xref: /openbmc/linux/drivers/usb/dwc2/core.h (revision e3211e41)
1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40 
41 #include <linux/acpi.h>
42 #include <linux/phy/phy.h>
43 #include <linux/regulator/consumer.h>
44 #include <linux/usb/gadget.h>
45 #include <linux/usb/otg.h>
46 #include <linux/usb/phy.h>
47 #include "hw.h"
48 
49 /*
50  * Suggested defines for tracers:
51  * - no_printk:    Disable tracing
52  * - pr_info:      Print this info to the console
53  * - trace_printk: Print this info to trace buffer (good for verbose logging)
54  */
55 
56 #define DWC2_TRACE_SCHEDULER		no_printk
57 #define DWC2_TRACE_SCHEDULER_VB		no_printk
58 
59 /* Detailed scheduler tracing, but won't overwhelm console */
60 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
61 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
62 			     dev_name(hsotg->dev), ##__VA_ARGS__)
63 
64 /* Verbose scheduler tracing */
65 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
66 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
67 				dev_name(hsotg->dev), ##__VA_ARGS__)
68 
69 /* Maximum number of Endpoints/HostChannels */
70 #define MAX_EPS_CHANNELS	16
71 
72 /* dwc2-hsotg declarations */
73 static const char * const dwc2_hsotg_supply_names[] = {
74 	"vusb_d",               /* digital USB supply, 1.2V */
75 	"vusb_a",               /* analog USB supply, 1.1V */
76 };
77 
78 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
79 
80 /*
81  * EP0_MPS_LIMIT
82  *
83  * Unfortunately there seems to be a limit of the amount of data that can
84  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
85  * packets (which practically means 1 packet and 63 bytes of data) when the
86  * MPS is set to 64.
87  *
88  * This means if we are wanting to move >127 bytes of data, we need to
89  * split the transactions up, but just doing one packet at a time does
90  * not work (this may be an implicit DATA0 PID on first packet of the
91  * transaction) and doing 2 packets is outside the controller's limits.
92  *
93  * If we try to lower the MPS size for EP0, then no transfers work properly
94  * for EP0, and the system will fail basic enumeration. As no cause for this
95  * has currently been found, we cannot support any large IN transfers for
96  * EP0.
97  */
98 #define EP0_MPS_LIMIT   64
99 
100 struct dwc2_hsotg;
101 struct dwc2_hsotg_req;
102 
103 /**
104  * struct dwc2_hsotg_ep - driver endpoint definition.
105  * @ep: The gadget layer representation of the endpoint.
106  * @name: The driver generated name for the endpoint.
107  * @queue: Queue of requests for this endpoint.
108  * @parent: Reference back to the parent device structure.
109  * @req: The current request that the endpoint is processing. This is
110  *       used to indicate an request has been loaded onto the endpoint
111  *       and has yet to be completed (maybe due to data move, or simply
112  *       awaiting an ack from the core all the data has been completed).
113  * @debugfs: File entry for debugfs file for this endpoint.
114  * @dir_in: Set to true if this endpoint is of the IN direction, which
115  *          means that it is sending data to the Host.
116  * @index: The index for the endpoint registers.
117  * @mc: Multi Count - number of transactions per microframe
118  * @interval: Interval for periodic endpoints, in frames or microframes.
119  * @name: The name array passed to the USB core.
120  * @halted: Set if the endpoint has been halted.
121  * @periodic: Set if this is a periodic ep, such as Interrupt
122  * @isochronous: Set if this is a isochronous ep
123  * @send_zlp: Set if we need to send a zero-length packet.
124  * @desc_list_dma: The DMA address of descriptor chain currently in use.
125  * @desc_list: Pointer to descriptor DMA chain head currently in use.
126  * @desc_count: Count of entries within the DMA descriptor chain of EP.
127  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
128  * @compl_desc: index of next descriptor to be completed by xFerComplete
129  * @total_data: The total number of data bytes done.
130  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
131  * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
132  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
133  * @last_load: The offset of data for the last start of request.
134  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
135  * @target_frame: Targeted frame num to setup next ISOC transfer
136  * @frame_overrun: Indicates SOF number overrun in DSTS
137  *
138  * This is the driver's state for each registered endpoint, allowing it
139  * to keep track of transactions that need doing. Each endpoint has a
140  * lock to protect the state, to try and avoid using an overall lock
141  * for the host controller as much as possible.
142  *
143  * For periodic IN endpoints, we have fifo_size and fifo_load to try
144  * and keep track of the amount of data in the periodic FIFO for each
145  * of these as we don't have a status register that tells us how much
146  * is in each of them. (note, this may actually be useless information
147  * as in shared-fifo mode periodic in acts like a single-frame packet
148  * buffer than a fifo)
149  */
150 struct dwc2_hsotg_ep {
151 	struct usb_ep           ep;
152 	struct list_head        queue;
153 	struct dwc2_hsotg       *parent;
154 	struct dwc2_hsotg_req    *req;
155 	struct dentry           *debugfs;
156 
157 	unsigned long           total_data;
158 	unsigned int            size_loaded;
159 	unsigned int            last_load;
160 	unsigned int            fifo_load;
161 	unsigned short          fifo_size;
162 	unsigned short		fifo_index;
163 
164 	unsigned char           dir_in;
165 	unsigned char           index;
166 	unsigned char           mc;
167 	u16                     interval;
168 
169 	unsigned int            halted:1;
170 	unsigned int            periodic:1;
171 	unsigned int            isochronous:1;
172 	unsigned int            send_zlp:1;
173 	unsigned int            target_frame;
174 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
175 	bool			frame_overrun;
176 
177 	dma_addr_t		desc_list_dma;
178 	struct dwc2_dma_desc	*desc_list;
179 	u8			desc_count;
180 
181 	unsigned int		next_desc;
182 	unsigned int		compl_desc;
183 
184 	char                    name[10];
185 };
186 
187 /**
188  * struct dwc2_hsotg_req - data transfer request
189  * @req: The USB gadget request
190  * @queue: The list of requests for the endpoint this is queued for.
