xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 01a6e126)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void __orr32(void __iomem *ptr, u32 val)
51 {
52 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54 
55 static inline void __bic32(void __iomem *ptr, u32 val)
56 {
57 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  * @increment: The value to increment by
111  *
112  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114  */
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 {
117 	hs_ep->target_frame += hs_ep->interval;
118 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 		hs_ep->frame_overrun = 1;
120 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
121 	} else {
122 		hs_ep->frame_overrun = 0;
123 	}
124 }
125 
126 /**
127  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128  * @hsotg: The device state
129  * @ints: A bitmask of the interrupts to enable
130  */
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132 {
133 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 	u32 new_gsintmsk;
135 
136 	new_gsintmsk = gsintmsk | ints;
137 
138 	if (new_gsintmsk != gsintmsk) {
139 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 	}
142 }
143 
144 /**
145  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146  * @hsotg: The device state
147  * @ints: A bitmask of the interrupts to enable
148  */
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150 {
151 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 	u32 new_gsintmsk;
153 
154 	new_gsintmsk = gsintmsk & ~ints;
155 
156 	if (new_gsintmsk != gsintmsk)
157 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 }
159 
160 /**
161  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162  * @hsotg: The device state
163  * @ep: The endpoint index
164  * @dir_in: True if direction is in.
165  * @en: The enable value, true to enable
166  *
167  * Set or clear the mask for an individual endpoint's interrupt
168  * request.
169  */
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 				  unsigned int ep, unsigned int dir_in,
172 				 unsigned int en)
173 {
174 	unsigned long flags;
175 	u32 bit = 1 << ep;
176 	u32 daint;
177 
178 	if (!dir_in)
179 		bit <<= 16;
180 
181 	local_irq_save(flags);
182 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 	if (en)
184 		daint |= bit;
185 	else
186 		daint &= ~bit;
187 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 	local_irq_restore(flags);
189 }
190 
191 /**
192  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
193  */
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
195 {
196 	if (hsotg->hw_params.en_multiple_tx_fifo)
197 		/* In dedicated FIFO mode we need count of IN EPs */
198 		return hsotg->hw_params.num_dev_in_eps;
199 	else
200 		/* In shared FIFO mode we need count of Periodic IN EPs */
201 		return hsotg->hw_params.num_dev_perio_in_ep;
202 }
203 
204 /**
205  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
206  * device mode TX FIFOs
207  */
208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
209 {
210 	int addr;
211 	int tx_addr_max;
212 	u32 np_tx_fifo_size;
213 
214 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
215 				hsotg->params.g_np_tx_fifo_size);
216 
217 	/* Get Endpoint Info Control block size in DWORDs. */
218 	tx_addr_max = hsotg->hw_params.total_fifo_size;
219 
220 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
221 	if (tx_addr_max <= addr)
222 		return 0;
223 
224 	return tx_addr_max - addr;
225 }
226 
227 /**
228  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
229  * TX FIFOs
230  */
231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int tx_fifo_count;
234 	int tx_fifo_depth;
235 
236 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
237 
238 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
239 
240 	if (!tx_fifo_count)
241 		return tx_fifo_depth;
242 	else
243 		return tx_fifo_depth / tx_fifo_count;
244 }
245 
246 /**
247  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248  * @hsotg: The device instance.
249  */
250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
251 {
252 	unsigned int ep;
253 	unsigned int addr;
254 	int timeout;
255 	u32 val;
256 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
257 
258 	/* Reset fifo map if not correctly cleared during previous session */
259 	WARN_ON(hsotg->fifo_map);
260 	hsotg->fifo_map = 0;
261 
262 	/* set RX/NPTX FIFO sizes */
263 	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
264 	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
265 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
266 		    hsotg->regs + GNPTXFSIZ);
267 
268 	/*
269 	 * arange all the rest of the TX FIFOs, as some versions of this
270 	 * block have overlapping default addresses. This also ensures
271 	 * that if the settings have been changed, then they are set to
272 	 * known values.
273 	 */
274 
275 	/* start at the end of the GNPTXFSIZ, rounded up */
276 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
277 
278 	/*
279 	 * Configure fifos sizes from provided configuration and assign
280 	 * them to endpoints dynamically according to maxpacket size value of
281 	 * given endpoint.
282 	 */
283 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
284 		if (!txfsz[ep])
285 			continue;
286 		val = addr;
287 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
288 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
289 			  "insufficient fifo memory");
290 		addr += txfsz[ep];
291 
292 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
293 		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
294 	}
295 
296 	dwc2_writel(hsotg->hw_params.total_fifo_size |
297 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
298 		    hsotg->regs + GDFIFOCFG);
299 	/*
300 	 * according to p428 of the design guide, we need to ensure that
301 	 * all fifos are flushed before continuing
302 	 */
303 
304 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
305 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
306 
307 	/* wait until the fifos are both flushed */
308 	timeout = 100;
309 	while (1) {
310 		val = dwc2_readl(hsotg->regs + GRSTCTL);
311 
312 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
313 			break;
314 
315 		if (--timeout == 0) {
316 			dev_err(hsotg->dev,
317 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
318 				__func__, val);
319 			break;
320 		}
321 
322 		udelay(1);
323 	}
324 
325 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
326 }
327 
328 /**
329  * @ep: USB endpoint to allocate request for.
330  * @flags: Allocation flags
331  *
332  * Allocate a new USB request structure appropriate for the specified endpoint
333  */
334 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
335 						       gfp_t flags)
336 {
337 	struct dwc2_hsotg_req *req;
338 
339 	req = kzalloc(sizeof(*req), flags);
340 	if (!req)
341 		return NULL;
342 
343 	INIT_LIST_HEAD(&req->queue);
344 
345 	return &req->req;
346 }
347 
348 /**
349  * is_ep_periodic - return true if the endpoint is in periodic mode.
350  * @hs_ep: The endpoint to query.
351  *
352  * Returns true if the endpoint is in periodic mode, meaning it is being
353  * used for an Interrupt or ISO transfer.
354  */
355 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
356 {
357 	return hs_ep->periodic;
358 }
359 
360 /**
361  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
362  * @hsotg: The device state.
363  * @hs_ep: The endpoint for the request
364  * @hs_req: The request being processed.
365  *
366  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
367  * of a request to ensure the buffer is ready for access by the caller.
368  */
369 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
370 				 struct dwc2_hsotg_ep *hs_ep,
371 				struct dwc2_hsotg_req *hs_req)
372 {
373 	struct usb_request *req = &hs_req->req;
374 
375 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
376 }
377 
378 /*
379  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
380  * for Control endpoint
381  * @hsotg: The device state.
382  *
383  * This function will allocate 4 descriptor chains for EP 0: 2 for
384  * Setup stage, per one for IN and OUT data/status transactions.
385  */
386 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
387 {
388 	hsotg->setup_desc[0] =
389 		dmam_alloc_coherent(hsotg->dev,
390 				    sizeof(struct dwc2_dma_desc),
391 				    &hsotg->setup_desc_dma[0],
392 				    GFP_KERNEL);
393 	if (!hsotg->setup_desc[0])
394 		goto fail;
395 
396 	hsotg->setup_desc[1] =
397 		dmam_alloc_coherent(hsotg->dev,
398 				    sizeof(struct dwc2_dma_desc),
399 				    &hsotg->setup_desc_dma[1],
400 				    GFP_KERNEL);
401 	if (!hsotg->setup_desc[1])
402 		goto fail;
403 
404 	hsotg->ctrl_in_desc =
405 		dmam_alloc_coherent(hsotg->dev,
406 				    sizeof(struct dwc2_dma_desc),
407 				    &hsotg->ctrl_in_desc_dma,
408 				    GFP_KERNEL);
409 	if (!hsotg->ctrl_in_desc)
410 		goto fail;
411 
412 	hsotg->ctrl_out_desc =
413 		dmam_alloc_coherent(hsotg->dev,
414 				    sizeof(struct dwc2_dma_desc),
415 				    &hsotg->ctrl_out_desc_dma,
416 				    GFP_KERNEL);
417 	if (!hsotg->ctrl_out_desc)
418 		goto fail;
419 
420 	return 0;
421 
422 fail:
423 	return -ENOMEM;
424 }
425 
426 /**
427  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
428  * @hsotg: The controller state.
429  * @hs_ep: The endpoint we're going to write for.
430  * @hs_req: The request to write data for.
431  *
432  * This is called when the TxFIFO has some space in it to hold a new
433  * transmission and we have something to give it. The actual setup of
434  * the data size is done elsewhere, so all we have to do is to actually
435  * write the data.
436  *
437  * The return value is zero if there is more space (or nothing was done)
438  * otherwise -ENOSPC is returned if the FIFO space was used up.
439  *
440  * This routine is only needed for PIO
441  */
442 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
443 				 struct dwc2_hsotg_ep *hs_ep,
444 				struct dwc2_hsotg_req *hs_req)
445 {
446 	bool periodic = is_ep_periodic(hs_ep);
447 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
448 	int buf_pos = hs_req->req.actual;
449 	int to_write = hs_ep->size_loaded;
450 	void *data;
451 	int can_write;
452 	int pkt_round;
453 	int max_transfer;
454 
455 	to_write -= (buf_pos - hs_ep->last_load);
456 
457 	/* if there's nothing to write, get out early */
458 	if (to_write == 0)
459 		return 0;
460 
461 	if (periodic && !hsotg->dedicated_fifos) {
462 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
463 		int size_left;
464 		int size_done;
465 
466 		/*
467 		 * work out how much data was loaded so we can calculate
468 		 * how much data is left in the fifo.
469 		 */
470 
471 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
472 
473 		/*
474 		 * if shared fifo, we cannot write anything until the
475 		 * previous data has been completely sent.
476 		 */
477 		if (hs_ep->fifo_load != 0) {
478 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
479 			return -ENOSPC;
480 		}
481 
482 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
483 			__func__, size_left,
484 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
485 
486 		/* how much of the data has moved */
487 		size_done = hs_ep->size_loaded - size_left;
488 
489 		/* how much data is left in the fifo */
490 		can_write = hs_ep->fifo_load - size_done;
491 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
492 			__func__, can_write);
493 
494 		can_write = hs_ep->fifo_size - can_write;
495 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
496 			__func__, can_write);
497 
498 		if (can_write <= 0) {
499 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
500 			return -ENOSPC;
501 		}
502 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
503 		can_write = dwc2_readl(hsotg->regs +
504 				DTXFSTS(hs_ep->fifo_index));
505 
506 		can_write &= 0xffff;
507 		can_write *= 4;
508 	} else {
509 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
510 			dev_dbg(hsotg->dev,
511 				"%s: no queue slots available (0x%08x)\n",
512 				__func__, gnptxsts);
513 
514 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
515 			return -ENOSPC;
516 		}
517 
518 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
519 		can_write *= 4;	/* fifo size is in 32bit quantities. */
520 	}
521 
522 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
523 
524 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
525 		__func__, gnptxsts, can_write, to_write, max_transfer);
526 
527 	/*
528 	 * limit to 512 bytes of data, it seems at least on the non-periodic
529 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
530 	 * fragment of the end of the transfer in it.
531 	 */
532 	if (can_write > 512 && !periodic)
533 		can_write = 512;
534 
535 	/*
536 	 * limit the write to one max-packet size worth of data, but allow
537 	 * the transfer to return that it did not run out of fifo space
538 	 * doing it.
539 	 */
540 	if (to_write > max_transfer) {
541 		to_write = max_transfer;
542 
543 		/* it's needed only when we do not use dedicated fifos */
544 		if (!hsotg->dedicated_fifos)
545 			dwc2_hsotg_en_gsint(hsotg,
546 					    periodic ? GINTSTS_PTXFEMP :
547 					   GINTSTS_NPTXFEMP);
548 	}
549 
550 	/* see if we can write data */
551 
552 	if (to_write > can_write) {
553 		to_write = can_write;
554 		pkt_round = to_write % max_transfer;
555 
556 		/*
557 		 * Round the write down to an
558 		 * exact number of packets.
559 		 *
560 		 * Note, we do not currently check to see if we can ever
561 		 * write a full packet or not to the FIFO.
562 		 */
563 
564 		if (pkt_round)
565 			to_write -= pkt_round;
566 
567 		/*
568 		 * enable correct FIFO interrupt to alert us when there
569 		 * is more room left.
570 		 */
571 
572 		/* it's needed only when we do not use dedicated fifos */
573 		if (!hsotg->dedicated_fifos)
574 			dwc2_hsotg_en_gsint(hsotg,
575 					    periodic ? GINTSTS_PTXFEMP :
576 					   GINTSTS_NPTXFEMP);
577 	}
578 
579 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
580 		to_write, hs_req->req.length, can_write, buf_pos);
581 
582 	if (to_write <= 0)
583 		return -ENOSPC;
584 
585 	hs_req->req.actual = buf_pos + to_write;
586 	hs_ep->total_data += to_write;
587 
588 	if (periodic)
589 		hs_ep->fifo_load += to_write;
590 
591 	to_write = DIV_ROUND_UP(to_write, 4);
592 	data = hs_req->req.buf + buf_pos;
593 
594 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
595 
596 	return (to_write >= can_write) ? -ENOSPC : 0;
597 }
598 
599 /**
600  * get_ep_limit - get the maximum data legnth for this endpoint
601  * @hs_ep: The endpoint
602  *
603  * Return the maximum data that can be queued in one go on a given endpoint
604  * so that transfers that are too long can be split.
605  */
606 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
607 {
608 	int index = hs_ep->index;
609 	unsigned int maxsize;
610 	unsigned int maxpkt;
611 
612 	if (index != 0) {
613 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
614 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
615 	} else {
616 		maxsize = 64 + 64;
617 		if (hs_ep->dir_in)
618 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
619 		else
620 			maxpkt = 2;
621 	}
622 
623 	/* we made the constant loading easier above by using +1 */
624 	maxpkt--;
625 	maxsize--;
626 
627 	/*
628 	 * constrain by packet count if maxpkts*pktsize is greater
629 	 * than the length register size.
630 	 */
631 
632 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
633 		maxsize = maxpkt * hs_ep->ep.maxpacket;
634 
635 	return maxsize;
636 }
637 
638 /**
639  * dwc2_hsotg_read_frameno - read current frame number
640  * @hsotg: The device instance
641  *
642  * Return the current frame number
643  */
644 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
645 {
646 	u32 dsts;
647 
648 	dsts = dwc2_readl(hsotg->regs + DSTS);
649 	dsts &= DSTS_SOFFN_MASK;
650 	dsts >>= DSTS_SOFFN_SHIFT;
651 
652 	return dsts;
653 }
654 
655 /**
656  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
657  * DMA descriptor chain prepared for specific endpoint
658  * @hs_ep: The endpoint
659  *
660  * Return the maximum data that can be queued in one go on a given endpoint
661  * depending on its descriptor chain capacity so that transfers that
662  * are too long can be split.
663  */
664 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
665 {
666 	int is_isoc = hs_ep->isochronous;
667 	unsigned int maxsize;
668 
669 	if (is_isoc)
670 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
671 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
672 	else
673 		maxsize = DEV_DMA_NBYTES_LIMIT;
674 
675 	/* Above size of one descriptor was chosen, multiple it */
676 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
677 
678 	return maxsize;
679 }
680 
681 /*
682  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
683  * @hs_ep: The endpoint
684  * @mask: RX/TX bytes mask to be defined
685  *
686  * Returns maximum data payload for one descriptor after analyzing endpoint
687  * characteristics.
688  * DMA descriptor transfer bytes limit depends on EP type:
689  * Control out - MPS,
690  * Isochronous - descriptor rx/tx bytes bitfield limit,
691  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
692  * have concatenations from various descriptors within one packet.
693  *
694  * Selects corresponding mask for RX/TX bytes as well.
