xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 0f4630f3)
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/of_platform.h>
29 
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
33 
34 #include "core.h"
35 #include "hw.h"
36 
37 /* conversion functions */
38 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39 {
40 	return container_of(req, struct dwc2_hsotg_req, req);
41 }
42 
43 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44 {
45 	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 }
47 
48 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49 {
50 	return container_of(gadget, struct dwc2_hsotg, gadget);
51 }
52 
53 static inline void __orr32(void __iomem *ptr, u32 val)
54 {
55 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 }
57 
58 static inline void __bic32(void __iomem *ptr, u32 val)
59 {
60 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 }
62 
63 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 						u32 ep_index, u32 dir_in)
65 {
66 	if (dir_in)
67 		return hsotg->eps_in[ep_index];
68 	else
69 		return hsotg->eps_out[ep_index];
70 }
71 
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 
75 /**
76  * using_dma - return the DMA status of the driver.
77  * @hsotg: The driver state.
78  *
79  * Return true if we're using DMA.
80  *
81  * Currently, we have the DMA support code worked into everywhere
82  * that needs it, but the AMBA DMA implementation in the hardware can
83  * only DMA from 32bit aligned addresses. This means that gadgets such
84  * as the CDC Ethernet cannot work as they often pass packets which are
85  * not 32bit aligned.
86  *
87  * Unfortunately the choice to use DMA or not is global to the controller
88  * and seems to be only settable when the controller is being put through
89  * a core reset. This means we either need to fix the gadgets to take
90  * account of DMA alignment, or add bounce buffers (yuerk).
91  *
92  * g_using_dma is set depending on dts flag.
93  */
94 static inline bool using_dma(struct dwc2_hsotg *hsotg)
95 {
96 	return hsotg->g_using_dma;
97 }
98 
99 /**
100  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
101  * @hsotg: The device state
102  * @ints: A bitmask of the interrupts to enable
103  */
104 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
105 {
106 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
107 	u32 new_gsintmsk;
108 
109 	new_gsintmsk = gsintmsk | ints;
110 
111 	if (new_gsintmsk != gsintmsk) {
112 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
113 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
114 	}
115 }
116 
117 /**
118  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
119  * @hsotg: The device state
120  * @ints: A bitmask of the interrupts to enable
121  */
122 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
123 {
124 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
125 	u32 new_gsintmsk;
126 
127 	new_gsintmsk = gsintmsk & ~ints;
128 
129 	if (new_gsintmsk != gsintmsk)
130 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
131 }
132 
133 /**
134  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
135  * @hsotg: The device state
136  * @ep: The endpoint index
137  * @dir_in: True if direction is in.
138  * @en: The enable value, true to enable
139  *
140  * Set or clear the mask for an individual endpoint's interrupt
141  * request.
142  */
143 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
144 				 unsigned int ep, unsigned int dir_in,
145 				 unsigned int en)
146 {
147 	unsigned long flags;
148 	u32 bit = 1 << ep;
149 	u32 daint;
150 
151 	if (!dir_in)
152 		bit <<= 16;
153 
154 	local_irq_save(flags);
155 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
156 	if (en)
157 		daint |= bit;
158 	else
159 		daint &= ~bit;
160 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
161 	local_irq_restore(flags);
162 }
163 
164 /**
165  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
166  * @hsotg: The device instance.
167  */
168 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
169 {
170 	unsigned int ep;
171 	unsigned int addr;
172 	int timeout;
173 	u32 val;
174 
175 	/* Reset fifo map if not correctly cleared during previous session */
176 	WARN_ON(hsotg->fifo_map);
177 	hsotg->fifo_map = 0;
178 
179 	/* set RX/NPTX FIFO sizes */
180 	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
181 	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
182 		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
183 		hsotg->regs + GNPTXFSIZ);
184 
185 	/*
186 	 * arange all the rest of the TX FIFOs, as some versions of this
187 	 * block have overlapping default addresses. This also ensures
188 	 * that if the settings have been changed, then they are set to
189 	 * known values.
190 	 */
191 
192 	/* start at the end of the GNPTXFSIZ, rounded up */
193 	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
194 
195 	/*
196 	 * Configure fifos sizes from provided configuration and assign
197 	 * them to endpoints dynamically according to maxpacket size value of
198 	 * given endpoint.
199 	 */
200 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
201 		if (!hsotg->g_tx_fifo_sz[ep])
202 			continue;
203 		val = addr;
204 		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
205 		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
206 			  "insufficient fifo memory");
207 		addr += hsotg->g_tx_fifo_sz[ep];
208 
209 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
210 	}
211 
212 	/*
213 	 * according to p428 of the design guide, we need to ensure that
214 	 * all fifos are flushed before continuing
215 	 */
216 
217 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
218 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
219 
220 	/* wait until the fifos are both flushed */
221 	timeout = 100;
222 	while (1) {
223 		val = dwc2_readl(hsotg->regs + GRSTCTL);
224 
225 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
226 			break;
227 
228 		if (--timeout == 0) {
229 			dev_err(hsotg->dev,
230 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
231 				__func__, val);
232 			break;
233 		}
234 
235 		udelay(1);
236 	}
237 
238 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
239 }
240 
241 /**
242  * @ep: USB endpoint to allocate request for.
243  * @flags: Allocation flags
244  *
245  * Allocate a new USB request structure appropriate for the specified endpoint
246  */
247 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
248 						      gfp_t flags)
249 {
250 	struct dwc2_hsotg_req *req;
251 
252 	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
253 	if (!req)
254 		return NULL;
255 
256 	INIT_LIST_HEAD(&req->queue);
257 
258 	return &req->req;
259 }
260 
261 /**
262  * is_ep_periodic - return true if the endpoint is in periodic mode.
263  * @hs_ep: The endpoint to query.
264  *
265  * Returns true if the endpoint is in periodic mode, meaning it is being
266  * used for an Interrupt or ISO transfer.
267  */
268 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
269 {
270 	return hs_ep->periodic;
271 }
272 
273 /**
274  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
275  * @hsotg: The device state.
276  * @hs_ep: The endpoint for the request
277  * @hs_req: The request being processed.
278  *
279  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
280  * of a request to ensure the buffer is ready for access by the caller.
281  */
282 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
283 				struct dwc2_hsotg_ep *hs_ep,
284 				struct dwc2_hsotg_req *hs_req)
285 {
286 	struct usb_request *req = &hs_req->req;
287 
288 	/* ignore this if we're not moving any data */
289 	if (hs_req->req.length == 0)
290 		return;
291 
292 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
293 }
294 
295 /**
296  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
297  * @hsotg: The controller state.
298  * @hs_ep: The endpoint we're going to write for.
299  * @hs_req: The request to write data for.
300  *
301  * This is called when the TxFIFO has some space in it to hold a new
302  * transmission and we have something to give it. The actual setup of
303  * the data size is done elsewhere, so all we have to do is to actually
304  * write the data.
305  *
306  * The return value is zero if there is more space (or nothing was done)
307  * otherwise -ENOSPC is returned if the FIFO space was used up.
308  *
309  * This routine is only needed for PIO
310  */
311 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
312 				struct dwc2_hsotg_ep *hs_ep,
313 				struct dwc2_hsotg_req *hs_req)
314 {
315 	bool periodic = is_ep_periodic(hs_ep);
316 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
317 	int buf_pos = hs_req->req.actual;
318 	int to_write = hs_ep->size_loaded;
319 	void *data;
320 	int can_write;
321 	int pkt_round;
322 	int max_transfer;
323 
324 	to_write -= (buf_pos - hs_ep->last_load);
325 
326 	/* if there's nothing to write, get out early */
327 	if (to_write == 0)
328 		return 0;
329 
330 	if (periodic && !hsotg->dedicated_fifos) {
331 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
332 		int size_left;
333 		int size_done;
334 
335 		/*
336 		 * work out how much data was loaded so we can calculate
337 		 * how much data is left in the fifo.
338 		 */
339 
340 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
341 
342 		/*
343 		 * if shared fifo, we cannot write anything until the
344 		 * previous data has been completely sent.
345 		 */
346 		if (hs_ep->fifo_load != 0) {
347 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
348 			return -ENOSPC;
349 		}
350 
351 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
352 			__func__, size_left,
353 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
354 
355 		/* how much of the data has moved */
356 		size_done = hs_ep->size_loaded - size_left;
357 
358 		/* how much data is left in the fifo */
359 		can_write = hs_ep->fifo_load - size_done;
360 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
361 			__func__, can_write);
362 
363 		can_write = hs_ep->fifo_size - can_write;
364 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
365 			__func__, can_write);
366 
367 		if (can_write <= 0) {
368 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
369 			return -ENOSPC;
370 		}
371 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
372 		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
373 
374 		can_write &= 0xffff;
375 		can_write *= 4;
376 	} else {
377 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
378 			dev_dbg(hsotg->dev,
379 				"%s: no queue slots available (0x%08x)\n",
380 				__func__, gnptxsts);
381 
382 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
383 			return -ENOSPC;
384 		}
385 
386 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
387 		can_write *= 4;	/* fifo size is in 32bit quantities. */
388 	}
389 
390 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
391 
392 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
393 		 __func__, gnptxsts, can_write, to_write, max_transfer);
394 
395 	/*
396 	 * limit to 512 bytes of data, it seems at least on the non-periodic
397 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
398 	 * fragment of the end of the transfer in it.
399 	 */
400 	if (can_write > 512 && !periodic)
401 		can_write = 512;
402 
403 	/*
404 	 * limit the write to one max-packet size worth of data, but allow
405 	 * the transfer to return that it did not run out of fifo space
406 	 * doing it.
407 	 */
408 	if (to_write > max_transfer) {
409 		to_write = max_transfer;
410 
411 		/* it's needed only when we do not use dedicated fifos */
412 		if (!hsotg->dedicated_fifos)
413 			dwc2_hsotg_en_gsint(hsotg,
414 					   periodic ? GINTSTS_PTXFEMP :
415 					   GINTSTS_NPTXFEMP);
416 	}
417 
418 	/* see if we can write data */
419 
420 	if (to_write > can_write) {
421 		to_write = can_write;
422 		pkt_round = to_write % max_transfer;
423 
424 		/*
425 		 * Round the write down to an
426 		 * exact number of packets.
427 		 *
428 		 * Note, we do not currently check to see if we can ever
429 		 * write a full packet or not to the FIFO.
430 		 */
431 
432 		if (pkt_round)
433 			to_write -= pkt_round;
434 
435 		/*
436 		 * enable correct FIFO interrupt to alert us when there
437 		 * is more room left.
438 		 */
439 
440 		/* it's needed only when we do not use dedicated fifos */
441 		if (!hsotg->dedicated_fifos)
442 			dwc2_hsotg_en_gsint(hsotg,
443 					   periodic ? GINTSTS_PTXFEMP :
444 					   GINTSTS_NPTXFEMP);
445 	}
446 
447 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
448 		 to_write, hs_req->req.length, can_write, buf_pos);
449 
450 	if (to_write <= 0)
451 		return -ENOSPC;
452 
453 	hs_req->req.actual = buf_pos + to_write;
454 	hs_ep->total_data += to_write;
455 
456 	if (periodic)
457 		hs_ep->fifo_load += to_write;
458 
459 	to_write = DIV_ROUND_UP(to_write, 4);
460 	data = hs_req->req.buf + buf_pos;
461 
462 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
463 
464 	return (to_write >= can_write) ? -ENOSPC : 0;
465 }
466 
467 /**
468  * get_ep_limit - get the maximum data legnth for this endpoint
469  * @hs_ep: The endpoint
470  *
471  * Return the maximum data that can be queued in one go on a given endpoint
472  * so that transfers that are too long can be split.
473  */
474 static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
475 {
476 	int index = hs_ep->index;
477 	unsigned maxsize;
478 	unsigned maxpkt;
479 
480 	if (index != 0) {
481 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
482 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
483 	} else {
484 		maxsize = 64+64;
485 		if (hs_ep->dir_in)
486 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
487 		else
488 			maxpkt = 2;
489 	}
490 
491 	/* we made the constant loading easier above by using +1 */
492 	maxpkt--;
493 	maxsize--;
494 
495 	/*
496 	 * constrain by packet count if maxpkts*pktsize is greater
497 	 * than the length register size.
498 	 */
499 
500 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
501 		maxsize = maxpkt * hs_ep->ep.maxpacket;
502 
503 	return maxsize;
504 }
505 
506 /**
507  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
508  * @hsotg: The controller state.
509  * @hs_ep: The endpoint to process a request for
510  * @hs_req: The request to start.
511  * @continuing: True if we are doing more for the current request.
512  *
513  * Start the given request running by setting the endpoint registers
514  * appropriately, and writing any data to the FIFOs.
