1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 hs_ep->target_frame += hs_ep->interval; 119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 120 hs_ep->frame_overrun = true; 121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 122 } else { 123 hs_ep->frame_overrun = false; 124 } 125 } 126 127 /** 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 129 * by one. 130 * @hs_ep: The endpoint. 131 * 132 * This function used in service interval based scheduling flow to calculate 133 * descriptor frame number filed value. For service interval mode frame 134 * number in descriptor should point to last (u)frame in the interval. 135 * 136 */ 137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 138 { 139 if (hs_ep->target_frame) 140 hs_ep->target_frame -= 1; 141 else 142 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 143 } 144 145 /** 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 147 * @hsotg: The device state 148 * @ints: A bitmask of the interrupts to enable 149 */ 150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 151 { 152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 153 u32 new_gsintmsk; 154 155 new_gsintmsk = gsintmsk | ints; 156 157 if (new_gsintmsk != gsintmsk) { 158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 160 } 161 } 162 163 /** 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 165 * @hsotg: The device state 166 * @ints: A bitmask of the interrupts to enable 167 */ 168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 169 { 170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 171 u32 new_gsintmsk; 172 173 new_gsintmsk = gsintmsk & ~ints; 174 175 if (new_gsintmsk != gsintmsk) 176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 177 } 178 179 /** 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 181 * @hsotg: The device state 182 * @ep: The endpoint index 183 * @dir_in: True if direction is in. 184 * @en: The enable value, true to enable 185 * 186 * Set or clear the mask for an individual endpoint's interrupt 187 * request. 188 */ 189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 190 unsigned int ep, unsigned int dir_in, 191 unsigned int en) 192 { 193 unsigned long flags; 194 u32 bit = 1 << ep; 195 u32 daint; 196 197 if (!dir_in) 198 bit <<= 16; 199 200 local_irq_save(flags); 201 daint = dwc2_readl(hsotg, DAINTMSK); 202 if (en) 203 daint |= bit; 204 else 205 daint &= ~bit; 206 dwc2_writel(hsotg, daint, DAINTMSK); 207 local_irq_restore(flags); 208 } 209 210 /** 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 212 * 213 * @hsotg: Programming view of the DWC_otg controller 214 */ 215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 216 { 217 if (hsotg->hw_params.en_multiple_tx_fifo) 218 /* In dedicated FIFO mode we need count of IN EPs */ 219 return hsotg->hw_params.num_dev_in_eps; 220 else 221 /* In shared FIFO mode we need count of Periodic IN EPs */ 222 return hsotg->hw_params.num_dev_perio_in_ep; 223 } 224 225 /** 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 227 * device mode TX FIFOs 228 * 229 * @hsotg: Programming view of the DWC_otg controller 230 */ 231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 232 { 233 int addr; 234 int tx_addr_max; 235 u32 np_tx_fifo_size; 236 237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 238 hsotg->params.g_np_tx_fifo_size); 239 240 /* Get Endpoint Info Control block size in DWORDs. */ 241 tx_addr_max = hsotg->hw_params.total_fifo_size; 242 243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 244 if (tx_addr_max <= addr) 245 return 0; 246 247 return tx_addr_max - addr; 248 } 249 250 /** 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 252 * 253 * @hsotg: Programming view of the DWC_otg controller 254 * 255 */ 256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 257 { 258 u32 gintsts2; 259 u32 gintmsk2; 260 261 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 263 gintsts2 &= gintmsk2; 264 265 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 266 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 267 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 268 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 269 } 270 } 271 272 /** 273 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 274 * TX FIFOs 275 * 276 * @hsotg: Programming view of the DWC_otg controller 277 */ 278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 279 { 280 int tx_fifo_count; 281 int tx_fifo_depth; 282 283 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 284 285 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 286 287 if (!tx_fifo_count) 288 return tx_fifo_depth; 289 else 290 return tx_fifo_depth / tx_fifo_count; 291 } 292 293 /** 294 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 295 * @hsotg: The device instance. 296 */ 297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 298 { 299 unsigned int ep; 300 unsigned int addr; 301 int timeout; 302 303 u32 val; 304 u32 *txfsz = hsotg->params.g_tx_fifo_size; 305 306 /* Reset fifo map if not correctly cleared during previous session */ 307 WARN_ON(hsotg->fifo_map); 308 hsotg->fifo_map = 0; 309 310 /* set RX/NPTX FIFO sizes */ 311 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 312 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 313 FIFOSIZE_STARTADDR_SHIFT) | 314 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 315 GNPTXFSIZ); 316 317 /* 318 * arange all the rest of the TX FIFOs, as some versions of this 319 * block have overlapping default addresses. This also ensures 320 * that if the settings have been changed, then they are set to 321 * known values. 322 */ 323 324 /* start at the end of the GNPTXFSIZ, rounded up */ 325 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 326 327 /* 328 * Configure fifos sizes from provided configuration and assign 329 * them to endpoints dynamically according to maxpacket size value of 330 * given endpoint. 331 */ 332 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 333 if (!txfsz[ep]) 334 continue; 335 val = addr; 336 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 337 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 338 "insufficient fifo memory"); 339 addr += txfsz[ep]; 340 341 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 342 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 343 } 344 345 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 346 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 347 GDFIFOCFG); 348 /* 349 * according to p428 of the design guide, we need to ensure that 350 * all fifos are flushed before continuing 351 */ 352 353 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 354 GRSTCTL_RXFFLSH, GRSTCTL); 355 356 /* wait until the fifos are both flushed */ 357 timeout = 100; 358 while (1) { 359 val = dwc2_readl(hsotg, GRSTCTL); 360 361 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 362 break; 363 364 if (--timeout == 0) { 365 dev_err(hsotg->dev, 366 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 367 __func__, val); 368 break; 369 } 370 371 udelay(1); 372 } 373 374 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 375 } 376 377 /** 378 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 379 * @ep: USB endpoint to allocate request for. 380 * @flags: Allocation flags 381 * 382 * Allocate a new USB request structure appropriate for the specified endpoint 383 */ 384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 385 gfp_t flags) 386 { 387 struct dwc2_hsotg_req *req; 388 389 req = kzalloc(sizeof(*req), flags); 390 if (!req) 391 return NULL; 392 393 INIT_LIST_HEAD(&req->queue); 394 395 return &req->req; 396 } 397 398 /** 399 * is_ep_periodic - return true if the endpoint is in periodic mode. 400 * @hs_ep: The endpoint to query. 401 * 402 * Returns true if the endpoint is in periodic mode, meaning it is being 403 * used for an Interrupt or ISO transfer. 404 */ 405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 406 { 407 return hs_ep->periodic; 408 } 409 410 /** 411 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 412 * @hsotg: The device state. 413 * @hs_ep: The endpoint for the request 414 * @hs_req: The request being processed. 415 * 416 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 417 * of a request to ensure the buffer is ready for access by the caller. 418 */ 419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 420 struct dwc2_hsotg_ep *hs_ep, 421 struct dwc2_hsotg_req *hs_req) 422 { 423 struct usb_request *req = &hs_req->req; 424 425 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir); 426 } 427 428 /* 429 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 430 * for Control endpoint 431 * @hsotg: The device state. 432 * 433 * This function will allocate 4 descriptor chains for EP 0: 2 for 434 * Setup stage, per one for IN and OUT data/status transactions. 435 */ 436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 437 { 438 hsotg->setup_desc[0] = 439 dmam_alloc_coherent(hsotg->dev, 440 sizeof(struct dwc2_dma_desc), 441 &hsotg->setup_desc_dma[0], 442 GFP_KERNEL); 443 if (!hsotg->setup_desc[0]) 444 goto fail; 445 446 hsotg->setup_desc[1] = 447 dmam_alloc_coherent(hsotg->dev, 448 sizeof(struct dwc2_dma_desc), 449 &hsotg->setup_desc_dma[1], 450 GFP_KERNEL); 451 if (!hsotg->setup_desc[1]) 452 goto fail; 453 454 hsotg->ctrl_in_desc = 455 dmam_alloc_coherent(hsotg->dev, 456 sizeof(struct dwc2_dma_desc), 457 &hsotg->ctrl_in_desc_dma, 458 GFP_KERNEL); 459 if (!hsotg->ctrl_in_desc) 460 goto fail; 461 462 hsotg->ctrl_out_desc = 463 dmam_alloc_coherent(hsotg->dev, 464 sizeof(struct dwc2_dma_desc), 465 &hsotg->ctrl_out_desc_dma, 466 GFP_KERNEL); 467 if (!hsotg->ctrl_out_desc) 468 goto fail; 469 470 return 0; 471 472 fail: 473 return -ENOMEM; 474 } 475 476 /** 477 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 478 * @hsotg: The controller state. 479 * @hs_ep: The endpoint we're going to write for. 480 * @hs_req: The request to write data for. 481 * 482 * This is called when the TxFIFO has some space in it to hold a new 483 * transmission and we have something to give it. The actual setup of 484 * the data size is done elsewhere, so all we have to do is to actually 485 * write the data. 486 * 487 * The return value is zero if there is more space (or nothing was done) 488 * otherwise -ENOSPC is returned if the FIFO space was used up. 489 * 490 * This routine is only needed for PIO 491 */ 492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 493 struct dwc2_hsotg_ep *hs_ep, 494 struct dwc2_hsotg_req *hs_req) 495 { 496 bool periodic = is_ep_periodic(hs_ep); 497 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 498 int buf_pos = hs_req->req.actual; 499 int to_write = hs_ep->size_loaded; 500 void *data; 501 int can_write; 502 int pkt_round; 503 int max_transfer; 504 505 to_write -= (buf_pos - hs_ep->last_load); 506 507 /* if there's nothing to write, get out early */ 508 if (to_write == 0) 509 return 0; 510 511 if (periodic && !hsotg->dedicated_fifos) { 512 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 513 int size_left; 514 int size_done; 515 516 /* 517 * work out how much data was loaded so we can calculate 518 * how much data is left in the fifo. 519 */ 520 521 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 522 523 /* 524 * if shared fifo, we cannot write anything until the 525 * previous data has been completely sent. 526 */ 527 if (hs_ep->fifo_load != 0) { 528 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 529 return -ENOSPC; 530 } 531 532 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 533 __func__, size_left, 534 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 535 536 /* how much of the data has moved */ 537 size_done = hs_ep->size_loaded - size_left; 538 539 /* how much data is left in the fifo */ 540 can_write = hs_ep->fifo_load - size_done; 541 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 542 __func__, can_write); 543 544 can_write = hs_ep->fifo_size - can_write; 545 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 546 __func__, can_write); 547 548 if (can_write <= 0) { 549 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 550 return -ENOSPC; 551 } 552 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 553 can_write = dwc2_readl(hsotg, 554 DTXFSTS(hs_ep->fifo_index)); 555 556 can_write &= 0xffff; 557 can_write *= 4; 558 } else { 559 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 560 dev_dbg(hsotg->dev, 561 "%s: no queue slots available (0x%08x)\n", 562 __func__, gnptxsts); 563 564 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 565 return -ENOSPC; 566 } 567 568 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 569 can_write *= 4; /* fifo size is in 32bit quantities. */ 570 } 571 572 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 573 574 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 575 __func__, gnptxsts, can_write, to_write, max_transfer); 576 577 /* 578 * limit to 512 bytes of data, it seems at least on the non-periodic 579 * FIFO, requests of >512 cause the endpoint to get stuck with a 580 * fragment of the end of the transfer in it. 581 */ 582 if (can_write > 512 && !periodic) 583 can_write = 512; 584 585 /* 586 * limit the write to one max-packet size worth of data, but allow 587 * the transfer to return that it did not run out of fifo space 588 * doing it. 589 */ 590 if (to_write > max_transfer) { 591 to_write = max_transfer; 592 593 /* it's needed only when we do not use dedicated fifos */ 594 if (!hsotg->dedicated_fifos) 595 dwc2_hsotg_en_gsint(hsotg, 596 periodic ? GINTSTS_PTXFEMP : 597 GINTSTS_NPTXFEMP); 598 } 599 600 /* see if we can write data */ 601 602 if (to_write > can_write) { 603 to_write = can_write; 604 pkt_round = to_write % max_transfer; 605 606 /* 607 * Round the write down to an 608 * exact number of packets. 609 * 610 * Note, we do not currently check to see if we can ever 611 * write a full packet or not to the FIFO. 612 */ 613 614 if (pkt_round) 615 to_write -= pkt_round; 616 617 /* 618 * enable correct FIFO interrupt to alert us when there 619 * is more room left. 620 */ 621 622 /* it's needed only when we do not use dedicated fifos */ 623 if (!hsotg->dedicated_fifos) 624 dwc2_hsotg_en_gsint(hsotg, 625 periodic ? GINTSTS_PTXFEMP : 626 GINTSTS_NPTXFEMP); 627 } 628 629 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 630 to_write, hs_req->req.length, can_write, buf_pos); 631 632 if (to_write <= 0) 633 return -ENOSPC; 634 635 hs_req->req.actual = buf_pos + to_write; 636 hs_ep->total_data += to_write; 637 638 if (periodic) 639 hs_ep->fifo_load += to_write; 640 641 to_write = DIV_ROUND_UP(to_write, 4); 642 data = hs_req->req.buf + buf_pos; 643 644 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 645 646 return (to_write >= can_write) ? -ENOSPC : 0; 647 } 648 649 /** 650 * get_ep_limit - get the maximum data legnth for this endpoint 651 * @hs_ep: The endpoint 652 * 653 * Return the maximum data that can be queued in one go on a given endpoint 654 * so that transfers that are too long can be split. 655 */ 656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 657 { 658 int index = hs_ep->index; 659 unsigned int maxsize; 660 unsigned int maxpkt; 661 662 if (index != 0) { 663 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 664 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 665 } else { 666 maxsize = 64 + 64; 667 if (hs_ep->dir_in) 668 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 669 else 670 maxpkt = 2; 671 } 672 673 /* we made the constant loading easier above by using +1 */ 674 maxpkt--; 675 maxsize--; 676 677 /* 678 * constrain by packet count if maxpkts*pktsize is greater 679 * than the length register size. 680 */ 681 682 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 683 maxsize = maxpkt * hs_ep->ep.maxpacket; 684 685 return maxsize; 686 } 687 688 /** 689 * dwc2_hsotg_read_frameno - read current frame number 690 * @hsotg: The device instance 691 * 692 * Return the current frame number 693 */ 694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 695 { 696 u32 dsts; 697 698 dsts = dwc2_readl(hsotg, DSTS); 699 dsts &= DSTS_SOFFN_MASK; 700 dsts >>= DSTS_SOFFN_SHIFT; 701 702 return dsts; 703 } 704 705 /** 706 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 707 * DMA descriptor chain prepared for specific endpoint 708 * @hs_ep: The endpoint 709 * 710 * Return the maximum data that can be queued in one go on a given endpoint 711 * depending on its descriptor chain capacity so that transfers that 712 * are too long can be split. 713 */ 714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 715 { 716 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 717 int is_isoc = hs_ep->isochronous; 718 unsigned int maxsize; 719 u32 mps = hs_ep->ep.maxpacket; 720 int dir_in = hs_ep->dir_in; 721 722 if (is_isoc) 723 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 724 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 725 MAX_DMA_DESC_NUM_HS_ISOC; 726 else 727 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 728 729 /* Interrupt OUT EP with mps not multiple of 4 */ 730 if (hs_ep->index) 731 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 732 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; 733 734 return maxsize; 735 } 736 737 /* 738 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 739 * @hs_ep: The endpoint 740 * @mask: RX/TX bytes mask to be defined 741 * 742 * Returns maximum data payload for one descriptor after analyzing endpoint 743 * characteristics. 744 * DMA descriptor transfer bytes limit depends on EP type: 745 * Control out - MPS, 746 * Isochronous - descriptor rx/tx bytes bitfield limit, 747 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 748 * have concatenations from various descriptors within one packet. 749 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds 750 * to a single descriptor. 751 * 752 * Selects corresponding mask for RX/TX bytes as well. 753 */ 754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 755 { 756 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 757 u32 mps = hs_ep->ep.maxpacket; 758 int dir_in = hs_ep->dir_in; 759 u32 desc_size = 0; 760 761 if (!hs_ep->index && !dir_in) { 762 desc_size = mps; 763 *mask = DEV_DMA_NBYTES_MASK; 764 } else if (hs_ep->isochronous) { 765 if (dir_in) { 766 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 767 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 768 } else { 769 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 770 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 771 } 772 } else { 773 desc_size = DEV_DMA_NBYTES_LIMIT; 774 *mask = DEV_DMA_NBYTES_MASK; 775 776 /* Round down desc_size to be mps multiple */ 777 desc_size -= desc_size % mps; 778 } 779 780 /* Interrupt OUT EP with mps not multiple of 4 */ 781 if (hs_ep->index) 782 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { 783 desc_size = mps; 784 *mask = DEV_DMA_NBYTES_MASK; 785 } 786 787 return desc_size; 788 } 789 790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 791 struct dwc2_dma_desc **desc, 792 dma_addr_t dma_buff, 793 unsigned int len, 794 bool true_last) 795 { 796 int dir_in = hs_ep->dir_in; 797 u32 mps = hs_ep->ep.maxpacket; 798 u32 maxsize = 0; 799 u32 offset = 0; 800 u32 mask = 0; 801 int i; 802 803 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 804 805 hs_ep->desc_count = (len / maxsize) + 806 ((len % maxsize) ? 1 : 0); 807 if (len == 0) 808 hs_ep->desc_count = 1; 809 810 for (i = 0; i < hs_ep->desc_count; ++i) { 811 (*desc)->status = 0; 812 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 813 << DEV_DMA_BUFF_STS_SHIFT); 814 815 if (len > maxsize) { 816 if (!hs_ep->index && !dir_in) 817 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 818 819 (*desc)->status |= 820 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 821 (*desc)->buf = dma_buff + offset; 822 823 len -= maxsize; 824 offset += maxsize; 825 } else { 826 if (true_last) 827 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 828 829 if (dir_in) 830 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 831 ((hs_ep->send_zlp && true_last) ? 