1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 hs_ep->target_frame += hs_ep->interval; 119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 120 hs_ep->frame_overrun = true; 121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 122 } else { 123 hs_ep->frame_overrun = false; 124 } 125 } 126 127 /** 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 129 * by one. 130 * @hs_ep: The endpoint. 131 * 132 * This function used in service interval based scheduling flow to calculate 133 * descriptor frame number filed value. For service interval mode frame 134 * number in descriptor should point to last (u)frame in the interval. 135 * 136 */ 137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 138 { 139 if (hs_ep->target_frame) 140 hs_ep->target_frame -= 1; 141 else 142 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 143 } 144 145 /** 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 147 * @hsotg: The device state 148 * @ints: A bitmask of the interrupts to enable 149 */ 150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 151 { 152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 153 u32 new_gsintmsk; 154 155 new_gsintmsk = gsintmsk | ints; 156 157 if (new_gsintmsk != gsintmsk) { 158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 160 } 161 } 162 163 /** 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 165 * @hsotg: The device state 166 * @ints: A bitmask of the interrupts to enable 167 */ 168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 169 { 170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 171 u32 new_gsintmsk; 172 173 new_gsintmsk = gsintmsk & ~ints; 174 175 if (new_gsintmsk != gsintmsk) 176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 177 } 178 179 /** 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 181 * @hsotg: The device state 182 * @ep: The endpoint index 183 * @dir_in: True if direction is in. 184 * @en: The enable value, true to enable 185 * 186 * Set or clear the mask for an individual endpoint's interrupt 187 * request. 188 */ 189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 190 unsigned int ep, unsigned int dir_in, 191 unsigned int en) 192 { 193 unsigned long flags; 194 u32 bit = 1 << ep; 195 u32 daint; 196 197 if (!dir_in) 198 bit <<= 16; 199 200 local_irq_save(flags); 201 daint = dwc2_readl(hsotg, DAINTMSK); 202 if (en) 203 daint |= bit; 204 else 205 daint &= ~bit; 206 dwc2_writel(hsotg, daint, DAINTMSK); 207 local_irq_restore(flags); 208 } 209 210 /** 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 212 * 213 * @hsotg: Programming view of the DWC_otg controller 214 */ 215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 216 { 217 if (hsotg->hw_params.en_multiple_tx_fifo) 218 /* In dedicated FIFO mode we need count of IN EPs */ 219 return hsotg->hw_params.num_dev_in_eps; 220 else 221 /* In shared FIFO mode we need count of Periodic IN EPs */ 222 return hsotg->hw_params.num_dev_perio_in_ep; 223 } 224 225 /** 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 227 * device mode TX FIFOs 228 * 229 * @hsotg: Programming view of the DWC_otg controller 230 */ 231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 232 { 233 int addr; 234 int tx_addr_max; 235 u32 np_tx_fifo_size; 236 237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 238 hsotg->params.g_np_tx_fifo_size); 239 240 /* Get Endpoint Info Control block size in DWORDs. */ 241 tx_addr_max = hsotg->hw_params.total_fifo_size; 242 243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 244 if (tx_addr_max <= addr) 245 return 0; 246 247 return tx_addr_max - addr; 248 } 249 250 /** 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 252 * 253 * @hsotg: Programming view of the DWC_otg controller 254 * 255 */ 256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 257 { 258 u32 gintsts2; 259 u32 gintmsk2; 260 261 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 263 gintsts2 &= gintmsk2; 264 265 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 266 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 267 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 268 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 269 } 270 } 271 272 /** 273 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 274 * TX FIFOs 275 * 276 * @hsotg: Programming view of the DWC_otg controller 277 */ 278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 279 { 280 int tx_fifo_count; 281 int tx_fifo_depth; 282 283 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 284 285 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 286 287 if (!tx_fifo_count) 288 return tx_fifo_depth; 289 else 290 return tx_fifo_depth / tx_fifo_count; 291 } 292 293 /** 294 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 295 * @hsotg: The device instance. 296 */ 297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 298 { 299 unsigned int ep; 300 unsigned int addr; 301 int timeout; 302 303 u32 val; 304 u32 *txfsz = hsotg->params.g_tx_fifo_size; 305 306 /* Reset fifo map if not correctly cleared during previous session */ 307 WARN_ON(hsotg->fifo_map); 308 hsotg->fifo_map = 0; 309 310 /* set RX/NPTX FIFO sizes */ 311 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 312 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 313 FIFOSIZE_STARTADDR_SHIFT) | 314 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 315 GNPTXFSIZ); 316 317 /* 318 * arange all the rest of the TX FIFOs, as some versions of this 319 * block have overlapping default addresses. This also ensures 320 * that if the settings have been changed, then they are set to 321 * known values. 322 */ 323 324 /* start at the end of the GNPTXFSIZ, rounded up */ 325 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 326 327 /* 328 * Configure fifos sizes from provided configuration and assign 329 * them to endpoints dynamically according to maxpacket size value of 330 * given endpoint. 331 */ 332 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 333 if (!txfsz[ep]) 334 continue; 335 val = addr; 336 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 337 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 338 "insufficient fifo memory"); 339 addr += txfsz[ep]; 340 341 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 342 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 343 } 344 345 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 346 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 347 GDFIFOCFG); 348 /* 349 * according to p428 of the design guide, we need to ensure that 350 * all fifos are flushed before continuing 351 */ 352 353 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 354 GRSTCTL_RXFFLSH, GRSTCTL); 355 356 /* wait until the fifos are both flushed */ 357 timeout = 100; 358 while (1) { 359 val = dwc2_readl(hsotg, GRSTCTL); 360 361 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 362 break; 363 364 if (--timeout == 0) { 365 dev_err(hsotg->dev, 366 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 367 __func__, val); 368 break; 369 } 370 371 udelay(1); 372 } 373 374 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 375 } 376 377 /** 378 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 379 * @ep: USB endpoint to allocate request for. 380 * @flags: Allocation flags 381 * 382 * Allocate a new USB request structure appropriate for the specified endpoint 383 */ 384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 385 gfp_t flags) 386 { 387 struct dwc2_hsotg_req *req; 388 389 req = kzalloc(sizeof(*req), flags); 390 if (!req) 391 return NULL; 392 393 INIT_LIST_HEAD(&req->queue); 394 395 return &req->req; 396 } 397 398 /** 399 * is_ep_periodic - return true if the endpoint is in periodic mode. 400 * @hs_ep: The endpoint to query. 401 * 402 * Returns true if the endpoint is in periodic mode, meaning it is being 403 * used for an Interrupt or ISO transfer. 404 */ 405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 406 { 407 return hs_ep->periodic; 408 } 409 410 /** 411 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 412 * @hsotg: The device state. 413 * @hs_ep: The endpoint for the request 414 * @hs_req: The request being processed. 415 * 416 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 417 * of a request to ensure the buffer is ready for access by the caller. 418 */ 419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 420 struct dwc2_hsotg_ep *hs_ep, 421 struct dwc2_hsotg_req *hs_req) 422 { 423 struct usb_request *req = &hs_req->req; 424 425 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 426 } 427 428 /* 429 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 430 * for Control endpoint 431 * @hsotg: The device state. 432 * 433 * This function will allocate 4 descriptor chains for EP 0: 2 for 434 * Setup stage, per one for IN and OUT data/status transactions. 435 */ 436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 437 { 438 hsotg->setup_desc[0] = 439 dmam_alloc_coherent(hsotg->dev, 440 sizeof(struct dwc2_dma_desc), 441 &hsotg->setup_desc_dma[0], 442 GFP_KERNEL); 443 if (!hsotg->setup_desc[0]) 444 goto fail; 445 446 hsotg->setup_desc[1] = 447 dmam_alloc_coherent(hsotg->dev, 448 sizeof(struct dwc2_dma_desc), 449 &hsotg->setup_desc_dma[1], 450 GFP_KERNEL); 451 if (!hsotg->setup_desc[1]) 452 goto fail; 453 454 hsotg->ctrl_in_desc = 455 dmam_alloc_coherent(hsotg->dev, 456 sizeof(struct dwc2_dma_desc), 457 &hsotg->ctrl_in_desc_dma, 458 GFP_KERNEL); 459 if (!hsotg->ctrl_in_desc) 460 goto fail; 461 462 hsotg->ctrl_out_desc = 463 dmam_alloc_coherent(hsotg->dev, 464 sizeof(struct dwc2_dma_desc), 465 &hsotg->ctrl_out_desc_dma, 466 GFP_KERNEL); 467 if (!hsotg->ctrl_out_desc) 468 goto fail; 469 470 return 0; 471 472 fail: 473 return -ENOMEM; 474 } 475 476 /** 477 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 478 * @hsotg: The controller state. 479 * @hs_ep: The endpoint we're going to write for. 480 * @hs_req: The request to write data for. 481 * 482 * This is called when the TxFIFO has some space in it to hold a new 483 * transmission and we have something to give it. The actual setup of 484 * the data size is done elsewhere, so all we have to do is to actually 485 * write the data. 486 * 487 * The return value is zero if there is more space (or nothing was done) 488 * otherwise -ENOSPC is returned if the FIFO space was used up. 489 * 490 * This routine is only needed for PIO 491 */ 492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 493 struct dwc2_hsotg_ep *hs_ep, 494 struct dwc2_hsotg_req *hs_req) 495 { 496 bool periodic = is_ep_periodic(hs_ep); 497 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 498 int buf_pos = hs_req->req.actual; 499 int to_write = hs_ep->size_loaded; 500 void *data; 501 int can_write; 502 int pkt_round; 503 int max_transfer; 504 505 to_write -= (buf_pos - hs_ep->last_load); 506 507 /* if there's nothing to write, get out early */ 508 if (to_write == 0) 509 return 0; 510 511 if (periodic && !hsotg->dedicated_fifos) { 512 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 513 int size_left; 514 int size_done; 515 516 /* 517 * work out how much data was loaded so we can calculate 518 * how much data is left in the fifo. 519 */ 520 521 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 522 523 /* 524 * if shared fifo, we cannot write anything until the 525 * previous data has been completely sent. 526 */ 527 if (hs_ep->fifo_load != 0) { 528 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 529 return -ENOSPC; 530 } 531 532 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 533 __func__, size_left, 534 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 535 536 /* how much of the data has moved */ 537 size_done = hs_ep->size_loaded - size_left; 538 539 /* how much data is left in the fifo */ 540 can_write = hs_ep->fifo_load - size_done; 541 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 542 __func__, can_write); 543 544 can_write = hs_ep->fifo_size - can_write; 545 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 546 __func__, can_write); 547 548 if (can_write <= 0) { 549 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 550 return -ENOSPC; 551 } 552 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 553 can_write = dwc2_readl(hsotg, 554 DTXFSTS(hs_ep->fifo_index)); 555 556 can_write &= 0xffff; 557 can_write *= 4; 558 } else { 559 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 560 dev_dbg(hsotg->dev, 561 "%s: no queue slots available (0x%08x)\n", 562 __func__, gnptxsts); 563 564 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 565 return -ENOSPC; 566 } 567 568 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 569 can_write *= 4; /* fifo size is in 32bit quantities. */ 570 } 571 572 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 573 574 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 575 __func__, gnptxsts, can_write, to_write, max_transfer); 576 577 /* 578 * limit to 512 bytes of data, it seems at least on the non-periodic 579 * FIFO, requests of >512 cause the endpoint to get stuck with a 580 * fragment of the end of the transfer in it. 581 */ 582 if (can_write > 512 && !periodic) 583 can_write = 512; 584 585 /* 586 * limit the write to one max-packet size worth of data, but allow 587 * the transfer to return that it did not run out of fifo space 588 * doing it. 589 */ 590 if (to_write > max_transfer) { 591 to_write = max_transfer; 592 593 /* it's needed only when we do not use dedicated fifos */ 594 if (!hsotg->dedicated_fifos) 595 dwc2_hsotg_en_gsint(hsotg, 596 periodic ? GINTSTS_PTXFEMP : 597 GINTSTS_NPTXFEMP); 598 } 599 600 /* see if we can write data */ 601 602 if (to_write > can_write) { 603 to_write = can_write; 604 pkt_round = to_write % max_transfer; 605 606 /* 607 * Round the write down to an 608 * exact number of packets. 609 * 610 * Note, we do not currently check to see if we can ever 611 * write a full packet or not to the FIFO. 612 */ 613 614 if (pkt_round) 615 to_write -= pkt_round; 616 617 /* 618 * enable correct FIFO interrupt to alert us when there 619 * is more room left. 620 */ 621 622 /* it's needed only when we do not use dedicated fifos */ 623 if (!hsotg->dedicated_fifos) 624 dwc2_hsotg_en_gsint(hsotg, 625 periodic ? GINTSTS_PTXFEMP : 626 GINTSTS_NPTXFEMP); 627 } 628 629 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 630 to_write, hs_req->req.length, can_write, buf_pos); 631 632 if (to_write <= 0) 633 return -ENOSPC; 634 635 hs_req->req.actual = buf_pos + to_write; 636 hs_ep->total_data += to_write; 637 638 if (periodic) 639 hs_ep->fifo_load += to_write; 640 641 to_write = DIV_ROUND_UP(to_write, 4); 642 data = hs_req->req.buf + buf_pos; 643 644 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 645 646 return (to_write >= can_write) ? -ENOSPC : 0; 647 } 648 649 /** 650 * get_ep_limit - get the maximum data legnth for this endpoint 651 * @hs_ep: The endpoint 652 * 653 * Return the maximum data that can be queued in one go on a given endpoint 654 * so that transfers that are too long can be split. 655 */ 656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 657 { 658 int index = hs_ep->index; 659 unsigned int maxsize; 660 unsigned int maxpkt; 661 662 if (index != 0) { 663 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 664 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 665 } else { 666 maxsize = 64 + 64; 667 if (hs_ep->dir_in) 668 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 669 else 670 maxpkt = 2; 671 } 672 673 /* we made the constant loading easier above by using +1 */ 674 maxpkt--; 675 maxsize--; 676 677 /* 678 * constrain by packet count if maxpkts*pktsize is greater 679 * than the length register size. 680 */ 681 682 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 683 maxsize = maxpkt * hs_ep->ep.maxpacket; 684 685 return maxsize; 686 } 687 688 /** 689 * dwc2_hsotg_read_frameno - read current frame number 690 * @hsotg: The device instance 691 * 692 * Return the current frame number 693 */ 694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 695 { 696 u32 dsts; 697 698 dsts = dwc2_readl(hsotg, DSTS); 699 dsts &= DSTS_SOFFN_MASK; 700 dsts >>= DSTS_SOFFN_SHIFT; 701 702 return dsts; 703 } 704 705 /** 706 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 707 * DMA descriptor chain prepared for specific endpoint 708 * @hs_ep: The endpoint 709 * 710 * Return the maximum data that can be queued in one go on a given endpoint 711 * depending on its descriptor chain capacity so that transfers that 712 * are too long can be split. 713 */ 714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 715 { 716 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 717 int is_isoc = hs_ep->isochronous; 718 unsigned int maxsize; 719 u32 mps = hs_ep->ep.maxpacket; 720 int dir_in = hs_ep->dir_in; 721 722 if (is_isoc) 723 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 724 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 725 MAX_DMA_DESC_NUM_HS_ISOC; 726 else 727 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 728 729 /* Interrupt OUT EP with mps not multiple of 4 */ 730 if (hs_ep->index) 731 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 732 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; 733 734 return maxsize; 735 } 736 737 /* 738 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 739 * @hs_ep: The endpoint 740 * @mask: RX/TX bytes mask to be defined 741 * 742 * Returns maximum data payload for one descriptor after analyzing endpoint 743 * characteristics. 744 * DMA descriptor transfer bytes limit depends on EP type: 745 * Control out - MPS, 746 * Isochronous - descriptor rx/tx bytes bitfield limit, 747 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 748 * have concatenations from various descriptors within one packet. 749 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds 750 * to a single descriptor. 751 * 752 * Selects corresponding mask for RX/TX bytes as well. 753 */ 754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 755 { 756 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 757 u32 mps = hs_ep->ep.maxpacket; 758 int dir_in = hs_ep->dir_in; 759 u32 desc_size = 0; 760 761 if (!hs_ep->index && !dir_in) { 762 desc_size = mps; 763 *mask = DEV_DMA_NBYTES_MASK; 764 } else if (hs_ep->isochronous) { 765 if (dir_in) { 766 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 767 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 768 } else { 769 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 770 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 771 } 772 } else { 773 desc_size = DEV_DMA_NBYTES_LIMIT; 774 *mask = DEV_DMA_NBYTES_MASK; 775 776 /* Round down desc_size to be mps multiple */ 777 desc_size -= desc_size % mps; 778 } 779 780 /* Interrupt OUT EP with mps not multiple of 4 */ 781 if (hs_ep->index) 782 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { 783 desc_size = mps; 784 *mask = DEV_DMA_NBYTES_MASK; 785 } 786 787 return desc_size; 788 } 789 790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 791 struct dwc2_dma_desc **desc, 792 dma_addr_t dma_buff, 793 unsigned int len, 794 bool true_last) 795 { 796 int dir_in = hs_ep->dir_in; 797 u32 mps = hs_ep->ep.maxpacket; 798 u32 maxsize = 0; 799 u32 offset = 0; 800 u32 mask = 0; 801 int i; 802 803 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 804 805 hs_ep->desc_count = (len / maxsize) + 806 ((len % maxsize) ? 