515  */
516 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
517 				struct dwc2_hsotg_ep *hs_ep,
518 				struct dwc2_hsotg_req *hs_req,
519 				bool continuing)
520 {
521 	struct usb_request *ureq = &hs_req->req;
522 	int index = hs_ep->index;
523 	int dir_in = hs_ep->dir_in;
524 	u32 epctrl_reg;
525 	u32 epsize_reg;
526 	u32 epsize;
527 	u32 ctrl;
528 	unsigned length;
529 	unsigned packets;
530 	unsigned maxreq;
531 
532 	if (index != 0) {
533 		if (hs_ep->req && !continuing) {
534 			dev_err(hsotg->dev, "%s: active request\n", __func__);
535 			WARN_ON(1);
536 			return;
537 		} else if (hs_ep->req != hs_req && continuing) {
538 			dev_err(hsotg->dev,
539 				"%s: continue different req\n", __func__);
540 			WARN_ON(1);
541 			return;
542 		}
543 	}
544 
545 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
546 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
547 
548 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
549 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
550 		hs_ep->dir_in ? "in" : "out");
551 
552 	/* If endpoint is stalled, we will restart request later */
553 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
554 
555 	if (index && ctrl & DXEPCTL_STALL) {
556 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
557 		return;
558 	}
559 
560 	length = ureq->length - ureq->actual;
561 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
562 		ureq->length, ureq->actual);
563 
564 	maxreq = get_ep_limit(hs_ep);
565 	if (length > maxreq) {
566 		int round = maxreq % hs_ep->ep.maxpacket;
567 
568 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
569 			__func__, length, maxreq, round);
570 
571 		/* round down to multiple of packets */
572 		if (round)
573 			maxreq -= round;
574 
575 		length = maxreq;
576 	}
577 
578 	if (length)
579 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
580 	else
581 		packets = 1;	/* send one packet if length is zero. */
582 
583 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
584 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
585 		return;
586 	}
587 
588 	if (dir_in && index != 0)
589 		if (hs_ep->isochronous)
590 			epsize = DXEPTSIZ_MC(packets);
591 		else
592 			epsize = DXEPTSIZ_MC(1);
593 	else
594 		epsize = 0;
595 
596 	/*
597 	 * zero length packet should be programmed on its own and should not
598 	 * be counted in DIEPTSIZ.PktCnt with other packets.
599 	 */
600 	if (dir_in && ureq->zero && !continuing) {
601 		/* Test if zlp is actually required. */
602 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
603 					!(ureq->length % hs_ep->ep.maxpacket))
604 			hs_ep->send_zlp = 1;
605 	}
606 
607 	epsize |= DXEPTSIZ_PKTCNT(packets);
608 	epsize |= DXEPTSIZ_XFERSIZE(length);
609 
610 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
611 		__func__, packets, length, ureq->length, epsize, epsize_reg);
612 
613 	/* store the request as the current one we're doing */
614 	hs_ep->req = hs_req;
615 
616 	/* write size / packets */
617 	dwc2_writel(epsize, hsotg->regs + epsize_reg);
618 
619 	if (using_dma(hsotg) && !continuing) {
620 		unsigned int dma_reg;
621 
622 		/*
623 		 * write DMA address to control register, buffer already
624 		 * synced by dwc2_hsotg_ep_queue().
625 		 */
626 
627 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
628 		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
629 
630 		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
631 			__func__, &ureq->dma, dma_reg);
632 	}
633 
634 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
635 	ctrl |= DXEPCTL_USBACTEP;
636 
637 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
638 
639 	/* For Setup request do not clear NAK */
640 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
641 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
642 
643 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
644 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
645 
646 	/*
647 	 * set these, it seems that DMA support increments past the end
648 	 * of the packet buffer so we need to calculate the length from
649 	 * this information.
650 	 */
651 	hs_ep->size_loaded = length;
652 	hs_ep->last_load = ureq->actual;
653 
654 	if (dir_in && !using_dma(hsotg)) {
655 		/* set these anyway, we may need them for non-periodic in */
656 		hs_ep->fifo_load = 0;
657 
658 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
659 	}
660 
661 	/*
662 	 * clear the INTknTXFEmpMsk when we start request, more as a aide
663 	 * to debugging to see what is going on.
664 	 */
665 	if (dir_in)
666 		dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
667 		       hsotg->regs + DIEPINT(index));
668 
669 	/*
670 	 * Note, trying to clear the NAK here causes problems with transmit
671 	 * on the S3C6400 ending up with the TXFIFO becoming full.
672 	 */
673 
674 	/* check ep is enabled */
675 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
676 		dev_dbg(hsotg->dev,
677 			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
678 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
679 
680 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
681 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
682 
683 	/* enable ep interrupts */
684 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
685 }
686 
687 /**
688  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
689  * @hsotg: The device state.
690  * @hs_ep: The endpoint the request is on.
691  * @req: The request being processed.
692  *
693  * We've been asked to queue a request, so ensure that the memory buffer
694  * is correctly setup for DMA. If we've been passed an extant DMA address
695  * then ensure the buffer has been synced to memory. If our buffer has no
696  * DMA memory, then we map the memory and mark our request to allow us to
697  * cleanup on completion.
698  */
699 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
700 			     struct dwc2_hsotg_ep *hs_ep,
701 			     struct usb_request *req)
702 {
703 	struct dwc2_hsotg_req *hs_req = our_req(req);
704 	int ret;
705 
706 	/* if the length is zero, ignore the DMA data */
707 	if (hs_req->req.length == 0)
708 		return 0;
709 
710 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
711 	if (ret)
712 		goto dma_error;
713 
714 	return 0;
715 
716 dma_error:
717 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
718 		__func__, req->buf, req->length);
719 
720 	return -EIO;
721 }
722 
723 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
724 	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
725 {
726 	void *req_buf = hs_req->req.buf;
727 
728 	/* If dma is not being used or buffer is aligned */
729 	if (!using_dma(hsotg) || !((long)req_buf & 3))
730 		return 0;
731 
732 	WARN_ON(hs_req->saved_req_buf);
733 
734 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
735 			hs_ep->ep.name, req_buf, hs_req->req.length);
736 
737 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
738 	if (!hs_req->req.buf) {
739 		hs_req->req.buf = req_buf;
740 		dev_err(hsotg->dev,
741 			"%s: unable to allocate memory for bounce buffer\n",
742 			__func__);
743 		return -ENOMEM;
744 	}
745 
746 	/* Save actual buffer */
747 	hs_req->saved_req_buf = req_buf;
748 
749 	if (hs_ep->dir_in)
750 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
751 	return 0;
752 }
753 
754 static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
755 	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
756 {
757 	/* If dma is not being used or buffer was aligned */
758 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
759 		return;
760 
761 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
762 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
763 
764 	/* Copy data from bounce buffer on successful out transfer */
765 	if (!hs_ep->dir_in && !hs_req->req.status)
766 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
767 							hs_req->req.actual);
768 
769 	/* Free bounce buffer */
770 	kfree(hs_req->req.buf);
771 
772 	hs_req->req.buf = hs_req->saved_req_buf;
773 	hs_req->saved_req_buf = NULL;
774 }
775 
776 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
777 			      gfp_t gfp_flags)
778 {
779 	struct dwc2_hsotg_req *hs_req = our_req(req);
780 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
781 	struct dwc2_hsotg *hs = hs_ep->parent;
782 	bool first;
783 	int ret;
784 
785 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
786 		ep->name, req, req->length, req->buf, req->no_interrupt,
787 		req->zero, req->short_not_ok);
788 
789 	/* Prevent new request submission when controller is suspended */
790 	if (hs->lx_state == DWC2_L2) {
791 		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
792 				__func__);
793 		return -EAGAIN;
794 	}
795 
796 	/* initialise status of the request */
797 	INIT_LIST_HEAD(&hs_req->queue);
798 	req->actual = 0;
799 	req->status = -EINPROGRESS;
800 
801 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
802 	if (ret)
803 		return ret;
804 
805 	/* if we're using DMA, sync the buffers as necessary */
806 	if (using_dma(hs)) {
807 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
808 		if (ret)
809 			return ret;
810 	}
811 
812 	first = list_empty(&hs_ep->queue);
813 	list_add_tail(&hs_req->queue, &hs_ep->queue);
814 
815 	if (first)
816 		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
817 
818 	return 0;
819 }
820 
821 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
822 			      gfp_t gfp_flags)
823 {
824 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
825 	struct dwc2_hsotg *hs = hs_ep->parent;
826 	unsigned long flags = 0;
827 	int ret = 0;
828 
829 	spin_lock_irqsave(&hs->lock, flags);
830 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
831 	spin_unlock_irqrestore(&hs->lock, flags);
832 
833 	return ret;
834 }
835 
836 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
837 				      struct usb_request *req)
838 {
839 	struct dwc2_hsotg_req *hs_req = our_req(req);
840 
841 	kfree(hs_req);
842 }
843 
844 /**
845  * dwc2_hsotg_complete_oursetup - setup completion callback
846  * @ep: The endpoint the request was on.
847  * @req: The request completed.
848  *
849  * Called on completion of any requests the driver itself
850  * submitted that need cleaning up.
851  */
852 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
853 					struct usb_request *req)
854 {
855 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
856 	struct dwc2_hsotg *hsotg = hs_ep->parent;
857 
858 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
859 
860 	dwc2_hsotg_ep_free_request(ep, req);
861 }
862 
863 /**
864  * ep_from_windex - convert control wIndex value to endpoint
865  * @hsotg: The driver state.
866  * @windex: The control request wIndex field (in host order).
867  *
868  * Convert the given wIndex into a pointer to an driver endpoint
869  * structure, or return NULL if it is not a valid endpoint.
870  */
871 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
872 					   u32 windex)
873 {
874 	struct dwc2_hsotg_ep *ep;
875 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
876 	int idx = windex & 0x7F;
877 
878 	if (windex >= 0x100)
879 		return NULL;
880 
881 	if (idx > hsotg->num_of_eps)
882 		return NULL;
883 
884 	ep = index_to_ep(hsotg, idx, dir);
885 
886 	if (idx && ep->dir_in != dir)
887 		return NULL;
888 
889 	return ep;
890 }
891 
892 /**
893  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
894  * @hsotg: The driver state.
895  * @testmode: requested usb test mode
896  * Enable usb Test Mode requested by the Host.
897  */
898 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
899 {
900 	int dctl = dwc2_readl(hsotg->regs + DCTL);
901 
902 	dctl &= ~DCTL_TSTCTL_MASK;
903 	switch (testmode) {
904 	case TEST_J:
905 	case TEST_K:
906 	case TEST_SE0_NAK:
907 	case TEST_PACKET:
908 	case TEST_FORCE_EN:
909 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
910 		break;
911 	default:
912 		return -EINVAL;
913 	}
914 	dwc2_writel(dctl, hsotg->regs + DCTL);
915 	return 0;
916 }
917 
918 /**
919  * dwc2_hsotg_send_reply - send reply to control request
920  * @hsotg: The device state
921  * @ep: Endpoint 0
922  * @buff: Buffer for request
923  * @length: Length of reply.
924  *
925  * Create a request and queue it on the given endpoint. This is useful as
926  * an internal method of sending replies to certain control requests, etc.
927  */
928 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
929 				struct dwc2_hsotg_ep *ep,
930 				void *buff,
931 				int length)
932 {
933 	struct usb_request *req;
934 	int ret;
935 
936 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
937 
938 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
939 	hsotg->ep0_reply = req;
940 	if (!req) {
941 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
942 		return -ENOMEM;
943 	}
944 
945 	req->buf = hsotg->ep0_buff;
946 	req->length = length;
947 	/*
948 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
949 	 * STATUS stage.
950 	 */
951 	req->zero = 0;
952 	req->complete = dwc2_hsotg_complete_oursetup;
953 
954 	if (length)
955 		memcpy(req->buf, buff, length);
956 
957 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
958 	if (ret) {
959 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
960 		return ret;
961 	}
962 
963 	return 0;
964 }
965 
966 /**
967  * dwc2_hsotg_process_req_status - process request GET_STATUS
968  * @hsotg: The device state
969  * @ctrl: USB control request
970  */
971 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
972 					struct usb_ctrlrequest *ctrl)
973 {
974 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
975 	struct dwc2_hsotg_ep *ep;
976 	__le16 reply;
977 	int ret;
978 
979 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
980 
981 	if (!ep0->dir_in) {
982 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
983 		return -EINVAL;
984 	}
985 
986 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
987 	case USB_RECIP_DEVICE:
988 		reply = cpu_to_le16(0); /* bit 0 => self powered,
989 					 * bit 1 => remote wakeup */
990 		break;
991 
992 	case USB_RECIP_INTERFACE:
993 		/* currently, the data result should be zero */
994 		reply = cpu_to_le16(0);
995 		break;
996 
997 	case USB_RECIP_ENDPOINT:
998 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
999 		if (!ep)
1000 			return -ENOENT;
1001 
1002 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1003 		break;
1004 
1005 	default:
1006 		return 0;
1007 	}
1008 
1009 	if (le16_to_cpu(ctrl->wLength) != 2)
1010 		return -EINVAL;
1011 
1012 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1013 	if (ret) {
1014 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1015 		return ret;
1016 	}
1017 
1018 	return 1;
1019 }
1020 
1021 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1022 
1023 /**
1024  * get_ep_head - return the first request on the endpoint
1025  * @hs_ep: The controller endpoint to get
1026  *
1027  * Get the first request on the endpoint.
