1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 31 #include "core.h" 32 #include "hw.h" 33 34 /* conversion functions */ 35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 36 { 37 return container_of(req, struct dwc2_hsotg_req, req); 38 } 39 40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 41 { 42 return container_of(ep, struct dwc2_hsotg_ep, ep); 43 } 44 45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 46 { 47 return container_of(gadget, struct dwc2_hsotg, gadget); 48 } 49 50 static inline void __orr32(void __iomem *ptr, u32 val) 51 { 52 dwc2_writel(dwc2_readl(ptr) | val, ptr); 53 } 54 55 static inline void __bic32(void __iomem *ptr, u32 val) 56 { 57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr); 58 } 59 60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 61 u32 ep_index, u32 dir_in) 62 { 63 if (dir_in) 64 return hsotg->eps_in[ep_index]; 65 else 66 return hsotg->eps_out[ep_index]; 67 } 68 69 /* forward declaration of functions */ 70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 71 72 /** 73 * using_dma - return the DMA status of the driver. 74 * @hsotg: The driver state. 75 * 76 * Return true if we're using DMA. 77 * 78 * Currently, we have the DMA support code worked into everywhere 79 * that needs it, but the AMBA DMA implementation in the hardware can 80 * only DMA from 32bit aligned addresses. This means that gadgets such 81 * as the CDC Ethernet cannot work as they often pass packets which are 82 * not 32bit aligned. 83 * 84 * Unfortunately the choice to use DMA or not is global to the controller 85 * and seems to be only settable when the controller is being put through 86 * a core reset. This means we either need to fix the gadgets to take 87 * account of DMA alignment, or add bounce buffers (yuerk). 88 * 89 * g_using_dma is set depending on dts flag. 90 */ 91 static inline bool using_dma(struct dwc2_hsotg *hsotg) 92 { 93 return hsotg->params.g_dma; 94 } 95 96 /* 97 * using_desc_dma - return the descriptor DMA status of the driver. 98 * @hsotg: The driver state. 99 * 100 * Return true if we're using descriptor DMA. 101 */ 102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 103 { 104 return hsotg->params.g_dma_desc; 105 } 106 107 /** 108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 109 * @hs_ep: The endpoint 110 * @increment: The value to increment by 111 * 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 114 */ 115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 116 { 117 hs_ep->target_frame += hs_ep->interval; 118 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 119 hs_ep->frame_overrun = 1; 120 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 121 } else { 122 hs_ep->frame_overrun = 0; 123 } 124 } 125 126 /** 127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 128 * @hsotg: The device state 129 * @ints: A bitmask of the interrupts to enable 130 */ 131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 132 { 133 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 134 u32 new_gsintmsk; 135 136 new_gsintmsk = gsintmsk | ints; 137 138 if (new_gsintmsk != gsintmsk) { 139 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 140 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 141 } 142 } 143 144 /** 145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 146 * @hsotg: The device state 147 * @ints: A bitmask of the interrupts to enable 148 */ 149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 150 { 151 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 152 u32 new_gsintmsk; 153 154 new_gsintmsk = gsintmsk & ~ints; 155 156 if (new_gsintmsk != gsintmsk) 157 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 158 } 159 160 /** 161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 162 * @hsotg: The device state 163 * @ep: The endpoint index 164 * @dir_in: True if direction is in. 165 * @en: The enable value, true to enable 166 * 167 * Set or clear the mask for an individual endpoint's interrupt 168 * request. 169 */ 170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 171 unsigned int ep, unsigned int dir_in, 172 unsigned int en) 173 { 174 unsigned long flags; 175 u32 bit = 1 << ep; 176 u32 daint; 177 178 if (!dir_in) 179 bit <<= 16; 180 181 local_irq_save(flags); 182 daint = dwc2_readl(hsotg->regs + DAINTMSK); 183 if (en) 184 daint |= bit; 185 else 186 daint &= ~bit; 187 dwc2_writel(daint, hsotg->regs + DAINTMSK); 188 local_irq_restore(flags); 189 } 190 191 /** 192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 193 */ 194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 195 { 196 if (hsotg->hw_params.en_multiple_tx_fifo) 197 /* In dedicated FIFO mode we need count of IN EPs */ 198 return hsotg->hw_params.num_dev_in_eps; 199 else 200 /* In shared FIFO mode we need count of Periodic IN EPs */ 201 return hsotg->hw_params.num_dev_perio_in_ep; 202 } 203 204 /** 205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 206 * device mode TX FIFOs 207 */ 208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 209 { 210 int addr; 211 int tx_addr_max; 212 u32 np_tx_fifo_size; 213 214 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 215 hsotg->params.g_np_tx_fifo_size); 216 217 /* Get Endpoint Info Control block size in DWORDs. */ 218 tx_addr_max = hsotg->hw_params.total_fifo_size; 219 220 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 221 if (tx_addr_max <= addr) 222 return 0; 223 224 return tx_addr_max - addr; 225 } 226 227 /** 228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 229 * TX FIFOs 230 */ 231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 232 { 233 int tx_fifo_count; 234 int tx_fifo_depth; 235 236 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 237 238 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 239 240 if (!tx_fifo_count) 241 return tx_fifo_depth; 242 else 243 return tx_fifo_depth / tx_fifo_count; 244 } 245 246 /** 247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 248 * @hsotg: The device instance. 249 */ 250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 251 { 252 unsigned int ep; 253 unsigned int addr; 254 int timeout; 255 u32 val; 256 u32 *txfsz = hsotg->params.g_tx_fifo_size; 257 258 /* Reset fifo map if not correctly cleared during previous session */ 259 WARN_ON(hsotg->fifo_map); 260 hsotg->fifo_map = 0; 261 262 /* set RX/NPTX FIFO sizes */ 263 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ); 264 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) | 265 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 266 hsotg->regs + GNPTXFSIZ); 267 268 /* 269 * arange all the rest of the TX FIFOs, as some versions of this 270 * block have overlapping default addresses. This also ensures 271 * that if the settings have been changed, then they are set to 272 * known values. 273 */ 274 275 /* start at the end of the GNPTXFSIZ, rounded up */ 276 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 277 278 /* 279 * Configure fifos sizes from provided configuration and assign 280 * them to endpoints dynamically according to maxpacket size value of 281 * given endpoint. 282 */ 283 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 284 if (!txfsz[ep]) 285 continue; 286 val = addr; 287 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 288 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 289 "insufficient fifo memory"); 290 addr += txfsz[ep]; 291 292 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep)); 293 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep)); 294 } 295 296 dwc2_writel(hsotg->hw_params.total_fifo_size | 297 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 298 hsotg->regs + GDFIFOCFG); 299 /* 300 * according to p428 of the design guide, we need to ensure that 301 * all fifos are flushed before continuing 302 */ 303 304 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 305 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 306 307 /* wait until the fifos are both flushed */ 308 timeout = 100; 309 while (1) { 310 val = dwc2_readl(hsotg->regs + GRSTCTL); 311 312 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 313 break; 314 315 if (--timeout == 0) { 316 dev_err(hsotg->dev, 317 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 318 __func__, val); 319 break; 320 } 321 322 udelay(1); 323 } 324 325 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 326 } 327 328 /** 329 * @ep: USB endpoint to allocate request for. 330 * @flags: Allocation flags 331 * 332 * Allocate a new USB request structure appropriate for the specified endpoint 333 */ 334 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 335 gfp_t flags) 336 { 337 struct dwc2_hsotg_req *req; 338 339 req = kzalloc(sizeof(*req), flags); 340 if (!req) 341 return NULL; 342 343 INIT_LIST_HEAD(&req->queue); 344 345 return &req->req; 346 } 347 348 /** 349 * is_ep_periodic - return true if the endpoint is in periodic mode. 350 * @hs_ep: The endpoint to query. 351 * 352 * Returns true if the endpoint is in periodic mode, meaning it is being 353 * used for an Interrupt or ISO transfer. 354 */ 355 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 356 { 357 return hs_ep->periodic; 358 } 359 360 /** 361 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 362 * @hsotg: The device state. 363 * @hs_ep: The endpoint for the request 364 * @hs_req: The request being processed. 365 * 366 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 367 * of a request to ensure the buffer is ready for access by the caller. 368 */ 369 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 370 struct dwc2_hsotg_ep *hs_ep, 371 struct dwc2_hsotg_req *hs_req) 372 { 373 struct usb_request *req = &hs_req->req; 374 375 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 376 } 377 378 /* 379 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 380 * for Control endpoint 381 * @hsotg: The device state. 382 * 383 * This function will allocate 4 descriptor chains for EP 0: 2 for 384 * Setup stage, per one for IN and OUT data/status transactions. 385 */ 386 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 387 { 388 hsotg->setup_desc[0] = 389 dmam_alloc_coherent(hsotg->dev, 390 sizeof(struct dwc2_dma_desc), 391 &hsotg->setup_desc_dma[0], 392 GFP_KERNEL); 393 if (!hsotg->setup_desc[0]) 394 goto fail; 395 396 hsotg->setup_desc[1] = 397 dmam_alloc_coherent(hsotg->dev, 398 sizeof(struct dwc2_dma_desc), 399 &hsotg->setup_desc_dma[1], 400 GFP_KERNEL); 401 if (!hsotg->setup_desc[1]) 402 goto fail; 403 404 hsotg->ctrl_in_desc = 405 dmam_alloc_coherent(hsotg->dev, 406 sizeof(struct dwc2_dma_desc), 407 &hsotg->ctrl_in_desc_dma, 408 GFP_KERNEL); 409 if (!hsotg->ctrl_in_desc) 410 goto fail; 411 412 hsotg->ctrl_out_desc = 413 dmam_alloc_coherent(hsotg->dev, 414 sizeof(struct dwc2_dma_desc), 415 &hsotg->ctrl_out_desc_dma, 416 GFP_KERNEL); 417 if (!hsotg->ctrl_out_desc) 418 goto fail; 419 420 return 0; 421 422 fail: 423 return -ENOMEM; 424 } 425 426 /** 427 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 428 * @hsotg: The controller state. 429 * @hs_ep: The endpoint we're going to write for. 430 * @hs_req: The request to write data for. 431 * 432 * This is called when the TxFIFO has some space in it to hold a new 433 * transmission and we have something to give it. The actual setup of 434 * the data size is done elsewhere, so all we have to do is to actually 435 * write the data. 436 * 437 * The return value is zero if there is more space (or nothing was done) 438 * otherwise -ENOSPC is returned if the FIFO space was used up. 439 * 440 * This routine is only needed for PIO 441 */ 442 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 443 struct dwc2_hsotg_ep *hs_ep, 444 struct dwc2_hsotg_req *hs_req) 445 { 446 bool periodic = is_ep_periodic(hs_ep); 447 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 448 int buf_pos = hs_req->req.actual; 449 int to_write = hs_ep->size_loaded; 450 void *data; 451 int can_write; 452 int pkt_round; 453 int max_transfer; 454 455 to_write -= (buf_pos - hs_ep->last_load); 456 457 /* if there's nothing to write, get out early */ 458 if (to_write == 0) 459 return 0; 460 461 if (periodic && !hsotg->dedicated_fifos) { 462 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 463 int size_left; 464 int size_done; 465 466 /* 467 * work out how much data was loaded so we can calculate 468 * how much data is left in the fifo. 469 */ 470 471 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 472 473 /* 474 * if shared fifo, we cannot write anything until the 475 * previous data has been completely sent. 476 */ 477 if (hs_ep->fifo_load != 0) { 478 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 479 return -ENOSPC; 480 } 481 482 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 483 __func__, size_left, 484 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 485 486 /* how much of the data has moved */ 487 size_done = hs_ep->size_loaded - size_left; 488 489 /* how much data is left in the fifo */ 490 can_write = hs_ep->fifo_load - size_done; 491 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 492 __func__, can_write); 493 494 can_write = hs_ep->fifo_size - can_write; 495 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 496 __func__, can_write); 497 498 if (can_write <= 0) { 499 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 500 return -ENOSPC; 501 } 502 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 503 can_write = dwc2_readl(hsotg->regs + 504 DTXFSTS(hs_ep->fifo_index)); 505 506 can_write &= 0xffff; 507 can_write *= 4; 508 } else { 509 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 510 dev_dbg(hsotg->dev, 511 "%s: no queue slots available (0x%08x)\n", 512 __func__, gnptxsts); 513 514 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 515 return -ENOSPC; 516 } 517 518 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 519 can_write *= 4; /* fifo size is in 32bit quantities. */ 520 } 521 522 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 523 524 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 525 __func__, gnptxsts, can_write, to_write, max_transfer); 526 527 /* 528 * limit to 512 bytes of data, it seems at least on the non-periodic 529 * FIFO, requests of >512 cause the endpoint to get stuck with a 530 * fragment of the end of the transfer in it. 531 */ 532 if (can_write > 512 && !periodic) 533 can_write = 512; 534 535 /* 536 * limit the write to one max-packet size worth of data, but allow 537 * the transfer to return that it did not run out of fifo space 538 * doing it. 539 */ 540 if (to_write > max_transfer) { 541 to_write = max_transfer; 542 543 /* it's needed only when we do not use dedicated fifos */ 544 if (!hsotg->dedicated_fifos) 545 dwc2_hsotg_en_gsint(hsotg, 546 periodic ? GINTSTS_PTXFEMP : 547 GINTSTS_NPTXFEMP); 548 } 549 550 /* see if we can write data */ 551 552 if (to_write > can_write) { 553 to_write = can_write; 554 pkt_round = to_write % max_transfer; 555 556 /* 557 * Round the write down to an 558 * exact number of packets. 559 * 560 * Note, we do not currently check to see if we can ever 561 * write a full packet or not to the FIFO. 562 */ 563 564 if (pkt_round) 565 to_write -= pkt_round; 566 567 /* 568 * enable correct FIFO interrupt to alert us when there 569 * is more room left. 570 */ 571 572 /* it's needed only when we do not use dedicated fifos */ 573 if (!hsotg->dedicated_fifos) 574 dwc2_hsotg_en_gsint(hsotg, 575 periodic ? GINTSTS_PTXFEMP : 576 GINTSTS_NPTXFEMP); 577 } 578 579 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 580 to_write, hs_req->req.length, can_write, buf_pos); 581 582 if (to_write <= 0) 583 return -ENOSPC; 584 585 hs_req->req.actual = buf_pos + to_write; 586 hs_ep->total_data += to_write; 587 588 if (periodic) 589 hs_ep->fifo_load += to_write; 590 591 to_write = DIV_ROUND_UP(to_write, 4); 592 data = hs_req->req.buf + buf_pos; 593 594 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 595 596 return (to_write >= can_write) ? -ENOSPC : 0; 597 } 598 599 /** 600 * get_ep_limit - get the maximum data legnth for this endpoint 601 * @hs_ep: The endpoint 602 * 603 * Return the maximum data that can be queued in one go on a given endpoint 604 * so that transfers that are too long can be split. 605 */ 606 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 607 { 608 int index = hs_ep->index; 609 unsigned int maxsize; 610 unsigned int maxpkt; 611 612 if (index != 0) { 613 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 614 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 615 } else { 616 maxsize = 64 + 64; 617 if (hs_ep->dir_in) 618 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 619 else 620 maxpkt = 2; 621 } 622 623 /* we made the constant loading easier above by using +1 */ 624 maxpkt--; 625 maxsize--; 626 627 /* 628 * constrain by packet count if maxpkts*pktsize is greater 629 * than the length register size. 630 */ 631 632 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 633 maxsize = maxpkt * hs_ep->ep.maxpacket; 634 635 return maxsize; 636 } 637 638 /** 639 * dwc2_hsotg_read_frameno - read current frame number 640 * @hsotg: The device instance 641 * 642 * Return the current frame number 643 */ 644 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 645 { 646 u32 dsts; 647 648 dsts = dwc2_readl(hsotg->regs + DSTS); 649 dsts &= DSTS_SOFFN_MASK; 650 dsts >>= DSTS_SOFFN_SHIFT; 651 652 return dsts; 653 } 654 655 /** 656 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 657 * DMA descriptor chain prepared for specific endpoint 658 * @hs_ep: The endpoint 659 * 660 * Return the maximum data that can be queued in one go on a given endpoint 661 * depending on its descriptor chain capacity so that transfers that 662 * are too long can be split. 