xref: /openbmc/linux/drivers/usb/dwc2/core.h (revision feac8c8b)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40 
41 #include <linux/phy/phy.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/usb/gadget.h>
44 #include <linux/usb/otg.h>
45 #include <linux/usb/phy.h>
46 #include "hw.h"
47 
48 /*
49  * Suggested defines for tracers:
50  * - no_printk:    Disable tracing
51  * - pr_info:      Print this info to the console
52  * - trace_printk: Print this info to trace buffer (good for verbose logging)
53  */
54 
55 #define DWC2_TRACE_SCHEDULER		no_printk
56 #define DWC2_TRACE_SCHEDULER_VB		no_printk
57 
58 /* Detailed scheduler tracing, but won't overwhelm console */
59 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
60 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
61 			     dev_name(hsotg->dev), ##__VA_ARGS__)
62 
63 /* Verbose scheduler tracing */
64 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
65 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
66 				dev_name(hsotg->dev), ##__VA_ARGS__)
67 
68 #ifdef CONFIG_MIPS
69 /*
70  * There are some MIPS machines that can run in either big-endian
71  * or little-endian mode and that use the dwc2 register without
72  * a byteswap in both ways.
73  * Unlike other architectures, MIPS apparently does not require a
74  * barrier before the __raw_writel() to synchronize with DMA but does
75  * require the barrier after the __raw_writel() to serialize a set of
76  * writes. This set of operations was added specifically for MIPS and
77  * should only be used there.
78  */
79 static inline u32 dwc2_readl(const void __iomem *addr)
80 {
81 	u32 value = __raw_readl(addr);
82 
83 	/* In order to preserve endianness __raw_* operation is used. Therefore
84 	 * a barrier is needed to ensure IO access is not re-ordered across
85 	 * reads or writes
86 	 */
87 	mb();
88 	return value;
89 }
90 
91 static inline void dwc2_writel(u32 value, void __iomem *addr)
92 {
93 	__raw_writel(value, addr);
94 
95 	/*
96 	 * In order to preserve endianness __raw_* operation is used. Therefore
97 	 * a barrier is needed to ensure IO access is not re-ordered across
98 	 * reads or writes
99 	 */
100 	mb();
101 #ifdef DWC2_LOG_WRITES
102 	pr_info("INFO:: wrote %08x to %p\n", value, addr);
103 #endif
104 }
105 #else
106 /* Normal architectures just use readl/write */
107 static inline u32 dwc2_readl(const void __iomem *addr)
108 {
109 	return readl(addr);
110 }
111 
112 static inline void dwc2_writel(u32 value, void __iomem *addr)
113 {
114 	writel(value, addr);
115 
116 #ifdef DWC2_LOG_WRITES
117 	pr_info("info:: wrote %08x to %p\n", value, addr);
118 #endif
119 }
120 #endif
121 
122 /* Maximum number of Endpoints/HostChannels */
123 #define MAX_EPS_CHANNELS	16
124 
125 /* dwc2-hsotg declarations */
126 static const char * const dwc2_hsotg_supply_names[] = {
127 	"vusb_d",               /* digital USB supply, 1.2V */
128 	"vusb_a",               /* analog USB supply, 1.1V */
129 };
130 
131 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
132 
133 /*
134  * EP0_MPS_LIMIT
135  *
136  * Unfortunately there seems to be a limit of the amount of data that can
137  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
138  * packets (which practically means 1 packet and 63 bytes of data) when the
139  * MPS is set to 64.
140  *
141  * This means if we are wanting to move >127 bytes of data, we need to
142  * split the transactions up, but just doing one packet at a time does
143  * not work (this may be an implicit DATA0 PID on first packet of the
144  * transaction) and doing 2 packets is outside the controller's limits.
145  *
146  * If we try to lower the MPS size for EP0, then no transfers work properly
147  * for EP0, and the system will fail basic enumeration. As no cause for this
148  * has currently been found, we cannot support any large IN transfers for
149  * EP0.
150  */
151 #define EP0_MPS_LIMIT   64
152 
153 struct dwc2_hsotg;
154 struct dwc2_hsotg_req;
155 
156 /**
157  * struct dwc2_hsotg_ep - driver endpoint definition.
158  * @ep: The gadget layer representation of the endpoint.
159  * @name: The driver generated name for the endpoint.
160  * @queue: Queue of requests for this endpoint.
161  * @parent: Reference back to the parent device structure.
162  * @req: The current request that the endpoint is processing. This is
163  *       used to indicate an request has been loaded onto the endpoint
164  *       and has yet to be completed (maybe due to data move, or simply
165  *       awaiting an ack from the core all the data has been completed).
166  * @debugfs: File entry for debugfs file for this endpoint.
167  * @lock: State lock to protect contents of endpoint.
168  * @dir_in: Set to true if this endpoint is of the IN direction, which
169  *          means that it is sending data to the Host.
170  * @index: The index for the endpoint registers.
171  * @mc: Multi Count - number of transactions per microframe
172  * @interval - Interval for periodic endpoints, in frames or microframes.
173  * @name: The name array passed to the USB core.
174  * @halted: Set if the endpoint has been halted.
175  * @periodic: Set if this is a periodic ep, such as Interrupt
176  * @isochronous: Set if this is a isochronous ep
177  * @send_zlp: Set if we need to send a zero-length packet.
178  * @desc_list_dma: The DMA address of descriptor chain currently in use.
179  * @desc_list: Pointer to descriptor DMA chain head currently in use.