1028  */
1029 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1030 {
1031 	if (list_empty(&hs_ep->queue))
1032 		return NULL;
1033 
1034 	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1035 }
1036 
1037 /**
1038  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1039  * @hsotg: The device state
1040  * @ctrl: USB control request
1041  */
1042 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1043 					 struct usb_ctrlrequest *ctrl)
1044 {
1045 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1046 	struct dwc2_hsotg_req *hs_req;
1047 	bool restart;
1048 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1049 	struct dwc2_hsotg_ep *ep;
1050 	int ret;
1051 	bool halted;
1052 	u32 recip;
1053 	u32 wValue;
1054 	u32 wIndex;
1055 
1056 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1057 		__func__, set ? "SET" : "CLEAR");
1058 
1059 	wValue = le16_to_cpu(ctrl->wValue);
1060 	wIndex = le16_to_cpu(ctrl->wIndex);
1061 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1062 
1063 	switch (recip) {
1064 	case USB_RECIP_DEVICE:
1065 		switch (wValue) {
1066 		case USB_DEVICE_TEST_MODE:
1067 			if ((wIndex & 0xff) != 0)
1068 				return -EINVAL;
1069 			if (!set)
1070 				return -EINVAL;
1071 
1072 			hsotg->test_mode = wIndex >> 8;
1073 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1074 			if (ret) {
1075 				dev_err(hsotg->dev,
1076 					"%s: failed to send reply\n", __func__);
1077 				return ret;
1078 			}
1079 			break;
1080 		default:
1081 			return -ENOENT;
1082 		}
1083 		break;
1084 
1085 	case USB_RECIP_ENDPOINT:
1086 		ep = ep_from_windex(hsotg, wIndex);
1087 		if (!ep) {
1088 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1089 				__func__, wIndex);
1090 			return -ENOENT;
1091 		}
1092 
1093 		switch (wValue) {
1094 		case USB_ENDPOINT_HALT:
1095 			halted = ep->halted;
1096 
1097 			dwc2_hsotg_ep_sethalt(&ep->ep, set);
1098 
1099 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1100 			if (ret) {
1101 				dev_err(hsotg->dev,
1102 					"%s: failed to send reply\n", __func__);
1103 				return ret;
1104 			}
1105 
1106 			/*
1107 			 * we have to complete all requests for ep if it was
1108 			 * halted, and the halt was cleared by CLEAR_FEATURE
1109 			 */
1110 
1111 			if (!set && halted) {
1112 				/*
1113 				 * If we have request in progress,
1114 				 * then complete it
1115 				 */
1116 				if (ep->req) {
1117 					hs_req = ep->req;
1118 					ep->req = NULL;
1119 					list_del_init(&hs_req->queue);
1120 					if (hs_req->req.complete) {
1121 						spin_unlock(&hsotg->lock);
1122 						usb_gadget_giveback_request(
1123 							&ep->ep, &hs_req->req);
1124 						spin_lock(&hsotg->lock);
1125 					}
1126 				}
1127 
1128 				/* If we have pending request, then start it */
1129 				if (!ep->req) {
1130 					restart = !list_empty(&ep->queue);
1131 					if (restart) {
1132 						hs_req = get_ep_head(ep);
1133 						dwc2_hsotg_start_req(hsotg, ep,
1134 								hs_req, false);
1135 					}
1136 				}
1137 			}
1138 
1139 			break;
1140 
1141 		default:
1142 			return -ENOENT;
1143 		}
1144 		break;
1145 	default:
1146 		return -ENOENT;
1147 	}
1148 	return 1;
1149 }
1150 
1151 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1152 
1153 /**
1154  * dwc2_hsotg_stall_ep0 - stall ep0
1155  * @hsotg: The device state
1156  *
1157  * Set stall for ep0 as response for setup request.
1158  */
1159 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1160 {
1161 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1162 	u32 reg;
1163 	u32 ctrl;
1164 
1165 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1166 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1167 
1168 	/*
1169 	 * DxEPCTL_Stall will be cleared by EP once it has
1170 	 * taken effect, so no need to clear later.
1171 	 */
1172 
1173 	ctrl = dwc2_readl(hsotg->regs + reg);
1174 	ctrl |= DXEPCTL_STALL;
1175 	ctrl |= DXEPCTL_CNAK;
1176 	dwc2_writel(ctrl, hsotg->regs + reg);
1177 
1178 	dev_dbg(hsotg->dev,
1179 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1180 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1181 
1182 	 /*
1183 	  * complete won't be called, so we enqueue
1184 	  * setup request here
1185 	  */
1186 	 dwc2_hsotg_enqueue_setup(hsotg);
1187 }
1188 
1189 /**
1190  * dwc2_hsotg_process_control - process a control request
1191  * @hsotg: The device state
1192  * @ctrl: The control request received
1193  *
1194  * The controller has received the SETUP phase of a control request, and
1195  * needs to work out what to do next (and whether to pass it on to the
1196  * gadget driver).
1197  */
1198 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1199 				      struct usb_ctrlrequest *ctrl)
1200 {
1201 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202 	int ret = 0;
1203 	u32 dcfg;
1204 
1205 	dev_dbg(hsotg->dev,
1206 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1207 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1208 		ctrl->wIndex, ctrl->wLength);
1209 
1210 	if (ctrl->wLength == 0) {
1211 		ep0->dir_in = 1;
1212 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1213 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1214 		ep0->dir_in = 1;
1215 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1216 	} else {
1217 		ep0->dir_in = 0;
1218 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1219 	}
1220 
1221 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1222 		switch (ctrl->bRequest) {
1223 		case USB_REQ_SET_ADDRESS:
1224 			hsotg->connected = 1;
1225 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1226 			dcfg &= ~DCFG_DEVADDR_MASK;
1227 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1228 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1229 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1230 
1231 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1232 
1233 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1234 			return;
1235 
1236 		case USB_REQ_GET_STATUS:
1237 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1238 			break;
1239 
1240 		case USB_REQ_CLEAR_FEATURE:
1241 		case USB_REQ_SET_FEATURE:
1242 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1243 			break;
1244 		}
1245 	}
1246 
1247 	/* as a fallback, try delivering it to the driver to deal with */
1248 
1249 	if (ret == 0 && hsotg->driver) {
1250 		spin_unlock(&hsotg->lock);
1251 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1252 		spin_lock(&hsotg->lock);
1253 		if (ret < 0)
1254 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1255 	}
1256 
1257 	/*
1258 	 * the request is either unhandlable, or is not formatted correctly
1259 	 * so respond with a STALL for the status stage to indicate failure.
1260 	 */
1261 
1262 	if (ret < 0)
1263 		dwc2_hsotg_stall_ep0(hsotg);
1264 }
1265 
1266 /**
1267  * dwc2_hsotg_complete_setup - completion of a setup transfer
1268  * @ep: The endpoint the request was on.
1269  * @req: The request completed.
1270  *
1271  * Called on completion of any requests the driver itself submitted for
1272  * EP0 setup packets
1273  */
1274 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1275 				     struct usb_request *req)
1276 {
1277 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1278 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1279 
1280 	if (req->status < 0) {
1281 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1282 		return;
1283 	}
1284 
1285 	spin_lock(&hsotg->lock);
1286 	if (req->actual == 0)
1287 		dwc2_hsotg_enqueue_setup(hsotg);
1288 	else
1289 		dwc2_hsotg_process_control(hsotg, req->buf);
1290 	spin_unlock(&hsotg->lock);
1291 }
1292 
1293 /**
1294  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1295  * @hsotg: The device state.
1296  *
1297  * Enqueue a request on EP0 if necessary to received any SETUP packets
1298  * received from the host.
1299  */
1300 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1301 {
1302 	struct usb_request *req = hsotg->ctrl_req;
1303 	struct dwc2_hsotg_req *hs_req = our_req(req);
1304 	int ret;
1305 
1306 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1307 
1308 	req->zero = 0;
1309 	req->length = 8;
1310 	req->buf = hsotg->ctrl_buff;
1311 	req->complete = dwc2_hsotg_complete_setup;
1312 
1313 	if (!list_empty(&hs_req->queue)) {
1314 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1315 		return;
1316 	}
1317 
1318 	hsotg->eps_out[0]->dir_in = 0;
1319 	hsotg->eps_out[0]->send_zlp = 0;
1320 	hsotg->ep0_state = DWC2_EP0_SETUP;
1321 
1322 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1323 	if (ret < 0) {
1324 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1325 		/*
1326 		 * Don't think there's much we can do other than watch the
1327 		 * driver fail.
1328 		 */
1329 	}
1330 }
1331 
1332 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1333 					struct dwc2_hsotg_ep *hs_ep)
1334 {
1335 	u32 ctrl;
1336 	u8 index = hs_ep->index;
1337 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1338 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1339 
1340 	if (hs_ep->dir_in)
1341 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1342 									index);
1343 	else
1344 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1345 									index);
1346 
1347 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1348 		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1349 		    epsiz_reg);
1350 
1351 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1352 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1353 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1354 	ctrl |= DXEPCTL_USBACTEP;
1355 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1356 }
1357 
1358 /**
1359  * dwc2_hsotg_complete_request - complete a request given to us
1360  * @hsotg: The device state.
1361  * @hs_ep: The endpoint the request was on.
1362  * @hs_req: The request to complete.
1363  * @result: The result code (0 => Ok, otherwise errno)
1364  *
1365  * The given request has finished, so call the necessary completion
1366  * if it has one and then look to see if we can start a new request
1367  * on the endpoint.
1368  *
1369  * Note, expects the ep to already be locked as appropriate.
1370  */
1371 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1372 				       struct dwc2_hsotg_ep *hs_ep,
1373 				       struct dwc2_hsotg_req *hs_req,
1374 				       int result)
1375 {
1376 	bool restart;
1377 
1378 	if (!hs_req) {
1379 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1380 		return;
1381 	}
1382 
1383 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1384 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1385 
1386 	/*
1387 	 * only replace the status if we've not already set an error
1388 	 * from a previous transaction
1389 	 */
1390 
1391 	if (hs_req->req.status == -EINPROGRESS)
1392 		hs_req->req.status = result;
1393 
1394 	if (using_dma(hsotg))
1395 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1396 
1397 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398 
1399 	hs_ep->req = NULL;
1400 	list_del_init(&hs_req->queue);
1401 
1402 	/*
1403 	 * call the complete request with the locks off, just in case the
1404 	 * request tries to queue more work for this endpoint.
1405 	 */
1406 
1407 	if (hs_req->req.complete) {
1408 		spin_unlock(&hsotg->lock);
1409 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1410 		spin_lock(&hsotg->lock);
1411 	}
1412 
1413 	/*
1414 	 * Look to see if there is anything else to do. Note, the completion
1415 	 * of the previous request may have caused a new request to be started
1416 	 * so be careful when doing this.
1417 	 */
1418 
1419 	if (!hs_ep->req && result >= 0) {
1420 		restart = !list_empty(&hs_ep->queue);
1421 		if (restart) {
1422 			hs_req = get_ep_head(hs_ep);
1423 			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1424 		}
1425 	}
1426 }
1427 
1428 /**
1429  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1430  * @hsotg: The device state.
1431  * @ep_idx: The endpoint index for the data
1432  * @size: The size of data in the fifo, in bytes
1433  *
1434  * The FIFO status shows there is data to read from the FIFO for a given
1435  * endpoint, so sort out whether we need to read the data into a request
1436  * that has been made for that endpoint.
1437  */
1438 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1439 {
1440 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1441 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1442 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1443 	int to_read;
1444 	int max_req;
1445 	int read_ptr;
1446 
1447 
1448 	if (!hs_req) {
1449 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1450 		int ptr;
1451 
1452 		dev_dbg(hsotg->dev,
1453 			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1454 			 __func__, size, ep_idx, epctl);
1455 
1456 		/* dump the data from the FIFO, we've nothing we can do */
1457 		for (ptr = 0; ptr < size; ptr += 4)
1458 			(void)dwc2_readl(fifo);
1459 
1460 		return;
1461 	}
1462 
1463 	to_read = size;
1464 	read_ptr = hs_req->req.actual;
1465 	max_req = hs_req->req.length - read_ptr;
1466 
1467 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1468 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1469 
1470 	if (to_read > max_req) {
1471 		/*
1472 		 * more data appeared than we where willing
1473 		 * to deal with in this request.
1474 		 */
1475 
1476 		/* currently we don't deal this */
1477 		WARN_ON_ONCE(1);
1478 	}
1479 
1480 	hs_ep->total_data += to_read;
1481 	hs_req->req.actual += to_read;
1482 	to_read = DIV_ROUND_UP(to_read, 4);
1483 
1484 	/*
1485 	 * note, we might over-write the buffer end by 3 bytes depending on
1486 	 * alignment of the data.