832 DEV_DMA_SHORT : 0); 833 834 (*desc)->status |= 835 len << DEV_DMA_NBYTES_SHIFT & mask; 836 (*desc)->buf = dma_buff + offset; 837 } 838 839 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 840 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 841 << DEV_DMA_BUFF_STS_SHIFT); 842 (*desc)++; 843 } 844 } 845 846 /* 847 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 848 * @hs_ep: The endpoint 849 * @ureq: Request to transfer 850 * @offset: offset in bytes 851 * @len: Length of the transfer 852 * 853 * This function will iterate over descriptor chain and fill its entries 854 * with corresponding information based on transfer data. 855 */ 856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 857 dma_addr_t dma_buff, 858 unsigned int len) 859 { 860 struct usb_request *ureq = NULL; 861 struct dwc2_dma_desc *desc = hs_ep->desc_list; 862 struct scatterlist *sg; 863 int i; 864 u8 desc_count = 0; 865 866 if (hs_ep->req) 867 ureq = &hs_ep->req->req; 868 869 /* non-DMA sg buffer */ 870 if (!ureq || !ureq->num_sgs) { 871 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 872 dma_buff, len, true); 873 return; 874 } 875 876 /* DMA sg buffer */ 877 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 878 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 879 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 880 sg_is_last(sg)); 881 desc_count += hs_ep->desc_count; 882 } 883 884 hs_ep->desc_count = desc_count; 885 } 886 887 /* 888 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 889 * @hs_ep: The isochronous endpoint. 890 * @dma_buff: usb requests dma buffer. 891 * @len: usb request transfer length. 892 * 893 * Fills next free descriptor with the data of the arrived usb request, 894 * frame info, sets Last and IOC bits increments next_desc. If filled 895 * descriptor is not the first one, removes L bit from the previous descriptor 896 * status. 897 */ 898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 899 dma_addr_t dma_buff, unsigned int len) 900 { 901 struct dwc2_dma_desc *desc; 902 struct dwc2_hsotg *hsotg = hs_ep->parent; 903 u32 index; 904 u32 mask = 0; 905 u8 pid = 0; 906 907 dwc2_gadget_get_desc_params(hs_ep, &mask); 908 909 index = hs_ep->next_desc; 910 desc = &hs_ep->desc_list[index]; 911 912 /* Check if descriptor chain full */ 913 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 914 DEV_DMA_BUFF_STS_HREADY) { 915 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 916 return 1; 917 } 918 919 /* Clear L bit of previous desc if more than one entries in the chain */ 920 if (hs_ep->next_desc) 921 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 922 923 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 924 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 925 926 desc->status = 0; 927 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 928 929 desc->buf = dma_buff; 930 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 931 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 932 933 if (hs_ep->dir_in) { 934 if (len) 935 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 936 else 937 pid = 1; 938 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 939 DEV_DMA_ISOC_PID_MASK) | 940 ((len % hs_ep->ep.maxpacket) ? 941 DEV_DMA_SHORT : 0) | 942 ((hs_ep->target_frame << 943 DEV_DMA_ISOC_FRNUM_SHIFT) & 944 DEV_DMA_ISOC_FRNUM_MASK); 945 } 946 947 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 948 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 949 950 /* Increment frame number by interval for IN */ 951 if (hs_ep->dir_in) 952 dwc2_gadget_incr_frame_num(hs_ep); 953 954 /* Update index of last configured entry in the chain */ 955 hs_ep->next_desc++; 956 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 957 hs_ep->next_desc = 0; 958 959 return 0; 960 } 961 962 /* 963 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 964 * @hs_ep: The isochronous endpoint. 965 * 966 * Prepare descriptor chain for isochronous endpoints. Afterwards 967 * write DMA address to HW and enable the endpoint. 968 */ 969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 970 { 971 struct dwc2_hsotg *hsotg = hs_ep->parent; 972 struct dwc2_hsotg_req *hs_req, *treq; 973 int index = hs_ep->index; 974 int ret; 975 int i; 976 u32 dma_reg; 977 u32 depctl; 978 u32 ctrl; 979 struct dwc2_dma_desc *desc; 980 981 if (list_empty(&hs_ep->queue)) { 982 hs_ep->target_frame = TARGET_FRAME_INITIAL; 983 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 984 return; 985 } 986 987 /* Initialize descriptor chain by Host Busy status */ 988 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 989 desc = &hs_ep->desc_list[i]; 990 desc->status = 0; 991 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 992 << DEV_DMA_BUFF_STS_SHIFT); 993 } 994 995 hs_ep->next_desc = 0; 996 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 997 dma_addr_t dma_addr = hs_req->req.dma; 998 999 if (hs_req->req.num_sgs) { 1000 WARN_ON(hs_req->req.num_sgs > 1); 1001 dma_addr = sg_dma_address(hs_req->req.sg); 1002 } 1003 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1004 hs_req->req.length); 1005 if (ret) 1006 break; 1007 } 1008 1009 hs_ep->compl_desc = 0; 1010 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1011 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 1012 1013 /* write descriptor chain address to control register */ 1014 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1015 1016 ctrl = dwc2_readl(hsotg, depctl); 1017 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1018 dwc2_writel(hsotg, ctrl, depctl); 1019 } 1020 1021 /** 1022 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1023 * @hsotg: The controller state. 1024 * @hs_ep: The endpoint to process a request for 1025 * @hs_req: The request to start. 1026 * @continuing: True if we are doing more for the current request. 1027 * 1028 * Start the given request running by setting the endpoint registers 1029 * appropriately, and writing any data to the FIFOs. 1030 */ 1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1032 struct dwc2_hsotg_ep *hs_ep, 1033 struct dwc2_hsotg_req *hs_req, 1034 bool continuing) 1035 { 1036 struct usb_request *ureq = &hs_req->req; 1037 int index = hs_ep->index; 1038 int dir_in = hs_ep->dir_in; 1039 u32 epctrl_reg; 1040 u32 epsize_reg; 1041 u32 epsize; 1042 u32 ctrl; 1043 unsigned int length; 1044 unsigned int packets; 1045 unsigned int maxreq; 1046 unsigned int dma_reg; 1047 1048 if (index != 0) { 1049 if (hs_ep->req && !continuing) { 1050 dev_err(hsotg->dev, "%s: active request\n", __func__); 1051 WARN_ON(1); 1052 return; 1053 } else if (hs_ep->req != hs_req && continuing) { 1054 dev_err(hsotg->dev, 1055 "%s: continue different req\n", __func__); 1056 WARN_ON(1); 1057 return; 1058 } 1059 } 1060 1061 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1062 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1063 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1064 1065 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1066 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1067 hs_ep->dir_in ? "in" : "out"); 1068 1069 /* If endpoint is stalled, we will restart request later */ 1070 ctrl = dwc2_readl(hsotg, epctrl_reg); 1071 1072 if (index && ctrl & DXEPCTL_STALL) { 1073 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1074 return; 1075 } 1076 1077 length = ureq->length - ureq->actual; 1078 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1079 ureq->length, ureq->actual); 1080 1081 if (!using_desc_dma(hsotg)) 1082 maxreq = get_ep_limit(hs_ep); 1083 else 1084 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1085 1086 if (length > maxreq) { 1087 int round = maxreq % hs_ep->ep.maxpacket; 1088 1089 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1090 __func__, length, maxreq, round); 1091 1092 /* round down to multiple of packets */ 1093 if (round) 1094 maxreq -= round; 1095 1096 length = maxreq; 1097 } 1098 1099 if (length) 1100 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1101 else 1102 packets = 1; /* send one packet if length is zero. */ 1103 1104 if (dir_in && index != 0) 1105 if (hs_ep->isochronous) 1106 epsize = DXEPTSIZ_MC(packets); 1107 else 1108 epsize = DXEPTSIZ_MC(1); 1109 else 1110 epsize = 0; 1111 1112 /* 1113 * zero length packet should be programmed on its own and should not 1114 * be counted in DIEPTSIZ.PktCnt with other packets. 1115 */ 1116 if (dir_in && ureq->zero && !continuing) { 1117 /* Test if zlp is actually required. */ 1118 if ((ureq->length >= hs_ep->ep.maxpacket) && 1119 !(ureq->length % hs_ep->ep.maxpacket)) 1120 hs_ep->send_zlp = 1; 1121 } 1122 1123 epsize |= DXEPTSIZ_PKTCNT(packets); 1124 epsize |= DXEPTSIZ_XFERSIZE(length); 1125 1126 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1127 __func__, packets, length, ureq->length, epsize, epsize_reg); 1128 1129 /* store the request as the current one we're doing */ 1130 hs_ep->req = hs_req; 1131 1132 if (using_desc_dma(hsotg)) { 1133 u32 offset = 0; 1134 u32 mps = hs_ep->ep.maxpacket; 1135 1136 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1137 if (!dir_in) { 1138 if (!index) 1139 length = mps; 1140 else if (length % mps) 1141 length += (mps - (length % mps)); 1142 } 1143 1144 if (continuing) 1145 offset = ureq->actual; 1146 1147 /* Fill DDMA chain entries */ 1148 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1149 length); 1150 1151 /* write descriptor chain address to control register */ 1152 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1153 1154 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1155 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1156 } else { 1157 /* write size / packets */ 1158 dwc2_writel(hsotg, epsize, epsize_reg); 1159 1160 if (using_dma(hsotg) && !continuing && (length != 0)) { 1161 /* 1162 * write DMA address to control register, buffer 1163 * already synced by dwc2_hsotg_ep_queue(). 1164 */ 1165 1166 dwc2_writel(hsotg, ureq->dma, dma_reg); 1167 1168 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1169 __func__, &ureq->dma, dma_reg); 1170 } 1171 } 1172 1173 if (hs_ep->isochronous && hs_ep->interval == 1) { 1174 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1175 dwc2_gadget_incr_frame_num(hs_ep); 1176 1177 if (hs_ep->target_frame & 0x1) 1178 ctrl |= DXEPCTL_SETODDFR; 1179 else 1180 ctrl |= DXEPCTL_SETEVENFR; 1181 } 1182 1183 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1184 1185 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1186 1187 /* For Setup request do not clear NAK */ 1188 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1189 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1190 1191 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1192 dwc2_writel(hsotg, ctrl, epctrl_reg); 1193 1194 /* 1195 * set these, it seems that DMA support increments past the end 1196 * of the packet buffer so we need to calculate the length from 1197 * this information. 1198 */ 1199 hs_ep->size_loaded = length; 1200 hs_ep->last_load = ureq->actual; 1201 1202 if (dir_in && !using_dma(hsotg)) { 1203 /* set these anyway, we may need them for non-periodic in */ 1204 hs_ep->fifo_load = 0; 1205 1206 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1207 } 1208 1209 /* 1210 * Note, trying to clear the NAK here causes problems with transmit 1211 * on the S3C6400 ending up with the TXFIFO becoming full. 1212 */ 1213 1214 /* check ep is enabled */ 1215 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1216 dev_dbg(hsotg->dev, 1217 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1218 index, dwc2_readl(hsotg, epctrl_reg)); 1219 1220 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1221 __func__, dwc2_readl(hsotg, epctrl_reg)); 1222 1223 /* enable ep interrupts */ 1224 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1225 } 1226 1227 /** 1228 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1229 * @hsotg: The device state. 1230 * @hs_ep: The endpoint the request is on. 1231 * @req: The request being processed. 1232 * 1233 * We've been asked to queue a request, so ensure that the memory buffer 1234 * is correctly setup for DMA. If we've been passed an extant DMA address 1235 * then ensure the buffer has been synced to memory. If our buffer has no 1236 * DMA memory, then we map the memory and mark our request to allow us to 1237 * cleanup on completion. 1238 */ 1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1240 struct dwc2_hsotg_ep *hs_ep, 1241 struct usb_request *req) 1242 { 1243 int ret; 1244 1245 hs_ep->map_dir = hs_ep->dir_in; 1246 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1247 if (ret) 1248 goto dma_error; 1249 1250 return 0; 1251 1252 dma_error: 1253 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1254 __func__, req->buf, req->length); 1255 1256 return -EIO; 1257 } 1258 1259 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1260 struct dwc2_hsotg_ep *hs_ep, 1261 struct dwc2_hsotg_req *hs_req) 1262 { 1263 void *req_buf = hs_req->req.buf; 1264 1265 /* If dma is not being used or buffer is aligned */ 1266 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1267 return 0; 1268 1269 WARN_ON(hs_req->saved_req_buf); 1270 1271 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1272 hs_ep->ep.name, req_buf, hs_req->req.length); 1273 1274 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1275 if (!hs_req->req.buf) { 1276 hs_req->req.buf = req_buf; 1277 dev_err(hsotg->dev, 1278 "%s: unable to allocate memory for bounce buffer\n", 1279 __func__); 1280 return -ENOMEM; 1281 } 1282 1283 /* Save actual buffer */ 1284 hs_req->saved_req_buf = req_buf; 1285 1286 if (hs_ep->dir_in) 1287 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1288 return 0; 1289 } 1290 1291 static void 1292 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1293 struct dwc2_hsotg_ep *hs_ep, 1294 struct dwc2_hsotg_req *hs_req) 1295 { 1296 /* If dma is not being used or buffer was aligned */ 1297 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1298 return; 1299 1300 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1301 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1302 1303 /* Copy data from bounce buffer on successful out transfer */ 1304 if (!hs_ep->dir_in && !hs_req->req.status) 1305 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1306 hs_req->req.actual); 1307 1308 /* Free bounce buffer */ 1309 kfree(hs_req->req.buf); 1310 1311 hs_req->req.buf = hs_req->saved_req_buf; 1312 hs_req->saved_req_buf = NULL; 1313 } 1314 1315 /** 1316 * dwc2_gadget_target_frame_elapsed - Checks target frame 1317 * @hs_ep: The driver endpoint to check 1318 * 1319 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1320 * corresponding transfer. 1321 */ 1322 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1323 { 1324 struct dwc2_hsotg *hsotg = hs_ep->parent; 1325 u32 target_frame = hs_ep->target_frame; 1326 u32 current_frame = hsotg->frame_number; 1327 bool frame_overrun = hs_ep->frame_overrun; 1328 1329 if (!frame_overrun && current_frame >= target_frame) 1330 return true; 1331 1332 if (frame_overrun && current_frame >= target_frame && 1333 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1334 return true; 1335 1336 return false; 1337 } 1338 1339 /* 1340 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1341 * @hsotg: The driver state 1342 * @hs_ep: the ep descriptor chain is for 1343 * 1344 * Called to update EP0 structure's pointers depend on stage of 1345 * control transfer. 1346 */ 1347 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1348 struct dwc2_hsotg_ep *hs_ep) 1349 { 1350 switch (hsotg->ep0_state) { 1351 case DWC2_EP0_SETUP: 1352 case DWC2_EP0_STATUS_OUT: 1353 hs_ep->desc_list = hsotg->setup_desc[0]; 1354 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1355 break; 1356 case DWC2_EP0_DATA_IN: 1357 case DWC2_EP0_STATUS_IN: 1358 hs_ep->desc_list = hsotg->ctrl_in_desc; 1359 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1360 break; 1361 case DWC2_EP0_DATA_OUT: 1362 hs_ep->desc_list = hsotg->ctrl_out_desc; 1363 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1364 break; 1365 default: 1366 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1367 hsotg->ep0_state); 1368 return -EINVAL; 1369 } 1370 1371 return 0; 1372 } 1373 1374 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1375 gfp_t gfp_flags) 1376 { 1377 struct dwc2_hsotg_req *hs_req = our_req(req); 1378 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1379 struct dwc2_hsotg *hs = hs_ep->parent; 1380 bool first; 1381 int ret; 1382 u32 maxsize = 0; 1383 u32 mask = 0; 1384 1385 1386 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1387 ep->name, req, req->length, req->buf, req->no_interrupt, 1388 req->zero, req->short_not_ok); 1389 1390 /* Prevent new request submission when controller is suspended */ 1391 if (hs->lx_state != DWC2_L0) { 1392 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1393 __func__); 1394 return -EAGAIN; 1395 } 1396 1397 /* initialise status of the request */ 1398 INIT_LIST_HEAD(&hs_req->queue); 1399 req->actual = 0; 1400 req->status = -EINPROGRESS; 1401 1402 /* Don't queue ISOC request if length greater than mps*mc */ 1403 if (hs_ep->isochronous && 1404 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1405 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1406 return -EINVAL; 1407 } 1408 1409 /* In DDMA mode for ISOC's don't queue request if length greater 1410 * than descriptor limits. 1411 */ 1412 if (using_desc_dma(hs) && hs_ep->isochronous) { 1413 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1414 if (hs_ep->dir_in && req->length > maxsize) { 1415 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1416 req->length, maxsize); 1417 return -EINVAL; 1418 } 1419 1420 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1421 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1422 req->length, hs_ep->ep.maxpacket); 1423 return -EINVAL; 1424 } 1425 } 1426 1427 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1428 if (ret) 1429 return ret; 1430 1431 /* if we're using DMA, sync the buffers as necessary */ 1432 if (using_dma(hs)) { 1433 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1434 if (ret) 1435 return ret; 1436 } 1437 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1438 if (using_desc_dma(hs) && !hs_ep->index) { 1439 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1440 if (ret) 1441 return ret; 1442 } 1443 1444 first = list_empty(&hs_ep->queue); 1445 list_add_tail(&hs_req->queue, &hs_ep->queue); 1446 1447 /* 1448 * Handle DDMA isochronous transfers separately - just add new entry 1449 * to the descriptor chain. 1450 * Transfer will be started once SW gets either one of NAK or 1451 * OutTknEpDis interrupts. 1452 */ 1453 if (using_desc_dma(hs) && hs_ep->isochronous) { 1454 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1455 dma_addr_t dma_addr = hs_req->req.dma; 1456 1457 if (hs_req->req.num_sgs) { 1458 WARN_ON(hs_req->req.num_sgs > 1); 1459 dma_addr = sg_dma_address(hs_req->req.sg); 1460 } 1461 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1462 hs_req->req.length); 1463 } 1464 return 0; 1465 } 1466 1467 /* Change EP direction if status phase request is after data out */ 1468 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1469 hs->ep0_state == DWC2_EP0_DATA_OUT) 1470 hs_ep->dir_in = 1; 1471 1472 if (first) { 1473 if (!hs_ep->isochronous) { 1474 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1475 return 0; 1476 } 1477 1478 /* Update current frame number value. */ 1479 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1480 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1481 dwc2_gadget_incr_frame_num(hs_ep); 1482 /* Update current frame number value once more as it 1483 * changes here. 1484 */ 1485 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1486 } 1487 1488 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1489 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1490 } 1491 return 0; 1492 } 1493 1494 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1495 gfp_t gfp_flags) 1496 { 1497 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1498 struct dwc2_hsotg *hs = hs_ep->parent; 1499 unsigned long flags; 1500 int ret; 1501 1502 spin_lock_irqsave(&hs->lock, flags); 1503 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1504 spin_unlock_irqrestore(&hs->lock, flags); 1505 1506 return ret; 1507 } 1508 1509 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1510 struct usb_request *req) 1511 { 1512 struct dwc2_hsotg_req *hs_req = our_req(req); 1513 1514 kfree(hs_req); 1515 } 1516 1517 /** 1518 * dwc2_hsotg_complete_oursetup - setup completion callback 1519 * @ep: The endpoint the request was on. 1520 * @req: The request completed. 