191  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
192  */
193 struct dwc2_hsotg_req {
194 	struct usb_request      req;
195 	struct list_head        queue;
196 	void *saved_req_buf;
197 };
198 
199 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
200 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
201 #define call_gadget(_hs, _entry) \
202 do { \
203 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
204 		(_hs)->driver && (_hs)->driver->_entry) { \
205 		spin_unlock(&_hs->lock); \
206 		(_hs)->driver->_entry(&(_hs)->gadget); \
207 		spin_lock(&_hs->lock); \
208 	} \
209 } while (0)
210 #else
211 #define call_gadget(_hs, _entry)	do {} while (0)
212 #endif
213 
214 struct dwc2_hsotg;
215 struct dwc2_host_chan;
216 
217 /* Device States */
218 enum dwc2_lx_state {
219 	DWC2_L0,	/* On state */
220 	DWC2_L1,	/* LPM sleep state */
221 	DWC2_L2,	/* USB suspend state */
222 	DWC2_L3,	/* Off state */
223 };
224 
225 /* Gadget ep0 states */
226 enum dwc2_ep0_state {
227 	DWC2_EP0_SETUP,
228 	DWC2_EP0_DATA_IN,
229 	DWC2_EP0_DATA_OUT,
230 	DWC2_EP0_STATUS_IN,
231 	DWC2_EP0_STATUS_OUT,
232 };
233 
234 /**
235  * struct dwc2_core_params - Parameters for configuring the core
236  *
237  * @otg_cap:            Specifies the OTG capabilities.
238  *                       0 - HNP and SRP capable
239  *                       1 - SRP Only capable
240  *                       2 - No HNP/SRP capable (always available)
241  *                      Defaults to best available option (0, 1, then 2)
242  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
243  *                      the data FIFOs. The driver will automatically detect the
244  *                      value for this parameter if none is specified.
245  *                       0 - Slave (always available)
246  *                       1 - DMA (default, if available)
247  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
248  *                      address DMA mode or descriptor DMA mode for accessing
249  *                      the data FIFOs. The driver will automatically detect the
250  *                      value for this if none is specified.
251  *                       0 - Address DMA
252  *                       1 - Descriptor DMA (default, if available)
253  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
254  *                      address DMA mode or descriptor DMA mode for accessing
255  *                      the data FIFOs in Full Speed mode only. The driver
256  *                      will automatically detect the value for this if none is
257  *                      specified.
258  *                       0 - Address DMA
259  *                       1 - Descriptor DMA in FS (default, if available)
260  * @speed:              Specifies the maximum speed of operation in host and
261  *                      device mode. The actual speed depends on the speed of
262  *                      the attached device and the value of phy_type.
263  *                       0 - High Speed
264  *                           (default when phy_type is UTMI+ or ULPI)
265  *                       1 - Full Speed
266  *                           (default when phy_type is Full Speed)
267  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
268  *                       1 - Allow dynamic FIFO sizing (default, if available)
269  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
270  *                      are enabled for non-periodic IN endpoints in device
271  *                      mode.
272  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
273  *                      dynamic FIFO sizing is enabled
274  *                       16 to 32768
275  *                      Actual maximum value is autodetected and also
276  *                      the default.
277  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
278  *                      in host mode when dynamic FIFO sizing is enabled
279  *                       16 to 32768
280  *                      Actual maximum value is autodetected and also
281  *                      the default.
282  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
283  *                      host mode when dynamic FIFO sizing is enabled
284  *                       16 to 32768
285  *                      Actual maximum value is autodetected and also
286  *                      the default.
287  * @max_transfer_size:  The maximum transfer size supported, in bytes
288  *                       2047 to 65,535
289  *                      Actual maximum value is autodetected and also
290  *                      the default.
291  * @max_packet_count:   The maximum number of packets in a transfer
292  *                       15 to 511
293  *                      Actual maximum value is autodetected and also
294  *                      the default.
295  * @host_channels:      The number of host channel registers to use
296  *                       1 to 16
297  *                      Actual maximum value is autodetected and also
298  *                      the default.
299  * @phy_type:           Specifies the type of PHY interface to use. By default,
300  *                      the driver will automatically detect the phy_type.
301  *                       0 - Full Speed Phy
302  *                       1 - UTMI+ Phy
303  *                       2 - ULPI Phy
304  *                      Defaults to best available option (2, 1, then 0)
305  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
306  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
307  *                      ULPI phy_type, this parameter indicates the data width
308  *                      between the MAC and the ULPI Wrapper.) Also, this
309  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
310  *                      parameter was set to "8 and 16 bits", meaning that the
311  *                      core has been configured to work at either data path
312  *                      width.
313  *                       8 or 16 (default 16 if available)
314  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
315  *                      data rate. This parameter is only applicable if phy_type
316  *                      is ULPI.
317  *                       0 - single data rate ULPI interface with 8 bit wide
318  *                           data bus (default)
319  *                       1 - double data rate ULPI interface with 4 bit wide
320  *                           data bus
321  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
322  *                      external supply to drive the VBus
323  *                       0 - Internal supply (default)
324  *                       1 - External supply
325  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
326  *                      speed PHY. This parameter is only applicable if phy_type
327  *                      is FS.