1487 	 */
1488 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1489 }
1490 
1491 /**
1492  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1493  * @hsotg: The device instance
1494  * @dir_in: If IN zlp
1495  *
1496  * Generate a zero-length IN packet request for terminating a SETUP
1497  * transaction.
1498  *
1499  * Note, since we don't write any data to the TxFIFO, then it is
1500  * currently believed that we do not need to wait for any space in
1501  * the TxFIFO.
1502  */
1503 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1504 {
1505 	/* eps_out[0] is used in both directions */
1506 	hsotg->eps_out[0]->dir_in = dir_in;
1507 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1508 
1509 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1510 }
1511 
1512 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1513 			u32 epctl_reg)
1514 {
1515 	u32 ctrl;
1516 
1517 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1518 	if (ctrl & DXEPCTL_EOFRNUM)
1519 		ctrl |= DXEPCTL_SETEVENFR;
1520 	else
1521 		ctrl |= DXEPCTL_SETODDFR;
1522 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1523 }
1524 
1525 /**
1526  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1527  * @hsotg: The device instance
1528  * @epnum: The endpoint received from
1529  *
1530  * The RXFIFO has delivered an OutDone event, which means that the data
1531  * transfer for an OUT endpoint has been completed, either by a short
1532  * packet or by the finish of a transfer.
1533  */
1534 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1535 {
1536 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1537 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1538 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1539 	struct usb_request *req = &hs_req->req;
1540 	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1541 	int result = 0;
1542 
1543 	if (!hs_req) {
1544 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1545 		return;
1546 	}
1547 
1548 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1549 		dev_dbg(hsotg->dev, "zlp packet received\n");
1550 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1551 		dwc2_hsotg_enqueue_setup(hsotg);
1552 		return;
1553 	}
1554 
1555 	if (using_dma(hsotg)) {
1556 		unsigned size_done;
1557 
1558 		/*
1559 		 * Calculate the size of the transfer by checking how much
1560 		 * is left in the endpoint size register and then working it
1561 		 * out from the amount we loaded for the transfer.
1562 		 *
1563 		 * We need to do this as DMA pointers are always 32bit aligned
1564 		 * so may overshoot/undershoot the transfer.
1565 		 */
1566 
1567 		size_done = hs_ep->size_loaded - size_left;
1568 		size_done += hs_ep->last_load;
1569 
1570 		req->actual = size_done;
1571 	}
1572 
1573 	/* if there is more request to do, schedule new transfer */
1574 	if (req->actual < req->length && size_left == 0) {
1575 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1576 		return;
1577 	}
1578 
1579 	if (req->actual < req->length && req->short_not_ok) {
1580 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1581 			__func__, req->actual, req->length);
1582 
1583 		/*
1584 		 * todo - what should we return here? there's no one else
1585 		 * even bothering to check the status.
1586 		 */
1587 	}
1588 
1589 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1590 		/* Move to STATUS IN */
1591 		dwc2_hsotg_ep0_zlp(hsotg, true);
1592 		return;
1593 	}
1594 
1595 	/*
1596 	 * Slave mode OUT transfers do not go through XferComplete so
1597 	 * adjust the ISOC parity here.
1598 	 */
1599 	if (!using_dma(hsotg)) {
1600 		hs_ep->has_correct_parity = 1;
1601 		if (hs_ep->isochronous && hs_ep->interval == 1)
1602 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1603 	}
1604 
1605 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1606 }
1607 
1608 /**
1609  * dwc2_hsotg_read_frameno - read current frame number
1610  * @hsotg: The device instance
1611  *
1612  * Return the current frame number
1613  */
1614 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1615 {
1616 	u32 dsts;
1617 
1618 	dsts = dwc2_readl(hsotg->regs + DSTS);
1619 	dsts &= DSTS_SOFFN_MASK;
1620 	dsts >>= DSTS_SOFFN_SHIFT;
1621 
1622 	return dsts;
1623 }
1624 
1625 /**
1626  * dwc2_hsotg_handle_rx - RX FIFO has data
1627  * @hsotg: The device instance
1628  *
1629  * The IRQ handler has detected that the RX FIFO has some data in it
1630  * that requires processing, so find out what is in there and do the
1631  * appropriate read.
1632  *
1633  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1634  * chunks, so if you have x packets received on an endpoint you'll get x
1635  * FIFO events delivered, each with a packet's worth of data in it.
1636  *
1637  * When using DMA, we should not be processing events from the RXFIFO
1638  * as the actual data should be sent to the memory directly and we turn
1639  * on the completion interrupts to get notifications of transfer completion.
1640  */
1641 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1642 {
1643 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1644 	u32 epnum, status, size;
1645 
1646 	WARN_ON(using_dma(hsotg));
1647 
1648 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1649 	status = grxstsr & GRXSTS_PKTSTS_MASK;
1650 
1651 	size = grxstsr & GRXSTS_BYTECNT_MASK;
1652 	size >>= GRXSTS_BYTECNT_SHIFT;
1653 
1654 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1655 			__func__, grxstsr, size, epnum);
1656 
1657 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1658 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1659 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1660 		break;
1661 
1662 	case GRXSTS_PKTSTS_OUTDONE:
1663 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1664 			dwc2_hsotg_read_frameno(hsotg));
1665 
1666 		if (!using_dma(hsotg))
1667 			dwc2_hsotg_handle_outdone(hsotg, epnum);
1668 		break;
1669 
1670 	case GRXSTS_PKTSTS_SETUPDONE:
1671 		dev_dbg(hsotg->dev,
1672 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1673 			dwc2_hsotg_read_frameno(hsotg),
1674 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1675 		/*
1676 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1677 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1678 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1679 		 */
1680 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1681 			dwc2_hsotg_handle_outdone(hsotg, epnum);
1682 		break;
1683 
1684 	case GRXSTS_PKTSTS_OUTRX:
1685 		dwc2_hsotg_rx_data(hsotg, epnum, size);
1686 		break;
1687 
1688 	case GRXSTS_PKTSTS_SETUPRX:
1689 		dev_dbg(hsotg->dev,
1690 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1691 			dwc2_hsotg_read_frameno(hsotg),
1692 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1693 
1694 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1695 
1696 		dwc2_hsotg_rx_data(hsotg, epnum, size);
1697 		break;
1698 
1699 	default:
1700 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1701 			 __func__, grxstsr);
1702 
1703 		dwc2_hsotg_dump(hsotg);
1704 		break;
1705 	}
1706 }
1707 
1708 /**
1709  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1710  * @mps: The maximum packet size in bytes.
1711  */
1712 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1713 {
1714 	switch (mps) {
1715 	case 64:
1716 		return D0EPCTL_MPS_64;
1717 	case 32:
1718 		return D0EPCTL_MPS_32;
1719 	case 16:
1720 		return D0EPCTL_MPS_16;
1721 	case 8:
1722 		return D0EPCTL_MPS_8;
1723 	}
1724 
1725 	/* bad max packet size, warn and return invalid result */
1726 	WARN_ON(1);
1727 	return (u32)-1;
1728 }
1729 
1730 /**
1731  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1732  * @hsotg: The driver state.
1733  * @ep: The index number of the endpoint
1734  * @mps: The maximum packet size in bytes
1735  *
1736  * Configure the maximum packet size for the given endpoint, updating
1737  * the hardware control registers to reflect this.
1738  */
1739 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1740 			unsigned int ep, unsigned int mps, unsigned int dir_in)
1741 {
1742 	struct dwc2_hsotg_ep *hs_ep;
1743 	void __iomem *regs = hsotg->regs;
1744 	u32 mpsval;
1745 	u32 mcval;
1746 	u32 reg;
1747 
1748 	hs_ep = index_to_ep(hsotg, ep, dir_in);
1749 	if (!hs_ep)
1750 		return;
1751 
1752 	if (ep == 0) {
1753 		/* EP0 is a special case */
1754 		mpsval = dwc2_hsotg_ep0_mps(mps);
1755 		if (mpsval > 3)
1756 			goto bad_mps;
1757 		hs_ep->ep.maxpacket = mps;
1758 		hs_ep->mc = 1;
1759 	} else {
1760 		mpsval = mps & DXEPCTL_MPS_MASK;
1761 		if (mpsval > 1024)
1762 			goto bad_mps;
1763 		mcval = ((mps >> 11) & 0x3) + 1;
1764 		hs_ep->mc = mcval;
1765 		if (mcval > 3)
1766 			goto bad_mps;
1767 		hs_ep->ep.maxpacket = mpsval;
1768 	}
1769 
1770 	if (dir_in) {
1771 		reg = dwc2_readl(regs + DIEPCTL(ep));
1772 		reg &= ~DXEPCTL_MPS_MASK;
1773 		reg |= mpsval;
1774 		dwc2_writel(reg, regs + DIEPCTL(ep));
1775 	} else {
1776 		reg = dwc2_readl(regs + DOEPCTL(ep));
1777 		reg &= ~DXEPCTL_MPS_MASK;
1778 		reg |= mpsval;
1779 		dwc2_writel(reg, regs + DOEPCTL(ep));
1780 	}
1781 
1782 	return;
1783 
1784 bad_mps:
1785 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1786 }
1787 
1788 /**
1789  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1790  * @hsotg: The driver state
1791  * @idx: The index for the endpoint (0..15)
1792  */
1793 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1794 {
1795 	int timeout;
1796 	int val;
1797 
1798 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1799 		    hsotg->regs + GRSTCTL);
1800 
1801 	/* wait until the fifo is flushed */
1802 	timeout = 100;
1803 
1804 	while (1) {
1805 		val = dwc2_readl(hsotg->regs + GRSTCTL);
1806 
1807 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1808 			break;
1809 
1810 		if (--timeout == 0) {
1811 			dev_err(hsotg->dev,
1812 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1813 				__func__, val);
1814 			break;
1815 		}
1816 
1817 		udelay(1);
1818 	}
1819 }
1820 
1821 /**
1822  * dwc2_hsotg_trytx - check to see if anything needs transmitting
1823  * @hsotg: The driver state
1824  * @hs_ep: The driver endpoint to check.
1825  *
1826  * Check to see if there is a request that has data to send, and if so
1827  * make an attempt to write data into the FIFO.
1828  */
1829 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1830 			   struct dwc2_hsotg_ep *hs_ep)
1831 {
1832 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1833 
1834 	if (!hs_ep->dir_in || !hs_req) {
1835 		/**
1836 		 * if request is not enqueued, we disable interrupts
1837 		 * for endpoints, excepting ep0
1838 		 */
1839 		if (hs_ep->index != 0)
1840 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1841 					     hs_ep->dir_in, 0);
1842 		return 0;
1843 	}
1844 
1845 	if (hs_req->req.actual < hs_req->req.length) {
1846 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1847 			hs_ep->index);
1848 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * dwc2_hsotg_complete_in - complete IN transfer
1856  * @hsotg: The device state.
1857  * @hs_ep: The endpoint that has just completed.
1858  *
1859  * An IN transfer has been completed, update the transfer's state and then
1860  * call the relevant completion routines.
1861  */
1862 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1863 				  struct dwc2_hsotg_ep *hs_ep)
1864 {
1865 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1866 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1867 	int size_left, size_done;
1868 
1869 	if (!hs_req) {
1870 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1871 		return;
1872 	}
1873 
1874 	/* Finish ZLP handling for IN EP0 transactions */
1875 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1876 		dev_dbg(hsotg->dev, "zlp packet sent\n");
1877 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1878 		if (hsotg->test_mode) {
1879 			int ret;
1880 
1881 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1882 			if (ret < 0) {
1883 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1884 						hsotg->test_mode);
1885 				dwc2_hsotg_stall_ep0(hsotg);
1886 				return;
1887 			}
1888 		}
1889 		dwc2_hsotg_enqueue_setup(hsotg);
1890 		return;
1891 	}
1892 
1893 	/*
1894 	 * Calculate the size of the transfer by checking how much is left
1895 	 * in the endpoint size register and then working it out from
1896 	 * the amount we loaded for the transfer.
1897 	 *
1898 	 * We do this even for DMA, as the transfer may have incremented
1899 	 * past the end of the buffer (DMA transfers are always 32bit
1900 	 * aligned).