663 */ 664 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 665 { 666 int is_isoc = hs_ep->isochronous; 667 unsigned int maxsize; 668 669 if (is_isoc) 670 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 671 DEV_DMA_ISOC_RX_NBYTES_LIMIT; 672 else 673 maxsize = DEV_DMA_NBYTES_LIMIT; 674 675 /* Above size of one descriptor was chosen, multiple it */ 676 maxsize *= MAX_DMA_DESC_NUM_GENERIC; 677 678 return maxsize; 679 } 680 681 /* 682 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 683 * @hs_ep: The endpoint 684 * @mask: RX/TX bytes mask to be defined 685 * 686 * Returns maximum data payload for one descriptor after analyzing endpoint 687 * characteristics. 688 * DMA descriptor transfer bytes limit depends on EP type: 689 * Control out - MPS, 690 * Isochronous - descriptor rx/tx bytes bitfield limit, 691 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 692 * have concatenations from various descriptors within one packet. 693 * 694 * Selects corresponding mask for RX/TX bytes as well. 695 */ 696 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 697 { 698 u32 mps = hs_ep->ep.maxpacket; 699 int dir_in = hs_ep->dir_in; 700 u32 desc_size = 0; 701 702 if (!hs_ep->index && !dir_in) { 703 desc_size = mps; 704 *mask = DEV_DMA_NBYTES_MASK; 705 } else if (hs_ep->isochronous) { 706 if (dir_in) { 707 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 708 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 709 } else { 710 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 711 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 712 } 713 } else { 714 desc_size = DEV_DMA_NBYTES_LIMIT; 715 *mask = DEV_DMA_NBYTES_MASK; 716 717 /* Round down desc_size to be mps multiple */ 718 desc_size -= desc_size % mps; 719 } 720 721 return desc_size; 722 } 723 724 /* 725 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 726 * @hs_ep: The endpoint 727 * @dma_buff: DMA address to use 728 * @len: Length of the transfer 729 * 730 * This function will iterate over descriptor chain and fill its entries 731 * with corresponding information based on transfer data. 732 */ 733 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 734 dma_addr_t dma_buff, 735 unsigned int len) 736 { 737 struct dwc2_hsotg *hsotg = hs_ep->parent; 738 int dir_in = hs_ep->dir_in; 739 struct dwc2_dma_desc *desc = hs_ep->desc_list; 740 u32 mps = hs_ep->ep.maxpacket; 741 u32 maxsize = 0; 742 u32 offset = 0; 743 u32 mask = 0; 744 int i; 745 746 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 747 748 hs_ep->desc_count = (len / maxsize) + 749 ((len % maxsize) ? 1 : 0); 750 if (len == 0) 751 hs_ep->desc_count = 1; 752 753 for (i = 0; i < hs_ep->desc_count; ++i) { 754 desc->status = 0; 755 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 756 << DEV_DMA_BUFF_STS_SHIFT); 757 758 if (len > maxsize) { 759 if (!hs_ep->index && !dir_in) 760 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 761 762 desc->status |= (maxsize << 763 DEV_DMA_NBYTES_SHIFT & mask); 764 desc->buf = dma_buff + offset; 765 766 len -= maxsize; 767 offset += maxsize; 768 } else { 769 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 770 771 if (dir_in) 772 desc->status |= (len % mps) ? DEV_DMA_SHORT : 773 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0); 774 if (len > maxsize) 775 dev_err(hsotg->dev, "wrong len %d\n", len); 776 777 desc->status |= 778 len << DEV_DMA_NBYTES_SHIFT & mask; 779 desc->buf = dma_buff + offset; 780 } 781 782 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 783 desc->status |= (DEV_DMA_BUFF_STS_HREADY 784 << DEV_DMA_BUFF_STS_SHIFT); 785 desc++; 786 } 787 } 788 789 /* 790 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 791 * @hs_ep: The isochronous endpoint. 792 * @dma_buff: usb requests dma buffer. 793 * @len: usb request transfer length. 794 * 795 * Finds out index of first free entry either in the bottom or up half of 796 * descriptor chain depend on which is under SW control and not processed 797 * by HW. Then fills that descriptor with the data of the arrived usb request, 798 * frame info, sets Last and IOC bits increments next_desc. If filled 799 * descriptor is not the first one, removes L bit from the previous descriptor 800 * status. 801 */ 802 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 803 dma_addr_t dma_buff, unsigned int len) 804 { 805 struct dwc2_dma_desc *desc; 806 struct dwc2_hsotg *hsotg = hs_ep->parent; 807 u32 index; 808 u32 maxsize = 0; 809 u32 mask = 0; 810 811 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 812 if (len > maxsize) { 813 dev_err(hsotg->dev, "wrong len %d\n", len); 814 return -EINVAL; 815 } 816 817 /* 818 * If SW has already filled half of chain, then return and wait for 819 * the other chain to be processed by HW. 820 */ 821 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2) 822 return -EBUSY; 823 824 /* Increment frame number by interval for IN */ 825 if (hs_ep->dir_in) 826 dwc2_gadget_incr_frame_num(hs_ep); 827 828 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num + 829 hs_ep->next_desc; 830 831 /* Sanity check of calculated index */ 832 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) || 833 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) { 834 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index); 835 return -EINVAL; 836 } 837 838 desc = &hs_ep->desc_list[index]; 839 840 /* Clear L bit of previous desc if more than one entries in the chain */ 841 if (hs_ep->next_desc) 842 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 843 844 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 845 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 846 847 desc->status = 0; 848 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 849 850 desc->buf = dma_buff; 851 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 852 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 853 854 if (hs_ep->dir_in) { 855 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) & 856 DEV_DMA_ISOC_PID_MASK) | 857 ((len % hs_ep->ep.maxpacket) ? 858 DEV_DMA_SHORT : 0) | 859 ((hs_ep->target_frame << 860 DEV_DMA_ISOC_FRNUM_SHIFT) & 861 DEV_DMA_ISOC_FRNUM_MASK); 862 } 863 864 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 865 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 866 867 /* Update index of last configured entry in the chain */ 868 hs_ep->next_desc++; 869 870 return 0; 871 } 872 873 /* 874 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 875 * @hs_ep: The isochronous endpoint. 876 * 877 * Prepare first descriptor chain for isochronous endpoints. Afterwards 878 * write DMA address to HW and enable the endpoint. 879 * 880 * Switch between descriptor chains via isoc_chain_num to give SW opportunity 881 * to prepare second descriptor chain while first one is being processed by HW. 882 */ 883 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 884 { 885 struct dwc2_hsotg *hsotg = hs_ep->parent; 886 struct dwc2_hsotg_req *hs_req, *treq; 887 int index = hs_ep->index; 888 int ret; 889 u32 dma_reg; 890 u32 depctl; 891 u32 ctrl; 892 893 if (list_empty(&hs_ep->queue)) { 894 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 895 return; 896 } 897 898 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 899 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 900 hs_req->req.length); 901 if (ret) { 902 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 903 break; 904 } 905 } 906 907 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 908 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 909 910 /* write descriptor chain address to control register */ 911 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 912 913 ctrl = dwc2_readl(hsotg->regs + depctl); 914 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 915 dwc2_writel(ctrl, hsotg->regs + depctl); 916 917 /* Switch ISOC descriptor chain number being processed by SW*/ 918 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 919 hs_ep->next_desc = 0; 920 } 921 922 /** 923 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 924 * @hsotg: The controller state. 925 * @hs_ep: The endpoint to process a request for 926 * @hs_req: The request to start. 927 * @continuing: True if we are doing more for the current request. 928 * 929 * Start the given request running by setting the endpoint registers 930 * appropriately, and writing any data to the FIFOs. 931 */ 932 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 933 struct dwc2_hsotg_ep *hs_ep, 934 struct dwc2_hsotg_req *hs_req, 935 bool continuing) 936 { 937 struct usb_request *ureq = &hs_req->req; 938 int index = hs_ep->index; 939 int dir_in = hs_ep->dir_in; 940 u32 epctrl_reg; 941 u32 epsize_reg; 942 u32 epsize; 943 u32 ctrl; 944 unsigned int length; 945 unsigned int packets; 946 unsigned int maxreq; 947 unsigned int dma_reg; 948 949 if (index != 0) { 950 if (hs_ep->req && !continuing) { 951 dev_err(hsotg->dev, "%s: active request\n", __func__); 952 WARN_ON(1); 953 return; 954 } else if (hs_ep->req != hs_req && continuing) { 955 dev_err(hsotg->dev, 956 "%s: continue different req\n", __func__); 957 WARN_ON(1); 958 return; 959 } 960 } 961 962 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 963 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 964 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 965 966 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 967 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index, 968 hs_ep->dir_in ? "in" : "out"); 969 970 /* If endpoint is stalled, we will restart request later */ 971 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 972 973 if (index && ctrl & DXEPCTL_STALL) { 974 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 975 return; 976 } 977 978 length = ureq->length - ureq->actual; 979 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 980 ureq->length, ureq->actual); 981 982 if (!using_desc_dma(hsotg)) 983 maxreq = get_ep_limit(hs_ep); 984 else 985 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 986 987 if (length > maxreq) { 988 int round = maxreq % hs_ep->ep.maxpacket; 989 990 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 991 __func__, length, maxreq, round); 992 993 /* round down to multiple of packets */ 994 if (round) 995 maxreq -= round; 996 997 length = maxreq; 998 } 999 1000 if (length) 1001 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1002 else 1003 packets = 1; /* send one packet if length is zero. */ 1004 1005 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1006 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 1007 return; 1008 } 1009 1010 if (dir_in && index != 0) 1011 if (hs_ep->isochronous) 1012 epsize = DXEPTSIZ_MC(packets); 1013 else 1014 epsize = DXEPTSIZ_MC(1); 1015 else 1016 epsize = 0; 1017 1018 /* 1019 * zero length packet should be programmed on its own and should not 1020 * be counted in DIEPTSIZ.PktCnt with other packets. 1021 */ 1022 if (dir_in && ureq->zero && !continuing) { 1023 /* Test if zlp is actually required. */ 1024 if ((ureq->length >= hs_ep->ep.maxpacket) && 1025 !(ureq->length % hs_ep->ep.maxpacket)) 1026 hs_ep->send_zlp = 1; 1027 } 1028 1029 epsize |= DXEPTSIZ_PKTCNT(packets); 1030 epsize |= DXEPTSIZ_XFERSIZE(length); 1031 1032 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1033 __func__, packets, length, ureq->length, epsize, epsize_reg); 1034 1035 /* store the request as the current one we're doing */ 1036 hs_ep->req = hs_req; 1037 1038 if (using_desc_dma(hsotg)) { 1039 u32 offset = 0; 1040 u32 mps = hs_ep->ep.maxpacket; 1041 1042 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1043 if (!dir_in) { 1044 if (!index) 1045 length = mps; 1046 else if (length % mps) 1047 length += (mps - (length % mps)); 1048 } 1049 1050 /* 1051 * If more data to send, adjust DMA for EP0 out data stage. 1052 * ureq->dma stays unchanged, hence increment it by already 1053 * passed passed data count before starting new transaction. 1054 */ 1055 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1056 continuing) 1057 offset = ureq->actual; 1058 1059 /* Fill DDMA chain entries */ 1060 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1061 length); 1062 1063 /* write descriptor chain address to control register */ 1064 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 1065 1066 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1067 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1068 } else { 1069 /* write size / packets */ 1070 dwc2_writel(epsize, hsotg->regs + epsize_reg); 1071 1072 if (using_dma(hsotg) && !continuing && (length != 0)) { 1073 /* 1074 * write DMA address to control register, buffer 1075 * already synced by dwc2_hsotg_ep_queue(). 1076 */ 1077 1078 dwc2_writel(ureq->dma, hsotg->regs + dma_reg); 1079 1080 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1081 __func__, &ureq->dma, dma_reg); 1082 } 1083 } 1084 1085 if (hs_ep->isochronous && hs_ep->interval == 1) { 1086 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1087 dwc2_gadget_incr_frame_num(hs_ep); 1088 1089 if (hs_ep->target_frame & 0x1) 1090 ctrl |= DXEPCTL_SETODDFR; 1091 else 1092 ctrl |= DXEPCTL_SETEVENFR; 1093 } 1094 1095 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1096 1097 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1098 1099 /* For Setup request do not clear NAK */ 1100 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1101 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1102 1103 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1104 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 1105 1106 /* 1107 * set these, it seems that DMA support increments past the end 1108 * of the packet buffer so we need to calculate the length from 1109 * this information. 1110 */ 1111 hs_ep->size_loaded = length; 1112 hs_ep->last_load = ureq->actual; 1113 1114 if (dir_in && !using_dma(hsotg)) { 1115 /* set these anyway, we may need them for non-periodic in */ 1116 hs_ep->fifo_load = 0; 1117 1118 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1119 } 1120 1121 /* 1122 * Note, trying to clear the NAK here causes problems with transmit 1123 * on the S3C6400 ending up with the TXFIFO becoming full. 1124 */ 1125 1126 /* check ep is enabled */ 1127 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 1128 dev_dbg(hsotg->dev, 1129 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1130 index, dwc2_readl(hsotg->regs + epctrl_reg)); 1131 1132 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1133 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 1134 1135 /* enable ep interrupts */ 1136 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1137 } 1138 1139 /** 1140 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1141 * @hsotg: The device state. 1142 * @hs_ep: The endpoint the request is on. 1143 * @req: The request being processed. 1144 * 1145 * We've been asked to queue a request, so ensure that the memory buffer 1146 * is correctly setup for DMA. If we've been passed an extant DMA address 1147 * then ensure the buffer has been synced to memory. If our buffer has no 1148 * DMA memory, then we map the memory and mark our request to allow us to 1149 * cleanup on completion. 1150 */ 1151 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1152 struct dwc2_hsotg_ep *hs_ep, 1153 struct usb_request *req) 1154 { 1155 int ret; 1156 1157 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1158 if (ret) 1159 goto dma_error; 1160 1161 return 0; 1162 1163 dma_error: 1164 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1165 __func__, req->buf, req->length); 1166 1167 return -EIO; 1168 } 1169 1170 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1171 struct dwc2_hsotg_ep *hs_ep, 1172 struct dwc2_hsotg_req *hs_req) 1173 { 1174 void *req_buf = hs_req->req.buf; 1175 1176 /* If dma is not being used or buffer is aligned */ 1177 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1178 return 0; 1179 1180 WARN_ON(hs_req->saved_req_buf); 1181 1182 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1183 hs_ep->ep.name, req_buf, hs_req->req.length); 1184 1185 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1186 if (!hs_req->req.buf) { 1187 hs_req->req.buf = req_buf; 1188 dev_err(hsotg->dev, 1189 "%s: unable to allocate memory for bounce buffer\n", 1190 __func__); 1191 return -ENOMEM; 1192 } 1193 1194 /* Save actual buffer */ 1195 hs_req->saved_req_buf = req_buf; 1196 1197 if (hs_ep->dir_in) 1198 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1199 return 0; 1200 } 1201 1202 static void 1203 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1204 struct dwc2_hsotg_ep *hs_ep, 1205 struct dwc2_hsotg_req *hs_req) 1206 { 1207 /* If dma is not being used or buffer was aligned */ 1208 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1209 return; 1210 1211 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1212 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1213 1214 /* Copy data from bounce buffer on successful out transfer */ 1215 if (!hs_ep->dir_in && !hs_req->req.status) 1216 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1217 hs_req->req.actual); 1218 1219 /* Free bounce buffer */ 1220 kfree(hs_req->req.buf); 1221 1222 hs_req->req.buf = hs_req->saved_req_buf; 1223 hs_req->saved_req_buf = NULL; 1224 } 1225 1226 /** 1227 * dwc2_gadget_target_frame_elapsed - Checks target frame 1228 * @hs_ep: The driver endpoint to check 1229 * 1230 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1231 * corresponding transfer. 1232 */ 1233 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1234 { 1235 struct dwc2_hsotg *hsotg = hs_ep->parent; 1236 u32 target_frame = hs_ep->target_frame; 1237 u32 current_frame = dwc2_hsotg_read_frameno(hsotg); 1238 bool frame_overrun = hs_ep->frame_overrun; 1239 1240 if (!frame_overrun && current_frame >= target_frame) 1241 return true; 1242 1243 if (frame_overrun && current_frame >= target_frame && 1244 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1245 return true; 1246 1247 return false; 1248 } 1249 1250 /* 1251 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1252 * @hsotg: The driver state 1253 * @hs_ep: the ep descriptor chain is for 1254 * 1255 * Called to update EP0 structure's pointers depend on stage of 1256 * control transfer. 