				/* In case of 3 stage Control Write with delayed
3076 				 * status, when Status IN transfer started
3077 				 * before STSPHSERCVD asserted, NAKSTS bit not
3078 				 * cleared by CNAK in dwc2_hsotg_start_req()
3079 				 * function. Clear now NAKSTS to allow complete
3080 				 * transfer.
3081 				 */
3082 					dwc2_set_bit(hsotg, DIEPCTL(0),
3083 						     DXEPCTL_CNAK);
3084 			}
3085 		}
3086 
3087 	}
3088 
3089 	if (ints & DXEPINT_BACK2BACKSETUP)
3090 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3091 
3092 	if (ints & DXEPINT_BNAINTR) {
3093 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3094 		if (hs_ep->isochronous)
3095 			dwc2_gadget_handle_isoc_bna(hs_ep);
3096 	}
3097 
3098 	if (dir_in && !hs_ep->isochronous) {
3099 		/* not sure if this is important, but we'll clear it anyway */
3100 		if (ints & DXEPINT_INTKNTXFEMP) {
3101 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3102 				__func__, idx);
3103 		}
3104 
3105 		/* this probably means something bad is happening */
3106 		if (ints & DXEPINT_INTKNEPMIS) {
3107 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3108 				 __func__, idx);
3109 		}
3110 
3111 		/* FIFO has space or is empty (see GAHBCFG) */
3112 		if (hsotg->dedicated_fifos &&
3113 		    ints & DXEPINT_TXFEMP) {
3114 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3115 				__func__, idx);
3116 			if (!using_dma(hsotg))
3117 				dwc2_hsotg_trytx(hsotg, hs_ep);
3118 		}
3119 	}
3120 }
3121 
3122 /**
3123  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3124  * @hsotg: The device state.
3125  *
3126  * Handle updating the device settings after the enumeration phase has
3127  * been completed.
3128  */
3129 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3130 {
3131 	u32 dsts = dwc2_readl(hsotg, DSTS);
3132 	int ep0_mps = 0, ep_mps = 8;
3133 
3134 	/*
3135 	 * This should signal the finish of the enumeration phase
3136 	 * of the USB handshaking, so we should now know what rate
3137 	 * we connected at.
3138 	 */
3139 
3140 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3141 
3142 	/*
3143 	 * note, since we're limited by the size of transfer on EP0, and
3144 	 * it seems IN transfers must be a even number of packets we do
3145 	 * not advertise a 64byte MPS on EP0.
3146 	 */
3147 
3148 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3149 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3150 	case DSTS_ENUMSPD_FS:
3151 	case DSTS_ENUMSPD_FS48:
3152 		hsotg->gadget.speed = USB_SPEED_FULL;
3153 		ep0_mps = EP0_MPS_LIMIT;
3154 		ep_mps = 1023;
3155 		break;
3156 
3157 	case DSTS_ENUMSPD_HS:
3158 		hsotg->gadget.speed = USB_SPEED_HIGH;
3159 		ep0_mps = EP0_MPS_LIMIT;
3160 		ep_mps = 1024;
3161 		break;
3162 
3163 	case DSTS_ENUMSPD_LS:
3164 		hsotg->gadget.speed = USB_SPEED_LOW;
3165 		ep0_mps = 8;
3166 		ep_mps = 8;
3167 		/*
3168 		 * note, we don't actually support LS in this driver at the
3169 		 * moment, and the documentation seems to imply that it isn't
3170 		 * supported by the PHYs on some of the devices.
3171 		 */
3172 		break;
3173 	}
3174 	dev_info(hsotg->dev, "new device is %s\n",
3175 		 usb_speed_string(hsotg->gadget.speed));
3176 
3177 	/*
3178 	 * we should now know the maximum packet size for an
3179 	 * endpoint, so set the endpoints to a default value.
3180 	 */
3181 
3182 	if (ep0_mps) {
3183 		int i;
3184 		/* Initialize ep0 for both in and out directions */
3185 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3186 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3187 		for (i = 1; i < hsotg->num_of_eps; i++) {
3188 			if (hsotg->eps_in[i])
3189 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3190 							    0, 1);
3191 			if (hsotg->eps_out[i])
3192 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3193 							    0, 0);
3194 		}
3195 	}
3196 
3197 	/* ensure after enumeration our EP0 is active */
3198 
3199 	dwc2_hsotg_enqueue_setup(hsotg);
3200 
3201 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3202 		dwc2_readl(hsotg, DIEPCTL0),
3203 		dwc2_readl(hsotg, DOEPCTL0));
3204 }
3205 
3206 /**
3207  * kill_all_requests - remove all requests from the endpoint's queue
3208  * @hsotg: The device state.
3209  * @ep: The endpoint the requests may be on.
3210  * @result: The result code to use.
3211  *
3212  * Go through the requests on the given endpoint and mark them
3213  * completed with the given result code.
3214  */
3215 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3216 			      struct dwc2_hsotg_ep *ep,
3217 			      int result)
3218 {
3219 	struct dwc2_hsotg_req *req, *treq;
3220 	unsigned int size;
3221 
3222 	ep->req = NULL;
3223 
3224 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3225 		dwc2_hsotg_complete_request(hsotg, ep, req,
3226 					    result);
3227 
3228 	if (!hsotg->dedicated_fifos)
3229 		return;
3230 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3231 	if (size < ep->fifo_size)
3232 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3233 }
3234 
3235 /**
3236  * dwc2_hsotg_disconnect - disconnect service
3237  * @hsotg: The device state.
3238  *
3239  * The device has been disconnected. Remove all current
3240  * transactions and signal the gadget driver that this
3241  * has happened.
3242  */
3243 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3244 {
3245 	unsigned int ep;
3246 
3247 	if (!hsotg->connected)
3248 		return;
3249 
3250 	hsotg->connected = 0;
3251 	hsotg->test_mode = 0;
3252 
3253 	/* all endpoints should be shutdown */
3254 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3255 		if (hsotg->eps_in[ep])
3256 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3257 					  -ESHUTDOWN);
3258 		if (hsotg->eps_out[ep])
3259 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3260 					  -ESHUTDOWN);
3261 	}
3262 
3263 	call_gadget(hsotg, disconnect);
3264 	hsotg->lx_state = DWC2_L3;
3265 
3266 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3267 }
3268 
3269 /**
3270  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3271  * @hsotg: The device state:
3272  * @periodic: True if this is a periodic FIFO interrupt
3273  */
3274 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3275 {
3276 	struct dwc2_hsotg_ep *ep;
3277 	int epno, ret;
3278 
3279 	/* look through for any more data to transmit */
3280 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3281 		ep = index_to_ep(hsotg, epno, 1);
3282 
3283 		if (!ep)
3284 			continue;
3285 
3286 		if (!ep->dir_in)
3287 			continue;
3288 
3289 		if ((periodic && !ep->periodic) ||
3290 		    (!periodic && ep->periodic))
3291 			continue;
3292 
3293 		ret = dwc2_hsotg_trytx(hsotg, ep);
3294 		if (ret < 0)
3295 			break;
3296 	}
3297 }
3298 
3299 /* IRQ flags which will trigger a retry around the IRQ loop */
3300 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3301 			GINTSTS_PTXFEMP |  \
3302 			GINTSTS_RXFLVL)
3303 
3304 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3305 /**
3306  * dwc2_hsotg_core_init - issue softreset to the core
3307  * @hsotg: The device state
3308  * @is_usb_reset: Usb resetting flag
3309  *
3310  * Issue a soft reset to the core, and await the core finishing it.
