xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/of_platform.h>
31 #include <linux/phy/phy.h>
32 
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37 
38 #include "core.h"
39 #include "hw.h"
40 
41 /* conversion functions */
42 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
43 {
44 	return container_of(req, struct s3c_hsotg_req, req);
45 }
46 
47 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
48 {
49 	return container_of(ep, struct s3c_hsotg_ep, ep);
50 }
51 
52 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53 {
54 	return container_of(gadget, struct dwc2_hsotg, gadget);
55 }
56 
57 static inline void __orr32(void __iomem *ptr, u32 val)
58 {
59 	writel(readl(ptr) | val, ptr);
60 }
61 
62 static inline void __bic32(void __iomem *ptr, u32 val)
63 {
64 	writel(readl(ptr) & ~val, ptr);
65 }
66 
67 static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
68 						u32 ep_index, u32 dir_in)
69 {
70 	if (dir_in)
71 		return hsotg->eps_in[ep_index];
72 	else
73 		return hsotg->eps_out[ep_index];
74 }
75 
76 /* forward declaration of functions */
77 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
78 
79 /**
80  * using_dma - return the DMA status of the driver.
81  * @hsotg: The driver state.
82  *
83  * Return true if we're using DMA.
84  *
85  * Currently, we have the DMA support code worked into everywhere
86  * that needs it, but the AMBA DMA implementation in the hardware can
87  * only DMA from 32bit aligned addresses. This means that gadgets such
88  * as the CDC Ethernet cannot work as they often pass packets which are
89  * not 32bit aligned.
90  *
91  * Unfortunately the choice to use DMA or not is global to the controller
92  * and seems to be only settable when the controller is being put through
93  * a core reset. This means we either need to fix the gadgets to take
94  * account of DMA alignment, or add bounce buffers (yuerk).
95  *
96  * g_using_dma is set depending on dts flag.
97  */
98 static inline bool using_dma(struct dwc2_hsotg *hsotg)
99 {
100 	return hsotg->g_using_dma;
101 }
102 
103 /**
104  * s3c_hsotg_en_gsint - enable one or more of the general interrupt
105  * @hsotg: The device state
106  * @ints: A bitmask of the interrupts to enable
107  */
108 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109 {
110 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
111 	u32 new_gsintmsk;
112 
113 	new_gsintmsk = gsintmsk | ints;
114 
115 	if (new_gsintmsk != gsintmsk) {
116 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
118 	}
119 }
120 
121 /**
122  * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
123  * @hsotg: The device state
124  * @ints: A bitmask of the interrupts to enable
125  */
126 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127 {
128 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
129 	u32 new_gsintmsk;
130 
131 	new_gsintmsk = gsintmsk & ~ints;
132 
133 	if (new_gsintmsk != gsintmsk)
134 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 }
136 
137 /**
138  * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
139  * @hsotg: The device state
140  * @ep: The endpoint index
141  * @dir_in: True if direction is in.
142  * @en: The enable value, true to enable
143  *
144  * Set or clear the mask for an individual endpoint's interrupt
145  * request.
146  */
147 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148 				 unsigned int ep, unsigned int dir_in,
149 				 unsigned int en)
150 {
151 	unsigned long flags;
152 	u32 bit = 1 << ep;
153 	u32 daint;
154 
155 	if (!dir_in)
156 		bit <<= 16;
157 
158 	local_irq_save(flags);
159 	daint = readl(hsotg->regs + DAINTMSK);
160 	if (en)
161 		daint |= bit;
162 	else
163 		daint &= ~bit;
164 	writel(daint, hsotg->regs + DAINTMSK);
165 	local_irq_restore(flags);
166 }
167 
168 /**
169  * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
170  * @hsotg: The device instance.
171  */
172 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173 {
174 	unsigned int ep;
175 	unsigned int addr;
176 	int timeout;
177 	u32 val;
178 
179 	/* Reset fifo map if not correctly cleared during previous session */
180 	WARN_ON(hsotg->fifo_map);
181 	hsotg->fifo_map = 0;
182 
183 	/* set RX/NPTX FIFO sizes */
184 	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
185 	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
186 		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
187 		hsotg->regs + GNPTXFSIZ);
188 
189 	/*
190 	 * arange all the rest of the TX FIFOs, as some versions of this
191 	 * block have overlapping default addresses. This also ensures
192 	 * that if the settings have been changed, then they are set to
193 	 * known values.
194 	 */
195 
196 	/* start at the end of the GNPTXFSIZ, rounded up */
197 	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198 
199 	/*
200 	 * Configure fifos sizes from provided configuration and assign
201 	 * them to endpoints dynamically according to maxpacket size value of
202 	 * given endpoint.
203 	 */
204 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
205 		if (!hsotg->g_tx_fifo_sz[ep])
206 			continue;
207 		val = addr;
208 		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
209 		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210 			  "insufficient fifo memory");
211 		addr += hsotg->g_tx_fifo_sz[ep];
212 
213 		writel(val, hsotg->regs + DPTXFSIZN(ep));
214 	}
215 
216 	/*
217 	 * according to p428 of the design guide, we need to ensure that
218 	 * all fifos are flushed before continuing
219 	 */
220 
221 	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
222 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223 
224 	/* wait until the fifos are both flushed */
225 	timeout = 100;
226 	while (1) {
227 		val = readl(hsotg->regs + GRSTCTL);
228 
229 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230 			break;
231 
232 		if (--timeout == 0) {
233 			dev_err(hsotg->dev,
234 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
235 				__func__, val);
236 			break;
237 		}
238 
239 		udelay(1);
240 	}
241 
242 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 }
244 
245 /**
246  * @ep: USB endpoint to allocate request for.
247  * @flags: Allocation flags
248  *
249  * Allocate a new USB request structure appropriate for the specified endpoint
250  */
251 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
252 						      gfp_t flags)
253 {
254 	struct s3c_hsotg_req *req;
255 
256 	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
257 	if (!req)
258 		return NULL;
259 
260 	INIT_LIST_HEAD(&req->queue);
261 
262 	return &req->req;
263 }
264 
265 /**
266  * is_ep_periodic - return true if the endpoint is in periodic mode.
267  * @hs_ep: The endpoint to query.
268  *
269  * Returns true if the endpoint is in periodic mode, meaning it is being
270  * used for an Interrupt or ISO transfer.
271  */
272 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
273 {
274 	return hs_ep->periodic;
275 }
276 
277 /**
278  * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
279  * @hsotg: The device state.
280  * @hs_ep: The endpoint for the request
281  * @hs_req: The request being processed.
282  *
283  * This is the reverse of s3c_hsotg_map_dma(), called for the completion
284  * of a request to ensure the buffer is ready for access by the caller.
285  */
286 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
287 				struct s3c_hsotg_ep *hs_ep,
288 				struct s3c_hsotg_req *hs_req)
289 {
290 	struct usb_request *req = &hs_req->req;
291 
292 	/* ignore this if we're not moving any data */
293 	if (hs_req->req.length == 0)
294 		return;
295 
296 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 }
298 
299 /**
300  * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
301  * @hsotg: The controller state.
302  * @hs_ep: The endpoint we're going to write for.
303  * @hs_req: The request to write data for.
304  *
305  * This is called when the TxFIFO has some space in it to hold a new
306  * transmission and we have something to give it. The actual setup of
307  * the data size is done elsewhere, so all we have to do is to actually
308  * write the data.
309  *
310  * The return value is zero if there is more space (or nothing was done)
311  * otherwise -ENOSPC is returned if the FIFO space was used up.
312  *
313  * This routine is only needed for PIO
314  */
315 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
316 				struct s3c_hsotg_ep *hs_ep,
317 				struct s3c_hsotg_req *hs_req)
318 {
319 	bool periodic = is_ep_periodic(hs_ep);
320 	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
321 	int buf_pos = hs_req->req.actual;
322 	int to_write = hs_ep->size_loaded;
323 	void *data;
324 	int can_write;
325 	int pkt_round;
326 	int max_transfer;
327 
328 	to_write -= (buf_pos - hs_ep->last_load);
329 
330 	/* if there's nothing to write, get out early */
331 	if (to_write == 0)
332 		return 0;
333 
334 	if (periodic && !hsotg->dedicated_fifos) {
335 		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336 		int size_left;
337 		int size_done;
338 
339 		/*
340 		 * work out how much data was loaded so we can calculate
341 		 * how much data is left in the fifo.
342 		 */
343 
344 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345 
346 		/*
347 		 * if shared fifo, we cannot write anything until the
348 		 * previous data has been completely sent.
349 		 */
350 		if (hs_ep->fifo_load != 0) {
351 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352 			return -ENOSPC;
353 		}
354 
355 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
356 			__func__, size_left,
357 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
358 
359 		/* how much of the data has moved */
360 		size_done = hs_ep->size_loaded - size_left;
361 
362 		/* how much data is left in the fifo */
363 		can_write = hs_ep->fifo_load - size_done;
364 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
365 			__func__, can_write);
366 
367 		can_write = hs_ep->fifo_size - can_write;
368 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
369 			__func__, can_write);
370 
371 		if (can_write <= 0) {
372 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373 			return -ENOSPC;
374 		}
375 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376 		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
377 
378 		can_write &= 0xffff;
379 		can_write *= 4;
380 	} else {
381 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382 			dev_dbg(hsotg->dev,
383 				"%s: no queue slots available (0x%08x)\n",
384 				__func__, gnptxsts);
385 
386 			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387 			return -ENOSPC;
388 		}
389 
390 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391 		can_write *= 4;	/* fifo size is in 32bit quantities. */
392 	}
393 
394 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
395 
396 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
397 		 __func__, gnptxsts, can_write, to_write, max_transfer);
398 
399 	/*
400 	 * limit to 512 bytes of data, it seems at least on the non-periodic
401 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
402 	 * fragment of the end of the transfer in it.
403 	 */
404 	if (can_write > 512 && !periodic)
405 		can_write = 512;
406 
407 	/*
408 	 * limit the write to one max-packet size worth of data, but allow
409 	 * the transfer to return that it did not run out of fifo space
410 	 * doing it.
411 	 */
412 	if (to_write > max_transfer) {
413 		to_write = max_transfer;
414 
415 		/* it's needed only when we do not use dedicated fifos */
416 		if (!hsotg->dedicated_fifos)
417 			s3c_hsotg_en_gsint(hsotg,
418 					   periodic ? GINTSTS_PTXFEMP :
419 					   GINTSTS_NPTXFEMP);
420 	}
421 
422 	/* see if we can write data */
423 
424 	if (to_write > can_write) {
425 		to_write = can_write;
426 		pkt_round = to_write % max_transfer;
427 
428 		/*
429 		 * Round the write down to an
430 		 * exact number of packets.
431 		 *
432 		 * Note, we do not currently check to see if we can ever
433 		 * write a full packet or not to the FIFO.
434 		 */
435 
436 		if (pkt_round)
437 			to_write -= pkt_round;
438 
439 		/*
440 		 * enable correct FIFO interrupt to alert us when there
441 		 * is more room left.
442 		 */
443 
444 		/* it's needed only when we do not use dedicated fifos */
445 		if (!hsotg->dedicated_fifos)
446 			s3c_hsotg_en_gsint(hsotg,
447 					   periodic ? GINTSTS_PTXFEMP :
448 					   GINTSTS_NPTXFEMP);
449 	}
450 
451 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
452 		 to_write, hs_req->req.length, can_write, buf_pos);
453 
454 	if (to_write <= 0)
455 		return -ENOSPC;
456 
457 	hs_req->req.actual = buf_pos + to_write;
458 	hs_ep->total_data += to_write;
459 
460 	if (periodic)
461 		hs_ep->fifo_load += to_write;
462 
463 	to_write = DIV_ROUND_UP(to_write, 4);
464 	data = hs_req->req.buf + buf_pos;
465 
466 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467 
468 	return (to_write >= can_write) ? -ENOSPC : 0;
469 }
470 
471 /**
472  * get_ep_limit - get the maximum data legnth for this endpoint
473  * @hs_ep: The endpoint
474  *
475  * Return the maximum data that can be queued in one go on a given endpoint
476  * so that transfers that are too long can be split.
477  */
478 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
479 {
480 	int index = hs_ep->index;
481 	unsigned maxsize;
482 	unsigned maxpkt;
483 
484 	if (index != 0) {
485 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
486 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487 	} else {
488 		maxsize = 64+64;
489 		if (hs_ep->dir_in)
490 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491 		else
492 			maxpkt = 2;
493 	}
494 
495 	/* we made the constant loading easier above by using +1 */
496 	maxpkt--;
497 	maxsize--;
498 
499 	/*
500 	 * constrain by packet count if maxpkts*pktsize is greater
501 	 * than the length register size.
502 	 */
503 
504 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
505 		maxsize = maxpkt * hs_ep->ep.maxpacket;
506 
507 	return maxsize;
508 }
509 
510 /**
511  * s3c_hsotg_start_req - start a USB request from an endpoint's queue
512  * @hsotg: The controller state.
513  * @hs_ep: The endpoint to process a request for
514  * @hs_req: The request to start.
515  * @continuing: True if we are doing more for the current request.
516  *
517  * Start the given request running by setting the endpoint registers
518  * appropriately, and writing any data to the FIFOs.