1 : 0); 807 if (len == 0) 808 hs_ep->desc_count = 1; 809 810 for (i = 0; i < hs_ep->desc_count; ++i) { 811 (*desc)->status = 0; 812 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 813 << DEV_DMA_BUFF_STS_SHIFT); 814 815 if (len > maxsize) { 816 if (!hs_ep->index && !dir_in) 817 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 818 819 (*desc)->status |= 820 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 821 (*desc)->buf = dma_buff + offset; 822 823 len -= maxsize; 824 offset += maxsize; 825 } else { 826 if (true_last) 827 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 828 829 if (dir_in) 830 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 831 ((hs_ep->send_zlp && true_last) ? 832 DEV_DMA_SHORT : 0); 833 834 (*desc)->status |= 835 len << DEV_DMA_NBYTES_SHIFT & mask; 836 (*desc)->buf = dma_buff + offset; 837 } 838 839 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 840 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 841 << DEV_DMA_BUFF_STS_SHIFT); 842 (*desc)++; 843 } 844 } 845 846 /* 847 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 848 * @hs_ep: The endpoint 849 * @ureq: Request to transfer 850 * @offset: offset in bytes 851 * @len: Length of the transfer 852 * 853 * This function will iterate over descriptor chain and fill its entries 854 * with corresponding information based on transfer data. 855 */ 856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 857 dma_addr_t dma_buff, 858 unsigned int len) 859 { 860 struct usb_request *ureq = NULL; 861 struct dwc2_dma_desc *desc = hs_ep->desc_list; 862 struct scatterlist *sg; 863 int i; 864 u8 desc_count = 0; 865 866 if (hs_ep->req) 867 ureq = &hs_ep->req->req; 868 869 /* non-DMA sg buffer */ 870 if (!ureq || !ureq->num_sgs) { 871 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 872 dma_buff, len, true); 873 return; 874 } 875 876 /* DMA sg buffer */ 877 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 878 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 879 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 880 sg_is_last(sg)); 881 desc_count += hs_ep->desc_count; 882 } 883 884 hs_ep->desc_count = desc_count; 885 } 886 887 /* 888 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 889 * @hs_ep: The isochronous endpoint. 890 * @dma_buff: usb requests dma buffer. 891 * @len: usb request transfer length. 892 * 893 * Fills next free descriptor with the data of the arrived usb request, 894 * frame info, sets Last and IOC bits increments next_desc. If filled 895 * descriptor is not the first one, removes L bit from the previous descriptor 896 * status. 897 */ 898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 899 dma_addr_t dma_buff, unsigned int len) 900 { 901 struct dwc2_dma_desc *desc; 902 struct dwc2_hsotg *hsotg = hs_ep->parent; 903 u32 index; 904 u32 mask = 0; 905 u8 pid = 0; 906 907 dwc2_gadget_get_desc_params(hs_ep, &mask); 908 909 index = hs_ep->next_desc; 910 desc = &hs_ep->desc_list[index]; 911 912 /* Check if descriptor chain full */ 913 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 914 DEV_DMA_BUFF_STS_HREADY) { 915 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 916 return 1; 917 } 918 919 /* Clear L bit of previous desc if more than one entries in the chain */ 920 if (hs_ep->next_desc) 921 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 922 923 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 924 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 925 926 desc->status = 0; 927 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 928 929 desc->buf = dma_buff; 930 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 931 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 932 933 if (hs_ep->dir_in) { 934 if (len) 935 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 936 else 937 pid = 1; 938 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 939 DEV_DMA_ISOC_PID_MASK) | 940 ((len % hs_ep->ep.maxpacket) ? 941 DEV_DMA_SHORT : 0) | 942 ((hs_ep->target_frame << 943 DEV_DMA_ISOC_FRNUM_SHIFT) & 944 DEV_DMA_ISOC_FRNUM_MASK); 945 } 946 947 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 948 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 949 950 /* Increment frame number by interval for IN */ 951 if (hs_ep->dir_in) 952 dwc2_gadget_incr_frame_num(hs_ep); 953 954 /* Update index of last configured entry in the chain */ 955 hs_ep->next_desc++; 956 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 957 hs_ep->next_desc = 0; 958 959 return 0; 960 } 961 962 /* 963 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 964 * @hs_ep: The isochronous endpoint. 965 * 966 * Prepare descriptor chain for isochronous endpoints. Afterwards 967 * write DMA address to HW and enable the endpoint. 968 */ 969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 970 { 971 struct dwc2_hsotg *hsotg = hs_ep->parent; 972 struct dwc2_hsotg_req *hs_req, *treq; 973 int index = hs_ep->index; 974 int ret; 975 int i; 976 u32 dma_reg; 977 u32 depctl; 978 u32 ctrl; 979 struct dwc2_dma_desc *desc; 980 981 if (list_empty(&hs_ep->queue)) { 982 hs_ep->target_frame = TARGET_FRAME_INITIAL; 983 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 984 return; 985 } 986 987 /* Initialize descriptor chain by Host Busy status */ 988 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 989 desc = &hs_ep->desc_list[i]; 990 desc->status = 0; 991 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 992 << DEV_DMA_BUFF_STS_SHIFT); 993 } 994 995 hs_ep->next_desc = 0; 996 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 997 dma_addr_t dma_addr = hs_req->req.dma; 998 999 if (hs_req->req.num_sgs) { 1000 WARN_ON(hs_req->req.num_sgs > 1); 1001 dma_addr = sg_dma_address(hs_req->req.sg); 1002 } 1003 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1004 hs_req->req.length); 1005 if (ret) 1006 break; 1007 } 1008 1009 hs_ep->compl_desc = 0; 1010 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1011 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 1012 1013 /* write descriptor chain address to control register */ 1014 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1015 1016 ctrl = dwc2_readl(hsotg, depctl); 1017 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1018 dwc2_writel(hsotg, ctrl, depctl); 1019 } 1020 1021 /** 1022 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1023 * @hsotg: The controller state. 1024 * @hs_ep: The endpoint to process a request for 1025 * @hs_req: The request to start. 1026 * @continuing: True if we are doing more for the current request. 1027 * 1028 * Start the given request running by setting the endpoint registers 1029 * appropriately, and writing any data to the FIFOs. 1030 */ 1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1032 struct dwc2_hsotg_ep *hs_ep, 1033 struct dwc2_hsotg_req *hs_req, 1034 bool continuing) 1035 { 1036 struct usb_request *ureq = &hs_req->req; 1037 int index = hs_ep->index; 1038 int dir_in = hs_ep->dir_in; 1039 u32 epctrl_reg; 1040 u32 epsize_reg; 1041 u32 epsize; 1042 u32 ctrl; 1043 unsigned int length; 1044 unsigned int packets; 1045 unsigned int maxreq; 1046 unsigned int dma_reg; 1047 1048 if (index != 0) { 1049 if (hs_ep->req && !continuing) { 1050 dev_err(hsotg->dev, "%s: active request\n", __func__); 1051 WARN_ON(1); 1052 return; 1053 } else if (hs_ep->req != hs_req && continuing) { 1054 dev_err(hsotg->dev, 1055 "%s: continue different req\n", __func__); 1056 WARN_ON(1); 1057 return; 1058 } 1059 } 1060 1061 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1062 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1063 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1064 1065 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1066 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1067 hs_ep->dir_in ? "in" : "out"); 1068 1069 /* If endpoint is stalled, we will restart request later */ 1070 ctrl = dwc2_readl(hsotg, epctrl_reg); 1071 1072 if (index && ctrl & DXEPCTL_STALL) { 1073 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1074 return; 1075 } 1076 1077 length = ureq->length - ureq->actual; 1078 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1079 ureq->length, ureq->actual); 1080 1081 if (!using_desc_dma(hsotg)) 1082 maxreq = get_ep_limit(hs_ep); 1083 else 1084 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1085 1086 if (length > maxreq) { 1087 int round = maxreq % hs_ep->ep.maxpacket; 1088 1089 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1090 __func__, length, maxreq, round); 1091 1092 /* round down to multiple of packets */ 1093 if (round) 1094 maxreq -= round; 1095 1096 length = maxreq; 1097 } 1098 1099 if (length) 1100 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1101 else 1102 packets = 1; /* send one packet if length is zero. */ 1103 1104 if (dir_in && index != 0) 1105 if (hs_ep->isochronous) 1106 epsize = DXEPTSIZ_MC(packets); 1107 else 1108 epsize = DXEPTSIZ_MC(1); 1109 else 1110 epsize = 0; 1111 1112 /* 1113 * zero length packet should be programmed on its own and should not 1114 * be counted in DIEPTSIZ.PktCnt with other packets. 1115 */ 1116 if (dir_in && ureq->zero && !continuing) { 1117 /* Test if zlp is actually required. */ 1118 if ((ureq->length >= hs_ep->ep.maxpacket) && 1119 !(ureq->length % hs_ep->ep.maxpacket)) 1120 hs_ep->send_zlp = 1; 1121 } 1122 1123 epsize |= DXEPTSIZ_PKTCNT(packets); 1124 epsize |= DXEPTSIZ_XFERSIZE(length); 1125 1126 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1127 __func__, packets, length, ureq->length, epsize, epsize_reg); 1128 1129 /* store the request as the current one we're doing */ 1130 hs_ep->req = hs_req; 1131 1132 if (using_desc_dma(hsotg)) { 1133 u32 offset = 0; 1134 u32 mps = hs_ep->ep.maxpacket; 1135 1136 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1137 if (!dir_in) { 1138 if (!index) 1139 length = mps; 1140 else if (length % mps) 1141 length += (mps - (length % mps)); 1142 } 1143 1144 if (continuing) 1145 offset = ureq->actual; 1146 1147 /* Fill DDMA chain entries */ 1148 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1149 length); 1150 1151 /* write descriptor chain address to control register */ 1152 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1153 1154 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1155 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1156 } else { 1157 /* write size / packets */ 1158 dwc2_writel(hsotg, epsize, epsize_reg); 1159 1160 if (using_dma(hsotg) && !continuing && (length != 0)) { 1161 /* 1162 * write DMA address to control register, buffer 1163 * already synced by dwc2_hsotg_ep_queue(). 1164 */ 1165 1166 dwc2_writel(hsotg, ureq->dma, dma_reg); 1167 1168 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1169 __func__, &ureq->dma, dma_reg); 1170 } 1171 } 1172 1173 if (hs_ep->isochronous && hs_ep->interval == 1) { 1174 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1175 dwc2_gadget_incr_frame_num(hs_ep); 1176 1177 if (hs_ep->target_frame & 0x1) 1178 ctrl |= DXEPCTL_SETODDFR; 1179 else 1180 ctrl |= DXEPCTL_SETEVENFR; 1181 } 1182 1183 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1184 1185 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1186 1187 /* For Setup request do not clear NAK */ 1188 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1189 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1190 1191 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1192 dwc2_writel(hsotg, ctrl, epctrl_reg); 1193 1194 /* 1195 * set these, it seems that DMA support increments past the end 1196 * of the packet buffer so we need to calculate the length from 1197 * this information. 1198 */ 1199 hs_ep->size_loaded = length; 1200 hs_ep->last_load = ureq->actual; 1201 1202 if (dir_in && !using_dma(hsotg)) { 1203 /* set these anyway, we may need them for non-periodic in */ 1204 hs_ep->fifo_load = 0; 1205 1206 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1207 } 1208 1209 /* 1210 * Note, trying to clear the NAK here causes problems with transmit 1211 * on the S3C6400 ending up with the TXFIFO becoming full. 1212 */ 1213 1214 /* check ep is enabled */ 1215 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1216 dev_dbg(hsotg->dev, 1217 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1218 index, dwc2_readl(hsotg, epctrl_reg)); 1219 1220 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1221 __func__, dwc2_readl(hsotg, epctrl_reg)); 1222 1223 /* enable ep interrupts */ 1224 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1225 } 1226 1227 /** 1228 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1229 * @hsotg: The device state. 1230 * @hs_ep: The endpoint the request is on. 1231 * @req: The request being processed. 1232 * 1233 * We've been asked to queue a request, so ensure that the memory buffer 1234 * is correctly setup for DMA. If we've been passed an extant DMA address 1235 * then ensure the buffer has been synced to memory. If our buffer has no 1236 * DMA memory, then we map the memory and mark our request to allow us to 1237 * cleanup on completion. 1238 */ 1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1240 struct dwc2_hsotg_ep *hs_ep, 1241 struct usb_request *req) 1242 { 1243 int ret; 1244 1245 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1246 if (ret) 1247 goto dma_error; 1248 1249 return 0; 1250 1251 dma_error: 1252 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1253 __func__, req->buf, req->length); 1254 1255 return -EIO; 1256 } 1257 1258 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1259 struct dwc2_hsotg_ep *hs_ep, 1260 struct dwc2_hsotg_req *hs_req) 1261 { 1262 void *req_buf = hs_req->req.buf; 1263 1264 /* If dma is not being used or buffer is aligned */ 1265 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1266 return 0; 1267 1268 WARN_ON(hs_req->saved_req_buf); 1269 1270 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1271 hs_ep->ep.name, req_buf, hs_req->req.length); 1272 1273 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1274 if (!hs_req->req.buf) { 1275 hs_req->req.buf = req_buf; 1276 dev_err(hsotg->dev, 1277 "%s: unable to allocate memory for bounce buffer\n", 1278 __func__); 1279 return -ENOMEM; 1280 } 1281 1282 /* Save actual buffer */ 1283 hs_req->saved_req_buf = req_buf; 1284 1285 if (hs_ep->dir_in) 1286 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1287 return 0; 1288 } 1289 1290 static void 1291 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1292 struct dwc2_hsotg_ep *hs_ep, 1293 struct dwc2_hsotg_req *hs_req) 1294 { 1295 /* If dma is not being used or buffer was aligned */ 1296 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1297 return; 1298 1299 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1300 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1301 1302 /* Copy data from bounce buffer on successful out transfer */ 1303 if (!hs_ep->dir_in && !hs_req->req.status) 1304 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1305 hs_req->req.actual); 1306 1307 /* Free bounce buffer */ 1308 kfree(hs_req->req.buf); 1309 1310 hs_req->req.buf = hs_req->saved_req_buf; 1311 hs_req->saved_req_buf = NULL; 1312 } 1313 1314 /** 1315 * dwc2_gadget_target_frame_elapsed - Checks target frame 1316 * @hs_ep: The driver endpoint to check 1317 * 1318 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1319 * corresponding transfer. 1320 */ 1321 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1322 { 1323 struct dwc2_hsotg *hsotg = hs_ep->parent; 1324 u32 target_frame = hs_ep->target_frame; 1325 u32 current_frame = hsotg->frame_number; 1326 bool frame_overrun = hs_ep->frame_overrun; 1327 1328 if (!frame_overrun && current_frame >= target_frame) 1329 return true; 1330 1331 if (frame_overrun && current_frame >= target_frame && 1332 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1333 return true; 1334 1335 return false; 1336 } 1337 1338 /* 1339 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1340 * @hsotg: The driver state 1341 * @hs_ep: the ep descriptor chain is for 1342 * 1343 * Called to update EP0 structure's pointers depend on stage of 1344 * control transfer. 1345 */ 1346 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1347 struct dwc2_hsotg_ep *hs_ep) 1348 { 1349 switch (hsotg->ep0_state) { 1350 case DWC2_EP0_SETUP: 1351 case DWC2_EP0_STATUS_OUT: 1352 hs_ep->desc_list = hsotg->setup_desc[0]; 1353 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1354 break; 1355 case DWC2_EP0_DATA_IN: 1356 case DWC2_EP0_STATUS_IN: 1357 hs_ep->desc_list = hsotg->ctrl_in_desc; 1358 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1359 break; 1360 case DWC2_EP0_DATA_OUT: 1361 hs_ep->desc_list = hsotg->ctrl_out_desc; 1362 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1363 break; 1364 default: 1365 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1366 hsotg->ep0_state); 1367 return -EINVAL; 1368 } 1369 1370 return 0; 1371 } 1372 1373 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1374 gfp_t gfp_flags) 1375 { 1376 struct dwc2_hsotg_req *hs_req = our_req(req); 1377 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1378 struct dwc2_hsotg *hs = hs_ep->parent; 1379 bool first; 1380 int ret; 1381 u32 maxsize = 0; 1382 u32 mask = 0; 1383 1384 1385 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1386 ep->name, req, req->length, req->buf, req->no_interrupt, 1387 req->zero, req->short_not_ok); 1388 1389 /* Prevent new request submission when controller is suspended */ 1390 if (hs->lx_state != DWC2_L0) { 1391 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1392 __func__); 1393 return -EAGAIN; 1394 } 1395 1396 /* initialise status of the request */ 1397 INIT_LIST_HEAD(&hs_req->queue); 1398 req->actual = 0; 1399 req->status = -EINPROGRESS; 1400 1401 /* Don't queue ISOC request if length greater than mps*mc */ 1402 if (hs_ep->isochronous && 1403 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1404 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1405 return -EINVAL; 1406 } 1407 1408 /* In DDMA mode for ISOC's don't queue request if length greater 1409 * than descriptor limits. 1410 */ 1411 if (using_desc_dma(hs) && hs_ep->isochronous) { 1412 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1413 if (hs_ep->dir_in && req->length > maxsize) { 1414 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1415 req->length, maxsize); 1416 return -EINVAL; 1417 } 1418 1419 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1420 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1421 req->length, hs_ep->ep.maxpacket); 1422 return -EINVAL; 1423 } 1424 } 1425 1426 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1427 if (ret) 1428 return ret; 1429 1430 /* if we're using DMA, sync the buffers as necessary */ 1431 if (using_dma(hs)) { 1432 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1433 if (ret) 1434 return ret; 1435 } 1436 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1437 if (using_desc_dma(hs) && !hs_ep->index) { 1438 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1439 if (ret) 1440 return ret; 1441 } 1442 1443 first = list_empty(&hs_ep->queue); 1444 list_add_tail(&hs_req->queue, &hs_ep->queue); 1445 1446 /* 1447 * Handle DDMA isochronous transfers separately - just add new entry 1448 * to the descriptor chain. 1449 * Transfer will be started once SW gets either one of NAK or 1450 * OutTknEpDis interrupts. 