1901 	 */
1902 
1903 	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1904 
1905 	size_done = hs_ep->size_loaded - size_left;
1906 	size_done += hs_ep->last_load;
1907 
1908 	if (hs_req->req.actual != size_done)
1909 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1910 			__func__, hs_req->req.actual, size_done);
1911 
1912 	hs_req->req.actual = size_done;
1913 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1914 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1915 
1916 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1917 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1918 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1919 		return;
1920 	}
1921 
1922 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1923 	if (hs_ep->send_zlp) {
1924 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1925 		hs_ep->send_zlp = 0;
1926 		/* transfer will be completed on next complete interrupt */
1927 		return;
1928 	}
1929 
1930 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1931 		/* Move to STATUS OUT */
1932 		dwc2_hsotg_ep0_zlp(hsotg, false);
1933 		return;
1934 	}
1935 
1936 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1937 }
1938 
1939 /**
1940  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1941  * @hsotg: The driver state
1942  * @idx: The index for the endpoint (0..15)
1943  * @dir_in: Set if this is an IN endpoint
1944  *
1945  * Process and clear any interrupt pending for an individual endpoint
1946  */
1947 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1948 			    int dir_in)
1949 {
1950 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1951 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1952 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1953 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1954 	u32 ints;
1955 	u32 ctrl;
1956 
1957 	ints = dwc2_readl(hsotg->regs + epint_reg);
1958 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1959 
1960 	/* Clear endpoint interrupts */
1961 	dwc2_writel(ints, hsotg->regs + epint_reg);
1962 
1963 	if (!hs_ep) {
1964 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1965 					__func__, idx, dir_in ? "in" : "out");
1966 		return;
1967 	}
1968 
1969 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1970 		__func__, idx, dir_in ? "in" : "out", ints);
1971 
1972 	/* Don't process XferCompl interrupt if it is a setup packet */
1973 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1974 		ints &= ~DXEPINT_XFERCOMPL;
1975 
1976 	if (ints & DXEPINT_XFERCOMPL) {
1977 		hs_ep->has_correct_parity = 1;
1978 		if (hs_ep->isochronous && hs_ep->interval == 1)
1979 			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
1980 
1981 		dev_dbg(hsotg->dev,
1982 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1983 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
1984 			dwc2_readl(hsotg->regs + epsiz_reg));
1985 
1986 		/*
1987 		 * we get OutDone from the FIFO, so we only need to look
1988 		 * at completing IN requests here
1989 		 */
1990 		if (dir_in) {
1991 			dwc2_hsotg_complete_in(hsotg, hs_ep);
1992 
1993 			if (idx == 0 && !hs_ep->req)
1994 				dwc2_hsotg_enqueue_setup(hsotg);
1995 		} else if (using_dma(hsotg)) {
1996 			/*
1997 			 * We're using DMA, we need to fire an OutDone here
1998 			 * as we ignore the RXFIFO.
1999 			 */
2000 
2001 			dwc2_hsotg_handle_outdone(hsotg, idx);
2002 		}
2003 	}
2004 
2005 	if (ints & DXEPINT_EPDISBLD) {
2006 		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2007 
2008 		if (dir_in) {
2009 			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2010 
2011 			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2012 
2013 			if ((epctl & DXEPCTL_STALL) &&
2014 				(epctl & DXEPCTL_EPTYPE_BULK)) {
2015 				int dctl = dwc2_readl(hsotg->regs + DCTL);
2016 
2017 				dctl |= DCTL_CGNPINNAK;
2018 				dwc2_writel(dctl, hsotg->regs + DCTL);
2019 			}
2020 		}
2021 	}
2022 
2023 	if (ints & DXEPINT_AHBERR)
2024 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2025 
2026 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2027 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2028 
2029 		if (using_dma(hsotg) && idx == 0) {
2030 			/*
2031 			 * this is the notification we've received a
2032 			 * setup packet. In non-DMA mode we'd get this
2033 			 * from the RXFIFO, instead we need to process
2034 			 * the setup here.
2035 			 */
2036 
2037 			if (dir_in)
2038 				WARN_ON_ONCE(1);
2039 			else
2040 				dwc2_hsotg_handle_outdone(hsotg, 0);
2041 		}
2042 	}
2043 
2044 	if (ints & DXEPINT_BACK2BACKSETUP)
2045 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2046 
2047 	if (dir_in && !hs_ep->isochronous) {
2048 		/* not sure if this is important, but we'll clear it anyway */
2049 		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2050 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2051 				__func__, idx);
2052 		}
2053 
2054 		/* this probably means something bad is happening */
2055 		if (ints & DIEPMSK_INTKNEPMISMSK) {
2056 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2057 				 __func__, idx);
2058 		}
2059 
2060 		/* FIFO has space or is empty (see GAHBCFG) */
2061 		if (hsotg->dedicated_fifos &&
2062 		    ints & DIEPMSK_TXFIFOEMPTY) {
2063 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2064 				__func__, idx);
2065 			if (!using_dma(hsotg))
2066 				dwc2_hsotg_trytx(hsotg, hs_ep);
2067 		}
2068 	}
2069 }
2070 
2071 /**
2072  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2073  * @hsotg: The device state.
2074  *
2075  * Handle updating the device settings after the enumeration phase has
2076  * been completed.
2077  */
2078 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2079 {
2080 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2081 	int ep0_mps = 0, ep_mps = 8;
2082 
2083 	/*
2084 	 * This should signal the finish of the enumeration phase
2085 	 * of the USB handshaking, so we should now know what rate
2086 	 * we connected at.
2087 	 */
2088 
2089 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2090 
2091 	/*
2092 	 * note, since we're limited by the size of transfer on EP0, and
2093 	 * it seems IN transfers must be a even number of packets we do
2094 	 * not advertise a 64byte MPS on EP0.
2095 	 */
2096 
2097 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2098 	switch (dsts & DSTS_ENUMSPD_MASK) {
2099 	case DSTS_ENUMSPD_FS:
2100 	case DSTS_ENUMSPD_FS48:
2101 		hsotg->gadget.speed = USB_SPEED_FULL;
2102 		ep0_mps = EP0_MPS_LIMIT;
2103 		ep_mps = 1023;
2104 		break;
2105 
2106 	case DSTS_ENUMSPD_HS:
2107 		hsotg->gadget.speed = USB_SPEED_HIGH;
2108 		ep0_mps = EP0_MPS_LIMIT;
2109 		ep_mps = 1024;
2110 		break;
2111 
2112 	case DSTS_ENUMSPD_LS:
2113 		hsotg->gadget.speed = USB_SPEED_LOW;
2114 		/*
2115 		 * note, we don't actually support LS in this driver at the
2116 		 * moment, and the documentation seems to imply that it isn't
2117 		 * supported by the PHYs on some of the devices.
2118 		 */
2119 		break;
2120 	}
2121 	dev_info(hsotg->dev, "new device is %s\n",
2122 		 usb_speed_string(hsotg->gadget.speed));
2123 
2124 	/*
2125 	 * we should now know the maximum packet size for an
2126 	 * endpoint, so set the endpoints to a default value.
2127 	 */
2128 
2129 	if (ep0_mps) {
2130 		int i;
2131 		/* Initialize ep0 for both in and out directions */
2132 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2133 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2134 		for (i = 1; i < hsotg->num_of_eps; i++) {
2135 			if (hsotg->eps_in[i])
2136 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2137 			if (hsotg->eps_out[i])
2138 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2139 		}
2140 	}
2141 
2142 	/* ensure after enumeration our EP0 is active */
2143 
2144 	dwc2_hsotg_enqueue_setup(hsotg);
2145 
2146 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2147 		dwc2_readl(hsotg->regs + DIEPCTL0),
2148 		dwc2_readl(hsotg->regs + DOEPCTL0));
2149 }
2150 
2151 /**
2152  * kill_all_requests - remove all requests from the endpoint's queue
2153  * @hsotg: The device state.
2154  * @ep: The endpoint the requests may be on.
2155  * @result: The result code to use.
2156  *
2157  * Go through the requests on the given endpoint and mark them
2158  * completed with the given result code.
2159  */
2160 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2161 			      struct dwc2_hsotg_ep *ep,
2162 			      int result)
2163 {
2164 	struct dwc2_hsotg_req *req, *treq;
2165 	unsigned size;
2166 
2167 	ep->req = NULL;
2168 
2169 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2170 		dwc2_hsotg_complete_request(hsotg, ep, req,
2171 					   result);
2172 
2173 	if (!hsotg->dedicated_fifos)
2174 		return;
2175 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2176 	if (size < ep->fifo_size)
2177 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2178 }
2179 
2180 /**
2181  * dwc2_hsotg_disconnect - disconnect service
2182  * @hsotg: The device state.
2183  *
2184  * The device has been disconnected. Remove all current
2185  * transactions and signal the gadget driver that this
2186  * has happened.
2187  */
2188 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2189 {
2190 	unsigned ep;
2191 
2192 	if (!hsotg->connected)
2193 		return;
2194 
2195 	hsotg->connected = 0;
2196 	hsotg->test_mode = 0;
2197 
2198 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2199 		if (hsotg->eps_in[ep])
2200 			kill_all_requests(hsotg, hsotg->eps_in[ep],
2201 								-ESHUTDOWN);
2202 		if (hsotg->eps_out[ep])
2203 			kill_all_requests(hsotg, hsotg->eps_out[ep],
2204 								-ESHUTDOWN);
2205 	}
2206 
2207 	call_gadget(hsotg, disconnect);
2208 	hsotg->lx_state = DWC2_L3;
2209 }
2210 
2211 /**
2212  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2213  * @hsotg: The device state:
2214  * @periodic: True if this is a periodic FIFO interrupt
2215  */
2216 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2217 {
2218 	struct dwc2_hsotg_ep *ep;
2219 	int epno, ret;
2220 
2221 	/* look through for any more data to transmit */
2222 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2223 		ep = index_to_ep(hsotg, epno, 1);
2224 
2225 		if (!ep)
2226 			continue;
2227 
2228 		if (!ep->dir_in)
2229 			continue;
2230 
2231 		if ((periodic && !ep->periodic) ||
2232 		    (!periodic && ep->periodic))
2233 			continue;
2234 
2235 		ret = dwc2_hsotg_trytx(hsotg, ep);
2236 		if (ret < 0)
2237 			break;
2238 	}
2239 }
2240 
2241 /* IRQ flags which will trigger a retry around the IRQ loop */
2242 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2243 			GINTSTS_PTXFEMP |  \
2244 			GINTSTS_RXFLVL)
2245 
2246 /**
2247  * dwc2_hsotg_corereset - issue softreset to the core
2248  * @hsotg: The device state
2249  *
2250  * Issue a soft reset to the core, and await the core finishing it.
2251  */
2252 static int dwc2_hsotg_corereset(struct dwc2_hsotg *hsotg)
2253 {
2254 	int timeout;
2255 	u32 grstctl;
2256 
2257 	dev_dbg(hsotg->dev, "resetting core\n");
2258 
2259 	/* issue soft reset */
2260 	dwc2_writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2261 
2262 	timeout = 10000;
2263 	do {
2264 		grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2265 	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2266 
2267 	if (grstctl & GRSTCTL_CSFTRST) {
2268 		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2269 		return -EINVAL;
2270 	}
2271 
2272 	timeout = 10000;
2273 
2274 	while (1) {
2275 		u32 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2276 
2277 		if (timeout-- < 0) {
2278 			dev_info(hsotg->dev,
2279 				 "%s: reset failed, GRSTCTL=%08x\n",
2280 				 __func__, grstctl);
2281 			return -ETIMEDOUT;
2282 		}
2283 
2284 		if (!(grstctl & GRSTCTL_AHBIDLE))
2285 			continue;
2286 
2287 		break;		/* reset done */
2288 	}
2289 
2290 	dev_dbg(hsotg->dev, "reset successful\n");
2291 	return 0;
2292 }
2293 
2294 /**
2295  * dwc2_hsotg_core_init - issue softreset to the core
2296  * @hsotg: The device state
2297  *
2298  * Issue a soft reset to the core, and await the core finishing it.
2299  */
2300 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2301 						bool is_usb_reset)
2302 {
2303 	u32 intmsk;
2304 	u32 val;
2305 
2306 	/* Kill any ep0 requests as controller will be reinitialized */
2307 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2308 
2309 	if (!is_usb_reset)
2310 		if (dwc2_hsotg_corereset(hsotg))
2311 			return;
2312 
2313 	/*
2314 	 * we must now enable ep0 ready for host detection and then
2315 	 * set configuration.
2316 	 */
2317 
2318 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2319 	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2320 	dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2321 	       (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2322 
2323 	dwc2_hsotg_init_fifo(hsotg);
2324 
2325 	if (!is_usb_reset)
2326 		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2327 
2328 	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2329 
2330 	/* Clear any pending OTG interrupts */
2331 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2332 
2333 	/* Clear any pending interrupts */
2334 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2335 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2336 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2337 		GINTSTS_USBRST | GINTSTS_RESETDET |
2338 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2339 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2340 		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2341 
2342 	if (hsotg->core_params->external_id_pin_ctl <= 0)
2343 		intmsk |= GINTSTS_CONIDSTSCHNG;
2344 
2345 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2346 
2347 	if (using_dma(hsotg))
2348 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2349 			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2350 			    hsotg->regs + GAHBCFG);
2351 	else
2352 		dwc2_writel(((hsotg->dedicated_fifos) ?
2353 						(GAHBCFG_NP_TXF_EMP_LVL |
2354 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2355 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2356 
2357 	/*
2358 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2359 	 * when we have no data to transfer. Otherwise we get being flooded by
2360 	 * interrupts.
2361 	 */
2362 
2363 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2364 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2365 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2366 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2367 		DIEPMSK_INTKNEPMISMSK,
2368 		hsotg->regs + DIEPMSK);
2369 
2370 	/*
2371 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2372 	 * DMA mode we may need this.