180  * @desc_count: Count of entries within the DMA descriptor chain of EP.
181  * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
182  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
183  * @total_data: The total number of data bytes done.
184  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
185  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
186  * @last_load: The offset of data for the last start of request.
187  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
188  * @target_frame: Targeted frame num to setup next ISOC transfer
189  * @frame_overrun: Indicates SOF number overrun in DSTS
190  *
191  * This is the driver's state for each registered enpoint, allowing it
192  * to keep track of transactions that need doing. Each endpoint has a
193  * lock to protect the state, to try and avoid using an overall lock
194  * for the host controller as much as possible.
195  *
196  * For periodic IN endpoints, we have fifo_size and fifo_load to try
197  * and keep track of the amount of data in the periodic FIFO for each
198  * of these as we don't have a status register that tells us how much
199  * is in each of them. (note, this may actually be useless information
200  * as in shared-fifo mode periodic in acts like a single-frame packet
201  * buffer than a fifo)
202  */
203 struct dwc2_hsotg_ep {
204 	struct usb_ep           ep;
205 	struct list_head        queue;
206 	struct dwc2_hsotg       *parent;
207 	struct dwc2_hsotg_req    *req;
208 	struct dentry           *debugfs;
209 
210 	unsigned long           total_data;
211 	unsigned int            size_loaded;
212 	unsigned int            last_load;
213 	unsigned int            fifo_load;
214 	unsigned short          fifo_size;
215 	unsigned short		fifo_index;
216 
217 	unsigned char           dir_in;
218 	unsigned char           index;
219 	unsigned char           mc;
220 	unsigned char           interval;
221 
222 	unsigned int            halted:1;
223 	unsigned int            periodic:1;
224 	unsigned int            isochronous:1;
225 	unsigned int            send_zlp:1;
226 	unsigned int            target_frame;
227 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
228 	bool			frame_overrun;
229 
230 	dma_addr_t		desc_list_dma;
231 	struct dwc2_dma_desc	*desc_list;
232 	u8			desc_count;
233 
234 	unsigned char		isoc_chain_num;
235 	unsigned int		next_desc;
236 
237 	char                    name[10];
238 };
239 
240 /**
241  * struct dwc2_hsotg_req - data transfer request
242  * @req: The USB gadget request
243  * @queue: The list of requests for the endpoint this is queued for.
244  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
245  */
246 struct dwc2_hsotg_req {
247 	struct usb_request      req;
248 	struct list_head        queue;
249 	void *saved_req_buf;
250 };
251 
252 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
253 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
254 #define call_gadget(_hs, _entry) \
255 do { \
256 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
257 		(_hs)->driver && (_hs)->driver->_entry) { \
258 		spin_unlock(&_hs->lock); \
259 		(_hs)->driver->_entry(&(_hs)->gadget); \
260 		spin_lock(&_hs->lock); \
261 	} \
262 } while (0)
263 #else
264 #define call_gadget(_hs, _entry)	do {} while (0)
265 #endif
266 
267 struct dwc2_hsotg;
268 struct dwc2_host_chan;
269 
270 /* Device States */
271 enum dwc2_lx_state {
272 	DWC2_L0,	/* On state */
273 	DWC2_L1,	/* LPM sleep state */
274 	DWC2_L2,	/* USB suspend state */
275 	DWC2_L3,	/* Off state */
276 };
277 
278 /* Gadget ep0 states */
279 enum dwc2_ep0_state {
280 	DWC2_EP0_SETUP,
281 	DWC2_EP0_DATA_IN,
282 	DWC2_EP0_DATA_OUT,
283 	DWC2_EP0_STATUS_IN,
284 	DWC2_EP0_STATUS_OUT,
285 };
286 
287 /**
288  * struct dwc2_core_params - Parameters for configuring the core
289  *
290  * @otg_cap:            Specifies the OTG capabilities.
291  *                       0 - HNP and SRP capable
292  *                       1 - SRP Only capable
293  *                       2 - No HNP/SRP capable (always available)
294  *                      Defaults to best available option (0, 1, then 2)
295  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
296  *                      the data FIFOs. The driver will automatically detect the
297  *                      value for this parameter if none is specified.
298  *                       0 - Slave (always available)
299  *                       1 - DMA (default, if available)
300  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
301  *                      address DMA mode or descriptor DMA mode for accessing
302  *                      the data FIFOs. The driver will automatically detect the
303  *                      value for this if none is specified.
304  *                       0 - Address DMA
305  *                       1 - Descriptor DMA (default, if available)
306  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
307  *                      address DMA mode or descriptor DMA mode for accessing
308  *                      the data FIFOs in Full Speed mode only. The driver
309  *                      will automatically detect the value for this if none is
310  *                      specified.
311  *                       0 - Address DMA
312  *                       1 - Descriptor DMA in FS (default, if available)
313  * @speed:              Specifies the maximum speed of operation in host and
314  *                      device mode. The actual speed depends on the speed of
315  *                      the attached device and the value of phy_type.
316  *                       0 - High Speed
317  *                           (default when phy_type is UTMI+ or ULPI)
318  *                       1 - Full Speed
319  *                           (default when phy_type is Full Speed)
320  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
321  *                       1 - Allow dynamic FIFO sizing (default, if available)
322  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
323  *                      are enabled for non-periodic IN endpoints in device
324  *                      mode.
325  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
326  *                      dynamic FIFO sizing is enabled
327  *                       16 to 32768
328  *                      Actual maximum value is autodetected and also
329  *                      the default.