519  */
520 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
521 				struct s3c_hsotg_ep *hs_ep,
522 				struct s3c_hsotg_req *hs_req,
523 				bool continuing)
524 {
525 	struct usb_request *ureq = &hs_req->req;
526 	int index = hs_ep->index;
527 	int dir_in = hs_ep->dir_in;
528 	u32 epctrl_reg;
529 	u32 epsize_reg;
530 	u32 epsize;
531 	u32 ctrl;
532 	unsigned length;
533 	unsigned packets;
534 	unsigned maxreq;
535 
536 	if (index != 0) {
537 		if (hs_ep->req && !continuing) {
538 			dev_err(hsotg->dev, "%s: active request\n", __func__);
539 			WARN_ON(1);
540 			return;
541 		} else if (hs_ep->req != hs_req && continuing) {
542 			dev_err(hsotg->dev,
543 				"%s: continue different req\n", __func__);
544 			WARN_ON(1);
545 			return;
546 		}
547 	}
548 
549 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
550 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551 
552 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553 		__func__, readl(hsotg->regs + epctrl_reg), index,
554 		hs_ep->dir_in ? "in" : "out");
555 
556 	/* If endpoint is stalled, we will restart request later */
557 	ctrl = readl(hsotg->regs + epctrl_reg);
558 
559 	if (ctrl & DXEPCTL_STALL) {
560 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
561 		return;
562 	}
563 
564 	length = ureq->length - ureq->actual;
565 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
566 		ureq->length, ureq->actual);
567 
568 	maxreq = get_ep_limit(hs_ep);
569 	if (length > maxreq) {
570 		int round = maxreq % hs_ep->ep.maxpacket;
571 
572 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
573 			__func__, length, maxreq, round);
574 
575 		/* round down to multiple of packets */
576 		if (round)
577 			maxreq -= round;
578 
579 		length = maxreq;
580 	}
581 
582 	if (length)
583 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
584 	else
585 		packets = 1;	/* send one packet if length is zero. */
586 
587 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
588 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
589 		return;
590 	}
591 
592 	if (dir_in && index != 0)
593 		if (hs_ep->isochronous)
594 			epsize = DXEPTSIZ_MC(packets);
595 		else
596 			epsize = DXEPTSIZ_MC(1);
597 	else
598 		epsize = 0;
599 
600 	/*
601 	 * zero length packet should be programmed on its own and should not
602 	 * be counted in DIEPTSIZ.PktCnt with other packets.
603 	 */
604 	if (dir_in && ureq->zero && !continuing) {
605 		/* Test if zlp is actually required. */
606 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
607 					!(ureq->length % hs_ep->ep.maxpacket))
608 			hs_ep->send_zlp = 1;
609 	}
610 
611 	epsize |= DXEPTSIZ_PKTCNT(packets);
612 	epsize |= DXEPTSIZ_XFERSIZE(length);
613 
614 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
615 		__func__, packets, length, ureq->length, epsize, epsize_reg);
616 
617 	/* store the request as the current one we're doing */
618 	hs_ep->req = hs_req;
619 
620 	/* write size / packets */
621 	writel(epsize, hsotg->regs + epsize_reg);
622 
623 	if (using_dma(hsotg) && !continuing) {
624 		unsigned int dma_reg;
625 
626 		/*
627 		 * write DMA address to control register, buffer already
628 		 * synced by s3c_hsotg_ep_queue().
629 		 */
630 
631 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632 		writel(ureq->dma, hsotg->regs + dma_reg);
633 
634 		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635 			__func__, &ureq->dma, dma_reg);
636 	}
637 
638 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
639 	ctrl |= DXEPCTL_USBACTEP;
640 
641 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642 
643 	/* For Setup request do not clear NAK */
644 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
646 
647 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
648 	writel(ctrl, hsotg->regs + epctrl_reg);
649 
650 	/*
651 	 * set these, it seems that DMA support increments past the end
652 	 * of the packet buffer so we need to calculate the length from
653 	 * this information.
654 	 */
655 	hs_ep->size_loaded = length;
656 	hs_ep->last_load = ureq->actual;
657 
658 	if (dir_in && !using_dma(hsotg)) {
659 		/* set these anyway, we may need them for non-periodic in */
660 		hs_ep->fifo_load = 0;
661 
662 		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
663 	}
664 
665 	/*
666 	 * clear the INTknTXFEmpMsk when we start request, more as a aide
667 	 * to debugging to see what is going on.
668 	 */
669 	if (dir_in)
670 		writel(DIEPMSK_INTKNTXFEMPMSK,
671 		       hsotg->regs + DIEPINT(index));
672 
673 	/*
674 	 * Note, trying to clear the NAK here causes problems with transmit
675 	 * on the S3C6400 ending up with the TXFIFO becoming full.
676 	 */
677 
678 	/* check ep is enabled */
679 	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680 		dev_dbg(hsotg->dev,
681 			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682 			 index, readl(hsotg->regs + epctrl_reg));
683 
684 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685 		__func__, readl(hsotg->regs + epctrl_reg));
686 
687 	/* enable ep interrupts */
688 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 }
690 
691 /**
692  * s3c_hsotg_map_dma - map the DMA memory being used for the request
693  * @hsotg: The device state.
694  * @hs_ep: The endpoint the request is on.
695  * @req: The request being processed.
696  *
697  * We've been asked to queue a request, so ensure that the memory buffer
698  * is correctly setup for DMA. If we've been passed an extant DMA address
699  * then ensure the buffer has been synced to memory. If our buffer has no
700  * DMA memory, then we map the memory and mark our request to allow us to
701  * cleanup on completion.
702  */
703 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
704 			     struct s3c_hsotg_ep *hs_ep,
705 			     struct usb_request *req)
706 {
707 	struct s3c_hsotg_req *hs_req = our_req(req);
708 	int ret;
709 
710 	/* if the length is zero, ignore the DMA data */
711 	if (hs_req->req.length == 0)
712 		return 0;
713 
714 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
715 	if (ret)
716 		goto dma_error;
717 
718 	return 0;
719 
720 dma_error:
721 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
722 		__func__, req->buf, req->length);
723 
724 	return -EIO;
725 }
726 
727 static int s3c_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
728 	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
729 {
730 	void *req_buf = hs_req->req.buf;
731 
732 	/* If dma is not being used or buffer is aligned */
733 	if (!using_dma(hsotg) || !((long)req_buf & 3))
734 		return 0;
735 
736 	WARN_ON(hs_req->saved_req_buf);
737 
738 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
739 			hs_ep->ep.name, req_buf, hs_req->req.length);
740 
741 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
742 	if (!hs_req->req.buf) {
743 		hs_req->req.buf = req_buf;
744 		dev_err(hsotg->dev,
745 			"%s: unable to allocate memory for bounce buffer\n",
746 			__func__);
747 		return -ENOMEM;
748 	}
749 
750 	/* Save actual buffer */
751 	hs_req->saved_req_buf = req_buf;
752 
753 	if (hs_ep->dir_in)
754 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
755 	return 0;
756 }
757 
758 static void s3c_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
759 	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
760 {
761 	/* If dma is not being used or buffer was aligned */
762 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
763 		return;
764 
765 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
766 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
767 
768 	/* Copy data from bounce buffer on successful out transfer */
769 	if (!hs_ep->dir_in && !hs_req->req.status)
770 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
771 							hs_req->req.actual);
772 
773 	/* Free bounce buffer */
774 	kfree(hs_req->req.buf);
775 
776 	hs_req->req.buf = hs_req->saved_req_buf;
777 	hs_req->saved_req_buf = NULL;
778 }
779 
780 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
781 			      gfp_t gfp_flags)
782 {
783 	struct s3c_hsotg_req *hs_req = our_req(req);
784 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
785 	struct dwc2_hsotg *hs = hs_ep->parent;
786 	bool first;
787 	int ret;
788 
789 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
790 		ep->name, req, req->length, req->buf, req->no_interrupt,
791 		req->zero, req->short_not_ok);
792 
793 	/* Prevent new request submission when controller is suspended */
794 	if (hs->lx_state == DWC2_L2) {
795 		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
796 				__func__);
797 		return -EAGAIN;
798 	}
799 
800 	/* initialise status of the request */
801 	INIT_LIST_HEAD(&hs_req->queue);
802 	req->actual = 0;
803 	req->status = -EINPROGRESS;
804 
805 	ret = s3c_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
806 	if (ret)
807 		return ret;
808 
809 	/* if we're using DMA, sync the buffers as necessary */
810 	if (using_dma(hs)) {
811 		ret = s3c_hsotg_map_dma(hs, hs_ep, req);
812 		if (ret)
813 			return ret;
814 	}
815 
816 	first = list_empty(&hs_ep->queue);
817 	list_add_tail(&hs_req->queue, &hs_ep->queue);
818 
819 	if (first)
820 		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
821 
822 	return 0;
823 }
824 
825 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
826 			      gfp_t gfp_flags)
827 {
828 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
829 	struct dwc2_hsotg *hs = hs_ep->parent;
830 	unsigned long flags = 0;
831 	int ret = 0;
832 
833 	spin_lock_irqsave(&hs->lock, flags);
834 	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
835 	spin_unlock_irqrestore(&hs->lock, flags);
836 
837 	return ret;
838 }
839 
840 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
841 				      struct usb_request *req)
842 {
843 	struct s3c_hsotg_req *hs_req = our_req(req);
844 
845 	kfree(hs_req);
846 }
847 
848 /**
849  * s3c_hsotg_complete_oursetup - setup completion callback
850  * @ep: The endpoint the request was on.
851  * @req: The request completed.
852  *
853  * Called on completion of any requests the driver itself
854  * submitted that need cleaning up.
855  */
856 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
857 					struct usb_request *req)
858 {
859 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
860 	struct dwc2_hsotg *hsotg = hs_ep->parent;
861 
862 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
863 
864 	s3c_hsotg_ep_free_request(ep, req);
865 }
866 
867 /**
868  * ep_from_windex - convert control wIndex value to endpoint
869  * @hsotg: The driver state.
870  * @windex: The control request wIndex field (in host order).
871  *
872  * Convert the given wIndex into a pointer to an driver endpoint
873  * structure, or return NULL if it is not a valid endpoint.
874  */
875 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
876 					   u32 windex)
877 {
878 	struct s3c_hsotg_ep *ep;
879 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
880 	int idx = windex & 0x7F;
881 
882 	if (windex >= 0x100)
883 		return NULL;
884 
885 	if (idx > hsotg->num_of_eps)
886 		return NULL;
887 
888 	ep = index_to_ep(hsotg, idx, dir);
889 
890 	if (idx && ep->dir_in != dir)
891 		return NULL;
892 
893 	return ep;
894 }
895 
896 /**
897  * s3c_hsotg_set_test_mode - Enable usb Test Modes
898  * @hsotg: The driver state.
899  * @testmode: requested usb test mode
900  * Enable usb Test Mode requested by the Host.
901  */
902 int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
903 {
904 	int dctl = readl(hsotg->regs + DCTL);
905 
906 	dctl &= ~DCTL_TSTCTL_MASK;
907 	switch (testmode) {
908 	case TEST_J:
909 	case TEST_K:
910 	case TEST_SE0_NAK:
911 	case TEST_PACKET:
912 	case TEST_FORCE_EN:
913 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
914 		break;
915 	default:
916 		return -EINVAL;
917 	}
918 	writel(dctl, hsotg->regs + DCTL);
919 	return 0;
920 }
921 
922 /**
923  * s3c_hsotg_send_reply - send reply to control request
924  * @hsotg: The device state
925  * @ep: Endpoint 0
926  * @buff: Buffer for request
927  * @length: Length of reply.
928  *
929  * Create a request and queue it on the given endpoint. This is useful as
930  * an internal method of sending replies to certain control requests, etc.
931  */
932 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
933 				struct s3c_hsotg_ep *ep,
934 				void *buff,
935 				int length)
936 {
937 	struct usb_request *req;
938 	int ret;
939 
940 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
941 
942 	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
943 	hsotg->ep0_reply = req;
944 	if (!req) {
945 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
946 		return -ENOMEM;
947 	}
948 
949 	req->buf = hsotg->ep0_buff;
950 	req->length = length;
951 	/*
952 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
953 	 * STATUS stage.
954 	 */
955 	req->zero = 0;
956 	req->complete = s3c_hsotg_complete_oursetup;
957 
958 	if (length)
959 		memcpy(req->buf, buff, length);
960 
961 	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
962 	if (ret) {
963 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
964 		return ret;
965 	}
966 
967 	return 0;
968 }
969 
970 /**
971  * s3c_hsotg_process_req_status - process request GET_STATUS
972  * @hsotg: The device state
973  * @ctrl: USB control request
974  */
975 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
976 					struct usb_ctrlrequest *ctrl)
977 {
978 	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
979 	struct s3c_hsotg_ep *ep;
980 	__le16 reply;
981 	int ret;
982 
983 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
984 
985 	if (!ep0->dir_in) {
986 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
987 		return -EINVAL;
988 	}
989 
990 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
991 	case USB_RECIP_DEVICE:
992 		reply = cpu_to_le16(0); /* bit 0 => self powered,
993 					 * bit 1 => remote wakeup */
994 		break;
995 
996 	case USB_RECIP_INTERFACE:
997 		/* currently, the data result should be zero */
998 		reply = cpu_to_le16(0);
999 		break;
1000 
1001 	case USB_RECIP_ENDPOINT:
1002 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1003 		if (!ep)
1004 			return -ENOENT;
1005 
1006 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1007 		break;
1008 
1009 	default:
1010 		return 0;
1011 	}
1012 
1013 	if (le16_to_cpu(ctrl->wLength) != 2)
1014 		return -EINVAL;
1015 
1016 	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1017 	if (ret) {
1018 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1019 		return ret;
1020 	}
1021 
1022 	return 1;
1023 }
1024 
1025 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1026 
1027 /**
1028  * get_ep_head - return the first request on the endpoint
1029  * @hs_ep: The controller endpoint to get
1030  *
1031  * Get the first request on the endpoint.