2373 	 */
2374 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2375 				    DIEPMSK_TIMEOUTMSK) : 0) |
2376 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2377 		DOEPMSK_SETUPMSK,
2378 		hsotg->regs + DOEPMSK);
2379 
2380 	dwc2_writel(0, hsotg->regs + DAINTMSK);
2381 
2382 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2383 		dwc2_readl(hsotg->regs + DIEPCTL0),
2384 		dwc2_readl(hsotg->regs + DOEPCTL0));
2385 
2386 	/* enable in and out endpoint interrupts */
2387 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2388 
2389 	/*
2390 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2391 	 * the data. In DMA mode, we get events from the FIFO but also
2392 	 * things we cannot process, so do not use it.
2393 	 */
2394 	if (!using_dma(hsotg))
2395 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2396 
2397 	/* Enable interrupts for EP0 in and out */
2398 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2399 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2400 
2401 	if (!is_usb_reset) {
2402 		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2403 		udelay(10);  /* see openiboot */
2404 		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2405 	}
2406 
2407 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2408 
2409 	/*
2410 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2411 	 * writing to the EPCTL register..
2412 	 */
2413 
2414 	/* set to read 1 8byte packet */
2415 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2416 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2417 
2418 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2419 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2420 	       DXEPCTL_USBACTEP,
2421 	       hsotg->regs + DOEPCTL0);
2422 
2423 	/* enable, but don't activate EP0in */
2424 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2425 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2426 
2427 	dwc2_hsotg_enqueue_setup(hsotg);
2428 
2429 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2430 		dwc2_readl(hsotg->regs + DIEPCTL0),
2431 		dwc2_readl(hsotg->regs + DOEPCTL0));
2432 
2433 	/* clear global NAKs */
2434 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2435 	if (!is_usb_reset)
2436 		val |= DCTL_SFTDISCON;
2437 	__orr32(hsotg->regs + DCTL, val);
2438 
2439 	/* must be at-least 3ms to allow bus to see disconnect */
2440 	mdelay(3);
2441 
2442 	hsotg->lx_state = DWC2_L0;
2443 }
2444 
2445 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2446 {
2447 	/* set the soft-disconnect bit */
2448 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2449 }
2450 
2451 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2452 {
2453 	/* remove the soft-disconnect and let's go */
2454 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2455 }
2456 
2457 /**
2458  * dwc2_hsotg_irq - handle device interrupt
2459  * @irq: The IRQ number triggered
2460  * @pw: The pw value when registered the handler.
2461  */
2462 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2463 {
2464 	struct dwc2_hsotg *hsotg = pw;
2465 	int retry_count = 8;
2466 	u32 gintsts;
2467 	u32 gintmsk;
2468 
2469 	spin_lock(&hsotg->lock);
2470 irq_retry:
2471 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2472 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2473 
2474 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2475 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2476 
2477 	gintsts &= gintmsk;
2478 
2479 	if (gintsts & GINTSTS_RESETDET) {
2480 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2481 
2482 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2483 
2484 		/* This event must be used only if controller is suspended */
2485 		if (hsotg->lx_state == DWC2_L2) {
2486 			dwc2_exit_hibernation(hsotg, true);
2487 			hsotg->lx_state = DWC2_L0;
2488 		}
2489 	}
2490 
2491 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2492 
2493 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2494 		u32 connected = hsotg->connected;
2495 
2496 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2497 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2498 			dwc2_readl(hsotg->regs + GNPTXSTS));
2499 
2500 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2501 
2502 		/* Report disconnection if it is not already done. */
2503 		dwc2_hsotg_disconnect(hsotg);
2504 
2505 		if (usb_status & GOTGCTL_BSESVLD && connected)
2506 			dwc2_hsotg_core_init_disconnected(hsotg, true);
2507 	}
2508 
2509 	if (gintsts & GINTSTS_ENUMDONE) {
2510 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2511 
2512 		dwc2_hsotg_irq_enumdone(hsotg);
2513 	}
2514 
2515 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2516 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
2517 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2518 		u32 daint_out, daint_in;
2519 		int ep;
2520 
2521 		daint &= daintmsk;
2522 		daint_out = daint >> DAINT_OUTEP_SHIFT;
2523 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2524 
2525 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2526 
2527 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2528 						ep++, daint_out >>= 1) {
2529 			if (daint_out & 1)
2530 				dwc2_hsotg_epint(hsotg, ep, 0);
2531 		}
2532 
2533 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2534 						ep++, daint_in >>= 1) {
2535 			if (daint_in & 1)
2536 				dwc2_hsotg_epint(hsotg, ep, 1);
2537 		}
2538 	}
2539 
2540 	/* check both FIFOs */
2541 
2542 	if (gintsts & GINTSTS_NPTXFEMP) {
2543 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2544 
2545 		/*
2546 		 * Disable the interrupt to stop it happening again
2547 		 * unless one of these endpoint routines decides that
2548 		 * it needs re-enabling
2549 		 */
2550 
2551 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2552 		dwc2_hsotg_irq_fifoempty(hsotg, false);
2553 	}
2554 
2555 	if (gintsts & GINTSTS_PTXFEMP) {
2556 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2557 
2558 		/* See note in GINTSTS_NPTxFEmp */
2559 
2560 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2561 		dwc2_hsotg_irq_fifoempty(hsotg, true);
2562 	}
2563 
2564 	if (gintsts & GINTSTS_RXFLVL) {
2565 		/*
2566 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2567 		 * we need to retry dwc2_hsotg_handle_rx if this is still
2568 		 * set.
2569 		 */
2570 
2571 		dwc2_hsotg_handle_rx(hsotg);
2572 	}
2573 
2574 	if (gintsts & GINTSTS_ERLYSUSP) {
2575 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2576 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2577 	}
2578 
2579 	/*
2580 	 * these next two seem to crop-up occasionally causing the core
2581 	 * to shutdown the USB transfer, so try clearing them and logging
2582 	 * the occurrence.
2583 	 */
2584 
2585 	if (gintsts & GINTSTS_GOUTNAKEFF) {
2586 		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2587 
2588 		dwc2_writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2589 
2590 		dwc2_hsotg_dump(hsotg);
2591 	}
2592 
2593 	if (gintsts & GINTSTS_GINNAKEFF) {
2594 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2595 
2596 		dwc2_writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2597 
2598 		dwc2_hsotg_dump(hsotg);
2599 	}
2600 
2601 	if (gintsts & GINTSTS_INCOMPL_SOIN) {
2602 		u32 idx, epctl_reg;
2603 		struct dwc2_hsotg_ep *hs_ep;
2604 
2605 		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
2606 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2607 			hs_ep = hsotg->eps_in[idx];
2608 
2609 			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2610 				continue;
2611 
2612 			epctl_reg = DIEPCTL(idx);
2613 			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2614 		}
2615 		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2616 	}
2617 
2618 	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
2619 		u32 idx, epctl_reg;
2620 		struct dwc2_hsotg_ep *hs_ep;
2621 
2622 		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2623 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2624 			hs_ep = hsotg->eps_out[idx];
2625 
2626 			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2627 				continue;
2628 
2629 			epctl_reg = DOEPCTL(idx);
2630 			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2631 		}
2632 		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
2633 	}
2634 
2635 	/*
2636 	 * if we've had fifo events, we should try and go around the
2637 	 * loop again to see if there's any point in returning yet.
2638 	 */
2639 
2640 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2641 			goto irq_retry;
2642 
2643 	spin_unlock(&hsotg->lock);
2644 
2645 	return IRQ_HANDLED;
2646 }
2647 
2648 /**
2649  * dwc2_hsotg_ep_enable - enable the given endpoint
2650  * @ep: The USB endpint to configure
2651  * @desc: The USB endpoint descriptor to configure with.
2652  *
2653  * This is called from the USB gadget code's usb_ep_enable().
2654  */
2655 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2656 			       const struct usb_endpoint_descriptor *desc)
2657 {
2658 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2659 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2660 	unsigned long flags;
2661 	unsigned int index = hs_ep->index;
2662 	u32 epctrl_reg;
2663 	u32 epctrl;
2664 	u32 mps;
2665 	unsigned int dir_in;
2666 	unsigned int i, val, size;
2667 	int ret = 0;
2668 
2669 	dev_dbg(hsotg->dev,
2670 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2671 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2672 		desc->wMaxPacketSize, desc->bInterval);
2673 
2674 	/* not to be called for EP0 */
2675 	WARN_ON(index == 0);
2676 
2677 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2678 	if (dir_in != hs_ep->dir_in) {
2679 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2680 		return -EINVAL;
2681 	}
2682 
2683 	mps = usb_endpoint_maxp(desc);
2684 
2685 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2686 
2687 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2688 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2689 
2690 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2691 		__func__, epctrl, epctrl_reg);
2692 
2693 	spin_lock_irqsave(&hsotg->lock, flags);
2694 
2695 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2696 	epctrl |= DXEPCTL_MPS(mps);
2697 
2698 	/*
2699 	 * mark the endpoint as active, otherwise the core may ignore
2700 	 * transactions entirely for this endpoint
2701 	 */
2702 	epctrl |= DXEPCTL_USBACTEP;
2703 
2704 	/*
2705 	 * set the NAK status on the endpoint, otherwise we might try and
2706 	 * do something with data that we've yet got a request to process
2707 	 * since the RXFIFO will take data for an endpoint even if the
2708 	 * size register hasn't been set.
2709 	 */
2710 
2711 	epctrl |= DXEPCTL_SNAK;
2712 
2713 	/* update the endpoint state */
2714 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2715 
2716 	/* default, set to non-periodic */
2717 	hs_ep->isochronous = 0;
2718 	hs_ep->periodic = 0;
2719 	hs_ep->halted = 0;
2720 	hs_ep->interval = desc->bInterval;
2721 	hs_ep->has_correct_parity = 0;
2722 
2723 	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2724 		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2725 
2726 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2727 	case USB_ENDPOINT_XFER_ISOC:
2728 		epctrl |= DXEPCTL_EPTYPE_ISO;
2729 		epctrl |= DXEPCTL_SETEVENFR;
2730 		hs_ep->isochronous = 1;
2731 		if (dir_in)
2732 			hs_ep->periodic = 1;
2733 		break;
2734 
2735 	case USB_ENDPOINT_XFER_BULK:
2736 		epctrl |= DXEPCTL_EPTYPE_BULK;
2737 		break;
2738 
2739 	case USB_ENDPOINT_XFER_INT:
2740 		if (dir_in)
2741 			hs_ep->periodic = 1;
2742 
2743 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2744 		break;
2745 
2746 	case USB_ENDPOINT_XFER_CONTROL:
2747 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2748 		break;
2749 	}
2750 
2751 	/* If fifo is already allocated for this ep */
2752 	if (hs_ep->fifo_index) {
2753 		size =  hs_ep->ep.maxpacket * hs_ep->mc;
2754 		/* If bigger fifo is required deallocate current one */
2755 		if (size > hs_ep->fifo_size) {
2756 			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2757 			hs_ep->fifo_index = 0;
2758 			hs_ep->fifo_size = 0;
2759 		}
2760 	}
2761 
2762 	/*
2763 	 * if the hardware has dedicated fifos, we must give each IN EP
2764 	 * a unique tx-fifo even if it is non-periodic.
2765 	 */
2766 	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2767 		u32 fifo_index = 0;
2768 		u32 fifo_size = UINT_MAX;
2769 		size = hs_ep->ep.maxpacket*hs_ep->mc;
2770 		for (i = 1; i < hsotg->num_of_eps; ++i) {
2771 			if (hsotg->fifo_map & (1<<i))
2772 				continue;
2773 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2774 			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2775 			if (val < size)
2776 				continue;
2777 			/* Search for smallest acceptable fifo */
2778 			if (val < fifo_size) {
2779 				fifo_size = val;
2780 				fifo_index = i;
2781 			}
2782 		}
2783 		if (!fifo_index) {
2784 			dev_err(hsotg->dev,
2785 				"%s: No suitable fifo found\n", __func__);
2786 			ret = -ENOMEM;
2787 			goto error;
2788 		}
2789 		hsotg->fifo_map |= 1 << fifo_index;
2790 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
2791 		hs_ep->fifo_index = fifo_index;
2792 		hs_ep->fifo_size = fifo_size;
2793 	}
2794 
2795 	/* for non control endpoints, set PID to D0 */
2796 	if (index)
2797 		epctrl |= DXEPCTL_SETD0PID;
2798 
2799 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2800 		__func__, epctrl);
2801 
2802 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2803 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2804 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2805 
2806 	/* enable the endpoint interrupt */
2807 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2808 
2809 error:
2810 	spin_unlock_irqrestore(&hsotg->lock, flags);
2811 	return ret;
2812 }
2813 
2814 /**
2815  * dwc2_hsotg_ep_disable - disable given endpoint
2816  * @ep: The endpoint to disable.