1257 */ 1258 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1259 struct dwc2_hsotg_ep *hs_ep) 1260 { 1261 switch (hsotg->ep0_state) { 1262 case DWC2_EP0_SETUP: 1263 case DWC2_EP0_STATUS_OUT: 1264 hs_ep->desc_list = hsotg->setup_desc[0]; 1265 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1266 break; 1267 case DWC2_EP0_DATA_IN: 1268 case DWC2_EP0_STATUS_IN: 1269 hs_ep->desc_list = hsotg->ctrl_in_desc; 1270 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1271 break; 1272 case DWC2_EP0_DATA_OUT: 1273 hs_ep->desc_list = hsotg->ctrl_out_desc; 1274 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1275 break; 1276 default: 1277 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1278 hsotg->ep0_state); 1279 return -EINVAL; 1280 } 1281 1282 return 0; 1283 } 1284 1285 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1286 gfp_t gfp_flags) 1287 { 1288 struct dwc2_hsotg_req *hs_req = our_req(req); 1289 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1290 struct dwc2_hsotg *hs = hs_ep->parent; 1291 bool first; 1292 int ret; 1293 1294 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1295 ep->name, req, req->length, req->buf, req->no_interrupt, 1296 req->zero, req->short_not_ok); 1297 1298 /* Prevent new request submission when controller is suspended */ 1299 if (hs->lx_state == DWC2_L2) { 1300 dev_dbg(hs->dev, "%s: don't submit request while suspended\n", 1301 __func__); 1302 return -EAGAIN; 1303 } 1304 1305 /* initialise status of the request */ 1306 INIT_LIST_HEAD(&hs_req->queue); 1307 req->actual = 0; 1308 req->status = -EINPROGRESS; 1309 1310 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1311 if (ret) 1312 return ret; 1313 1314 /* if we're using DMA, sync the buffers as necessary */ 1315 if (using_dma(hs)) { 1316 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1317 if (ret) 1318 return ret; 1319 } 1320 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1321 if (using_desc_dma(hs) && !hs_ep->index) { 1322 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1323 if (ret) 1324 return ret; 1325 } 1326 1327 first = list_empty(&hs_ep->queue); 1328 list_add_tail(&hs_req->queue, &hs_ep->queue); 1329 1330 /* 1331 * Handle DDMA isochronous transfers separately - just add new entry 1332 * to the half of descriptor chain that is not processed by HW. 1333 * Transfer will be started once SW gets either one of NAK or 1334 * OutTknEpDis interrupts. 1335 */ 1336 if (using_desc_dma(hs) && hs_ep->isochronous && 1337 hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1338 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 1339 hs_req->req.length); 1340 if (ret) 1341 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__); 1342 1343 return 0; 1344 } 1345 1346 if (first) { 1347 if (!hs_ep->isochronous) { 1348 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1349 return 0; 1350 } 1351 1352 while (dwc2_gadget_target_frame_elapsed(hs_ep)) 1353 dwc2_gadget_incr_frame_num(hs_ep); 1354 1355 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1356 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1357 } 1358 return 0; 1359 } 1360 1361 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1362 gfp_t gfp_flags) 1363 { 1364 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1365 struct dwc2_hsotg *hs = hs_ep->parent; 1366 unsigned long flags = 0; 1367 int ret = 0; 1368 1369 spin_lock_irqsave(&hs->lock, flags); 1370 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1371 spin_unlock_irqrestore(&hs->lock, flags); 1372 1373 return ret; 1374 } 1375 1376 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1377 struct usb_request *req) 1378 { 1379 struct dwc2_hsotg_req *hs_req = our_req(req); 1380 1381 kfree(hs_req); 1382 } 1383 1384 /** 1385 * dwc2_hsotg_complete_oursetup - setup completion callback 1386 * @ep: The endpoint the request was on. 1387 * @req: The request completed. 1388 * 1389 * Called on completion of any requests the driver itself 1390 * submitted that need cleaning up. 1391 */ 1392 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1393 struct usb_request *req) 1394 { 1395 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1396 struct dwc2_hsotg *hsotg = hs_ep->parent; 1397 1398 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1399 1400 dwc2_hsotg_ep_free_request(ep, req); 1401 } 1402 1403 /** 1404 * ep_from_windex - convert control wIndex value to endpoint 1405 * @hsotg: The driver state. 1406 * @windex: The control request wIndex field (in host order). 1407 * 1408 * Convert the given wIndex into a pointer to an driver endpoint 1409 * structure, or return NULL if it is not a valid endpoint. 1410 */ 1411 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1412 u32 windex) 1413 { 1414 struct dwc2_hsotg_ep *ep; 1415 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1416 int idx = windex & 0x7F; 1417 1418 if (windex >= 0x100) 1419 return NULL; 1420 1421 if (idx > hsotg->num_of_eps) 1422 return NULL; 1423 1424 ep = index_to_ep(hsotg, idx, dir); 1425 1426 if (idx && ep->dir_in != dir) 1427 return NULL; 1428 1429 return ep; 1430 } 1431 1432 /** 1433 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1434 * @hsotg: The driver state. 1435 * @testmode: requested usb test mode 1436 * Enable usb Test Mode requested by the Host. 1437 */ 1438 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1439 { 1440 int dctl = dwc2_readl(hsotg->regs + DCTL); 1441 1442 dctl &= ~DCTL_TSTCTL_MASK; 1443 switch (testmode) { 1444 case TEST_J: 1445 case TEST_K: 1446 case TEST_SE0_NAK: 1447 case TEST_PACKET: 1448 case TEST_FORCE_EN: 1449 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1450 break; 1451 default: 1452 return -EINVAL; 1453 } 1454 dwc2_writel(dctl, hsotg->regs + DCTL); 1455 return 0; 1456 } 1457 1458 /** 1459 * dwc2_hsotg_send_reply - send reply to control request 1460 * @hsotg: The device state 1461 * @ep: Endpoint 0 1462 * @buff: Buffer for request 1463 * @length: Length of reply. 1464 * 1465 * Create a request and queue it on the given endpoint. This is useful as 1466 * an internal method of sending replies to certain control requests, etc. 1467 */ 1468 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1469 struct dwc2_hsotg_ep *ep, 1470 void *buff, 1471 int length) 1472 { 1473 struct usb_request *req; 1474 int ret; 1475 1476 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1477 1478 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1479 hsotg->ep0_reply = req; 1480 if (!req) { 1481 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1482 return -ENOMEM; 1483 } 1484 1485 req->buf = hsotg->ep0_buff; 1486 req->length = length; 1487 /* 1488 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1489 * STATUS stage. 1490 */ 1491 req->zero = 0; 1492 req->complete = dwc2_hsotg_complete_oursetup; 1493 1494 if (length) 1495 memcpy(req->buf, buff, length); 1496 1497 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1498 if (ret) { 1499 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1500 return ret; 1501 } 1502 1503 return 0; 1504 } 1505 1506 /** 1507 * dwc2_hsotg_process_req_status - process request GET_STATUS 1508 * @hsotg: The device state 1509 * @ctrl: USB control request 1510 */ 1511 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1512 struct usb_ctrlrequest *ctrl) 1513 { 1514 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1515 struct dwc2_hsotg_ep *ep; 1516 __le16 reply; 1517 int ret; 1518 1519 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1520 1521 if (!ep0->dir_in) { 1522 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1523 return -EINVAL; 1524 } 1525 1526 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1527 case USB_RECIP_DEVICE: 1528 /* 1529 * bit 0 => self powered 1530 * bit 1 => remote wakeup 1531 */ 1532 reply = cpu_to_le16(0); 1533 break; 1534 1535 case USB_RECIP_INTERFACE: 1536 /* currently, the data result should be zero */ 1537 reply = cpu_to_le16(0); 1538 break; 1539 1540 case USB_RECIP_ENDPOINT: 1541 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1542 if (!ep) 1543 return -ENOENT; 1544 1545 reply = cpu_to_le16(ep->halted ? 1 : 0); 1546 break; 1547 1548 default: 1549 return 0; 1550 } 1551 1552 if (le16_to_cpu(ctrl->wLength) != 2) 1553 return -EINVAL; 1554 1555 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1556 if (ret) { 1557 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1558 return ret; 1559 } 1560 1561 return 1; 1562 } 1563 1564 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1565 1566 /** 1567 * get_ep_head - return the first request on the endpoint 1568 * @hs_ep: The controller endpoint to get 1569 * 1570 * Get the first request on the endpoint. 1571 */ 1572 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1573 { 1574 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1575 queue); 1576 } 1577 1578 /** 1579 * dwc2_gadget_start_next_request - Starts next request from ep queue 1580 * @hs_ep: Endpoint structure 1581 * 1582 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1583 * in its handler. Hence we need to unmask it here to be able to do 1584 * resynchronization. 1585 */ 1586 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1587 { 1588 u32 mask; 1589 struct dwc2_hsotg *hsotg = hs_ep->parent; 1590 int dir_in = hs_ep->dir_in; 1591 struct dwc2_hsotg_req *hs_req; 1592 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1593 1594 if (!list_empty(&hs_ep->queue)) { 1595 hs_req = get_ep_head(hs_ep); 1596 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1597 return; 1598 } 1599 if (!hs_ep->isochronous) 1600 return; 1601 1602 if (dir_in) { 1603 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1604 __func__); 1605 } else { 1606 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1607 __func__); 1608 mask = dwc2_readl(hsotg->regs + epmsk_reg); 1609 mask |= DOEPMSK_OUTTKNEPDISMSK; 1610 dwc2_writel(mask, hsotg->regs + epmsk_reg); 1611 } 1612 } 1613 1614 /** 1615 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1616 * @hsotg: The device state 1617 * @ctrl: USB control request 1618 */ 1619 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1620 struct usb_ctrlrequest *ctrl) 1621 { 1622 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1623 struct dwc2_hsotg_req *hs_req; 1624 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1625 struct dwc2_hsotg_ep *ep; 1626 int ret; 1627 bool halted; 1628 u32 recip; 1629 u32 wValue; 1630 u32 wIndex; 1631 1632 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1633 __func__, set ? "SET" : "CLEAR"); 1634 1635 wValue = le16_to_cpu(ctrl->wValue); 1636 wIndex = le16_to_cpu(ctrl->wIndex); 1637 recip = ctrl->bRequestType & USB_RECIP_MASK; 1638 1639 switch (recip) { 1640 case USB_RECIP_DEVICE: 1641 switch (wValue) { 1642 case USB_DEVICE_TEST_MODE: 1643 if ((wIndex & 0xff) != 0) 1644 return -EINVAL; 1645 if (!set) 1646 return -EINVAL; 1647 1648 hsotg->test_mode = wIndex >> 8; 1649 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1650 if (ret) { 1651 dev_err(hsotg->dev, 1652 "%s: failed to send reply\n", __func__); 1653 return ret; 1654 } 1655 break; 1656 default: 1657 return -ENOENT; 1658 } 1659 break; 1660 1661 case USB_RECIP_ENDPOINT: 1662 ep = ep_from_windex(hsotg, wIndex); 1663 if (!ep) { 1664 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1665 __func__, wIndex); 1666 return -ENOENT; 1667 } 1668 1669 switch (wValue) { 1670 case USB_ENDPOINT_HALT: 1671 halted = ep->halted; 1672 1673 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1674 1675 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1676 if (ret) { 1677 dev_err(hsotg->dev, 1678 "%s: failed to send reply\n", __func__); 1679 return ret; 1680 } 1681 1682 /* 1683 * we have to complete all requests for ep if it was 1684 * halted, and the halt was cleared by CLEAR_FEATURE 1685 */ 1686 1687 if (!set && halted) { 1688 /* 1689 * If we have request in progress, 1690 * then complete it 1691 */ 1692 if (ep->req) { 1693 hs_req = ep->req; 1694 ep->req = NULL; 1695 list_del_init(&hs_req->queue); 1696 if (hs_req->req.complete) { 1697 spin_unlock(&hsotg->lock); 1698 usb_gadget_giveback_request( 1699 &ep->ep, &hs_req->req); 1700 spin_lock(&hsotg->lock); 1701 } 1702 } 1703 1704 /* If we have pending request, then start it */ 1705 if (!ep->req) 1706 dwc2_gadget_start_next_request(ep); 1707 } 1708 1709 break; 1710 1711 default: 1712 return -ENOENT; 1713 } 1714 break; 1715 default: 1716 return -ENOENT; 1717 } 1718 return 1; 1719 } 1720 1721 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1722 1723 /** 1724 * dwc2_hsotg_stall_ep0 - stall ep0 1725 * @hsotg: The device state 1726 * 1727 * Set stall for ep0 as response for setup request. 1728 */ 1729 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1730 { 1731 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1732 u32 reg; 1733 u32 ctrl; 1734 1735 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1736 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1737 1738 /* 1739 * DxEPCTL_Stall will be cleared by EP once it has 1740 * taken effect, so no need to clear later. 1741 */ 1742 1743 ctrl = dwc2_readl(hsotg->regs + reg); 1744 ctrl |= DXEPCTL_STALL; 1745 ctrl |= DXEPCTL_CNAK; 1746 dwc2_writel(ctrl, hsotg->regs + reg); 1747 1748 dev_dbg(hsotg->dev, 1749 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1750 ctrl, reg, dwc2_readl(hsotg->regs + reg)); 1751 1752 /* 1753 * complete won't be called, so we enqueue 1754 * setup request here 1755 */ 1756 dwc2_hsotg_enqueue_setup(hsotg); 1757 } 1758 1759 /** 1760 * dwc2_hsotg_process_control - process a control request 1761 * @hsotg: The device state 1762 * @ctrl: The control request received 1763 * 1764 * The controller has received the SETUP phase of a control request, and 1765 * needs to work out what to do next (and whether to pass it on to the 1766 * gadget driver). 1767 */ 1768 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1769 struct usb_ctrlrequest *ctrl) 1770 { 1771 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1772 int ret = 0; 1773 u32 dcfg; 1774 1775 dev_dbg(hsotg->dev, 1776 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1777 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1778 ctrl->wIndex, ctrl->wLength); 1779 1780 if (ctrl->wLength == 0) { 1781 ep0->dir_in = 1; 1782 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1783 } else if (ctrl->bRequestType & USB_DIR_IN) { 1784 ep0->dir_in = 1; 1785 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1786 } else { 1787 ep0->dir_in = 0; 1788 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1789 } 1790 1791 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1792 switch (ctrl->bRequest) { 1793 case USB_REQ_SET_ADDRESS: 1794 hsotg->connected = 1; 1795 dcfg = dwc2_readl(hsotg->regs + DCFG); 1796 dcfg &= ~DCFG_DEVADDR_MASK; 1797 dcfg |= (le16_to_cpu(ctrl->wValue) << 1798 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1799 dwc2_writel(dcfg, hsotg->regs + DCFG); 1800 1801 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1802 1803 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1804 return; 1805 1806 case USB_REQ_GET_STATUS: 1807 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1808 break; 1809 1810 case USB_REQ_CLEAR_FEATURE: 1811 case USB_REQ_SET_FEATURE: 1812 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1813 break; 1814 } 1815 } 1816 1817 /* as a fallback, try delivering it to the driver to deal with */ 1818 1819 if (ret == 0 && hsotg->driver) { 1820 spin_unlock(&hsotg->lock); 1821 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1822 spin_lock(&hsotg->lock); 1823 if (ret < 0) 1824 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1825 } 1826 1827 /* 1828 * the request is either unhandlable, or is not formatted correctly 1829 * so respond with a STALL for the status stage to indicate failure. 1830 */ 1831 1832 if (ret < 0) 1833 dwc2_hsotg_stall_ep0(hsotg); 1834 } 1835 1836 /** 1837 * dwc2_hsotg_complete_setup - completion of a setup transfer 1838 * @ep: The endpoint the request was on. 1839 * @req: The request completed. 1840 * 1841 * Called on completion of any requests the driver itself submitted for 1842 * EP0 setup packets 1843 */ 1844 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1845 struct usb_request *req) 1846 { 1847 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1848 struct dwc2_hsotg *hsotg = hs_ep->parent; 1849 1850 if (req->status < 0) { 1851 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1852 return; 1853 } 1854 1855 spin_lock(&hsotg->lock); 1856 if (req->actual == 0) 1857 dwc2_hsotg_enqueue_setup(hsotg); 1858 else 1859 dwc2_hsotg_process_control(hsotg, req->buf); 1860 spin_unlock(&hsotg->lock); 1861 } 1862 1863 /** 1864 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1865 * @hsotg: The device state. 