1521 * 1522 * Called on completion of any requests the driver itself 1523 * submitted that need cleaning up. 1524 */ 1525 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1526 struct usb_request *req) 1527 { 1528 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1529 struct dwc2_hsotg *hsotg = hs_ep->parent; 1530 1531 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1532 1533 dwc2_hsotg_ep_free_request(ep, req); 1534 } 1535 1536 /** 1537 * ep_from_windex - convert control wIndex value to endpoint 1538 * @hsotg: The driver state. 1539 * @windex: The control request wIndex field (in host order). 1540 * 1541 * Convert the given wIndex into a pointer to an driver endpoint 1542 * structure, or return NULL if it is not a valid endpoint. 1543 */ 1544 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1545 u32 windex) 1546 { 1547 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1548 int idx = windex & 0x7F; 1549 1550 if (windex >= 0x100) 1551 return NULL; 1552 1553 if (idx > hsotg->num_of_eps) 1554 return NULL; 1555 1556 return index_to_ep(hsotg, idx, dir); 1557 } 1558 1559 /** 1560 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1561 * @hsotg: The driver state. 1562 * @testmode: requested usb test mode 1563 * Enable usb Test Mode requested by the Host. 1564 */ 1565 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1566 { 1567 int dctl = dwc2_readl(hsotg, DCTL); 1568 1569 dctl &= ~DCTL_TSTCTL_MASK; 1570 switch (testmode) { 1571 case USB_TEST_J: 1572 case USB_TEST_K: 1573 case USB_TEST_SE0_NAK: 1574 case USB_TEST_PACKET: 1575 case USB_TEST_FORCE_ENABLE: 1576 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1577 break; 1578 default: 1579 return -EINVAL; 1580 } 1581 dwc2_writel(hsotg, dctl, DCTL); 1582 return 0; 1583 } 1584 1585 /** 1586 * dwc2_hsotg_send_reply - send reply to control request 1587 * @hsotg: The device state 1588 * @ep: Endpoint 0 1589 * @buff: Buffer for request 1590 * @length: Length of reply. 1591 * 1592 * Create a request and queue it on the given endpoint. This is useful as 1593 * an internal method of sending replies to certain control requests, etc. 1594 */ 1595 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1596 struct dwc2_hsotg_ep *ep, 1597 void *buff, 1598 int length) 1599 { 1600 struct usb_request *req; 1601 int ret; 1602 1603 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1604 1605 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1606 hsotg->ep0_reply = req; 1607 if (!req) { 1608 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1609 return -ENOMEM; 1610 } 1611 1612 req->buf = hsotg->ep0_buff; 1613 req->length = length; 1614 /* 1615 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1616 * STATUS stage. 1617 */ 1618 req->zero = 0; 1619 req->complete = dwc2_hsotg_complete_oursetup; 1620 1621 if (length) 1622 memcpy(req->buf, buff, length); 1623 1624 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1625 if (ret) { 1626 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1627 return ret; 1628 } 1629 1630 return 0; 1631 } 1632 1633 /** 1634 * dwc2_hsotg_process_req_status - process request GET_STATUS 1635 * @hsotg: The device state 1636 * @ctrl: USB control request 1637 */ 1638 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1639 struct usb_ctrlrequest *ctrl) 1640 { 1641 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1642 struct dwc2_hsotg_ep *ep; 1643 __le16 reply; 1644 u16 status; 1645 int ret; 1646 1647 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1648 1649 if (!ep0->dir_in) { 1650 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1651 return -EINVAL; 1652 } 1653 1654 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1655 case USB_RECIP_DEVICE: 1656 status = hsotg->gadget.is_selfpowered << 1657 USB_DEVICE_SELF_POWERED; 1658 status |= hsotg->remote_wakeup_allowed << 1659 USB_DEVICE_REMOTE_WAKEUP; 1660 reply = cpu_to_le16(status); 1661 break; 1662 1663 case USB_RECIP_INTERFACE: 1664 /* currently, the data result should be zero */ 1665 reply = cpu_to_le16(0); 1666 break; 1667 1668 case USB_RECIP_ENDPOINT: 1669 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1670 if (!ep) 1671 return -ENOENT; 1672 1673 reply = cpu_to_le16(ep->halted ? 1 : 0); 1674 break; 1675 1676 default: 1677 return 0; 1678 } 1679 1680 if (le16_to_cpu(ctrl->wLength) != 2) 1681 return -EINVAL; 1682 1683 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1684 if (ret) { 1685 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1686 return ret; 1687 } 1688 1689 return 1; 1690 } 1691 1692 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1693 1694 /** 1695 * get_ep_head - return the first request on the endpoint 1696 * @hs_ep: The controller endpoint to get 1697 * 1698 * Get the first request on the endpoint. 1699 */ 1700 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1701 { 1702 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1703 queue); 1704 } 1705 1706 /** 1707 * dwc2_gadget_start_next_request - Starts next request from ep queue 1708 * @hs_ep: Endpoint structure 1709 * 1710 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1711 * in its handler. Hence we need to unmask it here to be able to do 1712 * resynchronization. 1713 */ 1714 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1715 { 1716 u32 mask; 1717 struct dwc2_hsotg *hsotg = hs_ep->parent; 1718 int dir_in = hs_ep->dir_in; 1719 struct dwc2_hsotg_req *hs_req; 1720 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1721 1722 if (!list_empty(&hs_ep->queue)) { 1723 hs_req = get_ep_head(hs_ep); 1724 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1725 return; 1726 } 1727 if (!hs_ep->isochronous) 1728 return; 1729 1730 if (dir_in) { 1731 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1732 __func__); 1733 } else { 1734 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1735 __func__); 1736 mask = dwc2_readl(hsotg, epmsk_reg); 1737 mask |= DOEPMSK_OUTTKNEPDISMSK; 1738 dwc2_writel(hsotg, mask, epmsk_reg); 1739 } 1740 } 1741 1742 /** 1743 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1744 * @hsotg: The device state 1745 * @ctrl: USB control request 1746 */ 1747 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1748 struct usb_ctrlrequest *ctrl) 1749 { 1750 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1751 struct dwc2_hsotg_req *hs_req; 1752 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1753 struct dwc2_hsotg_ep *ep; 1754 int ret; 1755 bool halted; 1756 u32 recip; 1757 u32 wValue; 1758 u32 wIndex; 1759 1760 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1761 __func__, set ? "SET" : "CLEAR"); 1762 1763 wValue = le16_to_cpu(ctrl->wValue); 1764 wIndex = le16_to_cpu(ctrl->wIndex); 1765 recip = ctrl->bRequestType & USB_RECIP_MASK; 1766 1767 switch (recip) { 1768 case USB_RECIP_DEVICE: 1769 switch (wValue) { 1770 case USB_DEVICE_REMOTE_WAKEUP: 1771 if (set) 1772 hsotg->remote_wakeup_allowed = 1; 1773 else 1774 hsotg->remote_wakeup_allowed = 0; 1775 break; 1776 1777 case USB_DEVICE_TEST_MODE: 1778 if ((wIndex & 0xff) != 0) 1779 return -EINVAL; 1780 if (!set) 1781 return -EINVAL; 1782 1783 hsotg->test_mode = wIndex >> 8; 1784 break; 1785 default: 1786 return -ENOENT; 1787 } 1788 1789 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1790 if (ret) { 1791 dev_err(hsotg->dev, 1792 "%s: failed to send reply\n", __func__); 1793 return ret; 1794 } 1795 break; 1796 1797 case USB_RECIP_ENDPOINT: 1798 ep = ep_from_windex(hsotg, wIndex); 1799 if (!ep) { 1800 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1801 __func__, wIndex); 1802 return -ENOENT; 1803 } 1804 1805 switch (wValue) { 1806 case USB_ENDPOINT_HALT: 1807 halted = ep->halted; 1808 1809 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1810 1811 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1812 if (ret) { 1813 dev_err(hsotg->dev, 1814 "%s: failed to send reply\n", __func__); 1815 return ret; 1816 } 1817 1818 /* 1819 * we have to complete all requests for ep if it was 1820 * halted, and the halt was cleared by CLEAR_FEATURE 1821 */ 1822 1823 if (!set && halted) { 1824 /* 1825 * If we have request in progress, 1826 * then complete it 1827 */ 1828 if (ep->req) { 1829 hs_req = ep->req; 1830 ep->req = NULL; 1831 list_del_init(&hs_req->queue); 1832 if (hs_req->req.complete) { 1833 spin_unlock(&hsotg->lock); 1834 usb_gadget_giveback_request( 1835 &ep->ep, &hs_req->req); 1836 spin_lock(&hsotg->lock); 1837 } 1838 } 1839 1840 /* If we have pending request, then start it */ 1841 if (!ep->req) 1842 dwc2_gadget_start_next_request(ep); 1843 } 1844 1845 break; 1846 1847 default: 1848 return -ENOENT; 1849 } 1850 break; 1851 default: 1852 return -ENOENT; 1853 } 1854 return 1; 1855 } 1856 1857 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1858 1859 /** 1860 * dwc2_hsotg_stall_ep0 - stall ep0 1861 * @hsotg: The device state 1862 * 1863 * Set stall for ep0 as response for setup request. 1864 */ 1865 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1866 { 1867 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1868 u32 reg; 1869 u32 ctrl; 1870 1871 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1872 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1873 1874 /* 1875 * DxEPCTL_Stall will be cleared by EP once it has 1876 * taken effect, so no need to clear later. 1877 */ 1878 1879 ctrl = dwc2_readl(hsotg, reg); 1880 ctrl |= DXEPCTL_STALL; 1881 ctrl |= DXEPCTL_CNAK; 1882 dwc2_writel(hsotg, ctrl, reg); 1883 1884 dev_dbg(hsotg->dev, 1885 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1886 ctrl, reg, dwc2_readl(hsotg, reg)); 1887 1888 /* 1889 * complete won't be called, so we enqueue 1890 * setup request here 1891 */ 1892 dwc2_hsotg_enqueue_setup(hsotg); 1893 } 1894 1895 /** 1896 * dwc2_hsotg_process_control - process a control request 1897 * @hsotg: The device state 1898 * @ctrl: The control request received 1899 * 1900 * The controller has received the SETUP phase of a control request, and 1901 * needs to work out what to do next (and whether to pass it on to the 1902 * gadget driver). 1903 */ 1904 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1905 struct usb_ctrlrequest *ctrl) 1906 { 1907 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1908 int ret = 0; 1909 u32 dcfg; 1910 1911 dev_dbg(hsotg->dev, 1912 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1913 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1914 ctrl->wIndex, ctrl->wLength); 1915 1916 if (ctrl->wLength == 0) { 1917 ep0->dir_in = 1; 1918 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1919 } else if (ctrl->bRequestType & USB_DIR_IN) { 1920 ep0->dir_in = 1; 1921 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1922 } else { 1923 ep0->dir_in = 0; 1924 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1925 } 1926 1927 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1928 switch (ctrl->bRequest) { 1929 case USB_REQ_SET_ADDRESS: 1930 hsotg->connected = 1; 1931 dcfg = dwc2_readl(hsotg, DCFG); 1932 dcfg &= ~DCFG_DEVADDR_MASK; 1933 dcfg |= (le16_to_cpu(ctrl->wValue) << 1934 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1935 dwc2_writel(hsotg, dcfg, DCFG); 1936 1937 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1938 1939 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1940 return; 1941 1942 case USB_REQ_GET_STATUS: 1943 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1944 break; 1945 1946 case USB_REQ_CLEAR_FEATURE: 1947 case USB_REQ_SET_FEATURE: 1948 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1949 break; 1950 } 1951 } 1952 1953 /* as a fallback, try delivering it to the driver to deal with */ 1954 1955 if (ret == 0 && hsotg->driver) { 1956 spin_unlock(&hsotg->lock); 1957 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1958 spin_lock(&hsotg->lock); 1959 if (ret < 0) 1960 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1961 } 1962 1963 hsotg->delayed_status = false; 1964 if (ret == USB_GADGET_DELAYED_STATUS) 1965 hsotg->delayed_status = true; 1966 1967 /* 1968 * the request is either unhandlable, or is not formatted correctly 1969 * so respond with a STALL for the status stage to indicate failure. 1970 */ 1971 1972 if (ret < 0) 1973 dwc2_hsotg_stall_ep0(hsotg); 1974 } 1975 1976 /** 1977 * dwc2_hsotg_complete_setup - completion of a setup transfer 1978 * @ep: The endpoint the request was on. 1979 * @req: The request completed. 1980 * 1981 * Called on completion of any requests the driver itself submitted for 1982 * EP0 setup packets 1983 */ 1984 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1985 struct usb_request *req) 1986 { 1987 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1988 struct dwc2_hsotg *hsotg = hs_ep->parent; 1989 1990 if (req->status < 0) { 1991 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1992 return; 1993 } 1994 1995 spin_lock(&hsotg->lock); 1996 if (req->actual == 0) 1997 dwc2_hsotg_enqueue_setup(hsotg); 1998 else 1999 dwc2_hsotg_process_control(hsotg, req->buf); 2000 spin_unlock(&hsotg->lock); 2001 } 2002 2003 /** 2004 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 2005 * @hsotg: The device state. 2006 * 2007 * Enqueue a request on EP0 if necessary to received any SETUP packets 2008 * received from the host. 2009 */ 2010 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2011 { 2012 struct usb_request *req = hsotg->ctrl_req; 2013 struct dwc2_hsotg_req *hs_req = our_req(req); 2014 int ret; 2015 2016 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2017 2018 req->zero = 0; 2019 req->length = 8; 2020 req->buf = hsotg->ctrl_buff; 2021 req->complete = dwc2_hsotg_complete_setup; 2022 2023 if (!list_empty(&hs_req->queue)) { 2024 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2025 return; 2026 } 2027 2028 hsotg->eps_out[0]->dir_in = 0; 2029 hsotg->eps_out[0]->send_zlp = 0; 2030 hsotg->ep0_state = DWC2_EP0_SETUP; 2031 2032 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2033 if (ret < 0) { 2034 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2035 /* 2036 * Don't think there's much we can do other than watch the 2037 * driver fail. 2038 */ 2039 } 2040 } 2041 2042 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2043 struct dwc2_hsotg_ep *hs_ep) 2044 { 2045 u32 ctrl; 2046 u8 index = hs_ep->index; 2047 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2048 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2049 2050 if (hs_ep->dir_in) 2051 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2052 index); 2053 else 2054 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2055 index); 2056 if (using_desc_dma(hsotg)) { 2057 /* Not specific buffer needed for ep0 ZLP */ 2058 dma_addr_t dma = hs_ep->desc_list_dma; 2059 2060 if (!index) 2061 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2062 2063 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2064 } else { 2065 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2066 DXEPTSIZ_XFERSIZE(0), 2067 epsiz_reg); 2068 } 2069 2070 ctrl = dwc2_readl(hsotg, epctl_reg); 2071 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2072 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2073 ctrl |= DXEPCTL_USBACTEP; 2074 dwc2_writel(hsotg, ctrl, epctl_reg); 2075 } 2076 2077 /** 2078 * dwc2_hsotg_complete_request - complete a request given to us 2079 * @hsotg: The device state. 2080 * @hs_ep: The endpoint the request was on. 2081 * @hs_req: The request to complete. 2082 * @result: The result code (0 => Ok, otherwise errno) 2083 * 2084 * The given request has finished, so call the necessary completion 2085 * if it has one and then look to see if we can start a new request 2086 * on the endpoint. 2087 * 2088 * Note, expects the ep to already be locked as appropriate. 2089 */ 2090 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2091 struct dwc2_hsotg_ep *hs_ep, 2092 struct dwc2_hsotg_req *hs_req, 2093 int result) 2094 { 2095 if (!hs_req) { 2096 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2097 return; 2098 } 2099 2100 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2101 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2102 2103 /* 2104 * only replace the status if we've not already set an error 2105 * from a previous transaction 2106 */ 2107 2108 if (hs_req->req.status == -EINPROGRESS) 2109 hs_req->req.status = result; 2110 2111 if (using_dma(hsotg)) 2112 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2113 2114 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2115 2116 hs_ep->req = NULL; 2117 list_del_init(&hs_req->queue); 2118 2119 /* 2120 * call the complete request with the locks off, just in case the 2121 * request tries to queue more work for this endpoint. 2122 */ 2123 2124 if (hs_req->req.complete) { 2125 spin_unlock(&hsotg->lock); 2126 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2127 spin_lock(&hsotg->lock); 2128 } 2129 2130 /* In DDMA don't need to proceed to starting of next ISOC request */ 2131 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2132 return; 2133 2134 /* 2135 * Look to see if there is anything else to do. Note, the completion 2136 * of the previous request may have caused a new request to be started 2137 * so be careful when doing this. 2138 */ 2139 2140 if (!hs_ep->req && result >= 0) 2141 dwc2_gadget_start_next_request(hs_ep); 2142 } 2143 2144 /* 2145 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2146 * @hs_ep: The endpoint the request was on. 2147 * 2148 * Get first request from the ep queue, determine descriptor on which complete 2149 * happened. SW discovers which descriptor currently in use by HW, adjusts 2150 * dma_address and calculates index of completed descriptor based on the value 2151 * of DEPDMA register. Update actual length of request, giveback to gadget. 2152 */ 2153 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2154 { 2155 struct dwc2_hsotg *hsotg = hs_ep->parent; 2156 struct dwc2_hsotg_req *hs_req; 2157 struct usb_request *ureq; 2158 u32 desc_sts; 2159 u32 mask; 2160 2161 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2162 2163 /* Process only descriptors with buffer status set to DMA done */ 2164 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2165 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2166 2167 hs_req = get_ep_head(hs_ep); 2168 if (!hs_req) { 2169 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2170 return; 2171 } 2172 ureq = &hs_req->req; 2173 2174 /* Check completion status */ 2175 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2176 DEV_DMA_STS_SUCC) { 2177 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2178 DEV_DMA_ISOC_RX_NBYTES_MASK; 2179 ureq->actual = ureq->length - ((desc_sts & mask) >> 2180 DEV_DMA_ISOC_NBYTES_SHIFT); 2181 2182 /* Adjust actual len for ISOC Out if len is 2183 * not align of 4 2184 */ 2185 if (!hs_ep->dir_in && ureq->length & 0x3) 2186 ureq->actual += 4 - (ureq->length & 0x3); 2187 2188 /* Set actual frame number for completed transfers */ 2189 ureq->frame_number = 2190 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2191 DEV_DMA_ISOC_FRNUM_SHIFT; 2192 } 2193 2194 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2195 2196 hs_ep->compl_desc++; 2197 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2198 hs_ep->compl_desc = 0; 2199 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2200 } 2201 } 2202 2203 /* 2204 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2205 * @hs_ep: The isochronous endpoint. 2206 * 2207 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2208 * interrupt. Reset target frame and next_desc to allow to start 2209 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2210 * interrupt for OUT direction. 2211 */ 2212 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2213 { 2214 struct dwc2_hsotg *hsotg = hs_ep->parent; 2215 2216 if (!hs_ep->dir_in) 2217 dwc2_flush_rx_fifo(hsotg); 2218 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2219 2220 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2221 hs_ep->next_desc = 0; 2222 hs_ep->compl_desc = 0; 2223 } 2224 2225 /** 2226 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2227 * @hsotg: The device state. 