3311  */
3312 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3313 				       bool is_usb_reset)
3314 {
3315 	u32 intmsk;
3316 	u32 val;
3317 	u32 usbcfg;
3318 	u32 dcfg = 0;
3319 	int ep;
3320 
3321 	/* Kill any ep0 requests as controller will be reinitialized */
3322 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3323 
3324 	if (!is_usb_reset) {
3325 		if (dwc2_core_reset(hsotg, true))
3326 			return;
3327 	} else {
3328 		/* all endpoints should be shutdown */
3329 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3330 			if (hsotg->eps_in[ep])
3331 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3332 			if (hsotg->eps_out[ep])
3333 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3334 		}
3335 	}
3336 
3337 	/*
3338 	 * we must now enable ep0 ready for host detection and then
3339 	 * set configuration.
3340 	 */
3341 
3342 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3343 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3344 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3345 	usbcfg |= GUSBCFG_TOUTCAL(7);
3346 
3347 	/* remove the HNP/SRP and set the PHY */
3348 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3349         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3350 
3351 	dwc2_phy_init(hsotg, true);
3352 
3353 	dwc2_hsotg_init_fifo(hsotg);
3354 
3355 	if (!is_usb_reset)
3356 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3357 
3358 	dcfg |= DCFG_EPMISCNT(1);
3359 
3360 	switch (hsotg->params.speed) {
3361 	case DWC2_SPEED_PARAM_LOW:
3362 		dcfg |= DCFG_DEVSPD_LS;
3363 		break;
3364 	case DWC2_SPEED_PARAM_FULL:
3365 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3366 			dcfg |= DCFG_DEVSPD_FS48;
3367 		else
3368 			dcfg |= DCFG_DEVSPD_FS;
3369 		break;
3370 	default:
3371 		dcfg |= DCFG_DEVSPD_HS;
3372 	}
3373 
3374 	if (hsotg->params.ipg_isoc_en)
3375 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3376 
3377 	dwc2_writel(hsotg, dcfg,  DCFG);
3378 
3379 	/* Clear any pending OTG interrupts */
3380 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3381 
3382 	/* Clear any pending interrupts */
3383 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3384 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3385 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3386 		GINTSTS_USBRST | GINTSTS_RESETDET |
3387 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3388 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3389 		GINTSTS_LPMTRANRCVD;
3390 
3391 	if (!using_desc_dma(hsotg))
3392 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3393 
3394 	if (!hsotg->params.external_id_pin_ctl)
3395 		intmsk |= GINTSTS_CONIDSTSCHNG;
3396 
3397 	dwc2_writel(hsotg, intmsk, GINTMSK);
3398 
3399 	if (using_dma(hsotg)) {
3400 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3401 			    hsotg->params.ahbcfg,
3402 			    GAHBCFG);
3403 
3404 		/* Set DDMA mode support in the core if needed */
3405 		if (using_desc_dma(hsotg))
3406 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3407 
3408 	} else {
3409 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3410 						(GAHBCFG_NP_TXF_EMP_LVL |
3411 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3412 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3413 	}
3414 
3415 	/*
3416 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3417 	 * when we have no data to transfer. Otherwise we get being flooded by
3418 	 * interrupts.
3419 	 */
3420 
3421 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3422 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3423 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3424 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3425 		DIEPMSK);
3426 
3427 	/*
3428 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3429 	 * DMA mode we may need this and StsPhseRcvd.
3430 	 */
3431 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3432 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3433 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3434 		DOEPMSK_SETUPMSK,
3435 		DOEPMSK);
3436 
3437 	/* Enable BNA interrupt for DDMA */
3438 	if (using_desc_dma(hsotg)) {
3439 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3440 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3441 	}
3442 
3443 	/* Enable Service Interval mode if supported */
3444 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3445 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3446 
3447 	dwc2_writel(hsotg, 0, DAINTMSK);
3448 
3449 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3450 		dwc2_readl(hsotg, DIEPCTL0),
3451 		dwc2_readl(hsotg, DOEPCTL0));
3452 
3453 	/* enable in and out endpoint interrupts */
3454 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3455 
3456 	/*
3457 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3458 	 * the data. In DMA mode, we get events from the FIFO but also
3459 	 * things we cannot process, so do not use it.
3460 	 */
3461 	if (!using_dma(hsotg))
3462 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3463 
3464 	/* Enable interrupts for EP0 in and out */
3465 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3466 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3467 
3468 	if (!is_usb_reset) {
3469 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3470 		udelay(10);  /* see openiboot */
3471 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3472 	}
3473 
3474 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3475 
3476 	/*
3477 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3478 	 * writing to the EPCTL register..
3479 	 */
3480 
3481 	/* set to read 1 8byte packet */
3482 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3483 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3484 
3485 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3486 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3487 	       DXEPCTL_USBACTEP,
3488 	       DOEPCTL0);
3489 
3490 	/* enable, but don't activate EP0in */
3491 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3492 	       DXEPCTL_USBACTEP, DIEPCTL0);
3493 
3494 	/* clear global NAKs */
3495 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3496 	if (!is_usb_reset)
3497 		val |= DCTL_SFTDISCON;
3498 	dwc2_set_bit(hsotg, DCTL, val);
3499 
3500 	/* configure the core to support LPM */
3501 	dwc2_gadget_init_lpm(hsotg);
3502 
3503 	/* program GREFCLK register if needed */
3504 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3505 		dwc2_gadget_program_ref_clk(hsotg);
3506 
3507 	/* must be at-least 3ms to allow bus to see disconnect */
3508 	mdelay(3);
3509 
3510 	hsotg->lx_state = DWC2_L0;
3511 
3512 	dwc2_hsotg_enqueue_setup(hsotg);
3513 
3514 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3515 		dwc2_readl(hsotg, DIEPCTL0),
3516 		dwc2_readl(hsotg, DOEPCTL0));
3517 }
3518 
3519 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3520 {
3521 	/* set the soft-disconnect bit */
3522 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3523 }
3524 
3525 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3526 {
3527 	/* remove the soft-disconnect and let's go */
3528 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3529 }
3530 
3531 /**
3532  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3533  * @hsotg: The device state:
3534  *
3535  * This interrupt indicates one of the following conditions occurred while
3536  * transmitting an ISOC transaction.
3537  * - Corrupted IN Token for ISOC EP.
3538  * - Packet not complete in FIFO.
3539  *
3540  * The following actions will be taken:
3541  * - Determine the EP
3542  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3543  */
3544 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3545 {
3546 	struct dwc2_hsotg_ep *hs_ep;
3547 	u32 epctrl;
3548 	u32 daintmsk;
3549 	u32 idx;
3550 
3551 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3552 
3553 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3554 
3555 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3556 		hs_ep = hsotg->eps_in[idx];
3557 		/* Proceed only unmasked ISOC EPs */
3558 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3559 			continue;
3560 
3561 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3562 		if ((epctrl & DXEPCTL_EPENA) &&
3563 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3564 			epctrl |= DXEPCTL_SNAK;
3565 			epctrl |= DXEPCTL_EPDIS;
3566 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3567 		}
3568 	}
3569 
3570 	/* Clear interrupt */
3571 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3572 }
3573 
3574 /**
3575  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3576  * @hsotg: The device state:
3577  *
3578  * This interrupt indicates one of the following conditions occurred while
3579  * transmitting an ISOC transaction.
3580  * - Corrupted OUT Token for ISOC EP.
3581  * - Packet not complete in FIFO.