1032  */
1033 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1034 {
1035 	if (list_empty(&hs_ep->queue))
1036 		return NULL;
1037 
1038 	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1039 }
1040 
1041 /**
1042  * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1043  * @hsotg: The device state
1044  * @ctrl: USB control request
1045  */
1046 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1047 					 struct usb_ctrlrequest *ctrl)
1048 {
1049 	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1050 	struct s3c_hsotg_req *hs_req;
1051 	bool restart;
1052 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1053 	struct s3c_hsotg_ep *ep;
1054 	int ret;
1055 	bool halted;
1056 	u32 recip;
1057 	u32 wValue;
1058 	u32 wIndex;
1059 
1060 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1061 		__func__, set ? "SET" : "CLEAR");
1062 
1063 	wValue = le16_to_cpu(ctrl->wValue);
1064 	wIndex = le16_to_cpu(ctrl->wIndex);
1065 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1066 
1067 	switch (recip) {
1068 	case USB_RECIP_DEVICE:
1069 		switch (wValue) {
1070 		case USB_DEVICE_TEST_MODE:
1071 			if ((wIndex & 0xff) != 0)
1072 				return -EINVAL;
1073 			if (!set)
1074 				return -EINVAL;
1075 
1076 			hsotg->test_mode = wIndex >> 8;
1077 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1078 			if (ret) {
1079 				dev_err(hsotg->dev,
1080 					"%s: failed to send reply\n", __func__);
1081 				return ret;
1082 			}
1083 			break;
1084 		default:
1085 			return -ENOENT;
1086 		}
1087 		break;
1088 
1089 	case USB_RECIP_ENDPOINT:
1090 		ep = ep_from_windex(hsotg, wIndex);
1091 		if (!ep) {
1092 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1093 				__func__, wIndex);
1094 			return -ENOENT;
1095 		}
1096 
1097 		switch (wValue) {
1098 		case USB_ENDPOINT_HALT:
1099 			halted = ep->halted;
1100 
1101 			s3c_hsotg_ep_sethalt(&ep->ep, set);
1102 
1103 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1104 			if (ret) {
1105 				dev_err(hsotg->dev,
1106 					"%s: failed to send reply\n", __func__);
1107 				return ret;
1108 			}
1109 
1110 			/*
1111 			 * we have to complete all requests for ep if it was
1112 			 * halted, and the halt was cleared by CLEAR_FEATURE
1113 			 */
1114 
1115 			if (!set && halted) {
1116 				/*
1117 				 * If we have request in progress,
1118 				 * then complete it
1119 				 */
1120 				if (ep->req) {
1121 					hs_req = ep->req;
1122 					ep->req = NULL;
1123 					list_del_init(&hs_req->queue);
1124 					if (hs_req->req.complete) {
1125 						spin_unlock(&hsotg->lock);
1126 						usb_gadget_giveback_request(
1127 							&ep->ep, &hs_req->req);
1128 						spin_lock(&hsotg->lock);
1129 					}
1130 				}
1131 
1132 				/* If we have pending request, then start it */
1133 				if (!ep->req) {
1134 					restart = !list_empty(&ep->queue);
1135 					if (restart) {
1136 						hs_req = get_ep_head(ep);
1137 						s3c_hsotg_start_req(hsotg, ep,
1138 								hs_req, false);
1139 					}
1140 				}
1141 			}
1142 
1143 			break;
1144 
1145 		default:
1146 			return -ENOENT;
1147 		}
1148 		break;
1149 	default:
1150 		return -ENOENT;
1151 	}
1152 	return 1;
1153 }
1154 
1155 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1156 
1157 /**
1158  * s3c_hsotg_stall_ep0 - stall ep0
1159  * @hsotg: The device state
1160  *
1161  * Set stall for ep0 as response for setup request.
1162  */
1163 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1164 {
1165 	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1166 	u32 reg;
1167 	u32 ctrl;
1168 
1169 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1170 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1171 
1172 	/*
1173 	 * DxEPCTL_Stall will be cleared by EP once it has
1174 	 * taken effect, so no need to clear later.
1175 	 */
1176 
1177 	ctrl = readl(hsotg->regs + reg);
1178 	ctrl |= DXEPCTL_STALL;
1179 	ctrl |= DXEPCTL_CNAK;
1180 	writel(ctrl, hsotg->regs + reg);
1181 
1182 	dev_dbg(hsotg->dev,
1183 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1184 		ctrl, reg, readl(hsotg->regs + reg));
1185 
1186 	 /*
1187 	  * complete won't be called, so we enqueue
1188 	  * setup request here
1189 	  */
1190 	 s3c_hsotg_enqueue_setup(hsotg);
1191 }
1192 
1193 /**
1194  * s3c_hsotg_process_control - process a control request
1195  * @hsotg: The device state
1196  * @ctrl: The control request received
1197  *
1198  * The controller has received the SETUP phase of a control request, and
1199  * needs to work out what to do next (and whether to pass it on to the
1200  * gadget driver).
1201  */
1202 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1203 				      struct usb_ctrlrequest *ctrl)
1204 {
1205 	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1206 	int ret = 0;
1207 	u32 dcfg;
1208 
1209 	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1210 		 ctrl->bRequest, ctrl->bRequestType,
1211 		 ctrl->wValue, ctrl->wLength);
1212 
1213 	if (ctrl->wLength == 0) {
1214 		ep0->dir_in = 1;
1215 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1216 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1217 		ep0->dir_in = 1;
1218 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1219 	} else {
1220 		ep0->dir_in = 0;
1221 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1222 	}
1223 
1224 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1225 		switch (ctrl->bRequest) {
1226 		case USB_REQ_SET_ADDRESS:
1227 			hsotg->connected = 1;
1228 			dcfg = readl(hsotg->regs + DCFG);
1229 			dcfg &= ~DCFG_DEVADDR_MASK;
1230 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1231 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1232 			writel(dcfg, hsotg->regs + DCFG);
1233 
1234 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1235 
1236 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1237 			return;
1238 
1239 		case USB_REQ_GET_STATUS:
1240 			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1241 			break;
1242 
1243 		case USB_REQ_CLEAR_FEATURE:
1244 		case USB_REQ_SET_FEATURE:
1245 			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1246 			break;
1247 		}
1248 	}
1249 
1250 	/* as a fallback, try delivering it to the driver to deal with */
1251 
1252 	if (ret == 0 && hsotg->driver) {
1253 		spin_unlock(&hsotg->lock);
1254 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1255 		spin_lock(&hsotg->lock);
1256 		if (ret < 0)
1257 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1258 	}
1259 
1260 	/*
1261 	 * the request is either unhandlable, or is not formatted correctly
1262 	 * so respond with a STALL for the status stage to indicate failure.
1263 	 */
1264 
1265 	if (ret < 0)
1266 		s3c_hsotg_stall_ep0(hsotg);
1267 }
1268 
1269 /**
1270  * s3c_hsotg_complete_setup - completion of a setup transfer
1271  * @ep: The endpoint the request was on.
1272  * @req: The request completed.
1273  *
1274  * Called on completion of any requests the driver itself submitted for
1275  * EP0 setup packets
1276  */
1277 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1278 				     struct usb_request *req)
1279 {
1280 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1281 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1282 
1283 	if (req->status < 0) {
1284 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1285 		return;
1286 	}
1287 
1288 	spin_lock(&hsotg->lock);
1289 	if (req->actual == 0)
1290 		s3c_hsotg_enqueue_setup(hsotg);
1291 	else
1292 		s3c_hsotg_process_control(hsotg, req->buf);
1293 	spin_unlock(&hsotg->lock);
1294 }
1295 
1296 /**
1297  * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1298  * @hsotg: The device state.
1299  *
1300  * Enqueue a request on EP0 if necessary to received any SETUP packets
1301  * received from the host.
1302  */
1303 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1304 {
1305 	struct usb_request *req = hsotg->ctrl_req;
1306 	struct s3c_hsotg_req *hs_req = our_req(req);
1307 	int ret;
1308 
1309 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1310 
1311 	req->zero = 0;
1312 	req->length = 8;
1313 	req->buf = hsotg->ctrl_buff;
1314 	req->complete = s3c_hsotg_complete_setup;
1315 
1316 	if (!list_empty(&hs_req->queue)) {
1317 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1318 		return;
1319 	}
1320 
1321 	hsotg->eps_out[0]->dir_in = 0;
1322 	hsotg->eps_out[0]->send_zlp = 0;
1323 	hsotg->ep0_state = DWC2_EP0_SETUP;
1324 
1325 	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1326 	if (ret < 0) {
1327 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1328 		/*
1329 		 * Don't think there's much we can do other than watch the
1330 		 * driver fail.
1331 		 */
1332 	}
1333 }
1334 
1335 static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1336 					struct s3c_hsotg_ep *hs_ep)
1337 {
1338 	u32 ctrl;
1339 	u8 index = hs_ep->index;
1340 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1341 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1342 
1343 	if (hs_ep->dir_in)
1344 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1345 									index);
1346 	else
1347 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1348 									index);
1349 
1350 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1351 			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1352 			epsiz_reg);
1353 
1354 	ctrl = readl(hsotg->regs + epctl_reg);
1355 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1356 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1357 	ctrl |= DXEPCTL_USBACTEP;
1358 	writel(ctrl, hsotg->regs + epctl_reg);
1359 }
1360 
1361 /**
1362  * s3c_hsotg_complete_request - complete a request given to us
1363  * @hsotg: The device state.
1364  * @hs_ep: The endpoint the request was on.
1365  * @hs_req: The request to complete.
1366  * @result: The result code (0 => Ok, otherwise errno)
1367  *
1368  * The given request has finished, so call the necessary completion
1369  * if it has one and then look to see if we can start a new request
1370  * on the endpoint.
1371  *
1372  * Note, expects the ep to already be locked as appropriate.
1373  */
1374 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1375 				       struct s3c_hsotg_ep *hs_ep,
1376 				       struct s3c_hsotg_req *hs_req,
1377 				       int result)
1378 {
1379 	bool restart;
1380 
1381 	if (!hs_req) {
1382 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1383 		return;
1384 	}
1385 
1386 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1387 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1388 
1389 	/*
1390 	 * only replace the status if we've not already set an error
1391 	 * from a previous transaction
1392 	 */
1393 
1394 	if (hs_req->req.status == -EINPROGRESS)
1395 		hs_req->req.status = result;
1396 
1397 	s3c_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398 
1399 	hs_ep->req = NULL;
1400 	list_del_init(&hs_req->queue);
1401 
1402 	if (using_dma(hsotg))
1403 		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1404 
1405 	/*
1406 	 * call the complete request with the locks off, just in case the
1407 	 * request tries to queue more work for this endpoint.
1408 	 */
1409 
1410 	if (hs_req->req.complete) {
1411 		spin_unlock(&hsotg->lock);
1412 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1413 		spin_lock(&hsotg->lock);
1414 	}
1415 
1416 	/*
1417 	 * Look to see if there is anything else to do. Note, the completion
1418 	 * of the previous request may have caused a new request to be started
1419 	 * so be careful when doing this.
1420 	 */
1421 
1422 	if (!hs_ep->req && result >= 0) {
1423 		restart = !list_empty(&hs_ep->queue);
1424 		if (restart) {
1425 			hs_req = get_ep_head(hs_ep);
1426 			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1427 		}
1428 	}
1429 }
1430 
1431 /**
1432  * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1433  * @hsotg: The device state.
1434  * @ep_idx: The endpoint index for the data
1435  * @size: The size of data in the fifo, in bytes
1436  *
1437  * The FIFO status shows there is data to read from the FIFO for a given
1438  * endpoint, so sort out whether we need to read the data into a request
1439  * that has been made for that endpoint.
1440  */
1441 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1442 {
1443 	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1444 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1445 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1446 	int to_read;
1447 	int max_req;
1448 	int read_ptr;
1449 
1450 
1451 	if (!hs_req) {
1452 		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1453 		int ptr;
1454 
1455 		dev_dbg(hsotg->dev,
1456 			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1457 			 __func__, size, ep_idx, epctl);
1458 
1459 		/* dump the data from the FIFO, we've nothing we can do */
1460 		for (ptr = 0; ptr < size; ptr += 4)
1461 			(void)readl(fifo);
1462 
1463 		return;
1464 	}
1465 
1466 	to_read = size;
1467 	read_ptr = hs_req->req.actual;
1468 	max_req = hs_req->req.length - read_ptr;
1469 
1470 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1471 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1472 
1473 	if (to_read > max_req) {
1474 		/*
1475 		 * more data appeared than we where willing
1476 		 * to deal with in this request.
1477 		 */
1478 
1479 		/* currently we don't deal this */
1480 		WARN_ON_ONCE(1);
1481 	}
1482 
1483 	hs_ep->total_data += to_read;
1484 	hs_req->req.actual += to_read;
1485 	to_read = DIV_ROUND_UP(to_read, 4);
1486 
1487 	/*
1488 	 * note, we might over-write the buffer end by 3 bytes depending on
1489 	 * alignment of the data.
1490 	 */
1491 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1492 }
1493 
1494 /**
1495  * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1496  * @hsotg: The device instance
1497  * @dir_in: If IN zlp
1498  *
1499  * Generate a zero-length IN packet request for terminating a SETUP
1500  * transaction.
1501  *
1502  * Note, since we don't write any data to the TxFIFO, then it is
1503  * currently believed that we do not need to wait for any space in
1504  * the TxFIFO.