695  */
696 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
697 {
698 	u32 mps = hs_ep->ep.maxpacket;
699 	int dir_in = hs_ep->dir_in;
700 	u32 desc_size = 0;
701 
702 	if (!hs_ep->index && !dir_in) {
703 		desc_size = mps;
704 		*mask = DEV_DMA_NBYTES_MASK;
705 	} else if (hs_ep->isochronous) {
706 		if (dir_in) {
707 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
708 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
709 		} else {
710 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
711 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
712 		}
713 	} else {
714 		desc_size = DEV_DMA_NBYTES_LIMIT;
715 		*mask = DEV_DMA_NBYTES_MASK;
716 
717 		/* Round down desc_size to be mps multiple */
718 		desc_size -= desc_size % mps;
719 	}
720 
721 	return desc_size;
722 }
723 
724 /*
725  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
726  * @hs_ep: The endpoint
727  * @dma_buff: DMA address to use
728  * @len: Length of the transfer
729  *
730  * This function will iterate over descriptor chain and fill its entries
731  * with corresponding information based on transfer data.
732  */
733 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
734 						 dma_addr_t dma_buff,
735 						 unsigned int len)
736 {
737 	struct dwc2_hsotg *hsotg = hs_ep->parent;
738 	int dir_in = hs_ep->dir_in;
739 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
740 	u32 mps = hs_ep->ep.maxpacket;
741 	u32 maxsize = 0;
742 	u32 offset = 0;
743 	u32 mask = 0;
744 	int i;
745 
746 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
747 
748 	hs_ep->desc_count = (len / maxsize) +
749 				((len % maxsize) ? 1 : 0);
750 	if (len == 0)
751 		hs_ep->desc_count = 1;
752 
753 	for (i = 0; i < hs_ep->desc_count; ++i) {
754 		desc->status = 0;
755 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
756 				 << DEV_DMA_BUFF_STS_SHIFT);
757 
758 		if (len > maxsize) {
759 			if (!hs_ep->index && !dir_in)
760 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
761 
762 			desc->status |= (maxsize <<
763 						DEV_DMA_NBYTES_SHIFT & mask);
764 			desc->buf = dma_buff + offset;
765 
766 			len -= maxsize;
767 			offset += maxsize;
768 		} else {
769 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
770 
771 			if (dir_in)
772 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
773 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
774 			if (len > maxsize)
775 				dev_err(hsotg->dev, "wrong len %d\n", len);
776 
777 			desc->status |=
778 				len << DEV_DMA_NBYTES_SHIFT & mask;
779 			desc->buf = dma_buff + offset;
780 		}
781 
782 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
783 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
784 				 << DEV_DMA_BUFF_STS_SHIFT);
785 		desc++;
786 	}
787 }
788 
789 /*
790  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
791  * @hs_ep: The isochronous endpoint.
792  * @dma_buff: usb requests dma buffer.
793  * @len: usb request transfer length.
794  *
795  * Finds out index of first free entry either in the bottom or up half of
796  * descriptor chain depend on which is under SW control and not processed
797  * by HW. Then fills that descriptor with the data of the arrived usb request,
798  * frame info, sets Last and IOC bits increments next_desc. If filled
799  * descriptor is not the first one, removes L bit from the previous descriptor
800  * status.
801  */
802 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
803 				      dma_addr_t dma_buff, unsigned int len)
804 {
805 	struct dwc2_dma_desc *desc;
806 	struct dwc2_hsotg *hsotg = hs_ep->parent;
807 	u32 index;
808 	u32 maxsize = 0;
809 	u32 mask = 0;
810 
811 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
812 	if (len > maxsize) {
813 		dev_err(hsotg->dev, "wrong len %d\n", len);
814 		return -EINVAL;
815 	}
816 
817 	/*
818 	 * If SW has already filled half of chain, then return and wait for
819 	 * the other chain to be processed by HW.
820 	 */
821 	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
822 		return -EBUSY;
823 
824 	/* Increment frame number by interval for IN */
825 	if (hs_ep->dir_in)
826 		dwc2_gadget_incr_frame_num(hs_ep);
827 
828 	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
829 		 hs_ep->next_desc;
830 
831 	/* Sanity check of calculated index */
832 	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
833 	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
834 		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
835 		return -EINVAL;
836 	}
837 
838 	desc = &hs_ep->desc_list[index];
839 
840 	/* Clear L bit of previous desc if more than one entries in the chain */
841 	if (hs_ep->next_desc)
842 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
843 
844 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
845 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
846 
847 	desc->status = 0;
848 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
849 
850 	desc->buf = dma_buff;
851 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
852 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
853 
854 	if (hs_ep->dir_in) {
855 		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
856 				 DEV_DMA_ISOC_PID_MASK) |
857 				((len % hs_ep->ep.maxpacket) ?
858 				 DEV_DMA_SHORT : 0) |
859 				((hs_ep->target_frame <<
860 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
861 				 DEV_DMA_ISOC_FRNUM_MASK);
862 	}
863 
864 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
865 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
866 
867 	/* Update index of last configured entry in the chain */
868 	hs_ep->next_desc++;
869 
870 	return 0;
871 }
872 
873 /*
874  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
875  * @hs_ep: The isochronous endpoint.
876  *
877  * Prepare first descriptor chain for isochronous endpoints. Afterwards
878  * write DMA address to HW and enable the endpoint.
879  *
880  * Switch between descriptor chains via isoc_chain_num to give SW opportunity
881  * to prepare second descriptor chain while first one is being processed by HW.
882  */
883 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
884 {
885 	struct dwc2_hsotg *hsotg = hs_ep->parent;
886 	struct dwc2_hsotg_req *hs_req, *treq;
887 	int index = hs_ep->index;
888 	int ret;
889 	u32 dma_reg;
890 	u32 depctl;
891 	u32 ctrl;
892 
893 	if (list_empty(&hs_ep->queue)) {
894 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
895 		return;
896 	}
897 
898 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
899 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
900 						 hs_req->req.length);
901 		if (ret) {
902 			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
903 			break;
904 		}
905 	}
906 
907 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
908 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
909 
910 	/* write descriptor chain address to control register */
911 	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
912 
913 	ctrl = dwc2_readl(hsotg->regs + depctl);
914 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
915 	dwc2_writel(ctrl, hsotg->regs + depctl);
916 
917 	/* Switch ISOC descriptor chain number being processed by SW*/
918 	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
919 	hs_ep->next_desc = 0;
920 }
921 
922 /**
923  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
924  * @hsotg: The controller state.
925  * @hs_ep: The endpoint to process a request for
926  * @hs_req: The request to start.
927  * @continuing: True if we are doing more for the current request.
928  *
929  * Start the given request running by setting the endpoint registers
930  * appropriately, and writing any data to the FIFOs.
931  */
932 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
933 				 struct dwc2_hsotg_ep *hs_ep,
934 				struct dwc2_hsotg_req *hs_req,
935 				bool continuing)
936 {
937 	struct usb_request *ureq = &hs_req->req;
938 	int index = hs_ep->index;
939 	int dir_in = hs_ep->dir_in;
940 	u32 epctrl_reg;
941 	u32 epsize_reg;
942 	u32 epsize;
943 	u32 ctrl;
944 	unsigned int length;
945 	unsigned int packets;
946 	unsigned int maxreq;
947 	unsigned int dma_reg;
948 
949 	if (index != 0) {
950 		if (hs_ep->req && !continuing) {
951 			dev_err(hsotg->dev, "%s: active request\n", __func__);
952 			WARN_ON(1);
953 			return;
954 		} else if (hs_ep->req != hs_req && continuing) {
955 			dev_err(hsotg->dev,
956 				"%s: continue different req\n", __func__);
957 			WARN_ON(1);
958 			return;
959 		}
960 	}
961 
962 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
963 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
964 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
965 
966 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
967 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
968 		hs_ep->dir_in ? "in" : "out");
969 
970 	/* If endpoint is stalled, we will restart request later */
971 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
972 
973 	if (index && ctrl & DXEPCTL_STALL) {
974 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
975 		return;
976 	}
977 
978 	length = ureq->length - ureq->actual;
979 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
980 		ureq->length, ureq->actual);
981 
982 	if (!using_desc_dma(hsotg))
983 		maxreq = get_ep_limit(hs_ep);
984 	else
985 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
986 
987 	if (length > maxreq) {
988 		int round = maxreq % hs_ep->ep.maxpacket;
989 
990 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
991 			__func__, length, maxreq, round);
992 
993 		/* round down to multiple of packets */
994 		if (round)
995 			maxreq -= round;
996 
997 		length = maxreq;
998 	}
999 
1000 	if (length)
1001 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1002 	else
1003 		packets = 1;	/* send one packet if length is zero. */
1004 
1005 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1006 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1007 		return;
1008 	}
1009 
1010 	if (dir_in && index != 0)
1011 		if (hs_ep->isochronous)
1012 			epsize = DXEPTSIZ_MC(packets);
1013 		else
1014 			epsize = DXEPTSIZ_MC(1);
1015 	else
1016 		epsize = 0;
1017 
1018 	/*
1019 	 * zero length packet should be programmed on its own and should not
1020 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1021 	 */
1022 	if (dir_in && ureq->zero && !continuing) {
1023 		/* Test if zlp is actually required. */
1024 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1025 		    !(ureq->length % hs_ep->ep.maxpacket))
1026 			hs_ep->send_zlp = 1;
1027 	}
1028 
1029 	epsize |= DXEPTSIZ_PKTCNT(packets);
1030 	epsize |= DXEPTSIZ_XFERSIZE(length);
1031 
1032 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1033 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1034 
1035 	/* store the request as the current one we're doing */
1036 	hs_ep->req = hs_req;
1037 
1038 	if (using_desc_dma(hsotg)) {
1039 		u32 offset = 0;
1040 		u32 mps = hs_ep->ep.maxpacket;
1041 
1042 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1043 		if (!dir_in) {
1044 			if (!index)
1045 				length = mps;
1046 			else if (length % mps)
1047 				length += (mps - (length % mps));
1048 		}
1049 
1050 		/*
1051 		 * If more data to send, adjust DMA for EP0 out data stage.
1052 		 * ureq->dma stays unchanged, hence increment it by already
1053 		 * passed passed data count before starting new transaction.
1054 		 */
1055 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1056 		    continuing)
1057 			offset = ureq->actual;
1058 
1059 		/* Fill DDMA chain entries */
1060 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1061 						     length);
1062 
1063 		/* write descriptor chain address to control register */
1064 		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1065 
1066 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1067 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1068 	} else {
1069 		/* write size / packets */
1070 		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1071 
1072 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1073 			/*
1074 			 * write DMA address to control register, buffer
1075 			 * already synced by dwc2_hsotg_ep_queue().
1076 			 */
1077 
1078 			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1079 
1080 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1081 				__func__, &ureq->dma, dma_reg);
1082 		}
1083 	}
1084 
1085 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1086 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1087 		dwc2_gadget_incr_frame_num(hs_ep);
1088 
1089 		if (hs_ep->target_frame & 0x1)
1090 			ctrl |= DXEPCTL_SETODDFR;
1091 		else
1092 			ctrl |= DXEPCTL_SETEVENFR;
1093 	}
1094 
1095 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1096 
1097 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1098 
1099 	/* For Setup request do not clear NAK */
1100 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1101 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1102 
1103 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1104 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1105 
1106 	/*
1107 	 * set these, it seems that DMA support increments past the end
1108 	 * of the packet buffer so we need to calculate the length from
1109 	 * this information.
1110 	 */
1111 	hs_ep->size_loaded = length;
1112 	hs_ep->last_load = ureq->actual;
1113 
1114 	if (dir_in && !using_dma(hsotg)) {
1115 		/* set these anyway, we may need them for non-periodic in */
1116 		hs_ep->fifo_load = 0;
1117 
1118 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1119 	}
1120 
1121 	/*
1122 	 * Note, trying to clear the NAK here causes problems with transmit
1123 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1124 	 */
1125 
1126 	/* check ep is enabled */
1127 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1128 		dev_dbg(hsotg->dev,
1129 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1130 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1131 
1132 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1133 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1134 
1135 	/* enable ep interrupts */
1136 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1137 }
1138 
1139 /**
1140  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1141  * @hsotg: The device state.
1142  * @hs_ep: The endpoint the request is on.
1143  * @req: The request being processed.
1144  *
1145  * We've been asked to queue a request, so ensure that the memory buffer
1146  * is correctly setup for DMA. If we've been passed an extant DMA address
1147  * then ensure the buffer has been synced to memory. If our buffer has no
1148  * DMA memory, then we map the memory and mark our request to allow us to
1149  * cleanup on completion.
1150  */
1151 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1152 			      struct dwc2_hsotg_ep *hs_ep,
1153 			     struct usb_request *req)
1154 {
1155 	int ret;
1156 
1157 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1158 	if (ret)
1159 		goto dma_error;
1160 
1161 	return 0;
1162 
1163 dma_error:
1164 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1165 		__func__, req->buf, req->length);
1166 
1167 	return -EIO;
1168 }
1169 
1170 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1171 						 struct dwc2_hsotg_ep *hs_ep,
1172 						 struct dwc2_hsotg_req *hs_req)
1173 {
1174 	void *req_buf = hs_req->req.buf;
1175 
1176 	/* If dma is not being used or buffer is aligned */
1177 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1178 		return 0;
1179 
1180 	WARN_ON(hs_req->saved_req_buf);
1181 
1182 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1183 		hs_ep->ep.name, req_buf, hs_req->req.length);
1184 
1185 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1186 	if (!hs_req->req.buf) {
1187 		hs_req->req.buf = req_buf;
1188 		dev_err(hsotg->dev,
1189 			"%s: unable to allocate memory for bounce buffer\n",
1190 			__func__);
1191 		return -ENOMEM;
1192 	}
1193 
1194 	/* Save actual buffer */
1195 	hs_req->saved_req_buf = req_buf;
1196 
1197 	if (hs_ep->dir_in)
1198 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1199 	return 0;
1200 }
1201 
1202 static void
1203 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1204 					 struct dwc2_hsotg_ep *hs_ep,
1205 					 struct dwc2_hsotg_req *hs_req)
1206 {
1207 	/* If dma is not being used or buffer was aligned */
1208 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1209 		return;
1210 
1211 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1212 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1213 
1214 	/* Copy data from bounce buffer on successful out transfer */
1215 	if (!hs_ep->dir_in && !hs_req->req.status)
1216 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1217 		       hs_req->req.actual);
1218 
1219 	/* Free bounce buffer */
1220 	kfree(hs_req->req.buf);
1221 
1222 	hs_req->req.buf = hs_req->saved_req_buf;
1223 	hs_req->saved_req_buf = NULL;
1224 }
1225 
1226 /**
1227  * dwc2_gadget_target_frame_elapsed - Checks target frame
1228  * @hs_ep: The driver endpoint to check
1229  *
1230  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1231  * corresponding transfer.
1232  */
1233 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1234 {
1235 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1236 	u32 target_frame = hs_ep->target_frame;
1237 	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1238 	bool frame_overrun = hs_ep->frame_overrun;
1239 
1240 	if (!frame_overrun && current_frame >= target_frame)
1241 		return true;
1242 
1243 	if (frame_overrun && current_frame >= target_frame &&
1244 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1245 		return true;
1246 
1247 	return false;
1248 }
1249 
1250 /*
1251  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1252  * @hsotg: The driver state
1253  * @hs_ep: the ep descriptor chain is for
1254  *
1255  * Called to update EP0 structure's pointers depend on stage of
1256  * control transfer.
1257  */
1258 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1259 					  struct dwc2_hsotg_ep *hs_ep)
1260 {
1261 	switch (hsotg->ep0_state) {
1262 	case DWC2_EP0_SETUP:
1263 	case DWC2_EP0_STATUS_OUT:
1264 		hs_ep->desc_list = hsotg->setup_desc[0];
1265 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1266 		break;
1267 	case DWC2_EP0_DATA_IN:
1268 	case DWC2_EP0_STATUS_IN:
1269 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1270 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1271 		break;
1272 	case DWC2_EP0_DATA_OUT:
1273 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1274 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1275 		break;
1276 	default:
1277 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1278 			hsotg->ep0_state);
1279 		return -EINVAL;
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1286 			       gfp_t gfp_flags)
1287 {
1288 	struct dwc2_hsotg_req *hs_req = our_req(req);
1289 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1290 	struct dwc2_hsotg *hs = hs_ep->parent;
1291 	bool first;
1292 	int ret;
1293 
1294 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1295 		ep->name, req, req->length, req->buf, req->no_interrupt,
1296 		req->zero, req->short_not_ok);
1297 
1298 	/* Prevent new request submission when controller is suspended */
1299 	if (hs->lx_state == DWC2_L2) {
1300 		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1301 			__func__);
1302 		return -EAGAIN;
1303 	}
1304 
1305 	/* initialise status of the request */
1306 	INIT_LIST_HEAD(&hs_req->queue);
1307 	req->actual = 0;
1308 	req->status = -EINPROGRESS;
1309 
1310 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1311 	if (ret)
1312 		return ret;
1313 
1314 	/* if we're using DMA, sync the buffers as necessary */
1315 	if (using_dma(hs)) {
1316 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1317 		if (ret)
1318 			return ret;
1319 	}
1320 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1321 	if (using_desc_dma(hs) && !hs_ep->index) {
1322 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1323 		if (ret)
1324 			return ret;
1325 	}
1326 
1327 	first = list_empty(&hs_ep->queue);
1328 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1329 
1330 	/*
1331 	 * Handle DDMA isochronous transfers separately - just add new entry
1332 	 * to the half of descriptor chain that is not processed by HW.