3582  *
3583  * The following actions will be taken:
3584  * - Determine the EP
3585  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3586  */
3587 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3588 {
3589 	u32 gintsts;
3590 	u32 gintmsk;
3591 	u32 daintmsk;
3592 	u32 epctrl;
3593 	struct dwc2_hsotg_ep *hs_ep;
3594 	int idx;
3595 
3596 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3597 
3598 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3599 	daintmsk >>= DAINT_OUTEP_SHIFT;
3600 
3601 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3602 		hs_ep = hsotg->eps_out[idx];
3603 		/* Proceed only unmasked ISOC EPs */
3604 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3605 			continue;
3606 
3607 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3608 		if ((epctrl & DXEPCTL_EPENA) &&
3609 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3610 			/* Unmask GOUTNAKEFF interrupt */
3611 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3612 			gintmsk |= GINTSTS_GOUTNAKEFF;
3613 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3614 
3615 			gintsts = dwc2_readl(hsotg, GINTSTS);
3616 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3617 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3618 				break;
3619 			}
3620 		}
3621 	}
3622 
3623 	/* Clear interrupt */
3624 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3625 }
3626 
3627 /**
3628  * dwc2_hsotg_irq - handle device interrupt
3629  * @irq: The IRQ number triggered
3630  * @pw: The pw value when registered the handler.
3631  */
3632 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3633 {
3634 	struct dwc2_hsotg *hsotg = pw;
3635 	int retry_count = 8;
3636 	u32 gintsts;
3637 	u32 gintmsk;
3638 
3639 	if (!dwc2_is_device_mode(hsotg))
3640 		return IRQ_NONE;
3641 
3642 	spin_lock(&hsotg->lock);
3643 irq_retry:
3644 	gintsts = dwc2_readl(hsotg, GINTSTS);
3645 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3646 
3647 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3648 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3649 
3650 	gintsts &= gintmsk;
3651 
3652 	if (gintsts & GINTSTS_RESETDET) {
3653 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3654 
3655 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3656 
3657 		/* This event must be used only if controller is suspended */
3658 		if (hsotg->lx_state == DWC2_L2) {
3659 			dwc2_exit_partial_power_down(hsotg, true);
3660 			hsotg->lx_state = DWC2_L0;
3661 		}
3662 	}
3663 
3664 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3665 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3666 		u32 connected = hsotg->connected;
3667 
3668 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3669 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3670 			dwc2_readl(hsotg, GNPTXSTS));
3671 
3672 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3673 
3674 		/* Report disconnection if it is not already done. */
3675 		dwc2_hsotg_disconnect(hsotg);
3676 
3677 		/* Reset device address to zero */
3678 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3679 
3680 		if (usb_status & GOTGCTL_BSESVLD && connected)
3681 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3682 	}
3683 
3684 	if (gintsts & GINTSTS_ENUMDONE) {
3685 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3686 
3687 		dwc2_hsotg_irq_enumdone(hsotg);
3688 	}
3689 
3690 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3691 		u32 daint = dwc2_readl(hsotg, DAINT);
3692 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3693 		u32 daint_out, daint_in;
3694 		int ep;
3695 
3696 		daint &= daintmsk;
3697 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3698 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3699 
3700 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3701 
3702 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3703 						ep++, daint_out >>= 1) {
3704 			if (daint_out & 1)
3705 				dwc2_hsotg_epint(hsotg, ep, 0);
3706 		}
3707 
3708 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3709 						ep++, daint_in >>= 1) {
3710 			if (daint_in & 1)
3711 				dwc2_hsotg_epint(hsotg, ep, 1);
3712 		}
3713 	}
3714 
3715 	/* check both FIFOs */
3716 
3717 	if (gintsts & GINTSTS_NPTXFEMP) {
3718 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3719 
3720 		/*
3721 		 * Disable the interrupt to stop it happening again
3722 		 * unless one of these endpoint routines decides that
3723 		 * it needs re-enabling
3724 		 */
3725 
3726 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3727 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3728 	}
3729 
3730 	if (gintsts & GINTSTS_PTXFEMP) {
3731 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3732 
3733 		/* See note in GINTSTS_NPTxFEmp */
3734 
3735 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3736 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3737 	}
3738 
3739 	if (gintsts & GINTSTS_RXFLVL) {
3740 		/*
3741 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3742 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3743 		 * set.
3744 		 */
3745 
3746 		dwc2_hsotg_handle_rx(hsotg);
3747 	}
3748 
3749 	if (gintsts & GINTSTS_ERLYSUSP) {
3750 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3751 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3752 	}
3753 
3754 	/*
3755 	 * these next two seem to crop-up occasionally causing the core
3756 	 * to shutdown the USB transfer, so try clearing them and logging
3757 	 * the occurrence.
3758 	 */
3759 
3760 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3761 		u8 idx;
3762 		u32 epctrl;
3763 		u32 gintmsk;
3764 		u32 daintmsk;
3765 		struct dwc2_hsotg_ep *hs_ep;
3766 
3767 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3768 		daintmsk >>= DAINT_OUTEP_SHIFT;
3769 		/* Mask this interrupt */
3770 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3771 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3772 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3773 
3774 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3775 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3776 			hs_ep = hsotg->eps_out[idx];
3777 			/* Proceed only unmasked ISOC EPs */
3778 			if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3779 				continue;
3780 
3781 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3782 
3783 			if (epctrl & DXEPCTL_EPENA) {
3784 				epctrl |= DXEPCTL_SNAK;
3785 				epctrl |= DXEPCTL_EPDIS;
3786 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3787 			}
3788 		}
3789 
3790 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3791 	}
3792 
3793 	if (gintsts & GINTSTS_GINNAKEFF) {
3794 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3795 
3796 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3797 
3798 		dwc2_hsotg_dump(hsotg);
3799 	}
3800 
3801 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3802 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3803 
3804 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3805 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3806 
3807 	/*
3808 	 * if we've had fifo events, we should try and go around the
3809 	 * loop again to see if there's any point in returning yet.
3810 	 */
3811 
3812 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3813 		goto irq_retry;
3814 
3815 	/* Check WKUP_ALERT interrupt*/
3816 	if (hsotg->params.service_interval)
3817 		dwc2_gadget_wkup_alert_handler(hsotg);
3818 
3819 	spin_unlock(&hsotg->lock);
3820 
3821 	return IRQ_HANDLED;
3822 }
3823 
3824 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3825 				   struct dwc2_hsotg_ep *hs_ep)
3826 {
3827 	u32 epctrl_reg;
3828 	u32 epint_reg;
3829 
3830 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3831 		DOEPCTL(hs_ep->index);
3832 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3833 		DOEPINT(hs_ep->index);
3834 
3835 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3836 		hs_ep->name);
3837 
3838 	if (hs_ep->dir_in) {
3839 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3840 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3841 			/* Wait for Nak effect */
3842 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3843 						    DXEPINT_INEPNAKEFF, 100))
3844 				dev_warn(hsotg->dev,
3845 					 "%s: timeout DIEPINT.NAKEFF\n",
3846 					 __func__);
3847 		} else {
3848 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3849 			/* Wait for Nak effect */
3850 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3851 						    GINTSTS_GINNAKEFF, 100))
3852 				dev_warn(hsotg->dev,
3853 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3854 					 __func__);
3855 		}
3856 	} else {
3857 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3858 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3859 
3860 		/* Wait for global nak to take effect */
3861 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3862 					    GINTSTS_GOUTNAKEFF, 100))
3863 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3864 				 __func__);
3865 	}
3866 
3867 	/* Disable ep */
3868 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3869 
3870 	/* Wait for ep to be disabled */
3871 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3872 		dev_warn(hsotg->dev,
3873 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3874 
3875 	/* Clear EPDISBLD interrupt */
3876 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3877 
3878 	if (hs_ep->dir_in) {
3879 		unsigned short fifo_index;
3880 
3881 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3882 			fifo_index = hs_ep->fifo_index;
3883 		else
3884 			fifo_index = 0;
3885 
3886 		/* Flush TX FIFO */
3887 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3888 
3889 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3890 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3891 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3892 
3893 	} else {
3894 		/* Remove global NAKs */
3895 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3896 	}
3897 }
3898 
3899 /**
3900  * dwc2_hsotg_ep_enable - enable the given endpoint
3901  * @ep: The USB endpint to configure
3902  * @desc: The USB endpoint descriptor to configure with.