1505  */
1506 static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1507 {
1508 	/* eps_out[0] is used in both directions */
1509 	hsotg->eps_out[0]->dir_in = dir_in;
1510 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1511 
1512 	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1513 }
1514 
1515 /**
1516  * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1517  * @hsotg: The device instance
1518  * @epnum: The endpoint received from
1519  *
1520  * The RXFIFO has delivered an OutDone event, which means that the data
1521  * transfer for an OUT endpoint has been completed, either by a short
1522  * packet or by the finish of a transfer.
1523  */
1524 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1525 {
1526 	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1527 	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1528 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1529 	struct usb_request *req = &hs_req->req;
1530 	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1531 	int result = 0;
1532 
1533 	if (!hs_req) {
1534 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1535 		return;
1536 	}
1537 
1538 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1539 		dev_dbg(hsotg->dev, "zlp packet received\n");
1540 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1541 		s3c_hsotg_enqueue_setup(hsotg);
1542 		return;
1543 	}
1544 
1545 	if (using_dma(hsotg)) {
1546 		unsigned size_done;
1547 
1548 		/*
1549 		 * Calculate the size of the transfer by checking how much
1550 		 * is left in the endpoint size register and then working it
1551 		 * out from the amount we loaded for the transfer.
1552 		 *
1553 		 * We need to do this as DMA pointers are always 32bit aligned
1554 		 * so may overshoot/undershoot the transfer.
1555 		 */
1556 
1557 		size_done = hs_ep->size_loaded - size_left;
1558 		size_done += hs_ep->last_load;
1559 
1560 		req->actual = size_done;
1561 	}
1562 
1563 	/* if there is more request to do, schedule new transfer */
1564 	if (req->actual < req->length && size_left == 0) {
1565 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1566 		return;
1567 	}
1568 
1569 	if (req->actual < req->length && req->short_not_ok) {
1570 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1571 			__func__, req->actual, req->length);
1572 
1573 		/*
1574 		 * todo - what should we return here? there's no one else
1575 		 * even bothering to check the status.
1576 		 */
1577 	}
1578 
1579 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1580 		/* Move to STATUS IN */
1581 		s3c_hsotg_ep0_zlp(hsotg, true);
1582 		return;
1583 	}
1584 
1585 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1586 }
1587 
1588 /**
1589  * s3c_hsotg_read_frameno - read current frame number
1590  * @hsotg: The device instance
1591  *
1592  * Return the current frame number
1593  */
1594 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1595 {
1596 	u32 dsts;
1597 
1598 	dsts = readl(hsotg->regs + DSTS);
1599 	dsts &= DSTS_SOFFN_MASK;
1600 	dsts >>= DSTS_SOFFN_SHIFT;
1601 
1602 	return dsts;
1603 }
1604 
1605 /**
1606  * s3c_hsotg_handle_rx - RX FIFO has data
1607  * @hsotg: The device instance
1608  *
1609  * The IRQ handler has detected that the RX FIFO has some data in it
1610  * that requires processing, so find out what is in there and do the
1611  * appropriate read.
1612  *
1613  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1614  * chunks, so if you have x packets received on an endpoint you'll get x
1615  * FIFO events delivered, each with a packet's worth of data in it.
1616  *
1617  * When using DMA, we should not be processing events from the RXFIFO
1618  * as the actual data should be sent to the memory directly and we turn
1619  * on the completion interrupts to get notifications of transfer completion.
1620  */
1621 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1622 {
1623 	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1624 	u32 epnum, status, size;
1625 
1626 	WARN_ON(using_dma(hsotg));
1627 
1628 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1629 	status = grxstsr & GRXSTS_PKTSTS_MASK;
1630 
1631 	size = grxstsr & GRXSTS_BYTECNT_MASK;
1632 	size >>= GRXSTS_BYTECNT_SHIFT;
1633 
1634 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1635 			__func__, grxstsr, size, epnum);
1636 
1637 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1638 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1639 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1640 		break;
1641 
1642 	case GRXSTS_PKTSTS_OUTDONE:
1643 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1644 			s3c_hsotg_read_frameno(hsotg));
1645 
1646 		if (!using_dma(hsotg))
1647 			s3c_hsotg_handle_outdone(hsotg, epnum);
1648 		break;
1649 
1650 	case GRXSTS_PKTSTS_SETUPDONE:
1651 		dev_dbg(hsotg->dev,
1652 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1653 			s3c_hsotg_read_frameno(hsotg),
1654 			readl(hsotg->regs + DOEPCTL(0)));
1655 		/*
1656 		 * Call s3c_hsotg_handle_outdone here if it was not called from
1657 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1658 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1659 		 */
1660 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1661 			s3c_hsotg_handle_outdone(hsotg, epnum);
1662 		break;
1663 
1664 	case GRXSTS_PKTSTS_OUTRX:
1665 		s3c_hsotg_rx_data(hsotg, epnum, size);
1666 		break;
1667 
1668 	case GRXSTS_PKTSTS_SETUPRX:
1669 		dev_dbg(hsotg->dev,
1670 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1671 			s3c_hsotg_read_frameno(hsotg),
1672 			readl(hsotg->regs + DOEPCTL(0)));
1673 
1674 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1675 
1676 		s3c_hsotg_rx_data(hsotg, epnum, size);
1677 		break;
1678 
1679 	default:
1680 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1681 			 __func__, grxstsr);
1682 
1683 		s3c_hsotg_dump(hsotg);
1684 		break;
1685 	}
1686 }
1687 
1688 /**
1689  * s3c_hsotg_ep0_mps - turn max packet size into register setting
1690  * @mps: The maximum packet size in bytes.
1691  */
1692 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1693 {
1694 	switch (mps) {
1695 	case 64:
1696 		return D0EPCTL_MPS_64;
1697 	case 32:
1698 		return D0EPCTL_MPS_32;
1699 	case 16:
1700 		return D0EPCTL_MPS_16;
1701 	case 8:
1702 		return D0EPCTL_MPS_8;
1703 	}
1704 
1705 	/* bad max packet size, warn and return invalid result */
1706 	WARN_ON(1);
1707 	return (u32)-1;
1708 }
1709 
1710 /**
1711  * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1712  * @hsotg: The driver state.
1713  * @ep: The index number of the endpoint
1714  * @mps: The maximum packet size in bytes
1715  *
1716  * Configure the maximum packet size for the given endpoint, updating
1717  * the hardware control registers to reflect this.
1718  */
1719 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1720 			unsigned int ep, unsigned int mps, unsigned int dir_in)
1721 {
1722 	struct s3c_hsotg_ep *hs_ep;
1723 	void __iomem *regs = hsotg->regs;
1724 	u32 mpsval;
1725 	u32 mcval;
1726 	u32 reg;
1727 
1728 	hs_ep = index_to_ep(hsotg, ep, dir_in);
1729 	if (!hs_ep)
1730 		return;
1731 
1732 	if (ep == 0) {
1733 		/* EP0 is a special case */
1734 		mpsval = s3c_hsotg_ep0_mps(mps);
1735 		if (mpsval > 3)
1736 			goto bad_mps;
1737 		hs_ep->ep.maxpacket = mps;
1738 		hs_ep->mc = 1;
1739 	} else {
1740 		mpsval = mps & DXEPCTL_MPS_MASK;
1741 		if (mpsval > 1024)
1742 			goto bad_mps;
1743 		mcval = ((mps >> 11) & 0x3) + 1;
1744 		hs_ep->mc = mcval;
1745 		if (mcval > 3)
1746 			goto bad_mps;
1747 		hs_ep->ep.maxpacket = mpsval;
1748 	}
1749 
1750 	if (dir_in) {
1751 		reg = readl(regs + DIEPCTL(ep));
1752 		reg &= ~DXEPCTL_MPS_MASK;
1753 		reg |= mpsval;
1754 		writel(reg, regs + DIEPCTL(ep));
1755 	} else {
1756 		reg = readl(regs + DOEPCTL(ep));
1757 		reg &= ~DXEPCTL_MPS_MASK;
1758 		reg |= mpsval;
1759 		writel(reg, regs + DOEPCTL(ep));
1760 	}
1761 
1762 	return;
1763 
1764 bad_mps:
1765 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1766 }
1767 
1768 /**
1769  * s3c_hsotg_txfifo_flush - flush Tx FIFO
1770  * @hsotg: The driver state
1771  * @idx: The index for the endpoint (0..15)
1772  */
1773 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1774 {
1775 	int timeout;
1776 	int val;
1777 
1778 	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1779 		hsotg->regs + GRSTCTL);
1780 
1781 	/* wait until the fifo is flushed */
1782 	timeout = 100;
1783 
1784 	while (1) {
1785 		val = readl(hsotg->regs + GRSTCTL);
1786 
1787 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1788 			break;
1789 
1790 		if (--timeout == 0) {
1791 			dev_err(hsotg->dev,
1792 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1793 				__func__, val);
1794 			break;
1795 		}
1796 
1797 		udelay(1);
1798 	}
1799 }
1800 
1801 /**
1802  * s3c_hsotg_trytx - check to see if anything needs transmitting
1803  * @hsotg: The driver state
1804  * @hs_ep: The driver endpoint to check.
1805  *
1806  * Check to see if there is a request that has data to send, and if so
1807  * make an attempt to write data into the FIFO.
1808  */
1809 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1810 			   struct s3c_hsotg_ep *hs_ep)
1811 {
1812 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1813 
1814 	if (!hs_ep->dir_in || !hs_req) {
1815 		/**
1816 		 * if request is not enqueued, we disable interrupts
1817 		 * for endpoints, excepting ep0
1818 		 */
1819 		if (hs_ep->index != 0)
1820 			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1821 					     hs_ep->dir_in, 0);
1822 		return 0;
1823 	}
1824 
1825 	if (hs_req->req.actual < hs_req->req.length) {
1826 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1827 			hs_ep->index);
1828 		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * s3c_hsotg_complete_in - complete IN transfer
1836  * @hsotg: The device state.
1837  * @hs_ep: The endpoint that has just completed.
1838  *
1839  * An IN transfer has been completed, update the transfer's state and then
1840  * call the relevant completion routines.
1841  */
1842 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1843 				  struct s3c_hsotg_ep *hs_ep)
1844 {
1845 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1846 	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1847 	int size_left, size_done;
1848 
1849 	if (!hs_req) {
1850 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1851 		return;
1852 	}
1853 
1854 	/* Finish ZLP handling for IN EP0 transactions */
1855 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1856 		dev_dbg(hsotg->dev, "zlp packet sent\n");
1857 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1858 		if (hsotg->test_mode) {
1859 			int ret;
1860 
1861 			ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1862 			if (ret < 0) {
1863 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1864 						hsotg->test_mode);
1865 				s3c_hsotg_stall_ep0(hsotg);
1866 				return;
1867 			}
1868 		}
1869 		s3c_hsotg_enqueue_setup(hsotg);
1870 		return;
1871 	}
1872 
1873 	/*
1874 	 * Calculate the size of the transfer by checking how much is left
1875 	 * in the endpoint size register and then working it out from
1876 	 * the amount we loaded for the transfer.
1877 	 *
1878 	 * We do this even for DMA, as the transfer may have incremented
1879 	 * past the end of the buffer (DMA transfers are always 32bit
1880 	 * aligned).
1881 	 */
1882 
1883 	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1884 
1885 	size_done = hs_ep->size_loaded - size_left;
1886 	size_done += hs_ep->last_load;
1887 
1888 	if (hs_req->req.actual != size_done)
1889 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1890 			__func__, hs_req->req.actual, size_done);
1891 
1892 	hs_req->req.actual = size_done;
1893 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1894 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1895 
1896 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1897 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1898 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1899 		return;
1900 	}
1901 
1902 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1903 	if (hs_ep->send_zlp) {
1904 		s3c_hsotg_program_zlp(hsotg, hs_ep);
1905 		hs_ep->send_zlp = 0;
1906 		/* transfer will be completed on next complete interrupt */
1907 		return;
1908 	}
1909 
1910 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1911 		/* Move to STATUS OUT */
1912 		s3c_hsotg_ep0_zlp(hsotg, false);
1913 		return;
1914 	}
1915 
1916 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1917 }
1918 
1919 /**
1920  * s3c_hsotg_epint - handle an in/out endpoint interrupt
1921  * @hsotg: The driver state
1922  * @idx: The index for the endpoint (0..15)
1923  * @dir_in: Set if this is an IN endpoint
1924  *
1925  * Process and clear any interrupt pending for an individual endpoint
1926  */
1927 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1928 			    int dir_in)
1929 {
1930 	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1931 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1932 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1933 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1934 	u32 ints;
1935 	u32 ctrl;
1936 
1937 	ints = readl(hsotg->regs + epint_reg);
1938 	ctrl = readl(hsotg->regs + epctl_reg);
1939 
1940 	/* Clear endpoint interrupts */
1941 	writel(ints, hsotg->regs + epint_reg);
1942 
1943 	if (!hs_ep) {
1944 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1945 					__func__, idx, dir_in ? "in" : "out");
1946 		return;
1947 	}
1948 
1949 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1950 		__func__, idx, dir_in ? "in" : "out", ints);
1951 
1952 	/* Don't process XferCompl interrupt if it is a setup packet */
1953 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1954 		ints &= ~DXEPINT_XFERCOMPL;
1955 
1956 	if (ints & DXEPINT_XFERCOMPL) {
1957 		if (hs_ep->isochronous && hs_ep->interval == 1) {
1958 			if (ctrl & DXEPCTL_EOFRNUM)
1959 				ctrl |= DXEPCTL_SETEVENFR;
1960 			else
1961 				ctrl |= DXEPCTL_SETODDFR;
1962 			writel(ctrl, hsotg->regs + epctl_reg);
1963 		}
1964 
1965 		dev_dbg(hsotg->dev,
1966 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1967 			__func__, readl(hsotg->regs + epctl_reg),
1968 			readl(hsotg->regs + epsiz_reg));
1969 
1970 		/*
1971 		 * we get OutDone from the FIFO, so we only need to look
1972 		 * at completing IN requests here
1973 		 */
1974 		if (dir_in) {
1975 			s3c_hsotg_complete_in(hsotg, hs_ep);
1976 
1977 			if (idx == 0 && !hs_ep->req)
1978 				s3c_hsotg_enqueue_setup(hsotg);
1979 		} else if (using_dma(hsotg)) {
1980 			/*
1981 			 * We're using DMA, we need to fire an OutDone here
1982 			 * as we ignore the RXFIFO.