330  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
331  *                      in host mode when dynamic FIFO sizing is enabled
332  *                       16 to 32768
333  *                      Actual maximum value is autodetected and also
334  *                      the default.
335  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
336  *                      host mode when dynamic FIFO sizing is enabled
337  *                       16 to 32768
338  *                      Actual maximum value is autodetected and also
339  *                      the default.
340  * @max_transfer_size:  The maximum transfer size supported, in bytes
341  *                       2047 to 65,535
342  *                      Actual maximum value is autodetected and also
343  *                      the default.
344  * @max_packet_count:   The maximum number of packets in a transfer
345  *                       15 to 511
346  *                      Actual maximum value is autodetected and also
347  *                      the default.
348  * @host_channels:      The number of host channel registers to use
349  *                       1 to 16
350  *                      Actual maximum value is autodetected and also
351  *                      the default.
352  * @phy_type:           Specifies the type of PHY interface to use. By default,
353  *                      the driver will automatically detect the phy_type.
354  *                       0 - Full Speed Phy
355  *                       1 - UTMI+ Phy
356  *                       2 - ULPI Phy
357  *                      Defaults to best available option (2, 1, then 0)
358  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
359  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
360  *                      ULPI phy_type, this parameter indicates the data width
361  *                      between the MAC and the ULPI Wrapper.) Also, this
362  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
363  *                      parameter was set to "8 and 16 bits", meaning that the
364  *                      core has been configured to work at either data path
365  *                      width.
366  *                       8 or 16 (default 16 if available)
367  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
368  *                      data rate. This parameter is only applicable if phy_type
369  *                      is ULPI.
370  *                       0 - single data rate ULPI interface with 8 bit wide
371  *                           data bus (default)
372  *                       1 - double data rate ULPI interface with 4 bit wide
373  *                           data bus
374  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
375  *                      external supply to drive the VBus
376  *                       0 - Internal supply (default)
377  *                       1 - External supply
378  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
379  *                      speed PHY. This parameter is only applicable if phy_type
380  *                      is FS.
381  *                       0 - No (default)
382  *                       1 - Yes
383  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
384  *                       0 - No (default)
385  *                       1 - Yes
386  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
387  *                      when attached to a Full Speed or Low Speed device in
388  *                      host mode.
389  *                       0 - Don't support low power mode (default)
390  *                       1 - Support low power mode
391  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
392  *                      when connected to a Low Speed device in host
393  *                      mode. This parameter is applicable only if
394  *                      host_support_fs_ls_low_power is enabled.
395  *                       0 - 48 MHz
396  *                           (default when phy_type is UTMI+ or ULPI)
397  *                       1 - 6 MHz
398  *                           (default when phy_type is Full Speed)
399  * @oc_disable:		Flag to disable overcurrent condition.
400  *			0 - Allow overcurrent condition to get detected
401  *			1 - Disable overcurrent condtion to get detected
402  * @ts_dline:           Enable Term Select Dline pulsing
403  *                       0 - No (default)
404  *                       1 - Yes
405  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
406  *                       0 - No (default for core < 2.92a)
407  *                       1 - Yes (default for core >= 2.92a)
408  * @ahbcfg:             This field allows the default value of the GAHBCFG
409  *                      register to be overridden
410  *                       -1         - GAHBCFG value will be set to 0x06
411  *                                    (INCR4, default)
412  *                       all others - GAHBCFG value will be overridden with
413  *                                    this value
414  *                      Not all bits can be controlled like this, the
415  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
416  *                      by the driver and are ignored in this
417  *                      configuration value.
418  * @uframe_sched:       True to enable the microframe scheduler
419  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
420  *                      Disable CONIDSTSCHNG controller interrupt in such
421  *                      case.
422  *                      0 - No (default)
423  *                      1 - Yes
424  * @hibernation:	Specifies whether the controller support hibernation.
425  *			If hibernation is enabled, the controller will enter
426  *			hibernation in both peripheral and host mode when
427  *			needed.
428  *			0 - No (default)
429  *			1 - Yes
430  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
431  *			register.
432  *			0 - Deactivate the transceiver (default)
433  *			1 - Activate the transceiver
434  * @g_dma:              Enables gadget dma usage (default: autodetect).
435  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
436  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
437  *			DWORDS from 16-32768 (default: 2048 if
438  *			possible, otherwise autodetect).
439  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
440  *			DWORDS from 16-32768 (default: 1024 if
441  *			possible, otherwise autodetect).
442  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
443  *			mode. Each value corresponds to one EP
444  *			starting from EP1 (max 15 values). Sizes are
445  *			in DWORDS with possible values from from
446  *			16-32768 (default: 256, 256, 256, 256, 768,
447  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
448  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
449  *                      while full&low speed device connect. And change speed
450  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
451  *			0 - No (default)
452  *			1 - Yes
453  *
454  * The following parameters may be specified when starting the module. These
455  * parameters define how the DWC_otg controller should be configured. A
456  * value of -1 (or any other out of range value) for any parameter means
457  * to read the value from hardware (if possible) or use the builtin
458  * default described above.