1451 */ 1452 if (using_desc_dma(hs) && hs_ep->isochronous) { 1453 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1454 dma_addr_t dma_addr = hs_req->req.dma; 1455 1456 if (hs_req->req.num_sgs) { 1457 WARN_ON(hs_req->req.num_sgs > 1); 1458 dma_addr = sg_dma_address(hs_req->req.sg); 1459 } 1460 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1461 hs_req->req.length); 1462 } 1463 return 0; 1464 } 1465 1466 /* Change EP direction if status phase request is after data out */ 1467 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1468 hs->ep0_state == DWC2_EP0_DATA_OUT) 1469 hs_ep->dir_in = 1; 1470 1471 if (first) { 1472 if (!hs_ep->isochronous) { 1473 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1474 return 0; 1475 } 1476 1477 /* Update current frame number value. */ 1478 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1479 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1480 dwc2_gadget_incr_frame_num(hs_ep); 1481 /* Update current frame number value once more as it 1482 * changes here. 1483 */ 1484 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1485 } 1486 1487 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1488 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1489 } 1490 return 0; 1491 } 1492 1493 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1494 gfp_t gfp_flags) 1495 { 1496 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1497 struct dwc2_hsotg *hs = hs_ep->parent; 1498 unsigned long flags = 0; 1499 int ret = 0; 1500 1501 spin_lock_irqsave(&hs->lock, flags); 1502 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1503 spin_unlock_irqrestore(&hs->lock, flags); 1504 1505 return ret; 1506 } 1507 1508 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1509 struct usb_request *req) 1510 { 1511 struct dwc2_hsotg_req *hs_req = our_req(req); 1512 1513 kfree(hs_req); 1514 } 1515 1516 /** 1517 * dwc2_hsotg_complete_oursetup - setup completion callback 1518 * @ep: The endpoint the request was on. 1519 * @req: The request completed. 1520 * 1521 * Called on completion of any requests the driver itself 1522 * submitted that need cleaning up. 1523 */ 1524 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1525 struct usb_request *req) 1526 { 1527 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1528 struct dwc2_hsotg *hsotg = hs_ep->parent; 1529 1530 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1531 1532 dwc2_hsotg_ep_free_request(ep, req); 1533 } 1534 1535 /** 1536 * ep_from_windex - convert control wIndex value to endpoint 1537 * @hsotg: The driver state. 1538 * @windex: The control request wIndex field (in host order). 1539 * 1540 * Convert the given wIndex into a pointer to an driver endpoint 1541 * structure, or return NULL if it is not a valid endpoint. 1542 */ 1543 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1544 u32 windex) 1545 { 1546 struct dwc2_hsotg_ep *ep; 1547 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1548 int idx = windex & 0x7F; 1549 1550 if (windex >= 0x100) 1551 return NULL; 1552 1553 if (idx > hsotg->num_of_eps) 1554 return NULL; 1555 1556 ep = index_to_ep(hsotg, idx, dir); 1557 1558 if (idx && ep->dir_in != dir) 1559 return NULL; 1560 1561 return ep; 1562 } 1563 1564 /** 1565 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1566 * @hsotg: The driver state. 1567 * @testmode: requested usb test mode 1568 * Enable usb Test Mode requested by the Host. 1569 */ 1570 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1571 { 1572 int dctl = dwc2_readl(hsotg, DCTL); 1573 1574 dctl &= ~DCTL_TSTCTL_MASK; 1575 switch (testmode) { 1576 case USB_TEST_J: 1577 case USB_TEST_K: 1578 case USB_TEST_SE0_NAK: 1579 case USB_TEST_PACKET: 1580 case USB_TEST_FORCE_ENABLE: 1581 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1582 break; 1583 default: 1584 return -EINVAL; 1585 } 1586 dwc2_writel(hsotg, dctl, DCTL); 1587 return 0; 1588 } 1589 1590 /** 1591 * dwc2_hsotg_send_reply - send reply to control request 1592 * @hsotg: The device state 1593 * @ep: Endpoint 0 1594 * @buff: Buffer for request 1595 * @length: Length of reply. 1596 * 1597 * Create a request and queue it on the given endpoint. This is useful as 1598 * an internal method of sending replies to certain control requests, etc. 1599 */ 1600 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1601 struct dwc2_hsotg_ep *ep, 1602 void *buff, 1603 int length) 1604 { 1605 struct usb_request *req; 1606 int ret; 1607 1608 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1609 1610 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1611 hsotg->ep0_reply = req; 1612 if (!req) { 1613 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1614 return -ENOMEM; 1615 } 1616 1617 req->buf = hsotg->ep0_buff; 1618 req->length = length; 1619 /* 1620 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1621 * STATUS stage. 1622 */ 1623 req->zero = 0; 1624 req->complete = dwc2_hsotg_complete_oursetup; 1625 1626 if (length) 1627 memcpy(req->buf, buff, length); 1628 1629 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1630 if (ret) { 1631 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1632 return ret; 1633 } 1634 1635 return 0; 1636 } 1637 1638 /** 1639 * dwc2_hsotg_process_req_status - process request GET_STATUS 1640 * @hsotg: The device state 1641 * @ctrl: USB control request 1642 */ 1643 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1644 struct usb_ctrlrequest *ctrl) 1645 { 1646 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1647 struct dwc2_hsotg_ep *ep; 1648 __le16 reply; 1649 u16 status; 1650 int ret; 1651 1652 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1653 1654 if (!ep0->dir_in) { 1655 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1656 return -EINVAL; 1657 } 1658 1659 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1660 case USB_RECIP_DEVICE: 1661 status = hsotg->gadget.is_selfpowered << 1662 USB_DEVICE_SELF_POWERED; 1663 status |= hsotg->remote_wakeup_allowed << 1664 USB_DEVICE_REMOTE_WAKEUP; 1665 reply = cpu_to_le16(status); 1666 break; 1667 1668 case USB_RECIP_INTERFACE: 1669 /* currently, the data result should be zero */ 1670 reply = cpu_to_le16(0); 1671 break; 1672 1673 case USB_RECIP_ENDPOINT: 1674 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1675 if (!ep) 1676 return -ENOENT; 1677 1678 reply = cpu_to_le16(ep->halted ? 1 : 0); 1679 break; 1680 1681 default: 1682 return 0; 1683 } 1684 1685 if (le16_to_cpu(ctrl->wLength) != 2) 1686 return -EINVAL; 1687 1688 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1689 if (ret) { 1690 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1691 return ret; 1692 } 1693 1694 return 1; 1695 } 1696 1697 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1698 1699 /** 1700 * get_ep_head - return the first request on the endpoint 1701 * @hs_ep: The controller endpoint to get 1702 * 1703 * Get the first request on the endpoint. 1704 */ 1705 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1706 { 1707 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1708 queue); 1709 } 1710 1711 /** 1712 * dwc2_gadget_start_next_request - Starts next request from ep queue 1713 * @hs_ep: Endpoint structure 1714 * 1715 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1716 * in its handler. Hence we need to unmask it here to be able to do 1717 * resynchronization. 1718 */ 1719 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1720 { 1721 u32 mask; 1722 struct dwc2_hsotg *hsotg = hs_ep->parent; 1723 int dir_in = hs_ep->dir_in; 1724 struct dwc2_hsotg_req *hs_req; 1725 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1726 1727 if (!list_empty(&hs_ep->queue)) { 1728 hs_req = get_ep_head(hs_ep); 1729 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1730 return; 1731 } 1732 if (!hs_ep->isochronous) 1733 return; 1734 1735 if (dir_in) { 1736 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1737 __func__); 1738 } else { 1739 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1740 __func__); 1741 mask = dwc2_readl(hsotg, epmsk_reg); 1742 mask |= DOEPMSK_OUTTKNEPDISMSK; 1743 dwc2_writel(hsotg, mask, epmsk_reg); 1744 } 1745 } 1746 1747 /** 1748 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1749 * @hsotg: The device state 1750 * @ctrl: USB control request 1751 */ 1752 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1753 struct usb_ctrlrequest *ctrl) 1754 { 1755 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1756 struct dwc2_hsotg_req *hs_req; 1757 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1758 struct dwc2_hsotg_ep *ep; 1759 int ret; 1760 bool halted; 1761 u32 recip; 1762 u32 wValue; 1763 u32 wIndex; 1764 1765 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1766 __func__, set ? "SET" : "CLEAR"); 1767 1768 wValue = le16_to_cpu(ctrl->wValue); 1769 wIndex = le16_to_cpu(ctrl->wIndex); 1770 recip = ctrl->bRequestType & USB_RECIP_MASK; 1771 1772 switch (recip) { 1773 case USB_RECIP_DEVICE: 1774 switch (wValue) { 1775 case USB_DEVICE_REMOTE_WAKEUP: 1776 if (set) 1777 hsotg->remote_wakeup_allowed = 1; 1778 else 1779 hsotg->remote_wakeup_allowed = 0; 1780 break; 1781 1782 case USB_DEVICE_TEST_MODE: 1783 if ((wIndex & 0xff) != 0) 1784 return -EINVAL; 1785 if (!set) 1786 return -EINVAL; 1787 1788 hsotg->test_mode = wIndex >> 8; 1789 break; 1790 default: 1791 return -ENOENT; 1792 } 1793 1794 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1795 if (ret) { 1796 dev_err(hsotg->dev, 1797 "%s: failed to send reply\n", __func__); 1798 return ret; 1799 } 1800 break; 1801 1802 case USB_RECIP_ENDPOINT: 1803 ep = ep_from_windex(hsotg, wIndex); 1804 if (!ep) { 1805 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1806 __func__, wIndex); 1807 return -ENOENT; 1808 } 1809 1810 switch (wValue) { 1811 case USB_ENDPOINT_HALT: 1812 halted = ep->halted; 1813 1814 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1815 1816 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1817 if (ret) { 1818 dev_err(hsotg->dev, 1819 "%s: failed to send reply\n", __func__); 1820 return ret; 1821 } 1822 1823 /* 1824 * we have to complete all requests for ep if it was 1825 * halted, and the halt was cleared by CLEAR_FEATURE 1826 */ 1827 1828 if (!set && halted) { 1829 /* 1830 * If we have request in progress, 1831 * then complete it 1832 */ 1833 if (ep->req) { 1834 hs_req = ep->req; 1835 ep->req = NULL; 1836 list_del_init(&hs_req->queue); 1837 if (hs_req->req.complete) { 1838 spin_unlock(&hsotg->lock); 1839 usb_gadget_giveback_request( 1840 &ep->ep, &hs_req->req); 1841 spin_lock(&hsotg->lock); 1842 } 1843 } 1844 1845 /* If we have pending request, then start it */ 1846 if (!ep->req) 1847 dwc2_gadget_start_next_request(ep); 1848 } 1849 1850 break; 1851 1852 default: 1853 return -ENOENT; 1854 } 1855 break; 1856 default: 1857 return -ENOENT; 1858 } 1859 return 1; 1860 } 1861 1862 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1863 1864 /** 1865 * dwc2_hsotg_stall_ep0 - stall ep0 1866 * @hsotg: The device state 1867 * 1868 * Set stall for ep0 as response for setup request. 1869 */ 1870 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1871 { 1872 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1873 u32 reg; 1874 u32 ctrl; 1875 1876 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1877 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1878 1879 /* 1880 * DxEPCTL_Stall will be cleared by EP once it has 1881 * taken effect, so no need to clear later. 1882 */ 1883 1884 ctrl = dwc2_readl(hsotg, reg); 1885 ctrl |= DXEPCTL_STALL; 1886 ctrl |= DXEPCTL_CNAK; 1887 dwc2_writel(hsotg, ctrl, reg); 1888 1889 dev_dbg(hsotg->dev, 1890 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1891 ctrl, reg, dwc2_readl(hsotg, reg)); 1892 1893 /* 1894 * complete won't be called, so we enqueue 1895 * setup request here 1896 */ 1897 dwc2_hsotg_enqueue_setup(hsotg); 1898 } 1899 1900 /** 1901 * dwc2_hsotg_process_control - process a control request 1902 * @hsotg: The device state 1903 * @ctrl: The control request received 1904 * 1905 * The controller has received the SETUP phase of a control request, and 1906 * needs to work out what to do next (and whether to pass it on to the 1907 * gadget driver). 1908 */ 1909 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1910 struct usb_ctrlrequest *ctrl) 1911 { 1912 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1913 int ret = 0; 1914 u32 dcfg; 1915 1916 dev_dbg(hsotg->dev, 1917 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1918 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1919 ctrl->wIndex, ctrl->wLength); 1920 1921 if (ctrl->wLength == 0) { 1922 ep0->dir_in = 1; 1923 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1924 } else if (ctrl->bRequestType & USB_DIR_IN) { 1925 ep0->dir_in = 1; 1926 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1927 } else { 1928 ep0->dir_in = 0; 1929 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1930 } 1931 1932 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1933 switch (ctrl->bRequest) { 1934 case USB_REQ_SET_ADDRESS: 1935 hsotg->connected = 1; 1936 dcfg = dwc2_readl(hsotg, DCFG); 1937 dcfg &= ~DCFG_DEVADDR_MASK; 1938 dcfg |= (le16_to_cpu(ctrl->wValue) << 1939 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1940 dwc2_writel(hsotg, dcfg, DCFG); 1941 1942 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1943 1944 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1945 return; 1946 1947 case USB_REQ_GET_STATUS: 1948 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1949 break; 1950 1951 case USB_REQ_CLEAR_FEATURE: 1952 case USB_REQ_SET_FEATURE: 1953 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1954 break; 1955 } 1956 } 1957 1958 /* as a fallback, try delivering it to the driver to deal with */ 1959 1960 if (ret == 0 && hsotg->driver) { 1961 spin_unlock(&hsotg->lock); 1962 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1963 spin_lock(&hsotg->lock); 1964 if (ret < 0) 1965 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1966 } 1967 1968 hsotg->delayed_status = false; 1969 if (ret == USB_GADGET_DELAYED_STATUS) 1970 hsotg->delayed_status = true; 1971 1972 /* 1973 * the request is either unhandlable, or is not formatted correctly 1974 * so respond with a STALL for the status stage to indicate failure. 1975 */ 1976 1977 if (ret < 0) 1978 dwc2_hsotg_stall_ep0(hsotg); 1979 } 1980 1981 /** 1982 * dwc2_hsotg_complete_setup - completion of a setup transfer 1983 * @ep: The endpoint the request was on. 1984 * @req: The request completed. 1985 * 1986 * Called on completion of any requests the driver itself submitted for 1987 * EP0 setup packets 1988 */ 1989 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1990 struct usb_request *req) 1991 { 1992 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1993 struct dwc2_hsotg *hsotg = hs_ep->parent; 1994 1995 if (req->status < 0) { 1996 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1997 return; 1998 } 1999 2000 spin_lock(&hsotg->lock); 2001 if (req->actual == 0) 2002 dwc2_hsotg_enqueue_setup(hsotg); 2003 else 2004 dwc2_hsotg_process_control(hsotg, req->buf); 2005 spin_unlock(&hsotg->lock); 2006 } 2007 2008 /** 2009 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 2010 * @hsotg: The device state. 2011 * 2012 * Enqueue a request on EP0 if necessary to received any SETUP packets 2013 * received from the host. 2014 */ 2015 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2016 { 2017 struct usb_request *req = hsotg->ctrl_req; 2018 struct dwc2_hsotg_req *hs_req = our_req(req); 2019 int ret; 2020 2021 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2022 2023 req->zero = 0; 2024 req->length = 8; 2025 req->buf = hsotg->ctrl_buff; 2026 req->complete = dwc2_hsotg_complete_setup; 2027 2028 if (!list_empty(&hs_req->queue)) { 2029 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2030 return; 2031 } 2032 2033 hsotg->eps_out[0]->dir_in = 0; 2034 hsotg->eps_out[0]->send_zlp = 0; 2035 hsotg->ep0_state = DWC2_EP0_SETUP; 2036 2037 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2038 if (ret < 0) { 2039 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2040 /* 2041 * Don't think there's much we can do other than watch the 2042 * driver fail. 2043 */ 2044 } 2045 } 2046 2047 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2048 struct dwc2_hsotg_ep *hs_ep) 2049 { 2050 u32 ctrl; 2051 u8 index = hs_ep->index; 2052 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2053 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2054 2055 if (hs_ep->dir_in) 2056 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2057 index); 2058 else 2059 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2060 index); 2061 if (using_desc_dma(hsotg)) { 2062 /* Not specific buffer needed for ep0 ZLP */ 2063 dma_addr_t dma = hs_ep->desc_list_dma; 2064 2065 if (!index) 2066 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2067 2068 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2069 } else { 2070 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2071 DXEPTSIZ_XFERSIZE(0), 2072 epsiz_reg); 2073 } 2074 2075 ctrl = dwc2_readl(hsotg, epctl_reg); 2076 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2077 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2078 ctrl |= DXEPCTL_USBACTEP; 2079 dwc2_writel(hsotg, ctrl, epctl_reg); 2080 } 2081 2082 /** 2083 * dwc2_hsotg_complete_request - complete a request given to us 2084 * @hsotg: The device state. 2085 * @hs_ep: The endpoint the request was on. 2086 * @hs_req: The request to complete. 2087 * @result: The result code (0 => Ok, otherwise errno) 2088 * 2089 * The given request has finished, so call the necessary completion 2090 * if it has one and then look to see if we can start a new request 2091 * on the endpoint. 2092 * 2093 * Note, expects the ep to already be locked as appropriate. 2094 */ 2095 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2096 struct dwc2_hsotg_ep *hs_ep, 2097 struct dwc2_hsotg_req *hs_req, 2098 int result) 2099 { 2100 if (!hs_req) { 2101 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2102 return; 2103 } 2104 2105 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2106 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2107 2108 /* 2109 * only replace the status if we've not already set an error 2110 * from a previous transaction 2111 */ 2112 2113 if (hs_req->req.status == -EINPROGRESS) 2114 hs_req->req.status = result; 2115 2116 if (using_dma(hsotg)) 2117 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2118 2119 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2120 2121 hs_ep->req = NULL; 2122 list_del_init(&hs_req->queue); 2123 2124 /* 2125 * call the complete request with the locks off, just in case the 2126 * request tries to queue more work for this endpoint. 2127 */ 2128 2129 if (hs_req->req.complete) { 2130 spin_unlock(&hsotg->lock); 2131 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2132 spin_lock(&hsotg->lock); 2133 } 2134 2135 /* In DDMA don't need to proceed to starting of next ISOC request */ 2136 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2137 return; 2138 2139 /* 2140 * Look to see if there is anything else to do. Note, the completion 2141 * of the previous request may have caused a new request to be started 2142 * so be careful when doing this. 2143 */ 2144 2145 if (!hs_ep->req && result >= 0) 2146 dwc2_gadget_start_next_request(hs_ep); 2147 } 2148 2149 /* 2150 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2151 * @hs_ep: The endpoint the request was on. 2152 * 2153 * Get first request from the ep queue, determine descriptor on which complete 2154 * happened. SW discovers which descriptor currently in use by HW, adjusts 2155 * dma_address and calculates index of completed descriptor based on the value 2156 * of DEPDMA register. Update actual length of request, giveback to gadget. 