1983 			 */
1984 
1985 			s3c_hsotg_handle_outdone(hsotg, idx);
1986 		}
1987 	}
1988 
1989 	if (ints & DXEPINT_EPDISBLD) {
1990 		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1991 
1992 		if (dir_in) {
1993 			int epctl = readl(hsotg->regs + epctl_reg);
1994 
1995 			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1996 
1997 			if ((epctl & DXEPCTL_STALL) &&
1998 				(epctl & DXEPCTL_EPTYPE_BULK)) {
1999 				int dctl = readl(hsotg->regs + DCTL);
2000 
2001 				dctl |= DCTL_CGNPINNAK;
2002 				writel(dctl, hsotg->regs + DCTL);
2003 			}
2004 		}
2005 	}
2006 
2007 	if (ints & DXEPINT_AHBERR)
2008 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2009 
2010 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2011 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2012 
2013 		if (using_dma(hsotg) && idx == 0) {
2014 			/*
2015 			 * this is the notification we've received a
2016 			 * setup packet. In non-DMA mode we'd get this
2017 			 * from the RXFIFO, instead we need to process
2018 			 * the setup here.
2019 			 */
2020 
2021 			if (dir_in)
2022 				WARN_ON_ONCE(1);
2023 			else
2024 				s3c_hsotg_handle_outdone(hsotg, 0);
2025 		}
2026 	}
2027 
2028 	if (ints & DXEPINT_BACK2BACKSETUP)
2029 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2030 
2031 	if (dir_in && !hs_ep->isochronous) {
2032 		/* not sure if this is important, but we'll clear it anyway */
2033 		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2034 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2035 				__func__, idx);
2036 		}
2037 
2038 		/* this probably means something bad is happening */
2039 		if (ints & DIEPMSK_INTKNEPMISMSK) {
2040 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2041 				 __func__, idx);
2042 		}
2043 
2044 		/* FIFO has space or is empty (see GAHBCFG) */
2045 		if (hsotg->dedicated_fifos &&
2046 		    ints & DIEPMSK_TXFIFOEMPTY) {
2047 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2048 				__func__, idx);
2049 			if (!using_dma(hsotg))
2050 				s3c_hsotg_trytx(hsotg, hs_ep);
2051 		}
2052 	}
2053 }
2054 
2055 /**
2056  * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2057  * @hsotg: The device state.
2058  *
2059  * Handle updating the device settings after the enumeration phase has
2060  * been completed.
2061  */
2062 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2063 {
2064 	u32 dsts = readl(hsotg->regs + DSTS);
2065 	int ep0_mps = 0, ep_mps = 8;
2066 
2067 	/*
2068 	 * This should signal the finish of the enumeration phase
2069 	 * of the USB handshaking, so we should now know what rate
2070 	 * we connected at.
2071 	 */
2072 
2073 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2074 
2075 	/*
2076 	 * note, since we're limited by the size of transfer on EP0, and
2077 	 * it seems IN transfers must be a even number of packets we do
2078 	 * not advertise a 64byte MPS on EP0.
2079 	 */
2080 
2081 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2082 	switch (dsts & DSTS_ENUMSPD_MASK) {
2083 	case DSTS_ENUMSPD_FS:
2084 	case DSTS_ENUMSPD_FS48:
2085 		hsotg->gadget.speed = USB_SPEED_FULL;
2086 		ep0_mps = EP0_MPS_LIMIT;
2087 		ep_mps = 1023;
2088 		break;
2089 
2090 	case DSTS_ENUMSPD_HS:
2091 		hsotg->gadget.speed = USB_SPEED_HIGH;
2092 		ep0_mps = EP0_MPS_LIMIT;
2093 		ep_mps = 1024;
2094 		break;
2095 
2096 	case DSTS_ENUMSPD_LS:
2097 		hsotg->gadget.speed = USB_SPEED_LOW;
2098 		/*
2099 		 * note, we don't actually support LS in this driver at the
2100 		 * moment, and the documentation seems to imply that it isn't
2101 		 * supported by the PHYs on some of the devices.
2102 		 */
2103 		break;
2104 	}
2105 	dev_info(hsotg->dev, "new device is %s\n",
2106 		 usb_speed_string(hsotg->gadget.speed));
2107 
2108 	/*
2109 	 * we should now know the maximum packet size for an
2110 	 * endpoint, so set the endpoints to a default value.
2111 	 */
2112 
2113 	if (ep0_mps) {
2114 		int i;
2115 		/* Initialize ep0 for both in and out directions */
2116 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2117 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2118 		for (i = 1; i < hsotg->num_of_eps; i++) {
2119 			if (hsotg->eps_in[i])
2120 				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2121 			if (hsotg->eps_out[i])
2122 				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2123 		}
2124 	}
2125 
2126 	/* ensure after enumeration our EP0 is active */
2127 
2128 	s3c_hsotg_enqueue_setup(hsotg);
2129 
2130 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2131 		readl(hsotg->regs + DIEPCTL0),
2132 		readl(hsotg->regs + DOEPCTL0));
2133 }
2134 
2135 /**
2136  * kill_all_requests - remove all requests from the endpoint's queue
2137  * @hsotg: The device state.
2138  * @ep: The endpoint the requests may be on.
2139  * @result: The result code to use.
2140  *
2141  * Go through the requests on the given endpoint and mark them
2142  * completed with the given result code.
2143  */
2144 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2145 			      struct s3c_hsotg_ep *ep,
2146 			      int result)
2147 {
2148 	struct s3c_hsotg_req *req, *treq;
2149 	unsigned size;
2150 
2151 	ep->req = NULL;
2152 
2153 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2154 		s3c_hsotg_complete_request(hsotg, ep, req,
2155 					   result);
2156 
2157 	if (!hsotg->dedicated_fifos)
2158 		return;
2159 	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2160 	if (size < ep->fifo_size)
2161 		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2162 }
2163 
2164 /**
2165  * s3c_hsotg_disconnect - disconnect service
2166  * @hsotg: The device state.
2167  *
2168  * The device has been disconnected. Remove all current
2169  * transactions and signal the gadget driver that this
2170  * has happened.
2171  */
2172 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2173 {
2174 	unsigned ep;
2175 
2176 	if (!hsotg->connected)
2177 		return;
2178 
2179 	hsotg->connected = 0;
2180 	hsotg->test_mode = 0;
2181 
2182 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2183 		if (hsotg->eps_in[ep])
2184 			kill_all_requests(hsotg, hsotg->eps_in[ep],
2185 								-ESHUTDOWN);
2186 		if (hsotg->eps_out[ep])
2187 			kill_all_requests(hsotg, hsotg->eps_out[ep],
2188 								-ESHUTDOWN);
2189 	}
2190 
2191 	call_gadget(hsotg, disconnect);
2192 }
2193 
2194 /**
2195  * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2196  * @hsotg: The device state:
2197  * @periodic: True if this is a periodic FIFO interrupt
2198  */
2199 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2200 {
2201 	struct s3c_hsotg_ep *ep;
2202 	int epno, ret;
2203 
2204 	/* look through for any more data to transmit */
2205 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2206 		ep = index_to_ep(hsotg, epno, 1);
2207 
2208 		if (!ep)
2209 			continue;
2210 
2211 		if (!ep->dir_in)
2212 			continue;
2213 
2214 		if ((periodic && !ep->periodic) ||
2215 		    (!periodic && ep->periodic))
2216 			continue;
2217 
2218 		ret = s3c_hsotg_trytx(hsotg, ep);
2219 		if (ret < 0)
2220 			break;
2221 	}
2222 }
2223 
2224 /* IRQ flags which will trigger a retry around the IRQ loop */
2225 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2226 			GINTSTS_PTXFEMP |  \
2227 			GINTSTS_RXFLVL)
2228 
2229 /**
2230  * s3c_hsotg_corereset - issue softreset to the core
2231  * @hsotg: The device state
2232  *
2233  * Issue a soft reset to the core, and await the core finishing it.
2234  */
2235 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2236 {
2237 	int timeout;
2238 	u32 grstctl;
2239 
2240 	dev_dbg(hsotg->dev, "resetting core\n");
2241 
2242 	/* issue soft reset */
2243 	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2244 
2245 	timeout = 10000;
2246 	do {
2247 		grstctl = readl(hsotg->regs + GRSTCTL);
2248 	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2249 
2250 	if (grstctl & GRSTCTL_CSFTRST) {
2251 		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2252 		return -EINVAL;
2253 	}
2254 
2255 	timeout = 10000;
2256 
2257 	while (1) {
2258 		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2259 
2260 		if (timeout-- < 0) {
2261 			dev_info(hsotg->dev,
2262 				 "%s: reset failed, GRSTCTL=%08x\n",
2263 				 __func__, grstctl);
2264 			return -ETIMEDOUT;
2265 		}
2266 
2267 		if (!(grstctl & GRSTCTL_AHBIDLE))
2268 			continue;
2269 
2270 		break;		/* reset done */
2271 	}
2272 
2273 	dev_dbg(hsotg->dev, "reset successful\n");
2274 	return 0;
2275 }
2276 
2277 /**
2278  * s3c_hsotg_core_init - issue softreset to the core
2279  * @hsotg: The device state
2280  *
2281  * Issue a soft reset to the core, and await the core finishing it.
2282  */
2283 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2284 						bool is_usb_reset)
2285 {
2286 	u32 val;
2287 
2288 	if (!is_usb_reset)
2289 		s3c_hsotg_corereset(hsotg);
2290 
2291 	/*
2292 	 * we must now enable ep0 ready for host detection and then
2293 	 * set configuration.
2294 	 */
2295 
2296 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2297 	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2298 	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2299 	       (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2300 
2301 	s3c_hsotg_init_fifo(hsotg);
2302 
2303 	if (!is_usb_reset)
2304 		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2305 
2306 	writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2307 
2308 	/* Clear any pending OTG interrupts */
2309 	writel(0xffffffff, hsotg->regs + GOTGINT);
2310 
2311 	/* Clear any pending interrupts */
2312 	writel(0xffffffff, hsotg->regs + GINTSTS);
2313 
2314 	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2315 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2316 		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2317 		GINTSTS_RESETDET | GINTSTS_ENUMDONE |
2318 		GINTSTS_OTGINT | GINTSTS_USBSUSP |
2319 		GINTSTS_WKUPINT,
2320 		hsotg->regs + GINTMSK);
2321 
2322 	if (using_dma(hsotg))
2323 		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2324 		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2325 		       hsotg->regs + GAHBCFG);
2326 	else
2327 		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2328 						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2329 		       GAHBCFG_GLBL_INTR_EN,
2330 		       hsotg->regs + GAHBCFG);
2331 
2332 	/*
2333 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2334 	 * when we have no data to transfer. Otherwise we get being flooded by
2335 	 * interrupts.
2336 	 */
2337 
2338 	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2339 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2340 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2341 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2342 		DIEPMSK_INTKNEPMISMSK,
2343 		hsotg->regs + DIEPMSK);
2344 
2345 	/*
2346 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2347 	 * DMA mode we may need this.
2348 	 */
2349 	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2350 				    DIEPMSK_TIMEOUTMSK) : 0) |
2351 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2352 		DOEPMSK_SETUPMSK,
2353 		hsotg->regs + DOEPMSK);
2354 
2355 	writel(0, hsotg->regs + DAINTMSK);
2356 
2357 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2358 		readl(hsotg->regs + DIEPCTL0),
2359 		readl(hsotg->regs + DOEPCTL0));
2360 
2361 	/* enable in and out endpoint interrupts */
2362 	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2363 
2364 	/*
2365 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2366 	 * the data. In DMA mode, we get events from the FIFO but also
2367 	 * things we cannot process, so do not use it.
2368 	 */
2369 	if (!using_dma(hsotg))
2370 		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2371 
2372 	/* Enable interrupts for EP0 in and out */
2373 	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2374 	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2375 
2376 	if (!is_usb_reset) {
2377 		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2378 		udelay(10);  /* see openiboot */
2379 		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2380 	}
2381 
2382 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2383 
2384 	/*
2385 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2386 	 * writing to the EPCTL register..