3903  *
3904  * This is called from the USB gadget code's usb_ep_enable().
3905  */
3906 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3907 				const struct usb_endpoint_descriptor *desc)
3908 {
3909 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3910 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3911 	unsigned long flags;
3912 	unsigned int index = hs_ep->index;
3913 	u32 epctrl_reg;
3914 	u32 epctrl;
3915 	u32 mps;
3916 	u32 mc;
3917 	u32 mask;
3918 	unsigned int dir_in;
3919 	unsigned int i, val, size;
3920 	int ret = 0;
3921 	unsigned char ep_type;
3922 	int desc_num;
3923 
3924 	dev_dbg(hsotg->dev,
3925 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3926 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3927 		desc->wMaxPacketSize, desc->bInterval);
3928 
3929 	/* not to be called for EP0 */
3930 	if (index == 0) {
3931 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3932 		return -EINVAL;
3933 	}
3934 
3935 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3936 	if (dir_in != hs_ep->dir_in) {
3937 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3938 		return -EINVAL;
3939 	}
3940 
3941 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3942 	mps = usb_endpoint_maxp(desc);
3943 	mc = usb_endpoint_maxp_mult(desc);
3944 
3945 	/* ISOC IN in DDMA supported bInterval up to 10 */
3946 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3947 	    dir_in && desc->bInterval > 10) {
3948 		dev_err(hsotg->dev,
3949 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3950 		return -EINVAL;
3951 	}
3952 
3953 	/* High bandwidth ISOC OUT in DDMA not supported */
3954 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3955 	    !dir_in && mc > 1) {
3956 		dev_err(hsotg->dev,
3957 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3958 		return -EINVAL;
3959 	}
3960 
3961 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3962 
3963 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3964 	epctrl = dwc2_readl(hsotg, epctrl_reg);
3965 
3966 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3967 		__func__, epctrl, epctrl_reg);
3968 
3969 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
3970 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
3971 	else
3972 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
3973 
3974 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3975 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3976 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3977 			desc_num * sizeof(struct dwc2_dma_desc),
3978 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3979 		if (!hs_ep->desc_list) {
3980 			ret = -ENOMEM;
3981 			goto error2;
3982 		}
3983 	}
3984 
3985 	spin_lock_irqsave(&hsotg->lock, flags);
3986 
3987 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3988 	epctrl |= DXEPCTL_MPS(mps);
3989 
3990 	/*
3991 	 * mark the endpoint as active, otherwise the core may ignore
3992 	 * transactions entirely for this endpoint
3993 	 */
3994 	epctrl |= DXEPCTL_USBACTEP;
3995 
3996 	/* update the endpoint state */
3997 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3998 
3999 	/* default, set to non-periodic */
4000 	hs_ep->isochronous = 0;
4001 	hs_ep->periodic = 0;
4002 	hs_ep->halted = 0;
4003 	hs_ep->interval = desc->bInterval;
4004 
4005 	switch (ep_type) {
4006 	case USB_ENDPOINT_XFER_ISOC:
4007 		epctrl |= DXEPCTL_EPTYPE_ISO;
4008 		epctrl |= DXEPCTL_SETEVENFR;
4009 		hs_ep->isochronous = 1;
4010 		hs_ep->interval = 1 << (desc->bInterval - 1);
4011 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4012 		hs_ep->next_desc = 0;
4013 		hs_ep->compl_desc = 0;
4014 		if (dir_in) {
4015 			hs_ep->periodic = 1;
4016 			mask = dwc2_readl(hsotg, DIEPMSK);
4017 			mask |= DIEPMSK_NAKMSK;
4018 			dwc2_writel(hsotg, mask, DIEPMSK);
4019 		} else {
4020 			mask = dwc2_readl(hsotg, DOEPMSK);
4021 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4022 			dwc2_writel(hsotg, mask, DOEPMSK);
4023 		}
4024 		break;
4025 
4026 	case USB_ENDPOINT_XFER_BULK:
4027 		epctrl |= DXEPCTL_EPTYPE_BULK;
4028 		break;
4029 
4030 	case USB_ENDPOINT_XFER_INT:
4031 		if (dir_in)
4032 			hs_ep->periodic = 1;
4033 
4034 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4035 			hs_ep->interval = 1 << (desc->bInterval - 1);
4036 
4037 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4038 		break;
4039 
4040 	case USB_ENDPOINT_XFER_CONTROL:
4041 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4042 		break;
4043 	}
4044 
4045 	/*
4046 	 * if the hardware has dedicated fifos, we must give each IN EP
4047 	 * a unique tx-fifo even if it is non-periodic.
4048 	 */
4049 	if (dir_in && hsotg->dedicated_fifos) {
4050 		u32 fifo_index = 0;
4051 		u32 fifo_size = UINT_MAX;
4052 
4053 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4054 		for (i = 1; i < hsotg->num_of_eps; ++i) {
4055 			if (hsotg->fifo_map & (1 << i))
4056 				continue;
4057 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4058 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4059 			if (val < size)
4060 				continue;
4061 			/* Search for smallest acceptable fifo */
4062 			if (val < fifo_size) {
4063 				fifo_size = val;
4064 				fifo_index = i;
4065 			}
4066 		}
4067 		if (!fifo_index) {
4068 			dev_err(hsotg->dev,
4069 				"%s: No suitable fifo found\n", __func__);
4070 			ret = -ENOMEM;
4071 			goto error1;
4072 		}
4073 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4074 		hsotg->fifo_map |= 1 << fifo_index;
4075 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4076 		hs_ep->fifo_index = fifo_index;
4077 		hs_ep->fifo_size = fifo_size;
4078 	}
4079 
4080 	/* for non control endpoints, set PID to D0 */
4081 	if (index && !hs_ep->isochronous)
4082 		epctrl |= DXEPCTL_SETD0PID;
4083 
4084 	/* WA for Full speed ISOC IN in DDMA mode.
4085 	 * By Clear NAK status of EP, core will send ZLP
4086 	 * to IN token and assert NAK interrupt relying
4087 	 * on TxFIFO status only
4088 	 */
4089 
4090 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4091 	    hs_ep->isochronous && dir_in) {
4092 		/* The WA applies only to core versions from 2.72a
4093 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4094 		 * and HS_IOT_1.00a.
4095 		 */
4096 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4097 
4098 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4099 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4100 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4101 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4102 			epctrl |= DXEPCTL_CNAK;
4103 	}
4104 
4105 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4106 		__func__, epctrl);
4107 
4108 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4109 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4110 		__func__, dwc2_readl(hsotg, epctrl_reg));
4111 
4112 	/* enable the endpoint interrupt */
4113 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4114 
4115 error1:
4116 	spin_unlock_irqrestore(&hsotg->lock, flags);
4117 
4118 error2:
4119 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4120 		dmam_free_coherent(hsotg->dev, desc_num *
4121 			sizeof(struct dwc2_dma_desc),
4122 			hs_ep->desc_list, hs_ep->desc_list_dma);
4123 		hs_ep->desc_list = NULL;
4124 	}
4125 
4126 	return ret;
4127 }
4128 
4129 /**
4130  * dwc2_hsotg_ep_disable - disable given endpoint
4131  * @ep: The endpoint to disable.