1333 	 * Transfer will be started once SW gets either one of NAK or
1334 	 * OutTknEpDis interrupts.
1335 	 */
1336 	if (using_desc_dma(hs) && hs_ep->isochronous &&
1337 	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1338 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1339 						 hs_req->req.length);
1340 		if (ret)
1341 			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1342 
1343 		return 0;
1344 	}
1345 
1346 	if (first) {
1347 		if (!hs_ep->isochronous) {
1348 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1349 			return 0;
1350 		}
1351 
1352 		while (dwc2_gadget_target_frame_elapsed(hs_ep))
1353 			dwc2_gadget_incr_frame_num(hs_ep);
1354 
1355 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1356 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1357 	}
1358 	return 0;
1359 }
1360 
1361 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1362 				    gfp_t gfp_flags)
1363 {
1364 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1365 	struct dwc2_hsotg *hs = hs_ep->parent;
1366 	unsigned long flags = 0;
1367 	int ret = 0;
1368 
1369 	spin_lock_irqsave(&hs->lock, flags);
1370 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1371 	spin_unlock_irqrestore(&hs->lock, flags);
1372 
1373 	return ret;
1374 }
1375 
1376 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1377 				       struct usb_request *req)
1378 {
1379 	struct dwc2_hsotg_req *hs_req = our_req(req);
1380 
1381 	kfree(hs_req);
1382 }
1383 
1384 /**
1385  * dwc2_hsotg_complete_oursetup - setup completion callback
1386  * @ep: The endpoint the request was on.
1387  * @req: The request completed.
1388  *
1389  * Called on completion of any requests the driver itself
1390  * submitted that need cleaning up.
1391  */
1392 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1393 					 struct usb_request *req)
1394 {
1395 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1396 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1397 
1398 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1399 
1400 	dwc2_hsotg_ep_free_request(ep, req);
1401 }
1402 
1403 /**
1404  * ep_from_windex - convert control wIndex value to endpoint
1405  * @hsotg: The driver state.
1406  * @windex: The control request wIndex field (in host order).
1407  *
1408  * Convert the given wIndex into a pointer to an driver endpoint
1409  * structure, or return NULL if it is not a valid endpoint.
1410  */
1411 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1412 					    u32 windex)
1413 {
1414 	struct dwc2_hsotg_ep *ep;
1415 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1416 	int idx = windex & 0x7F;
1417 
1418 	if (windex >= 0x100)
1419 		return NULL;
1420 
1421 	if (idx > hsotg->num_of_eps)
1422 		return NULL;
1423 
1424 	ep = index_to_ep(hsotg, idx, dir);
1425 
1426 	if (idx && ep->dir_in != dir)
1427 		return NULL;
1428 
1429 	return ep;
1430 }
1431 
1432 /**
1433  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1434  * @hsotg: The driver state.
1435  * @testmode: requested usb test mode
1436  * Enable usb Test Mode requested by the Host.
1437  */
1438 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1439 {
1440 	int dctl = dwc2_readl(hsotg->regs + DCTL);
1441 
1442 	dctl &= ~DCTL_TSTCTL_MASK;
1443 	switch (testmode) {
1444 	case TEST_J:
1445 	case TEST_K:
1446 	case TEST_SE0_NAK:
1447 	case TEST_PACKET:
1448 	case TEST_FORCE_EN:
1449 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1450 		break;
1451 	default:
1452 		return -EINVAL;
1453 	}
1454 	dwc2_writel(dctl, hsotg->regs + DCTL);
1455 	return 0;
1456 }
1457 
1458 /**
1459  * dwc2_hsotg_send_reply - send reply to control request
1460  * @hsotg: The device state
1461  * @ep: Endpoint 0
1462  * @buff: Buffer for request
1463  * @length: Length of reply.
1464  *
1465  * Create a request and queue it on the given endpoint. This is useful as
1466  * an internal method of sending replies to certain control requests, etc.
1467  */
1468 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1469 				 struct dwc2_hsotg_ep *ep,
1470 				void *buff,
1471 				int length)
1472 {
1473 	struct usb_request *req;
1474 	int ret;
1475 
1476 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1477 
1478 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1479 	hsotg->ep0_reply = req;
1480 	if (!req) {
1481 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1482 		return -ENOMEM;
1483 	}
1484 
1485 	req->buf = hsotg->ep0_buff;
1486 	req->length = length;
1487 	/*
1488 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1489 	 * STATUS stage.
1490 	 */
1491 	req->zero = 0;
1492 	req->complete = dwc2_hsotg_complete_oursetup;
1493 
1494 	if (length)
1495 		memcpy(req->buf, buff, length);
1496 
1497 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1498 	if (ret) {
1499 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1500 		return ret;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 /**
1507  * dwc2_hsotg_process_req_status - process request GET_STATUS
1508  * @hsotg: The device state
1509  * @ctrl: USB control request
1510  */
1511 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1512 					 struct usb_ctrlrequest *ctrl)
1513 {
1514 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1515 	struct dwc2_hsotg_ep *ep;
1516 	__le16 reply;
1517 	int ret;
1518 
1519 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1520 
1521 	if (!ep0->dir_in) {
1522 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1523 		return -EINVAL;
1524 	}
1525 
1526 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1527 	case USB_RECIP_DEVICE:
1528 		/*
1529 		 * bit 0 => self powered
1530 		 * bit 1 => remote wakeup
1531 		 */
1532 		reply = cpu_to_le16(0);
1533 		break;
1534 
1535 	case USB_RECIP_INTERFACE:
1536 		/* currently, the data result should be zero */
1537 		reply = cpu_to_le16(0);
1538 		break;
1539 
1540 	case USB_RECIP_ENDPOINT:
1541 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1542 		if (!ep)
1543 			return -ENOENT;
1544 
1545 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1546 		break;
1547 
1548 	default:
1549 		return 0;
1550 	}
1551 
1552 	if (le16_to_cpu(ctrl->wLength) != 2)
1553 		return -EINVAL;
1554 
1555 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1556 	if (ret) {
1557 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1558 		return ret;
1559 	}
1560 
1561 	return 1;
1562 }
1563 
1564 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1565 
1566 /**
1567  * get_ep_head - return the first request on the endpoint
1568  * @hs_ep: The controller endpoint to get
1569  *
1570  * Get the first request on the endpoint.
1571  */
1572 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1573 {
1574 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1575 					queue);
1576 }
1577 
1578 /**
1579  * dwc2_gadget_start_next_request - Starts next request from ep queue
1580  * @hs_ep: Endpoint structure
1581  *
1582  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1583  * in its handler. Hence we need to unmask it here to be able to do
1584  * resynchronization.
1585  */
1586 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1587 {
1588 	u32 mask;
1589 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1590 	int dir_in = hs_ep->dir_in;
1591 	struct dwc2_hsotg_req *hs_req;
1592 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1593 
1594 	if (!list_empty(&hs_ep->queue)) {
1595 		hs_req = get_ep_head(hs_ep);
1596 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1597 		return;
1598 	}
1599 	if (!hs_ep->isochronous)
1600 		return;
1601 
1602 	if (dir_in) {
1603 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1604 			__func__);
1605 	} else {
1606 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1607 			__func__);
1608 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1609 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1610 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1611 	}
1612 }
1613 
1614 /**
1615  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1616  * @hsotg: The device state
1617  * @ctrl: USB control request
1618  */
1619 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1620 					  struct usb_ctrlrequest *ctrl)
1621 {
1622 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1623 	struct dwc2_hsotg_req *hs_req;
1624 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1625 	struct dwc2_hsotg_ep *ep;
1626 	int ret;
1627 	bool halted;
1628 	u32 recip;
1629 	u32 wValue;
1630 	u32 wIndex;
1631 
1632 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1633 		__func__, set ? "SET" : "CLEAR");
1634 
1635 	wValue = le16_to_cpu(ctrl->wValue);
1636 	wIndex = le16_to_cpu(ctrl->wIndex);
1637 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1638 
1639 	switch (recip) {
1640 	case USB_RECIP_DEVICE:
1641 		switch (wValue) {
1642 		case USB_DEVICE_TEST_MODE:
1643 			if ((wIndex & 0xff) != 0)
1644 				return -EINVAL;
1645 			if (!set)
1646 				return -EINVAL;
1647 
1648 			hsotg->test_mode = wIndex >> 8;
1649 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1650 			if (ret) {
1651 				dev_err(hsotg->dev,
1652 					"%s: failed to send reply\n", __func__);
1653 				return ret;
1654 			}
1655 			break;
1656 		default:
1657 			return -ENOENT;
1658 		}
1659 		break;
1660 
1661 	case USB_RECIP_ENDPOINT:
1662 		ep = ep_from_windex(hsotg, wIndex);
1663 		if (!ep) {
1664 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1665 				__func__, wIndex);
1666 			return -ENOENT;
1667 		}
1668 
1669 		switch (wValue) {
1670 		case USB_ENDPOINT_HALT:
1671 			halted = ep->halted;
1672 
1673 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1674 
1675 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1676 			if (ret) {
1677 				dev_err(hsotg->dev,
1678 					"%s: failed to send reply\n", __func__);
1679 				return ret;
1680 			}
1681 
1682 			/*
1683 			 * we have to complete all requests for ep if it was
1684 			 * halted, and the halt was cleared by CLEAR_FEATURE
1685 			 */
1686 
1687 			if (!set && halted) {
1688 				/*
1689 				 * If we have request in progress,
1690 				 * then complete it
1691 				 */
1692 				if (ep->req) {
1693 					hs_req = ep->req;
1694 					ep->req = NULL;
1695 					list_del_init(&hs_req->queue);
1696 					if (hs_req->req.complete) {
1697 						spin_unlock(&hsotg->lock);
1698 						usb_gadget_giveback_request(
1699 							&ep->ep, &hs_req->req);
1700 						spin_lock(&hsotg->lock);
1701 					}
1702 				}
1703 
1704 				/* If we have pending request, then start it */
1705 				if (!ep->req)
1706 					dwc2_gadget_start_next_request(ep);
1707 			}
1708 
1709 			break;
1710 
1711 		default:
1712 			return -ENOENT;
1713 		}
1714 		break;
1715 	default:
1716 		return -ENOENT;
1717 	}
1718 	return 1;
1719 }
1720 
1721 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1722 
1723 /**
1724  * dwc2_hsotg_stall_ep0 - stall ep0
1725  * @hsotg: The device state
1726  *
1727  * Set stall for ep0 as response for setup request.
1728  */
1729 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1730 {
1731 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1732 	u32 reg;
1733 	u32 ctrl;
1734 
1735 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1736 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1737 
1738 	/*
1739 	 * DxEPCTL_Stall will be cleared by EP once it has
1740 	 * taken effect, so no need to clear later.
1741 	 */
1742 
1743 	ctrl = dwc2_readl(hsotg->regs + reg);
1744 	ctrl |= DXEPCTL_STALL;
1745 	ctrl |= DXEPCTL_CNAK;
1746 	dwc2_writel(ctrl, hsotg->regs + reg);
1747 
1748 	dev_dbg(hsotg->dev,
1749 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1750 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1751 
1752 	 /*
1753 	  * complete won't be called, so we enqueue
1754 	  * setup request here
1755 	  */
1756 	 dwc2_hsotg_enqueue_setup(hsotg);
1757 }
1758 
1759 /**
1760  * dwc2_hsotg_process_control - process a control request
1761  * @hsotg: The device state
1762  * @ctrl: The control request received
1763  *
1764  * The controller has received the SETUP phase of a control request, and
1765  * needs to work out what to do next (and whether to pass it on to the
1766  * gadget driver).
1767  */
1768 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1769 				       struct usb_ctrlrequest *ctrl)
1770 {
1771 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1772 	int ret = 0;
1773 	u32 dcfg;
1774 
1775 	dev_dbg(hsotg->dev,
1776 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1777 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1778 		ctrl->wIndex, ctrl->wLength);
1779 
1780 	if (ctrl->wLength == 0) {
1781 		ep0->dir_in = 1;
1782 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1783 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1784 		ep0->dir_in = 1;
1785 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1786 	} else {
1787 		ep0->dir_in = 0;
1788 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1789 	}
1790 
1791 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1792 		switch (ctrl->bRequest) {
1793 		case USB_REQ_SET_ADDRESS:
1794 			hsotg->connected = 1;
1795 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1796 			dcfg &= ~DCFG_DEVADDR_MASK;
1797 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1798 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1799 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1800 
1801 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1802 
1803 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1804 			return;
1805 
1806 		case USB_REQ_GET_STATUS:
1807 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1808 			break;
1809 
1810 		case USB_REQ_CLEAR_FEATURE:
1811 		case USB_REQ_SET_FEATURE:
1812 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1813 			break;
1814 		}
1815 	}
1816 
1817 	/* as a fallback, try delivering it to the driver to deal with */
1818 
1819 	if (ret == 0 && hsotg->driver) {
1820 		spin_unlock(&hsotg->lock);
1821 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1822 		spin_lock(&hsotg->lock);
1823 		if (ret < 0)
1824 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1825 	}
1826 
1827 	/*
1828 	 * the request is either unhandlable, or is not formatted correctly
1829 	 * so respond with a STALL for the status stage to indicate failure.
1830 	 */
1831 
1832 	if (ret < 0)
1833 		dwc2_hsotg_stall_ep0(hsotg);
1834 }
1835 
1836 /**
1837  * dwc2_hsotg_complete_setup - completion of a setup transfer
1838  * @ep: The endpoint the request was on.
1839  * @req: The request completed.
1840  *
1841  * Called on completion of any requests the driver itself submitted for
1842  * EP0 setup packets
1843  */
1844 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1845 				      struct usb_request *req)
1846 {
1847 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1848 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1849 
1850 	if (req->status < 0) {
1851 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1852 		return;
1853 	}
1854 
1855 	spin_lock(&hsotg->lock);
1856 	if (req->actual == 0)
1857 		dwc2_hsotg_enqueue_setup(hsotg);
1858 	else
1859 		dwc2_hsotg_process_control(hsotg, req->buf);
1860 	spin_unlock(&hsotg->lock);
1861 }
1862 
1863 /**
1864  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1865  * @hsotg: The device state.
1866  *
1867  * Enqueue a request on EP0 if necessary to received any SETUP packets
1868  * received from the host.
1869  */
1870 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1871 {
1872 	struct usb_request *req = hsotg->ctrl_req;
1873 	struct dwc2_hsotg_req *hs_req = our_req(req);
1874 	int ret;
1875 
1876 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1877 
1878 	req->zero = 0;
1879 	req->length = 8;
1880 	req->buf = hsotg->ctrl_buff;
1881 	req->complete = dwc2_hsotg_complete_setup;
1882 
1883 	if (!list_empty(&hs_req->queue)) {
1884 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1885 		return;
1886 	}
1887 
1888 	hsotg->eps_out[0]->dir_in = 0;
1889 	hsotg->eps_out[0]->send_zlp = 0;
1890 	hsotg->ep0_state = DWC2_EP0_SETUP;
1891 
1892 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1893 	if (ret < 0) {
1894 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1895 		/*
1896 		 * Don't think there's much we can do other than watch the
1897 		 * driver fail.
