xref: /openbmc/linux/drivers/usb/dwc2/core.h (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40 
41 #include <linux/phy/phy.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/usb/gadget.h>
44 #include <linux/usb/otg.h>
45 #include <linux/usb/phy.h>
46 #include "hw.h"
47 
48 /*
49  * Suggested defines for tracers:
50  * - no_printk:    Disable tracing
51  * - pr_info:      Print this info to the console
52  * - trace_printk: Print this info to trace buffer (good for verbose logging)
53  */
54 
55 #define DWC2_TRACE_SCHEDULER		no_printk
56 #define DWC2_TRACE_SCHEDULER_VB		no_printk
57 
58 /* Detailed scheduler tracing, but won't overwhelm console */
59 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
60 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
61 			     dev_name(hsotg->dev), ##__VA_ARGS__)
62 
63 /* Verbose scheduler tracing */
64 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
65 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
66 				dev_name(hsotg->dev), ##__VA_ARGS__)
67 
68 #ifdef CONFIG_MIPS
69 /*
70  * There are some MIPS machines that can run in either big-endian
71  * or little-endian mode and that use the dwc2 register without
72  * a byteswap in both ways.
73  * Unlike other architectures, MIPS apparently does not require a
74  * barrier before the __raw_writel() to synchronize with DMA but does
75  * require the barrier after the __raw_writel() to serialize a set of
76  * writes. This set of operations was added specifically for MIPS and
77  * should only be used there.
78  */
79 static inline u32 dwc2_readl(const void __iomem *addr)
80 {
81 	u32 value = __raw_readl(addr);
82 
83 	/* In order to preserve endianness __raw_* operation is used. Therefore
84 	 * a barrier is needed to ensure IO access is not re-ordered across
85 	 * reads or writes
86 	 */
87 	mb();
88 	return value;
89 }
90 
91 static inline void dwc2_writel(u32 value, void __iomem *addr)
92 {
93 	__raw_writel(value, addr);
94 
95 	/*
96 	 * In order to preserve endianness __raw_* operation is used. Therefore
97 	 * a barrier is needed to ensure IO access is not re-ordered across
98 	 * reads or writes
99 	 */
100 	mb();
101 #ifdef DWC2_LOG_WRITES
102 	pr_info("INFO:: wrote %08x to %p\n", value, addr);
103 #endif
104 }
105 #else
106 /* Normal architectures just use readl/write */
107 static inline u32 dwc2_readl(const void __iomem *addr)
108 {
109 	return readl(addr);
110 }
111 
112 static inline void dwc2_writel(u32 value, void __iomem *addr)
113 {
114 	writel(value, addr);
115 
116 #ifdef DWC2_LOG_WRITES
117 	pr_info("info:: wrote %08x to %p\n", value, addr);
118 #endif
119 }
120 #endif
121 
122 /* Maximum number of Endpoints/HostChannels */
123 #define MAX_EPS_CHANNELS	16
124 
125 /* dwc2-hsotg declarations */
126 static const char * const dwc2_hsotg_supply_names[] = {
127 	"vusb_d",               /* digital USB supply, 1.2V */
128 	"vusb_a",               /* analog USB supply, 1.1V */
129 };
130 
131 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
132 
133 /*
134  * EP0_MPS_LIMIT
135  *
136  * Unfortunately there seems to be a limit of the amount of data that can
137  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
138  * packets (which practically means 1 packet and 63 bytes of data) when the
139  * MPS is set to 64.
140  *
141  * This means if we are wanting to move >127 bytes of data, we need to
142  * split the transactions up, but just doing one packet at a time does
143  * not work (this may be an implicit DATA0 PID on first packet of the
144  * transaction) and doing 2 packets is outside the controller's limits.
145  *
146  * If we try to lower the MPS size for EP0, then no transfers work properly
147  * for EP0, and the system will fail basic enumeration. As no cause for this
148  * has currently been found, we cannot support any large IN transfers for
149  * EP0.
150  */
151 #define EP0_MPS_LIMIT   64
152 
153 struct dwc2_hsotg;
154 struct dwc2_hsotg_req;
155 
156 /**
157  * struct dwc2_hsotg_ep - driver endpoint definition.
158  * @ep: The gadget layer representation of the endpoint.
159  * @name: The driver generated name for the endpoint.
160  * @queue: Queue of requests for this endpoint.
161  * @parent: Reference back to the parent device structure.
162  * @req: The current request that the endpoint is processing. This is
163  *       used to indicate an request has been loaded onto the endpoint
164  *       and has yet to be completed (maybe due to data move, or simply
165  *       awaiting an ack from the core all the data has been completed).
166  * @debugfs: File entry for debugfs file for this endpoint.
167  * @dir_in: Set to true if this endpoint is of the IN direction, which
168  *          means that it is sending data to the Host.
169  * @index: The index for the endpoint registers.
170  * @mc: Multi Count - number of transactions per microframe
171  * @interval: Interval for periodic endpoints, in frames or microframes.
172  * @name: The name array passed to the USB core.
173  * @halted: Set if the endpoint has been halted.
174  * @periodic: Set if this is a periodic ep, such as Interrupt
175  * @isochronous: Set if this is a isochronous ep
176  * @send_zlp: Set if we need to send a zero-length packet.
177  * @desc_list_dma: The DMA address of descriptor chain currently in use.
178  * @desc_list: Pointer to descriptor DMA chain head currently in use.
179  * @desc_count: Count of entries within the DMA descriptor chain of EP.
180  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
181  * @compl_desc: index of next descriptor to be completed by xFerComplete
182  * @total_data: The total number of data bytes done.
183  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
184  * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
185  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
186  * @last_load: The offset of data for the last start of request.
187  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
188  * @target_frame: Targeted frame num to setup next ISOC transfer
189  * @frame_overrun: Indicates SOF number overrun in DSTS
190  *
191  * This is the driver's state for each registered enpoint, allowing it
192  * to keep track of transactions that need doing. Each endpoint has a
193  * lock to protect the state, to try and avoid using an overall lock
194  * for the host controller as much as possible.