4132  */
4133 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4134 {
4135 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4136 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4137 	int dir_in = hs_ep->dir_in;
4138 	int index = hs_ep->index;
4139 	u32 epctrl_reg;
4140 	u32 ctrl;
4141 
4142 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4143 
4144 	if (ep == &hsotg->eps_out[0]->ep) {
4145 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4146 		return -EINVAL;
4147 	}
4148 
4149 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4150 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4151 		return -EINVAL;
4152 	}
4153 
4154 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4155 
4156 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4157 
4158 	if (ctrl & DXEPCTL_EPENA)
4159 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4160 
4161 	ctrl &= ~DXEPCTL_EPENA;
4162 	ctrl &= ~DXEPCTL_USBACTEP;
4163 	ctrl |= DXEPCTL_SNAK;
4164 
4165 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4166 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4167 
4168 	/* disable endpoint interrupts */
4169 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4170 
4171 	/* terminate all requests with shutdown */
4172 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4173 
4174 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4175 	hs_ep->fifo_index = 0;
4176 	hs_ep->fifo_size = 0;
4177 
4178 	return 0;
4179 }
4180 
4181 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4182 {
4183 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4184 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4185 	unsigned long flags;
4186 	int ret;
4187 
4188 	spin_lock_irqsave(&hsotg->lock, flags);
4189 	ret = dwc2_hsotg_ep_disable(ep);
4190 	spin_unlock_irqrestore(&hsotg->lock, flags);
4191 	return ret;
4192 }
4193 
4194 /**
4195  * on_list - check request is on the given endpoint
4196  * @ep: The endpoint to check.
4197  * @test: The request to test if it is on the endpoint.
4198  */
4199 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4200 {
4201 	struct dwc2_hsotg_req *req, *treq;
4202 
4203 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4204 		if (req == test)
4205 			return true;
4206 	}
4207 
4208 	return false;
4209 }
4210 
4211 /**
4212  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4213  * @ep: The endpoint to dequeue.
4214  * @req: The request to be removed from a queue.
4215  */
4216 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4217 {
4218 	struct dwc2_hsotg_req *hs_req = our_req(req);
4219 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4220 	struct dwc2_hsotg *hs = hs_ep->parent;
4221 	unsigned long flags;
4222 
4223 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4224 
4225 	spin_lock_irqsave(&hs->lock, flags);
4226 
4227 	if (!on_list(hs_ep, hs_req)) {
4228 		spin_unlock_irqrestore(&hs->lock, flags);
4229 		return -EINVAL;
4230 	}
4231 
4232 	/* Dequeue already started request */
4233 	if (req == &hs_ep->req->req)
4234 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4235 
4236 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4237 	spin_unlock_irqrestore(&hs->lock, flags);
4238 
4239 	return 0;
4240 }
4241 
4242 /**
4243  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4244  * @ep: The endpoint to set halt.
4245  * @value: Set or unset the halt.
4246  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4247  *       the endpoint is busy processing requests.
4248  *
4249  * We need to stall the endpoint immediately if request comes from set_feature
4250  * protocol command handler.
4251  */
4252 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4253 {
4254 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4255 	struct dwc2_hsotg *hs = hs_ep->parent;
4256 	int index = hs_ep->index;
4257 	u32 epreg;
4258 	u32 epctl;
4259 	u32 xfertype;
4260 
4261 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4262 
4263 	if (index == 0) {
4264 		if (value)
4265 			dwc2_hsotg_stall_ep0(hs);
4266 		else
4267 			dev_warn(hs->dev,
4268 				 "%s: can't clear halt on ep0\n", __func__);
4269 		return 0;
4270 	}
4271 
4272 	if (hs_ep->isochronous) {
4273 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4274 		return -EINVAL;
4275 	}
4276 
4277 	if (!now && value && !list_empty(&hs_ep->queue)) {
4278 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4279 			ep->name);
4280 		return -EAGAIN;
4281 	}
4282 
4283 	if (hs_ep->dir_in) {
4284 		epreg = DIEPCTL(index);
4285 		epctl = dwc2_readl(hs, epreg);
4286 
4287 		if (value) {
4288 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4289 			if (epctl & DXEPCTL_EPENA)
4290 				epctl |= DXEPCTL_EPDIS;
4291 		} else {
4292 			epctl &= ~DXEPCTL_STALL;
4293 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4294 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4295 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4296 				epctl |= DXEPCTL_SETD0PID;
4297 		}
4298 		dwc2_writel(hs, epctl, epreg);
4299 	} else {
4300 		epreg = DOEPCTL(index);
4301 		epctl = dwc2_readl(hs, epreg);
4302 
4303 		if (value) {
4304 			epctl |= DXEPCTL_STALL;
4305 		} else {
4306 			epctl &= ~DXEPCTL_STALL;
4307 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4308 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4309 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4310 				epctl |= DXEPCTL_SETD0PID;
4311 		}
4312 		dwc2_writel(hs, epctl, epreg);
4313 	}
4314 
4315 	hs_ep->halted = value;
4316 
4317 	return 0;
4318 }
4319 
4320 /**
4321  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4322  * @ep: The endpoint to set halt.
4323  * @value: Set or unset the halt.
4324  */
4325 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4326 {
4327 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4328 	struct dwc2_hsotg *hs = hs_ep->parent;
4329 	unsigned long flags = 0;
4330 	int ret = 0;
4331 
4332 	spin_lock_irqsave(&hs->lock, flags);
4333 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4334 	spin_unlock_irqrestore(&hs->lock, flags);
4335 
4336 	return ret;
4337 }
4338 
4339 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4340 	.enable		= dwc2_hsotg_ep_enable,
4341 	.disable	= dwc2_hsotg_ep_disable_lock,
4342 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4343 	.free_request	= dwc2_hsotg_ep_free_request,
4344 	.queue		= dwc2_hsotg_ep_queue_lock,
4345 	.dequeue	= dwc2_hsotg_ep_dequeue,
4346 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4347 	/* note, don't believe we have any call for the fifo routines */
4348 };
4349 
4350 /**
4351  * dwc2_hsotg_init - initialize the usb core
4352  * @hsotg: The driver state
4353  */
4354 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4355 {
4356 	/* unmask subset of endpoint interrupts */
4357 
4358 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4359 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4360 		    DIEPMSK);
4361 
4362 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4363 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4364 		    DOEPMSK);
4365 
4366 	dwc2_writel(hsotg, 0, DAINTMSK);
4367 
4368 	/* Be in disconnected state until gadget is registered */
4369 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4370 
4371 	/* setup fifos */
4372 
4373 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4374 		dwc2_readl(hsotg, GRXFSIZ),
4375 		dwc2_readl(hsotg, GNPTXFSIZ));
4376 
4377 	dwc2_hsotg_init_fifo(hsotg);
4378 
4379 	if (using_dma(hsotg))
4380 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4381 }
4382 
4383 /**
4384  * dwc2_hsotg_udc_start - prepare the udc for work
4385  * @gadget: The usb gadget state
4386  * @driver: The usb gadget driver
4387  *
4388  * Perform initialization to prepare udc device and driver
4389  * to work.