2157 */ 2158 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2159 { 2160 struct dwc2_hsotg *hsotg = hs_ep->parent; 2161 struct dwc2_hsotg_req *hs_req; 2162 struct usb_request *ureq; 2163 u32 desc_sts; 2164 u32 mask; 2165 2166 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2167 2168 /* Process only descriptors with buffer status set to DMA done */ 2169 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2170 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2171 2172 hs_req = get_ep_head(hs_ep); 2173 if (!hs_req) { 2174 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2175 return; 2176 } 2177 ureq = &hs_req->req; 2178 2179 /* Check completion status */ 2180 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2181 DEV_DMA_STS_SUCC) { 2182 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2183 DEV_DMA_ISOC_RX_NBYTES_MASK; 2184 ureq->actual = ureq->length - ((desc_sts & mask) >> 2185 DEV_DMA_ISOC_NBYTES_SHIFT); 2186 2187 /* Adjust actual len for ISOC Out if len is 2188 * not align of 4 2189 */ 2190 if (!hs_ep->dir_in && ureq->length & 0x3) 2191 ureq->actual += 4 - (ureq->length & 0x3); 2192 2193 /* Set actual frame number for completed transfers */ 2194 ureq->frame_number = 2195 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2196 DEV_DMA_ISOC_FRNUM_SHIFT; 2197 } 2198 2199 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2200 2201 hs_ep->compl_desc++; 2202 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2203 hs_ep->compl_desc = 0; 2204 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2205 } 2206 } 2207 2208 /* 2209 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2210 * @hs_ep: The isochronous endpoint. 2211 * 2212 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2213 * interrupt. Reset target frame and next_desc to allow to start 2214 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2215 * interrupt for OUT direction. 2216 */ 2217 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2218 { 2219 struct dwc2_hsotg *hsotg = hs_ep->parent; 2220 2221 if (!hs_ep->dir_in) 2222 dwc2_flush_rx_fifo(hsotg); 2223 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2224 2225 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2226 hs_ep->next_desc = 0; 2227 hs_ep->compl_desc = 0; 2228 } 2229 2230 /** 2231 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2232 * @hsotg: The device state. 2233 * @ep_idx: The endpoint index for the data 2234 * @size: The size of data in the fifo, in bytes 2235 * 2236 * The FIFO status shows there is data to read from the FIFO for a given 2237 * endpoint, so sort out whether we need to read the data into a request 2238 * that has been made for that endpoint. 2239 */ 2240 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2241 { 2242 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2243 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2244 int to_read; 2245 int max_req; 2246 int read_ptr; 2247 2248 if (!hs_req) { 2249 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2250 int ptr; 2251 2252 dev_dbg(hsotg->dev, 2253 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2254 __func__, size, ep_idx, epctl); 2255 2256 /* dump the data from the FIFO, we've nothing we can do */ 2257 for (ptr = 0; ptr < size; ptr += 4) 2258 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2259 2260 return; 2261 } 2262 2263 to_read = size; 2264 read_ptr = hs_req->req.actual; 2265 max_req = hs_req->req.length - read_ptr; 2266 2267 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2268 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2269 2270 if (to_read > max_req) { 2271 /* 2272 * more data appeared than we where willing 2273 * to deal with in this request. 2274 */ 2275 2276 /* currently we don't deal this */ 2277 WARN_ON_ONCE(1); 2278 } 2279 2280 hs_ep->total_data += to_read; 2281 hs_req->req.actual += to_read; 2282 to_read = DIV_ROUND_UP(to_read, 4); 2283 2284 /* 2285 * note, we might over-write the buffer end by 3 bytes depending on 2286 * alignment of the data. 2287 */ 2288 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2289 hs_req->req.buf + read_ptr, to_read); 2290 } 2291 2292 /** 2293 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2294 * @hsotg: The device instance 2295 * @dir_in: If IN zlp 2296 * 2297 * Generate a zero-length IN packet request for terminating a SETUP 2298 * transaction. 2299 * 2300 * Note, since we don't write any data to the TxFIFO, then it is 2301 * currently believed that we do not need to wait for any space in 2302 * the TxFIFO. 2303 */ 2304 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2305 { 2306 /* eps_out[0] is used in both directions */ 2307 hsotg->eps_out[0]->dir_in = dir_in; 2308 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2309 2310 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2311 } 2312 2313 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2314 u32 epctl_reg) 2315 { 2316 u32 ctrl; 2317 2318 ctrl = dwc2_readl(hsotg, epctl_reg); 2319 if (ctrl & DXEPCTL_EOFRNUM) 2320 ctrl |= DXEPCTL_SETEVENFR; 2321 else 2322 ctrl |= DXEPCTL_SETODDFR; 2323 dwc2_writel(hsotg, ctrl, epctl_reg); 2324 } 2325 2326 /* 2327 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2328 * @hs_ep - The endpoint on which transfer went 2329 * 2330 * Iterate over endpoints descriptor chain and get info on bytes remained 2331 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2332 */ 2333 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2334 { 2335 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 2336 struct dwc2_hsotg *hsotg = hs_ep->parent; 2337 unsigned int bytes_rem = 0; 2338 unsigned int bytes_rem_correction = 0; 2339 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2340 int i; 2341 u32 status; 2342 u32 mps = hs_ep->ep.maxpacket; 2343 int dir_in = hs_ep->dir_in; 2344 2345 if (!desc) 2346 return -EINVAL; 2347 2348 /* Interrupt OUT EP with mps not multiple of 4 */ 2349 if (hs_ep->index) 2350 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 2351 bytes_rem_correction = 4 - (mps % 4); 2352 2353 for (i = 0; i < hs_ep->desc_count; ++i) { 2354 status = desc->status; 2355 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2356 bytes_rem -= bytes_rem_correction; 2357 2358 if (status & DEV_DMA_STS_MASK) 2359 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2360 i, status & DEV_DMA_STS_MASK); 2361 2362 if (status & DEV_DMA_L) 2363 break; 2364 2365 desc++; 2366 } 2367 2368 return bytes_rem; 2369 } 2370 2371 /** 2372 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2373 * @hsotg: The device instance 2374 * @epnum: The endpoint received from 2375 * 2376 * The RXFIFO has delivered an OutDone event, which means that the data 2377 * transfer for an OUT endpoint has been completed, either by a short 2378 * packet or by the finish of a transfer. 2379 */ 2380 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2381 { 2382 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2383 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2384 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2385 struct usb_request *req = &hs_req->req; 2386 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2387 int result = 0; 2388 2389 if (!hs_req) { 2390 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2391 return; 2392 } 2393 2394 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2395 dev_dbg(hsotg->dev, "zlp packet received\n"); 2396 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2397 dwc2_hsotg_enqueue_setup(hsotg); 2398 return; 2399 } 2400 2401 if (using_desc_dma(hsotg)) 2402 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2403 2404 if (using_dma(hsotg)) { 2405 unsigned int size_done; 2406 2407 /* 2408 * Calculate the size of the transfer by checking how much 2409 * is left in the endpoint size register and then working it 2410 * out from the amount we loaded for the transfer. 2411 * 2412 * We need to do this as DMA pointers are always 32bit aligned 2413 * so may overshoot/undershoot the transfer. 2414 */ 2415 2416 size_done = hs_ep->size_loaded - size_left; 2417 size_done += hs_ep->last_load; 2418 2419 req->actual = size_done; 2420 } 2421 2422 /* if there is more request to do, schedule new transfer */ 2423 if (req->actual < req->length && size_left == 0) { 2424 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2425 return; 2426 } 2427 2428 if (req->actual < req->length && req->short_not_ok) { 2429 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2430 __func__, req->actual, req->length); 2431 2432 /* 2433 * todo - what should we return here? there's no one else 2434 * even bothering to check the status. 2435 */ 2436 } 2437 2438 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2439 if (!using_desc_dma(hsotg) && epnum == 0 && 2440 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2441 /* Move to STATUS IN */ 2442 if (!hsotg->delayed_status) 2443 dwc2_hsotg_ep0_zlp(hsotg, true); 2444 } 2445 2446 /* 2447 * Slave mode OUT transfers do not go through XferComplete so 2448 * adjust the ISOC parity here. 2449 */ 2450 if (!using_dma(hsotg)) { 2451 if (hs_ep->isochronous && hs_ep->interval == 1) 2452 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2453 else if (hs_ep->isochronous && hs_ep->interval > 1) 2454 dwc2_gadget_incr_frame_num(hs_ep); 2455 } 2456 2457 /* Set actual frame number for completed transfers */ 2458 if (!using_desc_dma(hsotg) && hs_ep->isochronous) 2459 req->frame_number = hsotg->frame_number; 2460 2461 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2462 } 2463 2464 /** 2465 * dwc2_hsotg_handle_rx - RX FIFO has data 2466 * @hsotg: The device instance 2467 * 2468 * The IRQ handler has detected that the RX FIFO has some data in it 2469 * that requires processing, so find out what is in there and do the 2470 * appropriate read. 2471 * 2472 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2473 * chunks, so if you have x packets received on an endpoint you'll get x 2474 * FIFO events delivered, each with a packet's worth of data in it. 2475 * 2476 * When using DMA, we should not be processing events from the RXFIFO 2477 * as the actual data should be sent to the memory directly and we turn 2478 * on the completion interrupts to get notifications of transfer completion. 2479 */ 2480 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2481 { 2482 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2483 u32 epnum, status, size; 2484 2485 WARN_ON(using_dma(hsotg)); 2486 2487 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2488 status = grxstsr & GRXSTS_PKTSTS_MASK; 2489 2490 size = grxstsr & GRXSTS_BYTECNT_MASK; 2491 size >>= GRXSTS_BYTECNT_SHIFT; 2492 2493 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2494 __func__, grxstsr, size, epnum); 2495 2496 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2497 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2498 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2499 break; 2500 2501 case GRXSTS_PKTSTS_OUTDONE: 2502 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2503 dwc2_hsotg_read_frameno(hsotg)); 2504 2505 if (!using_dma(hsotg)) 2506 dwc2_hsotg_handle_outdone(hsotg, epnum); 2507 break; 2508 2509 case GRXSTS_PKTSTS_SETUPDONE: 2510 dev_dbg(hsotg->dev, 2511 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2512 dwc2_hsotg_read_frameno(hsotg), 2513 dwc2_readl(hsotg, DOEPCTL(0))); 2514 /* 2515 * Call dwc2_hsotg_handle_outdone here if it was not called from 2516 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2517 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2518 */ 2519 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2520 dwc2_hsotg_handle_outdone(hsotg, epnum); 2521 break; 2522 2523 case GRXSTS_PKTSTS_OUTRX: 2524 dwc2_hsotg_rx_data(hsotg, epnum, size); 2525 break; 2526 2527 case GRXSTS_PKTSTS_SETUPRX: 2528 dev_dbg(hsotg->dev, 2529 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2530 dwc2_hsotg_read_frameno(hsotg), 2531 dwc2_readl(hsotg, DOEPCTL(0))); 2532 2533 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2534 2535 dwc2_hsotg_rx_data(hsotg, epnum, size); 2536 break; 2537 2538 default: 2539 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2540 __func__, grxstsr); 2541 2542 dwc2_hsotg_dump(hsotg); 2543 break; 2544 } 2545 } 2546 2547 /** 2548 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2549 * @mps: The maximum packet size in bytes. 2550 */ 2551 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2552 { 2553 switch (mps) { 2554 case 64: 2555 return D0EPCTL_MPS_64; 2556 case 32: 2557 return D0EPCTL_MPS_32; 2558 case 16: 2559 return D0EPCTL_MPS_16; 2560 case 8: 2561 return D0EPCTL_MPS_8; 2562 } 2563 2564 /* bad max packet size, warn and return invalid result */ 2565 WARN_ON(1); 2566 return (u32)-1; 2567 } 2568 2569 /** 2570 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2571 * @hsotg: The driver state. 2572 * @ep: The index number of the endpoint 2573 * @mps: The maximum packet size in bytes 2574 * @mc: The multicount value 2575 * @dir_in: True if direction is in. 2576 * 2577 * Configure the maximum packet size for the given endpoint, updating 2578 * the hardware control registers to reflect this. 2579 */ 2580 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2581 unsigned int ep, unsigned int mps, 2582 unsigned int mc, unsigned int dir_in) 2583 { 2584 struct dwc2_hsotg_ep *hs_ep; 2585 u32 reg; 2586 2587 hs_ep = index_to_ep(hsotg, ep, dir_in); 2588 if (!hs_ep) 2589 return; 2590 2591 if (ep == 0) { 2592 u32 mps_bytes = mps; 2593 2594 /* EP0 is a special case */ 2595 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2596 if (mps > 3) 2597 goto bad_mps; 2598 hs_ep->ep.maxpacket = mps_bytes; 2599 hs_ep->mc = 1; 2600 } else { 2601 if (mps > 1024) 2602 goto bad_mps; 2603 hs_ep->mc = mc; 2604 if (mc > 3) 2605 goto bad_mps; 2606 hs_ep->ep.maxpacket = mps; 2607 } 2608 2609 if (dir_in) { 2610 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2611 reg &= ~DXEPCTL_MPS_MASK; 2612 reg |= mps; 2613 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2614 } else { 2615 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2616 reg &= ~DXEPCTL_MPS_MASK; 2617 reg |= mps; 2618 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2619 } 2620 2621 return; 2622 2623 bad_mps: 2624 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2625 } 2626 2627 /** 2628 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2629 * @hsotg: The driver state 2630 * @idx: The index for the endpoint (0..15) 2631 */ 2632 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2633 { 2634 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2635 GRSTCTL); 2636 2637 /* wait until the fifo is flushed */ 2638 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2639 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2640 __func__); 2641 } 2642 2643 /** 2644 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2645 * @hsotg: The driver state 2646 * @hs_ep: The driver endpoint to check. 2647 * 2648 * Check to see if there is a request that has data to send, and if so 2649 * make an attempt to write data into the FIFO. 2650 */ 2651 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2652 struct dwc2_hsotg_ep *hs_ep) 2653 { 2654 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2655 2656 if (!hs_ep->dir_in || !hs_req) { 2657 /** 2658 * if request is not enqueued, we disable interrupts 2659 * for endpoints, excepting ep0 2660 */ 2661 if (hs_ep->index != 0) 2662 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2663 hs_ep->dir_in, 0); 2664 return 0; 2665 } 2666 2667 if (hs_req->req.actual < hs_req->req.length) { 2668 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2669 hs_ep->index); 2670 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2671 } 2672 2673 return 0; 2674 } 2675 2676 /** 2677 * dwc2_hsotg_complete_in - complete IN transfer 2678 * @hsotg: The device state. 2679 * @hs_ep: The endpoint that has just completed. 2680 * 2681 * An IN transfer has been completed, update the transfer's state and then 2682 * call the relevant completion routines. 2683 */ 2684 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2685 struct dwc2_hsotg_ep *hs_ep) 2686 { 2687 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2688 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2689 int size_left, size_done; 2690 2691 if (!hs_req) { 2692 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2693 return; 2694 } 2695 2696 /* Finish ZLP handling for IN EP0 transactions */ 2697 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2698 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2699 2700 /* 2701 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2702 * changed to IN. Change back to complete OUT transfer request 2703 */ 2704 hs_ep->dir_in = 0; 2705 2706 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2707 if (hsotg->test_mode) { 2708 int ret; 2709 2710 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2711 if (ret < 0) { 2712 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2713 hsotg->test_mode); 2714 dwc2_hsotg_stall_ep0(hsotg); 2715 return; 2716 } 2717 } 2718 dwc2_hsotg_enqueue_setup(hsotg); 2719 return; 2720 } 2721 2722 /* 2723 * Calculate the size of the transfer by checking how much is left 2724 * in the endpoint size register and then working it out from 2725 * the amount we loaded for the transfer. 2726 * 2727 * We do this even for DMA, as the transfer may have incremented 2728 * past the end of the buffer (DMA transfers are always 32bit 2729 * aligned). 2730 */ 2731 if (using_desc_dma(hsotg)) { 2732 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2733 if (size_left < 0) 2734 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2735 size_left); 2736 } else { 2737 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2738 } 2739 2740 size_done = hs_ep->size_loaded - size_left; 2741 size_done += hs_ep->last_load; 2742 2743 if (hs_req->req.actual != size_done) 2744 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2745 __func__, hs_req->req.actual, size_done); 2746 2747 hs_req->req.actual = size_done; 2748 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2749 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2750 2751 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2752 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2753 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2754 return; 2755 } 2756 2757 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2758 if (hs_ep->send_zlp) { 2759 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2760 hs_ep->send_zlp = 0; 2761 /* transfer will be completed on next complete interrupt */ 2762 return; 2763 } 2764 2765 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2766 /* Move to STATUS OUT */ 2767 dwc2_hsotg_ep0_zlp(hsotg, false); 2768 return; 2769 } 2770 2771 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2772 } 2773 2774 /** 2775 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2776 * @hsotg: The device state. 