195  *
196  * For periodic IN endpoints, we have fifo_size and fifo_load to try
197  * and keep track of the amount of data in the periodic FIFO for each
198  * of these as we don't have a status register that tells us how much
199  * is in each of them. (note, this may actually be useless information
200  * as in shared-fifo mode periodic in acts like a single-frame packet
201  * buffer than a fifo)
202  */
203 struct dwc2_hsotg_ep {
204 	struct usb_ep           ep;
205 	struct list_head        queue;
206 	struct dwc2_hsotg       *parent;
207 	struct dwc2_hsotg_req    *req;
208 	struct dentry           *debugfs;
209 
210 	unsigned long           total_data;
211 	unsigned int            size_loaded;
212 	unsigned int            last_load;
213 	unsigned int            fifo_load;
214 	unsigned short          fifo_size;
215 	unsigned short		fifo_index;
216 
217 	unsigned char           dir_in;
218 	unsigned char           index;
219 	unsigned char           mc;
220 	u16                     interval;
221 
222 	unsigned int            halted:1;
223 	unsigned int            periodic:1;
224 	unsigned int            isochronous:1;
225 	unsigned int            send_zlp:1;
226 	unsigned int            target_frame;
227 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
228 	bool			frame_overrun;
229 
230 	dma_addr_t		desc_list_dma;
231 	struct dwc2_dma_desc	*desc_list;
232 	u8			desc_count;
233 
234 	unsigned int		next_desc;
235 	unsigned int		compl_desc;
236 
237 	char                    name[10];
238 };
239 
240 /**
241  * struct dwc2_hsotg_req - data transfer request
242  * @req: The USB gadget request
243  * @queue: The list of requests for the endpoint this is queued for.
244  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
245  */
246 struct dwc2_hsotg_req {
247 	struct usb_request      req;
248 	struct list_head        queue;
249 	void *saved_req_buf;
250 };
251 
252 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
253 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
254 #define call_gadget(_hs, _entry) \
255 do { \
256 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
257 		(_hs)->driver && (_hs)->driver->_entry) { \
258 		spin_unlock(&_hs->lock); \
259 		(_hs)->driver->_entry(&(_hs)->gadget); \
260 		spin_lock(&_hs->lock); \
261 	} \
262 } while (0)
263 #else
264 #define call_gadget(_hs, _entry)	do {} while (0)
265 #endif
266 
267 struct dwc2_hsotg;
268 struct dwc2_host_chan;
269 
270 /* Device States */
271 enum dwc2_lx_state {
272 	DWC2_L0,	/* On state */
273 	DWC2_L1,	/* LPM sleep state */
274 	DWC2_L2,	/* USB suspend state */
275 	DWC2_L3,	/* Off state */
276 };
277 
278 /* Gadget ep0 states */
279 enum dwc2_ep0_state {
280 	DWC2_EP0_SETUP,
281 	DWC2_EP0_DATA_IN,
282 	DWC2_EP0_DATA_OUT,
283 	DWC2_EP0_STATUS_IN,
284 	DWC2_EP0_STATUS_OUT,
285 };
286 
287 /**
288  * struct dwc2_core_params - Parameters for configuring the core
289  *
290  * @otg_cap:            Specifies the OTG capabilities.
291  *                       0 - HNP and SRP capable
292  *                       1 - SRP Only capable
293  *                       2 - No HNP/SRP capable (always available)
294  *                      Defaults to best available option (0, 1, then 2)
295  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
296  *                      the data FIFOs. The driver will automatically detect the
297  *                      value for this parameter if none is specified.
298  *                       0 - Slave (always available)
299  *                       1 - DMA (default, if available)
300  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
301  *                      address DMA mode or descriptor DMA mode for accessing
302  *                      the data FIFOs. The driver will automatically detect the
303  *                      value for this if none is specified.
304  *                       0 - Address DMA
305  *                       1 - Descriptor DMA (default, if available)
306  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
307  *                      address DMA mode or descriptor DMA mode for accessing
308  *                      the data FIFOs in Full Speed mode only. The driver
309  *                      will automatically detect the value for this if none is
310  *                      specified.
311  *                       0 - Address DMA
312  *                       1 - Descriptor DMA in FS (default, if available)
313  * @speed:              Specifies the maximum speed of operation in host and
314  *                      device mode. The actual speed depends on the speed of
315  *                      the attached device and the value of phy_type.
316  *                       0 - High Speed
317  *                           (default when phy_type is UTMI+ or ULPI)
318  *                       1 - Full Speed
319  *                           (default when phy_type is Full Speed)
320  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
321  *                       1 - Allow dynamic FIFO sizing (default, if available)
322  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
323  *                      are enabled for non-periodic IN endpoints in device
324  *                      mode.
325  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
326  *                      dynamic FIFO sizing is enabled
327  *                       16 to 32768
328  *                      Actual maximum value is autodetected and also
329  *                      the default.
330  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
331  *                      in host mode when dynamic FIFO sizing is enabled
332  *                       16 to 32768
333  *                      Actual maximum value is autodetected and also
334  *                      the default.
335  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
336  *                      host mode when dynamic FIFO sizing is enabled
337  *                       16 to 32768
338  *                      Actual maximum value is autodetected and also
339  *                      the default.
340  * @max_transfer_size:  The maximum transfer size supported, in bytes
341  *                       2047 to 65,535
342  *                      Actual maximum value is autodetected and also
343  *                      the default.
344  * @max_packet_count:   The maximum number of packets in a transfer
345  *                       15 to 511
346  *                      Actual maximum value is autodetected and also
347  *                      the default.
348  * @host_channels:      The number of host channel registers to use
349  *                       1 to 16
350  *                      Actual maximum value is autodetected and also
351  *                      the default.
352  * @phy_type:           Specifies the type of PHY interface to use. By default,
353  *                      the driver will automatically detect the phy_type.
354  *                       0 - Full Speed Phy
355  *                       1 - UTMI+ Phy
356  *                       2 - ULPI Phy
357  *                      Defaults to best available option (2, 1, then 0)
358  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
359  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
360  *                      ULPI phy_type, this parameter indicates the data width
361  *                      between the MAC and the ULPI Wrapper.) Also, this
362  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
363  *                      parameter was set to "8 and 16 bits", meaning that the
364  *                      core has been configured to work at either data path
365  *                      width.
366  *                       8 or 16 (default 16 if available)
367  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
368  *                      data rate. This parameter is only applicable if phy_type
369  *                      is ULPI.