4390  */
4391 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4392 				struct usb_gadget_driver *driver)
4393 {
4394 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4395 	unsigned long flags;
4396 	int ret;
4397 
4398 	if (!hsotg) {
4399 		pr_err("%s: called with no device\n", __func__);
4400 		return -ENODEV;
4401 	}
4402 
4403 	if (!driver) {
4404 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4405 		return -EINVAL;
4406 	}
4407 
4408 	if (driver->max_speed < USB_SPEED_FULL)
4409 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4410 
4411 	if (!driver->setup) {
4412 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4413 		return -EINVAL;
4414 	}
4415 
4416 	WARN_ON(hsotg->driver);
4417 
4418 	driver->driver.bus = NULL;
4419 	hsotg->driver = driver;
4420 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4421 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4422 
4423 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4424 		ret = dwc2_lowlevel_hw_enable(hsotg);
4425 		if (ret)
4426 			goto err;
4427 	}
4428 
4429 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4430 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4431 
4432 	spin_lock_irqsave(&hsotg->lock, flags);
4433 	if (dwc2_hw_is_device(hsotg)) {
4434 		dwc2_hsotg_init(hsotg);
4435 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4436 	}
4437 
4438 	hsotg->enabled = 0;
4439 	spin_unlock_irqrestore(&hsotg->lock, flags);
4440 
4441 	gadget->sg_supported = using_desc_dma(hsotg);
4442 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4443 
4444 	return 0;
4445 
4446 err:
4447 	hsotg->driver = NULL;
4448 	return ret;
4449 }
4450 
4451 /**
4452  * dwc2_hsotg_udc_stop - stop the udc
4453  * @gadget: The usb gadget state
4454  *
4455  * Stop udc hw block and stay tunned for future transmissions
4456  */
4457 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4458 {
4459 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4460 	unsigned long flags = 0;
4461 	int ep;
4462 
4463 	if (!hsotg)
4464 		return -ENODEV;
4465 
4466 	/* all endpoints should be shutdown */
4467 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4468 		if (hsotg->eps_in[ep])
4469 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4470 		if (hsotg->eps_out[ep])
4471 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4472 	}
4473 
4474 	spin_lock_irqsave(&hsotg->lock, flags);
4475 
4476 	hsotg->driver = NULL;
4477 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4478 	hsotg->enabled = 0;
4479 
4480 	spin_unlock_irqrestore(&hsotg->lock, flags);
4481 
4482 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4483 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4484 
4485 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4486 		dwc2_lowlevel_hw_disable(hsotg);
4487 
4488 	return 0;
4489 }
4490 
4491 /**
4492  * dwc2_hsotg_gadget_getframe - read the frame number
4493  * @gadget: The usb gadget state
4494  *
4495  * Read the {micro} frame number
4496  */
4497 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4498 {
4499 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4500 }
4501 
4502 /**
4503  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4504  * @gadget: The usb gadget state
4505  * @is_on: Current state of the USB PHY
4506  *
4507  * Connect/Disconnect the USB PHY pullup
4508  */
4509 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4510 {
4511 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4512 	unsigned long flags = 0;
4513 
4514 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4515 		hsotg->op_state);
4516 
4517 	/* Don't modify pullup state while in host mode */
4518 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4519 		hsotg->enabled = is_on;
4520 		return 0;
4521 	}
4522 
4523 	spin_lock_irqsave(&hsotg->lock, flags);
4524 	if (is_on) {
4525 		hsotg->enabled = 1;
4526 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4527 		/* Enable ACG feature in device mode,if supported */
4528 		dwc2_enable_acg(hsotg);
4529 		dwc2_hsotg_core_connect(hsotg);
4530 	} else {
4531 		dwc2_hsotg_core_disconnect(hsotg);
4532 		dwc2_hsotg_disconnect(hsotg);
4533 		hsotg->enabled = 0;
4534 	}
4535 
4536 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4537 	spin_unlock_irqrestore(&hsotg->lock, flags);
4538 
4539 	return 0;
4540 }
4541 
4542 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4543 {
4544 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4545 	unsigned long flags;
4546 
4547 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4548 	spin_lock_irqsave(&hsotg->lock, flags);
4549 
4550 	/*
4551 	 * If controller is hibernated, it must exit from power_down
4552 	 * before being initialized / de-initialized
4553 	 */
4554 	if (hsotg->lx_state == DWC2_L2)
4555 		dwc2_exit_partial_power_down(hsotg, false);
4556 
4557 	if (is_active) {
4558 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4559 
4560 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4561 		if (hsotg->enabled) {
4562 			/* Enable ACG feature in device mode,if supported */
4563 			dwc2_enable_acg(hsotg);
4564 			dwc2_hsotg_core_connect(hsotg);
4565 		}
4566 	} else {
4567 		dwc2_hsotg_core_disconnect(hsotg);
4568 		dwc2_hsotg_disconnect(hsotg);
4569 	}
4570 
4571 	spin_unlock_irqrestore(&hsotg->lock, flags);
4572 	return 0;
4573 }
4574 
4575 /**
4576  * dwc2_hsotg_vbus_draw - report bMaxPower field
4577  * @gadget: The usb gadget state
4578  * @mA: Amount of current
4579  *
4580  * Report how much power the device may consume to the phy.
4581  */
4582 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4583 {
4584 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4585 
4586 	if (IS_ERR_OR_NULL(hsotg->uphy))
4587 		return -ENOTSUPP;
4588 	return usb_phy_set_power(hsotg->uphy, mA);
4589 }
4590 
4591 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4592 	.get_frame	= dwc2_hsotg_gadget_getframe,
4593 	.udc_start		= dwc2_hsotg_udc_start,
4594 	.udc_stop		= dwc2_hsotg_udc_stop,
4595 	.pullup                 = dwc2_hsotg_pullup,
4596 	.vbus_session		= dwc2_hsotg_vbus_session,
4597 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4598 };
4599 
4600 /**
4601  * dwc2_hsotg_initep - initialise a single endpoint
4602  * @hsotg: The device state.
4603  * @hs_ep: The endpoint to be initialised.
4604  * @epnum: The endpoint number
4605  * @dir_in: True if direction is in.
4606  *
4607  * Initialise the given endpoint (as part of the probe and device state
4608  * creation) to give to the gadget driver. Setup the endpoint name, any
4609  * direction information and other state that may be required.
4610  */
4611 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4612 			      struct dwc2_hsotg_ep *hs_ep,
4613 				       int epnum,
4614 				       bool dir_in)
4615 {
4616 	char *dir;
4617 
4618 	if (epnum == 0)
4619 		dir = "";
4620 	else if (dir_in)
4621 		dir = "in";
4622 	else
4623 		dir = "out";
4624 
4625 	hs_ep->dir_in = dir_in;
4626 	hs_ep->index = epnum;
4627 
4628 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4629 
4630 	INIT_LIST_HEAD(&hs_ep->queue);
4631 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4632 
4633 	/* add to the list of endpoints known by the gadget driver */
4634 	if (epnum)
4635 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4636 
4637 	hs_ep->parent = hsotg;
4638 	hs_ep->ep.name = hs_ep->name;
4639 
4640 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4641 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4642 	else
4643 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4644 					   epnum ? 1024 : EP0_MPS_LIMIT);
4645 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4646 
4647 	if (epnum == 0) {
4648 		hs_ep->ep.caps.type_control = true;
4649 	} else {
4650 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4651 			hs_ep->ep.caps.type_iso = true;
4652 			hs_ep->ep.caps.type_bulk = true;
4653 		}
4654 		hs_ep->ep.caps.type_int = true;
4655 	}
4656 
4657 	if (dir_in)
4658 		hs_ep->ep.caps.dir_in = true;
4659 	else
4660 		hs_ep->ep.caps.dir_out = true;
4661 
4662 	/*
4663 	 * if we're using dma, we need to set the next-endpoint pointer
4664 	 * to be something valid.