1866 * 1867 * Enqueue a request on EP0 if necessary to received any SETUP packets 1868 * received from the host. 1869 */ 1870 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1871 { 1872 struct usb_request *req = hsotg->ctrl_req; 1873 struct dwc2_hsotg_req *hs_req = our_req(req); 1874 int ret; 1875 1876 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1877 1878 req->zero = 0; 1879 req->length = 8; 1880 req->buf = hsotg->ctrl_buff; 1881 req->complete = dwc2_hsotg_complete_setup; 1882 1883 if (!list_empty(&hs_req->queue)) { 1884 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1885 return; 1886 } 1887 1888 hsotg->eps_out[0]->dir_in = 0; 1889 hsotg->eps_out[0]->send_zlp = 0; 1890 hsotg->ep0_state = DWC2_EP0_SETUP; 1891 1892 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 1893 if (ret < 0) { 1894 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1895 /* 1896 * Don't think there's much we can do other than watch the 1897 * driver fail. 1898 */ 1899 } 1900 } 1901 1902 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 1903 struct dwc2_hsotg_ep *hs_ep) 1904 { 1905 u32 ctrl; 1906 u8 index = hs_ep->index; 1907 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1908 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1909 1910 if (hs_ep->dir_in) 1911 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 1912 index); 1913 else 1914 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 1915 index); 1916 if (using_desc_dma(hsotg)) { 1917 /* Not specific buffer needed for ep0 ZLP */ 1918 dma_addr_t dma = hs_ep->desc_list_dma; 1919 1920 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 1921 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 1922 } else { 1923 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1924 DXEPTSIZ_XFERSIZE(0), hsotg->regs + 1925 epsiz_reg); 1926 } 1927 1928 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 1929 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1930 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1931 ctrl |= DXEPCTL_USBACTEP; 1932 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 1933 } 1934 1935 /** 1936 * dwc2_hsotg_complete_request - complete a request given to us 1937 * @hsotg: The device state. 1938 * @hs_ep: The endpoint the request was on. 1939 * @hs_req: The request to complete. 1940 * @result: The result code (0 => Ok, otherwise errno) 1941 * 1942 * The given request has finished, so call the necessary completion 1943 * if it has one and then look to see if we can start a new request 1944 * on the endpoint. 1945 * 1946 * Note, expects the ep to already be locked as appropriate. 1947 */ 1948 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1949 struct dwc2_hsotg_ep *hs_ep, 1950 struct dwc2_hsotg_req *hs_req, 1951 int result) 1952 { 1953 if (!hs_req) { 1954 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1955 return; 1956 } 1957 1958 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1959 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1960 1961 /* 1962 * only replace the status if we've not already set an error 1963 * from a previous transaction 1964 */ 1965 1966 if (hs_req->req.status == -EINPROGRESS) 1967 hs_req->req.status = result; 1968 1969 if (using_dma(hsotg)) 1970 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1971 1972 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 1973 1974 hs_ep->req = NULL; 1975 list_del_init(&hs_req->queue); 1976 1977 /* 1978 * call the complete request with the locks off, just in case the 1979 * request tries to queue more work for this endpoint. 1980 */ 1981 1982 if (hs_req->req.complete) { 1983 spin_unlock(&hsotg->lock); 1984 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 1985 spin_lock(&hsotg->lock); 1986 } 1987 1988 /* In DDMA don't need to proceed to starting of next ISOC request */ 1989 if (using_desc_dma(hsotg) && hs_ep->isochronous) 1990 return; 1991 1992 /* 1993 * Look to see if there is anything else to do. Note, the completion 1994 * of the previous request may have caused a new request to be started 1995 * so be careful when doing this. 1996 */ 1997 1998 if (!hs_ep->req && result >= 0) 1999 dwc2_gadget_start_next_request(hs_ep); 2000 } 2001 2002 /* 2003 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2004 * @hs_ep: The endpoint the request was on. 2005 * 2006 * Get first request from the ep queue, determine descriptor on which complete 2007 * happened. SW based on isoc_chain_num discovers which half of the descriptor 2008 * chain is currently in use by HW, adjusts dma_address and calculates index 2009 * of completed descriptor based on the value of DEPDMA register. Update actual 2010 * length of request, giveback to gadget. 2011 */ 2012 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2013 { 2014 struct dwc2_hsotg *hsotg = hs_ep->parent; 2015 struct dwc2_hsotg_req *hs_req; 2016 struct usb_request *ureq; 2017 int index; 2018 dma_addr_t dma_addr; 2019 u32 dma_reg; 2020 u32 depdma; 2021 u32 desc_sts; 2022 u32 mask; 2023 2024 hs_req = get_ep_head(hs_ep); 2025 if (!hs_req) { 2026 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2027 return; 2028 } 2029 ureq = &hs_req->req; 2030 2031 dma_addr = hs_ep->desc_list_dma; 2032 2033 /* 2034 * If lower half of descriptor chain is currently use by SW, 2035 * that means higher half is being processed by HW, so shift 2036 * DMA address to higher half of descriptor chain. 2037 */ 2038 if (!hs_ep->isoc_chain_num) 2039 dma_addr += sizeof(struct dwc2_dma_desc) * 2040 (MAX_DMA_DESC_NUM_GENERIC / 2); 2041 2042 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index); 2043 depdma = dwc2_readl(hsotg->regs + dma_reg); 2044 2045 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1; 2046 desc_sts = hs_ep->desc_list[index].status; 2047 2048 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2049 DEV_DMA_ISOC_RX_NBYTES_MASK; 2050 ureq->actual = ureq->length - 2051 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT); 2052 2053 /* Adjust actual length for ISOC Out if length is not align of 4 */ 2054 if (!hs_ep->dir_in && ureq->length & 0x3) 2055 ureq->actual += 4 - (ureq->length & 0x3); 2056 2057 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2058 } 2059 2060 /* 2061 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any. 2062 * @hs_ep: The isochronous endpoint to be re-enabled. 2063 * 2064 * If ep has been disabled due to last descriptor servicing (IN endpoint) or 2065 * BNA (OUT endpoint) check the status of other half of descriptor chain that 2066 * was under SW control till HW was busy and restart the endpoint if needed. 2067 */ 2068 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 2069 { 2070 struct dwc2_hsotg *hsotg = hs_ep->parent; 2071 u32 depctl; 2072 u32 dma_reg; 2073 u32 ctrl; 2074 u32 dma_addr = hs_ep->desc_list_dma; 2075 unsigned char index = hs_ep->index; 2076 2077 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 2078 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2079 2080 ctrl = dwc2_readl(hsotg->regs + depctl); 2081 2082 /* 2083 * EP was disabled if HW has processed last descriptor or BNA was set. 2084 * So restart ep if SW has prepared new descriptor chain in ep_queue 2085 * routine while HW was busy. 2086 */ 2087 if (!(ctrl & DXEPCTL_EPENA)) { 2088 if (!hs_ep->next_desc) { 2089 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n", 2090 __func__); 2091 return; 2092 } 2093 2094 dma_addr += sizeof(struct dwc2_dma_desc) * 2095 (MAX_DMA_DESC_NUM_GENERIC / 2) * 2096 hs_ep->isoc_chain_num; 2097 dwc2_writel(dma_addr, hsotg->regs + dma_reg); 2098 2099 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 2100 dwc2_writel(ctrl, hsotg->regs + depctl); 2101 2102 /* Switch ISOC descriptor chain number being processed by SW*/ 2103 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 2104 hs_ep->next_desc = 0; 2105 2106 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n", 2107 __func__); 2108 } 2109 } 2110 2111 /** 2112 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2113 * @hsotg: The device state. 2114 * @ep_idx: The endpoint index for the data 2115 * @size: The size of data in the fifo, in bytes 2116 * 2117 * The FIFO status shows there is data to read from the FIFO for a given 2118 * endpoint, so sort out whether we need to read the data into a request 2119 * that has been made for that endpoint. 2120 */ 2121 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2122 { 2123 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2124 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2125 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 2126 int to_read; 2127 int max_req; 2128 int read_ptr; 2129 2130 if (!hs_req) { 2131 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx)); 2132 int ptr; 2133 2134 dev_dbg(hsotg->dev, 2135 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2136 __func__, size, ep_idx, epctl); 2137 2138 /* dump the data from the FIFO, we've nothing we can do */ 2139 for (ptr = 0; ptr < size; ptr += 4) 2140 (void)dwc2_readl(fifo); 2141 2142 return; 2143 } 2144 2145 to_read = size; 2146 read_ptr = hs_req->req.actual; 2147 max_req = hs_req->req.length - read_ptr; 2148 2149 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2150 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2151 2152 if (to_read > max_req) { 2153 /* 2154 * more data appeared than we where willing 2155 * to deal with in this request. 2156 */ 2157 2158 /* currently we don't deal this */ 2159 WARN_ON_ONCE(1); 2160 } 2161 2162 hs_ep->total_data += to_read; 2163 hs_req->req.actual += to_read; 2164 to_read = DIV_ROUND_UP(to_read, 4); 2165 2166 /* 2167 * note, we might over-write the buffer end by 3 bytes depending on 2168 * alignment of the data. 2169 */ 2170 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 2171 } 2172 2173 /** 2174 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2175 * @hsotg: The device instance 2176 * @dir_in: If IN zlp 2177 * 2178 * Generate a zero-length IN packet request for terminating a SETUP 2179 * transaction. 2180 * 2181 * Note, since we don't write any data to the TxFIFO, then it is 2182 * currently believed that we do not need to wait for any space in 2183 * the TxFIFO. 2184 */ 2185 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2186 { 2187 /* eps_out[0] is used in both directions */ 2188 hsotg->eps_out[0]->dir_in = dir_in; 2189 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2190 2191 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2192 } 2193 2194 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2195 u32 epctl_reg) 2196 { 2197 u32 ctrl; 2198 2199 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2200 if (ctrl & DXEPCTL_EOFRNUM) 2201 ctrl |= DXEPCTL_SETEVENFR; 2202 else 2203 ctrl |= DXEPCTL_SETODDFR; 2204 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 2205 } 2206 2207 /* 2208 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2209 * @hs_ep - The endpoint on which transfer went 2210 * 2211 * Iterate over endpoints descriptor chain and get info on bytes remained 2212 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2213 */ 2214 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2215 { 2216 struct dwc2_hsotg *hsotg = hs_ep->parent; 2217 unsigned int bytes_rem = 0; 2218 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2219 int i; 2220 u32 status; 2221 2222 if (!desc) 2223 return -EINVAL; 2224 2225 for (i = 0; i < hs_ep->desc_count; ++i) { 2226 status = desc->status; 2227 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2228 2229 if (status & DEV_DMA_STS_MASK) 2230 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2231 i, status & DEV_DMA_STS_MASK); 2232 } 2233 2234 return bytes_rem; 2235 } 2236 2237 /** 2238 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2239 * @hsotg: The device instance 2240 * @epnum: The endpoint received from 2241 * 2242 * The RXFIFO has delivered an OutDone event, which means that the data 2243 * transfer for an OUT endpoint has been completed, either by a short 2244 * packet or by the finish of a transfer. 2245 */ 2246 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2247 { 2248 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum)); 2249 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2250 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2251 struct usb_request *req = &hs_req->req; 2252 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2253 int result = 0; 2254 2255 if (!hs_req) { 2256 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2257 return; 2258 } 2259 2260 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2261 dev_dbg(hsotg->dev, "zlp packet received\n"); 2262 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2263 dwc2_hsotg_enqueue_setup(hsotg); 2264 return; 2265 } 2266 2267 if (using_desc_dma(hsotg)) 2268 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2269 2270 if (using_dma(hsotg)) { 2271 unsigned int size_done; 2272 2273 /* 2274 * Calculate the size of the transfer by checking how much 2275 * is left in the endpoint size register and then working it 2276 * out from the amount we loaded for the transfer. 2277 * 2278 * We need to do this as DMA pointers are always 32bit aligned 2279 * so may overshoot/undershoot the transfer. 2280 */ 2281 2282 size_done = hs_ep->size_loaded - size_left; 2283 size_done += hs_ep->last_load; 2284 2285 req->actual = size_done; 2286 } 2287 2288 /* if there is more request to do, schedule new transfer */ 2289 if (req->actual < req->length && size_left == 0) { 2290 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2291 return; 2292 } 2293 2294 if (req->actual < req->length && req->short_not_ok) { 2295 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2296 __func__, req->actual, req->length); 2297 2298 /* 2299 * todo - what should we return here? there's no one else 2300 * even bothering to check the status. 2301 */ 2302 } 2303 2304 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2305 if (!using_desc_dma(hsotg) && epnum == 0 && 2306 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2307 /* Move to STATUS IN */ 2308 dwc2_hsotg_ep0_zlp(hsotg, true); 2309 return; 2310 } 2311 2312 /* 2313 * Slave mode OUT transfers do not go through XferComplete so 2314 * adjust the ISOC parity here. 2315 */ 2316 if (!using_dma(hsotg)) { 2317 if (hs_ep->isochronous && hs_ep->interval == 1) 2318 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2319 else if (hs_ep->isochronous && hs_ep->interval > 1) 2320 dwc2_gadget_incr_frame_num(hs_ep); 2321 } 2322 2323 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2324 } 2325 2326 /** 2327 * dwc2_hsotg_handle_rx - RX FIFO has data 2328 * @hsotg: The device instance 2329 * 2330 * The IRQ handler has detected that the RX FIFO has some data in it 2331 * that requires processing, so find out what is in there and do the 2332 * appropriate read. 2333 * 2334 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2335 * chunks, so if you have x packets received on an endpoint you'll get x 2336 * FIFO events delivered, each with a packet's worth of data in it. 2337 * 2338 * When using DMA, we should not be processing events from the RXFIFO 2339 * as the actual data should be sent to the memory directly and we turn 2340 * on the completion interrupts to get notifications of transfer completion. 2341 */ 2342 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2343 { 2344 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP); 2345 u32 epnum, status, size; 2346 2347 WARN_ON(using_dma(hsotg)); 2348 2349 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2350 status = grxstsr & GRXSTS_PKTSTS_MASK; 2351 2352 size = grxstsr & GRXSTS_BYTECNT_MASK; 2353 size >>= GRXSTS_BYTECNT_SHIFT; 2354 2355 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2356 __func__, grxstsr, size, epnum); 2357 2358 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2359 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2360 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2361 break; 2362 2363 case GRXSTS_PKTSTS_OUTDONE: 2364 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2365 dwc2_hsotg_read_frameno(hsotg)); 2366 2367 if (!using_dma(hsotg)) 2368 dwc2_hsotg_handle_outdone(hsotg, epnum); 2369 break; 2370 2371 case GRXSTS_PKTSTS_SETUPDONE: 2372 dev_dbg(hsotg->dev, 2373 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2374 dwc2_hsotg_read_frameno(hsotg), 2375 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2376 /* 2377 * Call dwc2_hsotg_handle_outdone here if it was not called from 2378 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2379 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2380 */ 2381 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2382 dwc2_hsotg_handle_outdone(hsotg, epnum); 2383 break; 2384 2385 case GRXSTS_PKTSTS_OUTRX: 2386 dwc2_hsotg_rx_data(hsotg, epnum, size); 2387 break; 2388 2389 case GRXSTS_PKTSTS_SETUPRX: 2390 dev_dbg(hsotg->dev, 2391 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2392 dwc2_hsotg_read_frameno(hsotg), 2393 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2394 2395 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2396 2397 dwc2_hsotg_rx_data(hsotg, epnum, size); 2398 break; 2399 2400 default: 2401 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2402 __func__, grxstsr); 2403 2404 dwc2_hsotg_dump(hsotg); 2405 break; 2406 } 2407 } 2408 2409 /** 2410 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2411 * @mps: The maximum packet size in bytes. 2412 */ 2413 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2414 { 2415 switch (mps) { 2416 case 64: 2417 return D0EPCTL_MPS_64; 2418 case 32: 2419 return D0EPCTL_MPS_32; 2420 case 16: 2421 return D0EPCTL_MPS_16; 2422 case 8: 2423 return D0EPCTL_MPS_8; 2424 } 2425 2426 /* bad max packet size, warn and return invalid result */ 2427 WARN_ON(1); 2428 return (u32)-1; 2429 } 2430 2431 /** 2432 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2433 * @hsotg: The driver state. 