370  *                       0 - single data rate ULPI interface with 8 bit wide
371  *                           data bus (default)
372  *                       1 - double data rate ULPI interface with 4 bit wide
373  *                           data bus
374  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
375  *                      external supply to drive the VBus
376  *                       0 - Internal supply (default)
377  *                       1 - External supply
378  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
379  *                      speed PHY. This parameter is only applicable if phy_type
380  *                      is FS.
381  *                       0 - No (default)
382  *                       1 - Yes
383  * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
384  *                       0 - Disable (default)
385  *                       1 - Enable
386  * @acg_enable:		For enabling Active Clock Gating in the controller
387  *                       0 - No
388  *                       1 - Yes
389  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
390  *                       0 - No (default)
391  *                       1 - Yes
392  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
393  *                      when attached to a Full Speed or Low Speed device in
394  *                      host mode.
395  *                       0 - Don't support low power mode (default)
396  *                       1 - Support low power mode
397  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
398  *                      when connected to a Low Speed device in host
399  *                      mode. This parameter is applicable only if
400  *                      host_support_fs_ls_low_power is enabled.
401  *                       0 - 48 MHz
402  *                           (default when phy_type is UTMI+ or ULPI)
403  *                       1 - 6 MHz
404  *                           (default when phy_type is Full Speed)
405  * @oc_disable:		Flag to disable overcurrent condition.
406  *			0 - Allow overcurrent condition to get detected
407  *			1 - Disable overcurrent condtion to get detected
408  * @ts_dline:           Enable Term Select Dline pulsing
409  *                       0 - No (default)
410  *                       1 - Yes
411  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
412  *                       0 - No (default for core < 2.92a)
413  *                       1 - Yes (default for core >= 2.92a)
414  * @ahbcfg:             This field allows the default value of the GAHBCFG
415  *                      register to be overridden
416  *                       -1         - GAHBCFG value will be set to 0x06
417  *                                    (INCR, default)
418  *                       all others - GAHBCFG value will be overridden with
419  *                                    this value
420  *                      Not all bits can be controlled like this, the
421  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
422  *                      by the driver and are ignored in this
423  *                      configuration value.
424  * @uframe_sched:       True to enable the microframe scheduler
425  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
426  *                      Disable CONIDSTSCHNG controller interrupt in such
427  *                      case.
428  *                      0 - No (default)
429  *                      1 - Yes
430  * @power_down:         Specifies whether the controller support power_down.
431  *			If power_down is enabled, the controller will enter
432  *			power_down in both peripheral and host mode when
433  *			needed.
434  *			0 - No (default)
435  *			1 - Partial power down
436  *			2 - Hibernation
437  * @lpm:		Enable LPM support.
438  *			0 - No
439  *			1 - Yes
440  * @lpm_clock_gating:		Enable core PHY clock gating.
441  *			0 - No
442  *			1 - Yes
443  * @besl:		Enable LPM Errata support.
444  *			0 - No
445  *			1 - Yes
446  * @hird_threshold_en:	HIRD or HIRD Threshold enable.
447  *			0 - No
448  *			1 - Yes
449  * @hird_threshold:	Value of BESL or HIRD Threshold.
450  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
451  *			register.
452  *			0 - Deactivate the transceiver (default)
453  *			1 - Activate the transceiver
454  * @g_dma:              Enables gadget dma usage (default: autodetect).
455  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
456  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
457  *			DWORDS from 16-32768 (default: 2048 if
458  *			possible, otherwise autodetect).
459  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
460  *			DWORDS from 16-32768 (default: 1024 if
461  *			possible, otherwise autodetect).
462  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
463  *			mode. Each value corresponds to one EP
464  *			starting from EP1 (max 15 values). Sizes are
465  *			in DWORDS with possible values from from
466  *			16-32768 (default: 256, 256, 256, 256, 768,
467  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
468  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
469  *                      while full&low speed device connect. And change speed
470  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
471  *			0 - No (default)
472  *			1 - Yes
473  *
474  * The following parameters may be specified when starting the module. These
475  * parameters define how the DWC_otg controller should be configured. A
476  * value of -1 (or any other out of range value) for any parameter means
477  * to read the value from hardware (if possible) or use the builtin
478  * default described above.
479  */
480 struct dwc2_core_params {
481 	u8 otg_cap;
482 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
483 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
484 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
485 
486 	u8 phy_type;
487 #define DWC2_PHY_TYPE_PARAM_FS		0
488 #define DWC2_PHY_TYPE_PARAM_UTMI	1
489 #define DWC2_PHY_TYPE_PARAM_ULPI	2
490 
491 	u8 speed;
492 #define DWC2_SPEED_PARAM_HIGH	0
493 #define DWC2_SPEED_PARAM_FULL	1
494 #define DWC2_SPEED_PARAM_LOW	2
495 
496 	u8 phy_utmi_width;
497 	bool phy_ulpi_ddr;
498 	bool phy_ulpi_ext_vbus;
499 	bool enable_dynamic_fifo;
500 	bool en_multiple_tx_fifo;
501 	bool i2c_enable;
502 	bool acg_enable;
503 	bool ulpi_fs_ls;
504 	bool ts_dline;
505 	bool reload_ctl;
506 	bool uframe_sched;
507 	bool external_id_pin_ctl;
508 
509 	int power_down;
510 #define DWC2_POWER_DOWN_PARAM_NONE		0
511 #define DWC2_POWER_DOWN_PARAM_PARTIAL		1
512 #define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
513 
514 	bool lpm;
515 	bool lpm_clock_gating;
516 	bool besl;
517 	bool hird_threshold_en;
518 	u8 hird_threshold;
519 	bool activate_stm_fs_transceiver;
520 	bool ipg_isoc_en;
521 	u16 max_packet_count;
522 	u32 max_transfer_size;
523 	u32 ahbcfg;
524 
525 	/* Host parameters */
526 	bool host_dma;
527 	bool dma_desc_enable;
528 	bool dma_desc_fs_enable;
529 	bool host_support_fs_ls_low_power;
530 	bool host_ls_low_power_phy_clk;
531 	bool oc_disable;
532 
533 	u8 host_channels;
534 	u16 host_rx_fifo_size;
535 	u16 host_nperio_tx_fifo_size;
536 	u16 host_perio_tx_fifo_size;
537 
538 	/* Gadget parameters */
539 	bool g_dma;
540 	bool g_dma_desc;
541 	u32 g_rx_fifo_size;
542 	u32 g_np_tx_fifo_size;
543 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
544 
545 	bool change_speed_quirk;
546 };
547 
548 /**
549  * struct dwc2_hw_params - Autodetected parameters.