2228 * @ep_idx: The endpoint index for the data 2229 * @size: The size of data in the fifo, in bytes 2230 * 2231 * The FIFO status shows there is data to read from the FIFO for a given 2232 * endpoint, so sort out whether we need to read the data into a request 2233 * that has been made for that endpoint. 2234 */ 2235 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2236 { 2237 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2238 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2239 int to_read; 2240 int max_req; 2241 int read_ptr; 2242 2243 if (!hs_req) { 2244 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2245 int ptr; 2246 2247 dev_dbg(hsotg->dev, 2248 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2249 __func__, size, ep_idx, epctl); 2250 2251 /* dump the data from the FIFO, we've nothing we can do */ 2252 for (ptr = 0; ptr < size; ptr += 4) 2253 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2254 2255 return; 2256 } 2257 2258 to_read = size; 2259 read_ptr = hs_req->req.actual; 2260 max_req = hs_req->req.length - read_ptr; 2261 2262 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2263 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2264 2265 if (to_read > max_req) { 2266 /* 2267 * more data appeared than we where willing 2268 * to deal with in this request. 2269 */ 2270 2271 /* currently we don't deal this */ 2272 WARN_ON_ONCE(1); 2273 } 2274 2275 hs_ep->total_data += to_read; 2276 hs_req->req.actual += to_read; 2277 to_read = DIV_ROUND_UP(to_read, 4); 2278 2279 /* 2280 * note, we might over-write the buffer end by 3 bytes depending on 2281 * alignment of the data. 2282 */ 2283 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2284 hs_req->req.buf + read_ptr, to_read); 2285 } 2286 2287 /** 2288 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2289 * @hsotg: The device instance 2290 * @dir_in: If IN zlp 2291 * 2292 * Generate a zero-length IN packet request for terminating a SETUP 2293 * transaction. 2294 * 2295 * Note, since we don't write any data to the TxFIFO, then it is 2296 * currently believed that we do not need to wait for any space in 2297 * the TxFIFO. 2298 */ 2299 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2300 { 2301 /* eps_out[0] is used in both directions */ 2302 hsotg->eps_out[0]->dir_in = dir_in; 2303 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2304 2305 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2306 } 2307 2308 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2309 u32 epctl_reg) 2310 { 2311 u32 ctrl; 2312 2313 ctrl = dwc2_readl(hsotg, epctl_reg); 2314 if (ctrl & DXEPCTL_EOFRNUM) 2315 ctrl |= DXEPCTL_SETEVENFR; 2316 else 2317 ctrl |= DXEPCTL_SETODDFR; 2318 dwc2_writel(hsotg, ctrl, epctl_reg); 2319 } 2320 2321 /* 2322 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2323 * @hs_ep - The endpoint on which transfer went 2324 * 2325 * Iterate over endpoints descriptor chain and get info on bytes remained 2326 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2327 */ 2328 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2329 { 2330 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 2331 struct dwc2_hsotg *hsotg = hs_ep->parent; 2332 unsigned int bytes_rem = 0; 2333 unsigned int bytes_rem_correction = 0; 2334 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2335 int i; 2336 u32 status; 2337 u32 mps = hs_ep->ep.maxpacket; 2338 int dir_in = hs_ep->dir_in; 2339 2340 if (!desc) 2341 return -EINVAL; 2342 2343 /* Interrupt OUT EP with mps not multiple of 4 */ 2344 if (hs_ep->index) 2345 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 2346 bytes_rem_correction = 4 - (mps % 4); 2347 2348 for (i = 0; i < hs_ep->desc_count; ++i) { 2349 status = desc->status; 2350 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2351 bytes_rem -= bytes_rem_correction; 2352 2353 if (status & DEV_DMA_STS_MASK) 2354 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2355 i, status & DEV_DMA_STS_MASK); 2356 2357 if (status & DEV_DMA_L) 2358 break; 2359 2360 desc++; 2361 } 2362 2363 return bytes_rem; 2364 } 2365 2366 /** 2367 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2368 * @hsotg: The device instance 2369 * @epnum: The endpoint received from 2370 * 2371 * The RXFIFO has delivered an OutDone event, which means that the data 2372 * transfer for an OUT endpoint has been completed, either by a short 2373 * packet or by the finish of a transfer. 2374 */ 2375 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2376 { 2377 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2378 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2379 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2380 struct usb_request *req = &hs_req->req; 2381 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2382 int result = 0; 2383 2384 if (!hs_req) { 2385 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2386 return; 2387 } 2388 2389 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2390 dev_dbg(hsotg->dev, "zlp packet received\n"); 2391 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2392 dwc2_hsotg_enqueue_setup(hsotg); 2393 return; 2394 } 2395 2396 if (using_desc_dma(hsotg)) 2397 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2398 2399 if (using_dma(hsotg)) { 2400 unsigned int size_done; 2401 2402 /* 2403 * Calculate the size of the transfer by checking how much 2404 * is left in the endpoint size register and then working it 2405 * out from the amount we loaded for the transfer. 2406 * 2407 * We need to do this as DMA pointers are always 32bit aligned 2408 * so may overshoot/undershoot the transfer. 2409 */ 2410 2411 size_done = hs_ep->size_loaded - size_left; 2412 size_done += hs_ep->last_load; 2413 2414 req->actual = size_done; 2415 } 2416 2417 /* if there is more request to do, schedule new transfer */ 2418 if (req->actual < req->length && size_left == 0) { 2419 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2420 return; 2421 } 2422 2423 if (req->actual < req->length && req->short_not_ok) { 2424 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2425 __func__, req->actual, req->length); 2426 2427 /* 2428 * todo - what should we return here? there's no one else 2429 * even bothering to check the status. 2430 */ 2431 } 2432 2433 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2434 if (!using_desc_dma(hsotg) && epnum == 0 && 2435 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2436 /* Move to STATUS IN */ 2437 if (!hsotg->delayed_status) 2438 dwc2_hsotg_ep0_zlp(hsotg, true); 2439 } 2440 2441 /* 2442 * Slave mode OUT transfers do not go through XferComplete so 2443 * adjust the ISOC parity here. 2444 */ 2445 if (!using_dma(hsotg)) { 2446 if (hs_ep->isochronous && hs_ep->interval == 1) 2447 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2448 else if (hs_ep->isochronous && hs_ep->interval > 1) 2449 dwc2_gadget_incr_frame_num(hs_ep); 2450 } 2451 2452 /* Set actual frame number for completed transfers */ 2453 if (!using_desc_dma(hsotg) && hs_ep->isochronous) 2454 req->frame_number = hsotg->frame_number; 2455 2456 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2457 } 2458 2459 /** 2460 * dwc2_hsotg_handle_rx - RX FIFO has data 2461 * @hsotg: The device instance 2462 * 2463 * The IRQ handler has detected that the RX FIFO has some data in it 2464 * that requires processing, so find out what is in there and do the 2465 * appropriate read. 2466 * 2467 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2468 * chunks, so if you have x packets received on an endpoint you'll get x 2469 * FIFO events delivered, each with a packet's worth of data in it. 2470 * 2471 * When using DMA, we should not be processing events from the RXFIFO 2472 * as the actual data should be sent to the memory directly and we turn 2473 * on the completion interrupts to get notifications of transfer completion. 2474 */ 2475 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2476 { 2477 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2478 u32 epnum, status, size; 2479 2480 WARN_ON(using_dma(hsotg)); 2481 2482 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2483 status = grxstsr & GRXSTS_PKTSTS_MASK; 2484 2485 size = grxstsr & GRXSTS_BYTECNT_MASK; 2486 size >>= GRXSTS_BYTECNT_SHIFT; 2487 2488 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2489 __func__, grxstsr, size, epnum); 2490 2491 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2492 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2493 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2494 break; 2495 2496 case GRXSTS_PKTSTS_OUTDONE: 2497 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2498 dwc2_hsotg_read_frameno(hsotg)); 2499 2500 if (!using_dma(hsotg)) 2501 dwc2_hsotg_handle_outdone(hsotg, epnum); 2502 break; 2503 2504 case GRXSTS_PKTSTS_SETUPDONE: 2505 dev_dbg(hsotg->dev, 2506 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2507 dwc2_hsotg_read_frameno(hsotg), 2508 dwc2_readl(hsotg, DOEPCTL(0))); 2509 /* 2510 * Call dwc2_hsotg_handle_outdone here if it was not called from 2511 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2512 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2513 */ 2514 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2515 dwc2_hsotg_handle_outdone(hsotg, epnum); 2516 break; 2517 2518 case GRXSTS_PKTSTS_OUTRX: 2519 dwc2_hsotg_rx_data(hsotg, epnum, size); 2520 break; 2521 2522 case GRXSTS_PKTSTS_SETUPRX: 2523 dev_dbg(hsotg->dev, 2524 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2525 dwc2_hsotg_read_frameno(hsotg), 2526 dwc2_readl(hsotg, DOEPCTL(0))); 2527 2528 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2529 2530 dwc2_hsotg_rx_data(hsotg, epnum, size); 2531 break; 2532 2533 default: 2534 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2535 __func__, grxstsr); 2536 2537 dwc2_hsotg_dump(hsotg); 2538 break; 2539 } 2540 } 2541 2542 /** 2543 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2544 * @mps: The maximum packet size in bytes. 2545 */ 2546 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2547 { 2548 switch (mps) { 2549 case 64: 2550 return D0EPCTL_MPS_64; 2551 case 32: 2552 return D0EPCTL_MPS_32; 2553 case 16: 2554 return D0EPCTL_MPS_16; 2555 case 8: 2556 return D0EPCTL_MPS_8; 2557 } 2558 2559 /* bad max packet size, warn and return invalid result */ 2560 WARN_ON(1); 2561 return (u32)-1; 2562 } 2563 2564 /** 2565 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2566 * @hsotg: The driver state. 2567 * @ep: The index number of the endpoint 2568 * @mps: The maximum packet size in bytes 2569 * @mc: The multicount value 2570 * @dir_in: True if direction is in. 2571 * 2572 * Configure the maximum packet size for the given endpoint, updating 2573 * the hardware control registers to reflect this. 2574 */ 2575 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2576 unsigned int ep, unsigned int mps, 2577 unsigned int mc, unsigned int dir_in) 2578 { 2579 struct dwc2_hsotg_ep *hs_ep; 2580 u32 reg; 2581 2582 hs_ep = index_to_ep(hsotg, ep, dir_in); 2583 if (!hs_ep) 2584 return; 2585 2586 if (ep == 0) { 2587 u32 mps_bytes = mps; 2588 2589 /* EP0 is a special case */ 2590 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2591 if (mps > 3) 2592 goto bad_mps; 2593 hs_ep->ep.maxpacket = mps_bytes; 2594 hs_ep->mc = 1; 2595 } else { 2596 if (mps > 1024) 2597 goto bad_mps; 2598 hs_ep->mc = mc; 2599 if (mc > 3) 2600 goto bad_mps; 2601 hs_ep->ep.maxpacket = mps; 2602 } 2603 2604 if (dir_in) { 2605 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2606 reg &= ~DXEPCTL_MPS_MASK; 2607 reg |= mps; 2608 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2609 } else { 2610 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2611 reg &= ~DXEPCTL_MPS_MASK; 2612 reg |= mps; 2613 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2614 } 2615 2616 return; 2617 2618 bad_mps: 2619 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2620 } 2621 2622 /** 2623 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2624 * @hsotg: The driver state 2625 * @idx: The index for the endpoint (0..15) 2626 */ 2627 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2628 { 2629 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2630 GRSTCTL); 2631 2632 /* wait until the fifo is flushed */ 2633 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2634 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2635 __func__); 2636 } 2637 2638 /** 2639 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2640 * @hsotg: The driver state 2641 * @hs_ep: The driver endpoint to check. 2642 * 2643 * Check to see if there is a request that has data to send, and if so 2644 * make an attempt to write data into the FIFO. 2645 */ 2646 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2647 struct dwc2_hsotg_ep *hs_ep) 2648 { 2649 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2650 2651 if (!hs_ep->dir_in || !hs_req) { 2652 /** 2653 * if request is not enqueued, we disable interrupts 2654 * for endpoints, excepting ep0 2655 */ 2656 if (hs_ep->index != 0) 2657 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2658 hs_ep->dir_in, 0); 2659 return 0; 2660 } 2661 2662 if (hs_req->req.actual < hs_req->req.length) { 2663 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2664 hs_ep->index); 2665 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2666 } 2667 2668 return 0; 2669 } 2670 2671 /** 2672 * dwc2_hsotg_complete_in - complete IN transfer 2673 * @hsotg: The device state. 2674 * @hs_ep: The endpoint that has just completed. 2675 * 2676 * An IN transfer has been completed, update the transfer's state and then 2677 * call the relevant completion routines. 2678 */ 2679 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2680 struct dwc2_hsotg_ep *hs_ep) 2681 { 2682 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2683 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2684 int size_left, size_done; 2685 2686 if (!hs_req) { 2687 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2688 return; 2689 } 2690 2691 /* Finish ZLP handling for IN EP0 transactions */ 2692 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2693 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2694 2695 /* 2696 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2697 * changed to IN. Change back to complete OUT transfer request 2698 */ 2699 hs_ep->dir_in = 0; 2700 2701 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2702 if (hsotg->test_mode) { 2703 int ret; 2704 2705 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2706 if (ret < 0) { 2707 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2708 hsotg->test_mode); 2709 dwc2_hsotg_stall_ep0(hsotg); 2710 return; 2711 } 2712 } 2713 dwc2_hsotg_enqueue_setup(hsotg); 2714 return; 2715 } 2716 2717 /* 2718 * Calculate the size of the transfer by checking how much is left 2719 * in the endpoint size register and then working it out from 2720 * the amount we loaded for the transfer. 2721 * 2722 * We do this even for DMA, as the transfer may have incremented 2723 * past the end of the buffer (DMA transfers are always 32bit 2724 * aligned). 2725 */ 2726 if (using_desc_dma(hsotg)) { 2727 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2728 if (size_left < 0) 2729 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2730 size_left); 2731 } else { 2732 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2733 } 2734 2735 size_done = hs_ep->size_loaded - size_left; 2736 size_done += hs_ep->last_load; 2737 2738 if (hs_req->req.actual != size_done) 2739 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2740 __func__, hs_req->req.actual, size_done); 2741 2742 hs_req->req.actual = size_done; 2743 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2744 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2745 2746 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2747 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2748 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2749 return; 2750 } 2751 2752 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */ 2753 if (hs_ep->send_zlp) { 2754 hs_ep->send_zlp = 0; 2755 if (!using_desc_dma(hsotg)) { 2756 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2757 /* transfer will be completed on next complete interrupt */ 2758 return; 2759 } 2760 } 2761 2762 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2763 /* Move to STATUS OUT */ 2764 dwc2_hsotg_ep0_zlp(hsotg, false); 2765 return; 2766 } 2767 2768 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2769 } 2770 2771 /** 2772 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2773 * @hsotg: The device state. 2774 * @idx: Index of ep. 2775 * @dir_in: Endpoint direction 1-in 0-out. 2776 * 2777 * Reads for endpoint with given index and direction, by masking 2778 * epint_reg with coresponding mask. 2779 */ 2780 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2781 unsigned int idx, int dir_in) 2782 { 2783 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2784 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2785 u32 ints; 2786 u32 mask; 2787 u32 diepempmsk; 2788 2789 mask = dwc2_readl(hsotg, epmsk_reg); 2790 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2791 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2792 mask |= DXEPINT_SETUP_RCVD; 2793 2794 ints = dwc2_readl(hsotg, epint_reg); 2795 ints &= mask; 2796 return ints; 2797 } 2798 2799 /** 2800 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2801 * @hs_ep: The endpoint on which interrupt is asserted. 2802 * 2803 * This interrupt indicates that the endpoint has been disabled per the 2804 * application's request. 2805 * 2806 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2807 * in case of ISOC completes current request. 2808 * 2809 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2810 * request starts it. 2811 */ 2812 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2813 { 2814 struct dwc2_hsotg *hsotg = hs_ep->parent; 2815 struct dwc2_hsotg_req *hs_req; 2816 unsigned char idx = hs_ep->index; 2817 int dir_in = hs_ep->dir_in; 2818 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2819 int dctl = dwc2_readl(hsotg, DCTL); 2820 2821 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2822 2823 if (dir_in) { 2824 int epctl = dwc2_readl(hsotg, epctl_reg); 2825 2826 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2827 2828 if (hs_ep->isochronous) { 2829 dwc2_hsotg_complete_in(hsotg, hs_ep); 2830 return; 2831 } 2832 2833 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2834 int dctl = dwc2_readl(hsotg, DCTL); 2835 2836 dctl |= DCTL_CGNPINNAK; 2837 dwc2_writel(hsotg, dctl, DCTL); 2838 } 2839 return; 2840 } 2841 2842 if (dctl & DCTL_GOUTNAKSTS) { 2843 dctl |= DCTL_CGOUTNAK; 2844 dwc2_writel(hsotg, dctl, DCTL); 2845 } 2846 2847 if (!hs_ep->isochronous) 2848 return; 2849 2850 if (list_empty(&hs_ep->queue)) { 2851 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2852 __func__, hs_ep); 2853 return; 2854 } 2855 2856 do { 2857 hs_req = get_ep_head(hs_ep); 2858 if (hs_req) 2859 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2860 -ENODATA); 2861 dwc2_gadget_incr_frame_num(hs_ep); 2862 /* Update current frame number value. */ 2863 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2864 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2865 2866 dwc2_gadget_start_next_request(hs_ep); 2867 } 2868 2869 /** 2870 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2871 * @ep: The endpoint on which interrupt is asserted. 2872 * 2873 * This is starting point for ISOC-OUT transfer, synchronization done with 2874 * first out token received from host while corresponding EP is disabled. 2875 * 2876 * Device does not know initial frame in which out token will come. For this 2877 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2878 * getting this interrupt SW starts calculation for next transfer frame. 