1898 		 */
1899 	}
1900 }
1901 
1902 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1903 				   struct dwc2_hsotg_ep *hs_ep)
1904 {
1905 	u32 ctrl;
1906 	u8 index = hs_ep->index;
1907 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1908 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1909 
1910 	if (hs_ep->dir_in)
1911 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1912 			index);
1913 	else
1914 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1915 			index);
1916 	if (using_desc_dma(hsotg)) {
1917 		/* Not specific buffer needed for ep0 ZLP */
1918 		dma_addr_t dma = hs_ep->desc_list_dma;
1919 
1920 		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1921 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1922 	} else {
1923 		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1924 			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1925 			    epsiz_reg);
1926 	}
1927 
1928 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1929 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1930 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1931 	ctrl |= DXEPCTL_USBACTEP;
1932 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1933 }
1934 
1935 /**
1936  * dwc2_hsotg_complete_request - complete a request given to us
1937  * @hsotg: The device state.
1938  * @hs_ep: The endpoint the request was on.
1939  * @hs_req: The request to complete.
1940  * @result: The result code (0 => Ok, otherwise errno)
1941  *
1942  * The given request has finished, so call the necessary completion
1943  * if it has one and then look to see if we can start a new request
1944  * on the endpoint.
1945  *
1946  * Note, expects the ep to already be locked as appropriate.
1947  */
1948 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1949 					struct dwc2_hsotg_ep *hs_ep,
1950 				       struct dwc2_hsotg_req *hs_req,
1951 				       int result)
1952 {
1953 	if (!hs_req) {
1954 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1955 		return;
1956 	}
1957 
1958 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1959 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1960 
1961 	/*
1962 	 * only replace the status if we've not already set an error
1963 	 * from a previous transaction
1964 	 */
1965 
1966 	if (hs_req->req.status == -EINPROGRESS)
1967 		hs_req->req.status = result;
1968 
1969 	if (using_dma(hsotg))
1970 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1971 
1972 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1973 
1974 	hs_ep->req = NULL;
1975 	list_del_init(&hs_req->queue);
1976 
1977 	/*
1978 	 * call the complete request with the locks off, just in case the
1979 	 * request tries to queue more work for this endpoint.
1980 	 */
1981 
1982 	if (hs_req->req.complete) {
1983 		spin_unlock(&hsotg->lock);
1984 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1985 		spin_lock(&hsotg->lock);
1986 	}
1987 
1988 	/* In DDMA don't need to proceed to starting of next ISOC request */
1989 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
1990 		return;
1991 
1992 	/*
1993 	 * Look to see if there is anything else to do. Note, the completion
1994 	 * of the previous request may have caused a new request to be started
1995 	 * so be careful when doing this.
1996 	 */
1997 
1998 	if (!hs_ep->req && result >= 0)
1999 		dwc2_gadget_start_next_request(hs_ep);
2000 }
2001 
2002 /*
2003  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2004  * @hs_ep: The endpoint the request was on.
2005  *
2006  * Get first request from the ep queue, determine descriptor on which complete
2007  * happened. SW based on isoc_chain_num discovers which half of the descriptor
2008  * chain is currently in use by HW, adjusts dma_address and calculates index
2009  * of completed descriptor based on the value of DEPDMA register. Update actual
2010  * length of request, giveback to gadget.
2011  */
2012 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2013 {
2014 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2015 	struct dwc2_hsotg_req *hs_req;
2016 	struct usb_request *ureq;
2017 	int index;
2018 	dma_addr_t dma_addr;
2019 	u32 dma_reg;
2020 	u32 depdma;
2021 	u32 desc_sts;
2022 	u32 mask;
2023 
2024 	hs_req = get_ep_head(hs_ep);
2025 	if (!hs_req) {
2026 		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2027 		return;
2028 	}
2029 	ureq = &hs_req->req;
2030 
2031 	dma_addr = hs_ep->desc_list_dma;
2032 
2033 	/*
2034 	 * If lower half of  descriptor chain is currently use by SW,
2035 	 * that means higher half is being processed by HW, so shift
2036 	 * DMA address to higher half of descriptor chain.
2037 	 */
2038 	if (!hs_ep->isoc_chain_num)
2039 		dma_addr += sizeof(struct dwc2_dma_desc) *
2040 			    (MAX_DMA_DESC_NUM_GENERIC / 2);
2041 
2042 	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2043 	depdma = dwc2_readl(hsotg->regs + dma_reg);
2044 
2045 	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2046 	desc_sts = hs_ep->desc_list[index].status;
2047 
2048 	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2049 	       DEV_DMA_ISOC_RX_NBYTES_MASK;
2050 	ureq->actual = ureq->length -
2051 		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2052 
2053 	/* Adjust actual length for ISOC Out if length is not align of 4 */
2054 	if (!hs_ep->dir_in && ureq->length & 0x3)
2055 		ureq->actual += 4 - (ureq->length & 0x3);
2056 
2057 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2058 }
2059 
2060 /*
2061  * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2062  * @hs_ep: The isochronous endpoint to be re-enabled.
2063  *
2064  * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2065  * BNA (OUT endpoint) check the status of other half of descriptor chain that
2066  * was under SW control till HW was busy and restart the endpoint if needed.
2067  */
2068 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2069 {
2070 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2071 	u32 depctl;
2072 	u32 dma_reg;
2073 	u32 ctrl;
2074 	u32 dma_addr = hs_ep->desc_list_dma;
2075 	unsigned char index = hs_ep->index;
2076 
2077 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2078 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2079 
2080 	ctrl = dwc2_readl(hsotg->regs + depctl);
2081 
2082 	/*
2083 	 * EP was disabled if HW has processed last descriptor or BNA was set.
2084 	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2085 	 * routine while HW was busy.
2086 	 */
2087 	if (!(ctrl & DXEPCTL_EPENA)) {
2088 		if (!hs_ep->next_desc) {
2089 			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2090 				__func__);
2091 			return;
2092 		}
2093 
2094 		dma_addr += sizeof(struct dwc2_dma_desc) *
2095 			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2096 			    hs_ep->isoc_chain_num;
2097 		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2098 
2099 		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2100 		dwc2_writel(ctrl, hsotg->regs + depctl);
2101 
2102 		/* Switch ISOC descriptor chain number being processed by SW*/
2103 		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2104 		hs_ep->next_desc = 0;
2105 
2106 		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2107 			__func__);
2108 	}
2109 }
2110 
2111 /**
2112  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2113  * @hsotg: The device state.
2114  * @ep_idx: The endpoint index for the data
2115  * @size: The size of data in the fifo, in bytes
2116  *
2117  * The FIFO status shows there is data to read from the FIFO for a given
2118  * endpoint, so sort out whether we need to read the data into a request
2119  * that has been made for that endpoint.
2120  */
2121 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2122 {
2123 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2124 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2125 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2126 	int to_read;
2127 	int max_req;
2128 	int read_ptr;
2129 
2130 	if (!hs_req) {
2131 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2132 		int ptr;
2133 
2134 		dev_dbg(hsotg->dev,
2135 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2136 			 __func__, size, ep_idx, epctl);
2137 
2138 		/* dump the data from the FIFO, we've nothing we can do */
2139 		for (ptr = 0; ptr < size; ptr += 4)
2140 			(void)dwc2_readl(fifo);
2141 
2142 		return;
2143 	}
2144 
2145 	to_read = size;
2146 	read_ptr = hs_req->req.actual;
2147 	max_req = hs_req->req.length - read_ptr;
2148 
2149 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2150 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2151 
2152 	if (to_read > max_req) {
2153 		/*
2154 		 * more data appeared than we where willing
2155 		 * to deal with in this request.
2156 		 */
2157 
2158 		/* currently we don't deal this */
2159 		WARN_ON_ONCE(1);
2160 	}
2161 
2162 	hs_ep->total_data += to_read;
2163 	hs_req->req.actual += to_read;
2164 	to_read = DIV_ROUND_UP(to_read, 4);
2165 
2166 	/*
2167 	 * note, we might over-write the buffer end by 3 bytes depending on
2168 	 * alignment of the data.
2169 	 */
2170 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2171 }
2172 
2173 /**
2174  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2175  * @hsotg: The device instance
2176  * @dir_in: If IN zlp
2177  *
2178  * Generate a zero-length IN packet request for terminating a SETUP
2179  * transaction.
2180  *
2181  * Note, since we don't write any data to the TxFIFO, then it is
2182  * currently believed that we do not need to wait for any space in
2183  * the TxFIFO.
2184  */
2185 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2186 {
2187 	/* eps_out[0] is used in both directions */
2188 	hsotg->eps_out[0]->dir_in = dir_in;
2189 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2190 
2191 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2192 }
2193 
2194 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2195 					    u32 epctl_reg)
2196 {
2197 	u32 ctrl;
2198 
2199 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2200 	if (ctrl & DXEPCTL_EOFRNUM)
2201 		ctrl |= DXEPCTL_SETEVENFR;
2202 	else
2203 		ctrl |= DXEPCTL_SETODDFR;
2204 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2205 }
2206 
2207 /*
2208  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2209  * @hs_ep - The endpoint on which transfer went
2210  *
2211  * Iterate over endpoints descriptor chain and get info on bytes remained
2212  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2213  */
2214 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2215 {
2216 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2217 	unsigned int bytes_rem = 0;
2218 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2219 	int i;
2220 	u32 status;
2221 
2222 	if (!desc)
2223 		return -EINVAL;
2224 
2225 	for (i = 0; i < hs_ep->desc_count; ++i) {
2226 		status = desc->status;
2227 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2228 
2229 		if (status & DEV_DMA_STS_MASK)
2230 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2231 				i, status & DEV_DMA_STS_MASK);
2232 	}
2233 
2234 	return bytes_rem;
2235 }
2236 
2237 /**
2238  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2239  * @hsotg: The device instance
2240  * @epnum: The endpoint received from
2241  *
2242  * The RXFIFO has delivered an OutDone event, which means that the data
2243  * transfer for an OUT endpoint has been completed, either by a short
2244  * packet or by the finish of a transfer.
2245  */
2246 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2247 {
2248 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2249 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2250 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2251 	struct usb_request *req = &hs_req->req;
2252 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2253 	int result = 0;
2254 
2255 	if (!hs_req) {
2256 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2257 		return;
2258 	}
2259 
2260 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2261 		dev_dbg(hsotg->dev, "zlp packet received\n");
2262 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2263 		dwc2_hsotg_enqueue_setup(hsotg);
2264 		return;
2265 	}
2266 
2267 	if (using_desc_dma(hsotg))
2268 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2269 
2270 	if (using_dma(hsotg)) {
2271 		unsigned int size_done;
2272 
2273 		/*
2274 		 * Calculate the size of the transfer by checking how much
2275 		 * is left in the endpoint size register and then working it
2276 		 * out from the amount we loaded for the transfer.
2277 		 *
2278 		 * We need to do this as DMA pointers are always 32bit aligned
2279 		 * so may overshoot/undershoot the transfer.
2280 		 */
2281 
2282 		size_done = hs_ep->size_loaded - size_left;
2283 		size_done += hs_ep->last_load;
2284 
2285 		req->actual = size_done;
2286 	}
2287 
2288 	/* if there is more request to do, schedule new transfer */
2289 	if (req->actual < req->length && size_left == 0) {
2290 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2291 		return;
2292 	}
2293 
2294 	if (req->actual < req->length && req->short_not_ok) {
2295 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2296 			__func__, req->actual, req->length);
2297 
2298 		/*
2299 		 * todo - what should we return here? there's no one else
2300 		 * even bothering to check the status.
2301 		 */
2302 	}
2303 
2304 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2305 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2306 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2307 		/* Move to STATUS IN */
2308 		dwc2_hsotg_ep0_zlp(hsotg, true);
2309 		return;
2310 	}
2311 
2312 	/*
2313 	 * Slave mode OUT transfers do not go through XferComplete so
2314 	 * adjust the ISOC parity here.
2315 	 */
2316 	if (!using_dma(hsotg)) {
2317 		if (hs_ep->isochronous && hs_ep->interval == 1)
2318 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2319 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2320 			dwc2_gadget_incr_frame_num(hs_ep);
2321 	}
2322 
2323 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2324 }
2325 
2326 /**
2327  * dwc2_hsotg_handle_rx - RX FIFO has data
2328  * @hsotg: The device instance
2329  *
2330  * The IRQ handler has detected that the RX FIFO has some data in it
2331  * that requires processing, so find out what is in there and do the
2332  * appropriate read.
2333  *
2334  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2335  * chunks, so if you have x packets received on an endpoint you'll get x
2336  * FIFO events delivered, each with a packet's worth of data in it.
2337  *
2338  * When using DMA, we should not be processing events from the RXFIFO
2339  * as the actual data should be sent to the memory directly and we turn
2340  * on the completion interrupts to get notifications of transfer completion.
2341  */
2342 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2343 {
2344 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2345 	u32 epnum, status, size;
2346 
2347 	WARN_ON(using_dma(hsotg));
2348 
2349 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2350 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2351 
2352 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2353 	size >>= GRXSTS_BYTECNT_SHIFT;
2354 
2355 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2356 		__func__, grxstsr, size, epnum);
2357 
2358 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2359 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2360 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2361 		break;
2362 
2363 	case GRXSTS_PKTSTS_OUTDONE:
2364 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2365 			dwc2_hsotg_read_frameno(hsotg));
2366 
2367 		if (!using_dma(hsotg))
2368 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2369 		break;
2370 
2371 	case GRXSTS_PKTSTS_SETUPDONE:
2372 		dev_dbg(hsotg->dev,
2373 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2374 			dwc2_hsotg_read_frameno(hsotg),
2375 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2376 		/*
2377 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2378 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2379 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2380 		 */
2381 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2382 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2383 		break;
2384 
2385 	case GRXSTS_PKTSTS_OUTRX:
2386 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2387 		break;
2388 
2389 	case GRXSTS_PKTSTS_SETUPRX:
2390 		dev_dbg(hsotg->dev,
2391 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2392 			dwc2_hsotg_read_frameno(hsotg),
2393 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2394 
2395 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2396 
2397 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2398 		break;
2399 
2400 	default:
2401 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2402 			 __func__, grxstsr);
2403 
2404 		dwc2_hsotg_dump(hsotg);
2405 		break;
2406 	}
2407 }
2408 
2409 /**
2410  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2411  * @mps: The maximum packet size in bytes.
2412  */
2413 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2414 {
2415 	switch (mps) {
2416 	case 64:
2417 		return D0EPCTL_MPS_64;
2418 	case 32:
2419 		return D0EPCTL_MPS_32;
2420 	case 16:
2421 		return D0EPCTL_MPS_16;
2422 	case 8:
2423 		return D0EPCTL_MPS_8;
2424 	}
2425 
2426 	/* bad max packet size, warn and return invalid result */
2427 	WARN_ON(1);
2428 	return (u32)-1;
2429 }
2430 
2431 /**
2432  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2433  * @hsotg: The driver state.
2434  * @ep: The index number of the endpoint
2435  * @mps: The maximum packet size in bytes
2436  * @mc: The multicount value
2437  *
2438  * Configure the maximum packet size for the given endpoint, updating
2439  * the hardware control registers to reflect this.
2440  */
2441 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2442 					unsigned int ep, unsigned int mps,
2443 					unsigned int mc, unsigned int dir_in)
2444 {
2445 	struct dwc2_hsotg_ep *hs_ep;
2446 	void __iomem *regs = hsotg->regs;
2447 	u32 reg;
2448 
2449 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2450 	if (!hs_ep)
2451 		return;
2452 
2453 	if (ep == 0) {
2454 		u32 mps_bytes = mps;
2455 
2456 		/* EP0 is a special case */
2457 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2458 		if (mps > 3)
2459 			goto bad_mps;
2460 		hs_ep->ep.maxpacket = mps_bytes;
2461 		hs_ep->mc = 1;
2462 	} else {
2463 		if (mps > 1024)
2464 			goto bad_mps;
2465 		hs_ep->mc = mc;
2466 		if (mc > 3)
2467 			goto bad_mps;
2468 		hs_ep->ep.maxpacket = mps;
2469 	}
2470 
2471 	if (dir_in) {
2472 		reg = dwc2_readl(regs + DIEPCTL(ep));
2473 		reg &= ~DXEPCTL_MPS_MASK;
2474 		reg |= mps;
2475 		dwc2_writel(reg, regs + DIEPCTL(ep));
2476 	} else {
2477 		reg = dwc2_readl(regs + DOEPCTL(ep));
2478 		reg &= ~DXEPCTL_MPS_MASK;
2479 		reg |= mps;
2480 		dwc2_writel(reg, regs + DOEPCTL(ep));
2481 	}
2482 
2483 	return;
2484 
2485 bad_mps:
2486 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2487 }
2488 
2489 /**
2490  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2491  * @hsotg: The driver state
2492  * @idx: The index for the endpoint (0..15)
2493  */
2494 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2495 {
2496 	int timeout;
2497 	int val;
2498 
2499 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2500 		    hsotg->regs + GRSTCTL);
2501 
2502 	/* wait until the fifo is flushed */
2503 	timeout = 100;
2504 
2505 	while (1) {
2506 		val = dwc2_readl(hsotg->regs + GRSTCTL);
2507 
2508 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2509 			break;
2510 
2511 		if (--timeout == 0) {
2512 			dev_err(hsotg->dev,
2513 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2514 				__func__, val);
2515 			break;
2516 		}
2517 
2518 		udelay(1);
2519 	}
2520 }
2521 
2522 /**
2523  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2524  * @hsotg: The driver state
2525  * @hs_ep: The driver endpoint to check.