2817  */
2818 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2819 {
2820 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2821 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2822 	int dir_in = hs_ep->dir_in;
2823 	int index = hs_ep->index;
2824 	unsigned long flags;
2825 	u32 epctrl_reg;
2826 	u32 ctrl;
2827 
2828 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2829 
2830 	if (ep == &hsotg->eps_out[0]->ep) {
2831 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2832 		return -EINVAL;
2833 	}
2834 
2835 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2836 
2837 	spin_lock_irqsave(&hsotg->lock, flags);
2838 
2839 	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2840 	hs_ep->fifo_index = 0;
2841 	hs_ep->fifo_size = 0;
2842 
2843 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2844 	ctrl &= ~DXEPCTL_EPENA;
2845 	ctrl &= ~DXEPCTL_USBACTEP;
2846 	ctrl |= DXEPCTL_SNAK;
2847 
2848 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2849 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2850 
2851 	/* disable endpoint interrupts */
2852 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2853 
2854 	/* terminate all requests with shutdown */
2855 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2856 
2857 	spin_unlock_irqrestore(&hsotg->lock, flags);
2858 	return 0;
2859 }
2860 
2861 /**
2862  * on_list - check request is on the given endpoint
2863  * @ep: The endpoint to check.
2864  * @test: The request to test if it is on the endpoint.
2865  */
2866 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2867 {
2868 	struct dwc2_hsotg_req *req, *treq;
2869 
2870 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2871 		if (req == test)
2872 			return true;
2873 	}
2874 
2875 	return false;
2876 }
2877 
2878 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2879 							u32 bit, u32 timeout)
2880 {
2881 	u32 i;
2882 
2883 	for (i = 0; i < timeout; i++) {
2884 		if (dwc2_readl(hs_otg->regs + reg) & bit)
2885 			return 0;
2886 		udelay(1);
2887 	}
2888 
2889 	return -ETIMEDOUT;
2890 }
2891 
2892 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2893 						struct dwc2_hsotg_ep *hs_ep)
2894 {
2895 	u32 epctrl_reg;
2896 	u32 epint_reg;
2897 
2898 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2899 		DOEPCTL(hs_ep->index);
2900 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2901 		DOEPINT(hs_ep->index);
2902 
2903 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2904 			hs_ep->name);
2905 	if (hs_ep->dir_in) {
2906 		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2907 		/* Wait for Nak effect */
2908 		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2909 						DXEPINT_INEPNAKEFF, 100))
2910 			dev_warn(hsotg->dev,
2911 				"%s: timeout DIEPINT.NAKEFF\n", __func__);
2912 	} else {
2913 		/* Clear any pending nak effect interrupt */
2914 		dwc2_writel(GINTSTS_GINNAKEFF, hsotg->regs + GINTSTS);
2915 
2916 		__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
2917 
2918 		/* Wait for global nak to take effect */
2919 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2920 						GINTSTS_GINNAKEFF, 100))
2921 			dev_warn(hsotg->dev,
2922 				"%s: timeout GINTSTS.GINNAKEFF\n", __func__);
2923 	}
2924 
2925 	/* Disable ep */
2926 	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2927 
2928 	/* Wait for ep to be disabled */
2929 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2930 		dev_warn(hsotg->dev,
2931 			"%s: timeout DOEPCTL.EPDisable\n", __func__);
2932 
2933 	if (hs_ep->dir_in) {
2934 		if (hsotg->dedicated_fifos) {
2935 			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2936 				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2937 			/* Wait for fifo flush */
2938 			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2939 							GRSTCTL_TXFFLSH, 100))
2940 				dev_warn(hsotg->dev,
2941 					"%s: timeout flushing fifos\n",
2942 					__func__);
2943 		}
2944 		/* TODO: Flush shared tx fifo */
2945 	} else {
2946 		/* Remove global NAKs */
2947 		__bic32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
2948 	}
2949 }
2950 
2951 /**
2952  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2953  * @ep: The endpoint to dequeue.
2954  * @req: The request to be removed from a queue.
2955  */
2956 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2957 {
2958 	struct dwc2_hsotg_req *hs_req = our_req(req);
2959 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2960 	struct dwc2_hsotg *hs = hs_ep->parent;
2961 	unsigned long flags;
2962 
2963 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2964 
2965 	spin_lock_irqsave(&hs->lock, flags);
2966 
2967 	if (!on_list(hs_ep, hs_req)) {
2968 		spin_unlock_irqrestore(&hs->lock, flags);
2969 		return -EINVAL;
2970 	}
2971 
2972 	/* Dequeue already started request */
2973 	if (req == &hs_ep->req->req)
2974 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2975 
2976 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2977 	spin_unlock_irqrestore(&hs->lock, flags);
2978 
2979 	return 0;
2980 }
2981 
2982 /**
2983  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2984  * @ep: The endpoint to set halt.
2985  * @value: Set or unset the halt.
2986  */
2987 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2988 {
2989 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2990 	struct dwc2_hsotg *hs = hs_ep->parent;
2991 	int index = hs_ep->index;
2992 	u32 epreg;
2993 	u32 epctl;
2994 	u32 xfertype;
2995 
2996 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2997 
2998 	if (index == 0) {
2999 		if (value)
3000 			dwc2_hsotg_stall_ep0(hs);
3001 		else
3002 			dev_warn(hs->dev,
3003 				 "%s: can't clear halt on ep0\n", __func__);
3004 		return 0;
3005 	}
3006 
3007 	if (hs_ep->dir_in) {
3008 		epreg = DIEPCTL(index);
3009 		epctl = dwc2_readl(hs->regs + epreg);
3010 
3011 		if (value) {
3012 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3013 			if (epctl & DXEPCTL_EPENA)
3014 				epctl |= DXEPCTL_EPDIS;
3015 		} else {
3016 			epctl &= ~DXEPCTL_STALL;
3017 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
3018 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
3019 				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
3020 					epctl |= DXEPCTL_SETD0PID;
3021 		}
3022 		dwc2_writel(epctl, hs->regs + epreg);
3023 	} else {
3024 
3025 		epreg = DOEPCTL(index);
3026 		epctl = dwc2_readl(hs->regs + epreg);
3027 
3028 		if (value)
3029 			epctl |= DXEPCTL_STALL;
3030 		else {
3031 			epctl &= ~DXEPCTL_STALL;
3032 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
3033 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
3034 				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
3035 					epctl |= DXEPCTL_SETD0PID;
3036 		}
3037 		dwc2_writel(epctl, hs->regs + epreg);
3038 	}
3039 
3040 	hs_ep->halted = value;
3041 
3042 	return 0;
3043 }
3044 
3045 /**
3046  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3047  * @ep: The endpoint to set halt.
3048  * @value: Set or unset the halt.
3049  */
3050 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3051 {
3052 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3053 	struct dwc2_hsotg *hs = hs_ep->parent;
3054 	unsigned long flags = 0;
3055 	int ret = 0;
3056 
3057 	spin_lock_irqsave(&hs->lock, flags);
3058 	ret = dwc2_hsotg_ep_sethalt(ep, value);
3059 	spin_unlock_irqrestore(&hs->lock, flags);
3060 
3061 	return ret;
3062 }
3063 
3064 static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3065 	.enable		= dwc2_hsotg_ep_enable,
3066 	.disable	= dwc2_hsotg_ep_disable,
3067 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
3068 	.free_request	= dwc2_hsotg_ep_free_request,
3069 	.queue		= dwc2_hsotg_ep_queue_lock,
3070 	.dequeue	= dwc2_hsotg_ep_dequeue,
3071 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
3072 	/* note, don't believe we have any call for the fifo routines */
3073 };
3074 
3075 /**
3076  * dwc2_hsotg_init - initalize the usb core
3077  * @hsotg: The driver state
3078  */
3079 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3080 {
3081 	u32 trdtim;
3082 	/* unmask subset of endpoint interrupts */
3083 
3084 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3085 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3086 		    hsotg->regs + DIEPMSK);
3087 
3088 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3089 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3090 		    hsotg->regs + DOEPMSK);
3091 
3092 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3093 
3094 	/* Be in disconnected state until gadget is registered */
3095 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3096 
3097 	/* setup fifos */
3098 
3099 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3100 		dwc2_readl(hsotg->regs + GRXFSIZ),
3101 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3102 
3103 	dwc2_hsotg_init_fifo(hsotg);
3104 
3105 	/* set the PLL on, remove the HNP/SRP and set the PHY */
3106 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3107 	dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3108 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3109 		hsotg->regs + GUSBCFG);
3110 
3111 	if (using_dma(hsotg))
3112 		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3113 }
3114 
3115 /**
3116  * dwc2_hsotg_udc_start - prepare the udc for work
3117  * @gadget: The usb gadget state
3118  * @driver: The usb gadget driver
3119  *
3120  * Perform initialization to prepare udc device and driver
3121  * to work.
3122  */
3123 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3124 			   struct usb_gadget_driver *driver)
3125 {
3126 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3127 	unsigned long flags;
3128 	int ret;
3129 
3130 	if (!hsotg) {
3131 		pr_err("%s: called with no device\n", __func__);
3132 		return -ENODEV;
3133 	}
3134 
3135 	if (!driver) {
3136 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3137 		return -EINVAL;
3138 	}
3139 
3140 	if (driver->max_speed < USB_SPEED_FULL)
3141 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3142 
3143 	if (!driver->setup) {
3144 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3145 		return -EINVAL;
3146 	}
3147 
3148 	WARN_ON(hsotg->driver);
3149 
3150 	driver->driver.bus = NULL;
3151 	hsotg->driver = driver;
3152 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3153 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3154 
3155 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
3156 		ret = dwc2_lowlevel_hw_enable(hsotg);
3157 		if (ret)
3158 			goto err;
3159 	}
3160 
3161 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3162 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3163 
3164 	spin_lock_irqsave(&hsotg->lock, flags);
3165 	dwc2_hsotg_init(hsotg);
3166 	dwc2_hsotg_core_init_disconnected(hsotg, false);
3167 	hsotg->enabled = 0;
3168 	spin_unlock_irqrestore(&hsotg->lock, flags);
3169 
3170 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3171 
3172 	return 0;
3173 
3174 err:
3175 	hsotg->driver = NULL;
3176 	return ret;
3177 }
3178 
3179 /**
3180  * dwc2_hsotg_udc_stop - stop the udc
3181  * @gadget: The usb gadget state
3182  * @driver: The usb gadget driver
3183  *
3184  * Stop udc hw block and stay tunned for future transmissions
3185  */
3186 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3187 {
3188 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3189 	unsigned long flags = 0;
3190 	int ep;
3191 
3192 	if (!hsotg)
3193 		return -ENODEV;
3194 
3195 	/* all endpoints should be shutdown */
3196 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3197 		if (hsotg->eps_in[ep])
3198 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3199 		if (hsotg->eps_out[ep])
3200 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3201 	}
3202 
3203 	spin_lock_irqsave(&hsotg->lock, flags);
3204 
3205 	hsotg->driver = NULL;
3206 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3207 	hsotg->enabled = 0;
3208 
3209 	spin_unlock_irqrestore(&hsotg->lock, flags);
3210 
3211 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3212 		otg_set_peripheral(hsotg->uphy->otg, NULL);
3213 
3214 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3215 		dwc2_lowlevel_hw_disable(hsotg);
3216 
3217 	return 0;
3218 }
3219 
3220 /**
3221  * dwc2_hsotg_gadget_getframe - read the frame number
3222  * @gadget: The usb gadget state
3223  *
3224  * Read the {micro} frame number
3225  */
3226 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3227 {
3228 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3229 }
3230 
3231 /**
3232  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3233  * @gadget: The usb gadget state
3234  * @is_on: Current state of the USB PHY
3235  *
3236  * Connect/Disconnect the USB PHY pullup
3237  */
3238 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3239 {
3240 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3241 	unsigned long flags = 0;
3242 
3243 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3244 			hsotg->op_state);
3245 
3246 	/* Don't modify pullup state while in host mode */
3247 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3248 		hsotg->enabled = is_on;
3249 		return 0;
3250 	}
3251 
3252 	spin_lock_irqsave(&hsotg->lock, flags);
3253 	if (is_on) {
3254 		hsotg->enabled = 1;
3255 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3256 		dwc2_hsotg_core_connect(hsotg);
3257 	} else {
3258 		dwc2_hsotg_core_disconnect(hsotg);
3259 		dwc2_hsotg_disconnect(hsotg);
3260 		hsotg->enabled = 0;
3261 	}
3262 
3263 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3264 	spin_unlock_irqrestore(&hsotg->lock, flags);
3265 
3266 	return 0;
3267 }
3268 
3269 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3270 {
3271 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3272 	unsigned long flags;
3273 
3274 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3275 	spin_lock_irqsave(&hsotg->lock, flags);
3276 
3277 	/*
3278 	 * If controller is hibernated, it must exit from hibernation
3279 	 * before being initialized / de-initialized
3280 	 */
3281 	if (hsotg->lx_state == DWC2_L2)
3282 		dwc2_exit_hibernation(hsotg, false);
3283 
3284 	if (is_active) {
3285 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3286 
3287 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3288 		if (hsotg->enabled)
3289 			dwc2_hsotg_core_connect(hsotg);
3290 	} else {
3291 		dwc2_hsotg_core_disconnect(hsotg);
3292 		dwc2_hsotg_disconnect(hsotg);
3293 	}
3294 
3295 	spin_unlock_irqrestore(&hsotg->lock, flags);
3296 	return 0;
3297 }
3298 
3299 /**
3300  * dwc2_hsotg_vbus_draw - report bMaxPower field
3301  * @gadget: The usb gadget state
3302  * @mA: Amount of current
3303  *
3304  * Report how much power the device may consume to the phy.