2879 */ 2880 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2881 { 2882 struct dwc2_hsotg *hsotg = ep->parent; 2883 int dir_in = ep->dir_in; 2884 u32 doepmsk; 2885 2886 if (dir_in || !ep->isochronous) 2887 return; 2888 2889 if (using_desc_dma(hsotg)) { 2890 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2891 /* Start first ISO Out */ 2892 ep->target_frame = hsotg->frame_number; 2893 dwc2_gadget_start_isoc_ddma(ep); 2894 } 2895 return; 2896 } 2897 2898 if (ep->interval > 1 && 2899 ep->target_frame == TARGET_FRAME_INITIAL) { 2900 u32 ctrl; 2901 2902 ep->target_frame = hsotg->frame_number; 2903 dwc2_gadget_incr_frame_num(ep); 2904 2905 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2906 if (ep->target_frame & 0x1) 2907 ctrl |= DXEPCTL_SETODDFR; 2908 else 2909 ctrl |= DXEPCTL_SETEVENFR; 2910 2911 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2912 } 2913 2914 dwc2_gadget_start_next_request(ep); 2915 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2916 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2917 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2918 } 2919 2920 /** 2921 * dwc2_gadget_handle_nak - handle NAK interrupt 2922 * @hs_ep: The endpoint on which interrupt is asserted. 2923 * 2924 * This is starting point for ISOC-IN transfer, synchronization done with 2925 * first IN token received from host while corresponding EP is disabled. 2926 * 2927 * Device does not know when first one token will arrive from host. On first 2928 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2929 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2930 * sent in response to that as there was no data in FIFO. SW is basing on this 2931 * interrupt to obtain frame in which token has come and then based on the 2932 * interval calculates next frame for transfer. 2933 */ 2934 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2935 { 2936 struct dwc2_hsotg *hsotg = hs_ep->parent; 2937 int dir_in = hs_ep->dir_in; 2938 2939 if (!dir_in || !hs_ep->isochronous) 2940 return; 2941 2942 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2943 2944 if (using_desc_dma(hsotg)) { 2945 hs_ep->target_frame = hsotg->frame_number; 2946 dwc2_gadget_incr_frame_num(hs_ep); 2947 2948 /* In service interval mode target_frame must 2949 * be set to last (u)frame of the service interval. 2950 */ 2951 if (hsotg->params.service_interval) { 2952 /* Set target_frame to the first (u)frame of 2953 * the service interval 2954 */ 2955 hs_ep->target_frame &= ~hs_ep->interval + 1; 2956 2957 /* Set target_frame to the last (u)frame of 2958 * the service interval 2959 */ 2960 dwc2_gadget_incr_frame_num(hs_ep); 2961 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2962 } 2963 2964 dwc2_gadget_start_isoc_ddma(hs_ep); 2965 return; 2966 } 2967 2968 hs_ep->target_frame = hsotg->frame_number; 2969 if (hs_ep->interval > 1) { 2970 u32 ctrl = dwc2_readl(hsotg, 2971 DIEPCTL(hs_ep->index)); 2972 if (hs_ep->target_frame & 0x1) 2973 ctrl |= DXEPCTL_SETODDFR; 2974 else 2975 ctrl |= DXEPCTL_SETEVENFR; 2976 2977 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2978 } 2979 2980 dwc2_hsotg_complete_request(hsotg, hs_ep, 2981 get_ep_head(hs_ep), 0); 2982 } 2983 2984 if (!using_desc_dma(hsotg)) 2985 dwc2_gadget_incr_frame_num(hs_ep); 2986 } 2987 2988 /** 2989 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2990 * @hsotg: The driver state 2991 * @idx: The index for the endpoint (0..15) 2992 * @dir_in: Set if this is an IN endpoint 2993 * 2994 * Process and clear any interrupt pending for an individual endpoint 2995 */ 2996 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2997 int dir_in) 2998 { 2999 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 3000 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 3001 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 3002 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 3003 u32 ints; 3004 3005 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 3006 3007 /* Clear endpoint interrupts */ 3008 dwc2_writel(hsotg, ints, epint_reg); 3009 3010 if (!hs_ep) { 3011 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 3012 __func__, idx, dir_in ? "in" : "out"); 3013 return; 3014 } 3015 3016 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 3017 __func__, idx, dir_in ? "in" : "out", ints); 3018 3019 /* Don't process XferCompl interrupt if it is a setup packet */ 3020 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3021 ints &= ~DXEPINT_XFERCOMPL; 3022 3023 /* 3024 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3025 * stage and xfercomplete was generated without SETUP phase done 3026 * interrupt. SW should parse received setup packet only after host's 3027 * exit from setup phase of control transfer. 3028 */ 3029 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3030 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3031 ints &= ~DXEPINT_XFERCOMPL; 3032 3033 if (ints & DXEPINT_XFERCOMPL) { 3034 dev_dbg(hsotg->dev, 3035 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3036 __func__, dwc2_readl(hsotg, epctl_reg), 3037 dwc2_readl(hsotg, epsiz_reg)); 3038 3039 /* In DDMA handle isochronous requests separately */ 3040 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3041 /* XferCompl set along with BNA */ 3042 if (!(ints & DXEPINT_BNAINTR)) 3043 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3044 } else if (dir_in) { 3045 /* 3046 * We get OutDone from the FIFO, so we only 3047 * need to look at completing IN requests here 3048 * if operating slave mode 3049 */ 3050 if (hs_ep->isochronous && hs_ep->interval > 1) 3051 dwc2_gadget_incr_frame_num(hs_ep); 3052 3053 dwc2_hsotg_complete_in(hsotg, hs_ep); 3054 if (ints & DXEPINT_NAKINTRPT) 3055 ints &= ~DXEPINT_NAKINTRPT; 3056 3057 if (idx == 0 && !hs_ep->req) 3058 dwc2_hsotg_enqueue_setup(hsotg); 3059 } else if (using_dma(hsotg)) { 3060 /* 3061 * We're using DMA, we need to fire an OutDone here 3062 * as we ignore the RXFIFO. 3063 */ 3064 if (hs_ep->isochronous && hs_ep->interval > 1) 3065 dwc2_gadget_incr_frame_num(hs_ep); 3066 3067 dwc2_hsotg_handle_outdone(hsotg, idx); 3068 } 3069 } 3070 3071 if (ints & DXEPINT_EPDISBLD) 3072 dwc2_gadget_handle_ep_disabled(hs_ep); 3073 3074 if (ints & DXEPINT_OUTTKNEPDIS) 3075 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3076 3077 if (ints & DXEPINT_NAKINTRPT) 3078 dwc2_gadget_handle_nak(hs_ep); 3079 3080 if (ints & DXEPINT_AHBERR) 3081 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3082 3083 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3084 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3085 3086 if (using_dma(hsotg) && idx == 0) { 3087 /* 3088 * this is the notification we've received a 3089 * setup packet. In non-DMA mode we'd get this 3090 * from the RXFIFO, instead we need to process 3091 * the setup here. 3092 */ 3093 3094 if (dir_in) 3095 WARN_ON_ONCE(1); 3096 else 3097 dwc2_hsotg_handle_outdone(hsotg, 0); 3098 } 3099 } 3100 3101 if (ints & DXEPINT_STSPHSERCVD) { 3102 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3103 3104 /* Safety check EP0 state when STSPHSERCVD asserted */ 3105 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3106 /* Move to STATUS IN for DDMA */ 3107 if (using_desc_dma(hsotg)) { 3108 if (!hsotg->delayed_status) 3109 dwc2_hsotg_ep0_zlp(hsotg, true); 3110 else 3111 /* In case of 3 stage Control Write with delayed 3112 * status, when Status IN transfer started 3113 * before STSPHSERCVD asserted, NAKSTS bit not 3114 * cleared by CNAK in dwc2_hsotg_start_req() 3115 * function. Clear now NAKSTS to allow complete 3116 * transfer. 3117 */ 3118 dwc2_set_bit(hsotg, DIEPCTL(0), 3119 DXEPCTL_CNAK); 3120 } 3121 } 3122 3123 } 3124 3125 if (ints & DXEPINT_BACK2BACKSETUP) 3126 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3127 3128 if (ints & DXEPINT_BNAINTR) { 3129 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3130 if (hs_ep->isochronous) 3131 dwc2_gadget_handle_isoc_bna(hs_ep); 3132 } 3133 3134 if (dir_in && !hs_ep->isochronous) { 3135 /* not sure if this is important, but we'll clear it anyway */ 3136 if (ints & DXEPINT_INTKNTXFEMP) { 3137 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3138 __func__, idx); 3139 } 3140 3141 /* this probably means something bad is happening */ 3142 if (ints & DXEPINT_INTKNEPMIS) { 3143 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3144 __func__, idx); 3145 } 3146 3147 /* FIFO has space or is empty (see GAHBCFG) */ 3148 if (hsotg->dedicated_fifos && 3149 ints & DXEPINT_TXFEMP) { 3150 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3151 __func__, idx); 3152 if (!using_dma(hsotg)) 3153 dwc2_hsotg_trytx(hsotg, hs_ep); 3154 } 3155 } 3156 } 3157 3158 /** 3159 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3160 * @hsotg: The device state. 3161 * 3162 * Handle updating the device settings after the enumeration phase has 3163 * been completed. 3164 */ 3165 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3166 { 3167 u32 dsts = dwc2_readl(hsotg, DSTS); 3168 int ep0_mps = 0, ep_mps = 8; 3169 3170 /* 3171 * This should signal the finish of the enumeration phase 3172 * of the USB handshaking, so we should now know what rate 3173 * we connected at. 3174 */ 3175 3176 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3177 3178 /* 3179 * note, since we're limited by the size of transfer on EP0, and 3180 * it seems IN transfers must be a even number of packets we do 3181 * not advertise a 64byte MPS on EP0. 3182 */ 3183 3184 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3185 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3186 case DSTS_ENUMSPD_FS: 3187 case DSTS_ENUMSPD_FS48: 3188 hsotg->gadget.speed = USB_SPEED_FULL; 3189 ep0_mps = EP0_MPS_LIMIT; 3190 ep_mps = 1023; 3191 break; 3192 3193 case DSTS_ENUMSPD_HS: 3194 hsotg->gadget.speed = USB_SPEED_HIGH; 3195 ep0_mps = EP0_MPS_LIMIT; 3196 ep_mps = 1024; 3197 break; 3198 3199 case DSTS_ENUMSPD_LS: 3200 hsotg->gadget.speed = USB_SPEED_LOW; 3201 ep0_mps = 8; 3202 ep_mps = 8; 3203 /* 3204 * note, we don't actually support LS in this driver at the 3205 * moment, and the documentation seems to imply that it isn't 3206 * supported by the PHYs on some of the devices. 3207 */ 3208 break; 3209 } 3210 dev_info(hsotg->dev, "new device is %s\n", 3211 usb_speed_string(hsotg->gadget.speed)); 3212 3213 /* 3214 * we should now know the maximum packet size for an 3215 * endpoint, so set the endpoints to a default value. 3216 */ 3217 3218 if (ep0_mps) { 3219 int i; 3220 /* Initialize ep0 for both in and out directions */ 3221 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3222 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3223 for (i = 1; i < hsotg->num_of_eps; i++) { 3224 if (hsotg->eps_in[i]) 3225 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3226 0, 1); 3227 if (hsotg->eps_out[i]) 3228 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3229 0, 0); 3230 } 3231 } 3232 3233 /* ensure after enumeration our EP0 is active */ 3234 3235 dwc2_hsotg_enqueue_setup(hsotg); 3236 3237 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3238 dwc2_readl(hsotg, DIEPCTL0), 3239 dwc2_readl(hsotg, DOEPCTL0)); 3240 } 3241 3242 /** 3243 * kill_all_requests - remove all requests from the endpoint's queue 3244 * @hsotg: The device state. 3245 * @ep: The endpoint the requests may be on. 3246 * @result: The result code to use. 3247 * 3248 * Go through the requests on the given endpoint and mark them 3249 * completed with the given result code. 3250 */ 3251 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3252 struct dwc2_hsotg_ep *ep, 3253 int result) 3254 { 3255 unsigned int size; 3256 3257 ep->req = NULL; 3258 3259 while (!list_empty(&ep->queue)) { 3260 struct dwc2_hsotg_req *req = get_ep_head(ep); 3261 3262 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3263 } 3264 3265 if (!hsotg->dedicated_fifos) 3266 return; 3267 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3268 if (size < ep->fifo_size) 3269 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3270 } 3271 3272 /** 3273 * dwc2_hsotg_disconnect - disconnect service 3274 * @hsotg: The device state. 3275 * 3276 * The device has been disconnected. Remove all current 3277 * transactions and signal the gadget driver that this 3278 * has happened. 3279 */ 3280 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3281 { 3282 unsigned int ep; 3283 3284 if (!hsotg->connected) 3285 return; 3286 3287 hsotg->connected = 0; 3288 hsotg->test_mode = 0; 3289 3290 /* all endpoints should be shutdown */ 3291 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3292 if (hsotg->eps_in[ep]) 3293 kill_all_requests(hsotg, hsotg->eps_in[ep], 3294 -ESHUTDOWN); 3295 if (hsotg->eps_out[ep]) 3296 kill_all_requests(hsotg, hsotg->eps_out[ep], 3297 -ESHUTDOWN); 3298 } 3299 3300 call_gadget(hsotg, disconnect); 3301 hsotg->lx_state = DWC2_L3; 3302 3303 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3304 } 3305 3306 /** 3307 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3308 * @hsotg: The device state: 3309 * @periodic: True if this is a periodic FIFO interrupt 3310 */ 3311 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3312 { 3313 struct dwc2_hsotg_ep *ep; 3314 int epno, ret; 3315 3316 /* look through for any more data to transmit */ 3317 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3318 ep = index_to_ep(hsotg, epno, 1); 3319 3320 if (!ep) 3321 continue; 3322 3323 if (!ep->dir_in) 3324 continue; 3325 3326 if ((periodic && !ep->periodic) || 3327 (!periodic && ep->periodic)) 3328 continue; 3329 3330 ret = dwc2_hsotg_trytx(hsotg, ep); 3331 if (ret < 0) 3332 break; 3333 } 3334 } 3335 3336 /* IRQ flags which will trigger a retry around the IRQ loop */ 3337 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3338 GINTSTS_PTXFEMP | \ 3339 GINTSTS_RXFLVL) 3340 3341 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3342 /** 3343 * dwc2_hsotg_core_init_disconnected - issue softreset to the core 3344 * @hsotg: The device state 3345 * @is_usb_reset: Usb resetting flag 3346 * 3347 * Issue a soft reset to the core, and await the core finishing it. 3348 */ 3349 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3350 bool is_usb_reset) 3351 { 3352 u32 intmsk; 3353 u32 val; 3354 u32 usbcfg; 3355 u32 dcfg = 0; 3356 int ep; 3357 3358 /* Kill any ep0 requests as controller will be reinitialized */ 3359 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3360 3361 if (!is_usb_reset) { 3362 if (dwc2_core_reset(hsotg, true)) 3363 return; 3364 } else { 3365 /* all endpoints should be shutdown */ 3366 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3367 if (hsotg->eps_in[ep]) 3368 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3369 if (hsotg->eps_out[ep]) 3370 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3371 } 3372 } 3373 3374 /* 3375 * we must now enable ep0 ready for host detection and then 3376 * set configuration. 3377 */ 3378 3379 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3380 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3381 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3382 usbcfg |= GUSBCFG_TOUTCAL(7); 3383 3384 /* remove the HNP/SRP and set the PHY */ 3385 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3386 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3387 3388 dwc2_phy_init(hsotg, true); 3389 3390 dwc2_hsotg_init_fifo(hsotg); 3391 3392 if (!is_usb_reset) 3393 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3394 3395 dcfg |= DCFG_EPMISCNT(1); 3396 3397 switch (hsotg->params.speed) { 3398 case DWC2_SPEED_PARAM_LOW: 3399 dcfg |= DCFG_DEVSPD_LS; 3400 break; 3401 case DWC2_SPEED_PARAM_FULL: 3402 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3403 dcfg |= DCFG_DEVSPD_FS48; 3404 else 3405 dcfg |= DCFG_DEVSPD_FS; 3406 break; 3407 default: 3408 dcfg |= DCFG_DEVSPD_HS; 3409 } 3410 3411 if (hsotg->params.ipg_isoc_en) 3412 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3413 3414 dwc2_writel(hsotg, dcfg, DCFG); 3415 3416 /* Clear any pending OTG interrupts */ 3417 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3418 3419 /* Clear any pending interrupts */ 3420 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3421 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3422 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3423 GINTSTS_USBRST | GINTSTS_RESETDET | 3424 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3425 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3426 GINTSTS_LPMTRANRCVD; 3427 3428 if (!using_desc_dma(hsotg)) 3429 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3430 3431 if (!hsotg->params.external_id_pin_ctl) 3432 intmsk |= GINTSTS_CONIDSTSCHNG; 3433 3434 dwc2_writel(hsotg, intmsk, GINTMSK); 3435 3436 if (using_dma(hsotg)) { 3437 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3438 hsotg->params.ahbcfg, 3439 GAHBCFG); 3440 3441 /* Set DDMA mode support in the core if needed */ 3442 if (using_desc_dma(hsotg)) 3443 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3444 3445 } else { 3446 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3447 (GAHBCFG_NP_TXF_EMP_LVL | 3448 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3449 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3450 } 3451 3452 /* 3453 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3454 * when we have no data to transfer. Otherwise we get being flooded by 3455 * interrupts. 3456 */ 3457 3458 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3459 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3460 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3461 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3462 DIEPMSK); 3463 3464 /* 3465 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3466 * DMA mode we may need this and StsPhseRcvd. 3467 */ 3468 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3469 DOEPMSK_STSPHSERCVDMSK) : 0) | 3470 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3471 DOEPMSK_SETUPMSK, 3472 DOEPMSK); 3473 3474 /* Enable BNA interrupt for DDMA */ 3475 if (using_desc_dma(hsotg)) { 3476 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3477 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3478 } 3479 3480 /* Enable Service Interval mode if supported */ 3481 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3482 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3483 3484 dwc2_writel(hsotg, 0, DAINTMSK); 3485 3486 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3487 dwc2_readl(hsotg, DIEPCTL0), 3488 dwc2_readl(hsotg, DOEPCTL0)); 3489 3490 /* enable in and out endpoint interrupts */ 3491 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3492 3493 /* 3494 * Enable the RXFIFO when in slave mode, as this is how we collect 3495 * the data. In DMA mode, we get events from the FIFO but also 3496 * things we cannot process, so do not use it. 3497 */ 3498 if (!using_dma(hsotg)) 3499 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3500 3501 /* Enable interrupts for EP0 in and out */ 3502 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3503 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3504 3505 if (!is_usb_reset) { 3506 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3507 udelay(10); /* see openiboot */ 3508 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3509 } 3510 3511 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3512 3513 /* 3514 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3515 * writing to the EPCTL register.. 3516 */ 3517 3518 /* set to read 1 8byte packet */ 3519 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3520 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3521 3522 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3523 DXEPCTL_CNAK | DXEPCTL_EPENA | 3524 DXEPCTL_USBACTEP, 3525 DOEPCTL0); 3526 3527 /* enable, but don't activate EP0in */ 3528 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3529 DXEPCTL_USBACTEP, DIEPCTL0); 3530 3531 /* clear global NAKs */ 3532 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3533 if (!is_usb_reset) 3534 val |= DCTL_SFTDISCON; 3535 dwc2_set_bit(hsotg, DCTL, val); 3536 3537 /* configure the core to support LPM */ 3538 dwc2_gadget_init_lpm(hsotg); 3539 3540 /* program GREFCLK register if needed */ 3541 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3542 dwc2_gadget_program_ref_clk(hsotg); 3543 3544 /* must be at-least 3ms to allow bus to see disconnect */ 3545 mdelay(3); 3546 3547 hsotg->lx_state = DWC2_L0; 3548 3549 dwc2_hsotg_enqueue_setup(hsotg); 3550 3551 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3552 dwc2_readl(hsotg, DIEPCTL0), 3553 dwc2_readl(hsotg, DOEPCTL0)); 3554 } 3555 3556 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3557 { 3558 /* set the soft-disconnect bit */ 3559 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3560 } 3561 3562 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3563 { 3564 /* remove the soft-disconnect and let's go */ 3565 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3566 } 3567 3568 /** 3569 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3570 * @hsotg: The device state: 3571 * 3572 * This interrupt indicates one of the following conditions occurred while 3573 * transmitting an ISOC transaction. 