2526  *
2527  * Check to see if there is a request that has data to send, and if so
2528  * make an attempt to write data into the FIFO.
2529  */
2530 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2531 			    struct dwc2_hsotg_ep *hs_ep)
2532 {
2533 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2534 
2535 	if (!hs_ep->dir_in || !hs_req) {
2536 		/**
2537 		 * if request is not enqueued, we disable interrupts
2538 		 * for endpoints, excepting ep0
2539 		 */
2540 		if (hs_ep->index != 0)
2541 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2542 					      hs_ep->dir_in, 0);
2543 		return 0;
2544 	}
2545 
2546 	if (hs_req->req.actual < hs_req->req.length) {
2547 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2548 			hs_ep->index);
2549 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 /**
2556  * dwc2_hsotg_complete_in - complete IN transfer
2557  * @hsotg: The device state.
2558  * @hs_ep: The endpoint that has just completed.
2559  *
2560  * An IN transfer has been completed, update the transfer's state and then
2561  * call the relevant completion routines.
2562  */
2563 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2564 				   struct dwc2_hsotg_ep *hs_ep)
2565 {
2566 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2567 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2568 	int size_left, size_done;
2569 
2570 	if (!hs_req) {
2571 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2572 		return;
2573 	}
2574 
2575 	/* Finish ZLP handling for IN EP0 transactions */
2576 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2577 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2578 
2579 		/*
2580 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2581 		 * changed to IN. Change back to complete OUT transfer request
2582 		 */
2583 		hs_ep->dir_in = 0;
2584 
2585 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2586 		if (hsotg->test_mode) {
2587 			int ret;
2588 
2589 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2590 			if (ret < 0) {
2591 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2592 					hsotg->test_mode);
2593 				dwc2_hsotg_stall_ep0(hsotg);
2594 				return;
2595 			}
2596 		}
2597 		dwc2_hsotg_enqueue_setup(hsotg);
2598 		return;
2599 	}
2600 
2601 	/*
2602 	 * Calculate the size of the transfer by checking how much is left
2603 	 * in the endpoint size register and then working it out from
2604 	 * the amount we loaded for the transfer.
2605 	 *
2606 	 * We do this even for DMA, as the transfer may have incremented
2607 	 * past the end of the buffer (DMA transfers are always 32bit
2608 	 * aligned).
2609 	 */
2610 	if (using_desc_dma(hsotg)) {
2611 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2612 		if (size_left < 0)
2613 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2614 				size_left);
2615 	} else {
2616 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2617 	}
2618 
2619 	size_done = hs_ep->size_loaded - size_left;
2620 	size_done += hs_ep->last_load;
2621 
2622 	if (hs_req->req.actual != size_done)
2623 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2624 			__func__, hs_req->req.actual, size_done);
2625 
2626 	hs_req->req.actual = size_done;
2627 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2628 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2629 
2630 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2631 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2632 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2633 		return;
2634 	}
2635 
2636 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2637 	if (hs_ep->send_zlp) {
2638 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2639 		hs_ep->send_zlp = 0;
2640 		/* transfer will be completed on next complete interrupt */
2641 		return;
2642 	}
2643 
2644 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2645 		/* Move to STATUS OUT */
2646 		dwc2_hsotg_ep0_zlp(hsotg, false);
2647 		return;
2648 	}
2649 
2650 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2651 }
2652 
2653 /**
2654  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2655  * @hsotg: The device state.
2656  * @idx: Index of ep.
2657  * @dir_in: Endpoint direction 1-in 0-out.
2658  *
2659  * Reads for endpoint with given index and direction, by masking
2660  * epint_reg with coresponding mask.
2661  */
2662 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2663 					  unsigned int idx, int dir_in)
2664 {
2665 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2666 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2667 	u32 ints;
2668 	u32 mask;
2669 	u32 diepempmsk;
2670 
2671 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2672 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2673 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2674 	mask |= DXEPINT_SETUP_RCVD;
2675 
2676 	ints = dwc2_readl(hsotg->regs + epint_reg);
2677 	ints &= mask;
2678 	return ints;
2679 }
2680 
2681 /**
2682  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2683  * @hs_ep: The endpoint on which interrupt is asserted.
2684  *
2685  * This interrupt indicates that the endpoint has been disabled per the
2686  * application's request.
2687  *
2688  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2689  * in case of ISOC completes current request.
2690  *
2691  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2692  * request starts it.
2693  */
2694 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2695 {
2696 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2697 	struct dwc2_hsotg_req *hs_req;
2698 	unsigned char idx = hs_ep->index;
2699 	int dir_in = hs_ep->dir_in;
2700 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2701 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2702 
2703 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2704 
2705 	if (dir_in) {
2706 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2707 
2708 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2709 
2710 		if (hs_ep->isochronous) {
2711 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2712 			return;
2713 		}
2714 
2715 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2716 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2717 
2718 			dctl |= DCTL_CGNPINNAK;
2719 			dwc2_writel(dctl, hsotg->regs + DCTL);
2720 		}
2721 		return;
2722 	}
2723 
2724 	if (dctl & DCTL_GOUTNAKSTS) {
2725 		dctl |= DCTL_CGOUTNAK;
2726 		dwc2_writel(dctl, hsotg->regs + DCTL);
2727 	}
2728 
2729 	if (!hs_ep->isochronous)
2730 		return;
2731 
2732 	if (list_empty(&hs_ep->queue)) {
2733 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2734 			__func__, hs_ep);
2735 		return;
2736 	}
2737 
2738 	do {
2739 		hs_req = get_ep_head(hs_ep);
2740 		if (hs_req)
2741 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2742 						    -ENODATA);
2743 		dwc2_gadget_incr_frame_num(hs_ep);
2744 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2745 
2746 	dwc2_gadget_start_next_request(hs_ep);
2747 }
2748 
2749 /**
2750  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2751  * @hs_ep: The endpoint on which interrupt is asserted.
2752  *
2753  * This is starting point for ISOC-OUT transfer, synchronization done with
2754  * first out token received from host while corresponding EP is disabled.
2755  *
2756  * Device does not know initial frame in which out token will come. For this
2757  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2758  * getting this interrupt SW starts calculation for next transfer frame.
2759  */
2760 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2761 {
2762 	struct dwc2_hsotg *hsotg = ep->parent;
2763 	int dir_in = ep->dir_in;
2764 	u32 doepmsk;
2765 	u32 tmp;
2766 
2767 	if (dir_in || !ep->isochronous)
2768 		return;
2769 
2770 	/*
2771 	 * Store frame in which irq was asserted here, as
2772 	 * it can change while completing request below.
2773 	 */
2774 	tmp = dwc2_hsotg_read_frameno(hsotg);
2775 
2776 	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2777 
2778 	if (using_desc_dma(hsotg)) {
2779 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2780 			/* Start first ISO Out */
2781 			ep->target_frame = tmp;
2782 			dwc2_gadget_start_isoc_ddma(ep);
2783 		}
2784 		return;
2785 	}
2786 
2787 	if (ep->interval > 1 &&
2788 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2789 		u32 dsts;
2790 		u32 ctrl;
2791 
2792 		dsts = dwc2_readl(hsotg->regs + DSTS);
2793 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2794 		dwc2_gadget_incr_frame_num(ep);
2795 
2796 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2797 		if (ep->target_frame & 0x1)
2798 			ctrl |= DXEPCTL_SETODDFR;
2799 		else
2800 			ctrl |= DXEPCTL_SETEVENFR;
2801 
2802 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2803 	}
2804 
2805 	dwc2_gadget_start_next_request(ep);
2806 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2807 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2808 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2809 }
2810 
2811 /**
2812  * dwc2_gadget_handle_nak - handle NAK interrupt
2813  * @hs_ep: The endpoint on which interrupt is asserted.
2814  *
2815  * This is starting point for ISOC-IN transfer, synchronization done with
2816  * first IN token received from host while corresponding EP is disabled.
2817  *
2818  * Device does not know when first one token will arrive from host. On first
2819  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2820  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2821  * sent in response to that as there was no data in FIFO. SW is basing on this
2822  * interrupt to obtain frame in which token has come and then based on the
2823  * interval calculates next frame for transfer.
2824  */
2825 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2826 {
2827 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2828 	int dir_in = hs_ep->dir_in;
2829 
2830 	if (!dir_in || !hs_ep->isochronous)
2831 		return;
2832 
2833 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2834 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2835 
2836 		if (using_desc_dma(hsotg)) {
2837 			dwc2_gadget_start_isoc_ddma(hs_ep);
2838 			return;
2839 		}
2840 
2841 		if (hs_ep->interval > 1) {
2842 			u32 ctrl = dwc2_readl(hsotg->regs +
2843 					      DIEPCTL(hs_ep->index));
2844 			if (hs_ep->target_frame & 0x1)
2845 				ctrl |= DXEPCTL_SETODDFR;
2846 			else
2847 				ctrl |= DXEPCTL_SETEVENFR;
2848 
2849 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2850 		}
2851 
2852 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2853 					    get_ep_head(hs_ep), 0);
2854 	}
2855 
2856 	dwc2_gadget_incr_frame_num(hs_ep);
2857 }
2858 
2859 /**
2860  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2861  * @hsotg: The driver state
2862  * @idx: The index for the endpoint (0..15)
2863  * @dir_in: Set if this is an IN endpoint
2864  *
2865  * Process and clear any interrupt pending for an individual endpoint
2866  */
2867 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2868 			     int dir_in)
2869 {
2870 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2871 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2872 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2873 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2874 	u32 ints;
2875 	u32 ctrl;
2876 
2877 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2878 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2879 
2880 	/* Clear endpoint interrupts */
2881 	dwc2_writel(ints, hsotg->regs + epint_reg);
2882 
2883 	if (!hs_ep) {
2884 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2885 			__func__, idx, dir_in ? "in" : "out");
2886 		return;
2887 	}
2888 
2889 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2890 		__func__, idx, dir_in ? "in" : "out", ints);
2891 
2892 	/* Don't process XferCompl interrupt if it is a setup packet */
2893 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2894 		ints &= ~DXEPINT_XFERCOMPL;
2895 
2896 	/*
2897 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2898 	 * stage and xfercomplete was generated without SETUP phase done
2899 	 * interrupt. SW should parse received setup packet only after host's
2900 	 * exit from setup phase of control transfer.
2901 	 */
2902 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2903 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2904 		ints &= ~DXEPINT_XFERCOMPL;
2905 
2906 	if (ints & DXEPINT_XFERCOMPL) {
2907 		dev_dbg(hsotg->dev,
2908 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2909 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2910 			dwc2_readl(hsotg->regs + epsiz_reg));
2911 
2912 		/* In DDMA handle isochronous requests separately */
2913 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2914 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2915 			/* Try to start next isoc request */
2916 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2917 		} else if (dir_in) {
2918 			/*
2919 			 * We get OutDone from the FIFO, so we only
2920 			 * need to look at completing IN requests here
2921 			 * if operating slave mode
2922 			 */
2923 			if (hs_ep->isochronous && hs_ep->interval > 1)
2924 				dwc2_gadget_incr_frame_num(hs_ep);
2925 
2926 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2927 			if (ints & DXEPINT_NAKINTRPT)
2928 				ints &= ~DXEPINT_NAKINTRPT;
2929 
2930 			if (idx == 0 && !hs_ep->req)
2931 				dwc2_hsotg_enqueue_setup(hsotg);
2932 		} else if (using_dma(hsotg)) {
2933 			/*
2934 			 * We're using DMA, we need to fire an OutDone here
2935 			 * as we ignore the RXFIFO.
2936 			 */
2937 			if (hs_ep->isochronous && hs_ep->interval > 1)
2938 				dwc2_gadget_incr_frame_num(hs_ep);
2939 
2940 			dwc2_hsotg_handle_outdone(hsotg, idx);
2941 		}
2942 	}
2943 
2944 	if (ints & DXEPINT_EPDISBLD)
2945 		dwc2_gadget_handle_ep_disabled(hs_ep);
2946 
2947 	if (ints & DXEPINT_OUTTKNEPDIS)
2948 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2949 
2950 	if (ints & DXEPINT_NAKINTRPT)
2951 		dwc2_gadget_handle_nak(hs_ep);
2952 
2953 	if (ints & DXEPINT_AHBERR)
2954 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2955 
2956 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2957 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2958 
2959 		if (using_dma(hsotg) && idx == 0) {
2960 			/*
2961 			 * this is the notification we've received a
2962 			 * setup packet. In non-DMA mode we'd get this
2963 			 * from the RXFIFO, instead we need to process
2964 			 * the setup here.
2965 			 */
2966 
2967 			if (dir_in)
2968 				WARN_ON_ONCE(1);
2969 			else
2970 				dwc2_hsotg_handle_outdone(hsotg, 0);
2971 		}
2972 	}
2973 
2974 	if (ints & DXEPINT_STSPHSERCVD) {
2975 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2976 
2977 		/* Move to STATUS IN for DDMA */
2978 		if (using_desc_dma(hsotg))
2979 			dwc2_hsotg_ep0_zlp(hsotg, true);
2980 	}
2981 
2982 	if (ints & DXEPINT_BACK2BACKSETUP)
2983 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2984 
2985 	if (ints & DXEPINT_BNAINTR) {
2986 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2987 
2988 		/*
2989 		 * Try to start next isoc request, if any.
2990 		 * Sometimes the endpoint remains enabled after BNA interrupt
2991 		 * assertion, which is not expected, hence we can enter here
2992 		 * couple of times.
2993 		 */
2994 		if (hs_ep->isochronous)
2995 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2996 	}
2997 
2998 	if (dir_in && !hs_ep->isochronous) {
2999 		/* not sure if this is important, but we'll clear it anyway */
3000 		if (ints & DXEPINT_INTKNTXFEMP) {
3001 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3002 				__func__, idx);
3003 		}
3004 
3005 		/* this probably means something bad is happening */
3006 		if (ints & DXEPINT_INTKNEPMIS) {
3007 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3008 				 __func__, idx);
3009 		}
3010 
3011 		/* FIFO has space or is empty (see GAHBCFG) */
3012 		if (hsotg->dedicated_fifos &&
3013 		    ints & DXEPINT_TXFEMP) {
3014 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3015 				__func__, idx);
3016 			if (!using_dma(hsotg))
3017 				dwc2_hsotg_trytx(hsotg, hs_ep);
3018 		}
3019 	}
3020 }
3021 
3022 /**
3023  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3024  * @hsotg: The device state.
3025  *
3026  * Handle updating the device settings after the enumeration phase has
3027  * been completed.
3028  */
3029 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3030 {
3031 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3032 	int ep0_mps = 0, ep_mps = 8;
3033 
3034 	/*
3035 	 * This should signal the finish of the enumeration phase
3036 	 * of the USB handshaking, so we should now know what rate
3037 	 * we connected at.
3038 	 */
3039 
3040 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3041 
3042 	/*
3043 	 * note, since we're limited by the size of transfer on EP0, and
3044 	 * it seems IN transfers must be a even number of packets we do
3045 	 * not advertise a 64byte MPS on EP0.