2434 * @ep: The index number of the endpoint 2435 * @mps: The maximum packet size in bytes 2436 * @mc: The multicount value 2437 * 2438 * Configure the maximum packet size for the given endpoint, updating 2439 * the hardware control registers to reflect this. 2440 */ 2441 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2442 unsigned int ep, unsigned int mps, 2443 unsigned int mc, unsigned int dir_in) 2444 { 2445 struct dwc2_hsotg_ep *hs_ep; 2446 void __iomem *regs = hsotg->regs; 2447 u32 reg; 2448 2449 hs_ep = index_to_ep(hsotg, ep, dir_in); 2450 if (!hs_ep) 2451 return; 2452 2453 if (ep == 0) { 2454 u32 mps_bytes = mps; 2455 2456 /* EP0 is a special case */ 2457 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2458 if (mps > 3) 2459 goto bad_mps; 2460 hs_ep->ep.maxpacket = mps_bytes; 2461 hs_ep->mc = 1; 2462 } else { 2463 if (mps > 1024) 2464 goto bad_mps; 2465 hs_ep->mc = mc; 2466 if (mc > 3) 2467 goto bad_mps; 2468 hs_ep->ep.maxpacket = mps; 2469 } 2470 2471 if (dir_in) { 2472 reg = dwc2_readl(regs + DIEPCTL(ep)); 2473 reg &= ~DXEPCTL_MPS_MASK; 2474 reg |= mps; 2475 dwc2_writel(reg, regs + DIEPCTL(ep)); 2476 } else { 2477 reg = dwc2_readl(regs + DOEPCTL(ep)); 2478 reg &= ~DXEPCTL_MPS_MASK; 2479 reg |= mps; 2480 dwc2_writel(reg, regs + DOEPCTL(ep)); 2481 } 2482 2483 return; 2484 2485 bad_mps: 2486 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2487 } 2488 2489 /** 2490 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2491 * @hsotg: The driver state 2492 * @idx: The index for the endpoint (0..15) 2493 */ 2494 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2495 { 2496 int timeout; 2497 int val; 2498 2499 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2500 hsotg->regs + GRSTCTL); 2501 2502 /* wait until the fifo is flushed */ 2503 timeout = 100; 2504 2505 while (1) { 2506 val = dwc2_readl(hsotg->regs + GRSTCTL); 2507 2508 if ((val & (GRSTCTL_TXFFLSH)) == 0) 2509 break; 2510 2511 if (--timeout == 0) { 2512 dev_err(hsotg->dev, 2513 "%s: timeout flushing fifo (GRSTCTL=%08x)\n", 2514 __func__, val); 2515 break; 2516 } 2517 2518 udelay(1); 2519 } 2520 } 2521 2522 /** 2523 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2524 * @hsotg: The driver state 2525 * @hs_ep: The driver endpoint to check. 2526 * 2527 * Check to see if there is a request that has data to send, and if so 2528 * make an attempt to write data into the FIFO. 2529 */ 2530 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2531 struct dwc2_hsotg_ep *hs_ep) 2532 { 2533 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2534 2535 if (!hs_ep->dir_in || !hs_req) { 2536 /** 2537 * if request is not enqueued, we disable interrupts 2538 * for endpoints, excepting ep0 2539 */ 2540 if (hs_ep->index != 0) 2541 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2542 hs_ep->dir_in, 0); 2543 return 0; 2544 } 2545 2546 if (hs_req->req.actual < hs_req->req.length) { 2547 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2548 hs_ep->index); 2549 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2550 } 2551 2552 return 0; 2553 } 2554 2555 /** 2556 * dwc2_hsotg_complete_in - complete IN transfer 2557 * @hsotg: The device state. 2558 * @hs_ep: The endpoint that has just completed. 2559 * 2560 * An IN transfer has been completed, update the transfer's state and then 2561 * call the relevant completion routines. 2562 */ 2563 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2564 struct dwc2_hsotg_ep *hs_ep) 2565 { 2566 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2567 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 2568 int size_left, size_done; 2569 2570 if (!hs_req) { 2571 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2572 return; 2573 } 2574 2575 /* Finish ZLP handling for IN EP0 transactions */ 2576 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2577 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2578 2579 /* 2580 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2581 * changed to IN. Change back to complete OUT transfer request 2582 */ 2583 hs_ep->dir_in = 0; 2584 2585 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2586 if (hsotg->test_mode) { 2587 int ret; 2588 2589 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2590 if (ret < 0) { 2591 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2592 hsotg->test_mode); 2593 dwc2_hsotg_stall_ep0(hsotg); 2594 return; 2595 } 2596 } 2597 dwc2_hsotg_enqueue_setup(hsotg); 2598 return; 2599 } 2600 2601 /* 2602 * Calculate the size of the transfer by checking how much is left 2603 * in the endpoint size register and then working it out from 2604 * the amount we loaded for the transfer. 2605 * 2606 * We do this even for DMA, as the transfer may have incremented 2607 * past the end of the buffer (DMA transfers are always 32bit 2608 * aligned). 2609 */ 2610 if (using_desc_dma(hsotg)) { 2611 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2612 if (size_left < 0) 2613 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2614 size_left); 2615 } else { 2616 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2617 } 2618 2619 size_done = hs_ep->size_loaded - size_left; 2620 size_done += hs_ep->last_load; 2621 2622 if (hs_req->req.actual != size_done) 2623 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2624 __func__, hs_req->req.actual, size_done); 2625 2626 hs_req->req.actual = size_done; 2627 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2628 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2629 2630 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2631 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2632 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2633 return; 2634 } 2635 2636 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2637 if (hs_ep->send_zlp) { 2638 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2639 hs_ep->send_zlp = 0; 2640 /* transfer will be completed on next complete interrupt */ 2641 return; 2642 } 2643 2644 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2645 /* Move to STATUS OUT */ 2646 dwc2_hsotg_ep0_zlp(hsotg, false); 2647 return; 2648 } 2649 2650 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2651 } 2652 2653 /** 2654 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2655 * @hsotg: The device state. 2656 * @idx: Index of ep. 2657 * @dir_in: Endpoint direction 1-in 0-out. 2658 * 2659 * Reads for endpoint with given index and direction, by masking 2660 * epint_reg with coresponding mask. 2661 */ 2662 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2663 unsigned int idx, int dir_in) 2664 { 2665 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2666 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2667 u32 ints; 2668 u32 mask; 2669 u32 diepempmsk; 2670 2671 mask = dwc2_readl(hsotg->regs + epmsk_reg); 2672 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK); 2673 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2674 mask |= DXEPINT_SETUP_RCVD; 2675 2676 ints = dwc2_readl(hsotg->regs + epint_reg); 2677 ints &= mask; 2678 return ints; 2679 } 2680 2681 /** 2682 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2683 * @hs_ep: The endpoint on which interrupt is asserted. 2684 * 2685 * This interrupt indicates that the endpoint has been disabled per the 2686 * application's request. 2687 * 2688 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2689 * in case of ISOC completes current request. 2690 * 2691 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2692 * request starts it. 2693 */ 2694 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2695 { 2696 struct dwc2_hsotg *hsotg = hs_ep->parent; 2697 struct dwc2_hsotg_req *hs_req; 2698 unsigned char idx = hs_ep->index; 2699 int dir_in = hs_ep->dir_in; 2700 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2701 int dctl = dwc2_readl(hsotg->regs + DCTL); 2702 2703 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2704 2705 if (dir_in) { 2706 int epctl = dwc2_readl(hsotg->regs + epctl_reg); 2707 2708 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2709 2710 if (hs_ep->isochronous) { 2711 dwc2_hsotg_complete_in(hsotg, hs_ep); 2712 return; 2713 } 2714 2715 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2716 int dctl = dwc2_readl(hsotg->regs + DCTL); 2717 2718 dctl |= DCTL_CGNPINNAK; 2719 dwc2_writel(dctl, hsotg->regs + DCTL); 2720 } 2721 return; 2722 } 2723 2724 if (dctl & DCTL_GOUTNAKSTS) { 2725 dctl |= DCTL_CGOUTNAK; 2726 dwc2_writel(dctl, hsotg->regs + DCTL); 2727 } 2728 2729 if (!hs_ep->isochronous) 2730 return; 2731 2732 if (list_empty(&hs_ep->queue)) { 2733 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2734 __func__, hs_ep); 2735 return; 2736 } 2737 2738 do { 2739 hs_req = get_ep_head(hs_ep); 2740 if (hs_req) 2741 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2742 -ENODATA); 2743 dwc2_gadget_incr_frame_num(hs_ep); 2744 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2745 2746 dwc2_gadget_start_next_request(hs_ep); 2747 } 2748 2749 /** 2750 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2751 * @hs_ep: The endpoint on which interrupt is asserted. 2752 * 2753 * This is starting point for ISOC-OUT transfer, synchronization done with 2754 * first out token received from host while corresponding EP is disabled. 2755 * 2756 * Device does not know initial frame in which out token will come. For this 2757 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2758 * getting this interrupt SW starts calculation for next transfer frame. 2759 */ 2760 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2761 { 2762 struct dwc2_hsotg *hsotg = ep->parent; 2763 int dir_in = ep->dir_in; 2764 u32 doepmsk; 2765 u32 tmp; 2766 2767 if (dir_in || !ep->isochronous) 2768 return; 2769 2770 /* 2771 * Store frame in which irq was asserted here, as 2772 * it can change while completing request below. 2773 */ 2774 tmp = dwc2_hsotg_read_frameno(hsotg); 2775 2776 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA); 2777 2778 if (using_desc_dma(hsotg)) { 2779 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2780 /* Start first ISO Out */ 2781 ep->target_frame = tmp; 2782 dwc2_gadget_start_isoc_ddma(ep); 2783 } 2784 return; 2785 } 2786 2787 if (ep->interval > 1 && 2788 ep->target_frame == TARGET_FRAME_INITIAL) { 2789 u32 dsts; 2790 u32 ctrl; 2791 2792 dsts = dwc2_readl(hsotg->regs + DSTS); 2793 ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2794 dwc2_gadget_incr_frame_num(ep); 2795 2796 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index)); 2797 if (ep->target_frame & 0x1) 2798 ctrl |= DXEPCTL_SETODDFR; 2799 else 2800 ctrl |= DXEPCTL_SETEVENFR; 2801 2802 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index)); 2803 } 2804 2805 dwc2_gadget_start_next_request(ep); 2806 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 2807 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2808 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK); 2809 } 2810 2811 /** 2812 * dwc2_gadget_handle_nak - handle NAK interrupt 2813 * @hs_ep: The endpoint on which interrupt is asserted. 2814 * 2815 * This is starting point for ISOC-IN transfer, synchronization done with 2816 * first IN token received from host while corresponding EP is disabled. 2817 * 2818 * Device does not know when first one token will arrive from host. On first 2819 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2820 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2821 * sent in response to that as there was no data in FIFO. SW is basing on this 2822 * interrupt to obtain frame in which token has come and then based on the 2823 * interval calculates next frame for transfer. 2824 */ 2825 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2826 { 2827 struct dwc2_hsotg *hsotg = hs_ep->parent; 2828 int dir_in = hs_ep->dir_in; 2829 2830 if (!dir_in || !hs_ep->isochronous) 2831 return; 2832 2833 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2834 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2835 2836 if (using_desc_dma(hsotg)) { 2837 dwc2_gadget_start_isoc_ddma(hs_ep); 2838 return; 2839 } 2840 2841 if (hs_ep->interval > 1) { 2842 u32 ctrl = dwc2_readl(hsotg->regs + 2843 DIEPCTL(hs_ep->index)); 2844 if (hs_ep->target_frame & 0x1) 2845 ctrl |= DXEPCTL_SETODDFR; 2846 else 2847 ctrl |= DXEPCTL_SETEVENFR; 2848 2849 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index)); 2850 } 2851 2852 dwc2_hsotg_complete_request(hsotg, hs_ep, 2853 get_ep_head(hs_ep), 0); 2854 } 2855 2856 dwc2_gadget_incr_frame_num(hs_ep); 2857 } 2858 2859 /** 2860 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2861 * @hsotg: The driver state 2862 * @idx: The index for the endpoint (0..15) 2863 * @dir_in: Set if this is an IN endpoint 2864 * 2865 * Process and clear any interrupt pending for an individual endpoint 2866 */ 2867 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2868 int dir_in) 2869 { 2870 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2871 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2872 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2873 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2874 u32 ints; 2875 u32 ctrl; 2876 2877 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2878 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2879 2880 /* Clear endpoint interrupts */ 2881 dwc2_writel(ints, hsotg->regs + epint_reg); 2882 2883 if (!hs_ep) { 2884 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2885 __func__, idx, dir_in ? "in" : "out"); 2886 return; 2887 } 2888 2889 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2890 __func__, idx, dir_in ? "in" : "out", ints); 2891 2892 /* Don't process XferCompl interrupt if it is a setup packet */ 2893 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2894 ints &= ~DXEPINT_XFERCOMPL; 2895 2896 /* 2897 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 2898 * stage and xfercomplete was generated without SETUP phase done 2899 * interrupt. SW should parse received setup packet only after host's 2900 * exit from setup phase of control transfer. 2901 */ 2902 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 2903 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 2904 ints &= ~DXEPINT_XFERCOMPL; 2905 2906 if (ints & DXEPINT_XFERCOMPL) { 2907 dev_dbg(hsotg->dev, 2908 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 2909 __func__, dwc2_readl(hsotg->regs + epctl_reg), 2910 dwc2_readl(hsotg->regs + epsiz_reg)); 2911 2912 /* In DDMA handle isochronous requests separately */ 2913 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 2914 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 2915 /* Try to start next isoc request */ 2916 dwc2_gadget_start_next_isoc_ddma(hs_ep); 2917 } else if (dir_in) { 2918 /* 2919 * We get OutDone from the FIFO, so we only 2920 * need to look at completing IN requests here 2921 * if operating slave mode 2922 */ 2923 if (hs_ep->isochronous && hs_ep->interval > 1) 2924 dwc2_gadget_incr_frame_num(hs_ep); 2925 2926 dwc2_hsotg_complete_in(hsotg, hs_ep); 2927 if (ints & DXEPINT_NAKINTRPT) 2928 ints &= ~DXEPINT_NAKINTRPT; 2929 2930 if (idx == 0 && !hs_ep->req) 2931 dwc2_hsotg_enqueue_setup(hsotg); 2932 } else if (using_dma(hsotg)) { 2933 /* 2934 * We're using DMA, we need to fire an OutDone here 2935 * as we ignore the RXFIFO. 2936 */ 2937 if (hs_ep->isochronous && hs_ep->interval > 1) 2938 dwc2_gadget_incr_frame_num(hs_ep); 2939 2940 dwc2_hsotg_handle_outdone(hsotg, idx); 2941 } 2942 } 2943 2944 if (ints & DXEPINT_EPDISBLD) 2945 dwc2_gadget_handle_ep_disabled(hs_ep); 2946 2947 if (ints & DXEPINT_OUTTKNEPDIS) 2948 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 2949 2950 if (ints & DXEPINT_NAKINTRPT) 2951 dwc2_gadget_handle_nak(hs_ep); 2952 2953 if (ints & DXEPINT_AHBERR) 2954 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 2955 2956 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 2957 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 2958 2959 if (using_dma(hsotg) && idx == 0) { 2960 /* 2961 * this is the notification we've received a 2962 * setup packet. In non-DMA mode we'd get this 2963 * from the RXFIFO, instead we need to process 2964 * the setup here. 2965 */ 2966 2967 if (dir_in) 2968 WARN_ON_ONCE(1); 2969 else 2970 dwc2_hsotg_handle_outdone(hsotg, 0); 2971 } 2972 } 2973 2974 if (ints & DXEPINT_STSPHSERCVD) { 2975 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 2976 2977 /* Move to STATUS IN for DDMA */ 2978 if (using_desc_dma(hsotg)) 2979 dwc2_hsotg_ep0_zlp(hsotg, true); 2980 } 2981 2982 if (ints & DXEPINT_BACK2BACKSETUP) 2983 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 2984 2985 if (ints & DXEPINT_BNAINTR) { 2986 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 2987 2988 /* 2989 * Try to start next isoc request, if any. 2990 * Sometimes the endpoint remains enabled after BNA interrupt 2991 * assertion, which is not expected, hence we can enter here 2992 * couple of times. 2993 */ 2994 if (hs_ep->isochronous) 2995 dwc2_gadget_start_next_isoc_ddma(hs_ep); 2996 } 2997 2998 if (dir_in && !hs_ep->isochronous) { 2999 /* not sure if this is important, but we'll clear it anyway */ 3000 if (ints & DXEPINT_INTKNTXFEMP) { 3001 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3002 __func__, idx); 3003 } 3004 3005 /* this probably means something bad is happening */ 3006 if (ints & DXEPINT_INTKNEPMIS) { 3007 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3008 __func__, idx); 3009 } 3010 3011 /* FIFO has space or is empty (see GAHBCFG) */ 3012 if (hsotg->dedicated_fifos && 3013 ints & DXEPINT_TXFEMP) { 3014 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3015 __func__, idx); 3016 if (!using_dma(hsotg)) 3017 dwc2_hsotg_trytx(hsotg, hs_ep); 3018 } 3019 } 3020 } 3021 3022 /** 3023 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3024 * @hsotg: The device state. 3025 * 3026 * Handle updating the device settings after the enumeration phase has 3027 * been completed. 3028 */ 3029 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3030 { 3031 u32 dsts = dwc2_readl(hsotg->regs + DSTS); 3032 int ep0_mps = 0, ep_mps = 8; 3033 3034 /* 3035 * This should signal the finish of the enumeration phase 3036 * of the USB handshaking, so we should now know what rate 3037 * we connected at. 3038 */ 3039 3040 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3041 3042 /* 3043 * note, since we're limited by the size of transfer on EP0, and 3044 * it seems IN transfers must be a even number of packets we do 3045 * not advertise a 64byte MPS on EP0. 3046 */ 3047 3048 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3049 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3050 case DSTS_ENUMSPD_FS: 3051 case DSTS_ENUMSPD_FS48: 3052 hsotg->gadget.speed = USB_SPEED_FULL; 3053 ep0_mps = EP0_MPS_LIMIT; 3054 ep_mps = 1023; 3055 break; 3056 3057 case DSTS_ENUMSPD_HS: 3058 hsotg->gadget.speed = USB_SPEED_HIGH; 3059 ep0_mps = EP0_MPS_LIMIT; 3060 ep_mps = 1024; 3061 break; 3062 3063 case DSTS_ENUMSPD_LS: 3064 hsotg->gadget.speed = USB_SPEED_LOW; 3065 ep0_mps = 8; 3066 ep_mps = 8; 3067 /* 3068 * note, we don't actually support LS in this driver at the 3069 * moment, and the documentation seems to imply that it isn't 3070 * supported by the PHYs on some of the devices. 