459  */
460 struct dwc2_core_params {
461 	u8 otg_cap;
462 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
463 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
464 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
465 
466 	u8 phy_type;
467 #define DWC2_PHY_TYPE_PARAM_FS		0
468 #define DWC2_PHY_TYPE_PARAM_UTMI	1
469 #define DWC2_PHY_TYPE_PARAM_ULPI	2
470 
471 	u8 speed;
472 #define DWC2_SPEED_PARAM_HIGH	0
473 #define DWC2_SPEED_PARAM_FULL	1
474 #define DWC2_SPEED_PARAM_LOW	2
475 
476 	u8 phy_utmi_width;
477 	bool phy_ulpi_ddr;
478 	bool phy_ulpi_ext_vbus;
479 	bool enable_dynamic_fifo;
480 	bool en_multiple_tx_fifo;
481 	bool i2c_enable;
482 	bool ulpi_fs_ls;
483 	bool ts_dline;
484 	bool reload_ctl;
485 	bool uframe_sched;
486 	bool external_id_pin_ctl;
487 	bool hibernation;
488 	bool activate_stm_fs_transceiver;
489 	u16 max_packet_count;
490 	u32 max_transfer_size;
491 	u32 ahbcfg;
492 
493 	/* Host parameters */
494 	bool host_dma;
495 	bool dma_desc_enable;
496 	bool dma_desc_fs_enable;
497 	bool host_support_fs_ls_low_power;
498 	bool host_ls_low_power_phy_clk;
499 	bool oc_disable;
500 
501 	u8 host_channels;
502 	u16 host_rx_fifo_size;
503 	u16 host_nperio_tx_fifo_size;
504 	u16 host_perio_tx_fifo_size;
505 
506 	/* Gadget parameters */
507 	bool g_dma;
508 	bool g_dma_desc;
509 	u32 g_rx_fifo_size;
510 	u32 g_np_tx_fifo_size;
511 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
512 
513 	bool change_speed_quirk;
514 };
515 
516 /**
517  * struct dwc2_hw_params - Autodetected parameters.
518  *
519  * These parameters are the various parameters read from hardware
520  * registers during initialization. They typically contain the best
521  * supported or maximum value that can be configured in the
522  * corresponding dwc2_core_params value.
523  *
524  * The values that are not in dwc2_core_params are documented below.
525  *
526  * @op_mode             Mode of Operation
527  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
528  *                       1 - SRP-Capable OTG (Host & Device)
529  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
530  *                       3 - SRP-Capable Device
531  *                       4 - Non-OTG Device
532  *                       5 - SRP-Capable Host
533  *                       6 - Non-OTG Host
534  * @arch                Architecture
535  *                       0 - Slave only
536  *                       1 - External DMA
537  *                       2 - Internal DMA
538  * @power_optimized     Are power optimizations enabled?
539  * @num_dev_ep          Number of device endpoints available
540  * @num_dev_in_eps      Number of device IN endpoints available
541  * @num_dev_perio_in_ep Number of device periodic IN endpoints
542  *                      available
543  * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
544  *                      Depth
545  *                       0 to 30
546  * @host_perio_tx_q_depth
547  *                      Host Mode Periodic Request Queue Depth
548  *                       2, 4 or 8
549  * @nperio_tx_q_depth
550  *                      Non-Periodic Request Queue Depth
551  *                       2, 4 or 8
552  * @hs_phy_type         High-speed PHY interface type
553  *                       0 - High-speed interface not supported
554  *                       1 - UTMI+
555  *                       2 - ULPI
556  *                       3 - UTMI+ and ULPI
557  * @fs_phy_type         Full-speed PHY interface type
558  *                       0 - Full speed interface not supported
559  *                       1 - Dedicated full speed interface
560  *                       2 - FS pins shared with UTMI+ pins
561  *                       3 - FS pins shared with ULPI pins
562  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
563  * @utmi_phy_data_width UTMI+ PHY data width
564  *                       0 - 8 bits
565  *                       1 - 16 bits
566  *                       2 - 8 or 16 bits
567  * @snpsid:             Value from SNPSID register
568  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
569  * @g_tx_fifo_size[]	Power-on values of TxFIFO sizes
570  */
571 struct dwc2_hw_params {
572 	unsigned op_mode:3;
573 	unsigned arch:2;
574 	unsigned dma_desc_enable:1;
575 	unsigned enable_dynamic_fifo:1;
576 	unsigned en_multiple_tx_fifo:1;
577 	unsigned rx_fifo_size:16;
578 	unsigned host_nperio_tx_fifo_size:16;
579 	unsigned dev_nperio_tx_fifo_size:16;
580 	unsigned host_perio_tx_fifo_size:16;
581 	unsigned nperio_tx_q_depth:3;
582 	unsigned host_perio_tx_q_depth:3;
583 	unsigned dev_token_q_depth:5;
584 	unsigned max_transfer_size:26;
585 	unsigned max_packet_count:11;
586 	unsigned host_channels:5;
587 	unsigned hs_phy_type:2;
588 	unsigned fs_phy_type:2;
589 	unsigned i2c_enable:1;
590 	unsigned num_dev_ep:4;
591 	unsigned num_dev_in_eps : 4;
592 	unsigned num_dev_perio_in_ep:4;
593 	unsigned total_fifo_size:16;
594 	unsigned power_optimized:1;
595 	unsigned utmi_phy_data_width:2;
596 	u32 snpsid;
597 	u32 dev_ep_dirs;
598 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
599 };
600 
601 /* Size of control and EP0 buffers */
602 #define DWC2_CTRL_BUFF_SIZE 8