3046 	 */
3047 
3048 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3049 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3050 	case DSTS_ENUMSPD_FS:
3051 	case DSTS_ENUMSPD_FS48:
3052 		hsotg->gadget.speed = USB_SPEED_FULL;
3053 		ep0_mps = EP0_MPS_LIMIT;
3054 		ep_mps = 1023;
3055 		break;
3056 
3057 	case DSTS_ENUMSPD_HS:
3058 		hsotg->gadget.speed = USB_SPEED_HIGH;
3059 		ep0_mps = EP0_MPS_LIMIT;
3060 		ep_mps = 1024;
3061 		break;
3062 
3063 	case DSTS_ENUMSPD_LS:
3064 		hsotg->gadget.speed = USB_SPEED_LOW;
3065 		ep0_mps = 8;
3066 		ep_mps = 8;
3067 		/*
3068 		 * note, we don't actually support LS in this driver at the
3069 		 * moment, and the documentation seems to imply that it isn't
3070 		 * supported by the PHYs on some of the devices.
3071 		 */
3072 		break;
3073 	}
3074 	dev_info(hsotg->dev, "new device is %s\n",
3075 		 usb_speed_string(hsotg->gadget.speed));
3076 
3077 	/*
3078 	 * we should now know the maximum packet size for an
3079 	 * endpoint, so set the endpoints to a default value.
3080 	 */
3081 
3082 	if (ep0_mps) {
3083 		int i;
3084 		/* Initialize ep0 for both in and out directions */
3085 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3086 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3087 		for (i = 1; i < hsotg->num_of_eps; i++) {
3088 			if (hsotg->eps_in[i])
3089 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3090 							    0, 1);
3091 			if (hsotg->eps_out[i])
3092 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3093 							    0, 0);
3094 		}
3095 	}
3096 
3097 	/* ensure after enumeration our EP0 is active */
3098 
3099 	dwc2_hsotg_enqueue_setup(hsotg);
3100 
3101 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3102 		dwc2_readl(hsotg->regs + DIEPCTL0),
3103 		dwc2_readl(hsotg->regs + DOEPCTL0));
3104 }
3105 
3106 /**
3107  * kill_all_requests - remove all requests from the endpoint's queue
3108  * @hsotg: The device state.
3109  * @ep: The endpoint the requests may be on.
3110  * @result: The result code to use.
3111  *
3112  * Go through the requests on the given endpoint and mark them
3113  * completed with the given result code.
3114  */
3115 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3116 			      struct dwc2_hsotg_ep *ep,
3117 			      int result)
3118 {
3119 	struct dwc2_hsotg_req *req, *treq;
3120 	unsigned int size;
3121 
3122 	ep->req = NULL;
3123 
3124 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3125 		dwc2_hsotg_complete_request(hsotg, ep, req,
3126 					    result);
3127 
3128 	if (!hsotg->dedicated_fifos)
3129 		return;
3130 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3131 	if (size < ep->fifo_size)
3132 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3133 }
3134 
3135 /**
3136  * dwc2_hsotg_disconnect - disconnect service
3137  * @hsotg: The device state.
3138  *
3139  * The device has been disconnected. Remove all current
3140  * transactions and signal the gadget driver that this
3141  * has happened.
3142  */
3143 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3144 {
3145 	unsigned int ep;
3146 
3147 	if (!hsotg->connected)
3148 		return;
3149 
3150 	hsotg->connected = 0;
3151 	hsotg->test_mode = 0;
3152 
3153 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3154 		if (hsotg->eps_in[ep])
3155 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3156 					  -ESHUTDOWN);
3157 		if (hsotg->eps_out[ep])
3158 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3159 					  -ESHUTDOWN);
3160 	}
3161 
3162 	call_gadget(hsotg, disconnect);
3163 	hsotg->lx_state = DWC2_L3;
3164 
3165 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3166 }
3167 
3168 /**
3169  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3170  * @hsotg: The device state:
3171  * @periodic: True if this is a periodic FIFO interrupt
3172  */
3173 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3174 {
3175 	struct dwc2_hsotg_ep *ep;
3176 	int epno, ret;
3177 
3178 	/* look through for any more data to transmit */
3179 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3180 		ep = index_to_ep(hsotg, epno, 1);
3181 
3182 		if (!ep)
3183 			continue;
3184 
3185 		if (!ep->dir_in)
3186 			continue;
3187 
3188 		if ((periodic && !ep->periodic) ||
3189 		    (!periodic && ep->periodic))
3190 			continue;
3191 
3192 		ret = dwc2_hsotg_trytx(hsotg, ep);
3193 		if (ret < 0)
3194 			break;
3195 	}
3196 }
3197 
3198 /* IRQ flags which will trigger a retry around the IRQ loop */
3199 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3200 			GINTSTS_PTXFEMP |  \
3201 			GINTSTS_RXFLVL)
3202 
3203 /**
3204  * dwc2_hsotg_core_init - issue softreset to the core
3205  * @hsotg: The device state
3206  *
3207  * Issue a soft reset to the core, and await the core finishing it.
3208  */
3209 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3210 				       bool is_usb_reset)
3211 {
3212 	u32 intmsk;
3213 	u32 val;
3214 	u32 usbcfg;
3215 	u32 dcfg = 0;
3216 
3217 	/* Kill any ep0 requests as controller will be reinitialized */
3218 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3219 
3220 	if (!is_usb_reset)
3221 		if (dwc2_core_reset(hsotg, true))
3222 			return;
3223 
3224 	/*
3225 	 * we must now enable ep0 ready for host detection and then
3226 	 * set configuration.
3227 	 */
3228 
3229 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3230 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3231 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3232 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3233 
3234 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3235 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3236 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3237 		/* FS/LS Dedicated Transceiver Interface */
3238 		usbcfg |= GUSBCFG_PHYSEL;
3239 	} else {
3240 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3241 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3242 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3243 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3244 	}
3245 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3246 
3247 	dwc2_hsotg_init_fifo(hsotg);
3248 
3249 	if (!is_usb_reset)
3250 		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3251 
3252 	dcfg |= DCFG_EPMISCNT(1);
3253 
3254 	switch (hsotg->params.speed) {
3255 	case DWC2_SPEED_PARAM_LOW:
3256 		dcfg |= DCFG_DEVSPD_LS;
3257 		break;
3258 	case DWC2_SPEED_PARAM_FULL:
3259 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3260 			dcfg |= DCFG_DEVSPD_FS48;
3261 		else
3262 			dcfg |= DCFG_DEVSPD_FS;
3263 		break;
3264 	default:
3265 		dcfg |= DCFG_DEVSPD_HS;
3266 	}
3267 
3268 	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3269 
3270 	/* Clear any pending OTG interrupts */
3271 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3272 
3273 	/* Clear any pending interrupts */
3274 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3275 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3276 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3277 		GINTSTS_USBRST | GINTSTS_RESETDET |
3278 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3279 		GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3280 
3281 	if (!using_desc_dma(hsotg))
3282 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3283 
3284 	if (!hsotg->params.external_id_pin_ctl)
3285 		intmsk |= GINTSTS_CONIDSTSCHNG;
3286 
3287 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3288 
3289 	if (using_dma(hsotg)) {
3290 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3291 			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3292 			    hsotg->regs + GAHBCFG);
3293 
3294 		/* Set DDMA mode support in the core if needed */
3295 		if (using_desc_dma(hsotg))
3296 			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3297 
3298 	} else {
3299 		dwc2_writel(((hsotg->dedicated_fifos) ?
3300 						(GAHBCFG_NP_TXF_EMP_LVL |
3301 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3302 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3303 	}
3304 
3305 	/*
3306 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3307 	 * when we have no data to transfer. Otherwise we get being flooded by
3308 	 * interrupts.
3309 	 */
3310 
3311 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3312 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3313 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3314 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3315 		hsotg->regs + DIEPMSK);
3316 
3317 	/*
3318 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3319 	 * DMA mode we may need this and StsPhseRcvd.
3320 	 */
3321 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3322 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3323 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3324 		DOEPMSK_SETUPMSK,
3325 		hsotg->regs + DOEPMSK);
3326 
3327 	/* Enable BNA interrupt for DDMA */
3328 	if (using_desc_dma(hsotg))
3329 		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3330 
3331 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3332 
3333 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3334 		dwc2_readl(hsotg->regs + DIEPCTL0),
3335 		dwc2_readl(hsotg->regs + DOEPCTL0));
3336 
3337 	/* enable in and out endpoint interrupts */
3338 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3339 
3340 	/*
3341 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3342 	 * the data. In DMA mode, we get events from the FIFO but also
3343 	 * things we cannot process, so do not use it.
3344 	 */
3345 	if (!using_dma(hsotg))
3346 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3347 
3348 	/* Enable interrupts for EP0 in and out */
3349 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3350 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3351 
3352 	if (!is_usb_reset) {
3353 		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3354 		udelay(10);  /* see openiboot */
3355 		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3356 	}
3357 
3358 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3359 
3360 	/*
3361 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3362 	 * writing to the EPCTL register..
3363 	 */
3364 
3365 	/* set to read 1 8byte packet */
3366 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3367 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3368 
3369 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3370 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3371 	       DXEPCTL_USBACTEP,
3372 	       hsotg->regs + DOEPCTL0);
3373 
3374 	/* enable, but don't activate EP0in */
3375 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3376 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3377 
3378 	dwc2_hsotg_enqueue_setup(hsotg);
3379 
3380 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3381 		dwc2_readl(hsotg->regs + DIEPCTL0),
3382 		dwc2_readl(hsotg->regs + DOEPCTL0));
3383 
3384 	/* clear global NAKs */
3385 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3386 	if (!is_usb_reset)
3387 		val |= DCTL_SFTDISCON;
3388 	__orr32(hsotg->regs + DCTL, val);
3389 
3390 	/* must be at-least 3ms to allow bus to see disconnect */
3391 	mdelay(3);
3392 
3393 	hsotg->lx_state = DWC2_L0;
3394 }
3395 
3396 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3397 {
3398 	/* set the soft-disconnect bit */
3399 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3400 }
3401 
3402 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3403 {
3404 	/* remove the soft-disconnect and let's go */
3405 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3406 }
3407 
3408 /**
3409  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3410  * @hsotg: The device state:
3411  *
3412  * This interrupt indicates one of the following conditions occurred while
3413  * transmitting an ISOC transaction.
3414  * - Corrupted IN Token for ISOC EP.
3415  * - Packet not complete in FIFO.
3416  *
3417  * The following actions will be taken:
3418  * - Determine the EP
3419  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3420  */
3421 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3422 {
3423 	struct dwc2_hsotg_ep *hs_ep;
3424 	u32 epctrl;
3425 	u32 idx;
3426 
3427 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3428 
3429 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3430 		hs_ep = hsotg->eps_in[idx];
3431 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3432 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3433 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3434 			epctrl |= DXEPCTL_SNAK;
3435 			epctrl |= DXEPCTL_EPDIS;
3436 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3437 		}
3438 	}
3439 
3440 	/* Clear interrupt */
3441 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3442 }
3443 
3444 /**
3445  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3446  * @hsotg: The device state:
3447  *
3448  * This interrupt indicates one of the following conditions occurred while
3449  * transmitting an ISOC transaction.
3450  * - Corrupted OUT Token for ISOC EP.
3451  * - Packet not complete in FIFO.
3452  *
3453  * The following actions will be taken:
3454  * - Determine the EP
3455  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3456  */
3457 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3458 {
3459 	u32 gintsts;
3460 	u32 gintmsk;
3461 	u32 epctrl;
3462 	struct dwc2_hsotg_ep *hs_ep;
3463 	int idx;
3464 
3465 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3466 
3467 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3468 		hs_ep = hsotg->eps_out[idx];
3469 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3470 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3471 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3472 			/* Unmask GOUTNAKEFF interrupt */
3473 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3474 			gintmsk |= GINTSTS_GOUTNAKEFF;
3475 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3476 
3477 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3478 			if (!(gintsts & GINTSTS_GOUTNAKEFF))
3479 				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3480 		}
3481 	}
3482 
3483 	/* Clear interrupt */
3484 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3485 }
3486 
3487 /**
3488  * dwc2_hsotg_irq - handle device interrupt
3489  * @irq: The IRQ number triggered
3490  * @pw: The pw value when registered the handler.
3491  */
3492 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3493 {
3494 	struct dwc2_hsotg *hsotg = pw;
3495 	int retry_count = 8;
3496 	u32 gintsts;
3497 	u32 gintmsk;
3498 
3499 	if (!dwc2_is_device_mode(hsotg))
3500 		return IRQ_NONE;
3501 
3502 	spin_lock(&hsotg->lock);
3503 irq_retry:
3504 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3505 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3506 
3507 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3508 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3509 
3510 	gintsts &= gintmsk;
3511 
3512 	if (gintsts & GINTSTS_RESETDET) {
3513 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3514 
3515 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3516 
3517 		/* This event must be used only if controller is suspended */
3518 		if (hsotg->lx_state == DWC2_L2) {
3519 			dwc2_exit_hibernation(hsotg, true);
3520 			hsotg->lx_state = DWC2_L0;
3521 		}
3522 	}
3523 
3524 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3525 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3526 		u32 connected = hsotg->connected;
3527 
3528 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3529 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3530 			dwc2_readl(hsotg->regs + GNPTXSTS));
3531 
3532 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3533 
3534 		/* Report disconnection if it is not already done. */
3535 		dwc2_hsotg_disconnect(hsotg);
3536 
3537 		/* Reset device address to zero */
3538 		__bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3539 
3540 		if (usb_status & GOTGCTL_BSESVLD && connected)
3541 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3542 	}
3543 
3544 	if (gintsts & GINTSTS_ENUMDONE) {
3545 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3546 
3547 		dwc2_hsotg_irq_enumdone(hsotg);
3548 	}
3549 
3550 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3551 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3552 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3553 		u32 daint_out, daint_in;
3554 		int ep;
3555 
3556 		daint &= daintmsk;
3557 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3558 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3559 
3560 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3561 
3562 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3563 						ep++, daint_out >>= 1) {
3564 			if (daint_out & 1)
3565 				dwc2_hsotg_epint(hsotg, ep, 0);
3566 		}
3567 
3568 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3569 						ep++, daint_in >>= 1) {
3570 			if (daint_in & 1)
3571 				dwc2_hsotg_epint(hsotg, ep, 1);
3572 		}
3573 	}
3574 
3575 	/* check both FIFOs */
3576 
3577 	if (gintsts & GINTSTS_NPTXFEMP) {
3578 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3579 
3580 		/*
3581 		 * Disable the interrupt to stop it happening again
3582 		 * unless one of these endpoint routines decides that
3583 		 * it needs re-enabling
3584 		 */
3585 
3586 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3587 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3588 	}
3589 
3590 	if (gintsts & GINTSTS_PTXFEMP) {
3591 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3592 
3593 		/* See note in GINTSTS_NPTxFEmp */
3594 
3595 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3596 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3597 	}
3598 
3599 	if (gintsts & GINTSTS_RXFLVL) {
3600 		/*
3601 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3602 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3603 		 * set.
3604 		 */
3605 
3606 		dwc2_hsotg_handle_rx(hsotg);
3607 	}
3608 
3609 	if (gintsts & GINTSTS_ERLYSUSP) {
3610 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3611 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3612 	}
3613 
3614 	/*
3615 	 * these next two seem to crop-up occasionally causing the core
3616 	 * to shutdown the USB transfer, so try clearing them and logging
3617 	 * the occurrence.
3618 	 */
3619 
3620 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3621 		u8 idx;
3622 		u32 epctrl;
3623 		u32 gintmsk;
3624 		struct dwc2_hsotg_ep *hs_ep;
3625 
3626 		/* Mask this interrupt */
3627 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3628 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3629 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3630 
3631 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3632 		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3633 			hs_ep = hsotg->eps_out[idx];
3634 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3635 
3636 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3637 				epctrl |= DXEPCTL_SNAK;
3638 				epctrl |= DXEPCTL_EPDIS;
3639 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3640 			}
3641 		}
3642 
3643 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3644 	}
3645 
3646 	if (gintsts & GINTSTS_GINNAKEFF) {
3647 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3648 
3649 		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3650 
3651 		dwc2_hsotg_dump(hsotg);
3652 	}
3653 
3654 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3655 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3656 
3657 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3658 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3659 
3660 	/*
3661 	 * if we've had fifo events, we should try and go around the
3662 	 * loop again to see if there's any point in returning yet.