3071 */ 3072 break; 3073 } 3074 dev_info(hsotg->dev, "new device is %s\n", 3075 usb_speed_string(hsotg->gadget.speed)); 3076 3077 /* 3078 * we should now know the maximum packet size for an 3079 * endpoint, so set the endpoints to a default value. 3080 */ 3081 3082 if (ep0_mps) { 3083 int i; 3084 /* Initialize ep0 for both in and out directions */ 3085 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3086 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3087 for (i = 1; i < hsotg->num_of_eps; i++) { 3088 if (hsotg->eps_in[i]) 3089 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3090 0, 1); 3091 if (hsotg->eps_out[i]) 3092 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3093 0, 0); 3094 } 3095 } 3096 3097 /* ensure after enumeration our EP0 is active */ 3098 3099 dwc2_hsotg_enqueue_setup(hsotg); 3100 3101 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3102 dwc2_readl(hsotg->regs + DIEPCTL0), 3103 dwc2_readl(hsotg->regs + DOEPCTL0)); 3104 } 3105 3106 /** 3107 * kill_all_requests - remove all requests from the endpoint's queue 3108 * @hsotg: The device state. 3109 * @ep: The endpoint the requests may be on. 3110 * @result: The result code to use. 3111 * 3112 * Go through the requests on the given endpoint and mark them 3113 * completed with the given result code. 3114 */ 3115 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3116 struct dwc2_hsotg_ep *ep, 3117 int result) 3118 { 3119 struct dwc2_hsotg_req *req, *treq; 3120 unsigned int size; 3121 3122 ep->req = NULL; 3123 3124 list_for_each_entry_safe(req, treq, &ep->queue, queue) 3125 dwc2_hsotg_complete_request(hsotg, ep, req, 3126 result); 3127 3128 if (!hsotg->dedicated_fifos) 3129 return; 3130 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3131 if (size < ep->fifo_size) 3132 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3133 } 3134 3135 /** 3136 * dwc2_hsotg_disconnect - disconnect service 3137 * @hsotg: The device state. 3138 * 3139 * The device has been disconnected. Remove all current 3140 * transactions and signal the gadget driver that this 3141 * has happened. 3142 */ 3143 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3144 { 3145 unsigned int ep; 3146 3147 if (!hsotg->connected) 3148 return; 3149 3150 hsotg->connected = 0; 3151 hsotg->test_mode = 0; 3152 3153 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3154 if (hsotg->eps_in[ep]) 3155 kill_all_requests(hsotg, hsotg->eps_in[ep], 3156 -ESHUTDOWN); 3157 if (hsotg->eps_out[ep]) 3158 kill_all_requests(hsotg, hsotg->eps_out[ep], 3159 -ESHUTDOWN); 3160 } 3161 3162 call_gadget(hsotg, disconnect); 3163 hsotg->lx_state = DWC2_L3; 3164 3165 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3166 } 3167 3168 /** 3169 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3170 * @hsotg: The device state: 3171 * @periodic: True if this is a periodic FIFO interrupt 3172 */ 3173 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3174 { 3175 struct dwc2_hsotg_ep *ep; 3176 int epno, ret; 3177 3178 /* look through for any more data to transmit */ 3179 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3180 ep = index_to_ep(hsotg, epno, 1); 3181 3182 if (!ep) 3183 continue; 3184 3185 if (!ep->dir_in) 3186 continue; 3187 3188 if ((periodic && !ep->periodic) || 3189 (!periodic && ep->periodic)) 3190 continue; 3191 3192 ret = dwc2_hsotg_trytx(hsotg, ep); 3193 if (ret < 0) 3194 break; 3195 } 3196 } 3197 3198 /* IRQ flags which will trigger a retry around the IRQ loop */ 3199 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3200 GINTSTS_PTXFEMP | \ 3201 GINTSTS_RXFLVL) 3202 3203 /** 3204 * dwc2_hsotg_core_init - issue softreset to the core 3205 * @hsotg: The device state 3206 * 3207 * Issue a soft reset to the core, and await the core finishing it. 3208 */ 3209 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3210 bool is_usb_reset) 3211 { 3212 u32 intmsk; 3213 u32 val; 3214 u32 usbcfg; 3215 u32 dcfg = 0; 3216 3217 /* Kill any ep0 requests as controller will be reinitialized */ 3218 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3219 3220 if (!is_usb_reset) 3221 if (dwc2_core_reset(hsotg, true)) 3222 return; 3223 3224 /* 3225 * we must now enable ep0 ready for host detection and then 3226 * set configuration. 3227 */ 3228 3229 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3230 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 3231 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 3232 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 3233 3234 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS && 3235 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 3236 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) { 3237 /* FS/LS Dedicated Transceiver Interface */ 3238 usbcfg |= GUSBCFG_PHYSEL; 3239 } else { 3240 /* set the PLL on, remove the HNP/SRP and set the PHY */ 3241 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 3242 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 3243 (val << GUSBCFG_USBTRDTIM_SHIFT); 3244 } 3245 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 3246 3247 dwc2_hsotg_init_fifo(hsotg); 3248 3249 if (!is_usb_reset) 3250 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3251 3252 dcfg |= DCFG_EPMISCNT(1); 3253 3254 switch (hsotg->params.speed) { 3255 case DWC2_SPEED_PARAM_LOW: 3256 dcfg |= DCFG_DEVSPD_LS; 3257 break; 3258 case DWC2_SPEED_PARAM_FULL: 3259 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3260 dcfg |= DCFG_DEVSPD_FS48; 3261 else 3262 dcfg |= DCFG_DEVSPD_FS; 3263 break; 3264 default: 3265 dcfg |= DCFG_DEVSPD_HS; 3266 } 3267 3268 dwc2_writel(dcfg, hsotg->regs + DCFG); 3269 3270 /* Clear any pending OTG interrupts */ 3271 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 3272 3273 /* Clear any pending interrupts */ 3274 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 3275 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3276 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3277 GINTSTS_USBRST | GINTSTS_RESETDET | 3278 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3279 GINTSTS_USBSUSP | GINTSTS_WKUPINT; 3280 3281 if (!using_desc_dma(hsotg)) 3282 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3283 3284 if (!hsotg->params.external_id_pin_ctl) 3285 intmsk |= GINTSTS_CONIDSTSCHNG; 3286 3287 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 3288 3289 if (using_dma(hsotg)) { 3290 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3291 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT), 3292 hsotg->regs + GAHBCFG); 3293 3294 /* Set DDMA mode support in the core if needed */ 3295 if (using_desc_dma(hsotg)) 3296 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN); 3297 3298 } else { 3299 dwc2_writel(((hsotg->dedicated_fifos) ? 3300 (GAHBCFG_NP_TXF_EMP_LVL | 3301 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3302 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG); 3303 } 3304 3305 /* 3306 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3307 * when we have no data to transfer. Otherwise we get being flooded by 3308 * interrupts. 3309 */ 3310 3311 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3312 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3313 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3314 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3315 hsotg->regs + DIEPMSK); 3316 3317 /* 3318 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3319 * DMA mode we may need this and StsPhseRcvd. 3320 */ 3321 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3322 DOEPMSK_STSPHSERCVDMSK) : 0) | 3323 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3324 DOEPMSK_SETUPMSK, 3325 hsotg->regs + DOEPMSK); 3326 3327 /* Enable BNA interrupt for DDMA */ 3328 if (using_desc_dma(hsotg)) 3329 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK); 3330 3331 dwc2_writel(0, hsotg->regs + DAINTMSK); 3332 3333 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3334 dwc2_readl(hsotg->regs + DIEPCTL0), 3335 dwc2_readl(hsotg->regs + DOEPCTL0)); 3336 3337 /* enable in and out endpoint interrupts */ 3338 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3339 3340 /* 3341 * Enable the RXFIFO when in slave mode, as this is how we collect 3342 * the data. In DMA mode, we get events from the FIFO but also 3343 * things we cannot process, so do not use it. 3344 */ 3345 if (!using_dma(hsotg)) 3346 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3347 3348 /* Enable interrupts for EP0 in and out */ 3349 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3350 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3351 3352 if (!is_usb_reset) { 3353 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3354 udelay(10); /* see openiboot */ 3355 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3356 } 3357 3358 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL)); 3359 3360 /* 3361 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3362 * writing to the EPCTL register.. 3363 */ 3364 3365 /* set to read 1 8byte packet */ 3366 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3367 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 3368 3369 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3370 DXEPCTL_CNAK | DXEPCTL_EPENA | 3371 DXEPCTL_USBACTEP, 3372 hsotg->regs + DOEPCTL0); 3373 3374 /* enable, but don't activate EP0in */ 3375 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3376 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 3377 3378 dwc2_hsotg_enqueue_setup(hsotg); 3379 3380 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3381 dwc2_readl(hsotg->regs + DIEPCTL0), 3382 dwc2_readl(hsotg->regs + DOEPCTL0)); 3383 3384 /* clear global NAKs */ 3385 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3386 if (!is_usb_reset) 3387 val |= DCTL_SFTDISCON; 3388 __orr32(hsotg->regs + DCTL, val); 3389 3390 /* must be at-least 3ms to allow bus to see disconnect */ 3391 mdelay(3); 3392 3393 hsotg->lx_state = DWC2_L0; 3394 } 3395 3396 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3397 { 3398 /* set the soft-disconnect bit */ 3399 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3400 } 3401 3402 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3403 { 3404 /* remove the soft-disconnect and let's go */ 3405 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3406 } 3407 3408 /** 3409 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3410 * @hsotg: The device state: 3411 * 3412 * This interrupt indicates one of the following conditions occurred while 3413 * transmitting an ISOC transaction. 3414 * - Corrupted IN Token for ISOC EP. 3415 * - Packet not complete in FIFO. 3416 * 3417 * The following actions will be taken: 3418 * - Determine the EP 3419 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3420 */ 3421 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3422 { 3423 struct dwc2_hsotg_ep *hs_ep; 3424 u32 epctrl; 3425 u32 idx; 3426 3427 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3428 3429 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3430 hs_ep = hsotg->eps_in[idx]; 3431 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx)); 3432 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous && 3433 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3434 epctrl |= DXEPCTL_SNAK; 3435 epctrl |= DXEPCTL_EPDIS; 3436 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx)); 3437 } 3438 } 3439 3440 /* Clear interrupt */ 3441 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS); 3442 } 3443 3444 /** 3445 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3446 * @hsotg: The device state: 3447 * 3448 * This interrupt indicates one of the following conditions occurred while 3449 * transmitting an ISOC transaction. 3450 * - Corrupted OUT Token for ISOC EP. 3451 * - Packet not complete in FIFO. 3452 * 3453 * The following actions will be taken: 3454 * - Determine the EP 3455 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3456 */ 3457 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3458 { 3459 u32 gintsts; 3460 u32 gintmsk; 3461 u32 epctrl; 3462 struct dwc2_hsotg_ep *hs_ep; 3463 int idx; 3464 3465 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3466 3467 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3468 hs_ep = hsotg->eps_out[idx]; 3469 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3470 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous && 3471 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3472 /* Unmask GOUTNAKEFF interrupt */ 3473 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3474 gintmsk |= GINTSTS_GOUTNAKEFF; 3475 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3476 3477 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3478 if (!(gintsts & GINTSTS_GOUTNAKEFF)) 3479 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3480 } 3481 } 3482 3483 /* Clear interrupt */ 3484 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS); 3485 } 3486 3487 /** 3488 * dwc2_hsotg_irq - handle device interrupt 3489 * @irq: The IRQ number triggered 3490 * @pw: The pw value when registered the handler. 3491 */ 3492 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3493 { 3494 struct dwc2_hsotg *hsotg = pw; 3495 int retry_count = 8; 3496 u32 gintsts; 3497 u32 gintmsk; 3498 3499 if (!dwc2_is_device_mode(hsotg)) 3500 return IRQ_NONE; 3501 3502 spin_lock(&hsotg->lock); 3503 irq_retry: 3504 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3505 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3506 3507 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3508 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3509 3510 gintsts &= gintmsk; 3511 3512 if (gintsts & GINTSTS_RESETDET) { 3513 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3514 3515 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS); 3516 3517 /* This event must be used only if controller is suspended */ 3518 if (hsotg->lx_state == DWC2_L2) { 3519 dwc2_exit_hibernation(hsotg, true); 3520 hsotg->lx_state = DWC2_L0; 3521 } 3522 } 3523 3524 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3525 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL); 3526 u32 connected = hsotg->connected; 3527 3528 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3529 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3530 dwc2_readl(hsotg->regs + GNPTXSTS)); 3531 3532 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 3533 3534 /* Report disconnection if it is not already done. */ 3535 dwc2_hsotg_disconnect(hsotg); 3536 3537 /* Reset device address to zero */ 3538 __bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK); 3539 3540 if (usb_status & GOTGCTL_BSESVLD && connected) 3541 dwc2_hsotg_core_init_disconnected(hsotg, true); 3542 } 3543 3544 if (gintsts & GINTSTS_ENUMDONE) { 3545 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 3546 3547 dwc2_hsotg_irq_enumdone(hsotg); 3548 } 3549 3550 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3551 u32 daint = dwc2_readl(hsotg->regs + DAINT); 3552 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3553 u32 daint_out, daint_in; 3554 int ep; 3555 3556 daint &= daintmsk; 3557 daint_out = daint >> DAINT_OUTEP_SHIFT; 3558 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3559 3560 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3561 3562 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3563 ep++, daint_out >>= 1) { 3564 if (daint_out & 1) 3565 dwc2_hsotg_epint(hsotg, ep, 0); 3566 } 3567 3568 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3569 ep++, daint_in >>= 1) { 3570 if (daint_in & 1) 3571 dwc2_hsotg_epint(hsotg, ep, 1); 3572 } 3573 } 3574 3575 /* check both FIFOs */ 3576 3577 if (gintsts & GINTSTS_NPTXFEMP) { 3578 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3579 3580 /* 3581 * Disable the interrupt to stop it happening again 3582 * unless one of these endpoint routines decides that 3583 * it needs re-enabling 3584 */ 3585 3586 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3587 dwc2_hsotg_irq_fifoempty(hsotg, false); 3588 } 3589 3590 if (gintsts & GINTSTS_PTXFEMP) { 3591 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3592 3593 /* See note in GINTSTS_NPTxFEmp */ 3594 3595 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3596 dwc2_hsotg_irq_fifoempty(hsotg, true); 3597 } 3598 3599 if (gintsts & GINTSTS_RXFLVL) { 3600 /* 3601 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3602 * we need to retry dwc2_hsotg_handle_rx if this is still 3603 * set. 3604 */ 3605 3606 dwc2_hsotg_handle_rx(hsotg); 3607 } 3608 3609 if (gintsts & GINTSTS_ERLYSUSP) { 3610 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3611 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 3612 } 3613 3614 /* 3615 * these next two seem to crop-up occasionally causing the core 3616 * to shutdown the USB transfer, so try clearing them and logging 3617 * the occurrence. 