550  *
551  * These parameters are the various parameters read from hardware
552  * registers during initialization. They typically contain the best
553  * supported or maximum value that can be configured in the
554  * corresponding dwc2_core_params value.
555  *
556  * The values that are not in dwc2_core_params are documented below.
557  *
558  * @op_mode:             Mode of Operation
559  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
560  *                       1 - SRP-Capable OTG (Host & Device)
561  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
562  *                       3 - SRP-Capable Device
563  *                       4 - Non-OTG Device
564  *                       5 - SRP-Capable Host
565  *                       6 - Non-OTG Host
566  * @arch:                Architecture
567  *                       0 - Slave only
568  *                       1 - External DMA
569  *                       2 - Internal DMA
570  * @ipg_isoc_en:        This feature indicates that the controller supports
571  *                      the worst-case scenario of Rx followed by Rx
572  *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
573  *                      specification for any token following ISOC OUT token.
574  *                       0 - Don't support
575  *                       1 - Support
576  * @power_optimized:    Are power optimizations enabled?
577  * @num_dev_ep:         Number of device endpoints available
578  * @num_dev_in_eps:     Number of device IN endpoints available
579  * @num_dev_perio_in_ep: Number of device periodic IN endpoints
580  *                       available
581  * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
582  *                      Depth
583  *                       0 to 30
584  * @host_perio_tx_q_depth:
585  *                      Host Mode Periodic Request Queue Depth
586  *                       2, 4 or 8
587  * @nperio_tx_q_depth:
588  *                      Non-Periodic Request Queue Depth
589  *                       2, 4 or 8
590  * @hs_phy_type:         High-speed PHY interface type
591  *                       0 - High-speed interface not supported
592  *                       1 - UTMI+
593  *                       2 - ULPI
594  *                       3 - UTMI+ and ULPI
595  * @fs_phy_type:         Full-speed PHY interface type
596  *                       0 - Full speed interface not supported
597  *                       1 - Dedicated full speed interface
598  *                       2 - FS pins shared with UTMI+ pins
599  *                       3 - FS pins shared with ULPI pins
600  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
601  * @hibernation:	Is hibernation enabled?
602  * @utmi_phy_data_width: UTMI+ PHY data width
603  *                       0 - 8 bits
604  *                       1 - 16 bits
605  *                       2 - 8 or 16 bits
606  * @snpsid:             Value from SNPSID register
607  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
608  * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
609  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
610  *                      address DMA mode or descriptor DMA mode for accessing
611  *                      the data FIFOs. The driver will automatically detect the
612  *                      value for this if none is specified.
613  *                       0 - Address DMA
614  *                       1 - Descriptor DMA (default, if available)
615  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
616  *                       1 - Allow dynamic FIFO sizing (default, if available)
617  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
618  *                      are enabled for non-periodic IN endpoints in device
619  *                      mode.
620  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
621  *                      in host mode when dynamic FIFO sizing is enabled
622  *                       16 to 32768
623  *                      Actual maximum value is autodetected and also
624  *                      the default.
625  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
626  *                      host mode when dynamic FIFO sizing is enabled
627  *                       16 to 32768
628  *                      Actual maximum value is autodetected and also
629  *                      the default.
630  * @max_transfer_size:  The maximum transfer size supported, in bytes
631  *                       2047 to 65,535
632  *                      Actual maximum value is autodetected and also
633  *                      the default.
634  * @max_packet_count:   The maximum number of packets in a transfer
635  *                       15 to 511
636  *                      Actual maximum value is autodetected and also
637  *                      the default.
638  * @host_channels:      The number of host channel registers to use
639  *                       1 to 16
640  *                      Actual maximum value is autodetected and also
641  *                      the default.
642  * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
643  *			     in device mode when dynamic FIFO sizing is enabled
644  *			     16 to 32768
645  *			     Actual maximum value is autodetected and also
646  *			     the default.
647  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
648  *                      speed PHY. This parameter is only applicable if phy_type
649  *                      is FS.
650  *                       0 - No (default)
651  *                       1 - Yes
652  * @acg_enable:		For enabling Active Clock Gating in the controller
653  *                       0 - Disable
654  *                       1 - Enable
655  * @lpm_mode:		For enabling Link Power Management in the controller
656  *                       0 - Disable
657  *                       1 - Enable
658  * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
659  *			FIFO sizing is enabled 16 to 32768
660  *			Actual maximum value is autodetected and also
661  *			the default.
662  */
663 struct dwc2_hw_params {
664 	unsigned op_mode:3;
665 	unsigned arch:2;
666 	unsigned dma_desc_enable:1;
667 	unsigned enable_dynamic_fifo:1;
668 	unsigned en_multiple_tx_fifo:1;
669 	unsigned rx_fifo_size:16;
670 	unsigned host_nperio_tx_fifo_size:16;
671 	unsigned dev_nperio_tx_fifo_size:16;
672 	unsigned host_perio_tx_fifo_size:16;
673 	unsigned nperio_tx_q_depth:3;
674 	unsigned host_perio_tx_q_depth:3;
675 	unsigned dev_token_q_depth:5;
676 	unsigned max_transfer_size:26;
677 	unsigned max_packet_count:11;
678 	unsigned host_channels:5;
679 	unsigned hs_phy_type:2;
680 	unsigned fs_phy_type:2;
681 	unsigned i2c_enable:1;
682 	unsigned acg_enable:1;
683 	unsigned num_dev_ep:4;
684 	unsigned num_dev_in_eps : 4;
685 	unsigned num_dev_perio_in_ep:4;
686 	unsigned total_fifo_size:16;
687 	unsigned power_optimized:1;
688 	unsigned hibernation:1;
689 	unsigned utmi_phy_data_width:2;
690 	unsigned lpm_mode:1;
691 	unsigned ipg_isoc_en:1;
692 	u32 snpsid;
693 	u32 dev_ep_dirs;
694 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
695 };
696 
697 /* Size of control and EP0 buffers */
698 #define DWC2_CTRL_BUFF_SIZE 8
699 
700 /**
701  * struct dwc2_gregs_backup - Holds global registers state before
702  * entering partial power down
703  * @gotgctl:		Backup of GOTGCTL register
704  * @gintmsk:		Backup of GINTMSK register
705  * @gahbcfg:		Backup of GAHBCFG register
706  * @gusbcfg:		Backup of GUSBCFG register
707  * @grxfsiz:		Backup of GRXFSIZ register
708  * @gnptxfsiz:		Backup of GNPTXFSIZ register
709  * @gi2cctl:		Backup of GI2CCTL register
710  * @glpmcfg:		Backup of GLPMCFG register
711  * @gdfifocfg:		Backup of GDFIFOCFG register
712  * @pcgcctl:		Backup of PCGCCTL register
713  * @pcgcctl1:		Backup of PCGCCTL1 register
714  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
715  * @gpwrdn:		Backup of GPWRDN register
716  * @valid:		True if registers values backuped.