2777 * @idx: Index of ep. 2778 * @dir_in: Endpoint direction 1-in 0-out. 2779 * 2780 * Reads for endpoint with given index and direction, by masking 2781 * epint_reg with coresponding mask. 2782 */ 2783 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2784 unsigned int idx, int dir_in) 2785 { 2786 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2787 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2788 u32 ints; 2789 u32 mask; 2790 u32 diepempmsk; 2791 2792 mask = dwc2_readl(hsotg, epmsk_reg); 2793 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2794 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2795 mask |= DXEPINT_SETUP_RCVD; 2796 2797 ints = dwc2_readl(hsotg, epint_reg); 2798 ints &= mask; 2799 return ints; 2800 } 2801 2802 /** 2803 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2804 * @hs_ep: The endpoint on which interrupt is asserted. 2805 * 2806 * This interrupt indicates that the endpoint has been disabled per the 2807 * application's request. 2808 * 2809 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2810 * in case of ISOC completes current request. 2811 * 2812 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2813 * request starts it. 2814 */ 2815 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2816 { 2817 struct dwc2_hsotg *hsotg = hs_ep->parent; 2818 struct dwc2_hsotg_req *hs_req; 2819 unsigned char idx = hs_ep->index; 2820 int dir_in = hs_ep->dir_in; 2821 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2822 int dctl = dwc2_readl(hsotg, DCTL); 2823 2824 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2825 2826 if (dir_in) { 2827 int epctl = dwc2_readl(hsotg, epctl_reg); 2828 2829 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2830 2831 if (hs_ep->isochronous) { 2832 dwc2_hsotg_complete_in(hsotg, hs_ep); 2833 return; 2834 } 2835 2836 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2837 int dctl = dwc2_readl(hsotg, DCTL); 2838 2839 dctl |= DCTL_CGNPINNAK; 2840 dwc2_writel(hsotg, dctl, DCTL); 2841 } 2842 return; 2843 } 2844 2845 if (dctl & DCTL_GOUTNAKSTS) { 2846 dctl |= DCTL_CGOUTNAK; 2847 dwc2_writel(hsotg, dctl, DCTL); 2848 } 2849 2850 if (!hs_ep->isochronous) 2851 return; 2852 2853 if (list_empty(&hs_ep->queue)) { 2854 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2855 __func__, hs_ep); 2856 return; 2857 } 2858 2859 do { 2860 hs_req = get_ep_head(hs_ep); 2861 if (hs_req) 2862 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2863 -ENODATA); 2864 dwc2_gadget_incr_frame_num(hs_ep); 2865 /* Update current frame number value. */ 2866 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2867 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2868 2869 dwc2_gadget_start_next_request(hs_ep); 2870 } 2871 2872 /** 2873 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2874 * @ep: The endpoint on which interrupt is asserted. 2875 * 2876 * This is starting point for ISOC-OUT transfer, synchronization done with 2877 * first out token received from host while corresponding EP is disabled. 2878 * 2879 * Device does not know initial frame in which out token will come. For this 2880 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2881 * getting this interrupt SW starts calculation for next transfer frame. 2882 */ 2883 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2884 { 2885 struct dwc2_hsotg *hsotg = ep->parent; 2886 int dir_in = ep->dir_in; 2887 u32 doepmsk; 2888 2889 if (dir_in || !ep->isochronous) 2890 return; 2891 2892 if (using_desc_dma(hsotg)) { 2893 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2894 /* Start first ISO Out */ 2895 ep->target_frame = hsotg->frame_number; 2896 dwc2_gadget_start_isoc_ddma(ep); 2897 } 2898 return; 2899 } 2900 2901 if (ep->interval > 1 && 2902 ep->target_frame == TARGET_FRAME_INITIAL) { 2903 u32 ctrl; 2904 2905 ep->target_frame = hsotg->frame_number; 2906 dwc2_gadget_incr_frame_num(ep); 2907 2908 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2909 if (ep->target_frame & 0x1) 2910 ctrl |= DXEPCTL_SETODDFR; 2911 else 2912 ctrl |= DXEPCTL_SETEVENFR; 2913 2914 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2915 } 2916 2917 dwc2_gadget_start_next_request(ep); 2918 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2919 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2920 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2921 } 2922 2923 /** 2924 * dwc2_gadget_handle_nak - handle NAK interrupt 2925 * @hs_ep: The endpoint on which interrupt is asserted. 2926 * 2927 * This is starting point for ISOC-IN transfer, synchronization done with 2928 * first IN token received from host while corresponding EP is disabled. 2929 * 2930 * Device does not know when first one token will arrive from host. On first 2931 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2932 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2933 * sent in response to that as there was no data in FIFO. SW is basing on this 2934 * interrupt to obtain frame in which token has come and then based on the 2935 * interval calculates next frame for transfer. 2936 */ 2937 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2938 { 2939 struct dwc2_hsotg *hsotg = hs_ep->parent; 2940 int dir_in = hs_ep->dir_in; 2941 2942 if (!dir_in || !hs_ep->isochronous) 2943 return; 2944 2945 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2946 2947 if (using_desc_dma(hsotg)) { 2948 hs_ep->target_frame = hsotg->frame_number; 2949 dwc2_gadget_incr_frame_num(hs_ep); 2950 2951 /* In service interval mode target_frame must 2952 * be set to last (u)frame of the service interval. 2953 */ 2954 if (hsotg->params.service_interval) { 2955 /* Set target_frame to the first (u)frame of 2956 * the service interval 2957 */ 2958 hs_ep->target_frame &= ~hs_ep->interval + 1; 2959 2960 /* Set target_frame to the last (u)frame of 2961 * the service interval 2962 */ 2963 dwc2_gadget_incr_frame_num(hs_ep); 2964 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2965 } 2966 2967 dwc2_gadget_start_isoc_ddma(hs_ep); 2968 return; 2969 } 2970 2971 hs_ep->target_frame = hsotg->frame_number; 2972 if (hs_ep->interval > 1) { 2973 u32 ctrl = dwc2_readl(hsotg, 2974 DIEPCTL(hs_ep->index)); 2975 if (hs_ep->target_frame & 0x1) 2976 ctrl |= DXEPCTL_SETODDFR; 2977 else 2978 ctrl |= DXEPCTL_SETEVENFR; 2979 2980 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2981 } 2982 2983 dwc2_hsotg_complete_request(hsotg, hs_ep, 2984 get_ep_head(hs_ep), 0); 2985 } 2986 2987 if (!using_desc_dma(hsotg)) 2988 dwc2_gadget_incr_frame_num(hs_ep); 2989 } 2990 2991 /** 2992 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2993 * @hsotg: The driver state 2994 * @idx: The index for the endpoint (0..15) 2995 * @dir_in: Set if this is an IN endpoint 2996 * 2997 * Process and clear any interrupt pending for an individual endpoint 2998 */ 2999 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 3000 int dir_in) 3001 { 3002 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 3003 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 3004 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 3005 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 3006 u32 ints; 3007 3008 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 3009 3010 /* Clear endpoint interrupts */ 3011 dwc2_writel(hsotg, ints, epint_reg); 3012 3013 if (!hs_ep) { 3014 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 3015 __func__, idx, dir_in ? "in" : "out"); 3016 return; 3017 } 3018 3019 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 3020 __func__, idx, dir_in ? "in" : "out", ints); 3021 3022 /* Don't process XferCompl interrupt if it is a setup packet */ 3023 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3024 ints &= ~DXEPINT_XFERCOMPL; 3025 3026 /* 3027 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3028 * stage and xfercomplete was generated without SETUP phase done 3029 * interrupt. SW should parse received setup packet only after host's 3030 * exit from setup phase of control transfer. 3031 */ 3032 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3033 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3034 ints &= ~DXEPINT_XFERCOMPL; 3035 3036 if (ints & DXEPINT_XFERCOMPL) { 3037 dev_dbg(hsotg->dev, 3038 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3039 __func__, dwc2_readl(hsotg, epctl_reg), 3040 dwc2_readl(hsotg, epsiz_reg)); 3041 3042 /* In DDMA handle isochronous requests separately */ 3043 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3044 /* XferCompl set along with BNA */ 3045 if (!(ints & DXEPINT_BNAINTR)) 3046 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3047 } else if (dir_in) { 3048 /* 3049 * We get OutDone from the FIFO, so we only 3050 * need to look at completing IN requests here 3051 * if operating slave mode 3052 */ 3053 if (hs_ep->isochronous && hs_ep->interval > 1) 3054 dwc2_gadget_incr_frame_num(hs_ep); 3055 3056 dwc2_hsotg_complete_in(hsotg, hs_ep); 3057 if (ints & DXEPINT_NAKINTRPT) 3058 ints &= ~DXEPINT_NAKINTRPT; 3059 3060 if (idx == 0 && !hs_ep->req) 3061 dwc2_hsotg_enqueue_setup(hsotg); 3062 } else if (using_dma(hsotg)) { 3063 /* 3064 * We're using DMA, we need to fire an OutDone here 3065 * as we ignore the RXFIFO. 3066 */ 3067 if (hs_ep->isochronous && hs_ep->interval > 1) 3068 dwc2_gadget_incr_frame_num(hs_ep); 3069 3070 dwc2_hsotg_handle_outdone(hsotg, idx); 3071 } 3072 } 3073 3074 if (ints & DXEPINT_EPDISBLD) 3075 dwc2_gadget_handle_ep_disabled(hs_ep); 3076 3077 if (ints & DXEPINT_OUTTKNEPDIS) 3078 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3079 3080 if (ints & DXEPINT_NAKINTRPT) 3081 dwc2_gadget_handle_nak(hs_ep); 3082 3083 if (ints & DXEPINT_AHBERR) 3084 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3085 3086 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3087 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3088 3089 if (using_dma(hsotg) && idx == 0) { 3090 /* 3091 * this is the notification we've received a 3092 * setup packet. In non-DMA mode we'd get this 3093 * from the RXFIFO, instead we need to process 3094 * the setup here. 3095 */ 3096 3097 if (dir_in) 3098 WARN_ON_ONCE(1); 3099 else 3100 dwc2_hsotg_handle_outdone(hsotg, 0); 3101 } 3102 } 3103 3104 if (ints & DXEPINT_STSPHSERCVD) { 3105 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3106 3107 /* Safety check EP0 state when STSPHSERCVD asserted */ 3108 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3109 /* Move to STATUS IN for DDMA */ 3110 if (using_desc_dma(hsotg)) { 3111 if (!hsotg->delayed_status) 3112 dwc2_hsotg_ep0_zlp(hsotg, true); 3113 else 3114 /* In case of 3 stage Control Write with delayed 3115 * status, when Status IN transfer started 3116 * before STSPHSERCVD asserted, NAKSTS bit not 3117 * cleared by CNAK in dwc2_hsotg_start_req() 3118 * function. Clear now NAKSTS to allow complete 3119 * transfer. 3120 */ 3121 dwc2_set_bit(hsotg, DIEPCTL(0), 3122 DXEPCTL_CNAK); 3123 } 3124 } 3125 3126 } 3127 3128 if (ints & DXEPINT_BACK2BACKSETUP) 3129 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3130 3131 if (ints & DXEPINT_BNAINTR) { 3132 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3133 if (hs_ep->isochronous) 3134 dwc2_gadget_handle_isoc_bna(hs_ep); 3135 } 3136 3137 if (dir_in && !hs_ep->isochronous) { 3138 /* not sure if this is important, but we'll clear it anyway */ 3139 if (ints & DXEPINT_INTKNTXFEMP) { 3140 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3141 __func__, idx); 3142 } 3143 3144 /* this probably means something bad is happening */ 3145 if (ints & DXEPINT_INTKNEPMIS) { 3146 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3147 __func__, idx); 3148 } 3149 3150 /* FIFO has space or is empty (see GAHBCFG) */ 3151 if (hsotg->dedicated_fifos && 3152 ints & DXEPINT_TXFEMP) { 3153 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3154 __func__, idx); 3155 if (!using_dma(hsotg)) 3156 dwc2_hsotg_trytx(hsotg, hs_ep); 3157 } 3158 } 3159 } 3160 3161 /** 3162 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3163 * @hsotg: The device state. 3164 * 3165 * Handle updating the device settings after the enumeration phase has 3166 * been completed. 3167 */ 3168 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3169 { 3170 u32 dsts = dwc2_readl(hsotg, DSTS); 3171 int ep0_mps = 0, ep_mps = 8; 3172 3173 /* 3174 * This should signal the finish of the enumeration phase 3175 * of the USB handshaking, so we should now know what rate 3176 * we connected at. 3177 */ 3178 3179 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3180 3181 /* 3182 * note, since we're limited by the size of transfer on EP0, and 3183 * it seems IN transfers must be a even number of packets we do 3184 * not advertise a 64byte MPS on EP0. 3185 */ 3186 3187 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3188 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3189 case DSTS_ENUMSPD_FS: 3190 case DSTS_ENUMSPD_FS48: 3191 hsotg->gadget.speed = USB_SPEED_FULL; 3192 ep0_mps = EP0_MPS_LIMIT; 3193 ep_mps = 1023; 3194 break; 3195 3196 case DSTS_ENUMSPD_HS: 3197 hsotg->gadget.speed = USB_SPEED_HIGH; 3198 ep0_mps = EP0_MPS_LIMIT; 3199 ep_mps = 1024; 3200 break; 3201 3202 case DSTS_ENUMSPD_LS: 3203 hsotg->gadget.speed = USB_SPEED_LOW; 3204 ep0_mps = 8; 3205 ep_mps = 8; 3206 /* 3207 * note, we don't actually support LS in this driver at the 3208 * moment, and the documentation seems to imply that it isn't 3209 * supported by the PHYs on some of the devices. 3210 */ 3211 break; 3212 } 3213 dev_info(hsotg->dev, "new device is %s\n", 3214 usb_speed_string(hsotg->gadget.speed)); 3215 3216 /* 3217 * we should now know the maximum packet size for an 3218 * endpoint, so set the endpoints to a default value. 3219 */ 3220 3221 if (ep0_mps) { 3222 int i; 3223 /* Initialize ep0 for both in and out directions */ 3224 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3225 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3226 for (i = 1; i < hsotg->num_of_eps; i++) { 3227 if (hsotg->eps_in[i]) 3228 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3229 0, 1); 3230 if (hsotg->eps_out[i]) 3231 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3232 0, 0); 3233 } 3234 } 3235 3236 /* ensure after enumeration our EP0 is active */ 3237 3238 dwc2_hsotg_enqueue_setup(hsotg); 3239 3240 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3241 dwc2_readl(hsotg, DIEPCTL0), 3242 dwc2_readl(hsotg, DOEPCTL0)); 3243 } 3244 3245 /** 3246 * kill_all_requests - remove all requests from the endpoint's queue 3247 * @hsotg: The device state. 3248 * @ep: The endpoint the requests may be on. 3249 * @result: The result code to use. 3250 * 3251 * Go through the requests on the given endpoint and mark them 3252 * completed with the given result code. 3253 */ 3254 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3255 struct dwc2_hsotg_ep *ep, 3256 int result) 3257 { 3258 unsigned int size; 3259 3260 ep->req = NULL; 3261 3262 while (!list_empty(&ep->queue)) { 3263 struct dwc2_hsotg_req *req = get_ep_head(ep); 3264 3265 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3266 } 3267 3268 if (!hsotg->dedicated_fifos) 3269 return; 3270 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3271 if (size < ep->fifo_size) 3272 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3273 } 3274 3275 /** 3276 * dwc2_hsotg_disconnect - disconnect service 3277 * @hsotg: The device state. 3278 * 3279 * The device has been disconnected. Remove all current 3280 * transactions and signal the gadget driver that this 3281 * has happened. 3282 */ 3283 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3284 { 3285 unsigned int ep; 3286 3287 if (!hsotg->connected) 3288 return; 3289 3290 hsotg->connected = 0; 3291 hsotg->test_mode = 0; 3292 3293 /* all endpoints should be shutdown */ 3294 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3295 if (hsotg->eps_in[ep]) 3296 kill_all_requests(hsotg, hsotg->eps_in[ep], 3297 -ESHUTDOWN); 3298 if (hsotg->eps_out[ep]) 3299 kill_all_requests(hsotg, hsotg->eps_out[ep], 3300 -ESHUTDOWN); 3301 } 3302 3303 call_gadget(hsotg, disconnect); 3304 hsotg->lx_state = DWC2_L3; 3305 3306 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3307 } 3308 3309 /** 3310 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3311 * @hsotg: The device state: 3312 * @periodic: True if this is a periodic FIFO interrupt 3313 */ 3314 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3315 { 3316 struct dwc2_hsotg_ep *ep; 3317 int epno, ret; 3318 3319 /* look through for any more data to transmit */ 3320 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3321 ep = index_to_ep(hsotg, epno, 1); 3322 3323 if (!ep) 3324 continue; 3325 3326 if (!ep->dir_in) 3327 continue; 3328 3329 if ((periodic && !ep->periodic) || 3330 (!periodic && ep->periodic)) 3331 continue; 3332 3333 ret = dwc2_hsotg_trytx(hsotg, ep); 3334 if (ret < 0) 3335 break; 3336 } 3337 } 3338 3339 /* IRQ flags which will trigger a retry around the IRQ loop */ 3340 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3341 GINTSTS_PTXFEMP | \ 3342 GINTSTS_RXFLVL) 3343 3344 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3345 /** 3346 * dwc2_hsotg_core_init - issue softreset to the core 3347 * @hsotg: The device state 3348 * @is_usb_reset: Usb resetting flag 3349 * 3350 * Issue a soft reset to the core, and await the core finishing it. 3351 */ 3352 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3353 bool is_usb_reset) 3354 { 3355 u32 intmsk; 3356 u32 val; 3357 u32 usbcfg; 3358 u32 dcfg = 0; 3359 int ep; 3360 3361 /* Kill any ep0 requests as controller will be reinitialized */ 3362 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3363 3364 if (!is_usb_reset) { 3365 if (dwc2_core_reset(hsotg, true)) 3366 return; 3367 } else { 3368 /* all endpoints should be shutdown */ 3369 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3370 if (hsotg->eps_in[ep]) 3371 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3372 if (hsotg->eps_out[ep]) 3373 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3374 } 3375 } 3376 3377 /* 3378 * we must now enable ep0 ready for host detection and then 3379 * set configuration. 3380 */ 3381 3382 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3383 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3384 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3385 usbcfg |= GUSBCFG_TOUTCAL(7); 3386 3387 /* remove the HNP/SRP and set the PHY */ 3388 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3389 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3390 3391 dwc2_phy_init(hsotg, true); 3392 3393 dwc2_hsotg_init_fifo(hsotg); 3394 3395 if (!is_usb_reset) 3396 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3397 3398 dcfg |= DCFG_EPMISCNT(1); 3399 3400 switch (hsotg->params.speed) { 3401 case DWC2_SPEED_PARAM_LOW: 3402 dcfg |= DCFG_DEVSPD_LS; 3403 break; 3404 case DWC2_SPEED_PARAM_FULL: 3405 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3406 dcfg |= DCFG_DEVSPD_FS48; 3407 else 3408 dcfg |= DCFG_DEVSPD_FS; 3409 break; 3410 default: 3411 dcfg |= DCFG_DEVSPD_HS; 3412 } 3413 3414 if (hsotg->params.ipg_isoc_en) 3415 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3416 3417 dwc2_writel(hsotg, dcfg, DCFG); 3418 3419 /* Clear any pending OTG interrupts */ 3420 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3421 3422 /* Clear any pending interrupts */ 3423 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3424 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3425 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3426 GINTSTS_USBRST | GINTSTS_RESETDET | 3427 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3428 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3429 GINTSTS_LPMTRANRCVD; 3430 3431 if (!using_desc_dma(hsotg)) 3432 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3433 3434 if (!hsotg->params.external_id_pin_ctl) 3435 intmsk |= GINTSTS_CONIDSTSCHNG; 3436 3437 dwc2_writel(hsotg, intmsk, GINTMSK); 3438 3439 if (using_dma(hsotg)) { 3440 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3441 hsotg->params.ahbcfg, 3442 GAHBCFG); 3443 3444 /* Set DDMA mode support in the core if needed */ 3445 if (using_desc_dma(hsotg)) 3446 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3447 3448 } else { 3449 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3450 (GAHBCFG_NP_TXF_EMP_LVL | 3451 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3452 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3453 } 3454 3455 /* 3456 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3457 * when we have no data to transfer. Otherwise we get being flooded by 3458 * interrupts. 