603 
604 /**
605  * struct dwc2_gregs_backup - Holds global registers state before
606  * entering partial power down
607  * @gotgctl:		Backup of GOTGCTL register
608  * @gintmsk:		Backup of GINTMSK register
609  * @gahbcfg:		Backup of GAHBCFG register
610  * @gusbcfg:		Backup of GUSBCFG register
611  * @grxfsiz:		Backup of GRXFSIZ register
612  * @gnptxfsiz:		Backup of GNPTXFSIZ register
613  * @gi2cctl:		Backup of GI2CCTL register
614  * @hptxfsiz:		Backup of HPTXFSIZ register
615  * @gdfifocfg:		Backup of GDFIFOCFG register
616  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
617  * @gpwrdn:		Backup of GPWRDN register
618  */
619 struct dwc2_gregs_backup {
620 	u32 gotgctl;
621 	u32 gintmsk;
622 	u32 gahbcfg;
623 	u32 gusbcfg;
624 	u32 grxfsiz;
625 	u32 gnptxfsiz;
626 	u32 gi2cctl;
627 	u32 hptxfsiz;
628 	u32 pcgcctl;
629 	u32 gdfifocfg;
630 	u32 dtxfsiz[MAX_EPS_CHANNELS];
631 	u32 gpwrdn;
632 	bool valid;
633 };
634 
635 /**
636  * struct dwc2_dregs_backup - Holds device registers state before
637  * entering partial power down
638  * @dcfg:		Backup of DCFG register
639  * @dctl:		Backup of DCTL register
640  * @daintmsk:		Backup of DAINTMSK register
641  * @diepmsk:		Backup of DIEPMSK register
642  * @doepmsk:		Backup of DOEPMSK register
643  * @diepctl:		Backup of DIEPCTL register
644  * @dieptsiz:		Backup of DIEPTSIZ register
645  * @diepdma:		Backup of DIEPDMA register
646  * @doepctl:		Backup of DOEPCTL register
647  * @doeptsiz:		Backup of DOEPTSIZ register
648  * @doepdma:		Backup of DOEPDMA register
649  */
650 struct dwc2_dregs_backup {
651 	u32 dcfg;
652 	u32 dctl;
653 	u32 daintmsk;
654 	u32 diepmsk;
655 	u32 doepmsk;
656 	u32 diepctl[MAX_EPS_CHANNELS];
657 	u32 dieptsiz[MAX_EPS_CHANNELS];
658 	u32 diepdma[MAX_EPS_CHANNELS];
659 	u32 doepctl[MAX_EPS_CHANNELS];
660 	u32 doeptsiz[MAX_EPS_CHANNELS];
661 	u32 doepdma[MAX_EPS_CHANNELS];
662 	bool valid;
663 };
664 
665 /**
666  * struct dwc2_hregs_backup - Holds host registers state before
667  * entering partial power down
668  * @hcfg:		Backup of HCFG register
669  * @haintmsk:		Backup of HAINTMSK register
670  * @hcintmsk:		Backup of HCINTMSK register
671  * @hptr0:		Backup of HPTR0 register
672  * @hfir:		Backup of HFIR register
673  */
674 struct dwc2_hregs_backup {
675 	u32 hcfg;
676 	u32 haintmsk;
677 	u32 hcintmsk[MAX_EPS_CHANNELS];
678 	u32 hprt0;
679 	u32 hfir;
680 	bool valid;
681 };
682 
683 /*
684  * Constants related to high speed periodic scheduling
685  *
686  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
687  * reservation point of view it's assumed that the schedule goes right back to
688  * the beginning after the end of the schedule.
689  *
690  * What does that mean for scheduling things with a long interval?  It means
691  * we'll reserve time for them in every possible microframe that they could
692  * ever be scheduled in.  ...but we'll still only actually schedule them as
693  * often as they were requested.
694  *
695  * We keep our schedule in a "bitmap" structure.  This simplifies having
696  * to keep track of and merge intervals: we just let the bitmap code do most
697  * of the heavy lifting.  In a way scheduling is much like memory allocation.
698  *
699  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
700  * supposed to schedule for periodic transfers).  That's according to spec.
701  *
702  * Note that though we only schedule 80% of each microframe, the bitmap that we
703  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
704  * space for each uFrame).
705  *
706  * Requirements:
707  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
708  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
709  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
710  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
711  */
712 #define DWC2_US_PER_UFRAME		125
713 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
714 
715 #define DWC2_HS_SCHEDULE_UFRAMES	8
716 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
717 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
718 
719 /*
720  * Constants related to low speed scheduling
721  *
722  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
723  * so we make up a unit called a "slice" that's worth 25us.  There are 40
724  * slices in a full frame and we can schedule 36 of those (90%) for periodic
725  * transfers.
726  *
727  * Our low speed schedule can be as short as 1 frame or could be longer.  When
728  * we only schedule 1 frame it means that we'll need to reserve a time every
729  * frame even for things that only transfer very rarely, so something that runs
730  * every 2048 frames will get time reserved in every frame.  Our low speed
731  * schedule can be longer and we'll be able to handle more overlap, but that
732  * will come at increased memory cost and increased time to schedule.
733  *
734  * Note: one other advantage of a short low speed schedule is that if we mess
735  * up and miss scheduling we can jump in and use any of the slots that we
736  * happened to reserve.
737  *
738  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
739  * the schedule.  There will be one schedule per TT.