717  */
718 struct dwc2_gregs_backup {
719 	u32 gotgctl;
720 	u32 gintmsk;
721 	u32 gahbcfg;
722 	u32 gusbcfg;
723 	u32 grxfsiz;
724 	u32 gnptxfsiz;
725 	u32 gi2cctl;
726 	u32 glpmcfg;
727 	u32 pcgcctl;
728 	u32 pcgcctl1;
729 	u32 gdfifocfg;
730 	u32 gpwrdn;
731 	bool valid;
732 };
733 
734 /**
735  * struct dwc2_dregs_backup - Holds device registers state before
736  * entering partial power down
737  * @dcfg:		Backup of DCFG register
738  * @dctl:		Backup of DCTL register
739  * @daintmsk:		Backup of DAINTMSK register
740  * @diepmsk:		Backup of DIEPMSK register
741  * @doepmsk:		Backup of DOEPMSK register
742  * @diepctl:		Backup of DIEPCTL register
743  * @dieptsiz:		Backup of DIEPTSIZ register
744  * @diepdma:		Backup of DIEPDMA register
745  * @doepctl:		Backup of DOEPCTL register
746  * @doeptsiz:		Backup of DOEPTSIZ register
747  * @doepdma:		Backup of DOEPDMA register
748  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
749  * @valid:      True if registers values backuped.
750  */
751 struct dwc2_dregs_backup {
752 	u32 dcfg;
753 	u32 dctl;
754 	u32 daintmsk;
755 	u32 diepmsk;
756 	u32 doepmsk;
757 	u32 diepctl[MAX_EPS_CHANNELS];
758 	u32 dieptsiz[MAX_EPS_CHANNELS];
759 	u32 diepdma[MAX_EPS_CHANNELS];
760 	u32 doepctl[MAX_EPS_CHANNELS];
761 	u32 doeptsiz[MAX_EPS_CHANNELS];
762 	u32 doepdma[MAX_EPS_CHANNELS];
763 	u32 dtxfsiz[MAX_EPS_CHANNELS];
764 	bool valid;
765 };
766 
767 /**
768  * struct dwc2_hregs_backup - Holds host registers state before
769  * entering partial power down
770  * @hcfg:		Backup of HCFG register
771  * @haintmsk:		Backup of HAINTMSK register
772  * @hcintmsk:		Backup of HCINTMSK register
773  * @hprt0:		Backup of HPTR0 register
774  * @hfir:		Backup of HFIR register
775  * @hptxfsiz:		Backup of HPTXFSIZ register
776  * @valid:      True if registers values backuped.
777  */
778 struct dwc2_hregs_backup {
779 	u32 hcfg;
780 	u32 haintmsk;
781 	u32 hcintmsk[MAX_EPS_CHANNELS];
782 	u32 hprt0;
783 	u32 hfir;
784 	u32 hptxfsiz;
785 	bool valid;
786 };
787 
788 /*
789  * Constants related to high speed periodic scheduling
790  *
791  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
792  * reservation point of view it's assumed that the schedule goes right back to
793  * the beginning after the end of the schedule.
794  *
795  * What does that mean for scheduling things with a long interval?  It means
796  * we'll reserve time for them in every possible microframe that they could
797  * ever be scheduled in.  ...but we'll still only actually schedule them as
798  * often as they were requested.
799  *
800  * We keep our schedule in a "bitmap" structure.  This simplifies having
801  * to keep track of and merge intervals: we just let the bitmap code do most
802  * of the heavy lifting.  In a way scheduling is much like memory allocation.
803  *
804  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
805  * supposed to schedule for periodic transfers).  That's according to spec.
806  *
807  * Note that though we only schedule 80% of each microframe, the bitmap that we
808  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
809  * space for each uFrame).
810  *
811  * Requirements:
812  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
813  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
814  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
815  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
816  */
817 #define DWC2_US_PER_UFRAME		125
818 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
819 
820 #define DWC2_HS_SCHEDULE_UFRAMES	8
821 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
822 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
823 
824 /*
825  * Constants related to low speed scheduling
826  *
827  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
828  * so we make up a unit called a "slice" that's worth 25us.  There are 40
829  * slices in a full frame and we can schedule 36 of those (90%) for periodic
830  * transfers.
831  *
832  * Our low speed schedule can be as short as 1 frame or could be longer.  When
833  * we only schedule 1 frame it means that we'll need to reserve a time every
834  * frame even for things that only transfer very rarely, so something that runs
835  * every 2048 frames will get time reserved in every frame.  Our low speed
836  * schedule can be longer and we'll be able to handle more overlap, but that
837  * will come at increased memory cost and increased time to schedule.
838  *
839  * Note: one other advantage of a short low speed schedule is that if we mess
840  * up and miss scheduling we can jump in and use any of the slots that we
841  * happened to reserve.
842  *
843  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
844  * the schedule.  There will be one schedule per TT.