3574 * - Corrupted IN Token for ISOC EP. 3575 * - Packet not complete in FIFO. 3576 * 3577 * The following actions will be taken: 3578 * - Determine the EP 3579 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3580 */ 3581 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3582 { 3583 struct dwc2_hsotg_ep *hs_ep; 3584 u32 epctrl; 3585 u32 daintmsk; 3586 u32 idx; 3587 3588 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3589 3590 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3591 3592 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3593 hs_ep = hsotg->eps_in[idx]; 3594 /* Proceed only unmasked ISOC EPs */ 3595 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3596 continue; 3597 3598 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3599 if ((epctrl & DXEPCTL_EPENA) && 3600 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3601 epctrl |= DXEPCTL_SNAK; 3602 epctrl |= DXEPCTL_EPDIS; 3603 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3604 } 3605 } 3606 3607 /* Clear interrupt */ 3608 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3609 } 3610 3611 /** 3612 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3613 * @hsotg: The device state: 3614 * 3615 * This interrupt indicates one of the following conditions occurred while 3616 * transmitting an ISOC transaction. 3617 * - Corrupted OUT Token for ISOC EP. 3618 * - Packet not complete in FIFO. 3619 * 3620 * The following actions will be taken: 3621 * - Determine the EP 3622 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3623 */ 3624 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3625 { 3626 u32 gintsts; 3627 u32 gintmsk; 3628 u32 daintmsk; 3629 u32 epctrl; 3630 struct dwc2_hsotg_ep *hs_ep; 3631 int idx; 3632 3633 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3634 3635 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3636 daintmsk >>= DAINT_OUTEP_SHIFT; 3637 3638 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3639 hs_ep = hsotg->eps_out[idx]; 3640 /* Proceed only unmasked ISOC EPs */ 3641 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3642 continue; 3643 3644 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3645 if ((epctrl & DXEPCTL_EPENA) && 3646 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3647 /* Unmask GOUTNAKEFF interrupt */ 3648 gintmsk = dwc2_readl(hsotg, GINTMSK); 3649 gintmsk |= GINTSTS_GOUTNAKEFF; 3650 dwc2_writel(hsotg, gintmsk, GINTMSK); 3651 3652 gintsts = dwc2_readl(hsotg, GINTSTS); 3653 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3654 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3655 break; 3656 } 3657 } 3658 } 3659 3660 /* Clear interrupt */ 3661 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3662 } 3663 3664 /** 3665 * dwc2_hsotg_irq - handle device interrupt 3666 * @irq: The IRQ number triggered 3667 * @pw: The pw value when registered the handler. 3668 */ 3669 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3670 { 3671 struct dwc2_hsotg *hsotg = pw; 3672 int retry_count = 8; 3673 u32 gintsts; 3674 u32 gintmsk; 3675 3676 if (!dwc2_is_device_mode(hsotg)) 3677 return IRQ_NONE; 3678 3679 spin_lock(&hsotg->lock); 3680 irq_retry: 3681 gintsts = dwc2_readl(hsotg, GINTSTS); 3682 gintmsk = dwc2_readl(hsotg, GINTMSK); 3683 3684 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3685 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3686 3687 gintsts &= gintmsk; 3688 3689 if (gintsts & GINTSTS_RESETDET) { 3690 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3691 3692 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3693 3694 /* This event must be used only if controller is suspended */ 3695 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2) 3696 dwc2_exit_partial_power_down(hsotg, 0, true); 3697 3698 hsotg->lx_state = DWC2_L0; 3699 } 3700 3701 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3702 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3703 u32 connected = hsotg->connected; 3704 3705 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3706 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3707 dwc2_readl(hsotg, GNPTXSTS)); 3708 3709 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3710 3711 /* Report disconnection if it is not already done. */ 3712 dwc2_hsotg_disconnect(hsotg); 3713 3714 /* Reset device address to zero */ 3715 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3716 3717 if (usb_status & GOTGCTL_BSESVLD && connected) 3718 dwc2_hsotg_core_init_disconnected(hsotg, true); 3719 } 3720 3721 if (gintsts & GINTSTS_ENUMDONE) { 3722 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3723 3724 dwc2_hsotg_irq_enumdone(hsotg); 3725 } 3726 3727 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3728 u32 daint = dwc2_readl(hsotg, DAINT); 3729 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3730 u32 daint_out, daint_in; 3731 int ep; 3732 3733 daint &= daintmsk; 3734 daint_out = daint >> DAINT_OUTEP_SHIFT; 3735 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3736 3737 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3738 3739 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3740 ep++, daint_out >>= 1) { 3741 if (daint_out & 1) 3742 dwc2_hsotg_epint(hsotg, ep, 0); 3743 } 3744 3745 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3746 ep++, daint_in >>= 1) { 3747 if (daint_in & 1) 3748 dwc2_hsotg_epint(hsotg, ep, 1); 3749 } 3750 } 3751 3752 /* check both FIFOs */ 3753 3754 if (gintsts & GINTSTS_NPTXFEMP) { 3755 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3756 3757 /* 3758 * Disable the interrupt to stop it happening again 3759 * unless one of these endpoint routines decides that 3760 * it needs re-enabling 3761 */ 3762 3763 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3764 dwc2_hsotg_irq_fifoempty(hsotg, false); 3765 } 3766 3767 if (gintsts & GINTSTS_PTXFEMP) { 3768 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3769 3770 /* See note in GINTSTS_NPTxFEmp */ 3771 3772 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3773 dwc2_hsotg_irq_fifoempty(hsotg, true); 3774 } 3775 3776 if (gintsts & GINTSTS_RXFLVL) { 3777 /* 3778 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3779 * we need to retry dwc2_hsotg_handle_rx if this is still 3780 * set. 3781 */ 3782 3783 dwc2_hsotg_handle_rx(hsotg); 3784 } 3785 3786 if (gintsts & GINTSTS_ERLYSUSP) { 3787 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3788 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3789 } 3790 3791 /* 3792 * these next two seem to crop-up occasionally causing the core 3793 * to shutdown the USB transfer, so try clearing them and logging 3794 * the occurrence. 3795 */ 3796 3797 if (gintsts & GINTSTS_GOUTNAKEFF) { 3798 u8 idx; 3799 u32 epctrl; 3800 u32 gintmsk; 3801 u32 daintmsk; 3802 struct dwc2_hsotg_ep *hs_ep; 3803 3804 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3805 daintmsk >>= DAINT_OUTEP_SHIFT; 3806 /* Mask this interrupt */ 3807 gintmsk = dwc2_readl(hsotg, GINTMSK); 3808 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3809 dwc2_writel(hsotg, gintmsk, GINTMSK); 3810 3811 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3812 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3813 hs_ep = hsotg->eps_out[idx]; 3814 /* Proceed only unmasked ISOC EPs */ 3815 if (BIT(idx) & ~daintmsk) 3816 continue; 3817 3818 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3819 3820 //ISOC Ep's only 3821 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3822 epctrl |= DXEPCTL_SNAK; 3823 epctrl |= DXEPCTL_EPDIS; 3824 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3825 continue; 3826 } 3827 3828 //Non-ISOC EP's 3829 if (hs_ep->halted) { 3830 if (!(epctrl & DXEPCTL_EPENA)) 3831 epctrl |= DXEPCTL_EPENA; 3832 epctrl |= DXEPCTL_EPDIS; 3833 epctrl |= DXEPCTL_STALL; 3834 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3835 } 3836 } 3837 3838 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3839 } 3840 3841 if (gintsts & GINTSTS_GINNAKEFF) { 3842 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3843 3844 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3845 3846 dwc2_hsotg_dump(hsotg); 3847 } 3848 3849 if (gintsts & GINTSTS_INCOMPL_SOIN) 3850 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3851 3852 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3853 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3854 3855 /* 3856 * if we've had fifo events, we should try and go around the 3857 * loop again to see if there's any point in returning yet. 3858 */ 3859 3860 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3861 goto irq_retry; 3862 3863 /* Check WKUP_ALERT interrupt*/ 3864 if (hsotg->params.service_interval) 3865 dwc2_gadget_wkup_alert_handler(hsotg); 3866 3867 spin_unlock(&hsotg->lock); 3868 3869 return IRQ_HANDLED; 3870 } 3871 3872 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3873 struct dwc2_hsotg_ep *hs_ep) 3874 { 3875 u32 epctrl_reg; 3876 u32 epint_reg; 3877 3878 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3879 DOEPCTL(hs_ep->index); 3880 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3881 DOEPINT(hs_ep->index); 3882 3883 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3884 hs_ep->name); 3885 3886 if (hs_ep->dir_in) { 3887 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3888 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3889 /* Wait for Nak effect */ 3890 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3891 DXEPINT_INEPNAKEFF, 100)) 3892 dev_warn(hsotg->dev, 3893 "%s: timeout DIEPINT.NAKEFF\n", 3894 __func__); 3895 } else { 3896 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3897 /* Wait for Nak effect */ 3898 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3899 GINTSTS_GINNAKEFF, 100)) 3900 dev_warn(hsotg->dev, 3901 "%s: timeout GINTSTS.GINNAKEFF\n", 3902 __func__); 3903 } 3904 } else { 3905 /* Mask GINTSTS_GOUTNAKEFF interrupt */ 3906 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF); 3907 3908 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3909 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3910 3911 if (!using_dma(hsotg)) { 3912 /* Wait for GINTSTS_RXFLVL interrupt */ 3913 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3914 GINTSTS_RXFLVL, 100)) { 3915 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n", 3916 __func__); 3917 } else { 3918 /* 3919 * Pop GLOBAL OUT NAK status packet from RxFIFO 3920 * to assert GOUTNAKEFF interrupt 3921 */ 3922 dwc2_readl(hsotg, GRXSTSP); 3923 } 3924 } 3925 3926 /* Wait for global nak to take effect */ 3927 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3928 GINTSTS_GOUTNAKEFF, 100)) 3929 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3930 __func__); 3931 } 3932 3933 /* Disable ep */ 3934 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3935 3936 /* Wait for ep to be disabled */ 3937 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3938 dev_warn(hsotg->dev, 3939 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3940 3941 /* Clear EPDISBLD interrupt */ 3942 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3943 3944 if (hs_ep->dir_in) { 3945 unsigned short fifo_index; 3946 3947 if (hsotg->dedicated_fifos || hs_ep->periodic) 3948 fifo_index = hs_ep->fifo_index; 3949 else 3950 fifo_index = 0; 3951 3952 /* Flush TX FIFO */ 3953 dwc2_flush_tx_fifo(hsotg, fifo_index); 3954 3955 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3956 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3957 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3958 3959 } else { 3960 /* Remove global NAKs */ 3961 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3962 } 3963 } 3964 3965 /** 3966 * dwc2_hsotg_ep_enable - enable the given endpoint 3967 * @ep: The USB endpint to configure 3968 * @desc: The USB endpoint descriptor to configure with. 3969 * 3970 * This is called from the USB gadget code's usb_ep_enable(). 3971 */ 3972 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3973 const struct usb_endpoint_descriptor *desc) 3974 { 3975 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3976 struct dwc2_hsotg *hsotg = hs_ep->parent; 3977 unsigned long flags; 3978 unsigned int index = hs_ep->index; 3979 u32 epctrl_reg; 3980 u32 epctrl; 3981 u32 mps; 3982 u32 mc; 3983 u32 mask; 3984 unsigned int dir_in; 3985 unsigned int i, val, size; 3986 int ret = 0; 3987 unsigned char ep_type; 3988 int desc_num; 3989 3990 dev_dbg(hsotg->dev, 3991 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3992 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3993 desc->wMaxPacketSize, desc->bInterval); 3994 3995 /* not to be called for EP0 */ 3996 if (index == 0) { 3997 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3998 return -EINVAL; 3999 } 4000 4001 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 4002 if (dir_in != hs_ep->dir_in) { 4003 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 4004 return -EINVAL; 4005 } 4006 4007 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 4008 mps = usb_endpoint_maxp(desc); 4009 mc = usb_endpoint_maxp_mult(desc); 4010 4011 /* ISOC IN in DDMA supported bInterval up to 10 */ 4012 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4013 dir_in && desc->bInterval > 10) { 4014 dev_err(hsotg->dev, 4015 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 4016 return -EINVAL; 4017 } 4018 4019 /* High bandwidth ISOC OUT in DDMA not supported */ 4020 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4021 !dir_in && mc > 1) { 4022 dev_err(hsotg->dev, 4023 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 4024 return -EINVAL; 4025 } 4026 4027 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 4028 4029 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4030 epctrl = dwc2_readl(hsotg, epctrl_reg); 4031 4032 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 4033 __func__, epctrl, epctrl_reg); 4034 4035 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 4036 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 4037 else 4038 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4039 4040 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4041 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4042 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4043 desc_num * sizeof(struct dwc2_dma_desc), 4044 &hs_ep->desc_list_dma, GFP_ATOMIC); 4045 if (!hs_ep->desc_list) { 4046 ret = -ENOMEM; 4047 goto error2; 4048 } 4049 } 4050 4051 spin_lock_irqsave(&hsotg->lock, flags); 4052 4053 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4054 epctrl |= DXEPCTL_MPS(mps); 4055 4056 /* 4057 * mark the endpoint as active, otherwise the core may ignore 4058 * transactions entirely for this endpoint 4059 */ 4060 epctrl |= DXEPCTL_USBACTEP; 4061 4062 /* update the endpoint state */ 4063 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4064 4065 /* default, set to non-periodic */ 4066 hs_ep->isochronous = 0; 4067 hs_ep->periodic = 0; 4068 hs_ep->halted = 0; 4069 hs_ep->interval = desc->bInterval; 4070 4071 switch (ep_type) { 4072 case USB_ENDPOINT_XFER_ISOC: 4073 epctrl |= DXEPCTL_EPTYPE_ISO; 4074 epctrl |= DXEPCTL_SETEVENFR; 4075 hs_ep->isochronous = 1; 4076 hs_ep->interval = 1 << (desc->bInterval - 1); 4077 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4078 hs_ep->next_desc = 0; 4079 hs_ep->compl_desc = 0; 4080 if (dir_in) { 4081 hs_ep->periodic = 1; 4082 mask = dwc2_readl(hsotg, DIEPMSK); 4083 mask |= DIEPMSK_NAKMSK; 4084 dwc2_writel(hsotg, mask, DIEPMSK); 4085 } else { 4086 mask = dwc2_readl(hsotg, DOEPMSK); 4087 mask |= DOEPMSK_OUTTKNEPDISMSK; 4088 dwc2_writel(hsotg, mask, DOEPMSK); 4089 } 4090 break; 4091 4092 case USB_ENDPOINT_XFER_BULK: 4093 epctrl |= DXEPCTL_EPTYPE_BULK; 4094 break; 4095 4096 case USB_ENDPOINT_XFER_INT: 4097 if (dir_in) 4098 hs_ep->periodic = 1; 4099 4100 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4101 hs_ep->interval = 1 << (desc->bInterval - 1); 4102 4103 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4104 break; 4105 4106 case USB_ENDPOINT_XFER_CONTROL: 4107 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4108 break; 4109 } 4110 4111 /* 4112 * if the hardware has dedicated fifos, we must give each IN EP 4113 * a unique tx-fifo even if it is non-periodic. 4114 */ 4115 if (dir_in && hsotg->dedicated_fifos) { 4116 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4117 u32 fifo_index = 0; 4118 u32 fifo_size = UINT_MAX; 4119 4120 size = hs_ep->ep.maxpacket * hs_ep->mc; 4121 for (i = 1; i <= fifo_count; ++i) { 4122 if (hsotg->fifo_map & (1 << i)) 4123 continue; 4124 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4125 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4126 if (val < size) 4127 continue; 4128 /* Search for smallest acceptable fifo */ 4129 if (val < fifo_size) { 4130 fifo_size = val; 4131 fifo_index = i; 4132 } 4133 } 4134 if (!fifo_index) { 4135 dev_err(hsotg->dev, 4136 "%s: No suitable fifo found\n", __func__); 4137 ret = -ENOMEM; 4138 goto error1; 4139 } 4140 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4141 hsotg->fifo_map |= 1 << fifo_index; 4142 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4143 hs_ep->fifo_index = fifo_index; 4144 hs_ep->fifo_size = fifo_size; 4145 } 4146 4147 /* for non control endpoints, set PID to D0 */ 4148 if (index && !hs_ep->isochronous) 4149 epctrl |= DXEPCTL_SETD0PID; 4150 4151 /* WA for Full speed ISOC IN in DDMA mode. 4152 * By Clear NAK status of EP, core will send ZLP 4153 * to IN token and assert NAK interrupt relying 4154 * on TxFIFO status only 4155 */ 4156 4157 if (hsotg->gadget.speed == USB_SPEED_FULL && 4158 hs_ep->isochronous && dir_in) { 4159 /* The WA applies only to core versions from 2.72a 4160 * to 4.00a (including both). Also for FS_IOT_1.00a 4161 * and HS_IOT_1.00a. 4162 */ 4163 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4164 4165 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4166 gsnpsid <= DWC2_CORE_REV_4_00a) || 4167 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4168 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4169 epctrl |= DXEPCTL_CNAK; 4170 } 4171 4172 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4173 __func__, epctrl); 4174 4175 dwc2_writel(hsotg, epctrl, epctrl_reg); 4176 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4177 __func__, dwc2_readl(hsotg, epctrl_reg)); 4178 4179 /* enable the endpoint interrupt */ 4180 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4181 4182 error1: 4183 spin_unlock_irqrestore(&hsotg->lock, flags); 4184 4185 error2: 4186 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4187 dmam_free_coherent(hsotg->dev, desc_num * 4188 sizeof(struct dwc2_dma_desc), 4189 hs_ep->desc_list, hs_ep->desc_list_dma); 4190 hs_ep->desc_list = NULL; 4191 } 4192 4193 return ret; 4194 } 4195 4196 /** 4197 * dwc2_hsotg_ep_disable - disable given endpoint 4198 * @ep: The endpoint to disable. 