740  *
741  * Requirements:
742  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
743  */
744 #define DWC2_US_PER_SLICE	25
745 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
746 
747 #define DWC2_ROUND_US_TO_SLICE(us) \
748 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
749 				 DWC2_US_PER_SLICE)
750 
751 #define DWC2_LS_PERIODIC_US_PER_FRAME \
752 				900
753 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
754 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
755 				 DWC2_US_PER_SLICE)
756 
757 #define DWC2_LS_SCHEDULE_FRAMES	1
758 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
759 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
760 
761 /**
762  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
763  * and periodic schedules
764  *
765  * These are common for both host and peripheral modes:
766  *
767  * @dev:                The struct device pointer
768  * @regs:		Pointer to controller regs
769  * @hw_params:          Parameters that were autodetected from the
770  *                      hardware registers
771  * @core_params:	Parameters that define how the core should be configured
772  * @op_state:           The operational State, during transitions (a_host=>
773  *                      a_peripheral and b_device=>b_host) this may not match
774  *                      the core, but allows the software to determine
775  *                      transitions
776  * @dr_mode:            Requested mode of operation, one of following:
777  *                      - USB_DR_MODE_PERIPHERAL
778  *                      - USB_DR_MODE_HOST
779  *                      - USB_DR_MODE_OTG
780  * @hcd_enabled		Host mode sub-driver initialization indicator.
781  * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
782  * @ll_hw_enabled	Status of low-level hardware resources.
783  * @phy:                The otg phy transceiver structure for phy control.
784  * @uphy:               The otg phy transceiver structure for old USB phy
785  *                      control.
786  * @plat:               The platform specific configuration data. This can be
787  *                      removed once all SoCs support usb transceiver.
788  * @supplies:           Definition of USB power supplies
789  * @phyif:              PHY interface width
790  * @lock:		Spinlock that protects all the driver data structures
791  * @priv:		Stores a pointer to the struct usb_hcd
792  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
793  *                      transfer are in process of being queued
794  * @srp_success:        Stores status of SRP request in the case of a FS PHY
795  *                      with an I2C interface
796  * @wq_otg:             Workqueue object used for handling of some interrupts
797  * @wf_otg:             Work object for handling Connector ID Status Change
798  *                      interrupt
799  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
800  * @lx_state:           Lx state of connected device
801  * @gregs_backup: Backup of global registers during suspend
802  * @dregs_backup: Backup of device registers during suspend
803  * @hregs_backup: Backup of host registers during suspend
804  *
805  * These are for host mode:
806  *
807  * @flags:              Flags for handling root port state changes
808  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
809  *                      Transfers associated with these QHs are not currently
810  *                      assigned to a host channel.
811  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
812  *                      Transfers associated with these QHs are currently
813  *                      assigned to a host channel.
814  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
815  *                      non-periodic schedule
816  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
817  *                      list of QHs for periodic transfers that are _not_
818  *                      scheduled for the next frame. Each QH in the list has an
819  *                      interval counter that determines when it needs to be
820  *                      scheduled for execution. This scheduling mechanism
821  *                      allows only a simple calculation for periodic bandwidth
822  *                      used (i.e. must assume that all periodic transfers may
823  *                      need to execute in the same frame). However, it greatly
824  *                      simplifies scheduling and should be sufficient for the
825  *                      vast majority of OTG hosts, which need to connect to a
826  *                      small number of peripherals at one time. Items move from
827  *                      this list to periodic_sched_ready when the QH interval
828  *                      counter is 0 at SOF.
829  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
830  *                      the next frame, but have not yet been assigned to host
831  *                      channels. Items move from this list to
832  *                      periodic_sched_assigned as host channels become
833  *                      available during the current frame.
834  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
835  *                      frame that are assigned to host channels. Items move
836  *                      from this list to periodic_sched_queued as the
837  *                      transactions for the QH are queued to the DWC_otg
838  *                      controller.
839  * @periodic_sched_queued: List of periodic QHs that have been queued for
840  *                      execution. Items move from this list to either
841  *                      periodic_sched_inactive or periodic_sched_ready when the
842  *                      channel associated with the transfer is released. If the
843  *                      interval for the QH is 1, the item moves to
844  *                      periodic_sched_ready because it must be rescheduled for
845  *                      the next frame. Otherwise, the item moves to
846  *                      periodic_sched_inactive.
847  * @split_order:        List keeping track of channels doing splits, in order.
848  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
849  *                      This value is in microseconds per (micro)frame. The
850  *                      assumption is that all periodic transfers may occur in
851  *                      the same (micro)frame.
852  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
853  *                      host is in high speed mode; low speed schedules are
854  *                      stored elsewhere since we need one per TT.
855  * @frame_number:       Frame number read from the core at SOF. The value ranges
856  *                      from 0 to HFNUM_MAX_FRNUM.
857  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
858  *                      SOF enable/disable.
859  * @free_hc_list:       Free host channels in the controller. This is a list of
860  *                      struct dwc2_host_chan items.
861  * @periodic_channels:  Number of host channels assigned to periodic transfers.
862  *                      Currently assuming that there is a dedicated host
863  *                      channel for each periodic transaction and at least one
864  *                      host channel is available for non-periodic transactions.
865  * @non_periodic_channels: Number of host channels assigned to non-periodic
866  *                      transfers
867  * @available_host_channels Number of host channels available for the microframe
868  *                      scheduler to use
869  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
870  *                      Allows accessing a host channel descriptor given the
871  *                      host channel number. This is useful in interrupt
872  *                      handlers.
873  * @status_buf:         Buffer used for data received during the status phase of
874  *                      a control transfer.