3459 */ 3460 3461 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3462 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3463 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3464 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3465 DIEPMSK); 3466 3467 /* 3468 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3469 * DMA mode we may need this and StsPhseRcvd. 3470 */ 3471 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3472 DOEPMSK_STSPHSERCVDMSK) : 0) | 3473 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3474 DOEPMSK_SETUPMSK, 3475 DOEPMSK); 3476 3477 /* Enable BNA interrupt for DDMA */ 3478 if (using_desc_dma(hsotg)) { 3479 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3480 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3481 } 3482 3483 /* Enable Service Interval mode if supported */ 3484 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3485 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3486 3487 dwc2_writel(hsotg, 0, DAINTMSK); 3488 3489 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3490 dwc2_readl(hsotg, DIEPCTL0), 3491 dwc2_readl(hsotg, DOEPCTL0)); 3492 3493 /* enable in and out endpoint interrupts */ 3494 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3495 3496 /* 3497 * Enable the RXFIFO when in slave mode, as this is how we collect 3498 * the data. In DMA mode, we get events from the FIFO but also 3499 * things we cannot process, so do not use it. 3500 */ 3501 if (!using_dma(hsotg)) 3502 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3503 3504 /* Enable interrupts for EP0 in and out */ 3505 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3506 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3507 3508 if (!is_usb_reset) { 3509 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3510 udelay(10); /* see openiboot */ 3511 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3512 } 3513 3514 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3515 3516 /* 3517 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3518 * writing to the EPCTL register.. 3519 */ 3520 3521 /* set to read 1 8byte packet */ 3522 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3523 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3524 3525 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3526 DXEPCTL_CNAK | DXEPCTL_EPENA | 3527 DXEPCTL_USBACTEP, 3528 DOEPCTL0); 3529 3530 /* enable, but don't activate EP0in */ 3531 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3532 DXEPCTL_USBACTEP, DIEPCTL0); 3533 3534 /* clear global NAKs */ 3535 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3536 if (!is_usb_reset) 3537 val |= DCTL_SFTDISCON; 3538 dwc2_set_bit(hsotg, DCTL, val); 3539 3540 /* configure the core to support LPM */ 3541 dwc2_gadget_init_lpm(hsotg); 3542 3543 /* program GREFCLK register if needed */ 3544 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3545 dwc2_gadget_program_ref_clk(hsotg); 3546 3547 /* must be at-least 3ms to allow bus to see disconnect */ 3548 mdelay(3); 3549 3550 hsotg->lx_state = DWC2_L0; 3551 3552 dwc2_hsotg_enqueue_setup(hsotg); 3553 3554 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3555 dwc2_readl(hsotg, DIEPCTL0), 3556 dwc2_readl(hsotg, DOEPCTL0)); 3557 } 3558 3559 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3560 { 3561 /* set the soft-disconnect bit */ 3562 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3563 } 3564 3565 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3566 { 3567 /* remove the soft-disconnect and let's go */ 3568 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3569 } 3570 3571 /** 3572 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3573 * @hsotg: The device state: 3574 * 3575 * This interrupt indicates one of the following conditions occurred while 3576 * transmitting an ISOC transaction. 3577 * - Corrupted IN Token for ISOC EP. 3578 * - Packet not complete in FIFO. 3579 * 3580 * The following actions will be taken: 3581 * - Determine the EP 3582 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3583 */ 3584 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3585 { 3586 struct dwc2_hsotg_ep *hs_ep; 3587 u32 epctrl; 3588 u32 daintmsk; 3589 u32 idx; 3590 3591 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3592 3593 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3594 3595 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3596 hs_ep = hsotg->eps_in[idx]; 3597 /* Proceed only unmasked ISOC EPs */ 3598 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3599 continue; 3600 3601 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3602 if ((epctrl & DXEPCTL_EPENA) && 3603 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3604 epctrl |= DXEPCTL_SNAK; 3605 epctrl |= DXEPCTL_EPDIS; 3606 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3607 } 3608 } 3609 3610 /* Clear interrupt */ 3611 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3612 } 3613 3614 /** 3615 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3616 * @hsotg: The device state: 3617 * 3618 * This interrupt indicates one of the following conditions occurred while 3619 * transmitting an ISOC transaction. 3620 * - Corrupted OUT Token for ISOC EP. 3621 * - Packet not complete in FIFO. 3622 * 3623 * The following actions will be taken: 3624 * - Determine the EP 3625 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3626 */ 3627 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3628 { 3629 u32 gintsts; 3630 u32 gintmsk; 3631 u32 daintmsk; 3632 u32 epctrl; 3633 struct dwc2_hsotg_ep *hs_ep; 3634 int idx; 3635 3636 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3637 3638 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3639 daintmsk >>= DAINT_OUTEP_SHIFT; 3640 3641 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3642 hs_ep = hsotg->eps_out[idx]; 3643 /* Proceed only unmasked ISOC EPs */ 3644 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3645 continue; 3646 3647 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3648 if ((epctrl & DXEPCTL_EPENA) && 3649 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3650 /* Unmask GOUTNAKEFF interrupt */ 3651 gintmsk = dwc2_readl(hsotg, GINTMSK); 3652 gintmsk |= GINTSTS_GOUTNAKEFF; 3653 dwc2_writel(hsotg, gintmsk, GINTMSK); 3654 3655 gintsts = dwc2_readl(hsotg, GINTSTS); 3656 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3657 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3658 break; 3659 } 3660 } 3661 } 3662 3663 /* Clear interrupt */ 3664 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3665 } 3666 3667 /** 3668 * dwc2_hsotg_irq - handle device interrupt 3669 * @irq: The IRQ number triggered 3670 * @pw: The pw value when registered the handler. 3671 */ 3672 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3673 { 3674 struct dwc2_hsotg *hsotg = pw; 3675 int retry_count = 8; 3676 u32 gintsts; 3677 u32 gintmsk; 3678 3679 if (!dwc2_is_device_mode(hsotg)) 3680 return IRQ_NONE; 3681 3682 spin_lock(&hsotg->lock); 3683 irq_retry: 3684 gintsts = dwc2_readl(hsotg, GINTSTS); 3685 gintmsk = dwc2_readl(hsotg, GINTMSK); 3686 3687 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3688 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3689 3690 gintsts &= gintmsk; 3691 3692 if (gintsts & GINTSTS_RESETDET) { 3693 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3694 3695 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3696 3697 /* This event must be used only if controller is suspended */ 3698 if (hsotg->lx_state == DWC2_L2) { 3699 dwc2_exit_partial_power_down(hsotg, true); 3700 hsotg->lx_state = DWC2_L0; 3701 } 3702 } 3703 3704 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3705 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3706 u32 connected = hsotg->connected; 3707 3708 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3709 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3710 dwc2_readl(hsotg, GNPTXSTS)); 3711 3712 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3713 3714 /* Report disconnection if it is not already done. */ 3715 dwc2_hsotg_disconnect(hsotg); 3716 3717 /* Reset device address to zero */ 3718 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3719 3720 if (usb_status & GOTGCTL_BSESVLD && connected) 3721 dwc2_hsotg_core_init_disconnected(hsotg, true); 3722 } 3723 3724 if (gintsts & GINTSTS_ENUMDONE) { 3725 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3726 3727 dwc2_hsotg_irq_enumdone(hsotg); 3728 } 3729 3730 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3731 u32 daint = dwc2_readl(hsotg, DAINT); 3732 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3733 u32 daint_out, daint_in; 3734 int ep; 3735 3736 daint &= daintmsk; 3737 daint_out = daint >> DAINT_OUTEP_SHIFT; 3738 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3739 3740 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3741 3742 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3743 ep++, daint_out >>= 1) { 3744 if (daint_out & 1) 3745 dwc2_hsotg_epint(hsotg, ep, 0); 3746 } 3747 3748 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3749 ep++, daint_in >>= 1) { 3750 if (daint_in & 1) 3751 dwc2_hsotg_epint(hsotg, ep, 1); 3752 } 3753 } 3754 3755 /* check both FIFOs */ 3756 3757 if (gintsts & GINTSTS_NPTXFEMP) { 3758 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3759 3760 /* 3761 * Disable the interrupt to stop it happening again 3762 * unless one of these endpoint routines decides that 3763 * it needs re-enabling 3764 */ 3765 3766 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3767 dwc2_hsotg_irq_fifoempty(hsotg, false); 3768 } 3769 3770 if (gintsts & GINTSTS_PTXFEMP) { 3771 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3772 3773 /* See note in GINTSTS_NPTxFEmp */ 3774 3775 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3776 dwc2_hsotg_irq_fifoempty(hsotg, true); 3777 } 3778 3779 if (gintsts & GINTSTS_RXFLVL) { 3780 /* 3781 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3782 * we need to retry dwc2_hsotg_handle_rx if this is still 3783 * set. 3784 */ 3785 3786 dwc2_hsotg_handle_rx(hsotg); 3787 } 3788 3789 if (gintsts & GINTSTS_ERLYSUSP) { 3790 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3791 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3792 } 3793 3794 /* 3795 * these next two seem to crop-up occasionally causing the core 3796 * to shutdown the USB transfer, so try clearing them and logging 3797 * the occurrence. 3798 */ 3799 3800 if (gintsts & GINTSTS_GOUTNAKEFF) { 3801 u8 idx; 3802 u32 epctrl; 3803 u32 gintmsk; 3804 u32 daintmsk; 3805 struct dwc2_hsotg_ep *hs_ep; 3806 3807 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3808 daintmsk >>= DAINT_OUTEP_SHIFT; 3809 /* Mask this interrupt */ 3810 gintmsk = dwc2_readl(hsotg, GINTMSK); 3811 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3812 dwc2_writel(hsotg, gintmsk, GINTMSK); 3813 3814 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3815 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3816 hs_ep = hsotg->eps_out[idx]; 3817 /* Proceed only unmasked ISOC EPs */ 3818 if (BIT(idx) & ~daintmsk) 3819 continue; 3820 3821 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3822 3823 //ISOC Ep's only 3824 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3825 epctrl |= DXEPCTL_SNAK; 3826 epctrl |= DXEPCTL_EPDIS; 3827 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3828 continue; 3829 } 3830 3831 //Non-ISOC EP's 3832 if (hs_ep->halted) { 3833 if (!(epctrl & DXEPCTL_EPENA)) 3834 epctrl |= DXEPCTL_EPENA; 3835 epctrl |= DXEPCTL_EPDIS; 3836 epctrl |= DXEPCTL_STALL; 3837 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3838 } 3839 } 3840 3841 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3842 } 3843 3844 if (gintsts & GINTSTS_GINNAKEFF) { 3845 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3846 3847 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3848 3849 dwc2_hsotg_dump(hsotg); 3850 } 3851 3852 if (gintsts & GINTSTS_INCOMPL_SOIN) 3853 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3854 3855 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3856 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3857 3858 /* 3859 * if we've had fifo events, we should try and go around the 3860 * loop again to see if there's any point in returning yet. 3861 */ 3862 3863 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3864 goto irq_retry; 3865 3866 /* Check WKUP_ALERT interrupt*/ 3867 if (hsotg->params.service_interval) 3868 dwc2_gadget_wkup_alert_handler(hsotg); 3869 3870 spin_unlock(&hsotg->lock); 3871 3872 return IRQ_HANDLED; 3873 } 3874 3875 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3876 struct dwc2_hsotg_ep *hs_ep) 3877 { 3878 u32 epctrl_reg; 3879 u32 epint_reg; 3880 3881 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3882 DOEPCTL(hs_ep->index); 3883 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3884 DOEPINT(hs_ep->index); 3885 3886 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3887 hs_ep->name); 3888 3889 if (hs_ep->dir_in) { 3890 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3891 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3892 /* Wait for Nak effect */ 3893 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3894 DXEPINT_INEPNAKEFF, 100)) 3895 dev_warn(hsotg->dev, 3896 "%s: timeout DIEPINT.NAKEFF\n", 3897 __func__); 3898 } else { 3899 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3900 /* Wait for Nak effect */ 3901 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3902 GINTSTS_GINNAKEFF, 100)) 3903 dev_warn(hsotg->dev, 3904 "%s: timeout GINTSTS.GINNAKEFF\n", 3905 __func__); 3906 } 3907 } else { 3908 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3909 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3910 3911 /* Wait for global nak to take effect */ 3912 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3913 GINTSTS_GOUTNAKEFF, 100)) 3914 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3915 __func__); 3916 } 3917 3918 /* Disable ep */ 3919 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3920 3921 /* Wait for ep to be disabled */ 3922 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3923 dev_warn(hsotg->dev, 3924 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3925 3926 /* Clear EPDISBLD interrupt */ 3927 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3928 3929 if (hs_ep->dir_in) { 3930 unsigned short fifo_index; 3931 3932 if (hsotg->dedicated_fifos || hs_ep->periodic) 3933 fifo_index = hs_ep->fifo_index; 3934 else 3935 fifo_index = 0; 3936 3937 /* Flush TX FIFO */ 3938 dwc2_flush_tx_fifo(hsotg, fifo_index); 3939 3940 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3941 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3942 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3943 3944 } else { 3945 /* Remove global NAKs */ 3946 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3947 } 3948 } 3949 3950 /** 3951 * dwc2_hsotg_ep_enable - enable the given endpoint 3952 * @ep: The USB endpint to configure 3953 * @desc: The USB endpoint descriptor to configure with. 3954 * 3955 * This is called from the USB gadget code's usb_ep_enable(). 3956 */ 3957 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3958 const struct usb_endpoint_descriptor *desc) 3959 { 3960 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3961 struct dwc2_hsotg *hsotg = hs_ep->parent; 3962 unsigned long flags; 3963 unsigned int index = hs_ep->index; 3964 u32 epctrl_reg; 3965 u32 epctrl; 3966 u32 mps; 3967 u32 mc; 3968 u32 mask; 3969 unsigned int dir_in; 3970 unsigned int i, val, size; 3971 int ret = 0; 3972 unsigned char ep_type; 3973 int desc_num; 3974 3975 dev_dbg(hsotg->dev, 3976 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3977 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3978 desc->wMaxPacketSize, desc->bInterval); 3979 3980 /* not to be called for EP0 */ 3981 if (index == 0) { 3982 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3983 return -EINVAL; 3984 } 3985 3986 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3987 if (dir_in != hs_ep->dir_in) { 3988 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3989 return -EINVAL; 3990 } 3991 3992 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 3993 mps = usb_endpoint_maxp(desc); 3994 mc = usb_endpoint_maxp_mult(desc); 3995 3996 /* ISOC IN in DDMA supported bInterval up to 10 */ 3997 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 3998 dir_in && desc->bInterval > 10) { 3999 dev_err(hsotg->dev, 4000 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 4001 return -EINVAL; 4002 } 4003 4004 /* High bandwidth ISOC OUT in DDMA not supported */ 4005 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4006 !dir_in && mc > 1) { 4007 dev_err(hsotg->dev, 4008 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 4009 return -EINVAL; 4010 } 4011 4012 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 4013 4014 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4015 epctrl = dwc2_readl(hsotg, epctrl_reg); 4016 4017 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 4018 __func__, epctrl, epctrl_reg); 4019 4020 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 4021 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 4022 else 4023 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4024 4025 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4026 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4027 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4028 desc_num * sizeof(struct dwc2_dma_desc), 4029 &hs_ep->desc_list_dma, GFP_ATOMIC); 4030 if (!hs_ep->desc_list) { 4031 ret = -ENOMEM; 4032 goto error2; 4033 } 4034 } 4035 4036 spin_lock_irqsave(&hsotg->lock, flags); 4037 4038 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4039 epctrl |= DXEPCTL_MPS(mps); 4040 4041 /* 4042 * mark the endpoint as active, otherwise the core may ignore 4043 * transactions entirely for this endpoint 4044 */ 4045 epctrl |= DXEPCTL_USBACTEP; 4046 4047 /* update the endpoint state */ 4048 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4049 4050 /* default, set to non-periodic */ 4051 hs_ep->isochronous = 0; 4052 hs_ep->periodic = 0; 4053 hs_ep->halted = 0; 4054 hs_ep->interval = desc->bInterval; 4055 4056 switch (ep_type) { 4057 case USB_ENDPOINT_XFER_ISOC: 4058 epctrl |= DXEPCTL_EPTYPE_ISO; 4059 epctrl |= DXEPCTL_SETEVENFR; 4060 hs_ep->isochronous = 1; 4061 hs_ep->interval = 1 << (desc->bInterval - 1); 4062 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4063 hs_ep->next_desc = 0; 4064 hs_ep->compl_desc = 0; 4065 if (dir_in) { 4066 hs_ep->periodic = 1; 4067 mask = dwc2_readl(hsotg, DIEPMSK); 4068 mask |= DIEPMSK_NAKMSK; 4069 dwc2_writel(hsotg, mask, DIEPMSK); 4070 } else { 4071 mask = dwc2_readl(hsotg, DOEPMSK); 4072 mask |= DOEPMSK_OUTTKNEPDISMSK; 4073 dwc2_writel(hsotg, mask, DOEPMSK); 4074 } 4075 break; 4076 4077 case USB_ENDPOINT_XFER_BULK: 4078 epctrl |= DXEPCTL_EPTYPE_BULK; 4079 break; 4080 4081 case USB_ENDPOINT_XFER_INT: 4082 if (dir_in) 4083 hs_ep->periodic = 1; 4084 4085 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4086 hs_ep->interval = 1 << (desc->bInterval - 1); 4087 4088 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4089 break; 4090 4091 case USB_ENDPOINT_XFER_CONTROL: 4092 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4093 break; 4094 } 4095 4096 /* 4097 * if the hardware has dedicated fifos, we must give each IN EP 4098 * a unique tx-fifo even if it is non-periodic. 