3663 	 */
3664 
3665 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3666 		goto irq_retry;
3667 
3668 	spin_unlock(&hsotg->lock);
3669 
3670 	return IRQ_HANDLED;
3671 }
3672 
3673 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3674 				   u32 bit, u32 timeout)
3675 {
3676 	u32 i;
3677 
3678 	for (i = 0; i < timeout; i++) {
3679 		if (dwc2_readl(hs_otg->regs + reg) & bit)
3680 			return 0;
3681 		udelay(1);
3682 	}
3683 
3684 	return -ETIMEDOUT;
3685 }
3686 
3687 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3688 				   struct dwc2_hsotg_ep *hs_ep)
3689 {
3690 	u32 epctrl_reg;
3691 	u32 epint_reg;
3692 
3693 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3694 		DOEPCTL(hs_ep->index);
3695 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3696 		DOEPINT(hs_ep->index);
3697 
3698 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3699 		hs_ep->name);
3700 
3701 	if (hs_ep->dir_in) {
3702 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3703 			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3704 			/* Wait for Nak effect */
3705 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3706 						    DXEPINT_INEPNAKEFF, 100))
3707 				dev_warn(hsotg->dev,
3708 					 "%s: timeout DIEPINT.NAKEFF\n",
3709 					 __func__);
3710 		} else {
3711 			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3712 			/* Wait for Nak effect */
3713 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3714 						    GINTSTS_GINNAKEFF, 100))
3715 				dev_warn(hsotg->dev,
3716 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3717 					 __func__);
3718 		}
3719 	} else {
3720 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3721 			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3722 
3723 		/* Wait for global nak to take effect */
3724 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3725 					    GINTSTS_GOUTNAKEFF, 100))
3726 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3727 				 __func__);
3728 	}
3729 
3730 	/* Disable ep */
3731 	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3732 
3733 	/* Wait for ep to be disabled */
3734 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3735 		dev_warn(hsotg->dev,
3736 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3737 
3738 	/* Clear EPDISBLD interrupt */
3739 	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3740 
3741 	if (hs_ep->dir_in) {
3742 		unsigned short fifo_index;
3743 
3744 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3745 			fifo_index = hs_ep->fifo_index;
3746 		else
3747 			fifo_index = 0;
3748 
3749 		/* Flush TX FIFO */
3750 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3751 
3752 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3753 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3754 			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3755 
3756 	} else {
3757 		/* Remove global NAKs */
3758 		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3759 	}
3760 }
3761 
3762 /**
3763  * dwc2_hsotg_ep_enable - enable the given endpoint
3764  * @ep: The USB endpint to configure
3765  * @desc: The USB endpoint descriptor to configure with.
3766  *
3767  * This is called from the USB gadget code's usb_ep_enable().
3768  */
3769 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3770 				const struct usb_endpoint_descriptor *desc)
3771 {
3772 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3773 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3774 	unsigned long flags;
3775 	unsigned int index = hs_ep->index;
3776 	u32 epctrl_reg;
3777 	u32 epctrl;
3778 	u32 mps;
3779 	u32 mc;
3780 	u32 mask;
3781 	unsigned int dir_in;
3782 	unsigned int i, val, size;
3783 	int ret = 0;
3784 
3785 	dev_dbg(hsotg->dev,
3786 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3787 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3788 		desc->wMaxPacketSize, desc->bInterval);
3789 
3790 	/* not to be called for EP0 */
3791 	if (index == 0) {
3792 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3793 		return -EINVAL;
3794 	}
3795 
3796 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3797 	if (dir_in != hs_ep->dir_in) {
3798 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3799 		return -EINVAL;
3800 	}
3801 
3802 	mps = usb_endpoint_maxp(desc);
3803 	mc = usb_endpoint_maxp_mult(desc);
3804 
3805 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3806 
3807 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3808 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3809 
3810 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3811 		__func__, epctrl, epctrl_reg);
3812 
3813 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3814 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3815 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3816 			MAX_DMA_DESC_NUM_GENERIC *
3817 			sizeof(struct dwc2_dma_desc),
3818 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3819 		if (!hs_ep->desc_list) {
3820 			ret = -ENOMEM;
3821 			goto error2;
3822 		}
3823 	}
3824 
3825 	spin_lock_irqsave(&hsotg->lock, flags);
3826 
3827 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3828 	epctrl |= DXEPCTL_MPS(mps);
3829 
3830 	/*
3831 	 * mark the endpoint as active, otherwise the core may ignore
3832 	 * transactions entirely for this endpoint
3833 	 */
3834 	epctrl |= DXEPCTL_USBACTEP;
3835 
3836 	/* update the endpoint state */
3837 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3838 
3839 	/* default, set to non-periodic */
3840 	hs_ep->isochronous = 0;
3841 	hs_ep->periodic = 0;
3842 	hs_ep->halted = 0;
3843 	hs_ep->interval = desc->bInterval;
3844 
3845 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3846 	case USB_ENDPOINT_XFER_ISOC:
3847 		epctrl |= DXEPCTL_EPTYPE_ISO;
3848 		epctrl |= DXEPCTL_SETEVENFR;
3849 		hs_ep->isochronous = 1;
3850 		hs_ep->interval = 1 << (desc->bInterval - 1);
3851 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3852 		hs_ep->isoc_chain_num = 0;
3853 		hs_ep->next_desc = 0;
3854 		if (dir_in) {
3855 			hs_ep->periodic = 1;
3856 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3857 			mask |= DIEPMSK_NAKMSK;
3858 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3859 		} else {
3860 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3861 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3862 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3863 		}
3864 		break;
3865 
3866 	case USB_ENDPOINT_XFER_BULK:
3867 		epctrl |= DXEPCTL_EPTYPE_BULK;
3868 		break;
3869 
3870 	case USB_ENDPOINT_XFER_INT:
3871 		if (dir_in)
3872 			hs_ep->periodic = 1;
3873 
3874 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3875 			hs_ep->interval = 1 << (desc->bInterval - 1);
3876 
3877 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3878 		break;
3879 
3880 	case USB_ENDPOINT_XFER_CONTROL:
3881 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3882 		break;
3883 	}
3884 
3885 	/*
3886 	 * if the hardware has dedicated fifos, we must give each IN EP
3887 	 * a unique tx-fifo even if it is non-periodic.
3888 	 */
3889 	if (dir_in && hsotg->dedicated_fifos) {
3890 		u32 fifo_index = 0;
3891 		u32 fifo_size = UINT_MAX;
3892 
3893 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3894 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3895 			if (hsotg->fifo_map & (1 << i))
3896 				continue;
3897 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3898 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3899 			if (val < size)
3900 				continue;
3901 			/* Search for smallest acceptable fifo */
3902 			if (val < fifo_size) {
3903 				fifo_size = val;
3904 				fifo_index = i;
3905 			}
3906 		}
3907 		if (!fifo_index) {
3908 			dev_err(hsotg->dev,
3909 				"%s: No suitable fifo found\n", __func__);
3910 			ret = -ENOMEM;
3911 			goto error1;
3912 		}
3913 		hsotg->fifo_map |= 1 << fifo_index;
3914 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3915 		hs_ep->fifo_index = fifo_index;
3916 		hs_ep->fifo_size = fifo_size;
3917 	}
3918 
3919 	/* for non control endpoints, set PID to D0 */
3920 	if (index && !hs_ep->isochronous)
3921 		epctrl |= DXEPCTL_SETD0PID;
3922 
3923 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3924 		__func__, epctrl);
3925 
3926 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3927 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3928 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3929 
3930 	/* enable the endpoint interrupt */
3931 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3932 
3933 error1:
3934 	spin_unlock_irqrestore(&hsotg->lock, flags);
3935 
3936 error2:
3937 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3938 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3939 			sizeof(struct dwc2_dma_desc),
3940 			hs_ep->desc_list, hs_ep->desc_list_dma);
3941 		hs_ep->desc_list = NULL;
3942 	}
3943 
3944 	return ret;
3945 }
3946 
3947 /**
3948  * dwc2_hsotg_ep_disable - disable given endpoint
3949  * @ep: The endpoint to disable.
3950  */
3951 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3952 {
3953 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3954 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3955 	int dir_in = hs_ep->dir_in;
3956 	int index = hs_ep->index;
3957 	unsigned long flags;
3958 	u32 epctrl_reg;
3959 	u32 ctrl;
3960 
3961 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3962 
3963 	if (ep == &hsotg->eps_out[0]->ep) {
3964 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3965 		return -EINVAL;
3966 	}
3967 
3968 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3969 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
3970 		return -EINVAL;
3971 	}
3972 
3973 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3974 
3975 	spin_lock_irqsave(&hsotg->lock, flags);
3976 
3977 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3978 
3979 	if (ctrl & DXEPCTL_EPENA)
3980 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3981 
3982 	ctrl &= ~DXEPCTL_EPENA;
3983 	ctrl &= ~DXEPCTL_USBACTEP;
3984 	ctrl |= DXEPCTL_SNAK;
3985 
3986 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3987 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3988 
3989 	/* disable endpoint interrupts */
3990 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3991 
3992 	/* terminate all requests with shutdown */
3993 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
3994 
3995 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
3996 	hs_ep->fifo_index = 0;
3997 	hs_ep->fifo_size = 0;
3998 
3999 	spin_unlock_irqrestore(&hsotg->lock, flags);
4000 	return 0;
4001 }
4002 
4003 /**
4004  * on_list - check request is on the given endpoint
4005  * @ep: The endpoint to check.
4006  * @test: The request to test if it is on the endpoint.
4007  */
4008 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4009 {
4010 	struct dwc2_hsotg_req *req, *treq;
4011 
4012 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4013 		if (req == test)
4014 			return true;
4015 	}
4016 
4017 	return false;
4018 }
4019 
4020 /**
4021  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4022  * @ep: The endpoint to dequeue.
4023  * @req: The request to be removed from a queue.
4024  */
4025 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4026 {
4027 	struct dwc2_hsotg_req *hs_req = our_req(req);
4028 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4029 	struct dwc2_hsotg *hs = hs_ep->parent;
4030 	unsigned long flags;
4031 
4032 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4033 
4034 	spin_lock_irqsave(&hs->lock, flags);
4035 
4036 	if (!on_list(hs_ep, hs_req)) {
4037 		spin_unlock_irqrestore(&hs->lock, flags);
4038 		return -EINVAL;
4039 	}
4040 
4041 	/* Dequeue already started request */
4042 	if (req == &hs_ep->req->req)
4043 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4044 
4045 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4046 	spin_unlock_irqrestore(&hs->lock, flags);
4047 
4048 	return 0;
4049 }
4050 
4051 /**
4052  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4053  * @ep: The endpoint to set halt.
4054  * @value: Set or unset the halt.
4055  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4056  *       the endpoint is busy processing requests.
4057  *
4058  * We need to stall the endpoint immediately if request comes from set_feature
4059  * protocol command handler.
4060  */
4061 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4062 {
4063 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4064 	struct dwc2_hsotg *hs = hs_ep->parent;
4065 	int index = hs_ep->index;
4066 	u32 epreg;
4067 	u32 epctl;
4068 	u32 xfertype;
4069 
4070 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4071 
4072 	if (index == 0) {
4073 		if (value)
4074 			dwc2_hsotg_stall_ep0(hs);
4075 		else
4076 			dev_warn(hs->dev,
4077 				 "%s: can't clear halt on ep0\n", __func__);
4078 		return 0;
4079 	}
4080 
4081 	if (hs_ep->isochronous) {
4082 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4083 		return -EINVAL;
4084 	}
4085 
4086 	if (!now && value && !list_empty(&hs_ep->queue)) {
4087 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4088 			ep->name);
4089 		return -EAGAIN;
4090 	}
4091 
4092 	if (hs_ep->dir_in) {
4093 		epreg = DIEPCTL(index);
4094 		epctl = dwc2_readl(hs->regs + epreg);
4095 
4096 		if (value) {
4097 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4098 			if (epctl & DXEPCTL_EPENA)
4099 				epctl |= DXEPCTL_EPDIS;
4100 		} else {
4101 			epctl &= ~DXEPCTL_STALL;
4102 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4103 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4104 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4105 				epctl |= DXEPCTL_SETD0PID;
4106 		}
4107 		dwc2_writel(epctl, hs->regs + epreg);
4108 	} else {
4109 		epreg = DOEPCTL(index);
4110 		epctl = dwc2_readl(hs->regs + epreg);
4111 
4112 		if (value) {
4113 			epctl |= DXEPCTL_STALL;
4114 		} else {
4115 			epctl &= ~DXEPCTL_STALL;
4116 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4117 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4118 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4119 				epctl |= DXEPCTL_SETD0PID;
4120 		}
4121 		dwc2_writel(epctl, hs->regs + epreg);
4122 	}
4123 
4124 	hs_ep->halted = value;
4125 
4126 	return 0;
4127 }
4128 
4129 /**
4130  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4131  * @ep: The endpoint to set halt.
4132  * @value: Set or unset the halt.
4133  */
4134 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4135 {
4136 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4137 	struct dwc2_hsotg *hs = hs_ep->parent;
4138 	unsigned long flags = 0;
4139 	int ret = 0;
4140 
4141 	spin_lock_irqsave(&hs->lock, flags);
4142 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4143 	spin_unlock_irqrestore(&hs->lock, flags);
4144 
4145 	return ret;
4146 }
4147 
4148 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4149 	.enable		= dwc2_hsotg_ep_enable,
4150 	.disable	= dwc2_hsotg_ep_disable,
4151 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4152 	.free_request	= dwc2_hsotg_ep_free_request,
4153 	.queue		= dwc2_hsotg_ep_queue_lock,
4154 	.dequeue	= dwc2_hsotg_ep_dequeue,
4155 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4156 	/* note, don't believe we have any call for the fifo routines */
4157 };
4158 
4159 /**
4160  * dwc2_hsotg_init - initialize the usb core
4161  * @hsotg: The driver state
4162  */
4163 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4164 {
4165 	u32 trdtim;
4166 	u32 usbcfg;
4167 	/* unmask subset of endpoint interrupts */
4168 
4169 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4170 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4171 		    hsotg->regs + DIEPMSK);
4172 
4173 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4174 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4175 		    hsotg->regs + DOEPMSK);
4176 
4177 	dwc2_writel(0, hsotg->regs + DAINTMSK);
4178 
4179 	/* Be in disconnected state until gadget is registered */
4180 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4181 
4182 	/* setup fifos */
4183 
4184 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4185 		dwc2_readl(hsotg->regs + GRXFSIZ),
4186 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4187 
4188 	dwc2_hsotg_init_fifo(hsotg);
4189 
4190 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4191 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4192 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4193 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4194 
4195 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4196 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4197 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4198 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4199 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4200 
4201 	if (using_dma(hsotg))
4202 		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4203 }
4204 
4205 /**
4206  * dwc2_hsotg_udc_start - prepare the udc for work
4207  * @gadget: The usb gadget state
4208  * @driver: The usb gadget driver
4209  *
4210  * Perform initialization to prepare udc device and driver
4211  * to work.