845  *
846  * Requirements:
847  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
848  */
849 #define DWC2_US_PER_SLICE	25
850 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
851 
852 #define DWC2_ROUND_US_TO_SLICE(us) \
853 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
854 				 DWC2_US_PER_SLICE)
855 
856 #define DWC2_LS_PERIODIC_US_PER_FRAME \
857 				900
858 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
859 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
860 				 DWC2_US_PER_SLICE)
861 
862 #define DWC2_LS_SCHEDULE_FRAMES	1
863 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
864 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
865 
866 /**
867  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
868  * and periodic schedules
869  *
870  * These are common for both host and peripheral modes:
871  *
872  * @dev:                The struct device pointer
873  * @regs:		Pointer to controller regs
874  * @hw_params:          Parameters that were autodetected from the
875  *                      hardware registers
876  * @params:	Parameters that define how the core should be configured
877  * @op_state:           The operational State, during transitions (a_host=>
878  *                      a_peripheral and b_device=>b_host) this may not match
879  *                      the core, but allows the software to determine
880  *                      transitions
881  * @dr_mode:            Requested mode of operation, one of following:
882  *                      - USB_DR_MODE_PERIPHERAL
883  *                      - USB_DR_MODE_HOST
884  *                      - USB_DR_MODE_OTG
885  * @hcd_enabled:	Host mode sub-driver initialization indicator.
886  * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
887  * @ll_hw_enabled:	Status of low-level hardware resources.
888  * @hibernated:		True if core is hibernated
889  * @frame_number:       Frame number read from the core. For both device
890  *			and host modes. The value ranges are from 0
891  *			to HFNUM_MAX_FRNUM.
892  * @phy:                The otg phy transceiver structure for phy control.
893  * @uphy:               The otg phy transceiver structure for old USB phy
894  *                      control.
895  * @plat:               The platform specific configuration data. This can be
896  *                      removed once all SoCs support usb transceiver.
897  * @supplies:           Definition of USB power supplies
898  * @vbus_supply:        Regulator supplying vbus.
899  * @phyif:              PHY interface width
900  * @lock:		Spinlock that protects all the driver data structures
901  * @priv:		Stores a pointer to the struct usb_hcd
902  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
903  *                      transfer are in process of being queued
904  * @srp_success:        Stores status of SRP request in the case of a FS PHY
905  *                      with an I2C interface
906  * @wq_otg:             Workqueue object used for handling of some interrupts
907  * @wf_otg:             Work object for handling Connector ID Status Change
908  *                      interrupt
909  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
910  * @lx_state:           Lx state of connected device
911  * @gr_backup: Backup of global registers during suspend
912  * @dr_backup: Backup of device registers during suspend
913  * @hr_backup: Backup of host registers during suspend
914  *
915  * These are for host mode:
916  *
917  * @flags:              Flags for handling root port state changes
918  * @flags.d32:          Contain all root port flags
919  * @flags.b:            Separate root port flags from each other
920  * @flags.b.port_connect_status_change: True if root port connect status
921  *                      changed
922  * @flags.b.port_connect_status: True if device connected to root port
923  * @flags.b.port_reset_change: True if root port reset status changed
924  * @flags.b.port_enable_change: True if root port enable status changed
925  * @flags.b.port_suspend_change: True if root port suspend status changed
926  * @flags.b.port_over_current_change: True if root port over current state
927  *                       changed.
928  * @flags.b.port_l1_change: True if root port l1 status changed
929  * @flags.b.reserved:   Reserved bits of root port register
930  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
931  *                      Transfers associated with these QHs are not currently
932  *                      assigned to a host channel.
933  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
934  *                      Transfers associated with these QHs are currently
935  *                      assigned to a host channel.
936  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
937  *                      non-periodic schedule
938  * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
939  *                      Transfers associated with these QHs are not currently
940  *                      assigned to a host channel.
941  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
942  *                      list of QHs for periodic transfers that are _not_
943  *                      scheduled for the next frame. Each QH in the list has an
944  *                      interval counter that determines when it needs to be
945  *                      scheduled for execution. This scheduling mechanism
946  *                      allows only a simple calculation for periodic bandwidth
947  *                      used (i.e. must assume that all periodic transfers may
948  *                      need to execute in the same frame). However, it greatly
949  *                      simplifies scheduling and should be sufficient for the
950  *                      vast majority of OTG hosts, which need to connect to a
951  *                      small number of peripherals at one time. Items move from
952  *                      this list to periodic_sched_ready when the QH interval
953  *                      counter is 0 at SOF.
954  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
955  *                      the next frame, but have not yet been assigned to host
956  *                      channels. Items move from this list to
957  *                      periodic_sched_assigned as host channels become
958  *                      available during the current frame.
959  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
960  *                      frame that are assigned to host channels. Items move
961  *                      from this list to periodic_sched_queued as the
962  *                      transactions for the QH are queued to the DWC_otg
963  *                      controller.
964  * @periodic_sched_queued: List of periodic QHs that have been queued for
965  *                      execution. Items move from this list to either
966  *                      periodic_sched_inactive or periodic_sched_ready when the
967  *                      channel associated with the transfer is released. If the
968  *                      interval for the QH is 1, the item moves to
969  *                      periodic_sched_ready because it must be rescheduled for
970  *                      the next frame. Otherwise, the item moves to
971  *                      periodic_sched_inactive.
972  * @split_order:        List keeping track of channels doing splits, in order.
973  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
974  *                      This value is in microseconds per (micro)frame. The
975  *                      assumption is that all periodic transfers may occur in
976  *                      the same (micro)frame.
977  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
978  *                      host is in high speed mode; low speed schedules are
979  *                      stored elsewhere since we need one per TT.
980  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
981  *                      SOF enable/disable.
982  * @free_hc_list:       Free host channels in the controller. This is a list of
983  *                      struct dwc2_host_chan items.
984  * @periodic_channels:  Number of host channels assigned to periodic transfers.
985  *                      Currently assuming that there is a dedicated host
986  *                      channel for each periodic transaction and at least one
987  *                      host channel is available for non-periodic transactions.
988  * @non_periodic_channels: Number of host channels assigned to non-periodic
989  *                      transfers
990  * @available_host_channels: Number of host channels available for the
991  *			     microframe scheduler to use
992  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
993  *                      Allows accessing a host channel descriptor given the
994  *                      host channel number. This is useful in interrupt
995  *                      handlers.
996  * @status_buf:         Buffer used for data received during the status phase of
997  *                      a control transfer.
998  * @status_buf_dma:     DMA address for status_buf
999  * @start_work:         Delayed work for handling host A-cable connection
1000  * @reset_work:         Delayed work for handling a port reset
1001  * @otg_port:           OTG port number
1002  * @frame_list:         Frame list
1003  * @frame_list_dma:     Frame list DMA address
1004  * @frame_list_sz:      Frame list size
1005  * @desc_gen_cache:     Kmem cache for generic descriptors
1006  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
1007  *
1008  * These are for peripheral mode:
1009  *
1010  * @driver:             USB gadget driver
1011  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1012  * @num_of_eps:         Number of available EPs (excluding EP0)
1013  * @debug_root:         Root directrory for debugfs.