4099 */ 4100 if (dir_in && hsotg->dedicated_fifos) { 4101 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4102 u32 fifo_index = 0; 4103 u32 fifo_size = UINT_MAX; 4104 4105 size = hs_ep->ep.maxpacket * hs_ep->mc; 4106 for (i = 1; i <= fifo_count; ++i) { 4107 if (hsotg->fifo_map & (1 << i)) 4108 continue; 4109 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4110 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4111 if (val < size) 4112 continue; 4113 /* Search for smallest acceptable fifo */ 4114 if (val < fifo_size) { 4115 fifo_size = val; 4116 fifo_index = i; 4117 } 4118 } 4119 if (!fifo_index) { 4120 dev_err(hsotg->dev, 4121 "%s: No suitable fifo found\n", __func__); 4122 ret = -ENOMEM; 4123 goto error1; 4124 } 4125 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4126 hsotg->fifo_map |= 1 << fifo_index; 4127 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4128 hs_ep->fifo_index = fifo_index; 4129 hs_ep->fifo_size = fifo_size; 4130 } 4131 4132 /* for non control endpoints, set PID to D0 */ 4133 if (index && !hs_ep->isochronous) 4134 epctrl |= DXEPCTL_SETD0PID; 4135 4136 /* WA for Full speed ISOC IN in DDMA mode. 4137 * By Clear NAK status of EP, core will send ZLP 4138 * to IN token and assert NAK interrupt relying 4139 * on TxFIFO status only 4140 */ 4141 4142 if (hsotg->gadget.speed == USB_SPEED_FULL && 4143 hs_ep->isochronous && dir_in) { 4144 /* The WA applies only to core versions from 2.72a 4145 * to 4.00a (including both). Also for FS_IOT_1.00a 4146 * and HS_IOT_1.00a. 4147 */ 4148 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4149 4150 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4151 gsnpsid <= DWC2_CORE_REV_4_00a) || 4152 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4153 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4154 epctrl |= DXEPCTL_CNAK; 4155 } 4156 4157 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4158 __func__, epctrl); 4159 4160 dwc2_writel(hsotg, epctrl, epctrl_reg); 4161 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4162 __func__, dwc2_readl(hsotg, epctrl_reg)); 4163 4164 /* enable the endpoint interrupt */ 4165 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4166 4167 error1: 4168 spin_unlock_irqrestore(&hsotg->lock, flags); 4169 4170 error2: 4171 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4172 dmam_free_coherent(hsotg->dev, desc_num * 4173 sizeof(struct dwc2_dma_desc), 4174 hs_ep->desc_list, hs_ep->desc_list_dma); 4175 hs_ep->desc_list = NULL; 4176 } 4177 4178 return ret; 4179 } 4180 4181 /** 4182 * dwc2_hsotg_ep_disable - disable given endpoint 4183 * @ep: The endpoint to disable. 4184 */ 4185 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4186 { 4187 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4188 struct dwc2_hsotg *hsotg = hs_ep->parent; 4189 int dir_in = hs_ep->dir_in; 4190 int index = hs_ep->index; 4191 u32 epctrl_reg; 4192 u32 ctrl; 4193 4194 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4195 4196 if (ep == &hsotg->eps_out[0]->ep) { 4197 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4198 return -EINVAL; 4199 } 4200 4201 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4202 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4203 return -EINVAL; 4204 } 4205 4206 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4207 4208 ctrl = dwc2_readl(hsotg, epctrl_reg); 4209 4210 if (ctrl & DXEPCTL_EPENA) 4211 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4212 4213 ctrl &= ~DXEPCTL_EPENA; 4214 ctrl &= ~DXEPCTL_USBACTEP; 4215 ctrl |= DXEPCTL_SNAK; 4216 4217 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4218 dwc2_writel(hsotg, ctrl, epctrl_reg); 4219 4220 /* disable endpoint interrupts */ 4221 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4222 4223 /* terminate all requests with shutdown */ 4224 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4225 4226 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4227 hs_ep->fifo_index = 0; 4228 hs_ep->fifo_size = 0; 4229 4230 return 0; 4231 } 4232 4233 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4234 { 4235 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4236 struct dwc2_hsotg *hsotg = hs_ep->parent; 4237 unsigned long flags; 4238 int ret; 4239 4240 spin_lock_irqsave(&hsotg->lock, flags); 4241 ret = dwc2_hsotg_ep_disable(ep); 4242 spin_unlock_irqrestore(&hsotg->lock, flags); 4243 return ret; 4244 } 4245 4246 /** 4247 * on_list - check request is on the given endpoint 4248 * @ep: The endpoint to check. 4249 * @test: The request to test if it is on the endpoint. 4250 */ 4251 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4252 { 4253 struct dwc2_hsotg_req *req, *treq; 4254 4255 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4256 if (req == test) 4257 return true; 4258 } 4259 4260 return false; 4261 } 4262 4263 /** 4264 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4265 * @ep: The endpoint to dequeue. 4266 * @req: The request to be removed from a queue. 4267 */ 4268 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4269 { 4270 struct dwc2_hsotg_req *hs_req = our_req(req); 4271 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4272 struct dwc2_hsotg *hs = hs_ep->parent; 4273 unsigned long flags; 4274 4275 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4276 4277 spin_lock_irqsave(&hs->lock, flags); 4278 4279 if (!on_list(hs_ep, hs_req)) { 4280 spin_unlock_irqrestore(&hs->lock, flags); 4281 return -EINVAL; 4282 } 4283 4284 /* Dequeue already started request */ 4285 if (req == &hs_ep->req->req) 4286 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4287 4288 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4289 spin_unlock_irqrestore(&hs->lock, flags); 4290 4291 return 0; 4292 } 4293 4294 /** 4295 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4296 * @ep: The endpoint to set halt. 4297 * @value: Set or unset the halt. 4298 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4299 * the endpoint is busy processing requests. 4300 * 4301 * We need to stall the endpoint immediately if request comes from set_feature 4302 * protocol command handler. 4303 */ 4304 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4305 { 4306 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4307 struct dwc2_hsotg *hs = hs_ep->parent; 4308 int index = hs_ep->index; 4309 u32 epreg; 4310 u32 epctl; 4311 u32 xfertype; 4312 4313 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4314 4315 if (index == 0) { 4316 if (value) 4317 dwc2_hsotg_stall_ep0(hs); 4318 else 4319 dev_warn(hs->dev, 4320 "%s: can't clear halt on ep0\n", __func__); 4321 return 0; 4322 } 4323 4324 if (hs_ep->isochronous) { 4325 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4326 return -EINVAL; 4327 } 4328 4329 if (!now && value && !list_empty(&hs_ep->queue)) { 4330 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4331 ep->name); 4332 return -EAGAIN; 4333 } 4334 4335 if (hs_ep->dir_in) { 4336 epreg = DIEPCTL(index); 4337 epctl = dwc2_readl(hs, epreg); 4338 4339 if (value) { 4340 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4341 if (epctl & DXEPCTL_EPENA) 4342 epctl |= DXEPCTL_EPDIS; 4343 } else { 4344 epctl &= ~DXEPCTL_STALL; 4345 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4346 if (xfertype == DXEPCTL_EPTYPE_BULK || 4347 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4348 epctl |= DXEPCTL_SETD0PID; 4349 } 4350 dwc2_writel(hs, epctl, epreg); 4351 } else { 4352 epreg = DOEPCTL(index); 4353 epctl = dwc2_readl(hs, epreg); 4354 4355 if (value) { 4356 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4357 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4358 // STALL bit will be set in GOUTNAKEFF interrupt handler 4359 } else { 4360 epctl &= ~DXEPCTL_STALL; 4361 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4362 if (xfertype == DXEPCTL_EPTYPE_BULK || 4363 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4364 epctl |= DXEPCTL_SETD0PID; 4365 dwc2_writel(hs, epctl, epreg); 4366 } 4367 } 4368 4369 hs_ep->halted = value; 4370 return 0; 4371 } 4372 4373 /** 4374 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4375 * @ep: The endpoint to set halt. 4376 * @value: Set or unset the halt. 4377 */ 4378 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4379 { 4380 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4381 struct dwc2_hsotg *hs = hs_ep->parent; 4382 unsigned long flags = 0; 4383 int ret = 0; 4384 4385 spin_lock_irqsave(&hs->lock, flags); 4386 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4387 spin_unlock_irqrestore(&hs->lock, flags); 4388 4389 return ret; 4390 } 4391 4392 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4393 .enable = dwc2_hsotg_ep_enable, 4394 .disable = dwc2_hsotg_ep_disable_lock, 4395 .alloc_request = dwc2_hsotg_ep_alloc_request, 4396 .free_request = dwc2_hsotg_ep_free_request, 4397 .queue = dwc2_hsotg_ep_queue_lock, 4398 .dequeue = dwc2_hsotg_ep_dequeue, 4399 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4400 /* note, don't believe we have any call for the fifo routines */ 4401 }; 4402 4403 /** 4404 * dwc2_hsotg_init - initialize the usb core 4405 * @hsotg: The driver state 4406 */ 4407 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4408 { 4409 /* unmask subset of endpoint interrupts */ 4410 4411 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4412 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4413 DIEPMSK); 4414 4415 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4416 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4417 DOEPMSK); 4418 4419 dwc2_writel(hsotg, 0, DAINTMSK); 4420 4421 /* Be in disconnected state until gadget is registered */ 4422 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4423 4424 /* setup fifos */ 4425 4426 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4427 dwc2_readl(hsotg, GRXFSIZ), 4428 dwc2_readl(hsotg, GNPTXFSIZ)); 4429 4430 dwc2_hsotg_init_fifo(hsotg); 4431 4432 if (using_dma(hsotg)) 4433 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4434 } 4435 4436 /** 4437 * dwc2_hsotg_udc_start - prepare the udc for work 4438 * @gadget: The usb gadget state 4439 * @driver: The usb gadget driver 4440 * 4441 * Perform initialization to prepare udc device and driver 4442 * to work. 4443 */ 4444 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4445 struct usb_gadget_driver *driver) 4446 { 4447 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4448 unsigned long flags; 4449 int ret; 4450 4451 if (!hsotg) { 4452 pr_err("%s: called with no device\n", __func__); 4453 return -ENODEV; 4454 } 4455 4456 if (!driver) { 4457 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4458 return -EINVAL; 4459 } 4460 4461 if (driver->max_speed < USB_SPEED_FULL) 4462 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4463 4464 if (!driver->setup) { 4465 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4466 return -EINVAL; 4467 } 4468 4469 WARN_ON(hsotg->driver); 4470 4471 driver->driver.bus = NULL; 4472 hsotg->driver = driver; 4473 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4474 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4475 4476 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4477 ret = dwc2_lowlevel_hw_enable(hsotg); 4478 if (ret) 4479 goto err; 4480 } 4481 4482 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4483 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4484 4485 spin_lock_irqsave(&hsotg->lock, flags); 4486 if (dwc2_hw_is_device(hsotg)) { 4487 dwc2_hsotg_init(hsotg); 4488 dwc2_hsotg_core_init_disconnected(hsotg, false); 4489 } 4490 4491 hsotg->enabled = 0; 4492 spin_unlock_irqrestore(&hsotg->lock, flags); 4493 4494 gadget->sg_supported = using_desc_dma(hsotg); 4495 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4496 4497 return 0; 4498 4499 err: 4500 hsotg->driver = NULL; 4501 return ret; 4502 } 4503 4504 /** 4505 * dwc2_hsotg_udc_stop - stop the udc 4506 * @gadget: The usb gadget state 4507 * 4508 * Stop udc hw block and stay tunned for future transmissions 4509 */ 4510 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4511 { 4512 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4513 unsigned long flags = 0; 4514 int ep; 4515 4516 if (!hsotg) 4517 return -ENODEV; 4518 4519 /* all endpoints should be shutdown */ 4520 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4521 if (hsotg->eps_in[ep]) 4522 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4523 if (hsotg->eps_out[ep]) 4524 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4525 } 4526 4527 spin_lock_irqsave(&hsotg->lock, flags); 4528 4529 hsotg->driver = NULL; 4530 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4531 hsotg->enabled = 0; 4532 4533 spin_unlock_irqrestore(&hsotg->lock, flags); 4534 4535 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4536 otg_set_peripheral(hsotg->uphy->otg, NULL); 4537 4538 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4539 dwc2_lowlevel_hw_disable(hsotg); 4540 4541 return 0; 4542 } 4543 4544 /** 4545 * dwc2_hsotg_gadget_getframe - read the frame number 4546 * @gadget: The usb gadget state 4547 * 4548 * Read the {micro} frame number 4549 */ 4550 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4551 { 4552 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4553 } 4554 4555 /** 4556 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4557 * @gadget: The usb gadget state 4558 * @is_selfpowered: Whether the device is self-powered 4559 * 4560 * Set if the device is self or bus powered. 4561 */ 4562 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4563 int is_selfpowered) 4564 { 4565 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4566 unsigned long flags; 4567 4568 spin_lock_irqsave(&hsotg->lock, flags); 4569 gadget->is_selfpowered = !!is_selfpowered; 4570 spin_unlock_irqrestore(&hsotg->lock, flags); 4571 4572 return 0; 4573 } 4574 4575 /** 4576 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4577 * @gadget: The usb gadget state 4578 * @is_on: Current state of the USB PHY 4579 * 4580 * Connect/Disconnect the USB PHY pullup 4581 */ 4582 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4583 { 4584 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4585 unsigned long flags = 0; 4586 4587 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4588 hsotg->op_state); 4589 4590 /* Don't modify pullup state while in host mode */ 4591 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4592 hsotg->enabled = is_on; 4593 return 0; 4594 } 4595 4596 spin_lock_irqsave(&hsotg->lock, flags); 4597 if (is_on) { 4598 hsotg->enabled = 1; 4599 dwc2_hsotg_core_init_disconnected(hsotg, false); 4600 /* Enable ACG feature in device mode,if supported */ 4601 dwc2_enable_acg(hsotg); 4602 dwc2_hsotg_core_connect(hsotg); 4603 } else { 4604 dwc2_hsotg_core_disconnect(hsotg); 4605 dwc2_hsotg_disconnect(hsotg); 4606 hsotg->enabled = 0; 4607 } 4608 4609 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4610 spin_unlock_irqrestore(&hsotg->lock, flags); 4611 4612 return 0; 4613 } 4614 4615 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4616 { 4617 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4618 unsigned long flags; 4619 4620 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4621 spin_lock_irqsave(&hsotg->lock, flags); 4622 4623 /* 4624 * If controller is hibernated, it must exit from power_down 4625 * before being initialized / de-initialized 4626 */ 4627 if (hsotg->lx_state == DWC2_L2) 4628 dwc2_exit_partial_power_down(hsotg, false); 4629 4630 if (is_active) { 4631 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4632 4633 dwc2_hsotg_core_init_disconnected(hsotg, false); 4634 if (hsotg->enabled) { 4635 /* Enable ACG feature in device mode,if supported */ 4636 dwc2_enable_acg(hsotg); 4637 dwc2_hsotg_core_connect(hsotg); 4638 } 4639 } else { 4640 dwc2_hsotg_core_disconnect(hsotg); 4641 dwc2_hsotg_disconnect(hsotg); 4642 } 4643 4644 spin_unlock_irqrestore(&hsotg->lock, flags); 4645 return 0; 4646 } 4647 4648 /** 4649 * dwc2_hsotg_vbus_draw - report bMaxPower field 4650 * @gadget: The usb gadget state 4651 * @mA: Amount of current 4652 * 4653 * Report how much power the device may consume to the phy. 4654 */ 4655 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4656 { 4657 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4658 4659 if (IS_ERR_OR_NULL(hsotg->uphy)) 4660 return -ENOTSUPP; 4661 return usb_phy_set_power(hsotg->uphy, mA); 4662 } 4663 4664 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4665 .get_frame = dwc2_hsotg_gadget_getframe, 4666 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4667 .udc_start = dwc2_hsotg_udc_start, 4668 .udc_stop = dwc2_hsotg_udc_stop, 4669 .pullup = dwc2_hsotg_pullup, 4670 .vbus_session = dwc2_hsotg_vbus_session, 4671 .vbus_draw = dwc2_hsotg_vbus_draw, 4672 }; 4673 4674 /** 4675 * dwc2_hsotg_initep - initialise a single endpoint 4676 * @hsotg: The device state. 4677 * @hs_ep: The endpoint to be initialised. 4678 * @epnum: The endpoint number 4679 * @dir_in: True if direction is in. 4680 * 4681 * Initialise the given endpoint (as part of the probe and device state 4682 * creation) to give to the gadget driver. Setup the endpoint name, any 4683 * direction information and other state that may be required. 4684 */ 4685 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4686 struct dwc2_hsotg_ep *hs_ep, 4687 int epnum, 4688 bool dir_in) 4689 { 4690 char *dir; 4691 4692 if (epnum == 0) 4693 dir = ""; 4694 else if (dir_in) 4695 dir = "in"; 4696 else 4697 dir = "out"; 4698 4699 hs_ep->dir_in = dir_in; 4700 hs_ep->index = epnum; 4701 4702 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4703 4704 INIT_LIST_HEAD(&hs_ep->queue); 4705 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4706 4707 /* add to the list of endpoints known by the gadget driver */ 4708 if (epnum) 4709 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4710 4711 hs_ep->parent = hsotg; 4712 hs_ep->ep.name = hs_ep->name; 4713 4714 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4715 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4716 else 4717 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4718 epnum ? 1024 : EP0_MPS_LIMIT); 4719 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4720 4721 if (epnum == 0) { 4722 hs_ep->ep.caps.type_control = true; 4723 } else { 4724 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4725 hs_ep->ep.caps.type_iso = true; 4726 hs_ep->ep.caps.type_bulk = true; 4727 } 4728 hs_ep->ep.caps.type_int = true; 4729 } 4730 4731 if (dir_in) 4732 hs_ep->ep.caps.dir_in = true; 4733 else 4734 hs_ep->ep.caps.dir_out = true; 4735 4736 /* 4737 * if we're using dma, we need to set the next-endpoint pointer 4738 * to be something valid. 