875  * @status_buf_dma:     DMA address for status_buf
876  * @start_work:         Delayed work for handling host A-cable connection
877  * @reset_work:         Delayed work for handling a port reset
878  * @otg_port:           OTG port number
879  * @frame_list:         Frame list
880  * @frame_list_dma:     Frame list DMA address
881  * @frame_list_sz:      Frame list size
882  * @desc_gen_cache:     Kmem cache for generic descriptors
883  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
884  *
885  * These are for peripheral mode:
886  *
887  * @driver:             USB gadget driver
888  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
889  * @num_of_eps:         Number of available EPs (excluding EP0)
890  * @debug_root:         Root directrory for debugfs.
891  * @debug_file:         Main status file for debugfs.
892  * @debug_testmode:     Testmode status file for debugfs.
893  * @debug_fifo:         FIFO status file for debugfs.
894  * @ep0_reply:          Request used for ep0 reply.
895  * @ep0_buff:           Buffer for EP0 reply data, if needed.
896  * @ctrl_buff:          Buffer for EP0 control requests.
897  * @ctrl_req:           Request for EP0 control packets.
898  * @ep0_state:          EP0 control transfers state
899  * @test_mode:          USB test mode requested by the host
900  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
901  * @setup_desc:		EP0 setup stage desc chain pointer
902  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
903  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
904  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
905  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
906  * @eps:                The endpoints being supplied to the gadget framework
907  */
908 struct dwc2_hsotg {
909 	struct device *dev;
910 	void __iomem *regs;
911 	/** Params detected from hardware */
912 	struct dwc2_hw_params hw_params;
913 	/** Params to actually use */
914 	struct dwc2_core_params params;
915 	enum usb_otg_state op_state;
916 	enum usb_dr_mode dr_mode;
917 	unsigned int hcd_enabled:1;
918 	unsigned int gadget_enabled:1;
919 	unsigned int ll_hw_enabled:1;
920 
921 	struct phy *phy;
922 	struct usb_phy *uphy;
923 	struct dwc2_hsotg_plat *plat;
924 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
925 	u32 phyif;
926 
927 	spinlock_t lock;
928 	void *priv;
929 	int     irq;
930 	struct clk *clk;
931 	struct reset_control *reset;
932 	struct reset_control *reset_ecc;
933 
934 	unsigned int queuing_high_bandwidth:1;
935 	unsigned int srp_success:1;
936 
937 	struct workqueue_struct *wq_otg;
938 	struct work_struct wf_otg;
939 	struct timer_list wkp_timer;
940 	enum dwc2_lx_state lx_state;
941 	struct dwc2_gregs_backup gr_backup;
942 	struct dwc2_dregs_backup dr_backup;
943 	struct dwc2_hregs_backup hr_backup;
944 
945 	struct dentry *debug_root;
946 	struct debugfs_regset32 *regset;
947 
948 	/* DWC OTG HW Release versions */
949 #define DWC2_CORE_REV_2_71a	0x4f54271a
950 #define DWC2_CORE_REV_2_90a	0x4f54290a
951 #define DWC2_CORE_REV_2_91a	0x4f54291a
952 #define DWC2_CORE_REV_2_92a	0x4f54292a
953 #define DWC2_CORE_REV_2_94a	0x4f54294a
954 #define DWC2_CORE_REV_3_00a	0x4f54300a
955 #define DWC2_CORE_REV_3_10a	0x4f54310a
956 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
957 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
958 
959 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
960 	union dwc2_hcd_internal_flags {
961 		u32 d32;
962 		struct {
963 			unsigned port_connect_status_change:1;
964 			unsigned port_connect_status:1;
965 			unsigned port_reset_change:1;
966 			unsigned port_enable_change:1;
967 			unsigned port_suspend_change:1;
968 			unsigned port_over_current_change:1;
969 			unsigned port_l1_change:1;
970 			unsigned reserved:25;
971 		} b;
972 	} flags;
973 
974 	struct list_head non_periodic_sched_inactive;
975 	struct list_head non_periodic_sched_waiting;
976 	struct list_head non_periodic_sched_active;
977 	struct list_head *non_periodic_qh_ptr;
978 	struct list_head periodic_sched_inactive;
979 	struct list_head periodic_sched_ready;
980 	struct list_head periodic_sched_assigned;
981 	struct list_head periodic_sched_queued;
982 	struct list_head split_order;
983 	u16 periodic_usecs;
984 	unsigned long hs_periodic_bitmap[
985 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
986 	u16 frame_number;
987 	u16 periodic_qh_count;
988 	bool bus_suspended;
989 	bool new_connection;
990 
991 	u16 last_frame_num;
992 
993 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
994 #define FRAME_NUM_ARRAY_SIZE 1000
995 	u16 *frame_num_array;
996 	u16 *last_frame_num_array;
997 	int frame_num_idx;
998 	int dumped_frame_num_array;
999 #endif
1000 
1001 	struct list_head free_hc_list;
1002 	int periodic_channels;
1003 	int non_periodic_channels;
1004 	int available_host_channels;
1005 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1006 	u8 *status_buf;
1007 	dma_addr_t status_buf_dma;
1008 #define DWC2_HCD_STATUS_BUF_SIZE 64
1009 
1010 	struct delayed_work start_work;
1011 	struct delayed_work reset_work;
1012 	u8 otg_port;
1013 	u32 *frame_list;
1014 	dma_addr_t frame_list_dma;
1015 	u32 frame_list_sz;
1016 	struct kmem_cache *desc_gen_cache;
1017 	struct kmem_cache *desc_hsisoc_cache;
1018 
1019 #ifdef DEBUG
1020 	u32 frrem_samples;
1021 	u64 frrem_accum;
1022 
1023 	u32 hfnum_7_samples_a;
1024 	u64 hfnum_7_frrem_accum_a;
1025 	u32 hfnum_0_samples_a;
1026 	u64 hfnum_0_frrem_accum_a;
1027 	u32 hfnum_other_samples_a;
1028 	u64 hfnum_other_frrem_accum_a;
1029 
1030 	u32 hfnum_7_samples_b;
1031 	u64 hfnum_7_frrem_accum_b;
1032 	u32 hfnum_0_samples_b;
1033 	u64 hfnum_0_frrem_accum_b;
1034 	u32 hfnum_other_samples_b;
1035 	u64 hfnum_other_frrem_accum_b;
1036 #endif
1037 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1038 
1039 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1040 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1041 	/* Gadget structures */
1042 	struct usb_gadget_driver *driver;
1043 	int fifo_mem;
1044 	unsigned int dedicated_fifos:1;
1045 	unsigned char num_of_eps;
1046 	u32 fifo_map;
1047 
1048 	struct usb_request *ep0_reply;
1049 	struct usb_request *ctrl_req;
1050 	void *ep0_buff;
1051 	void *ctrl_buff;
1052 	enum dwc2_ep0_state ep0_state;
1053 	u8 test_mode;
1054 
1055 	dma_addr_t setup_desc_dma[2];
1056 	struct dwc2_dma_desc *setup_desc[2];
1057 	dma_addr_t ctrl_in_desc_dma;
1058 	struct dwc2_dma_desc *ctrl_in_desc;
1059 	dma_addr_t ctrl_out_desc_dma;
1060 	struct dwc2_dma_desc *ctrl_out_desc;
1061 
1062 	struct usb_gadget gadget;
1063 	unsigned int enabled:1;
1064 	unsigned int connected:1;
1065 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1066 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1067 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1068 };
1069 
1070 /* Reasons for halting a host channel */