328  *                       0 - No (default)
329  *                       1 - Yes
330  * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
331  *                       0 - Disable (default)
332  *                       1 - Enable
333  * @acg_enable:		For enabling Active Clock Gating in the controller
334  *                       0 - No
335  *                       1 - Yes
336  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
337  *                       0 - No (default)
338  *                       1 - Yes
339  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
340  *                      when attached to a Full Speed or Low Speed device in
341  *                      host mode.
342  *                       0 - Don't support low power mode (default)
343  *                       1 - Support low power mode
344  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
345  *                      when connected to a Low Speed device in host
346  *                      mode. This parameter is applicable only if
347  *                      host_support_fs_ls_low_power is enabled.
348  *                       0 - 48 MHz
349  *                           (default when phy_type is UTMI+ or ULPI)
350  *                       1 - 6 MHz
351  *                           (default when phy_type is Full Speed)
352  * @oc_disable:		Flag to disable overcurrent condition.
353  *			0 - Allow overcurrent condition to get detected
354  *			1 - Disable overcurrent condtion to get detected
355  * @ts_dline:           Enable Term Select Dline pulsing
356  *                       0 - No (default)
357  *                       1 - Yes
358  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
359  *                       0 - No (default for core < 2.92a)
360  *                       1 - Yes (default for core >= 2.92a)
361  * @ahbcfg:             This field allows the default value of the GAHBCFG
362  *                      register to be overridden
363  *                       -1         - GAHBCFG value will be set to 0x06
364  *                                    (INCR, default)
365  *                       all others - GAHBCFG value will be overridden with
366  *                                    this value
367  *                      Not all bits can be controlled like this, the
368  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
369  *                      by the driver and are ignored in this
370  *                      configuration value.
371  * @uframe_sched:       True to enable the microframe scheduler
372  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
373  *                      Disable CONIDSTSCHNG controller interrupt in such
374  *                      case.
375  *                      0 - No (default)
376  *                      1 - Yes
377  * @power_down:         Specifies whether the controller support power_down.
378  *			If power_down is enabled, the controller will enter
379  *			power_down in both peripheral and host mode when
380  *			needed.
381  *			0 - No (default)
382  *			1 - Partial power down
383  *			2 - Hibernation
384  * @lpm:		Enable LPM support.
385  *			0 - No
386  *			1 - Yes
387  * @lpm_clock_gating:		Enable core PHY clock gating.
388  *			0 - No
389  *			1 - Yes
390  * @besl:		Enable LPM Errata support.
391  *			0 - No
392  *			1 - Yes
393  * @hird_threshold_en:	HIRD or HIRD Threshold enable.
394  *			0 - No
395  *			1 - Yes
396  * @hird_threshold:	Value of BESL or HIRD Threshold.
397  * @ref_clk_per:        Indicates in terms of pico seconds the period
398  *                      of ref_clk.
399  *			62500 - 16MHz
400  *                      58823 - 17MHz
401  *                      52083 - 19.2MHz
402  *			50000 - 20MHz
403  *			41666 - 24MHz
404  *			33333 - 30MHz (default)
405  *			25000 - 40MHz
406  * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
407  *                      the controller should generate an interrupt if the
408  *                      device had been in L1 state until that period.
409  *                      This is used by SW to initiate Remote WakeUp in the
410  *                      controller so as to sync to the uF number from the host.
411  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
412  *			register.
413  *			0 - Deactivate the transceiver (default)
414  *			1 - Activate the transceiver
415  * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
416  *			detection using GGPIO register.
417  *			0 - Deactivate the external level detection (default)
418  *			1 - Activate the external level detection
419  * @g_dma:              Enables gadget dma usage (default: autodetect).
420  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
421  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
422  *			DWORDS from 16-32768 (default: 2048 if
423  *			possible, otherwise autodetect).
424  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
425  *			DWORDS from 16-32768 (default: 1024 if
426  *			possible, otherwise autodetect).
427  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
428  *			mode. Each value corresponds to one EP
429  *			starting from EP1 (max 15 values). Sizes are
430  *			in DWORDS with possible values from
431  *			16-32768 (default: 256, 256, 256, 256, 768,
432  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
433  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
434  *                      while full&low speed device connect. And change speed
435  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
436  *			0 - No (default)
437  *			1 - Yes
438  * @service_interval:   Enable service interval based scheduling.
439  *                      0 - No
440  *                      1 - Yes
441  *
442  * The following parameters may be specified when starting the module. These
443  * parameters define how the DWC_otg controller should be configured. A
444  * value of -1 (or any other out of range value) for any parameter means
445  * to read the value from hardware (if possible) or use the builtin
446  * default described above.