4199 */ 4200 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4201 { 4202 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4203 struct dwc2_hsotg *hsotg = hs_ep->parent; 4204 int dir_in = hs_ep->dir_in; 4205 int index = hs_ep->index; 4206 u32 epctrl_reg; 4207 u32 ctrl; 4208 4209 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4210 4211 if (ep == &hsotg->eps_out[0]->ep) { 4212 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4213 return -EINVAL; 4214 } 4215 4216 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4217 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4218 return -EINVAL; 4219 } 4220 4221 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4222 4223 ctrl = dwc2_readl(hsotg, epctrl_reg); 4224 4225 if (ctrl & DXEPCTL_EPENA) 4226 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4227 4228 ctrl &= ~DXEPCTL_EPENA; 4229 ctrl &= ~DXEPCTL_USBACTEP; 4230 ctrl |= DXEPCTL_SNAK; 4231 4232 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4233 dwc2_writel(hsotg, ctrl, epctrl_reg); 4234 4235 /* disable endpoint interrupts */ 4236 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4237 4238 /* terminate all requests with shutdown */ 4239 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4240 4241 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4242 hs_ep->fifo_index = 0; 4243 hs_ep->fifo_size = 0; 4244 4245 return 0; 4246 } 4247 4248 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4249 { 4250 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4251 struct dwc2_hsotg *hsotg = hs_ep->parent; 4252 unsigned long flags; 4253 int ret; 4254 4255 spin_lock_irqsave(&hsotg->lock, flags); 4256 ret = dwc2_hsotg_ep_disable(ep); 4257 spin_unlock_irqrestore(&hsotg->lock, flags); 4258 return ret; 4259 } 4260 4261 /** 4262 * on_list - check request is on the given endpoint 4263 * @ep: The endpoint to check. 4264 * @test: The request to test if it is on the endpoint. 4265 */ 4266 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4267 { 4268 struct dwc2_hsotg_req *req, *treq; 4269 4270 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4271 if (req == test) 4272 return true; 4273 } 4274 4275 return false; 4276 } 4277 4278 /** 4279 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4280 * @ep: The endpoint to dequeue. 4281 * @req: The request to be removed from a queue. 4282 */ 4283 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4284 { 4285 struct dwc2_hsotg_req *hs_req = our_req(req); 4286 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4287 struct dwc2_hsotg *hs = hs_ep->parent; 4288 unsigned long flags; 4289 4290 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4291 4292 spin_lock_irqsave(&hs->lock, flags); 4293 4294 if (!on_list(hs_ep, hs_req)) { 4295 spin_unlock_irqrestore(&hs->lock, flags); 4296 return -EINVAL; 4297 } 4298 4299 /* Dequeue already started request */ 4300 if (req == &hs_ep->req->req) 4301 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4302 4303 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4304 spin_unlock_irqrestore(&hs->lock, flags); 4305 4306 return 0; 4307 } 4308 4309 /** 4310 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4311 * @ep: The endpoint to set halt. 4312 * @value: Set or unset the halt. 4313 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4314 * the endpoint is busy processing requests. 4315 * 4316 * We need to stall the endpoint immediately if request comes from set_feature 4317 * protocol command handler. 4318 */ 4319 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4320 { 4321 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4322 struct dwc2_hsotg *hs = hs_ep->parent; 4323 int index = hs_ep->index; 4324 u32 epreg; 4325 u32 epctl; 4326 u32 xfertype; 4327 4328 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4329 4330 if (index == 0) { 4331 if (value) 4332 dwc2_hsotg_stall_ep0(hs); 4333 else 4334 dev_warn(hs->dev, 4335 "%s: can't clear halt on ep0\n", __func__); 4336 return 0; 4337 } 4338 4339 if (hs_ep->isochronous) { 4340 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4341 return -EINVAL; 4342 } 4343 4344 if (!now && value && !list_empty(&hs_ep->queue)) { 4345 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4346 ep->name); 4347 return -EAGAIN; 4348 } 4349 4350 if (hs_ep->dir_in) { 4351 epreg = DIEPCTL(index); 4352 epctl = dwc2_readl(hs, epreg); 4353 4354 if (value) { 4355 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4356 if (epctl & DXEPCTL_EPENA) 4357 epctl |= DXEPCTL_EPDIS; 4358 } else { 4359 epctl &= ~DXEPCTL_STALL; 4360 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4361 if (xfertype == DXEPCTL_EPTYPE_BULK || 4362 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4363 epctl |= DXEPCTL_SETD0PID; 4364 } 4365 dwc2_writel(hs, epctl, epreg); 4366 } else { 4367 epreg = DOEPCTL(index); 4368 epctl = dwc2_readl(hs, epreg); 4369 4370 if (value) { 4371 /* Unmask GOUTNAKEFF interrupt */ 4372 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF); 4373 4374 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4375 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4376 // STALL bit will be set in GOUTNAKEFF interrupt handler 4377 } else { 4378 epctl &= ~DXEPCTL_STALL; 4379 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4380 if (xfertype == DXEPCTL_EPTYPE_BULK || 4381 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4382 epctl |= DXEPCTL_SETD0PID; 4383 dwc2_writel(hs, epctl, epreg); 4384 } 4385 } 4386 4387 hs_ep->halted = value; 4388 return 0; 4389 } 4390 4391 /** 4392 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4393 * @ep: The endpoint to set halt. 4394 * @value: Set or unset the halt. 4395 */ 4396 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4397 { 4398 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4399 struct dwc2_hsotg *hs = hs_ep->parent; 4400 unsigned long flags; 4401 int ret; 4402 4403 spin_lock_irqsave(&hs->lock, flags); 4404 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4405 spin_unlock_irqrestore(&hs->lock, flags); 4406 4407 return ret; 4408 } 4409 4410 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4411 .enable = dwc2_hsotg_ep_enable, 4412 .disable = dwc2_hsotg_ep_disable_lock, 4413 .alloc_request = dwc2_hsotg_ep_alloc_request, 4414 .free_request = dwc2_hsotg_ep_free_request, 4415 .queue = dwc2_hsotg_ep_queue_lock, 4416 .dequeue = dwc2_hsotg_ep_dequeue, 4417 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4418 /* note, don't believe we have any call for the fifo routines */ 4419 }; 4420 4421 /** 4422 * dwc2_hsotg_init - initialize the usb core 4423 * @hsotg: The driver state 4424 */ 4425 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4426 { 4427 /* unmask subset of endpoint interrupts */ 4428 4429 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4430 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4431 DIEPMSK); 4432 4433 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4434 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4435 DOEPMSK); 4436 4437 dwc2_writel(hsotg, 0, DAINTMSK); 4438 4439 /* Be in disconnected state until gadget is registered */ 4440 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4441 4442 /* setup fifos */ 4443 4444 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4445 dwc2_readl(hsotg, GRXFSIZ), 4446 dwc2_readl(hsotg, GNPTXFSIZ)); 4447 4448 dwc2_hsotg_init_fifo(hsotg); 4449 4450 if (using_dma(hsotg)) 4451 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4452 } 4453 4454 /** 4455 * dwc2_hsotg_udc_start - prepare the udc for work 4456 * @gadget: The usb gadget state 4457 * @driver: The usb gadget driver 4458 * 4459 * Perform initialization to prepare udc device and driver 4460 * to work. 4461 */ 4462 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4463 struct usb_gadget_driver *driver) 4464 { 4465 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4466 unsigned long flags; 4467 int ret; 4468 4469 if (!hsotg) { 4470 pr_err("%s: called with no device\n", __func__); 4471 return -ENODEV; 4472 } 4473 4474 if (!driver) { 4475 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4476 return -EINVAL; 4477 } 4478 4479 if (driver->max_speed < USB_SPEED_FULL) 4480 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4481 4482 if (!driver->setup) { 4483 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4484 return -EINVAL; 4485 } 4486 4487 WARN_ON(hsotg->driver); 4488 4489 driver->driver.bus = NULL; 4490 hsotg->driver = driver; 4491 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4492 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4493 4494 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4495 ret = dwc2_lowlevel_hw_enable(hsotg); 4496 if (ret) 4497 goto err; 4498 } 4499 4500 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4501 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4502 4503 spin_lock_irqsave(&hsotg->lock, flags); 4504 if (dwc2_hw_is_device(hsotg)) { 4505 dwc2_hsotg_init(hsotg); 4506 dwc2_hsotg_core_init_disconnected(hsotg, false); 4507 } 4508 4509 hsotg->enabled = 0; 4510 spin_unlock_irqrestore(&hsotg->lock, flags); 4511 4512 gadget->sg_supported = using_desc_dma(hsotg); 4513 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4514 4515 return 0; 4516 4517 err: 4518 hsotg->driver = NULL; 4519 return ret; 4520 } 4521 4522 /** 4523 * dwc2_hsotg_udc_stop - stop the udc 4524 * @gadget: The usb gadget state 4525 * 4526 * Stop udc hw block and stay tunned for future transmissions 4527 */ 4528 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4529 { 4530 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4531 unsigned long flags; 4532 int ep; 4533 4534 if (!hsotg) 4535 return -ENODEV; 4536 4537 /* all endpoints should be shutdown */ 4538 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4539 if (hsotg->eps_in[ep]) 4540 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4541 if (hsotg->eps_out[ep]) 4542 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4543 } 4544 4545 spin_lock_irqsave(&hsotg->lock, flags); 4546 4547 hsotg->driver = NULL; 4548 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4549 hsotg->enabled = 0; 4550 4551 spin_unlock_irqrestore(&hsotg->lock, flags); 4552 4553 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4554 otg_set_peripheral(hsotg->uphy->otg, NULL); 4555 4556 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4557 dwc2_lowlevel_hw_disable(hsotg); 4558 4559 return 0; 4560 } 4561 4562 /** 4563 * dwc2_hsotg_gadget_getframe - read the frame number 4564 * @gadget: The usb gadget state 4565 * 4566 * Read the {micro} frame number 4567 */ 4568 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4569 { 4570 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4571 } 4572 4573 /** 4574 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4575 * @gadget: The usb gadget state 4576 * @is_selfpowered: Whether the device is self-powered 4577 * 4578 * Set if the device is self or bus powered. 4579 */ 4580 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4581 int is_selfpowered) 4582 { 4583 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4584 unsigned long flags; 4585 4586 spin_lock_irqsave(&hsotg->lock, flags); 4587 gadget->is_selfpowered = !!is_selfpowered; 4588 spin_unlock_irqrestore(&hsotg->lock, flags); 4589 4590 return 0; 4591 } 4592 4593 /** 4594 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4595 * @gadget: The usb gadget state 4596 * @is_on: Current state of the USB PHY 4597 * 4598 * Connect/Disconnect the USB PHY pullup 4599 */ 4600 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4601 { 4602 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4603 unsigned long flags; 4604 4605 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4606 hsotg->op_state); 4607 4608 /* Don't modify pullup state while in host mode */ 4609 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4610 hsotg->enabled = is_on; 4611 return 0; 4612 } 4613 4614 spin_lock_irqsave(&hsotg->lock, flags); 4615 if (is_on) { 4616 hsotg->enabled = 1; 4617 dwc2_hsotg_core_init_disconnected(hsotg, false); 4618 /* Enable ACG feature in device mode,if supported */ 4619 dwc2_enable_acg(hsotg); 4620 dwc2_hsotg_core_connect(hsotg); 4621 } else { 4622 dwc2_hsotg_core_disconnect(hsotg); 4623 dwc2_hsotg_disconnect(hsotg); 4624 hsotg->enabled = 0; 4625 } 4626 4627 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4628 spin_unlock_irqrestore(&hsotg->lock, flags); 4629 4630 return 0; 4631 } 4632 4633 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4634 { 4635 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4636 unsigned long flags; 4637 4638 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4639 spin_lock_irqsave(&hsotg->lock, flags); 4640 4641 /* 4642 * If controller is in partial power down state, it must exit from 4643 * that state before being initialized / de-initialized 4644 */ 4645 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd) 4646 /* 4647 * No need to check the return value as 4648 * registers are not being restored. 4649 */ 4650 dwc2_exit_partial_power_down(hsotg, 0, false); 4651 4652 if (is_active) { 4653 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4654 4655 dwc2_hsotg_core_init_disconnected(hsotg, false); 4656 if (hsotg->enabled) { 4657 /* Enable ACG feature in device mode,if supported */ 4658 dwc2_enable_acg(hsotg); 4659 dwc2_hsotg_core_connect(hsotg); 4660 } 4661 } else { 4662 dwc2_hsotg_core_disconnect(hsotg); 4663 dwc2_hsotg_disconnect(hsotg); 4664 } 4665 4666 spin_unlock_irqrestore(&hsotg->lock, flags); 4667 return 0; 4668 } 4669 4670 /** 4671 * dwc2_hsotg_vbus_draw - report bMaxPower field 4672 * @gadget: The usb gadget state 4673 * @mA: Amount of current 4674 * 4675 * Report how much power the device may consume to the phy. 4676 */ 4677 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4678 { 4679 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4680 4681 if (IS_ERR_OR_NULL(hsotg->uphy)) 4682 return -ENOTSUPP; 4683 return usb_phy_set_power(hsotg->uphy, mA); 4684 } 4685 4686 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4687 .get_frame = dwc2_hsotg_gadget_getframe, 4688 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4689 .udc_start = dwc2_hsotg_udc_start, 4690 .udc_stop = dwc2_hsotg_udc_stop, 4691 .pullup = dwc2_hsotg_pullup, 4692 .vbus_session = dwc2_hsotg_vbus_session, 4693 .vbus_draw = dwc2_hsotg_vbus_draw, 4694 }; 4695 4696 /** 4697 * dwc2_hsotg_initep - initialise a single endpoint 4698 * @hsotg: The device state. 4699 * @hs_ep: The endpoint to be initialised. 4700 * @epnum: The endpoint number 4701 * @dir_in: True if direction is in. 4702 * 4703 * Initialise the given endpoint (as part of the probe and device state 4704 * creation) to give to the gadget driver. Setup the endpoint name, any 4705 * direction information and other state that may be required. 4706 */ 4707 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4708 struct dwc2_hsotg_ep *hs_ep, 4709 int epnum, 4710 bool dir_in) 4711 { 4712 char *dir; 4713 4714 if (epnum == 0) 4715 dir = ""; 4716 else if (dir_in) 4717 dir = "in"; 4718 else 4719 dir = "out"; 4720 4721 hs_ep->dir_in = dir_in; 4722 hs_ep->index = epnum; 4723 4724 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4725 4726 INIT_LIST_HEAD(&hs_ep->queue); 4727 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4728 4729 /* add to the list of endpoints known by the gadget driver */ 4730 if (epnum) 4731 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4732 4733 hs_ep->parent = hsotg; 4734 hs_ep->ep.name = hs_ep->name; 4735 4736 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4737 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4738 else 4739 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4740 epnum ? 1024 : EP0_MPS_LIMIT); 4741 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4742 4743 if (epnum == 0) { 4744 hs_ep->ep.caps.type_control = true; 4745 } else { 4746 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4747 hs_ep->ep.caps.type_iso = true; 4748 hs_ep->ep.caps.type_bulk = true; 4749 } 4750 hs_ep->ep.caps.type_int = true; 4751 } 4752 4753 if (dir_in) 4754 hs_ep->ep.caps.dir_in = true; 4755 else 4756 hs_ep->ep.caps.dir_out = true; 4757 4758 /* 4759 * if we're using dma, we need to set the next-endpoint pointer 4760 * to be something valid. 4761 */ 4762 4763 if (using_dma(hsotg)) { 4764 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4765 4766 if (dir_in) 4767 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4768 else 4769 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4770 } 4771 } 4772 4773 /** 4774 * dwc2_hsotg_hw_cfg - read HW configuration registers 4775 * @hsotg: Programming view of the DWC_otg controller 4776 * 4777 * Read the USB core HW configuration registers 4778 */ 4779 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4780 { 4781 u32 cfg; 4782 u32 ep_type; 4783 u32 i; 4784 4785 /* check hardware configuration */ 4786 4787 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4788 4789 /* Add ep0 */ 4790 hsotg->num_of_eps++; 4791 4792 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4793 sizeof(struct dwc2_hsotg_ep), 4794 GFP_KERNEL); 4795 if (!hsotg->eps_in[0]) 4796 return -ENOMEM; 4797 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4798 hsotg->eps_out[0] = hsotg->eps_in[0]; 4799 4800 cfg = hsotg->hw_params.dev_ep_dirs; 4801 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4802 ep_type = cfg & 3; 4803 /* Direction in or both */ 4804 if (!(ep_type & 2)) { 4805 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4806 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4807 if (!hsotg->eps_in[i]) 4808 return -ENOMEM; 4809 } 4810 /* Direction out or both */ 4811 if (!(ep_type & 1)) { 4812 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4813 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4814 if (!hsotg->eps_out[i]) 4815 return -ENOMEM; 4816 } 4817 } 4818 4819 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4820 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4821 4822 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4823 hsotg->num_of_eps, 4824 hsotg->dedicated_fifos ? "dedicated" : "shared", 4825 hsotg->fifo_mem); 4826 return 0; 4827 } 4828 4829 /** 4830 * dwc2_hsotg_dump - dump state of the udc 4831 * @hsotg: Programming view of the DWC_otg controller 4832 * 4833 */ 4834 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4835 { 4836 #ifdef DEBUG 4837 struct device *dev = hsotg->dev; 4838 u32 val; 4839 int idx; 4840 4841 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4842 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4843 dwc2_readl(hsotg, DIEPMSK)); 4844 4845 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4846 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4847 4848 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4849 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4850 4851 /* show periodic fifo settings */ 4852 4853 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4854 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4855 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4856 val >> FIFOSIZE_DEPTH_SHIFT, 4857 val & FIFOSIZE_STARTADDR_MASK); 4858 } 4859 4860 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4861 dev_info(dev, 4862 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4863 dwc2_readl(hsotg, DIEPCTL(idx)), 4864 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4865 dwc2_readl(hsotg, DIEPDMA(idx))); 4866 4867 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4868 dev_info(dev, 4869 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4870 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4871 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4872 dwc2_readl(hsotg, DOEPDMA(idx))); 4873 } 4874 4875 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4876 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4877 #endif 4878 } 4879 4880 /** 4881 * dwc2_gadget_init - init function for gadget 4882 * @hsotg: Programming view of the DWC_otg controller 4883 * 4884 */ 4885 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4886 { 4887 struct device *dev = hsotg->dev; 4888 int epnum; 4889 int ret; 4890 4891 /* Dump fifo information */ 4892 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4893 hsotg->params.g_np_tx_fifo_size); 4894 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4895 4896 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4897 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4898 hsotg->gadget.name = dev_name(dev); 4899 hsotg->remote_wakeup_allowed = 0; 4900 4901 if (hsotg->params.lpm) 4902 hsotg->gadget.lpm_capable = true; 4903 4904 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4905 hsotg->gadget.is_otg = 1; 4906 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4907 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4908 4909 ret = dwc2_hsotg_hw_cfg(hsotg); 4910 if (ret) { 4911 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4912 return ret; 4913 } 4914 4915 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4916 