2387 	 */
2388 
2389 	/* set to read 1 8byte packet */
2390 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2391 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2392 
2393 	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2394 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2395 	       DXEPCTL_USBACTEP,
2396 	       hsotg->regs + DOEPCTL0);
2397 
2398 	/* enable, but don't activate EP0in */
2399 	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2400 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2401 
2402 	s3c_hsotg_enqueue_setup(hsotg);
2403 
2404 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2405 		readl(hsotg->regs + DIEPCTL0),
2406 		readl(hsotg->regs + DOEPCTL0));
2407 
2408 	/* clear global NAKs */
2409 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2410 	if (!is_usb_reset)
2411 		val |= DCTL_SFTDISCON;
2412 	__orr32(hsotg->regs + DCTL, val);
2413 
2414 	/* must be at-least 3ms to allow bus to see disconnect */
2415 	mdelay(3);
2416 
2417 	hsotg->last_rst = jiffies;
2418 }
2419 
2420 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2421 {
2422 	/* set the soft-disconnect bit */
2423 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2424 }
2425 
2426 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2427 {
2428 	/* remove the soft-disconnect and let's go */
2429 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2430 }
2431 
2432 /**
2433  * s3c_hsotg_irq - handle device interrupt
2434  * @irq: The IRQ number triggered
2435  * @pw: The pw value when registered the handler.
2436  */
2437 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2438 {
2439 	struct dwc2_hsotg *hsotg = pw;
2440 	int retry_count = 8;
2441 	u32 gintsts;
2442 	u32 gintmsk;
2443 
2444 	spin_lock(&hsotg->lock);
2445 irq_retry:
2446 	gintsts = readl(hsotg->regs + GINTSTS);
2447 	gintmsk = readl(hsotg->regs + GINTMSK);
2448 
2449 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2450 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2451 
2452 	gintsts &= gintmsk;
2453 
2454 	if (gintsts & GINTSTS_ENUMDONE) {
2455 		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2456 
2457 		s3c_hsotg_irq_enumdone(hsotg);
2458 	}
2459 
2460 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2461 		u32 daint = readl(hsotg->regs + DAINT);
2462 		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2463 		u32 daint_out, daint_in;
2464 		int ep;
2465 
2466 		daint &= daintmsk;
2467 		daint_out = daint >> DAINT_OUTEP_SHIFT;
2468 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2469 
2470 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2471 
2472 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2473 						ep++, daint_out >>= 1) {
2474 			if (daint_out & 1)
2475 				s3c_hsotg_epint(hsotg, ep, 0);
2476 		}
2477 
2478 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2479 						ep++, daint_in >>= 1) {
2480 			if (daint_in & 1)
2481 				s3c_hsotg_epint(hsotg, ep, 1);
2482 		}
2483 	}
2484 
2485 	if (gintsts & GINTSTS_RESETDET) {
2486 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2487 
2488 		writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2489 
2490 		/* This event must be used only if controller is suspended */
2491 		if (hsotg->lx_state == DWC2_L2) {
2492 			dwc2_exit_hibernation(hsotg, true);
2493 			hsotg->lx_state = DWC2_L0;
2494 		}
2495 	}
2496 
2497 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2498 
2499 		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2500 
2501 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2502 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2503 			readl(hsotg->regs + GNPTXSTS));
2504 
2505 		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2506 
2507 		/* Report disconnection if it is not already done. */
2508 		s3c_hsotg_disconnect(hsotg);
2509 
2510 		if (usb_status & GOTGCTL_BSESVLD) {
2511 			if (time_after(jiffies, hsotg->last_rst +
2512 				       msecs_to_jiffies(200))) {
2513 
2514 				kill_all_requests(hsotg, hsotg->eps_out[0],
2515 							  -ECONNRESET);
2516 
2517 				hsotg->lx_state = DWC2_L0;
2518 				s3c_hsotg_core_init_disconnected(hsotg, true);
2519 			}
2520 		}
2521 	}
2522 
2523 	/* check both FIFOs */
2524 
2525 	if (gintsts & GINTSTS_NPTXFEMP) {
2526 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2527 
2528 		/*
2529 		 * Disable the interrupt to stop it happening again
2530 		 * unless one of these endpoint routines decides that
2531 		 * it needs re-enabling
2532 		 */
2533 
2534 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2535 		s3c_hsotg_irq_fifoempty(hsotg, false);
2536 	}
2537 
2538 	if (gintsts & GINTSTS_PTXFEMP) {
2539 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2540 
2541 		/* See note in GINTSTS_NPTxFEmp */
2542 
2543 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2544 		s3c_hsotg_irq_fifoempty(hsotg, true);
2545 	}
2546 
2547 	if (gintsts & GINTSTS_RXFLVL) {
2548 		/*
2549 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2550 		 * we need to retry s3c_hsotg_handle_rx if this is still
2551 		 * set.
2552 		 */
2553 
2554 		s3c_hsotg_handle_rx(hsotg);
2555 	}
2556 
2557 	if (gintsts & GINTSTS_ERLYSUSP) {
2558 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2559 		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2560 	}
2561 
2562 	/*
2563 	 * these next two seem to crop-up occasionally causing the core
2564 	 * to shutdown the USB transfer, so try clearing them and logging
2565 	 * the occurrence.
2566 	 */
2567 
2568 	if (gintsts & GINTSTS_GOUTNAKEFF) {
2569 		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2570 
2571 		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2572 
2573 		s3c_hsotg_dump(hsotg);
2574 	}
2575 
2576 	if (gintsts & GINTSTS_GINNAKEFF) {
2577 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2578 
2579 		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2580 
2581 		s3c_hsotg_dump(hsotg);
2582 	}
2583 
2584 	/*
2585 	 * if we've had fifo events, we should try and go around the
2586 	 * loop again to see if there's any point in returning yet.
2587 	 */
2588 
2589 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2590 			goto irq_retry;
2591 
2592 	spin_unlock(&hsotg->lock);
2593 
2594 	return IRQ_HANDLED;
2595 }
2596 
2597 /**
2598  * s3c_hsotg_ep_enable - enable the given endpoint
2599  * @ep: The USB endpint to configure
2600  * @desc: The USB endpoint descriptor to configure with.
2601  *
2602  * This is called from the USB gadget code's usb_ep_enable().
2603  */
2604 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2605 			       const struct usb_endpoint_descriptor *desc)
2606 {
2607 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2608 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2609 	unsigned long flags;
2610 	unsigned int index = hs_ep->index;
2611 	u32 epctrl_reg;
2612 	u32 epctrl;
2613 	u32 mps;
2614 	unsigned int dir_in;
2615 	unsigned int i, val, size;
2616 	int ret = 0;
2617 
2618 	dev_dbg(hsotg->dev,
2619 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2620 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2621 		desc->wMaxPacketSize, desc->bInterval);
2622 
2623 	/* not to be called for EP0 */
2624 	WARN_ON(index == 0);
2625 
2626 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2627 	if (dir_in != hs_ep->dir_in) {
2628 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2629 		return -EINVAL;
2630 	}
2631 
2632 	mps = usb_endpoint_maxp(desc);
2633 
2634 	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2635 
2636 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2637 	epctrl = readl(hsotg->regs + epctrl_reg);
2638 
2639 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2640 		__func__, epctrl, epctrl_reg);
2641 
2642 	spin_lock_irqsave(&hsotg->lock, flags);
2643 
2644 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2645 	epctrl |= DXEPCTL_MPS(mps);
2646 
2647 	/*
2648 	 * mark the endpoint as active, otherwise the core may ignore
2649 	 * transactions entirely for this endpoint
2650 	 */
2651 	epctrl |= DXEPCTL_USBACTEP;
2652 
2653 	/*
2654 	 * set the NAK status on the endpoint, otherwise we might try and
2655 	 * do something with data that we've yet got a request to process
2656 	 * since the RXFIFO will take data for an endpoint even if the
2657 	 * size register hasn't been set.
2658 	 */
2659 
2660 	epctrl |= DXEPCTL_SNAK;
2661 
2662 	/* update the endpoint state */
2663 	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2664 
2665 	/* default, set to non-periodic */
2666 	hs_ep->isochronous = 0;
2667 	hs_ep->periodic = 0;
2668 	hs_ep->halted = 0;
2669 	hs_ep->interval = desc->bInterval;
2670 
2671 	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2672 		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2673 
2674 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2675 	case USB_ENDPOINT_XFER_ISOC:
2676 		epctrl |= DXEPCTL_EPTYPE_ISO;
2677 		epctrl |= DXEPCTL_SETEVENFR;
2678 		hs_ep->isochronous = 1;
2679 		if (dir_in)
2680 			hs_ep->periodic = 1;
2681 		break;
2682 
2683 	case USB_ENDPOINT_XFER_BULK:
2684 		epctrl |= DXEPCTL_EPTYPE_BULK;
2685 		break;
2686 
2687 	case USB_ENDPOINT_XFER_INT:
2688 		if (dir_in)
2689 			hs_ep->periodic = 1;
2690 
2691 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2692 		break;
2693 
2694 	case USB_ENDPOINT_XFER_CONTROL:
2695 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2696 		break;
2697 	}
2698 
2699 	/* If fifo is already allocated for this ep */
2700 	if (hs_ep->fifo_index) {
2701 		size =  hs_ep->ep.maxpacket * hs_ep->mc;
2702 		/* If bigger fifo is required deallocate current one */
2703 		if (size > hs_ep->fifo_size) {
2704 			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2705 			hs_ep->fifo_index = 0;
2706 			hs_ep->fifo_size = 0;
2707 		}
2708 	}
2709 
2710 	/*
2711 	 * if the hardware has dedicated fifos, we must give each IN EP
2712 	 * a unique tx-fifo even if it is non-periodic.
2713 	 */
2714 	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2715 		u32 fifo_index = 0;
2716 		u32 fifo_size = UINT_MAX;
2717 		size = hs_ep->ep.maxpacket*hs_ep->mc;
2718 		for (i = 1; i < hsotg->num_of_eps; ++i) {
2719 			if (hsotg->fifo_map & (1<<i))
2720 				continue;
2721 			val = readl(hsotg->regs + DPTXFSIZN(i));
2722 			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2723 			if (val < size)
2724 				continue;
2725 			/* Search for smallest acceptable fifo */
2726 			if (val < fifo_size) {
2727 				fifo_size = val;
2728 				fifo_index = i;
2729 			}
2730 		}
2731 		if (!fifo_index) {
2732 			dev_err(hsotg->dev,
2733 				"%s: No suitable fifo found\n", __func__);
2734 			ret = -ENOMEM;
2735 			goto error;
2736 		}
2737 		hsotg->fifo_map |= 1 << fifo_index;
2738 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
2739 		hs_ep->fifo_index = fifo_index;
2740 		hs_ep->fifo_size = fifo_size;
2741 	}
2742 
2743 	/* for non control endpoints, set PID to D0 */
2744 	if (index)
2745 		epctrl |= DXEPCTL_SETD0PID;
2746 
2747 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2748 		__func__, epctrl);
2749 
2750 	writel(epctrl, hsotg->regs + epctrl_reg);
2751 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2752 		__func__, readl(hsotg->regs + epctrl_reg));
2753 
2754 	/* enable the endpoint interrupt */
2755 	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2756 
2757 error:
2758 	spin_unlock_irqrestore(&hsotg->lock, flags);
2759 	return ret;
2760 }
2761 
2762 /**
2763  * s3c_hsotg_ep_disable - disable given endpoint
2764  * @ep: The endpoint to disable.
2765  */
2766 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2767 {
2768 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2769 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2770 	int dir_in = hs_ep->dir_in;
2771 	int index = hs_ep->index;
2772 	unsigned long flags;
2773 	u32 epctrl_reg;
2774 	u32 ctrl;
2775 
2776 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2777 
2778 	if (ep == &hsotg->eps_out[0]->ep) {
2779 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2780 		return -EINVAL;
2781 	}
2782 
2783 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2784 
2785 	spin_lock_irqsave(&hsotg->lock, flags);
2786 
2787 	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2788 	hs_ep->fifo_index = 0;
2789 	hs_ep->fifo_size = 0;
2790 
2791 	ctrl = readl(hsotg->regs + epctrl_reg);
2792 	ctrl &= ~DXEPCTL_EPENA;
2793 	ctrl &= ~DXEPCTL_USBACTEP;
2794 	ctrl |= DXEPCTL_SNAK;
2795 
2796 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2797 	writel(ctrl, hsotg->regs + epctrl_reg);
2798 
2799 	/* disable endpoint interrupts */
2800 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2801 
2802 	/* terminate all requests with shutdown */
2803 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2804 
2805 	spin_unlock_irqrestore(&hsotg->lock, flags);
2806 	return 0;
2807 }
2808 
2809 /**
2810  * on_list - check request is on the given endpoint
2811  * @ep: The endpoint to check.
2812  * @test: The request to test if it is on the endpoint.
2813  */
2814 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2815 {
2816 	struct s3c_hsotg_req *req, *treq;
2817 
2818 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2819 		if (req == test)
2820 			return true;
2821 	}
2822 
2823 	return false;
2824 }
2825 
2826 /**
2827  * s3c_hsotg_ep_dequeue - dequeue given endpoint
2828  * @ep: The endpoint to dequeue.
2829  * @req: The request to be removed from a queue.
2830  */
2831 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2832 {
2833 	struct s3c_hsotg_req *hs_req = our_req(req);
2834 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2835 	struct dwc2_hsotg *hs = hs_ep->parent;
2836 	unsigned long flags;
2837 
2838 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2839 
2840 	spin_lock_irqsave(&hs->lock, flags);
2841 
2842 	if (!on_list(hs_ep, hs_req)) {
2843 		spin_unlock_irqrestore(&hs->lock, flags);
2844 		return -EINVAL;
2845 	}
2846 
2847 	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2848 	spin_unlock_irqrestore(&hs->lock, flags);
2849 
2850 	return 0;
2851 }
2852 
2853 /**
2854  * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2855  * @ep: The endpoint to set halt.