447  */
448 struct dwc2_core_params {
449 	u8 otg_cap;
450 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
451 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
452 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
453 
454 	u8 phy_type;
455 #define DWC2_PHY_TYPE_PARAM_FS		0
456 #define DWC2_PHY_TYPE_PARAM_UTMI	1
457 #define DWC2_PHY_TYPE_PARAM_ULPI	2
458 
459 	u8 speed;
460 #define DWC2_SPEED_PARAM_HIGH	0
461 #define DWC2_SPEED_PARAM_FULL	1
462 #define DWC2_SPEED_PARAM_LOW	2
463 
464 	u8 phy_utmi_width;
465 	bool phy_ulpi_ddr;
466 	bool phy_ulpi_ext_vbus;
467 	bool enable_dynamic_fifo;
468 	bool en_multiple_tx_fifo;
469 	bool i2c_enable;
470 	bool acg_enable;
471 	bool ulpi_fs_ls;
472 	bool ts_dline;
473 	bool reload_ctl;
474 	bool uframe_sched;
475 	bool external_id_pin_ctl;
476 
477 	int power_down;
478 #define DWC2_POWER_DOWN_PARAM_NONE		0
479 #define DWC2_POWER_DOWN_PARAM_PARTIAL		1
480 #define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
481 
482 	bool lpm;
483 	bool lpm_clock_gating;
484 	bool besl;
485 	bool hird_threshold_en;
486 	bool service_interval;
487 	u8 hird_threshold;
488 	bool activate_stm_fs_transceiver;
489 	bool activate_stm_id_vb_detection;
490 	bool ipg_isoc_en;
491 	u16 max_packet_count;
492 	u32 max_transfer_size;
493 	u32 ahbcfg;
494 
495 	/* GREFCLK parameters */
496 	u32 ref_clk_per;
497 	u16 sof_cnt_wkup_alert;
498 
499 	/* Host parameters */
500 	bool host_dma;
501 	bool dma_desc_enable;
502 	bool dma_desc_fs_enable;
503 	bool host_support_fs_ls_low_power;
504 	bool host_ls_low_power_phy_clk;
505 	bool oc_disable;
506 
507 	u8 host_channels;
508 	u16 host_rx_fifo_size;
509 	u16 host_nperio_tx_fifo_size;
510 	u16 host_perio_tx_fifo_size;
511 
512 	/* Gadget parameters */
513 	bool g_dma;
514 	bool g_dma_desc;
515 	u32 g_rx_fifo_size;
516 	u32 g_np_tx_fifo_size;
517 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
518 
519 	bool change_speed_quirk;
520 };
521 
522 /**
523  * struct dwc2_hw_params - Autodetected parameters.
524  *
525  * These parameters are the various parameters read from hardware
526  * registers during initialization. They typically contain the best
527  * supported or maximum value that can be configured in the
528  * corresponding dwc2_core_params value.
529  *
530  * The values that are not in dwc2_core_params are documented below.
531  *
532  * @op_mode:             Mode of Operation
533  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
534  *                       1 - SRP-Capable OTG (Host & Device)
535  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
536  *                       3 - SRP-Capable Device
537  *                       4 - Non-OTG Device
538  *                       5 - SRP-Capable Host
539  *                       6 - Non-OTG Host
540  * @arch:                Architecture
541  *                       0 - Slave only
542  *                       1 - External DMA
543  *                       2 - Internal DMA
544  * @ipg_isoc_en:        This feature indicates that the controller supports
545  *                      the worst-case scenario of Rx followed by Rx
546  *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
547  *                      specification for any token following ISOC OUT token.
548  *                       0 - Don't support
549  *                       1 - Support
550  * @power_optimized:    Are power optimizations enabled?
551  * @num_dev_ep:         Number of device endpoints available
552  * @num_dev_in_eps:     Number of device IN endpoints available
553  * @num_dev_perio_in_ep: Number of device periodic IN endpoints
554  *                       available
555  * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
556  *                      Depth
557  *                       0 to 30
558  * @host_perio_tx_q_depth:
559  *                      Host Mode Periodic Request Queue Depth
560  *                       2, 4 or 8
561  * @nperio_tx_q_depth:
562  *                      Non-Periodic Request Queue Depth
563  *                       2, 4 or 8
564  * @hs_phy_type:         High-speed PHY interface type
565  *                       0 - High-speed interface not supported
566  *                       1 - UTMI+
567  *                       2 - ULPI
568  *                       3 - UTMI+ and ULPI
569  * @fs_phy_type:         Full-speed PHY interface type
570  *                       0 - Full speed interface not supported
571  *                       1 - Dedicated full speed interface
572  *                       2 - FS pins shared with UTMI+ pins
573  *                       3 - FS pins shared with ULPI pins
574  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
575  * @hibernation:	Is hibernation enabled?
576  * @utmi_phy_data_width: UTMI+ PHY data width
577  *                       0 - 8 bits
578  *                       1 - 16 bits
579  *                       2 - 8 or 16 bits
580  * @snpsid:             Value from SNPSID register
581  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
582  * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
583  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
584  *                      address DMA mode or descriptor DMA mode for accessing
585  *                      the data FIFOs. The driver will automatically detect the
586  *                      value for this if none is specified.
587  *                       0 - Address DMA
588  *                       1 - Descriptor DMA (default, if available)
589  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
590  *                       1 - Allow dynamic FIFO sizing (default, if available)
591  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
592  *                      are enabled for non-periodic IN endpoints in device
593  *                      mode.
594  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
595  *                      in host mode when dynamic FIFO sizing is enabled
596  *                       16 to 32768
597  *                      Actual maximum value is autodetected and also
598  *                      the default.
599  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
600  *                      host mode when dynamic FIFO sizing is enabled
601  *                       16 to 32768
602  *                      Actual maximum value is autodetected and also
603  *                      the default.
604  * @max_transfer_size:  The maximum transfer size supported, in bytes
605  *                       2047 to 65,535
606  *                      Actual maximum value is autodetected and also
607  *                      the default.
608  * @max_packet_count:   The maximum number of packets in a transfer
609  *                       15 to 511
610  *                      Actual maximum value is autodetected and also
611  *                      the default.
612  * @host_channels:      The number of host channel registers to use
613  *                       1 to 16
614  *                      Actual maximum value is autodetected and also
615  *                      the default.
616  * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
617  *			     in device mode when dynamic FIFO sizing is enabled
618  *			     16 to 32768
619  *			     Actual maximum value is autodetected and also
620  *			     the default.