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4917 if (!hsotg->ctrl_buff) 4918 return -ENOMEM; 4919 4920 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4921 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4922 if (!hsotg->ep0_buff) 4923 return -ENOMEM; 4924 4925 if (using_desc_dma(hsotg)) { 4926 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4927 if (ret < 0) 4928 return ret; 4929 } 4930 4931 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4932 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4933 if (ret < 0) { 4934 dev_err(dev, "cannot claim IRQ for gadget\n"); 4935 return ret; 4936 } 4937 4938 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4939 4940 if (hsotg->num_of_eps == 0) { 4941 dev_err(dev, "wrong number of EPs (zero)\n"); 4942 return -EINVAL; 4943 } 4944 4945 /* setup endpoint information */ 4946 4947 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4948 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4949 4950 /* allocate EP0 request */ 4951 4952 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4953 GFP_KERNEL); 4954 if (!hsotg->ctrl_req) { 4955 dev_err(dev, "failed to allocate ctrl req\n"); 4956 return -ENOMEM; 4957 } 4958 4959 /* initialise the endpoints now the core has been initialised */ 4960 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4961 if (hsotg->eps_in[epnum]) 4962 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4963 epnum, 1); 4964 if (hsotg->eps_out[epnum]) 4965 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4966 epnum, 0); 4967 } 4968 4969 dwc2_hsotg_dump(hsotg); 4970 4971 return 0; 4972 } 4973 4974 /** 4975 * dwc2_hsotg_remove - remove function for hsotg driver 4976 * @hsotg: Programming view of the DWC_otg controller 4977 * 4978 */ 4979 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4980 { 4981 usb_del_gadget_udc(&hsotg->gadget); 4982 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 4983 4984 return 0; 4985 } 4986 4987 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4988 { 4989 unsigned long flags; 4990 4991 if (hsotg->lx_state != DWC2_L0) 4992 return 0; 4993 4994 if (hsotg->driver) { 4995 int ep; 4996 4997 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4998 hsotg->driver->driver.name); 4999 5000 spin_lock_irqsave(&hsotg->lock, flags); 5001 if (hsotg->enabled) 5002 dwc2_hsotg_core_disconnect(hsotg); 5003 dwc2_hsotg_disconnect(hsotg); 5004 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 5005 spin_unlock_irqrestore(&hsotg->lock, flags); 5006 5007 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 5008 if (hsotg->eps_in[ep]) 5009 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 5010 if (hsotg->eps_out[ep]) 5011 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 5012 } 5013 } 5014 5015 return 0; 5016 } 5017 5018 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 5019 { 5020 unsigned long flags; 5021 5022 if (hsotg->lx_state == DWC2_L2) 5023 return 0; 5024 5025 if (hsotg->driver) { 5026 dev_info(hsotg->dev, "resuming usb gadget %s\n", 5027 hsotg->driver->driver.name); 5028 5029 spin_lock_irqsave(&hsotg->lock, flags); 5030 dwc2_hsotg_core_init_disconnected(hsotg, false); 5031 if (hsotg->enabled) { 5032 /* Enable ACG feature in device mode,if supported */ 5033 dwc2_enable_acg(hsotg); 5034 dwc2_hsotg_core_connect(hsotg); 5035 } 5036 spin_unlock_irqrestore(&hsotg->lock, flags); 5037 } 5038 5039 return 0; 5040 } 5041 5042 /** 5043 * dwc2_backup_device_registers() - Backup controller device registers. 5044 * When suspending usb bus, registers needs to be backuped 5045 * if controller power is disabled once suspended. 5046 * 5047 * @hsotg: Programming view of the DWC_otg controller 5048 */ 5049 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5050 { 5051 struct dwc2_dregs_backup *dr; 5052 int i; 5053 5054 dev_dbg(hsotg->dev, "%s\n", __func__); 5055 5056 /* Backup dev regs */ 5057 dr = &hsotg->dr_backup; 5058 5059 dr->dcfg = dwc2_readl(hsotg, DCFG); 5060 dr->dctl = dwc2_readl(hsotg, DCTL); 5061 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5062 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5063 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5064 5065 for (i = 0; i < hsotg->num_of_eps; i++) { 5066 /* Backup IN EPs */ 5067 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5068 5069 /* Ensure DATA PID is correctly configured */ 5070 if (dr->diepctl[i] & DXEPCTL_DPID) 5071 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5072 else 5073 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5074 5075 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5076 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5077 5078 /* Backup OUT EPs */ 5079 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5080 5081 /* Ensure DATA PID is correctly configured */ 5082 if (dr->doepctl[i] & DXEPCTL_DPID) 5083 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5084 else 5085 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5086 5087 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5088 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5089 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5090 } 5091 dr->valid = true; 5092 return 0; 5093 } 5094 5095 /** 5096 * dwc2_restore_device_registers() - Restore controller device registers. 5097 * When resuming usb bus, device registers needs to be restored 5098 * if controller power were disabled. 5099 * 5100 * @hsotg: Programming view of the DWC_otg controller 5101 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5102 * 5103 * Return: 0 if successful, negative error code otherwise 5104 */ 5105 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5106 { 5107 struct dwc2_dregs_backup *dr; 5108 int i; 5109 5110 dev_dbg(hsotg->dev, "%s\n", __func__); 5111 5112 /* Restore dev regs */ 5113 dr = &hsotg->dr_backup; 5114 if (!dr->valid) { 5115 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5116 __func__); 5117 return -EINVAL; 5118 } 5119 dr->valid = false; 5120 5121 if (!remote_wakeup) 5122 dwc2_writel(hsotg, dr->dctl, DCTL); 5123 5124 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5125 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5126 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5127 5128 for (i = 0; i < hsotg->num_of_eps; i++) { 5129 /* Restore IN EPs */ 5130 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5131 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5132 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5133 /** WA for enabled EPx's IN in DDMA mode. On entering to 5134 * hibernation wrong value read and saved from DIEPDMAx, 5135 * as result BNA interrupt asserted on hibernation exit 5136 * by restoring from saved area. 5137 */ 5138 if (hsotg->params.g_dma_desc && 5139 (dr->diepctl[i] & DXEPCTL_EPENA)) 5140 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5141 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5142 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5143 /* Restore OUT EPs */ 5144 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5145 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5146 * hibernation wrong value read and saved from DOEPDMAx, 5147 * as result BNA interrupt asserted on hibernation exit 5148 * by restoring from saved area. 5149 */ 5150 if (hsotg->params.g_dma_desc && 5151 (dr->doepctl[i] & DXEPCTL_EPENA)) 5152 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5153 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5154 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5155 } 5156 5157 return 0; 5158 } 5159 5160 /** 5161 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5162 * 5163 * @hsotg: Programming view of DWC_otg controller 5164 * 5165 */ 5166 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5167 { 5168 u32 val; 5169 5170 if (!hsotg->params.lpm) 5171 return; 5172 5173 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5174 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5175 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5176 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5177 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5178 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5179 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5180 dwc2_writel(hsotg, val, GLPMCFG); 5181 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5182 5183 /* Unmask WKUP_ALERT Interrupt */ 5184 if (hsotg->params.service_interval) 5185 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5186 } 5187 5188 /** 5189 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5190 * 5191 * @hsotg: Programming view of DWC_otg controller 5192 * 5193 */ 5194 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5195 { 5196 u32 val = 0; 5197 5198 val |= GREFCLK_REF_CLK_MODE; 5199 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5200 val |= hsotg->params.sof_cnt_wkup_alert << 5201 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5202 5203 dwc2_writel(hsotg, val, GREFCLK); 5204 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5205 } 5206 5207 /** 5208 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5209 * 5210 * @hsotg: Programming view of the DWC_otg controller 5211 * 5212 * Return non-zero if failed to enter to hibernation. 5213 */ 5214 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5215 { 5216 u32 gpwrdn; 5217 int ret = 0; 5218 5219 /* Change to L2(suspend) state */ 5220 hsotg->lx_state = DWC2_L2; 5221 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5222 ret = dwc2_backup_global_registers(hsotg); 5223 if (ret) { 5224 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5225 __func__); 5226 return ret; 5227 } 5228 ret = dwc2_backup_device_registers(hsotg); 5229 if (ret) { 5230 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5231 __func__); 5232 return ret; 5233 } 5234 5235 gpwrdn = GPWRDN_PWRDNRSTN; 5236 gpwrdn |= GPWRDN_PMUACTV; 5237 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5238 udelay(10); 5239 5240 /* Set flag to indicate that we are in hibernation */ 5241 hsotg->hibernated = 1; 5242 5243 /* Enable interrupts from wake up logic */ 5244 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5245 gpwrdn |= GPWRDN_PMUINTSEL; 5246 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5247 udelay(10); 5248 5249 /* Unmask device mode interrupts in GPWRDN */ 5250 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5251 gpwrdn |= GPWRDN_RST_DET_MSK; 5252 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5253 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5254 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5255 udelay(10); 5256 5257 /* Enable Power Down Clamp */ 5258 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5259 gpwrdn |= GPWRDN_PWRDNCLMP; 5260 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5261 udelay(10); 5262 5263 /* Switch off VDD */ 5264 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5265 gpwrdn |= GPWRDN_PWRDNSWTCH; 5266 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5267 udelay(10); 5268 5269 /* Save gpwrdn register for further usage if stschng interrupt */ 5270 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5271 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5272 5273 return ret; 5274 } 5275 5276 /** 5277 * dwc2_gadget_exit_hibernation() 5278 * This function is for exiting from Device mode hibernation by host initiated 5279 * resume/reset and device initiated remote-wakeup. 5280 * 5281 * @hsotg: Programming view of the DWC_otg controller 5282 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5283 * @reset: indicates whether resume is initiated by Reset. 5284 * 5285 * Return non-zero if failed to exit from hibernation. 5286 */ 5287 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5288 int rem_wakeup, int reset) 5289 { 5290 u32 pcgcctl; 5291 u32 gpwrdn; 5292 u32 dctl; 5293 int ret = 0; 5294 struct dwc2_gregs_backup *gr; 5295 struct dwc2_dregs_backup *dr; 5296 5297 gr = &hsotg->gr_backup; 5298 dr = &hsotg->dr_backup; 5299 5300 if (!hsotg->hibernated) { 5301 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5302 return 1; 5303 } 5304 dev_dbg(hsotg->dev, 5305 "%s: called with rem_wakeup = %d reset = %d\n", 5306 __func__, rem_wakeup, reset); 5307 5308 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5309 5310 if (!reset) { 5311 /* Clear all pending interupts */ 5312 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5313 } 5314 5315 /* De-assert Restore */ 5316 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5317 gpwrdn &= ~GPWRDN_RESTORE; 5318 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5319 udelay(10); 5320 5321 if (!rem_wakeup) { 5322 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5323 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5324 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5325 } 5326 5327 /* Restore GUSBCFG, DCFG and DCTL */ 5328 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5329 dwc2_writel(hsotg, dr->dcfg, DCFG); 5330 dwc2_writel(hsotg, dr->dctl, DCTL); 5331 5332 /* On USB Reset, reset device address to zero */ 5333 if (reset) 5334 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 5335 5336 /* De-assert Wakeup Logic */ 5337 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5338 gpwrdn &= ~GPWRDN_PMUACTV; 5339 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5340 5341 if (rem_wakeup) { 5342 udelay(10); 5343 /* Start Remote Wakeup Signaling */ 5344 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5345 } else { 5346 udelay(50); 5347 /* Set Device programming done bit */ 5348 dctl = dwc2_readl(hsotg, DCTL); 5349 dctl |= DCTL_PWRONPRGDONE; 5350 dwc2_writel(hsotg, dctl, DCTL); 5351 } 5352 /* Wait for interrupts which must be cleared */ 5353 mdelay(2); 5354 /* Clear all pending interupts */ 5355 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5356 5357 /* Restore global registers */ 5358 ret = dwc2_restore_global_registers(hsotg); 5359 if (ret) { 5360 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5361 __func__); 5362 return ret; 5363 } 5364 5365 /* Restore device registers */ 5366 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5367 if (ret) { 5368 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5369 __func__); 5370 return ret; 5371 } 5372 5373 if (rem_wakeup) { 5374 mdelay(10); 5375 dctl = dwc2_readl(hsotg, DCTL); 5376 dctl &= ~DCTL_RMTWKUPSIG; 5377 dwc2_writel(hsotg, dctl, DCTL); 5378 } 5379 5380 hsotg->hibernated = 0; 5381 hsotg->lx_state = DWC2_L0; 5382 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5383 5384 return ret; 5385 } 5386 5387 /** 5388 * dwc2_gadget_enter_partial_power_down() - Put controller in partial 5389 * power down. 5390 * 5391 * @hsotg: Programming view of the DWC_otg controller 5392 * 5393 * Return: non-zero if failed to enter device partial power down. 5394 * 5395 * This function is for entering device mode partial power down. 5396 */ 5397 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 5398 { 5399 u32 pcgcctl; 5400 int ret = 0; 5401 5402 dev_dbg(hsotg->dev, "Entering device partial power down started.\n"); 5403 5404 /* Backup all registers */ 5405 ret = dwc2_backup_global_registers(hsotg); 5406 if (ret) { 5407 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5408 __func__); 5409 return ret; 5410 } 5411 5412 ret = dwc2_backup_device_registers(hsotg); 5413 if (ret) { 5414 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5415 __func__); 5416 return ret; 5417 } 5418 5419 /* 5420 * Clear any pending interrupts since dwc2 will not be able to 5421 * clear them after entering partial_power_down. 5422 */ 5423 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5424 5425 /* Put the controller in low power state */ 5426 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5427 5428 pcgcctl |= PCGCTL_PWRCLMP; 5429 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5430 udelay(5); 5431 5432 pcgcctl |= PCGCTL_RSTPDWNMODULE; 5433 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5434 udelay(5); 5435 5436 pcgcctl |= PCGCTL_STOPPCLK; 5437 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5438 5439 /* Set in_ppd flag to 1 as here core enters suspend. */ 5440 hsotg->in_ppd = 1; 5441 hsotg->lx_state = DWC2_L2; 5442 5443 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n"); 5444 5445 return ret; 5446 } 5447 5448 /* 5449 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial 5450 * power down. 5451 * 5452 * @hsotg: Programming view of the DWC_otg controller 5453 * @restore: indicates whether need to restore the registers or not. 5454 * 5455 * Return: non-zero if failed to exit device partial power down. 5456 * 5457 * This function is for exiting from device mode partial power down. 5458 */ 5459 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 5460 bool restore) 5461 { 5462 u32 pcgcctl; 5463 u32 dctl; 5464 struct dwc2_dregs_backup *dr; 5465 int ret = 0; 5466 5467 dr = &hsotg->dr_backup; 5468 5469 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n"); 5470 5471 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5472 pcgcctl &= ~PCGCTL_STOPPCLK; 5473 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5474 5475 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5476 pcgcctl &= ~PCGCTL_PWRCLMP; 5477 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5478 5479 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5480 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5481 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5482 5483 udelay(100); 5484 if (restore) { 5485 ret = dwc2_restore_global_registers(hsotg); 5486 if (ret) { 5487 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5488 __func__); 5489 return ret; 5490 } 5491 /* Restore DCFG */ 5492 dwc2_writel(hsotg, dr->dcfg, DCFG); 5493 5494 ret = dwc2_restore_device_registers(hsotg, 0); 5495 if (ret) { 5496 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5497 __func__); 5498 return ret; 5499 } 5500 } 5501 5502 /* Set the Power-On Programming done bit */ 5503 dctl = dwc2_readl(hsotg, DCTL); 5504 dctl |= DCTL_PWRONPRGDONE; 5505 dwc2_writel(hsotg, dctl, DCTL); 5506 5507 /* Set in_ppd flag to 0 as here core exits from suspend. */ 5508 hsotg->in_ppd = 0; 5509 hsotg->lx_state = DWC2_L0; 5510 5511 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n"); 5512 return ret; 5513 } 5514 5515 /** 5516 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating. 5517 * 5518 * @hsotg: Programming view of the DWC_otg controller 5519 * 5520 * Return: non-zero if failed to enter device partial power down. 5521 * 5522 * This function is for entering device mode clock gating. 5523 */ 5524 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) 5525 { 5526 u32 pcgctl; 5527 5528 dev_dbg(hsotg->dev, "Entering device clock gating.\n"); 5529 5530 /* Set the Phy Clock bit as suspend is received. */ 5531 pcgctl = dwc2_readl(hsotg, PCGCTL); 5532 pcgctl |= PCGCTL_STOPPCLK; 5533 dwc2_writel(hsotg, pcgctl, PCGCTL); 5534 udelay(5); 5535 5536 /* Set the Gate hclk as suspend is received. */ 5537 pcgctl = dwc2_readl(hsotg, PCGCTL); 5538 pcgctl |= PCGCTL_GATEHCLK; 5539 dwc2_writel(hsotg, pcgctl, PCGCTL); 5540 udelay(5); 5541 5542 hsotg->lx_state = DWC2_L2; 5543 hsotg->bus_suspended = true; 5544 } 5545 5546 /* 5547 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating. 5548 * 5549 * @hsotg: Programming view of the DWC_otg controller 5550 * @rem_wakeup: indicates whether remote wake up is enabled. 5551 * 5552 * This function is for exiting from device mode clock gating. 5553 */ 5554 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup) 5555 { 5556 u32 pcgctl; 5557 u32 dctl; 5558 5559 dev_dbg(hsotg->dev, "Exiting device clock gating.\n"); 5560 5561 /* Clear the Gate hclk. */ 5562 pcgctl = dwc2_readl(hsotg, PCGCTL); 5563 pcgctl &= ~PCGCTL_GATEHCLK; 5564 dwc2_writel(hsotg, pcgctl, PCGCTL); 5565 udelay(5); 5566 5567 /* Phy Clock bit. */ 5568 pcgctl = dwc2_readl(hsotg, PCGCTL); 5569 pcgctl &= ~PCGCTL_STOPPCLK; 5570 dwc2_writel(hsotg, pcgctl, PCGCTL); 5571 udelay(5); 5572 5573 if (rem_wakeup) { 5574 /* Set Remote Wakeup Signaling */ 5575 dctl = dwc2_readl(hsotg, DCTL); 5576 dctl |= DCTL_RMTWKUPSIG; 5577 dwc2_writel(hsotg, dctl, DCTL); 5578 } 5579 5580 /* Change to L0 state */ 5581 call_gadget(hsotg, resume); 5582 hsotg->lx_state = DWC2_L0; 5583 hsotg->bus_suspended = false; 5584 } 5585