4665 	 */
4666 
4667 	if (using_dma(hsotg)) {
4668 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4669 
4670 		if (dir_in)
4671 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4672 		else
4673 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4674 	}
4675 }
4676 
4677 /**
4678  * dwc2_hsotg_hw_cfg - read HW configuration registers
4679  * @hsotg: Programming view of the DWC_otg controller
4680  *
4681  * Read the USB core HW configuration registers
4682  */
4683 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4684 {
4685 	u32 cfg;
4686 	u32 ep_type;
4687 	u32 i;
4688 
4689 	/* check hardware configuration */
4690 
4691 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4692 
4693 	/* Add ep0 */
4694 	hsotg->num_of_eps++;
4695 
4696 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4697 					sizeof(struct dwc2_hsotg_ep),
4698 					GFP_KERNEL);
4699 	if (!hsotg->eps_in[0])
4700 		return -ENOMEM;
4701 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4702 	hsotg->eps_out[0] = hsotg->eps_in[0];
4703 
4704 	cfg = hsotg->hw_params.dev_ep_dirs;
4705 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4706 		ep_type = cfg & 3;
4707 		/* Direction in or both */
4708 		if (!(ep_type & 2)) {
4709 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4710 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4711 			if (!hsotg->eps_in[i])
4712 				return -ENOMEM;
4713 		}
4714 		/* Direction out or both */
4715 		if (!(ep_type & 1)) {
4716 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4717 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4718 			if (!hsotg->eps_out[i])
4719 				return -ENOMEM;
4720 		}
4721 	}
4722 
4723 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4724 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4725 
4726 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4727 		 hsotg->num_of_eps,
4728 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4729 		 hsotg->fifo_mem);
4730 	return 0;
4731 }
4732 
4733 /**
4734  * dwc2_hsotg_dump - dump state of the udc
4735  * @hsotg: Programming view of the DWC_otg controller
4736  *
4737  */
4738 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4739 {
4740 #ifdef DEBUG
4741 	struct device *dev = hsotg->dev;
4742 	u32 val;
4743 	int idx;
4744 
4745 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4746 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4747 		 dwc2_readl(hsotg, DIEPMSK));
4748 
4749 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4750 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4751 
4752 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4753 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4754 
4755 	/* show periodic fifo settings */
4756 
4757 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4758 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4759 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4760 			 val >> FIFOSIZE_DEPTH_SHIFT,
4761 			 val & FIFOSIZE_STARTADDR_MASK);
4762 	}
4763 
4764 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4765 		dev_info(dev,
4766 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4767 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4768 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4769 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4770 
4771 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4772 		dev_info(dev,
4773 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4774 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4775 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4776 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4777 	}
4778 
4779 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4780 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4781 #endif
4782 }
4783 
4784 /**
4785  * dwc2_gadget_init - init function for gadget
4786  * @hsotg: Programming view of the DWC_otg controller
4787  *
4788  */
4789 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4790 {
4791 	struct device *dev = hsotg->dev;
4792 	int epnum;
4793 	int ret;
4794 
4795 	/* Dump fifo information */
4796 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4797 		hsotg->params.g_np_tx_fifo_size);
4798 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4799 
4800 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4801 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4802 	hsotg->gadget.name = dev_name(dev);
4803 	hsotg->remote_wakeup_allowed = 0;
4804 
4805 	if (hsotg->params.lpm)
4806 		hsotg->gadget.lpm_capable = true;
4807 
4808 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4809 		hsotg->gadget.is_otg = 1;
4810 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4811 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4812 
4813 	ret = dwc2_hsotg_hw_cfg(hsotg);
4814 	if (ret) {
4815 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4816 		return ret;
4817 	}
4818 
4819 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4820 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4821 	if (!hsotg->ctrl_buff)
4822 		return -ENOMEM;
4823 
4824 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4825 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4826 	if (!hsotg->ep0_buff)
4827 		return -ENOMEM;
4828 
4829 	if (using_desc_dma(hsotg)) {
4830 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4831 		if (ret < 0)
4832 			return ret;
4833 	}
4834 
4835 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4836 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4837 	if (ret < 0) {
4838 		dev_err(dev, "cannot claim IRQ for gadget\n");
4839 		return ret;
4840 	}
4841 
4842 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4843 
4844 	if (hsotg->num_of_eps == 0) {
4845 		dev_err(dev, "wrong number of EPs (zero)\n");
4846 		return -EINVAL;
4847 	}
4848 
4849 	/* setup endpoint information */
4850 
4851 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4852 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4853 
4854 	/* allocate EP0 request */
4855 
4856 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4857 						     GFP_KERNEL);
4858 	if (!hsotg->ctrl_req) {
4859 		dev_err(dev, "failed to allocate ctrl req\n");
4860 		return -ENOMEM;
4861 	}
4862 
4863 	/* initialise the endpoints now the core has been initialised */
4864 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4865 		if (hsotg->eps_in[epnum])
4866 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4867 					  epnum, 1);
4868 		if (hsotg->eps_out[epnum])
4869 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4870 					  epnum, 0);
4871 	}
4872 
4873 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4874 	if (ret) {
4875 		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4876 					   hsotg->ctrl_req);
4877 		return ret;
4878 	}
4879 	dwc2_hsotg_dump(hsotg);
4880 
4881 	return 0;
4882 }
4883 
4884 /**
4885  * dwc2_hsotg_remove - remove function for hsotg driver
4886  * @hsotg: Programming view of the DWC_otg controller
4887  *
4888  */
4889 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4890 {
4891 	usb_del_gadget_udc(&hsotg->gadget);
4892 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4893 
4894 	return 0;
4895 }
4896 
4897 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4898 {
4899 	unsigned long flags;
4900 
4901 	if (hsotg->lx_state != DWC2_L0)
4902 		return 0;
4903 
4904 	if (hsotg->driver) {
4905 		int ep;
4906 
4907 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4908 			 hsotg->driver->driver.name);
4909 
4910 		spin_lock_irqsave(&hsotg->lock, flags);
4911 		if (hsotg->enabled)
4912 			dwc2_hsotg_core_disconnect(hsotg);
4913 		dwc2_hsotg_disconnect(hsotg);
4914 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4915 		spin_unlock_irqrestore(&hsotg->lock, flags);
4916 
4917 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4918 			if (hsotg->eps_in[ep])
4919 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4920 			if (hsotg->eps_out[ep])
4921 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4922 		}
4923 	}
4924 
4925 	return 0;
4926 }
4927 
4928 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4929 {
4930 	unsigned long flags;
4931 
4932 	if (hsotg->lx_state == DWC2_L2)
4933 		return 0;
4934 
4935 	if (hsotg->driver) {
4936 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4937 			 hsotg->driver->driver.name);
4938 
4939 		spin_lock_irqsave(&hsotg->lock, flags);
4940 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4941 		if (hsotg->enabled) {
4942 			/* Enable ACG feature in device mode,if supported */
4943 			dwc2_enable_acg(hsotg);
4944 			dwc2_hsotg_core_connect(hsotg);
4945 		}
4946 		spin_unlock_irqrestore(&hsotg->lock, flags);
4947 	}
4948 
4949 	return 0;
4950 }
4951 
4952 /**
4953  * dwc2_backup_device_registers() - Backup controller device registers.
4954  * When suspending usb bus, registers needs to be backuped
4955  * if controller power is disabled once suspended.
4956  *
4957  * @hsotg: Programming view of the DWC_otg controller
4958  */
4959 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4960 {
4961 	struct dwc2_dregs_backup *dr;
4962 	int i;
4963 
4964 	dev_dbg(hsotg->dev, "%s\n", __func__);
4965 
4966 	/* Backup dev regs */
4967 	dr = &hsotg->dr_backup;
4968 
4969 	dr->dcfg = dwc2_readl(hsotg, DCFG);
4970 	dr->dctl = dwc2_readl(hsotg, DCTL);
4971 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4972 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4973 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4974 
4975 	for (i = 0; i < hsotg->num_of_eps; i++) {
4976 		/* Backup IN EPs */
4977 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4978 
4979 		/* Ensure DATA PID is correctly configured */
4980 		if (dr->diepctl[i] & DXEPCTL_DPID)
4981 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4982 		else
4983 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4984 
4985 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4986 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4987 
4988 		/* Backup OUT EPs */
4989 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4990 
4991 		/* Ensure DATA PID is correctly configured */
4992 		if (dr->doepctl[i] & DXEPCTL_DPID)
4993 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4994 		else
4995 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4996 
4997 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
4998 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
4999 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5000 	}
5001 	dr->valid = true;
5002 	return 0;
5003 }
5004 
5005 /**
5006  * dwc2_restore_device_registers() - Restore controller device registers.
5007  * When resuming usb bus, device registers needs to be restored
5008  * if controller power were disabled.