621  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
622  *                      speed PHY. This parameter is only applicable if phy_type
623  *                      is FS.
624  *                       0 - No (default)
625  *                       1 - Yes
626  * @acg_enable:		For enabling Active Clock Gating in the controller
627  *                       0 - Disable
628  *                       1 - Enable
629  * @lpm_mode:		For enabling Link Power Management in the controller
630  *                       0 - Disable
631  *                       1 - Enable
632  * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
633  *			FIFO sizing is enabled 16 to 32768
634  *			Actual maximum value is autodetected and also
635  *			the default.
636  * @service_interval_mode: For enabling service interval based scheduling in the
637  *                         controller.
638  *                           0 - Disable
639  *                           1 - Enable
640  */
641 struct dwc2_hw_params {
642 	unsigned op_mode:3;
643 	unsigned arch:2;
644 	unsigned dma_desc_enable:1;
645 	unsigned enable_dynamic_fifo:1;
646 	unsigned en_multiple_tx_fifo:1;
647 	unsigned rx_fifo_size:16;
648 	unsigned host_nperio_tx_fifo_size:16;
649 	unsigned dev_nperio_tx_fifo_size:16;
650 	unsigned host_perio_tx_fifo_size:16;
651 	unsigned nperio_tx_q_depth:3;
652 	unsigned host_perio_tx_q_depth:3;
653 	unsigned dev_token_q_depth:5;
654 	unsigned max_transfer_size:26;
655 	unsigned max_packet_count:11;
656 	unsigned host_channels:5;
657 	unsigned hs_phy_type:2;
658 	unsigned fs_phy_type:2;
659 	unsigned i2c_enable:1;
660 	unsigned acg_enable:1;
661 	unsigned num_dev_ep:4;
662 	unsigned num_dev_in_eps : 4;
663 	unsigned num_dev_perio_in_ep:4;
664 	unsigned total_fifo_size:16;
665 	unsigned power_optimized:1;
666 	unsigned hibernation:1;
667 	unsigned utmi_phy_data_width:2;
668 	unsigned lpm_mode:1;
669 	unsigned ipg_isoc_en:1;
670 	unsigned service_interval_mode:1;
671 	u32 snpsid;
672 	u32 dev_ep_dirs;
673 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
674 };
675 
676 /* Size of control and EP0 buffers */
677 #define DWC2_CTRL_BUFF_SIZE 8
678 
679 /**
680  * struct dwc2_gregs_backup - Holds global registers state before
681  * entering partial power down
682  * @gotgctl:		Backup of GOTGCTL register
683  * @gintmsk:		Backup of GINTMSK register
684  * @gahbcfg:		Backup of GAHBCFG register
685  * @gusbcfg:		Backup of GUSBCFG register
686  * @grxfsiz:		Backup of GRXFSIZ register
687  * @gnptxfsiz:		Backup of GNPTXFSIZ register
688  * @gi2cctl:		Backup of GI2CCTL register
689  * @glpmcfg:		Backup of GLPMCFG register
690  * @gdfifocfg:		Backup of GDFIFOCFG register
691  * @pcgcctl:		Backup of PCGCCTL register
692  * @pcgcctl1:		Backup of PCGCCTL1 register
693  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
694  * @gpwrdn:		Backup of GPWRDN register
695  * @valid:		True if registers values backuped.
696  */
697 struct dwc2_gregs_backup {
698 	u32 gotgctl;
699 	u32 gintmsk;
700 	u32 gahbcfg;
701 	u32 gusbcfg;
702 	u32 grxfsiz;
703 	u32 gnptxfsiz;
704 	u32 gi2cctl;
705 	u32 glpmcfg;
706 	u32 pcgcctl;
707 	u32 pcgcctl1;
708 	u32 gdfifocfg;
709 	u32 gpwrdn;
710 	bool valid;
711 };
712 
713 /**
714  * struct dwc2_dregs_backup - Holds device registers state before
715  * entering partial power down
716  * @dcfg:		Backup of DCFG register
717  * @dctl:		Backup of DCTL register
718  * @daintmsk:		Backup of DAINTMSK register
719  * @diepmsk:		Backup of DIEPMSK register
720  * @doepmsk:		Backup of DOEPMSK register
721  * @diepctl:		Backup of DIEPCTL register
722  * @dieptsiz:		Backup of DIEPTSIZ register
723  * @diepdma:		Backup of DIEPDMA register
724  * @doepctl:		Backup of DOEPCTL register
725  * @doeptsiz:		Backup of DOEPTSIZ register
726  * @doepdma:		Backup of DOEPDMA register
727  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
728  * @valid:      True if registers values backuped.
729  */
730 struct dwc2_dregs_backup {
731 	u32 dcfg;
732 	u32 dctl;
733 	u32 daintmsk;
734 	u32 diepmsk;
735 	u32 doepmsk;
736 	u32 diepctl[MAX_EPS_CHANNELS];
737 	u32 dieptsiz[MAX_EPS_CHANNELS];
738 	u32 diepdma[MAX_EPS_CHANNELS];
739 	u32 doepctl[MAX_EPS_CHANNELS];
740 	u32 doeptsiz[MAX_EPS_CHANNELS];
741 	u32 doepdma[MAX_EPS_CHANNELS];
742 	u32 dtxfsiz[MAX_EPS_CHANNELS];
743 	bool valid;
744 };
745 
746 /**
747  * struct dwc2_hregs_backup - Holds host registers state before
748  * entering partial power down
749  * @hcfg:		Backup of HCFG register
750  * @haintmsk:		Backup of HAINTMSK register
751  * @hcintmsk:		Backup of HCINTMSK register
752  * @hprt0:		Backup of HPTR0 register
753  * @hfir:		Backup of HFIR register
754  * @hptxfsiz:		Backup of HPTXFSIZ register
755  * @valid:      True if registers values backuped.