3305  */
3306 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3307 {
3308 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3309 
3310 	if (IS_ERR_OR_NULL(hsotg->uphy))
3311 		return -ENOTSUPP;
3312 	return usb_phy_set_power(hsotg->uphy, mA);
3313 }
3314 
3315 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3316 	.get_frame	= dwc2_hsotg_gadget_getframe,
3317 	.udc_start		= dwc2_hsotg_udc_start,
3318 	.udc_stop		= dwc2_hsotg_udc_stop,
3319 	.pullup                 = dwc2_hsotg_pullup,
3320 	.vbus_session		= dwc2_hsotg_vbus_session,
3321 	.vbus_draw		= dwc2_hsotg_vbus_draw,
3322 };
3323 
3324 /**
3325  * dwc2_hsotg_initep - initialise a single endpoint
3326  * @hsotg: The device state.
3327  * @hs_ep: The endpoint to be initialised.
3328  * @epnum: The endpoint number
3329  *
3330  * Initialise the given endpoint (as part of the probe and device state
3331  * creation) to give to the gadget driver. Setup the endpoint name, any
3332  * direction information and other state that may be required.
3333  */
3334 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3335 				       struct dwc2_hsotg_ep *hs_ep,
3336 				       int epnum,
3337 				       bool dir_in)
3338 {
3339 	char *dir;
3340 
3341 	if (epnum == 0)
3342 		dir = "";
3343 	else if (dir_in)
3344 		dir = "in";
3345 	else
3346 		dir = "out";
3347 
3348 	hs_ep->dir_in = dir_in;
3349 	hs_ep->index = epnum;
3350 
3351 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3352 
3353 	INIT_LIST_HEAD(&hs_ep->queue);
3354 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3355 
3356 	/* add to the list of endpoints known by the gadget driver */
3357 	if (epnum)
3358 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3359 
3360 	hs_ep->parent = hsotg;
3361 	hs_ep->ep.name = hs_ep->name;
3362 	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3363 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3364 
3365 	if (epnum == 0) {
3366 		hs_ep->ep.caps.type_control = true;
3367 	} else {
3368 		hs_ep->ep.caps.type_iso = true;
3369 		hs_ep->ep.caps.type_bulk = true;
3370 		hs_ep->ep.caps.type_int = true;
3371 	}
3372 
3373 	if (dir_in)
3374 		hs_ep->ep.caps.dir_in = true;
3375 	else
3376 		hs_ep->ep.caps.dir_out = true;
3377 
3378 	/*
3379 	 * if we're using dma, we need to set the next-endpoint pointer
3380 	 * to be something valid.
3381 	 */
3382 
3383 	if (using_dma(hsotg)) {
3384 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3385 		if (dir_in)
3386 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3387 		else
3388 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3389 	}
3390 }
3391 
3392 /**
3393  * dwc2_hsotg_hw_cfg - read HW configuration registers
3394  * @param: The device state
3395  *
3396  * Read the USB core HW configuration registers
3397  */
3398 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3399 {
3400 	u32 cfg;
3401 	u32 ep_type;
3402 	u32 i;
3403 
3404 	/* check hardware configuration */
3405 
3406 	cfg = dwc2_readl(hsotg->regs + GHWCFG2);
3407 	hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3408 	/* Add ep0 */
3409 	hsotg->num_of_eps++;
3410 
3411 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3412 								GFP_KERNEL);
3413 	if (!hsotg->eps_in[0])
3414 		return -ENOMEM;
3415 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3416 	hsotg->eps_out[0] = hsotg->eps_in[0];
3417 
3418 	cfg = dwc2_readl(hsotg->regs + GHWCFG1);
3419 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3420 		ep_type = cfg & 3;
3421 		/* Direction in or both */
3422 		if (!(ep_type & 2)) {
3423 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3424 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3425 			if (!hsotg->eps_in[i])
3426 				return -ENOMEM;
3427 		}
3428 		/* Direction out or both */
3429 		if (!(ep_type & 1)) {
3430 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3431 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3432 			if (!hsotg->eps_out[i])
3433 				return -ENOMEM;
3434 		}
3435 	}
3436 
3437 	cfg = dwc2_readl(hsotg->regs + GHWCFG3);
3438 	hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3439 
3440 	cfg = dwc2_readl(hsotg->regs + GHWCFG4);
3441 	hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3442 
3443 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3444 		 hsotg->num_of_eps,
3445 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3446 		 hsotg->fifo_mem);
3447 	return 0;
3448 }
3449 
3450 /**
3451  * dwc2_hsotg_dump - dump state of the udc
3452  * @param: The device state
3453  */
3454 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3455 {
3456 #ifdef DEBUG
3457 	struct device *dev = hsotg->dev;
3458 	void __iomem *regs = hsotg->regs;
3459 	u32 val;
3460 	int idx;
3461 
3462 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3463 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3464 		 dwc2_readl(regs + DIEPMSK));
3465 
3466 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3467 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3468 
3469 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3470 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3471 
3472 	/* show periodic fifo settings */
3473 
3474 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3475 		val = dwc2_readl(regs + DPTXFSIZN(idx));
3476 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3477 			 val >> FIFOSIZE_DEPTH_SHIFT,
3478 			 val & FIFOSIZE_STARTADDR_MASK);
3479 	}
3480 
3481 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3482 		dev_info(dev,
3483 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3484 			 dwc2_readl(regs + DIEPCTL(idx)),
3485 			 dwc2_readl(regs + DIEPTSIZ(idx)),
3486 			 dwc2_readl(regs + DIEPDMA(idx)));
3487 
3488 		val = dwc2_readl(regs + DOEPCTL(idx));
3489 		dev_info(dev,
3490 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3491 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
3492 			 dwc2_readl(regs + DOEPTSIZ(idx)),
3493 			 dwc2_readl(regs + DOEPDMA(idx)));
3494 
3495 	}
3496 
3497 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3498 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3499 #endif
3500 }
3501 
3502 #ifdef CONFIG_OF
3503 static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3504 {
3505 	struct device_node *np = hsotg->dev->of_node;
3506 	u32 len = 0;
3507 	u32 i = 0;
3508 
3509 	/* Enable dma if requested in device tree */
3510 	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3511 
3512 	/*
3513 	* Register TX periodic fifo size per endpoint.
3514 	* EP0 is excluded since it has no fifo configuration.
3515 	*/
3516 	if (!of_find_property(np, "g-tx-fifo-size", &len))
3517 		goto rx_fifo;
3518 
3519 	len /= sizeof(u32);
3520 
3521 	/* Read tx fifo sizes other than ep0 */
3522 	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3523 						&hsotg->g_tx_fifo_sz[1], len))
3524 		goto rx_fifo;
3525 
3526 	/* Add ep0 */
3527 	len++;
3528 
3529 	/* Make remaining TX fifos unavailable */
3530 	if (len < MAX_EPS_CHANNELS) {
3531 		for (i = len; i < MAX_EPS_CHANNELS; i++)
3532 			hsotg->g_tx_fifo_sz[i] = 0;
3533 	}
3534 
3535 rx_fifo:
3536 	/* Register RX fifo size */
3537 	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3538 
3539 	/* Register NPTX fifo size */
3540 	of_property_read_u32(np, "g-np-tx-fifo-size",
3541 						&hsotg->g_np_g_tx_fifo_sz);
3542 }
3543 #else
3544 static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3545 #endif
3546 
3547 /**
3548  * dwc2_gadget_init - init function for gadget
3549  * @dwc2: The data structure for the DWC2 driver.
3550  * @irq: The IRQ number for the controller.
3551  */
3552 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3553 {
3554 	struct device *dev = hsotg->dev;
3555 	int epnum;
3556 	int ret;
3557 	int i;
3558 	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3559 
3560 	/* Initialize to legacy fifo configuration values */
3561 	hsotg->g_rx_fifo_sz = 2048;
3562 	hsotg->g_np_g_tx_fifo_sz = 1024;
3563 	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3564 	/* Device tree specific probe */
3565 	dwc2_hsotg_of_probe(hsotg);
3566 	/* Dump fifo information */
3567 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3568 						hsotg->g_np_g_tx_fifo_sz);
3569 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3570 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3571 		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3572 						hsotg->g_tx_fifo_sz[i]);
3573 
3574 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3575 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3576 	hsotg->gadget.name = dev_name(dev);
3577 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
3578 		hsotg->gadget.is_otg = 1;
3579 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3580 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3581 
3582 	/*
3583 	 * Force Device mode before initialization.
3584 	 * This allows correctly configuring fifo for device mode.
3585 	 */
3586 	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3587 	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3588 
3589 	/*
3590 	 * According to Synopsys databook, this sleep is needed for the force
3591 	 * device mode to take effect.
3592 	 */
3593 	msleep(25);
3594 
3595 	dwc2_hsotg_corereset(hsotg);
3596 	ret = dwc2_hsotg_hw_cfg(hsotg);
3597 	if (ret) {
3598 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3599 		return ret;
3600 	}
3601 
3602 	dwc2_hsotg_init(hsotg);
3603 
3604 	/* Switch back to default configuration */
3605 	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3606 
3607 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3608 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3609 	if (!hsotg->ctrl_buff) {
3610 		dev_err(dev, "failed to allocate ctrl request buff\n");
3611 		return -ENOMEM;
3612 	}
3613 
3614 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3615 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3616 	if (!hsotg->ep0_buff) {
3617 		dev_err(dev, "failed to allocate ctrl reply buff\n");
3618 		return -ENOMEM;
3619 	}
3620 
3621 	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3622 				dev_name(hsotg->dev), hsotg);
3623 	if (ret < 0) {
3624 		dev_err(dev, "cannot claim IRQ for gadget\n");
3625 		return ret;
3626 	}
3627 
3628 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3629 
3630 	if (hsotg->num_of_eps == 0) {
3631 		dev_err(dev, "wrong number of EPs (zero)\n");
3632 		return -EINVAL;
3633 	}
3634 
3635 	/* setup endpoint information */
3636 
3637 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3638 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3639 
3640 	/* allocate EP0 request */
3641 
3642 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3643 						     GFP_KERNEL);
3644 	if (!hsotg->ctrl_req) {
3645 		dev_err(dev, "failed to allocate ctrl req\n");
3646 		return -ENOMEM;
3647 	}
3648 
3649 	/* initialise the endpoints now the core has been initialised */
3650 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3651 		if (hsotg->eps_in[epnum])
3652 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3653 								epnum, 1);
3654 		if (hsotg->eps_out[epnum])
3655 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3656 								epnum, 0);
3657 	}
3658 
3659 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3660 	if (ret)
3661 		return ret;
3662 
3663 	dwc2_hsotg_dump(hsotg);
3664 
3665 	return 0;
3666 }
3667 
3668 /**
3669  * dwc2_hsotg_remove - remove function for hsotg driver
3670  * @pdev: The platform information for the driver
3671  */
3672 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3673 {
3674 	usb_del_gadget_udc(&hsotg->gadget);
3675 
3676 	return 0;
3677 }
3678 
3679 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3680 {
3681 	unsigned long flags;
3682 
3683 	if (hsotg->lx_state != DWC2_L0)
3684 		return 0;
3685 
3686 	if (hsotg->driver) {
3687 		int ep;
3688 
3689 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3690 			 hsotg->driver->driver.name);
3691 
3692 		spin_lock_irqsave(&hsotg->lock, flags);
3693 		if (hsotg->enabled)
3694 			dwc2_hsotg_core_disconnect(hsotg);
3695 		dwc2_hsotg_disconnect(hsotg);
3696 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3697 		spin_unlock_irqrestore(&hsotg->lock, flags);
3698 
3699 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3700 			if (hsotg->eps_in[ep])
3701 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3702 			if (hsotg->eps_out[ep])
3703 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3704 		}
3705 	}
3706 
3707 	return 0;
3708 }
3709 
3710 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3711 {
3712 	unsigned long flags;
3713 
3714 	if (hsotg->lx_state == DWC2_L2)
3715 		return 0;
3716 
3717 	if (hsotg->driver) {
3718 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3719 			 hsotg->driver->driver.name);
3720 
3721 		spin_lock_irqsave(&hsotg->lock, flags);
3722 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3723 		if (hsotg->enabled)
3724 			dwc2_hsotg_core_connect(hsotg);
3725 		spin_unlock_irqrestore(&hsotg->lock, flags);
3726 	}
3727 
3728 	return 0;
3729 }
3730