3618 */ 3619 3620 if (gintsts & GINTSTS_GOUTNAKEFF) { 3621 u8 idx; 3622 u32 epctrl; 3623 u32 gintmsk; 3624 struct dwc2_hsotg_ep *hs_ep; 3625 3626 /* Mask this interrupt */ 3627 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3628 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3629 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3630 3631 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3632 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3633 hs_ep = hsotg->eps_out[idx]; 3634 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3635 3636 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3637 epctrl |= DXEPCTL_SNAK; 3638 epctrl |= DXEPCTL_EPDIS; 3639 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx)); 3640 } 3641 } 3642 3643 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3644 } 3645 3646 if (gintsts & GINTSTS_GINNAKEFF) { 3647 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3648 3649 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3650 3651 dwc2_hsotg_dump(hsotg); 3652 } 3653 3654 if (gintsts & GINTSTS_INCOMPL_SOIN) 3655 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3656 3657 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3658 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3659 3660 /* 3661 * if we've had fifo events, we should try and go around the 3662 * loop again to see if there's any point in returning yet. 3663 */ 3664 3665 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3666 goto irq_retry; 3667 3668 spin_unlock(&hsotg->lock); 3669 3670 return IRQ_HANDLED; 3671 } 3672 3673 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, 3674 u32 bit, u32 timeout) 3675 { 3676 u32 i; 3677 3678 for (i = 0; i < timeout; i++) { 3679 if (dwc2_readl(hs_otg->regs + reg) & bit) 3680 return 0; 3681 udelay(1); 3682 } 3683 3684 return -ETIMEDOUT; 3685 } 3686 3687 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3688 struct dwc2_hsotg_ep *hs_ep) 3689 { 3690 u32 epctrl_reg; 3691 u32 epint_reg; 3692 3693 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3694 DOEPCTL(hs_ep->index); 3695 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3696 DOEPINT(hs_ep->index); 3697 3698 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3699 hs_ep->name); 3700 3701 if (hs_ep->dir_in) { 3702 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3703 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK); 3704 /* Wait for Nak effect */ 3705 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3706 DXEPINT_INEPNAKEFF, 100)) 3707 dev_warn(hsotg->dev, 3708 "%s: timeout DIEPINT.NAKEFF\n", 3709 __func__); 3710 } else { 3711 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK); 3712 /* Wait for Nak effect */ 3713 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3714 GINTSTS_GINNAKEFF, 100)) 3715 dev_warn(hsotg->dev, 3716 "%s: timeout GINTSTS.GINNAKEFF\n", 3717 __func__); 3718 } 3719 } else { 3720 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF)) 3721 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3722 3723 /* Wait for global nak to take effect */ 3724 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3725 GINTSTS_GOUTNAKEFF, 100)) 3726 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3727 __func__); 3728 } 3729 3730 /* Disable ep */ 3731 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3732 3733 /* Wait for ep to be disabled */ 3734 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3735 dev_warn(hsotg->dev, 3736 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3737 3738 /* Clear EPDISBLD interrupt */ 3739 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD); 3740 3741 if (hs_ep->dir_in) { 3742 unsigned short fifo_index; 3743 3744 if (hsotg->dedicated_fifos || hs_ep->periodic) 3745 fifo_index = hs_ep->fifo_index; 3746 else 3747 fifo_index = 0; 3748 3749 /* Flush TX FIFO */ 3750 dwc2_flush_tx_fifo(hsotg, fifo_index); 3751 3752 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3753 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3754 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3755 3756 } else { 3757 /* Remove global NAKs */ 3758 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK); 3759 } 3760 } 3761 3762 /** 3763 * dwc2_hsotg_ep_enable - enable the given endpoint 3764 * @ep: The USB endpint to configure 3765 * @desc: The USB endpoint descriptor to configure with. 3766 * 3767 * This is called from the USB gadget code's usb_ep_enable(). 3768 */ 3769 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3770 const struct usb_endpoint_descriptor *desc) 3771 { 3772 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3773 struct dwc2_hsotg *hsotg = hs_ep->parent; 3774 unsigned long flags; 3775 unsigned int index = hs_ep->index; 3776 u32 epctrl_reg; 3777 u32 epctrl; 3778 u32 mps; 3779 u32 mc; 3780 u32 mask; 3781 unsigned int dir_in; 3782 unsigned int i, val, size; 3783 int ret = 0; 3784 3785 dev_dbg(hsotg->dev, 3786 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3787 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3788 desc->wMaxPacketSize, desc->bInterval); 3789 3790 /* not to be called for EP0 */ 3791 if (index == 0) { 3792 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3793 return -EINVAL; 3794 } 3795 3796 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3797 if (dir_in != hs_ep->dir_in) { 3798 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3799 return -EINVAL; 3800 } 3801 3802 mps = usb_endpoint_maxp(desc); 3803 mc = usb_endpoint_maxp_mult(desc); 3804 3805 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3806 3807 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3808 epctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3809 3810 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3811 __func__, epctrl, epctrl_reg); 3812 3813 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 3814 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 3815 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 3816 MAX_DMA_DESC_NUM_GENERIC * 3817 sizeof(struct dwc2_dma_desc), 3818 &hs_ep->desc_list_dma, GFP_ATOMIC); 3819 if (!hs_ep->desc_list) { 3820 ret = -ENOMEM; 3821 goto error2; 3822 } 3823 } 3824 3825 spin_lock_irqsave(&hsotg->lock, flags); 3826 3827 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 3828 epctrl |= DXEPCTL_MPS(mps); 3829 3830 /* 3831 * mark the endpoint as active, otherwise the core may ignore 3832 * transactions entirely for this endpoint 3833 */ 3834 epctrl |= DXEPCTL_USBACTEP; 3835 3836 /* update the endpoint state */ 3837 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 3838 3839 /* default, set to non-periodic */ 3840 hs_ep->isochronous = 0; 3841 hs_ep->periodic = 0; 3842 hs_ep->halted = 0; 3843 hs_ep->interval = desc->bInterval; 3844 3845 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 3846 case USB_ENDPOINT_XFER_ISOC: 3847 epctrl |= DXEPCTL_EPTYPE_ISO; 3848 epctrl |= DXEPCTL_SETEVENFR; 3849 hs_ep->isochronous = 1; 3850 hs_ep->interval = 1 << (desc->bInterval - 1); 3851 hs_ep->target_frame = TARGET_FRAME_INITIAL; 3852 hs_ep->isoc_chain_num = 0; 3853 hs_ep->next_desc = 0; 3854 if (dir_in) { 3855 hs_ep->periodic = 1; 3856 mask = dwc2_readl(hsotg->regs + DIEPMSK); 3857 mask |= DIEPMSK_NAKMSK; 3858 dwc2_writel(mask, hsotg->regs + DIEPMSK); 3859 } else { 3860 mask = dwc2_readl(hsotg->regs + DOEPMSK); 3861 mask |= DOEPMSK_OUTTKNEPDISMSK; 3862 dwc2_writel(mask, hsotg->regs + DOEPMSK); 3863 } 3864 break; 3865 3866 case USB_ENDPOINT_XFER_BULK: 3867 epctrl |= DXEPCTL_EPTYPE_BULK; 3868 break; 3869 3870 case USB_ENDPOINT_XFER_INT: 3871 if (dir_in) 3872 hs_ep->periodic = 1; 3873 3874 if (hsotg->gadget.speed == USB_SPEED_HIGH) 3875 hs_ep->interval = 1 << (desc->bInterval - 1); 3876 3877 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 3878 break; 3879 3880 case USB_ENDPOINT_XFER_CONTROL: 3881 epctrl |= DXEPCTL_EPTYPE_CONTROL; 3882 break; 3883 } 3884 3885 /* 3886 * if the hardware has dedicated fifos, we must give each IN EP 3887 * a unique tx-fifo even if it is non-periodic. 3888 */ 3889 if (dir_in && hsotg->dedicated_fifos) { 3890 u32 fifo_index = 0; 3891 u32 fifo_size = UINT_MAX; 3892 3893 size = hs_ep->ep.maxpacket * hs_ep->mc; 3894 for (i = 1; i < hsotg->num_of_eps; ++i) { 3895 if (hsotg->fifo_map & (1 << i)) 3896 continue; 3897 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i)); 3898 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 3899 if (val < size) 3900 continue; 3901 /* Search for smallest acceptable fifo */ 3902 if (val < fifo_size) { 3903 fifo_size = val; 3904 fifo_index = i; 3905 } 3906 } 3907 if (!fifo_index) { 3908 dev_err(hsotg->dev, 3909 "%s: No suitable fifo found\n", __func__); 3910 ret = -ENOMEM; 3911 goto error1; 3912 } 3913 hsotg->fifo_map |= 1 << fifo_index; 3914 epctrl |= DXEPCTL_TXFNUM(fifo_index); 3915 hs_ep->fifo_index = fifo_index; 3916 hs_ep->fifo_size = fifo_size; 3917 } 3918 3919 /* for non control endpoints, set PID to D0 */ 3920 if (index && !hs_ep->isochronous) 3921 epctrl |= DXEPCTL_SETD0PID; 3922 3923 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 3924 __func__, epctrl); 3925 3926 dwc2_writel(epctrl, hsotg->regs + epctrl_reg); 3927 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 3928 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 3929 3930 /* enable the endpoint interrupt */ 3931 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 3932 3933 error1: 3934 spin_unlock_irqrestore(&hsotg->lock, flags); 3935 3936 error2: 3937 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 3938 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC * 3939 sizeof(struct dwc2_dma_desc), 3940 hs_ep->desc_list, hs_ep->desc_list_dma); 3941 hs_ep->desc_list = NULL; 3942 } 3943 3944 return ret; 3945 } 3946 3947 /** 3948 * dwc2_hsotg_ep_disable - disable given endpoint 3949 * @ep: The endpoint to disable. 3950 */ 3951 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 3952 { 3953 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3954 struct dwc2_hsotg *hsotg = hs_ep->parent; 3955 int dir_in = hs_ep->dir_in; 3956 int index = hs_ep->index; 3957 unsigned long flags; 3958 u32 epctrl_reg; 3959 u32 ctrl; 3960 3961 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 3962 3963 if (ep == &hsotg->eps_out[0]->ep) { 3964 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 3965 return -EINVAL; 3966 } 3967 3968 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 3969 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 3970 return -EINVAL; 3971 } 3972 3973 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3974 3975 spin_lock_irqsave(&hsotg->lock, flags); 3976 3977 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3978 3979 if (ctrl & DXEPCTL_EPENA) 3980 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 3981 3982 ctrl &= ~DXEPCTL_EPENA; 3983 ctrl &= ~DXEPCTL_USBACTEP; 3984 ctrl |= DXEPCTL_SNAK; 3985 3986 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 3987 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 3988 3989 /* disable endpoint interrupts */ 3990 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 3991 3992 /* terminate all requests with shutdown */ 3993 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 3994 3995 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 3996 hs_ep->fifo_index = 0; 3997 hs_ep->fifo_size = 0; 3998 3999 spin_unlock_irqrestore(&hsotg->lock, flags); 4000 return 0; 4001 } 4002 4003 /** 4004 * on_list - check request is on the given endpoint 4005 * @ep: The endpoint to check. 4006 * @test: The request to test if it is on the endpoint. 4007 */ 4008 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4009 { 4010 struct dwc2_hsotg_req *req, *treq; 4011 4012 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4013 if (req == test) 4014 return true; 4015 } 4016 4017 return false; 4018 } 4019 4020 /** 4021 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4022 * @ep: The endpoint to dequeue. 4023 * @req: The request to be removed from a queue. 4024 */ 4025 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4026 { 4027 struct dwc2_hsotg_req *hs_req = our_req(req); 4028 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4029 struct dwc2_hsotg *hs = hs_ep->parent; 4030 unsigned long flags; 4031 4032 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4033 4034 spin_lock_irqsave(&hs->lock, flags); 4035 4036 if (!on_list(hs_ep, hs_req)) { 4037 spin_unlock_irqrestore(&hs->lock, flags); 4038 return -EINVAL; 4039 } 4040 4041 /* Dequeue already started request */ 4042 if (req == &hs_ep->req->req) 4043 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4044 4045 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4046 spin_unlock_irqrestore(&hs->lock, flags); 4047 4048 return 0; 4049 } 4050 4051 /** 4052 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4053 * @ep: The endpoint to set halt. 4054 * @value: Set or unset the halt. 4055 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4056 * the endpoint is busy processing requests. 4057 * 4058 * We need to stall the endpoint immediately if request comes from set_feature 4059 * protocol command handler. 4060 */ 4061 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4062 { 4063 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4064 struct dwc2_hsotg *hs = hs_ep->parent; 4065 int index = hs_ep->index; 4066 u32 epreg; 4067 u32 epctl; 4068 u32 xfertype; 4069 4070 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4071 4072 if (index == 0) { 4073 if (value) 4074 dwc2_hsotg_stall_ep0(hs); 4075 else 4076 dev_warn(hs->dev, 4077 "%s: can't clear halt on ep0\n", __func__); 4078 return 0; 4079 } 4080 4081 if (hs_ep->isochronous) { 4082 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4083 return -EINVAL; 4084 } 4085 4086 if (!now && value && !list_empty(&hs_ep->queue)) { 4087 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4088 ep->name); 4089 return -EAGAIN; 4090 } 4091 4092 if (hs_ep->dir_in) { 4093 epreg = DIEPCTL(index); 4094 epctl = dwc2_readl(hs->regs + epreg); 4095 4096 if (value) { 4097 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4098 if (epctl & DXEPCTL_EPENA) 4099 epctl |= DXEPCTL_EPDIS; 4100 } else { 4101 epctl &= ~DXEPCTL_STALL; 4102 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4103 if (xfertype == DXEPCTL_EPTYPE_BULK || 4104 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4105 epctl |= DXEPCTL_SETD0PID; 4106 } 4107 dwc2_writel(epctl, hs->regs + epreg); 4108 } else { 4109 epreg = DOEPCTL(index); 4110 epctl = dwc2_readl(hs->regs + epreg); 4111 4112 if (value) { 4113 epctl |= DXEPCTL_STALL; 4114 } else { 4115 epctl &= ~DXEPCTL_STALL; 4116 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4117 if (xfertype == DXEPCTL_EPTYPE_BULK || 4118 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4119 epctl |= DXEPCTL_SETD0PID; 4120 } 4121 dwc2_writel(epctl, hs->regs + epreg); 4122 } 4123 4124 hs_ep->halted = value; 4125 4126 return 0; 4127 } 4128 4129 /** 4130 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4131 * @ep: The endpoint to set halt. 4132 * @value: Set or unset the halt. 4133 */ 4134 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4135 { 4136 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4137 struct dwc2_hsotg *hs = hs_ep->parent; 4138 unsigned long flags = 0; 4139 int ret = 0; 4140 4141 spin_lock_irqsave(&hs->lock, flags); 4142 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4143 spin_unlock_irqrestore(&hs->lock, flags); 4144 4145 return ret; 4146 } 4147 4148 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4149 .enable = dwc2_hsotg_ep_enable, 4150 .disable = dwc2_hsotg_ep_disable, 4151 .alloc_request = dwc2_hsotg_ep_alloc_request, 4152 .free_request = dwc2_hsotg_ep_free_request, 4153 .queue = dwc2_hsotg_ep_queue_lock, 4154 .dequeue = dwc2_hsotg_ep_dequeue, 4155 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4156 /* note, don't believe we have any call for the fifo routines */ 4157 }; 4158 4159 /** 4160 * dwc2_hsotg_init - initialize the usb core 4161 * @hsotg: The driver state 4162 */ 4163 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4164 { 4165 u32 trdtim; 4166 u32 usbcfg; 4167 /* unmask subset of endpoint interrupts */ 4168 4169 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4170 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4171 hsotg->regs + DIEPMSK); 4172 4173 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4174 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4175 hsotg->regs + DOEPMSK); 4176 4177 dwc2_writel(0, hsotg->regs + DAINTMSK); 4178 4179 /* Be in disconnected state until gadget is registered */ 4180 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 4181 4182 /* setup fifos */ 4183 4184 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4185 dwc2_readl(hsotg->regs + GRXFSIZ), 4186 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 4187 4188 dwc2_hsotg_init_fifo(hsotg); 4189 4190 /* keep other bits untouched (so e.g. forced modes are not lost) */ 4191 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 4192 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 4193 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 4194 4195 /* set the PLL on, remove the HNP/SRP and set the PHY */ 4196 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 4197 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 4198 (trdtim << GUSBCFG_USBTRDTIM_SHIFT); 4199 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 4200 4201 if (using_dma(hsotg)) 4202 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN); 4203 } 4204 4205 /** 4206 * dwc2_hsotg_udc_start - prepare the udc for work 4207 * @gadget: The usb gadget state 4208 * @driver: The usb gadget driver 4209 * 4210 * Perform initialization to prepare udc device and driver 4211 * to work. 4212 */ 4213 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4214 struct usb_gadget_driver *driver) 4215 { 4216 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4217 unsigned long flags; 4218 int ret; 4219 4220 if (!hsotg) { 4221 pr_err("%s: called with no device\n", __func__); 4222 return -ENODEV; 4223 } 4224 4225 if (!driver) { 4226 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4227 return -EINVAL; 4228 } 4229 4230 if (driver->max_speed < USB_SPEED_FULL) 4231 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4232 4233 if (!driver->setup) { 4234 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4235 return -EINVAL; 4236 } 4237 4238 WARN_ON(hsotg->driver); 4239 4240 driver->driver.bus = NULL; 4241 hsotg->driver = driver; 4242 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4243 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4244 4245 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4246 ret = dwc2_lowlevel_hw_enable(hsotg); 