1014  * @ep0_reply:          Request used for ep0 reply.
1015  * @ep0_buff:           Buffer for EP0 reply data, if needed.
1016  * @ctrl_buff:          Buffer for EP0 control requests.
1017  * @ctrl_req:           Request for EP0 control packets.
1018  * @ep0_state:          EP0 control transfers state
1019  * @test_mode:          USB test mode requested by the host
1020  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1021  *                      remote-wakeup signalling
1022  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1023  * @setup_desc:		EP0 setup stage desc chain pointer
1024  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1025  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1026  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1027  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1028  * @irq:		Interrupt request line number
1029  * @clk:		Pointer to otg clock
1030  * @reset:		Pointer to dwc2 reset controller
1031  * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1032  * @regset:		A pointer to a struct debugfs_regset32, which contains
1033  *			a pointer to an array of register definitions, the
1034  *			array size and the base address where the register bank
1035  *			is to be found.
1036  * @bus_suspended:	True if bus is suspended
1037  * @last_frame_num:	Number of last frame. Range from 0 to  32768
1038  * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1039  *			defined, for missed SOFs tracking. Array holds that
1040  *			frame numbers, which not equal to last_frame_num +1
1041  * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1042  *			    defined, for missed SOFs tracking.
1043  *			    If current_frame_number != last_frame_num+1
1044  *			    then last_frame_num added to this array
1045  * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1046  * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1047  *				0 - if missed SOFs frame numbers not dumbed
1048  * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1049  * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1050  *			then that fifo is used
1051  * @gadget:		Represents a usb slave device
1052  * @connected:		Used in slave mode. True if device connected with host
1053  * @eps_in:		The IN endpoints being supplied to the gadget framework
1054  * @eps_out:		The OUT endpoints being supplied to the gadget framework
1055  * @new_connection:	Used in host mode. True if there are new connected
1056  *			device
1057  * @enabled:		Indicates the enabling state of controller
1058  *
1059  */
1060 struct dwc2_hsotg {
1061 	struct device *dev;
1062 	void __iomem *regs;
1063 	/** Params detected from hardware */
1064 	struct dwc2_hw_params hw_params;
1065 	/** Params to actually use */
1066 	struct dwc2_core_params params;
1067 	enum usb_otg_state op_state;
1068 	enum usb_dr_mode dr_mode;
1069 	unsigned int hcd_enabled:1;
1070 	unsigned int gadget_enabled:1;
1071 	unsigned int ll_hw_enabled:1;
1072 	unsigned int hibernated:1;
1073 	u16 frame_number;
1074 
1075 	struct phy *phy;
1076 	struct usb_phy *uphy;
1077 	struct dwc2_hsotg_plat *plat;
1078 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1079 	struct regulator *vbus_supply;
1080 	u32 phyif;
1081 
1082 	spinlock_t lock;
1083 	void *priv;
1084 	int     irq;
1085 	struct clk *clk;
1086 	struct reset_control *reset;
1087 	struct reset_control *reset_ecc;
1088 
1089 	unsigned int queuing_high_bandwidth:1;
1090 	unsigned int srp_success:1;
1091 
1092 	struct workqueue_struct *wq_otg;
1093 	struct work_struct wf_otg;
1094 	struct timer_list wkp_timer;
1095 	enum dwc2_lx_state lx_state;
1096 	struct dwc2_gregs_backup gr_backup;
1097 	struct dwc2_dregs_backup dr_backup;
1098 	struct dwc2_hregs_backup hr_backup;
1099 
1100 	struct dentry *debug_root;
1101 	struct debugfs_regset32 *regset;
1102 
1103 	/* DWC OTG HW Release versions */
1104 #define DWC2_CORE_REV_2_71a	0x4f54271a
1105 #define DWC2_CORE_REV_2_72a     0x4f54272a
1106 #define DWC2_CORE_REV_2_80a	0x4f54280a
1107 #define DWC2_CORE_REV_2_90a	0x4f54290a
1108 #define DWC2_CORE_REV_2_91a	0x4f54291a
1109 #define DWC2_CORE_REV_2_92a	0x4f54292a
1110 #define DWC2_CORE_REV_2_94a	0x4f54294a
1111 #define DWC2_CORE_REV_3_00a	0x4f54300a
1112 #define DWC2_CORE_REV_3_10a	0x4f54310a
1113 #define DWC2_CORE_REV_4_00a	0x4f54400a
1114 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
1115 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
1116 
1117 	/* DWC OTG HW Core ID */
1118 #define DWC2_OTG_ID		0x4f540000
1119 #define DWC2_FS_IOT_ID		0x55310000
1120 #define DWC2_HS_IOT_ID		0x55320000
1121 
1122 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1123 	union dwc2_hcd_internal_flags {
1124 		u32 d32;
1125 		struct {
1126 			unsigned port_connect_status_change:1;
1127 			unsigned port_connect_status:1;
1128 			unsigned port_reset_change:1;
1129 			unsigned port_enable_change:1;
1130 			unsigned port_suspend_change:1;
1131 			unsigned port_over_current_change:1;
1132 			unsigned port_l1_change:1;
1133 			unsigned reserved:25;
1134 		} b;
1135 	} flags;
1136 
1137 	struct list_head non_periodic_sched_inactive;
1138 	struct list_head non_periodic_sched_waiting;
1139 	struct list_head non_periodic_sched_active;
1140 	struct list_head *non_periodic_qh_ptr;
1141 	struct list_head periodic_sched_inactive;
1142 	struct list_head periodic_sched_ready;
1143 	struct list_head periodic_sched_assigned;
1144 	struct list_head periodic_sched_queued;
1145 	struct list_head split_order;
1146 	u16 periodic_usecs;
1147 	unsigned long hs_periodic_bitmap[
1148 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1149 	u16 periodic_qh_count;
1150 	bool bus_suspended;
1151 	bool new_connection;
1152 
1153 	u16 last_frame_num;
1154 
1155 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1156 #define FRAME_NUM_ARRAY_SIZE 1000
1157 	u16 *frame_num_array;
1158 	u16 *last_frame_num_array;
1159 	int frame_num_idx;
1160 	int dumped_frame_num_array;
1161 #endif
1162 
1163 	struct list_head free_hc_list;
1164 	int periodic_channels;
1165 	int non_periodic_channels;
1166 	int available_host_channels;
1167 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1168 	u8 *status_buf;
1169 	dma_addr_t status_buf_dma;
1170 #define DWC2_HCD_STATUS_BUF_SIZE 64
1171 
1172 	struct delayed_work start_work;
1173 	struct delayed_work reset_work;
1174 	u8 otg_port;
1175 	u32 *frame_list;
1176 	dma_addr_t frame_list_dma;
1177 	u32 frame_list_sz;
1178 	struct kmem_cache *desc_gen_cache;
1179 	struct kmem_cache *desc_hsisoc_cache;
1180 
1181 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1182 
1183 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1184 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1185 	/* Gadget structures */
1186 	struct usb_gadget_driver *driver;
1187 	int fifo_mem;
1188 	unsigned int dedicated_fifos:1;
1189 	unsigned char num_of_eps;
1190 	u32 fifo_map;
1191 
1192 	struct usb_request *ep0_reply;
1193 	struct usb_request *ctrl_req;
1194 	void *ep0_buff;
1195 	void *ctrl_buff;
1196 	enum dwc2_ep0_state ep0_state;
1197 	u8 test_mode;
1198 
1199 	dma_addr_t setup_desc_dma[2];
1200 	struct dwc2_dma_desc *setup_desc[2];
1201 	dma_addr_t ctrl_in_desc_dma;
1202 	struct dwc2_dma_desc *ctrl_in_desc;
1203 	dma_addr_t ctrl_out_desc_dma;
1204 	struct dwc2_dma_desc *ctrl_out_desc;
1205 
1206 	struct usb_gadget gadget;
1207 	unsigned int enabled:1;
1208 	unsigned int connected:1;
1209 	unsigned int remote_wakeup_allowed:1;
1210 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1211 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1212 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1213 };
1214 
1215 /* Reasons for halting a host channel */
1216 enum dwc2_halt_status {
1217 	DWC2_HC_XFER_NO_HALT_STATUS,
1218 	DWC2_HC_XFER_COMPLETE,
1219 	DWC2_HC_XFER_URB_COMPLETE,
1220 	DWC2_HC_XFER_ACK,
1221 	DWC2_HC_XFER_NAK,
1222 	DWC2_HC_XFER_NYET,
1223 	DWC2_HC_XFER_STALL,
1224 	DWC2_HC_XFER_XACT_ERR,
1225 	DWC2_HC_XFER_FRAME_OVERRUN,
1226 	DWC2_HC_XFER_BABBLE_ERR,