1071 enum dwc2_halt_status {
1072 	DWC2_HC_XFER_NO_HALT_STATUS,
1073 	DWC2_HC_XFER_COMPLETE,
1074 	DWC2_HC_XFER_URB_COMPLETE,
1075 	DWC2_HC_XFER_ACK,
1076 	DWC2_HC_XFER_NAK,
1077 	DWC2_HC_XFER_NYET,
1078 	DWC2_HC_XFER_STALL,
1079 	DWC2_HC_XFER_XACT_ERR,
1080 	DWC2_HC_XFER_FRAME_OVERRUN,
1081 	DWC2_HC_XFER_BABBLE_ERR,
1082 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1083 	DWC2_HC_XFER_AHB_ERR,
1084 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1085 	DWC2_HC_XFER_URB_DEQUEUE,
1086 };
1087 
1088 /* Core version information */
1089 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1090 {
1091 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1092 }
1093 
1094 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1095 {
1096 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1097 }
1098 
1099 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1100 {
1101 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1102 }
1103 
1104 /*
1105  * The following functions support initialization of the core driver component
1106  * and the DWC_otg controller
1107  */
1108 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1109 int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1110 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1111 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1112 
1113 bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
1114 void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
1115 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1116 
1117 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1118 
1119 /*
1120  * Common core Functions.
1121  * The following functions support managing the DWC_otg controller in either
1122  * device or host mode.
1123  */
1124 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1125 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1126 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1127 
1128 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1129 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1130 
1131 /* This function should be called on every hardware interrupt. */
1132 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1133 
1134 /* The device ID match table */
1135 extern const struct of_device_id dwc2_of_match_table[];
1136 
1137 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1138 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1139 
1140 /* Parameters */
1141 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1142 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1143 
1144 /*
1145  * The following functions check the controller's OTG operation mode
1146  * capability (GHWCFG2.OTG_MODE).
1147  *
1148  * These functions can be used before the internal hsotg->hw_params
1149  * are read in and cached so they always read directly from the
1150  * GHWCFG2 register.
1151  */
1152 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1153 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1154 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1155 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1156 
1157 /*
1158  * Returns the mode of operation, host or device
1159  */
1160 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1161 {
1162 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1163 }
1164 
1165 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1166 {
1167 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1168 }
1169 
1170 /*
1171  * Dump core registers and SPRAM
1172  */
1173 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1174 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1175 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1176 
1177 /* Gadget defines */
1178 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1179 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1180 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1181 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1182 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1183 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1184 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1185 				       bool reset);
1186 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1187 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1188 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1189 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1190 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1191 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1192 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1193 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1194 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1195 #else
1196 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1197 { return 0; }
1198 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1199 { return 0; }
1200 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1201 { return 0; }
1202 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1203 { return 0; }
1204 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1205 						     bool reset) {}
1206 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1207 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1208 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1209 					   int testmode)
1210 { return 0; }
1211 #define dwc2_is_device_connected(hsotg) (0)
1212 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1213 { return 0; }
1214 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1215 { return 0; }
1216 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1217 { return 0; }
1218 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1219 { return 0; }
1220 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1221 { return 0; }
1222 #endif
1223 
1224 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1225 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1226 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1227 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1228 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1229 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1230 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1231 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1232 #else
1233 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1234 { return 0; }
1235 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1236 						   int us)
1237 { return 0; }
1238 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1239 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1240 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1241 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1242 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1243 { return 0; }
1244 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1245 { return 0; }
1246 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1247 { return 0; }
1248 
1249 #endif
1250 
1251 #endif /* __DWC2_CORE_H__ */
1252