4247 if (ret) 4248 goto err; 4249 } 4250 4251 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4252 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4253 4254 spin_lock_irqsave(&hsotg->lock, flags); 4255 if (dwc2_hw_is_device(hsotg)) { 4256 dwc2_hsotg_init(hsotg); 4257 dwc2_hsotg_core_init_disconnected(hsotg, false); 4258 } 4259 4260 hsotg->enabled = 0; 4261 spin_unlock_irqrestore(&hsotg->lock, flags); 4262 4263 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4264 4265 return 0; 4266 4267 err: 4268 hsotg->driver = NULL; 4269 return ret; 4270 } 4271 4272 /** 4273 * dwc2_hsotg_udc_stop - stop the udc 4274 * @gadget: The usb gadget state 4275 * @driver: The usb gadget driver 4276 * 4277 * Stop udc hw block and stay tunned for future transmissions 4278 */ 4279 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4280 { 4281 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4282 unsigned long flags = 0; 4283 int ep; 4284 4285 if (!hsotg) 4286 return -ENODEV; 4287 4288 /* all endpoints should be shutdown */ 4289 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4290 if (hsotg->eps_in[ep]) 4291 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4292 if (hsotg->eps_out[ep]) 4293 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4294 } 4295 4296 spin_lock_irqsave(&hsotg->lock, flags); 4297 4298 hsotg->driver = NULL; 4299 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4300 hsotg->enabled = 0; 4301 4302 spin_unlock_irqrestore(&hsotg->lock, flags); 4303 4304 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4305 otg_set_peripheral(hsotg->uphy->otg, NULL); 4306 4307 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4308 dwc2_lowlevel_hw_disable(hsotg); 4309 4310 return 0; 4311 } 4312 4313 /** 4314 * dwc2_hsotg_gadget_getframe - read the frame number 4315 * @gadget: The usb gadget state 4316 * 4317 * Read the {micro} frame number 4318 */ 4319 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4320 { 4321 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4322 } 4323 4324 /** 4325 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4326 * @gadget: The usb gadget state 4327 * @is_on: Current state of the USB PHY 4328 * 4329 * Connect/Disconnect the USB PHY pullup 4330 */ 4331 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4332 { 4333 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4334 unsigned long flags = 0; 4335 4336 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4337 hsotg->op_state); 4338 4339 /* Don't modify pullup state while in host mode */ 4340 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4341 hsotg->enabled = is_on; 4342 return 0; 4343 } 4344 4345 spin_lock_irqsave(&hsotg->lock, flags); 4346 if (is_on) { 4347 hsotg->enabled = 1; 4348 dwc2_hsotg_core_init_disconnected(hsotg, false); 4349 dwc2_hsotg_core_connect(hsotg); 4350 } else { 4351 dwc2_hsotg_core_disconnect(hsotg); 4352 dwc2_hsotg_disconnect(hsotg); 4353 hsotg->enabled = 0; 4354 } 4355 4356 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4357 spin_unlock_irqrestore(&hsotg->lock, flags); 4358 4359 return 0; 4360 } 4361 4362 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4363 { 4364 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4365 unsigned long flags; 4366 4367 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4368 spin_lock_irqsave(&hsotg->lock, flags); 4369 4370 /* 4371 * If controller is hibernated, it must exit from hibernation 4372 * before being initialized / de-initialized 4373 */ 4374 if (hsotg->lx_state == DWC2_L2) 4375 dwc2_exit_hibernation(hsotg, false); 4376 4377 if (is_active) { 4378 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4379 4380 dwc2_hsotg_core_init_disconnected(hsotg, false); 4381 if (hsotg->enabled) 4382 dwc2_hsotg_core_connect(hsotg); 4383 } else { 4384 dwc2_hsotg_core_disconnect(hsotg); 4385 dwc2_hsotg_disconnect(hsotg); 4386 } 4387 4388 spin_unlock_irqrestore(&hsotg->lock, flags); 4389 return 0; 4390 } 4391 4392 /** 4393 * dwc2_hsotg_vbus_draw - report bMaxPower field 4394 * @gadget: The usb gadget state 4395 * @mA: Amount of current 4396 * 4397 * Report how much power the device may consume to the phy. 4398 */ 4399 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4400 { 4401 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4402 4403 if (IS_ERR_OR_NULL(hsotg->uphy)) 4404 return -ENOTSUPP; 4405 return usb_phy_set_power(hsotg->uphy, mA); 4406 } 4407 4408 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4409 .get_frame = dwc2_hsotg_gadget_getframe, 4410 .udc_start = dwc2_hsotg_udc_start, 4411 .udc_stop = dwc2_hsotg_udc_stop, 4412 .pullup = dwc2_hsotg_pullup, 4413 .vbus_session = dwc2_hsotg_vbus_session, 4414 .vbus_draw = dwc2_hsotg_vbus_draw, 4415 }; 4416 4417 /** 4418 * dwc2_hsotg_initep - initialise a single endpoint 4419 * @hsotg: The device state. 4420 * @hs_ep: The endpoint to be initialised. 4421 * @epnum: The endpoint number 4422 * 4423 * Initialise the given endpoint (as part of the probe and device state 4424 * creation) to give to the gadget driver. Setup the endpoint name, any 4425 * direction information and other state that may be required. 4426 */ 4427 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4428 struct dwc2_hsotg_ep *hs_ep, 4429 int epnum, 4430 bool dir_in) 4431 { 4432 char *dir; 4433 4434 if (epnum == 0) 4435 dir = ""; 4436 else if (dir_in) 4437 dir = "in"; 4438 else 4439 dir = "out"; 4440 4441 hs_ep->dir_in = dir_in; 4442 hs_ep->index = epnum; 4443 4444 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4445 4446 INIT_LIST_HEAD(&hs_ep->queue); 4447 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4448 4449 /* add to the list of endpoints known by the gadget driver */ 4450 if (epnum) 4451 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4452 4453 hs_ep->parent = hsotg; 4454 hs_ep->ep.name = hs_ep->name; 4455 4456 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4457 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4458 else 4459 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4460 epnum ? 1024 : EP0_MPS_LIMIT); 4461 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4462 4463 if (epnum == 0) { 4464 hs_ep->ep.caps.type_control = true; 4465 } else { 4466 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4467 hs_ep->ep.caps.type_iso = true; 4468 hs_ep->ep.caps.type_bulk = true; 4469 } 4470 hs_ep->ep.caps.type_int = true; 4471 } 4472 4473 if (dir_in) 4474 hs_ep->ep.caps.dir_in = true; 4475 else 4476 hs_ep->ep.caps.dir_out = true; 4477 4478 /* 4479 * if we're using dma, we need to set the next-endpoint pointer 4480 * to be something valid. 4481 */ 4482 4483 if (using_dma(hsotg)) { 4484 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4485 4486 if (dir_in) 4487 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum)); 4488 else 4489 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum)); 4490 } 4491 } 4492 4493 /** 4494 * dwc2_hsotg_hw_cfg - read HW configuration registers 4495 * @param: The device state 4496 * 4497 * Read the USB core HW configuration registers 4498 */ 4499 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4500 { 4501 u32 cfg; 4502 u32 ep_type; 4503 u32 i; 4504 4505 /* check hardware configuration */ 4506 4507 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4508 4509 /* Add ep0 */ 4510 hsotg->num_of_eps++; 4511 4512 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4513 sizeof(struct dwc2_hsotg_ep), 4514 GFP_KERNEL); 4515 if (!hsotg->eps_in[0]) 4516 return -ENOMEM; 4517 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4518 hsotg->eps_out[0] = hsotg->eps_in[0]; 4519 4520 cfg = hsotg->hw_params.dev_ep_dirs; 4521 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4522 ep_type = cfg & 3; 4523 /* Direction in or both */ 4524 if (!(ep_type & 2)) { 4525 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4526 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4527 if (!hsotg->eps_in[i]) 4528 return -ENOMEM; 4529 } 4530 /* Direction out or both */ 4531 if (!(ep_type & 1)) { 4532 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4533 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4534 if (!hsotg->eps_out[i]) 4535 return -ENOMEM; 4536 } 4537 } 4538 4539 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4540 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4541 4542 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4543 hsotg->num_of_eps, 4544 hsotg->dedicated_fifos ? "dedicated" : "shared", 4545 hsotg->fifo_mem); 4546 return 0; 4547 } 4548 4549 /** 4550 * dwc2_hsotg_dump - dump state of the udc 4551 * @param: The device state 4552 */ 4553 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4554 { 4555 #ifdef DEBUG 4556 struct device *dev = hsotg->dev; 4557 void __iomem *regs = hsotg->regs; 4558 u32 val; 4559 int idx; 4560 4561 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4562 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL), 4563 dwc2_readl(regs + DIEPMSK)); 4564 4565 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4566 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1)); 4567 4568 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4569 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ)); 4570 4571 /* show periodic fifo settings */ 4572 4573 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4574 val = dwc2_readl(regs + DPTXFSIZN(idx)); 4575 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4576 val >> FIFOSIZE_DEPTH_SHIFT, 4577 val & FIFOSIZE_STARTADDR_MASK); 4578 } 4579 4580 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4581 dev_info(dev, 4582 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4583 dwc2_readl(regs + DIEPCTL(idx)), 4584 dwc2_readl(regs + DIEPTSIZ(idx)), 4585 dwc2_readl(regs + DIEPDMA(idx))); 4586 4587 val = dwc2_readl(regs + DOEPCTL(idx)); 4588 dev_info(dev, 4589 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4590 idx, dwc2_readl(regs + DOEPCTL(idx)), 4591 dwc2_readl(regs + DOEPTSIZ(idx)), 4592 dwc2_readl(regs + DOEPDMA(idx))); 4593 } 4594 4595 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4596 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE)); 4597 #endif 4598 } 4599 4600 /** 4601 * dwc2_gadget_init - init function for gadget 4602 * @dwc2: The data structure for the DWC2 driver. 4603 * @irq: The IRQ number for the controller. 4604 */ 4605 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq) 4606 { 4607 struct device *dev = hsotg->dev; 4608 int epnum; 4609 int ret; 4610 4611 /* Dump fifo information */ 4612 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4613 hsotg->params.g_np_tx_fifo_size); 4614 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4615 4616 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4617 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4618 hsotg->gadget.name = dev_name(dev); 4619 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4620 hsotg->gadget.is_otg = 1; 4621 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4622 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4623 4624 ret = dwc2_hsotg_hw_cfg(hsotg); 4625 if (ret) { 4626 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4627 return ret; 4628 } 4629 4630 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4631 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4632 if (!hsotg->ctrl_buff) 4633 return -ENOMEM; 4634 4635 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4636 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4637 if (!hsotg->ep0_buff) 4638 return -ENOMEM; 4639 4640 if (using_desc_dma(hsotg)) { 4641 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4642 if (ret < 0) 4643 return ret; 4644 } 4645 4646 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED, 4647 dev_name(hsotg->dev), hsotg); 4648 if (ret < 0) { 4649 dev_err(dev, "cannot claim IRQ for gadget\n"); 4650 return ret; 4651 } 4652 4653 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4654 4655 if (hsotg->num_of_eps == 0) { 4656 dev_err(dev, "wrong number of EPs (zero)\n"); 4657 return -EINVAL; 4658 } 4659 4660 /* setup endpoint information */ 4661 4662 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4663 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4664 4665 /* allocate EP0 request */ 4666 4667 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4668 GFP_KERNEL); 4669 if (!hsotg->ctrl_req) { 4670 dev_err(dev, "failed to allocate ctrl req\n"); 4671 return -ENOMEM; 4672 } 4673 4674 /* initialise the endpoints now the core has been initialised */ 4675 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4676 if (hsotg->eps_in[epnum]) 4677 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4678 epnum, 1); 4679 if (hsotg->eps_out[epnum]) 4680 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4681 epnum, 0); 4682 } 4683 4684 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4685 if (ret) 4686 return ret; 4687 4688 dwc2_hsotg_dump(hsotg); 4689 4690 return 0; 4691 } 4692 4693 /** 4694 * dwc2_hsotg_remove - remove function for hsotg driver 4695 * @pdev: The platform information for the driver 4696 */ 4697 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4698 { 4699 usb_del_gadget_udc(&hsotg->gadget); 4700 4701 return 0; 4702 } 4703 4704 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4705 { 4706 unsigned long flags; 4707 4708 if (hsotg->lx_state != DWC2_L0) 4709 return 0; 4710 4711 if (hsotg->driver) { 4712 int ep; 4713 4714 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4715 hsotg->driver->driver.name); 4716 4717 spin_lock_irqsave(&hsotg->lock, flags); 4718 if (hsotg->enabled) 4719 dwc2_hsotg_core_disconnect(hsotg); 4720 dwc2_hsotg_disconnect(hsotg); 4721 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4722 spin_unlock_irqrestore(&hsotg->lock, flags); 4723 4724 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4725 if (hsotg->eps_in[ep]) 4726 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4727 if (hsotg->eps_out[ep]) 4728 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4729 } 4730 } 4731 4732 return 0; 4733 } 4734 4735 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4736 { 4737 unsigned long flags; 4738 4739 if (hsotg->lx_state == DWC2_L2) 4740 return 0; 4741 4742 if (hsotg->driver) { 4743 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4744 hsotg->driver->driver.name); 4745 4746 spin_lock_irqsave(&hsotg->lock, flags); 4747 dwc2_hsotg_core_init_disconnected(hsotg, false); 4748 if (hsotg->enabled) 4749 dwc2_hsotg_core_connect(hsotg); 4750 spin_unlock_irqrestore(&hsotg->lock, flags); 4751 } 4752 4753 return 0; 4754 } 4755 4756 /** 4757 * dwc2_backup_device_registers() - Backup controller device registers. 4758 * When suspending usb bus, registers needs to be backuped 4759 * if controller power is disabled once suspended. 4760 * 4761 * @hsotg: Programming view of the DWC_otg controller 4762 */ 4763 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4764 { 4765 struct dwc2_dregs_backup *dr; 4766 int i; 4767 4768 dev_dbg(hsotg->dev, "%s\n", __func__); 4769 4770 /* Backup dev regs */ 4771 dr = &hsotg->dr_backup; 4772 4773 dr->dcfg = dwc2_readl(hsotg->regs + DCFG); 4774 dr->dctl = dwc2_readl(hsotg->regs + DCTL); 4775 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 4776 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK); 4777 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 4778 4779 for (i = 0; i < hsotg->num_of_eps; i++) { 4780 /* Backup IN EPs */ 4781 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i)); 4782 4783 /* Ensure DATA PID is correctly configured */ 4784 if (dr->diepctl[i] & DXEPCTL_DPID) 4785 dr->diepctl[i] |= DXEPCTL_SETD1PID; 4786 else 4787 dr->diepctl[i] |= DXEPCTL_SETD0PID; 4788 4789 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i)); 4790 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i)); 4791 4792 /* Backup OUT EPs */ 4793 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i)); 4794 4795 /* Ensure DATA PID is correctly configured */ 4796 if (dr->doepctl[i] & DXEPCTL_DPID) 4797 dr->doepctl[i] |= DXEPCTL_SETD1PID; 4798 else 4799 dr->doepctl[i] |= DXEPCTL_SETD0PID; 4800 4801 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i)); 4802 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i)); 4803 } 4804 dr->valid = true; 4805 return 0; 4806 } 4807 4808 /** 4809 * dwc2_restore_device_registers() - Restore controller device registers. 4810 * When resuming usb bus, device registers needs to be restored 4811 * if controller power were disabled. 4812 * 4813 * @hsotg: Programming view of the DWC_otg controller 4814 */ 4815 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg) 4816 { 4817 struct dwc2_dregs_backup *dr; 4818 u32 dctl; 4819 int i; 4820 4821 dev_dbg(hsotg->dev, "%s\n", __func__); 4822 4823 /* Restore dev regs */ 4824 dr = &hsotg->dr_backup; 4825 if (!dr->valid) { 4826 dev_err(hsotg->dev, "%s: no device registers to restore\n", 4827 __func__); 4828 return -EINVAL; 4829 } 4830 dr->valid = false; 4831 4832 dwc2_writel(dr->dcfg, hsotg->regs + DCFG); 4833 dwc2_writel(dr->dctl, hsotg->regs + DCTL); 4834 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK); 4835 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK); 4836 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK); 4837 4838 for (i = 0; i < hsotg->num_of_eps; i++) { 4839 /* Restore IN EPs */ 4840 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i)); 4841 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i)); 4842 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i)); 4843 4844 /* Restore OUT EPs */ 4845 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i)); 4846 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i)); 4847 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i)); 4848 } 4849 4850 /* Set the Power-On Programming done bit */ 4851 dctl = dwc2_readl(hsotg->regs + DCTL); 4852 dctl |= DCTL_PWRONPRGDONE; 4853 dwc2_writel(dctl, hsotg->regs + DCTL); 4854 4855 return 0; 4856 } 4857