756  */
757 struct dwc2_hregs_backup {
758 	u32 hcfg;
759 	u32 haintmsk;
760 	u32 hcintmsk[MAX_EPS_CHANNELS];
761 	u32 hprt0;
762 	u32 hfir;
763 	u32 hptxfsiz;
764 	bool valid;
765 };
766 
767 /*
768  * Constants related to high speed periodic scheduling
769  *
770  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
771  * reservation point of view it's assumed that the schedule goes right back to
772  * the beginning after the end of the schedule.
773  *
774  * What does that mean for scheduling things with a long interval?  It means
775  * we'll reserve time for them in every possible microframe that they could
776  * ever be scheduled in.  ...but we'll still only actually schedule them as
777  * often as they were requested.
778  *
779  * We keep our schedule in a "bitmap" structure.  This simplifies having
780  * to keep track of and merge intervals: we just let the bitmap code do most
781  * of the heavy lifting.  In a way scheduling is much like memory allocation.
782  *
783  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
784  * supposed to schedule for periodic transfers).  That's according to spec.
785  *
786  * Note that though we only schedule 80% of each microframe, the bitmap that we
787  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
788  * space for each uFrame).
789  *
790  * Requirements:
791  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
792  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
793  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
794  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
795  */
796 #define DWC2_US_PER_UFRAME		125
797 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
798 
799 #define DWC2_HS_SCHEDULE_UFRAMES	8
800 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
801 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
802 
803 /*
804  * Constants related to low speed scheduling
805  *
806  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
807  * so we make up a unit called a "slice" that's worth 25us.  There are 40
808  * slices in a full frame and we can schedule 36 of those (90%) for periodic
809  * transfers.
810  *
811  * Our low speed schedule can be as short as 1 frame or could be longer.  When
812  * we only schedule 1 frame it means that we'll need to reserve a time every
813  * frame even for things that only transfer very rarely, so something that runs
814  * every 2048 frames will get time reserved in every frame.  Our low speed
815  * schedule can be longer and we'll be able to handle more overlap, but that
816  * will come at increased memory cost and increased time to schedule.
817  *
818  * Note: one other advantage of a short low speed schedule is that if we mess
819  * up and miss scheduling we can jump in and use any of the slots that we
820  * happened to reserve.
821  *
822  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
823  * the schedule.  There will be one schedule per TT.
824  *
825  * Requirements:
826  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
827  */
828 #define DWC2_US_PER_SLICE	25
829 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
830 
831 #define DWC2_ROUND_US_TO_SLICE(us) \
832 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
833 				 DWC2_US_PER_SLICE)
834 
835 #define DWC2_LS_PERIODIC_US_PER_FRAME \
836 				900
837 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
838 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
839 				 DWC2_US_PER_SLICE)
840 
841 #define DWC2_LS_SCHEDULE_FRAMES	1
842 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
843 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
844 
845 /**
846  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
847  * and periodic schedules
848  *
849  * These are common for both host and peripheral modes:
850  *
851  * @dev:                The struct device pointer
852  * @regs:		Pointer to controller regs
853  * @hw_params:          Parameters that were autodetected from the
854  *                      hardware registers
855  * @params:	Parameters that define how the core should be configured
856  * @op_state:           The operational State, during transitions (a_host=>
857  *                      a_peripheral and b_device=>b_host) this may not match
858  *                      the core, but allows the software to determine
859  *                      transitions
860  * @dr_mode:            Requested mode of operation, one of following:
861  *                      - USB_DR_MODE_PERIPHERAL
862  *                      - USB_DR_MODE_HOST
863  *                      - USB_DR_MODE_OTG
864  * @role_sw:		usb_role_switch handle
865  * @hcd_enabled:	Host mode sub-driver initialization indicator.
866  * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
867  * @ll_hw_enabled:	Status of low-level hardware resources.
868  * @hibernated:		True if core is hibernated
869  * @in_ppd:		True if core is partial power down mode.
870  * @bus_suspended:	True if bus is suspended
871  * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
872  *			remote wakeup.
873  * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
874  * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
875  *			suspend if we need USB to wake us up.
876  * @frame_number:       Frame number read from the core. For both device
877  *			and host modes. The value ranges are from 0
878  *			to HFNUM_MAX_FRNUM.
879  * @phy:                The otg phy transceiver structure for phy control.
880  * @uphy:               The otg phy transceiver structure for old USB phy
881  *                      control.
882  * @plat:               The platform specific configuration data. This can be
883  *                      removed once all SoCs support usb transceiver.
884  * @supplies:           Definition of USB power supplies
885  * @vbus_supply:        Regulator supplying vbus.
886  * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
887  *			supply ID and VBUS detection hardware.
888  * @lock:		Spinlock that protects all the driver data structures
889  * @priv:		Stores a pointer to the struct usb_hcd
890  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
891  *                      transfer are in process of being queued
892  * @srp_success:        Stores status of SRP request in the case of a FS PHY
893  *                      with an I2C interface
894  * @wq_otg:             Workqueue object used for handling of some interrupts
895  * @wf_otg:             Work object for handling Connector ID Status Change
896  *                      interrupt
897  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
898  * @lx_state:           Lx state of connected device
899  * @gr_backup: Backup of global registers during suspend
900  * @dr_backup: Backup of device registers during suspend
901  * @hr_backup: Backup of host registers during suspend
902  * @needs_byte_swap:		Specifies whether the opposite endianness.