1227 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1228 	DWC2_HC_XFER_AHB_ERR,
1229 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1230 	DWC2_HC_XFER_URB_DEQUEUE,
1231 };
1232 
1233 /* Core version information */
1234 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1235 {
1236 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1237 }
1238 
1239 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1240 {
1241 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1242 }
1243 
1244 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1245 {
1246 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1247 }
1248 
1249 /*
1250  * The following functions support initialization of the core driver component
1251  * and the DWC_otg controller
1252  */
1253 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1254 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1255 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore);
1256 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1257 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1258 		int reset, int is_host);
1259 
1260 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1261 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1262 
1263 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1264 
1265 /*
1266  * Common core Functions.
1267  * The following functions support managing the DWC_otg controller in either
1268  * device or host mode.
1269  */
1270 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1271 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1272 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1273 
1274 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1275 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1276 
1277 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1278 			     int is_host);
1279 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1280 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1281 
1282 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1283 
1284 /* This function should be called on every hardware interrupt. */
1285 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1286 
1287 /* The device ID match table */
1288 extern const struct of_device_id dwc2_of_match_table[];
1289 
1290 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1291 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1292 
1293 /* Common polling functions */
1294 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1295 			    u32 timeout);
1296 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1297 			      u32 timeout);
1298 /* Parameters */
1299 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1300 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1301 
1302 /*
1303  * The following functions check the controller's OTG operation mode
1304  * capability (GHWCFG2.OTG_MODE).
1305  *
1306  * These functions can be used before the internal hsotg->hw_params
1307  * are read in and cached so they always read directly from the
1308  * GHWCFG2 register.
1309  */
1310 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1311 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1312 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1313 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1314 
1315 /*
1316  * Returns the mode of operation, host or device
1317  */
1318 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1319 {
1320 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1321 }
1322 
1323 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1324 {
1325 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1326 }
1327 
1328 /*
1329  * Dump core registers and SPRAM
1330  */
1331 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1332 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1333 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1334 
1335 /* Gadget defines */
1336 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1337 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1338 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1339 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1340 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1341 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1342 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1343 				       bool reset);
1344 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1345 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1346 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1347 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1348 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1349 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1350 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1351 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1352 				 int rem_wakeup, int reset);
1353 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1354 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1355 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1356 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1357 #else
1358 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1359 { return 0; }
1360 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1361 { return 0; }
1362 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1363 { return 0; }
1364 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1365 { return 0; }
1366 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1367 						     bool reset) {}
1368 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1369 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1370 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1371 					   int testmode)
1372 { return 0; }
1373 #define dwc2_is_device_connected(hsotg) (0)
1374 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1375 { return 0; }
1376 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1377 						int remote_wakeup)
1378 { return 0; }
1379 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1380 { return 0; }
1381 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1382 					       int rem_wakeup, int reset)
1383 { return 0; }
1384 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1385 { return 0; }
1386 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1387 { return 0; }
1388 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1389 { return 0; }
1390 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1391 #endif
1392 
1393 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1394 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1395 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1396 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1397 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1398 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1399 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1400 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1401 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1402 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1403 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1404 			       int rem_wakeup, int reset);
1405 #else
1406 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1407 { return 0; }
1408 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1409 						   int us)
1410 { return 0; }
1411 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1412 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1413 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1414 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1415 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1416 { return 0; }
1417 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1418 { return 0; }
1419 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1420 { return 0; }
1421 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1422 { return 0; }
1423 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1424 { return 0; }
1425 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1426 					     int rem_wakeup, int reset)
1427 { return 0; }
1428 
1429 #endif
1430 
1431 #endif /* __DWC2_CORE_H__ */
1432