4739 */ 4740 4741 if (using_dma(hsotg)) { 4742 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4743 4744 if (dir_in) 4745 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4746 else 4747 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4748 } 4749 } 4750 4751 /** 4752 * dwc2_hsotg_hw_cfg - read HW configuration registers 4753 * @hsotg: Programming view of the DWC_otg controller 4754 * 4755 * Read the USB core HW configuration registers 4756 */ 4757 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4758 { 4759 u32 cfg; 4760 u32 ep_type; 4761 u32 i; 4762 4763 /* check hardware configuration */ 4764 4765 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4766 4767 /* Add ep0 */ 4768 hsotg->num_of_eps++; 4769 4770 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4771 sizeof(struct dwc2_hsotg_ep), 4772 GFP_KERNEL); 4773 if (!hsotg->eps_in[0]) 4774 return -ENOMEM; 4775 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4776 hsotg->eps_out[0] = hsotg->eps_in[0]; 4777 4778 cfg = hsotg->hw_params.dev_ep_dirs; 4779 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4780 ep_type = cfg & 3; 4781 /* Direction in or both */ 4782 if (!(ep_type & 2)) { 4783 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4784 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4785 if (!hsotg->eps_in[i]) 4786 return -ENOMEM; 4787 } 4788 /* Direction out or both */ 4789 if (!(ep_type & 1)) { 4790 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4791 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4792 if (!hsotg->eps_out[i]) 4793 return -ENOMEM; 4794 } 4795 } 4796 4797 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4798 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4799 4800 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4801 hsotg->num_of_eps, 4802 hsotg->dedicated_fifos ? "dedicated" : "shared", 4803 hsotg->fifo_mem); 4804 return 0; 4805 } 4806 4807 /** 4808 * dwc2_hsotg_dump - dump state of the udc 4809 * @hsotg: Programming view of the DWC_otg controller 4810 * 4811 */ 4812 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4813 { 4814 #ifdef DEBUG 4815 struct device *dev = hsotg->dev; 4816 u32 val; 4817 int idx; 4818 4819 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4820 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4821 dwc2_readl(hsotg, DIEPMSK)); 4822 4823 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4824 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4825 4826 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4827 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4828 4829 /* show periodic fifo settings */ 4830 4831 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4832 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4833 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4834 val >> FIFOSIZE_DEPTH_SHIFT, 4835 val & FIFOSIZE_STARTADDR_MASK); 4836 } 4837 4838 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4839 dev_info(dev, 4840 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4841 dwc2_readl(hsotg, DIEPCTL(idx)), 4842 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4843 dwc2_readl(hsotg, DIEPDMA(idx))); 4844 4845 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4846 dev_info(dev, 4847 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4848 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4849 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4850 dwc2_readl(hsotg, DOEPDMA(idx))); 4851 } 4852 4853 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4854 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4855 #endif 4856 } 4857 4858 /** 4859 * dwc2_gadget_init - init function for gadget 4860 * @hsotg: Programming view of the DWC_otg controller 4861 * 4862 */ 4863 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4864 { 4865 struct device *dev = hsotg->dev; 4866 int epnum; 4867 int ret; 4868 4869 /* Dump fifo information */ 4870 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4871 hsotg->params.g_np_tx_fifo_size); 4872 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4873 4874 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4875 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4876 hsotg->gadget.name = dev_name(dev); 4877 hsotg->remote_wakeup_allowed = 0; 4878 4879 if (hsotg->params.lpm) 4880 hsotg->gadget.lpm_capable = true; 4881 4882 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4883 hsotg->gadget.is_otg = 1; 4884 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4885 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4886 4887 ret = dwc2_hsotg_hw_cfg(hsotg); 4888 if (ret) { 4889 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4890 return ret; 4891 } 4892 4893 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4894 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4895 if (!hsotg->ctrl_buff) 4896 return -ENOMEM; 4897 4898 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4899 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4900 if (!hsotg->ep0_buff) 4901 return -ENOMEM; 4902 4903 if (using_desc_dma(hsotg)) { 4904 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4905 if (ret < 0) 4906 return ret; 4907 } 4908 4909 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4910 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4911 if (ret < 0) { 4912 dev_err(dev, "cannot claim IRQ for gadget\n"); 4913 return ret; 4914 } 4915 4916 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4917 4918 if (hsotg->num_of_eps == 0) { 4919 dev_err(dev, "wrong number of EPs (zero)\n"); 4920 return -EINVAL; 4921 } 4922 4923 /* setup endpoint information */ 4924 4925 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4926 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4927 4928 /* allocate EP0 request */ 4929 4930 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4931 GFP_KERNEL); 4932 if (!hsotg->ctrl_req) { 4933 dev_err(dev, "failed to allocate ctrl req\n"); 4934 return -ENOMEM; 4935 } 4936 4937 /* initialise the endpoints now the core has been initialised */ 4938 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4939 if (hsotg->eps_in[epnum]) 4940 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4941 epnum, 1); 4942 if (hsotg->eps_out[epnum]) 4943 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4944 epnum, 0); 4945 } 4946 4947 dwc2_hsotg_dump(hsotg); 4948 4949 return 0; 4950 } 4951 4952 /** 4953 * dwc2_hsotg_remove - remove function for hsotg driver 4954 * @hsotg: Programming view of the DWC_otg controller 4955 * 4956 */ 4957 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4958 { 4959 usb_del_gadget_udc(&hsotg->gadget); 4960 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4961 4962 return 0; 4963 } 4964 4965 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4966 { 4967 unsigned long flags; 4968 4969 if (hsotg->lx_state != DWC2_L0) 4970 return 0; 4971 4972 if (hsotg->driver) { 4973 int ep; 4974 4975 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4976 hsotg->driver->driver.name); 4977 4978 spin_lock_irqsave(&hsotg->lock, flags); 4979 if (hsotg->enabled) 4980 dwc2_hsotg_core_disconnect(hsotg); 4981 dwc2_hsotg_disconnect(hsotg); 4982 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4983 spin_unlock_irqrestore(&hsotg->lock, flags); 4984 4985 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4986 if (hsotg->eps_in[ep]) 4987 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4988 if (hsotg->eps_out[ep]) 4989 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4990 } 4991 } 4992 4993 return 0; 4994 } 4995 4996 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4997 { 4998 unsigned long flags; 4999 5000 if (hsotg->lx_state == DWC2_L2) 5001 return 0; 5002 5003 if (hsotg->driver) { 5004 dev_info(hsotg->dev, "resuming usb gadget %s\n", 5005 hsotg->driver->driver.name); 5006 5007 spin_lock_irqsave(&hsotg->lock, flags); 5008 dwc2_hsotg_core_init_disconnected(hsotg, false); 5009 if (hsotg->enabled) { 5010 /* Enable ACG feature in device mode,if supported */ 5011 dwc2_enable_acg(hsotg); 5012 dwc2_hsotg_core_connect(hsotg); 5013 } 5014 spin_unlock_irqrestore(&hsotg->lock, flags); 5015 } 5016 5017 return 0; 5018 } 5019 5020 /** 5021 * dwc2_backup_device_registers() - Backup controller device registers. 5022 * When suspending usb bus, registers needs to be backuped 5023 * if controller power is disabled once suspended. 5024 * 5025 * @hsotg: Programming view of the DWC_otg controller 5026 */ 5027 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5028 { 5029 struct dwc2_dregs_backup *dr; 5030 int i; 5031 5032 dev_dbg(hsotg->dev, "%s\n", __func__); 5033 5034 /* Backup dev regs */ 5035 dr = &hsotg->dr_backup; 5036 5037 dr->dcfg = dwc2_readl(hsotg, DCFG); 5038 dr->dctl = dwc2_readl(hsotg, DCTL); 5039 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5040 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5041 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5042 5043 for (i = 0; i < hsotg->num_of_eps; i++) { 5044 /* Backup IN EPs */ 5045 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5046 5047 /* Ensure DATA PID is correctly configured */ 5048 if (dr->diepctl[i] & DXEPCTL_DPID) 5049 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5050 else 5051 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5052 5053 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5054 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5055 5056 /* Backup OUT EPs */ 5057 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5058 5059 /* Ensure DATA PID is correctly configured */ 5060 if (dr->doepctl[i] & DXEPCTL_DPID) 5061 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5062 else 5063 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5064 5065 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5066 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5067 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5068 } 5069 dr->valid = true; 5070 return 0; 5071 } 5072 5073 /** 5074 * dwc2_restore_device_registers() - Restore controller device registers. 5075 * When resuming usb bus, device registers needs to be restored 5076 * if controller power were disabled. 5077 * 5078 * @hsotg: Programming view of the DWC_otg controller 5079 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5080 * 5081 * Return: 0 if successful, negative error code otherwise 5082 */ 5083 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5084 { 5085 struct dwc2_dregs_backup *dr; 5086 int i; 5087 5088 dev_dbg(hsotg->dev, "%s\n", __func__); 5089 5090 /* Restore dev regs */ 5091 dr = &hsotg->dr_backup; 5092 if (!dr->valid) { 5093 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5094 __func__); 5095 return -EINVAL; 5096 } 5097 dr->valid = false; 5098 5099 if (!remote_wakeup) 5100 dwc2_writel(hsotg, dr->dctl, DCTL); 5101 5102 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5103 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5104 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5105 5106 for (i = 0; i < hsotg->num_of_eps; i++) { 5107 /* Restore IN EPs */ 5108 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5109 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5110 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5111 /** WA for enabled EPx's IN in DDMA mode. On entering to 5112 * hibernation wrong value read and saved from DIEPDMAx, 5113 * as result BNA interrupt asserted on hibernation exit 5114 * by restoring from saved area. 5115 */ 5116 if (hsotg->params.g_dma_desc && 5117 (dr->diepctl[i] & DXEPCTL_EPENA)) 5118 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5119 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5120 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5121 /* Restore OUT EPs */ 5122 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5123 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5124 * hibernation wrong value read and saved from DOEPDMAx, 5125 * as result BNA interrupt asserted on hibernation exit 5126 * by restoring from saved area. 5127 */ 5128 if (hsotg->params.g_dma_desc && 5129 (dr->doepctl[i] & DXEPCTL_EPENA)) 5130 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5131 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5132 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5133 } 5134 5135 return 0; 5136 } 5137 5138 /** 5139 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5140 * 5141 * @hsotg: Programming view of DWC_otg controller 5142 * 5143 */ 5144 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5145 { 5146 u32 val; 5147 5148 if (!hsotg->params.lpm) 5149 return; 5150 5151 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5152 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5153 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5154 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5155 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5156 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5157 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5158 dwc2_writel(hsotg, val, GLPMCFG); 5159 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5160 5161 /* Unmask WKUP_ALERT Interrupt */ 5162 if (hsotg->params.service_interval) 5163 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5164 } 5165 5166 /** 5167 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5168 * 5169 * @hsotg: Programming view of DWC_otg controller 5170 * 5171 */ 5172 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5173 { 5174 u32 val = 0; 5175 5176 val |= GREFCLK_REF_CLK_MODE; 5177 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5178 val |= hsotg->params.sof_cnt_wkup_alert << 5179 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5180 5181 dwc2_writel(hsotg, val, GREFCLK); 5182 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5183 } 5184 5185 /** 5186 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5187 * 5188 * @hsotg: Programming view of the DWC_otg controller 5189 * 5190 * Return non-zero if failed to enter to hibernation. 5191 */ 5192 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5193 { 5194 u32 gpwrdn; 5195 int ret = 0; 5196 5197 /* Change to L2(suspend) state */ 5198 hsotg->lx_state = DWC2_L2; 5199 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5200 ret = dwc2_backup_global_registers(hsotg); 5201 if (ret) { 5202 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5203 __func__); 5204 return ret; 5205 } 5206 ret = dwc2_backup_device_registers(hsotg); 5207 if (ret) { 5208 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5209 __func__); 5210 return ret; 5211 } 5212 5213 gpwrdn = GPWRDN_PWRDNRSTN; 5214 gpwrdn |= GPWRDN_PMUACTV; 5215 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5216 udelay(10); 5217 5218 /* Set flag to indicate that we are in hibernation */ 5219 hsotg->hibernated = 1; 5220 5221 /* Enable interrupts from wake up logic */ 5222 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5223 gpwrdn |= GPWRDN_PMUINTSEL; 5224 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5225 udelay(10); 5226 5227 /* Unmask device mode interrupts in GPWRDN */ 5228 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5229 gpwrdn |= GPWRDN_RST_DET_MSK; 5230 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5231 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5232 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5233 udelay(10); 5234 5235 /* Enable Power Down Clamp */ 5236 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5237 gpwrdn |= GPWRDN_PWRDNCLMP; 5238 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5239 udelay(10); 5240 5241 /* Switch off VDD */ 5242 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5243 gpwrdn |= GPWRDN_PWRDNSWTCH; 5244 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5245 udelay(10); 5246 5247 /* Save gpwrdn register for further usage if stschng interrupt */ 5248 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5249 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5250 5251 return ret; 5252 } 5253 5254 /** 5255 * dwc2_gadget_exit_hibernation() 5256 * This function is for exiting from Device mode hibernation by host initiated 5257 * resume/reset and device initiated remote-wakeup. 5258 * 5259 * @hsotg: Programming view of the DWC_otg controller 5260 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5261 * @reset: indicates whether resume is initiated by Reset. 5262 * 5263 * Return non-zero if failed to exit from hibernation. 5264 */ 5265 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5266 int rem_wakeup, int reset) 5267 { 5268 u32 pcgcctl; 5269 u32 gpwrdn; 5270 u32 dctl; 5271 int ret = 0; 5272 struct dwc2_gregs_backup *gr; 5273 struct dwc2_dregs_backup *dr; 5274 5275 gr = &hsotg->gr_backup; 5276 dr = &hsotg->dr_backup; 5277 5278 if (!hsotg->hibernated) { 5279 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5280 return 1; 5281 } 5282 dev_dbg(hsotg->dev, 5283 "%s: called with rem_wakeup = %d reset = %d\n", 5284 __func__, rem_wakeup, reset); 5285 5286 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5287 5288 if (!reset) { 5289 /* Clear all pending interupts */ 5290 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5291 } 5292 5293 /* De-assert Restore */ 5294 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5295 gpwrdn &= ~GPWRDN_RESTORE; 5296 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5297 udelay(10); 5298 5299 if (!rem_wakeup) { 5300 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5301 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5302 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5303 } 5304 5305 /* Restore GUSBCFG, DCFG and DCTL */ 5306 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5307 dwc2_writel(hsotg, dr->dcfg, DCFG); 5308 dwc2_writel(hsotg, dr->dctl, DCTL); 5309 5310 /* De-assert Wakeup Logic */ 5311 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5312 gpwrdn &= ~GPWRDN_PMUACTV; 5313 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5314 5315 if (rem_wakeup) { 5316 udelay(10); 5317 /* Start Remote Wakeup Signaling */ 5318 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5319 } else { 5320 udelay(50); 5321 /* Set Device programming done bit */ 5322 dctl = dwc2_readl(hsotg, DCTL); 5323 dctl |= DCTL_PWRONPRGDONE; 5324 dwc2_writel(hsotg, dctl, DCTL); 5325 } 5326 /* Wait for interrupts which must be cleared */ 5327 mdelay(2); 5328 /* Clear all pending interupts */ 5329 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5330 5331 /* Restore global registers */ 5332 ret = dwc2_restore_global_registers(hsotg); 5333 if (ret) { 5334 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5335 __func__); 5336 return ret; 5337 } 5338 5339 /* Restore device registers */ 5340 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5341 if (ret) { 5342 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5343 __func__); 5344 return ret; 5345 } 5346 5347 if (rem_wakeup) { 5348 mdelay(10); 5349 dctl = dwc2_readl(hsotg, DCTL); 5350 dctl &= ~DCTL_RMTWKUPSIG; 5351 dwc2_writel(hsotg, dctl, DCTL); 5352 } 5353 5354 hsotg->hibernated = 0; 5355 hsotg->lx_state = DWC2_L0; 5356 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5357 5358 return ret; 5359 } 5360