903  *
904  * These are for host mode:
905  *
906  * @flags:              Flags for handling root port state changes
907  * @flags.d32:          Contain all root port flags
908  * @flags.b:            Separate root port flags from each other
909  * @flags.b.port_connect_status_change: True if root port connect status
910  *                      changed
911  * @flags.b.port_connect_status: True if device connected to root port
912  * @flags.b.port_reset_change: True if root port reset status changed
913  * @flags.b.port_enable_change: True if root port enable status changed
914  * @flags.b.port_suspend_change: True if root port suspend status changed
915  * @flags.b.port_over_current_change: True if root port over current state
916  *                       changed.
917  * @flags.b.port_l1_change: True if root port l1 status changed
918  * @flags.b.reserved:   Reserved bits of root port register
919  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
920  *                      Transfers associated with these QHs are not currently
921  *                      assigned to a host channel.
922  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
923  *                      Transfers associated with these QHs are currently
924  *                      assigned to a host channel.
925  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
926  *                      non-periodic schedule
927  * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
928  *                      Transfers associated with these QHs are not currently
929  *                      assigned to a host channel.
930  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
931  *                      list of QHs for periodic transfers that are _not_
932  *                      scheduled for the next frame. Each QH in the list has an
933  *                      interval counter that determines when it needs to be
934  *                      scheduled for execution. This scheduling mechanism
935  *                      allows only a simple calculation for periodic bandwidth
936  *                      used (i.e. must assume that all periodic transfers may
937  *                      need to execute in the same frame). However, it greatly
938  *                      simplifies scheduling and should be sufficient for the
939  *                      vast majority of OTG hosts, which need to connect to a
940  *                      small number of peripherals at one time. Items move from
941  *                      this list to periodic_sched_ready when the QH interval
942  *                      counter is 0 at SOF.
943  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
944  *                      the next frame, but have not yet been assigned to host
945  *                      channels. Items move from this list to
946  *                      periodic_sched_assigned as host channels become
947  *                      available during the current frame.
948  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
949  *                      frame that are assigned to host channels. Items move
950  *                      from this list to periodic_sched_queued as the
951  *                      transactions for the QH are queued to the DWC_otg
952  *                      controller.
953  * @periodic_sched_queued: List of periodic QHs that have been queued for
954  *                      execution. Items move from this list to either
955  *                      periodic_sched_inactive or periodic_sched_ready when the
956  *                      channel associated with the transfer is released. If the
957  *                      interval for the QH is 1, the item moves to
958  *                      periodic_sched_ready because it must be rescheduled for
959  *                      the next frame. Otherwise, the item moves to
960  *                      periodic_sched_inactive.
961  * @split_order:        List keeping track of channels doing splits, in order.
962  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
963  *                      This value is in microseconds per (micro)frame. The
964  *                      assumption is that all periodic transfers may occur in
965  *                      the same (micro)frame.
966  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
967  *                      host is in high speed mode; low speed schedules are
968  *                      stored elsewhere since we need one per TT.
969  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
970  *                      SOF enable/disable.
971  * @free_hc_list:       Free host channels in the controller. This is a list of
972  *                      struct dwc2_host_chan items.
973  * @periodic_channels:  Number of host channels assigned to periodic transfers.
974  *                      Currently assuming that there is a dedicated host
975  *                      channel for each periodic transaction and at least one
976  *                      host channel is available for non-periodic transactions.
977  * @non_periodic_channels: Number of host channels assigned to non-periodic
978  *                      transfers
979  * @available_host_channels: Number of host channels available for the
980  *			     microframe scheduler to use
981  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
982  *                      Allows accessing a host channel descriptor given the
983  *                      host channel number. This is useful in interrupt
984  *                      handlers.
985  * @status_buf:         Buffer used for data received during the status phase of
986  *                      a control transfer.
987  * @status_buf_dma:     DMA address for status_buf
988  * @start_work:         Delayed work for handling host A-cable connection
989  * @reset_work:         Delayed work for handling a port reset
990  * @phy_reset_work:     Work structure for doing a PHY reset
991  * @otg_port:           OTG port number
992  * @frame_list:         Frame list
993  * @frame_list_dma:     Frame list DMA address
994  * @frame_list_sz:      Frame list size
995  * @desc_gen_cache:     Kmem cache for generic descriptors
996  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
997  * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
998  *
999  * These are for peripheral mode:
1000  *
1001  * @driver:             USB gadget driver
1002  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1003  * @num_of_eps:         Number of available EPs (excluding EP0)
1004  * @debug_root:         Root directrory for debugfs.
1005  * @ep0_reply:          Request used for ep0 reply.
1006  * @ep0_buff:           Buffer for EP0 reply data, if needed.
1007  * @ctrl_buff:          Buffer for EP0 control requests.
1008  * @ctrl_req:           Request for EP0 control packets.
1009  * @ep0_state:          EP0 control transfers state
1010  * @delayed_status:		true when gadget driver asks for delayed status
1011  * @test_mode:          USB test mode requested by the host
1012  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1013  *                      remote-wakeup signalling
1014  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1015  * @setup_desc:		EP0 setup stage desc chain pointer
1016  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1017  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1018  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1019  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1020  * @irq:		Interrupt request line number
1021  * @clk:		Pointer to otg clock
1022  * @reset:		Pointer to dwc2 reset controller
1023  * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1024  * @regset:		A pointer to a struct debugfs_regset32, which contains
1025  *			a pointer to an array of register definitions, the
1026  *			array size and the base address where the register bank
1027  *			is to be found.