2856  * @value: Set or unset the halt.
2857  */
2858 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2859 {
2860 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2861 	struct dwc2_hsotg *hs = hs_ep->parent;
2862 	int index = hs_ep->index;
2863 	u32 epreg;
2864 	u32 epctl;
2865 	u32 xfertype;
2866 
2867 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2868 
2869 	if (index == 0) {
2870 		if (value)
2871 			s3c_hsotg_stall_ep0(hs);
2872 		else
2873 			dev_warn(hs->dev,
2874 				 "%s: can't clear halt on ep0\n", __func__);
2875 		return 0;
2876 	}
2877 
2878 	if (hs_ep->dir_in) {
2879 		epreg = DIEPCTL(index);
2880 		epctl = readl(hs->regs + epreg);
2881 
2882 		if (value) {
2883 			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2884 			if (epctl & DXEPCTL_EPENA)
2885 				epctl |= DXEPCTL_EPDIS;
2886 		} else {
2887 			epctl &= ~DXEPCTL_STALL;
2888 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2889 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2890 				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2891 					epctl |= DXEPCTL_SETD0PID;
2892 		}
2893 		writel(epctl, hs->regs + epreg);
2894 	} else {
2895 
2896 		epreg = DOEPCTL(index);
2897 		epctl = readl(hs->regs + epreg);
2898 
2899 		if (value)
2900 			epctl |= DXEPCTL_STALL;
2901 		else {
2902 			epctl &= ~DXEPCTL_STALL;
2903 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2904 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2905 				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2906 					epctl |= DXEPCTL_SETD0PID;
2907 		}
2908 		writel(epctl, hs->regs + epreg);
2909 	}
2910 
2911 	hs_ep->halted = value;
2912 
2913 	return 0;
2914 }
2915 
2916 /**
2917  * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2918  * @ep: The endpoint to set halt.
2919  * @value: Set or unset the halt.
2920  */
2921 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2922 {
2923 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2924 	struct dwc2_hsotg *hs = hs_ep->parent;
2925 	unsigned long flags = 0;
2926 	int ret = 0;
2927 
2928 	spin_lock_irqsave(&hs->lock, flags);
2929 	ret = s3c_hsotg_ep_sethalt(ep, value);
2930 	spin_unlock_irqrestore(&hs->lock, flags);
2931 
2932 	return ret;
2933 }
2934 
2935 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2936 	.enable		= s3c_hsotg_ep_enable,
2937 	.disable	= s3c_hsotg_ep_disable,
2938 	.alloc_request	= s3c_hsotg_ep_alloc_request,
2939 	.free_request	= s3c_hsotg_ep_free_request,
2940 	.queue		= s3c_hsotg_ep_queue_lock,
2941 	.dequeue	= s3c_hsotg_ep_dequeue,
2942 	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2943 	/* note, don't believe we have any call for the fifo routines */
2944 };
2945 
2946 /**
2947  * s3c_hsotg_phy_enable - enable platform phy dev
2948  * @hsotg: The driver state
2949  *
2950  * A wrapper for platform code responsible for controlling
2951  * low-level USB code
2952  */
2953 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2954 {
2955 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2956 
2957 	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2958 
2959 	if (hsotg->uphy)
2960 		usb_phy_init(hsotg->uphy);
2961 	else if (hsotg->plat && hsotg->plat->phy_init)
2962 		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2963 	else {
2964 		phy_init(hsotg->phy);
2965 		phy_power_on(hsotg->phy);
2966 	}
2967 }
2968 
2969 /**
2970  * s3c_hsotg_phy_disable - disable platform phy dev
2971  * @hsotg: The driver state
2972  *
2973  * A wrapper for platform code responsible for controlling
2974  * low-level USB code
2975  */
2976 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2977 {
2978 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2979 
2980 	if (hsotg->uphy)
2981 		usb_phy_shutdown(hsotg->uphy);
2982 	else if (hsotg->plat && hsotg->plat->phy_exit)
2983 		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2984 	else {
2985 		phy_power_off(hsotg->phy);
2986 		phy_exit(hsotg->phy);
2987 	}
2988 }
2989 
2990 /**
2991  * s3c_hsotg_init - initalize the usb core
2992  * @hsotg: The driver state
2993  */
2994 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2995 {
2996 	u32 trdtim;
2997 	/* unmask subset of endpoint interrupts */
2998 
2999 	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3000 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3001 		hsotg->regs + DIEPMSK);
3002 
3003 	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3004 		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3005 		hsotg->regs + DOEPMSK);
3006 
3007 	writel(0, hsotg->regs + DAINTMSK);
3008 
3009 	/* Be in disconnected state until gadget is registered */
3010 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3011 
3012 	/* setup fifos */
3013 
3014 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3015 		readl(hsotg->regs + GRXFSIZ),
3016 		readl(hsotg->regs + GNPTXFSIZ));
3017 
3018 	s3c_hsotg_init_fifo(hsotg);
3019 
3020 	/* set the PLL on, remove the HNP/SRP and set the PHY */
3021 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3022 	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3023 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3024 		hsotg->regs + GUSBCFG);
3025 
3026 	if (using_dma(hsotg))
3027 		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3028 }
3029 
3030 /**
3031  * s3c_hsotg_udc_start - prepare the udc for work
3032  * @gadget: The usb gadget state
3033  * @driver: The usb gadget driver
3034  *
3035  * Perform initialization to prepare udc device and driver
3036  * to work.
3037  */
3038 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
3039 			   struct usb_gadget_driver *driver)
3040 {
3041 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3042 	unsigned long flags;
3043 	int ret;
3044 
3045 	if (!hsotg) {
3046 		pr_err("%s: called with no device\n", __func__);
3047 		return -ENODEV;
3048 	}
3049 
3050 	if (!driver) {
3051 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3052 		return -EINVAL;
3053 	}
3054 
3055 	if (driver->max_speed < USB_SPEED_FULL)
3056 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3057 
3058 	if (!driver->setup) {
3059 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3060 		return -EINVAL;
3061 	}
3062 
3063 	mutex_lock(&hsotg->init_mutex);
3064 	WARN_ON(hsotg->driver);
3065 
3066 	driver->driver.bus = NULL;
3067 	hsotg->driver = driver;
3068 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3069 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3070 
3071 	clk_enable(hsotg->clk);
3072 
3073 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3074 				    hsotg->supplies);
3075 	if (ret) {
3076 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3077 		goto err;
3078 	}
3079 
3080 	s3c_hsotg_phy_enable(hsotg);
3081 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3082 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3083 
3084 	spin_lock_irqsave(&hsotg->lock, flags);
3085 	s3c_hsotg_init(hsotg);
3086 	s3c_hsotg_core_init_disconnected(hsotg, false);
3087 	hsotg->enabled = 0;
3088 	spin_unlock_irqrestore(&hsotg->lock, flags);
3089 
3090 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3091 
3092 	mutex_unlock(&hsotg->init_mutex);
3093 
3094 	return 0;
3095 
3096 err:
3097 	mutex_unlock(&hsotg->init_mutex);
3098 	hsotg->driver = NULL;
3099 	return ret;
3100 }
3101 
3102 /**
3103  * s3c_hsotg_udc_stop - stop the udc
3104  * @gadget: The usb gadget state
3105  * @driver: The usb gadget driver
3106  *
3107  * Stop udc hw block and stay tunned for future transmissions
3108  */
3109 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
3110 {
3111 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3112 	unsigned long flags = 0;
3113 	int ep;
3114 
3115 	if (!hsotg)
3116 		return -ENODEV;
3117 
3118 	mutex_lock(&hsotg->init_mutex);
3119 
3120 	/* all endpoints should be shutdown */
3121 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3122 		if (hsotg->eps_in[ep])
3123 			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3124 		if (hsotg->eps_out[ep])
3125 			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3126 	}
3127 
3128 	spin_lock_irqsave(&hsotg->lock, flags);
3129 
3130 	hsotg->driver = NULL;
3131 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3132 	hsotg->enabled = 0;
3133 
3134 	spin_unlock_irqrestore(&hsotg->lock, flags);
3135 
3136 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3137 		otg_set_peripheral(hsotg->uphy->otg, NULL);
3138 	s3c_hsotg_phy_disable(hsotg);
3139 
3140 	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3141 
3142 	clk_disable(hsotg->clk);
3143 
3144 	mutex_unlock(&hsotg->init_mutex);
3145 
3146 	return 0;
3147 }
3148 
3149 /**
3150  * s3c_hsotg_gadget_getframe - read the frame number
3151  * @gadget: The usb gadget state
3152  *
3153  * Read the {micro} frame number
3154  */
3155 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3156 {
3157 	return s3c_hsotg_read_frameno(to_hsotg(gadget));
3158 }
3159 
3160 /**
3161  * s3c_hsotg_pullup - connect/disconnect the USB PHY
3162  * @gadget: The usb gadget state
3163  * @is_on: Current state of the USB PHY
3164  *
3165  * Connect/Disconnect the USB PHY pullup
3166  */
3167 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3168 {
3169 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3170 	unsigned long flags = 0;
3171 
3172 	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3173 
3174 	mutex_lock(&hsotg->init_mutex);
3175 	spin_lock_irqsave(&hsotg->lock, flags);
3176 	if (is_on) {
3177 		clk_enable(hsotg->clk);
3178 		hsotg->enabled = 1;
3179 		s3c_hsotg_core_init_disconnected(hsotg, false);
3180 		s3c_hsotg_core_connect(hsotg);
3181 	} else {
3182 		s3c_hsotg_core_disconnect(hsotg);
3183 		s3c_hsotg_disconnect(hsotg);
3184 		hsotg->enabled = 0;
3185 		clk_disable(hsotg->clk);
3186 	}
3187 
3188 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3189 	spin_unlock_irqrestore(&hsotg->lock, flags);
3190 	mutex_unlock(&hsotg->init_mutex);
3191 
3192 	return 0;
3193 }
3194 
3195 static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3196 {
3197 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3198 	unsigned long flags;
3199 
3200 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3201 	spin_lock_irqsave(&hsotg->lock, flags);
3202 
3203 	if (is_active) {
3204 		/*
3205 		 * If controller is hibernated, it must exit from hibernation
3206 		 * before being initialized
3207 		 */
3208 		if (hsotg->lx_state == DWC2_L2) {
3209 			dwc2_exit_hibernation(hsotg, false);
3210 			hsotg->lx_state = DWC2_L0;
3211 		}
3212 		/* Kill any ep0 requests as controller will be reinitialized */
3213 		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3214 		s3c_hsotg_core_init_disconnected(hsotg, false);
3215 		if (hsotg->enabled)
3216 			s3c_hsotg_core_connect(hsotg);
3217 	} else {
3218 		s3c_hsotg_core_disconnect(hsotg);
3219 		s3c_hsotg_disconnect(hsotg);
3220 	}
3221 
3222 	spin_unlock_irqrestore(&hsotg->lock, flags);
3223 	return 0;
3224 }
3225 
3226 /**
3227  * s3c_hsotg_vbus_draw - report bMaxPower field
3228  * @gadget: The usb gadget state
3229  * @mA: Amount of current
3230  *
3231  * Report how much power the device may consume to the phy.
3232  */
3233 static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3234 {
3235 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3236 
3237 	if (IS_ERR_OR_NULL(hsotg->uphy))
3238 		return -ENOTSUPP;
3239 	return usb_phy_set_power(hsotg->uphy, mA);
3240 }
3241 
3242 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3243 	.get_frame	= s3c_hsotg_gadget_getframe,
3244 	.udc_start		= s3c_hsotg_udc_start,
3245 	.udc_stop		= s3c_hsotg_udc_stop,
3246 	.pullup                 = s3c_hsotg_pullup,
3247 	.vbus_session		= s3c_hsotg_vbus_session,
3248 	.vbus_draw		= s3c_hsotg_vbus_draw,
3249 };
3250 
3251 /**
3252  * s3c_hsotg_initep - initialise a single endpoint
3253  * @hsotg: The device state.
3254  * @hs_ep: The endpoint to be initialised.
3255  * @epnum: The endpoint number
3256  *
3257  * Initialise the given endpoint (as part of the probe and device state
3258  * creation) to give to the gadget driver. Setup the endpoint name, any
3259  * direction information and other state that may be required.
3260  */
3261 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3262 				       struct s3c_hsotg_ep *hs_ep,
3263 				       int epnum,
3264 				       bool dir_in)
3265 {
3266 	char *dir;
3267 
3268 	if (epnum == 0)
3269 		dir = "";
3270 	else if (dir_in)
3271 		dir = "in";
3272 	else
3273 		dir = "out";
3274 
3275 	hs_ep->dir_in = dir_in;
3276 	hs_ep->index = epnum;
3277 
3278 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3279 
3280 	INIT_LIST_HEAD(&hs_ep->queue);
3281 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3282 
3283 	/* add to the list of endpoints known by the gadget driver */
3284 	if (epnum)
3285 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3286 
3287 	hs_ep->parent = hsotg;
3288 	hs_ep->ep.name = hs_ep->name;
3289 	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3290 	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3291 
3292 	/*
3293 	 * if we're using dma, we need to set the next-endpoint pointer
3294 	 * to be something valid.