4212  */
4213 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4214 				struct usb_gadget_driver *driver)
4215 {
4216 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4217 	unsigned long flags;
4218 	int ret;
4219 
4220 	if (!hsotg) {
4221 		pr_err("%s: called with no device\n", __func__);
4222 		return -ENODEV;
4223 	}
4224 
4225 	if (!driver) {
4226 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4227 		return -EINVAL;
4228 	}
4229 
4230 	if (driver->max_speed < USB_SPEED_FULL)
4231 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4232 
4233 	if (!driver->setup) {
4234 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4235 		return -EINVAL;
4236 	}
4237 
4238 	WARN_ON(hsotg->driver);
4239 
4240 	driver->driver.bus = NULL;
4241 	hsotg->driver = driver;
4242 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4243 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4244 
4245 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4246 		ret = dwc2_lowlevel_hw_enable(hsotg);
4247 		if (ret)
4248 			goto err;
4249 	}
4250 
4251 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4252 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4253 
4254 	spin_lock_irqsave(&hsotg->lock, flags);
4255 	if (dwc2_hw_is_device(hsotg)) {
4256 		dwc2_hsotg_init(hsotg);
4257 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4258 	}
4259 
4260 	hsotg->enabled = 0;
4261 	spin_unlock_irqrestore(&hsotg->lock, flags);
4262 
4263 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4264 
4265 	return 0;
4266 
4267 err:
4268 	hsotg->driver = NULL;
4269 	return ret;
4270 }
4271 
4272 /**
4273  * dwc2_hsotg_udc_stop - stop the udc
4274  * @gadget: The usb gadget state
4275  * @driver: The usb gadget driver
4276  *
4277  * Stop udc hw block and stay tunned for future transmissions
4278  */
4279 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4280 {
4281 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4282 	unsigned long flags = 0;
4283 	int ep;
4284 
4285 	if (!hsotg)
4286 		return -ENODEV;
4287 
4288 	/* all endpoints should be shutdown */
4289 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4290 		if (hsotg->eps_in[ep])
4291 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4292 		if (hsotg->eps_out[ep])
4293 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4294 	}
4295 
4296 	spin_lock_irqsave(&hsotg->lock, flags);
4297 
4298 	hsotg->driver = NULL;
4299 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4300 	hsotg->enabled = 0;
4301 
4302 	spin_unlock_irqrestore(&hsotg->lock, flags);
4303 
4304 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4305 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4306 
4307 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4308 		dwc2_lowlevel_hw_disable(hsotg);
4309 
4310 	return 0;
4311 }
4312 
4313 /**
4314  * dwc2_hsotg_gadget_getframe - read the frame number
4315  * @gadget: The usb gadget state
4316  *
4317  * Read the {micro} frame number
4318  */
4319 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4320 {
4321 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4322 }
4323 
4324 /**
4325  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4326  * @gadget: The usb gadget state
4327  * @is_on: Current state of the USB PHY
4328  *
4329  * Connect/Disconnect the USB PHY pullup
4330  */
4331 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4332 {
4333 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4334 	unsigned long flags = 0;
4335 
4336 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4337 		hsotg->op_state);
4338 
4339 	/* Don't modify pullup state while in host mode */
4340 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4341 		hsotg->enabled = is_on;
4342 		return 0;
4343 	}
4344 
4345 	spin_lock_irqsave(&hsotg->lock, flags);
4346 	if (is_on) {
4347 		hsotg->enabled = 1;
4348 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4349 		dwc2_hsotg_core_connect(hsotg);
4350 	} else {
4351 		dwc2_hsotg_core_disconnect(hsotg);
4352 		dwc2_hsotg_disconnect(hsotg);
4353 		hsotg->enabled = 0;
4354 	}
4355 
4356 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4357 	spin_unlock_irqrestore(&hsotg->lock, flags);
4358 
4359 	return 0;
4360 }
4361 
4362 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4363 {
4364 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4365 	unsigned long flags;
4366 
4367 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4368 	spin_lock_irqsave(&hsotg->lock, flags);
4369 
4370 	/*
4371 	 * If controller is hibernated, it must exit from hibernation
4372 	 * before being initialized / de-initialized
4373 	 */
4374 	if (hsotg->lx_state == DWC2_L2)
4375 		dwc2_exit_hibernation(hsotg, false);
4376 
4377 	if (is_active) {
4378 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4379 
4380 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4381 		if (hsotg->enabled)
4382 			dwc2_hsotg_core_connect(hsotg);
4383 	} else {
4384 		dwc2_hsotg_core_disconnect(hsotg);
4385 		dwc2_hsotg_disconnect(hsotg);
4386 	}
4387 
4388 	spin_unlock_irqrestore(&hsotg->lock, flags);
4389 	return 0;
4390 }
4391 
4392 /**
4393  * dwc2_hsotg_vbus_draw - report bMaxPower field
4394  * @gadget: The usb gadget state
4395  * @mA: Amount of current
4396  *
4397  * Report how much power the device may consume to the phy.
4398  */
4399 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4400 {
4401 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4402 
4403 	if (IS_ERR_OR_NULL(hsotg->uphy))
4404 		return -ENOTSUPP;
4405 	return usb_phy_set_power(hsotg->uphy, mA);
4406 }
4407 
4408 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4409 	.get_frame	= dwc2_hsotg_gadget_getframe,
4410 	.udc_start		= dwc2_hsotg_udc_start,
4411 	.udc_stop		= dwc2_hsotg_udc_stop,
4412 	.pullup                 = dwc2_hsotg_pullup,
4413 	.vbus_session		= dwc2_hsotg_vbus_session,
4414 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4415 };
4416 
4417 /**
4418  * dwc2_hsotg_initep - initialise a single endpoint
4419  * @hsotg: The device state.
4420  * @hs_ep: The endpoint to be initialised.
4421  * @epnum: The endpoint number
4422  *
4423  * Initialise the given endpoint (as part of the probe and device state
4424  * creation) to give to the gadget driver. Setup the endpoint name, any
4425  * direction information and other state that may be required.
4426  */
4427 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4428 			      struct dwc2_hsotg_ep *hs_ep,
4429 				       int epnum,
4430 				       bool dir_in)
4431 {
4432 	char *dir;
4433 
4434 	if (epnum == 0)
4435 		dir = "";
4436 	else if (dir_in)
4437 		dir = "in";
4438 	else
4439 		dir = "out";
4440 
4441 	hs_ep->dir_in = dir_in;
4442 	hs_ep->index = epnum;
4443 
4444 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4445 
4446 	INIT_LIST_HEAD(&hs_ep->queue);
4447 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4448 
4449 	/* add to the list of endpoints known by the gadget driver */
4450 	if (epnum)
4451 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4452 
4453 	hs_ep->parent = hsotg;
4454 	hs_ep->ep.name = hs_ep->name;
4455 
4456 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4457 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4458 	else
4459 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4460 					   epnum ? 1024 : EP0_MPS_LIMIT);
4461 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4462 
4463 	if (epnum == 0) {
4464 		hs_ep->ep.caps.type_control = true;
4465 	} else {
4466 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4467 			hs_ep->ep.caps.type_iso = true;
4468 			hs_ep->ep.caps.type_bulk = true;
4469 		}
4470 		hs_ep->ep.caps.type_int = true;
4471 	}
4472 
4473 	if (dir_in)
4474 		hs_ep->ep.caps.dir_in = true;
4475 	else
4476 		hs_ep->ep.caps.dir_out = true;
4477 
4478 	/*
4479 	 * if we're using dma, we need to set the next-endpoint pointer
4480 	 * to be something valid.
4481 	 */
4482 
4483 	if (using_dma(hsotg)) {
4484 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4485 
4486 		if (dir_in)
4487 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4488 		else
4489 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4490 	}
4491 }
4492 
4493 /**
4494  * dwc2_hsotg_hw_cfg - read HW configuration registers
4495  * @param: The device state
4496  *
4497  * Read the USB core HW configuration registers
4498  */
4499 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4500 {
4501 	u32 cfg;
4502 	u32 ep_type;
4503 	u32 i;
4504 
4505 	/* check hardware configuration */
4506 
4507 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4508 
4509 	/* Add ep0 */
4510 	hsotg->num_of_eps++;
4511 
4512 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4513 					sizeof(struct dwc2_hsotg_ep),
4514 					GFP_KERNEL);
4515 	if (!hsotg->eps_in[0])
4516 		return -ENOMEM;
4517 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4518 	hsotg->eps_out[0] = hsotg->eps_in[0];
4519 
4520 	cfg = hsotg->hw_params.dev_ep_dirs;
4521 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4522 		ep_type = cfg & 3;
4523 		/* Direction in or both */
4524 		if (!(ep_type & 2)) {
4525 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4526 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4527 			if (!hsotg->eps_in[i])
4528 				return -ENOMEM;
4529 		}
4530 		/* Direction out or both */
4531 		if (!(ep_type & 1)) {
4532 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4533 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4534 			if (!hsotg->eps_out[i])
4535 				return -ENOMEM;
4536 		}
4537 	}
4538 
4539 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4540 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4541 
4542 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4543 		 hsotg->num_of_eps,
4544 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4545 		 hsotg->fifo_mem);
4546 	return 0;
4547 }
4548 
4549 /**
4550  * dwc2_hsotg_dump - dump state of the udc
4551  * @param: The device state
4552  */
4553 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4554 {
4555 #ifdef DEBUG
4556 	struct device *dev = hsotg->dev;
4557 	void __iomem *regs = hsotg->regs;
4558 	u32 val;
4559 	int idx;
4560 
4561 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4562 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4563 		 dwc2_readl(regs + DIEPMSK));
4564 
4565 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4566 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4567 
4568 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4569 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4570 
4571 	/* show periodic fifo settings */
4572 
4573 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4574 		val = dwc2_readl(regs + DPTXFSIZN(idx));
4575 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4576 			 val >> FIFOSIZE_DEPTH_SHIFT,
4577 			 val & FIFOSIZE_STARTADDR_MASK);
4578 	}
4579 
4580 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4581 		dev_info(dev,
4582 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4583 			 dwc2_readl(regs + DIEPCTL(idx)),
4584 			 dwc2_readl(regs + DIEPTSIZ(idx)),
4585 			 dwc2_readl(regs + DIEPDMA(idx)));
4586 
4587 		val = dwc2_readl(regs + DOEPCTL(idx));
4588 		dev_info(dev,
4589 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4590 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4591 			 dwc2_readl(regs + DOEPTSIZ(idx)),
4592 			 dwc2_readl(regs + DOEPDMA(idx)));
4593 	}
4594 
4595 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4596 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4597 #endif
4598 }
4599 
4600 /**
4601  * dwc2_gadget_init - init function for gadget
4602  * @dwc2: The data structure for the DWC2 driver.
4603  * @irq: The IRQ number for the controller.
4604  */
4605 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4606 {
4607 	struct device *dev = hsotg->dev;
4608 	int epnum;
4609 	int ret;
4610 
4611 	/* Dump fifo information */
4612 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4613 		hsotg->params.g_np_tx_fifo_size);
4614 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4615 
4616 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4617 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4618 	hsotg->gadget.name = dev_name(dev);
4619 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4620 		hsotg->gadget.is_otg = 1;
4621 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4622 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4623 
4624 	ret = dwc2_hsotg_hw_cfg(hsotg);
4625 	if (ret) {
4626 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4627 		return ret;
4628 	}
4629 
4630 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4631 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4632 	if (!hsotg->ctrl_buff)
4633 		return -ENOMEM;
4634 
4635 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4636 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4637 	if (!hsotg->ep0_buff)
4638 		return -ENOMEM;
4639 
4640 	if (using_desc_dma(hsotg)) {
4641 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4642 		if (ret < 0)
4643 			return ret;
4644 	}
4645 
4646 	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4647 			       dev_name(hsotg->dev), hsotg);
4648 	if (ret < 0) {
4649 		dev_err(dev, "cannot claim IRQ for gadget\n");
4650 		return ret;
4651 	}
4652 
4653 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4654 
4655 	if (hsotg->num_of_eps == 0) {
4656 		dev_err(dev, "wrong number of EPs (zero)\n");
4657 		return -EINVAL;
4658 	}
4659 
4660 	/* setup endpoint information */
4661 
4662 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4663 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4664 
4665 	/* allocate EP0 request */
4666 
4667 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4668 						     GFP_KERNEL);
4669 	if (!hsotg->ctrl_req) {
4670 		dev_err(dev, "failed to allocate ctrl req\n");
4671 		return -ENOMEM;
4672 	}
4673 
4674 	/* initialise the endpoints now the core has been initialised */
4675 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4676 		if (hsotg->eps_in[epnum])
4677 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4678 					  epnum, 1);
4679 		if (hsotg->eps_out[epnum])
4680 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4681 					  epnum, 0);
4682 	}
4683 
4684 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4685 	if (ret)
4686 		return ret;
4687 
4688 	dwc2_hsotg_dump(hsotg);
4689 
4690 	return 0;
4691 }
4692 
4693 /**
4694  * dwc2_hsotg_remove - remove function for hsotg driver
4695  * @pdev: The platform information for the driver
4696  */
4697 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4698 {
4699 	usb_del_gadget_udc(&hsotg->gadget);
4700 
4701 	return 0;
4702 }
4703 
4704 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4705 {
4706 	unsigned long flags;
4707 
4708 	if (hsotg->lx_state != DWC2_L0)
4709 		return 0;
4710 
4711 	if (hsotg->driver) {
4712 		int ep;
4713 
4714 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4715 			 hsotg->driver->driver.name);
4716 
4717 		spin_lock_irqsave(&hsotg->lock, flags);
4718 		if (hsotg->enabled)
4719 			dwc2_hsotg_core_disconnect(hsotg);
4720 		dwc2_hsotg_disconnect(hsotg);
4721 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4722 		spin_unlock_irqrestore(&hsotg->lock, flags);
4723 
4724 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4725 			if (hsotg->eps_in[ep])
4726 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4727 			if (hsotg->eps_out[ep])
4728 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4729 		}
4730 	}
4731 
4732 	return 0;
4733 }
4734 
4735 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4736 {
4737 	unsigned long flags;
4738 
4739 	if (hsotg->lx_state == DWC2_L2)
4740 		return 0;
4741 
4742 	if (hsotg->driver) {
4743 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4744 			 hsotg->driver->driver.name);
4745 
4746 		spin_lock_irqsave(&hsotg->lock, flags);
4747 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4748 		if (hsotg->enabled)
4749 			dwc2_hsotg_core_connect(hsotg);
4750 		spin_unlock_irqrestore(&hsotg->lock, flags);
4751 	}
4752 
4753 	return 0;
4754 }
4755 
4756 /**
4757  * dwc2_backup_device_registers() - Backup controller device registers.
4758  * When suspending usb bus, registers needs to be backuped
4759  * if controller power is disabled once suspended.
4760  *
4761  * @hsotg: Programming view of the DWC_otg controller
4762  */
4763 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4764 {
4765 	struct dwc2_dregs_backup *dr;
4766 	int i;
4767 
4768 	dev_dbg(hsotg->dev, "%s\n", __func__);
4769 
4770 	/* Backup dev regs */
4771 	dr = &hsotg->dr_backup;
4772 
4773 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4774 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4775 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4776 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4777 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4778 
4779 	for (i = 0; i < hsotg->num_of_eps; i++) {
4780 		/* Backup IN EPs */
4781 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4782 
4783 		/* Ensure DATA PID is correctly configured */
4784 		if (dr->diepctl[i] & DXEPCTL_DPID)
4785 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4786 		else
4787 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4788 
4789 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4790 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4791 
4792 		/* Backup OUT EPs */
4793 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4794 
4795 		/* Ensure DATA PID is correctly configured */
4796 		if (dr->doepctl[i] & DXEPCTL_DPID)
4797 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4798 		else
4799 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4800 
4801 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4802 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4803 	}
4804 	dr->valid = true;
4805 	return 0;
4806 }
4807 
4808 /**
4809  * dwc2_restore_device_registers() - Restore controller device registers.
4810  * When resuming usb bus, device registers needs to be restored
4811  * if controller power were disabled.
4812  *
4813  * @hsotg: Programming view of the DWC_otg controller
4814  */
4815 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4816 {
4817 	struct dwc2_dregs_backup *dr;
4818 	u32 dctl;
4819 	int i;
4820 
4821 	dev_dbg(hsotg->dev, "%s\n", __func__);
4822 
4823 	/* Restore dev regs */
4824 	dr = &hsotg->dr_backup;
4825 	if (!dr->valid) {
4826 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4827 			__func__);
4828 		return -EINVAL;
4829 	}
4830 	dr->valid = false;
4831 
4832 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4833 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4834 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4835 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4836 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4837 
4838 	for (i = 0; i < hsotg->num_of_eps; i++) {
4839 		/* Restore IN EPs */
4840 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4841 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4842 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4843 
4844 		/* Restore OUT EPs */
4845 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4846 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4847 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4848 	}
4849 
4850 	/* Set the Power-On Programming done bit */
4851 	dctl = dwc2_readl(hsotg->regs + DCTL);
4852 	dctl |= DCTL_PWRONPRGDONE;
4853 	dwc2_writel(dctl, hsotg->regs + DCTL);
4854 
4855 	return 0;
4856 }
4857