5009  *
5010  * @hsotg: Programming view of the DWC_otg controller
5011  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5012  *
5013  * Return: 0 if successful, negative error code otherwise
5014  */
5015 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5016 {
5017 	struct dwc2_dregs_backup *dr;
5018 	int i;
5019 
5020 	dev_dbg(hsotg->dev, "%s\n", __func__);
5021 
5022 	/* Restore dev regs */
5023 	dr = &hsotg->dr_backup;
5024 	if (!dr->valid) {
5025 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5026 			__func__);
5027 		return -EINVAL;
5028 	}
5029 	dr->valid = false;
5030 
5031 	if (!remote_wakeup)
5032 		dwc2_writel(hsotg, dr->dctl, DCTL);
5033 
5034 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5035 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5036 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5037 
5038 	for (i = 0; i < hsotg->num_of_eps; i++) {
5039 		/* Restore IN EPs */
5040 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5041 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5042 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5043 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5044 		 * hibernation wrong value read and saved from DIEPDMAx,
5045 		 * as result BNA interrupt asserted on hibernation exit
5046 		 * by restoring from saved area.
5047 		 */
5048 		if (hsotg->params.g_dma_desc &&
5049 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5050 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5051 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5052 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5053 		/* Restore OUT EPs */
5054 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5055 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5056 		 * hibernation wrong value read and saved from DOEPDMAx,
5057 		 * as result BNA interrupt asserted on hibernation exit
5058 		 * by restoring from saved area.
5059 		 */
5060 		if (hsotg->params.g_dma_desc &&
5061 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5062 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5063 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5064 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5065 	}
5066 
5067 	return 0;
5068 }
5069 
5070 /**
5071  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5072  *
5073  * @hsotg: Programming view of DWC_otg controller
5074  *
5075  */
5076 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5077 {
5078 	u32 val;
5079 
5080 	if (!hsotg->params.lpm)
5081 		return;
5082 
5083 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5084 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5085 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5086 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5087 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5088 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5089 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5090 	dwc2_writel(hsotg, val, GLPMCFG);
5091 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5092 
5093 	/* Unmask WKUP_ALERT Interrupt */
5094 	if (hsotg->params.service_interval)
5095 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5096 }
5097 
5098 /**
5099  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5100  *
5101  * @hsotg: Programming view of DWC_otg controller
5102  *
5103  */
5104 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5105 {
5106 	u32 val = 0;
5107 
5108 	val |= GREFCLK_REF_CLK_MODE;
5109 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5110 	val |= hsotg->params.sof_cnt_wkup_alert <<
5111 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5112 
5113 	dwc2_writel(hsotg, val, GREFCLK);
5114 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5115 }
5116 
5117 /**
5118  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5119  *
5120  * @hsotg: Programming view of the DWC_otg controller
5121  *
5122  * Return non-zero if failed to enter to hibernation.
5123  */
5124 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5125 {
5126 	u32 gpwrdn;
5127 	int ret = 0;
5128 
5129 	/* Change to L2(suspend) state */
5130 	hsotg->lx_state = DWC2_L2;
5131 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5132 	ret = dwc2_backup_global_registers(hsotg);
5133 	if (ret) {
5134 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5135 			__func__);
5136 		return ret;
5137 	}
5138 	ret = dwc2_backup_device_registers(hsotg);
5139 	if (ret) {
5140 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5141 			__func__);
5142 		return ret;
5143 	}
5144 
5145 	gpwrdn = GPWRDN_PWRDNRSTN;
5146 	gpwrdn |= GPWRDN_PMUACTV;
5147 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5148 	udelay(10);
5149 
5150 	/* Set flag to indicate that we are in hibernation */
5151 	hsotg->hibernated = 1;
5152 
5153 	/* Enable interrupts from wake up logic */
5154 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5155 	gpwrdn |= GPWRDN_PMUINTSEL;
5156 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5157 	udelay(10);
5158 
5159 	/* Unmask device mode interrupts in GPWRDN */
5160 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5161 	gpwrdn |= GPWRDN_RST_DET_MSK;
5162 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5163 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5164 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5165 	udelay(10);
5166 
5167 	/* Enable Power Down Clamp */
5168 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5169 	gpwrdn |= GPWRDN_PWRDNCLMP;
5170 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5171 	udelay(10);
5172 
5173 	/* Switch off VDD */
5174 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5175 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5176 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5177 	udelay(10);
5178 
5179 	/* Save gpwrdn register for further usage if stschng interrupt */
5180 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5181 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5182 
5183 	return ret;
5184 }
5185 
5186 /**
5187  * dwc2_gadget_exit_hibernation()
5188  * This function is for exiting from Device mode hibernation by host initiated
5189  * resume/reset and device initiated remote-wakeup.
5190  *
5191  * @hsotg: Programming view of the DWC_otg controller
5192  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5193  * @reset: indicates whether resume is initiated by Reset.
5194  *
5195  * Return non-zero if failed to exit from hibernation.
5196  */
5197 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5198 				 int rem_wakeup, int reset)
5199 {
5200 	u32 pcgcctl;
5201 	u32 gpwrdn;
5202 	u32 dctl;
5203 	int ret = 0;
5204 	struct dwc2_gregs_backup *gr;
5205 	struct dwc2_dregs_backup *dr;
5206 
5207 	gr = &hsotg->gr_backup;
5208 	dr = &hsotg->dr_backup;
5209 
5210 	if (!hsotg->hibernated) {
5211 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5212 		return 1;
5213 	}
5214 	dev_dbg(hsotg->dev,
5215 		"%s: called with rem_wakeup = %d reset = %d\n",
5216 		__func__, rem_wakeup, reset);
5217 
5218 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5219 
5220 	if (!reset) {
5221 		/* Clear all pending interupts */
5222 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5223 	}
5224 
5225 	/* De-assert Restore */
5226 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5227 	gpwrdn &= ~GPWRDN_RESTORE;
5228 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5229 	udelay(10);
5230 
5231 	if (!rem_wakeup) {
5232 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5233 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5234 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5235 	}
5236 
5237 	/* Restore GUSBCFG, DCFG and DCTL */
5238 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5239 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5240 	dwc2_writel(hsotg, dr->dctl, DCTL);
5241 
5242 	/* De-assert Wakeup Logic */
5243 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5244 	gpwrdn &= ~GPWRDN_PMUACTV;
5245 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5246 
5247 	if (rem_wakeup) {
5248 		udelay(10);
5249 		/* Start Remote Wakeup Signaling */
5250 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5251 	} else {
5252 		udelay(50);
5253 		/* Set Device programming done bit */
5254 		dctl = dwc2_readl(hsotg, DCTL);
5255 		dctl |= DCTL_PWRONPRGDONE;
5256 		dwc2_writel(hsotg, dctl, DCTL);
5257 	}
5258 	/* Wait for interrupts which must be cleared */
5259 	mdelay(2);
5260 	/* Clear all pending interupts */
5261 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5262 
5263 	/* Restore global registers */
5264 	ret = dwc2_restore_global_registers(hsotg);
5265 	if (ret) {
5266 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5267 			__func__);
5268 		return ret;
5269 	}
5270 
5271 	/* Restore device registers */
5272 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5273 	if (ret) {
5274 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5275 			__func__);
5276 		return ret;
5277 	}
5278 
5279 	if (rem_wakeup) {
5280 		mdelay(10);
5281 		dctl = dwc2_readl(hsotg, DCTL);
5282 		dctl &= ~DCTL_RMTWKUPSIG;
5283 		dwc2_writel(hsotg, dctl, DCTL);
5284 	}
5285 
5286 	hsotg->hibernated = 0;
5287 	hsotg->lx_state = DWC2_L0;
5288 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5289 
5290 	return ret;
5291 }
5292