3295 	 */
3296 
3297 	if (using_dma(hsotg)) {
3298 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3299 		if (dir_in)
3300 			writel(next, hsotg->regs + DIEPCTL(epnum));
3301 		else
3302 			writel(next, hsotg->regs + DOEPCTL(epnum));
3303 	}
3304 }
3305 
3306 /**
3307  * s3c_hsotg_hw_cfg - read HW configuration registers
3308  * @param: The device state
3309  *
3310  * Read the USB core HW configuration registers
3311  */
3312 static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3313 {
3314 	u32 cfg;
3315 	u32 ep_type;
3316 	u32 i;
3317 
3318 	/* check hardware configuration */
3319 
3320 	cfg = readl(hsotg->regs + GHWCFG2);
3321 	hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3322 	/* Add ep0 */
3323 	hsotg->num_of_eps++;
3324 
3325 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
3326 								GFP_KERNEL);
3327 	if (!hsotg->eps_in[0])
3328 		return -ENOMEM;
3329 	/* Same s3c_hsotg_ep is used in both directions for ep0 */
3330 	hsotg->eps_out[0] = hsotg->eps_in[0];
3331 
3332 	cfg = readl(hsotg->regs + GHWCFG1);
3333 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3334 		ep_type = cfg & 3;
3335 		/* Direction in or both */
3336 		if (!(ep_type & 2)) {
3337 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3338 				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
3339 			if (!hsotg->eps_in[i])
3340 				return -ENOMEM;
3341 		}
3342 		/* Direction out or both */
3343 		if (!(ep_type & 1)) {
3344 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3345 				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
3346 			if (!hsotg->eps_out[i])
3347 				return -ENOMEM;
3348 		}
3349 	}
3350 
3351 	cfg = readl(hsotg->regs + GHWCFG3);
3352 	hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3353 
3354 	cfg = readl(hsotg->regs + GHWCFG4);
3355 	hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3356 
3357 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3358 		 hsotg->num_of_eps,
3359 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3360 		 hsotg->fifo_mem);
3361 	return 0;
3362 }
3363 
3364 /**
3365  * s3c_hsotg_dump - dump state of the udc
3366  * @param: The device state
3367  */
3368 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3369 {
3370 #ifdef DEBUG
3371 	struct device *dev = hsotg->dev;
3372 	void __iomem *regs = hsotg->regs;
3373 	u32 val;
3374 	int idx;
3375 
3376 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3377 		 readl(regs + DCFG), readl(regs + DCTL),
3378 		 readl(regs + DIEPMSK));
3379 
3380 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3381 		 readl(regs + GAHBCFG), readl(regs + GHWCFG1));
3382 
3383 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3384 		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3385 
3386 	/* show periodic fifo settings */
3387 
3388 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3389 		val = readl(regs + DPTXFSIZN(idx));
3390 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3391 			 val >> FIFOSIZE_DEPTH_SHIFT,
3392 			 val & FIFOSIZE_STARTADDR_MASK);
3393 	}
3394 
3395 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3396 		dev_info(dev,
3397 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3398 			 readl(regs + DIEPCTL(idx)),
3399 			 readl(regs + DIEPTSIZ(idx)),
3400 			 readl(regs + DIEPDMA(idx)));
3401 
3402 		val = readl(regs + DOEPCTL(idx));
3403 		dev_info(dev,
3404 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3405 			 idx, readl(regs + DOEPCTL(idx)),
3406 			 readl(regs + DOEPTSIZ(idx)),
3407 			 readl(regs + DOEPDMA(idx)));
3408 
3409 	}
3410 
3411 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3412 		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3413 #endif
3414 }
3415 
3416 #ifdef CONFIG_OF
3417 static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3418 {
3419 	struct device_node *np = hsotg->dev->of_node;
3420 	u32 len = 0;
3421 	u32 i = 0;
3422 
3423 	/* Enable dma if requested in device tree */
3424 	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3425 
3426 	/*
3427 	* Register TX periodic fifo size per endpoint.
3428 	* EP0 is excluded since it has no fifo configuration.
3429 	*/
3430 	if (!of_find_property(np, "g-tx-fifo-size", &len))
3431 		goto rx_fifo;
3432 
3433 	len /= sizeof(u32);
3434 
3435 	/* Read tx fifo sizes other than ep0 */
3436 	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3437 						&hsotg->g_tx_fifo_sz[1], len))
3438 		goto rx_fifo;
3439 
3440 	/* Add ep0 */
3441 	len++;
3442 
3443 	/* Make remaining TX fifos unavailable */
3444 	if (len < MAX_EPS_CHANNELS) {
3445 		for (i = len; i < MAX_EPS_CHANNELS; i++)
3446 			hsotg->g_tx_fifo_sz[i] = 0;
3447 	}
3448 
3449 rx_fifo:
3450 	/* Register RX fifo size */
3451 	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3452 
3453 	/* Register NPTX fifo size */
3454 	of_property_read_u32(np, "g-np-tx-fifo-size",
3455 						&hsotg->g_np_g_tx_fifo_sz);
3456 }
3457 #else
3458 static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3459 #endif
3460 
3461 /**
3462  * dwc2_gadget_init - init function for gadget
3463  * @dwc2: The data structure for the DWC2 driver.
3464  * @irq: The IRQ number for the controller.
3465  */
3466 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3467 {
3468 	struct device *dev = hsotg->dev;
3469 	struct s3c_hsotg_plat *plat = dev->platform_data;
3470 	int epnum;
3471 	int ret;
3472 	int i;
3473 	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3474 
3475 	/* Set default UTMI width */
3476 	hsotg->phyif = GUSBCFG_PHYIF16;
3477 
3478 	s3c_hsotg_of_probe(hsotg);
3479 
3480 	/* Initialize to legacy fifo configuration values */
3481 	hsotg->g_rx_fifo_sz = 2048;
3482 	hsotg->g_np_g_tx_fifo_sz = 1024;
3483 	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3484 	/* Device tree specific probe */
3485 	s3c_hsotg_of_probe(hsotg);
3486 	/* Dump fifo information */
3487 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3488 						hsotg->g_np_g_tx_fifo_sz);
3489 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3490 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3491 		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3492 						hsotg->g_tx_fifo_sz[i]);
3493 	/*
3494 	 * If platform probe couldn't find a generic PHY or an old style
3495 	 * USB PHY, fall back to pdata
3496 	 */
3497 	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3498 		plat = dev_get_platdata(dev);
3499 		if (!plat) {
3500 			dev_err(dev,
3501 			"no platform data or transceiver defined\n");
3502 			return -EPROBE_DEFER;
3503 		}
3504 		hsotg->plat = plat;
3505 	} else if (hsotg->phy) {
3506 		/*
3507 		 * If using the generic PHY framework, check if the PHY bus
3508 		 * width is 8-bit and set the phyif appropriately.
3509 		 */
3510 		if (phy_get_bus_width(hsotg->phy) == 8)
3511 			hsotg->phyif = GUSBCFG_PHYIF8;
3512 	}
3513 
3514 	hsotg->clk = devm_clk_get(dev, "otg");
3515 	if (IS_ERR(hsotg->clk)) {
3516 		hsotg->clk = NULL;
3517 		dev_dbg(dev, "cannot get otg clock\n");
3518 	}
3519 
3520 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3521 	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3522 	hsotg->gadget.name = dev_name(dev);
3523 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
3524 		hsotg->gadget.is_otg = 1;
3525 
3526 	/* reset the system */
3527 
3528 	ret = clk_prepare_enable(hsotg->clk);
3529 	if (ret) {
3530 		dev_err(dev, "failed to enable otg clk\n");
3531 		goto err_clk;
3532 	}
3533 
3534 
3535 	/* regulators */
3536 
3537 	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3538 		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3539 
3540 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3541 				 hsotg->supplies);
3542 	if (ret) {
3543 		dev_err(dev, "failed to request supplies: %d\n", ret);
3544 		goto err_clk;
3545 	}
3546 
3547 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3548 				    hsotg->supplies);
3549 
3550 	if (ret) {
3551 		dev_err(dev, "failed to enable supplies: %d\n", ret);
3552 		goto err_clk;
3553 	}
3554 
3555 	/* usb phy enable */
3556 	s3c_hsotg_phy_enable(hsotg);
3557 
3558 	/*
3559 	 * Force Device mode before initialization.
3560 	 * This allows correctly configuring fifo for device mode.
3561 	 */
3562 	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3563 	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3564 
3565 	/*
3566 	 * According to Synopsys databook, this sleep is needed for the force
3567 	 * device mode to take effect.
3568 	 */
3569 	msleep(25);
3570 
3571 	s3c_hsotg_corereset(hsotg);
3572 	ret = s3c_hsotg_hw_cfg(hsotg);
3573 	if (ret) {
3574 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3575 		goto err_clk;
3576 	}
3577 
3578 	s3c_hsotg_init(hsotg);
3579 
3580 	/* Switch back to default configuration */
3581 	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3582 
3583 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3584 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3585 	if (!hsotg->ctrl_buff) {
3586 		dev_err(dev, "failed to allocate ctrl request buff\n");
3587 		ret = -ENOMEM;
3588 		goto err_supplies;
3589 	}
3590 
3591 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3592 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3593 	if (!hsotg->ep0_buff) {
3594 		dev_err(dev, "failed to allocate ctrl reply buff\n");
3595 		ret = -ENOMEM;
3596 		goto err_supplies;
3597 	}
3598 
3599 	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
3600 				dev_name(hsotg->dev), hsotg);
3601 	if (ret < 0) {
3602 		s3c_hsotg_phy_disable(hsotg);
3603 		clk_disable_unprepare(hsotg->clk);
3604 		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3605 				       hsotg->supplies);
3606 		dev_err(dev, "cannot claim IRQ for gadget\n");
3607 		goto err_supplies;
3608 	}
3609 
3610 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3611 
3612 	if (hsotg->num_of_eps == 0) {
3613 		dev_err(dev, "wrong number of EPs (zero)\n");
3614 		ret = -EINVAL;
3615 		goto err_supplies;
3616 	}
3617 
3618 	/* setup endpoint information */
3619 
3620 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3621 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3622 
3623 	/* allocate EP0 request */
3624 
3625 	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3626 						     GFP_KERNEL);
3627 	if (!hsotg->ctrl_req) {
3628 		dev_err(dev, "failed to allocate ctrl req\n");
3629 		ret = -ENOMEM;
3630 		goto err_supplies;
3631 	}
3632 
3633 	/* initialise the endpoints now the core has been initialised */
3634 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3635 		if (hsotg->eps_in[epnum])
3636 			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3637 								epnum, 1);
3638 		if (hsotg->eps_out[epnum])
3639 			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3640 								epnum, 0);
3641 	}
3642 
3643 	/* disable power and clock */
3644 	s3c_hsotg_phy_disable(hsotg);
3645 
3646 	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3647 				    hsotg->supplies);
3648 	if (ret) {
3649 		dev_err(dev, "failed to disable supplies: %d\n", ret);
3650 		goto err_supplies;
3651 	}
3652 
3653 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3654 	if (ret)
3655 		goto err_supplies;
3656 
3657 	s3c_hsotg_dump(hsotg);
3658 
3659 	return 0;
3660 
3661 err_supplies:
3662 	s3c_hsotg_phy_disable(hsotg);
3663 err_clk:
3664 	clk_disable_unprepare(hsotg->clk);
3665 
3666 	return ret;
3667 }
3668 
3669 /**
3670  * s3c_hsotg_remove - remove function for hsotg driver
3671  * @pdev: The platform information for the driver
3672  */
3673 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3674 {
3675 	usb_del_gadget_udc(&hsotg->gadget);
3676 	clk_disable_unprepare(hsotg->clk);
3677 
3678 	return 0;
3679 }
3680 
3681 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3682 {
3683 	unsigned long flags;
3684 	int ret = 0;
3685 
3686 	if (hsotg->lx_state != DWC2_L0)
3687 		return ret;
3688 
3689 	mutex_lock(&hsotg->init_mutex);
3690 
3691 	if (hsotg->driver) {
3692 		int ep;
3693 
3694 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3695 			 hsotg->driver->driver.name);
3696 
3697 		spin_lock_irqsave(&hsotg->lock, flags);
3698 		if (hsotg->enabled)
3699 			s3c_hsotg_core_disconnect(hsotg);
3700 		s3c_hsotg_disconnect(hsotg);
3701 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3702 		spin_unlock_irqrestore(&hsotg->lock, flags);
3703 
3704 		s3c_hsotg_phy_disable(hsotg);
3705 
3706 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3707 			if (hsotg->eps_in[ep])
3708 				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3709 			if (hsotg->eps_out[ep])
3710 				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3711 		}
3712 
3713 		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3714 					     hsotg->supplies);
3715 		clk_disable(hsotg->clk);
3716 	}
3717 
3718 	mutex_unlock(&hsotg->init_mutex);
3719 
3720 	return ret;
3721 }
3722 
3723 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3724 {
3725 	unsigned long flags;
3726 	int ret = 0;
3727 
3728 	if (hsotg->lx_state == DWC2_L2)
3729 		return ret;
3730 
3731 	mutex_lock(&hsotg->init_mutex);
3732 
3733 	if (hsotg->driver) {
3734 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3735 			 hsotg->driver->driver.name);
3736 
3737 		clk_enable(hsotg->clk);
3738 		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3739 					    hsotg->supplies);
3740 
3741 		s3c_hsotg_phy_enable(hsotg);
3742 
3743 		spin_lock_irqsave(&hsotg->lock, flags);
3744 		s3c_hsotg_core_init_disconnected(hsotg, false);
3745 		if (hsotg->enabled)
3746 			s3c_hsotg_core_connect(hsotg);
3747 		spin_unlock_irqrestore(&hsotg->lock, flags);
3748 	}
3749 	mutex_unlock(&hsotg->init_mutex);
3750 
3751 	return ret;
3752 }
3753