1028  * @last_frame_num:	Number of last frame. Range from 0 to  32768
1029  * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1030  *			defined, for missed SOFs tracking. Array holds that
1031  *			frame numbers, which not equal to last_frame_num +1
1032  * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1033  *			    defined, for missed SOFs tracking.
1034  *			    If current_frame_number != last_frame_num+1
1035  *			    then last_frame_num added to this array
1036  * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1037  * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1038  *				0 - if missed SOFs frame numbers not dumbed
1039  * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1040  * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1041  *			then that fifo is used
1042  * @gadget:		Represents a usb gadget device
1043  * @connected:		Used in slave mode. True if device connected with host
1044  * @eps_in:		The IN endpoints being supplied to the gadget framework
1045  * @eps_out:		The OUT endpoints being supplied to the gadget framework
1046  * @new_connection:	Used in host mode. True if there are new connected
1047  *			device
1048  * @enabled:		Indicates the enabling state of controller
1049  *
1050  */
1051 struct dwc2_hsotg {
1052 	struct device *dev;
1053 	void __iomem *regs;
1054 	/** Params detected from hardware */
1055 	struct dwc2_hw_params hw_params;
1056 	/** Params to actually use */
1057 	struct dwc2_core_params params;
1058 	enum usb_otg_state op_state;
1059 	enum usb_dr_mode dr_mode;
1060 	struct usb_role_switch *role_sw;
1061 	unsigned int hcd_enabled:1;
1062 	unsigned int gadget_enabled:1;
1063 	unsigned int ll_hw_enabled:1;
1064 	unsigned int hibernated:1;
1065 	unsigned int in_ppd:1;
1066 	bool bus_suspended;
1067 	unsigned int reset_phy_on_wake:1;
1068 	unsigned int need_phy_for_wake:1;
1069 	unsigned int phy_off_for_suspend:1;
1070 	u16 frame_number;
1071 
1072 	struct phy *phy;
1073 	struct usb_phy *uphy;
1074 	struct dwc2_hsotg_plat *plat;
1075 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1076 	struct regulator *vbus_supply;
1077 	struct regulator *usb33d;
1078 
1079 	spinlock_t lock;
1080 	void *priv;
1081 	int     irq;
1082 	struct clk *clk;
1083 	struct reset_control *reset;
1084 	struct reset_control *reset_ecc;
1085 
1086 	unsigned int queuing_high_bandwidth:1;
1087 	unsigned int srp_success:1;
1088 
1089 	struct workqueue_struct *wq_otg;
1090 	struct work_struct wf_otg;
1091 	struct timer_list wkp_timer;
1092 	enum dwc2_lx_state lx_state;
1093 	struct dwc2_gregs_backup gr_backup;
1094 	struct dwc2_dregs_backup dr_backup;
1095 	struct dwc2_hregs_backup hr_backup;
1096 
1097 	struct dentry *debug_root;
1098 	struct debugfs_regset32 *regset;
1099 	bool needs_byte_swap;
1100 
1101 	/* DWC OTG HW Release versions */
1102 #define DWC2_CORE_REV_2_71a	0x4f54271a
1103 #define DWC2_CORE_REV_2_72a     0x4f54272a
1104 #define DWC2_CORE_REV_2_80a	0x4f54280a
1105 #define DWC2_CORE_REV_2_90a	0x4f54290a
1106 #define DWC2_CORE_REV_2_91a	0x4f54291a
1107 #define DWC2_CORE_REV_2_92a	0x4f54292a
1108 #define DWC2_CORE_REV_2_94a	0x4f54294a
1109 #define DWC2_CORE_REV_3_00a	0x4f54300a
1110 #define DWC2_CORE_REV_3_10a	0x4f54310a
1111 #define DWC2_CORE_REV_4_00a	0x4f54400a
1112 #define DWC2_CORE_REV_4_20a	0x4f54420a
1113 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
1114 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
1115 #define DWC2_CORE_REV_MASK	0x0000ffff
1116 
1117 	/* DWC OTG HW Core ID */
1118 #define DWC2_OTG_ID		0x4f540000
1119 #define DWC2_FS_IOT_ID		0x55310000
1120 #define DWC2_HS_IOT_ID		0x55320000
1121 
1122 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1123 	union dwc2_hcd_internal_flags {
1124 		u32 d32;
1125 		struct {
1126 			unsigned port_connect_status_change:1;
1127 			unsigned port_connect_status:1;
1128 			unsigned port_reset_change:1;
1129 			unsigned port_enable_change:1;
1130 			unsigned port_suspend_change:1;
1131 			unsigned port_over_current_change:1;
1132 			unsigned port_l1_change:1;
1133 			unsigned reserved:25;
1134 		} b;
1135 	} flags;
1136 
1137 	struct list_head non_periodic_sched_inactive;
1138 	struct list_head non_periodic_sched_waiting;
1139 	struct list_head non_periodic_sched_active;
1140 	struct list_head *non_periodic_qh_ptr;
1141 	struct list_head periodic_sched_inactive;
1142 	struct list_head periodic_sched_ready;
1143 	struct list_head periodic_sched_assigned;
1144 	struct list_head periodic_sched_queued;
1145 	struct list_head split_order;
1146 	u16 periodic_usecs;
1147 	unsigned long hs_periodic_bitmap[
1148 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1149 	u16 periodic_qh_count;
1150 	bool new_connection;
1151 
1152 	u16 last_frame_num;
1153 
1154 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1155 #define FRAME_NUM_ARRAY_SIZE 1000
1156 	u16 *frame_num_array;
1157 	u16 *last_frame_num_array;
1158 	int frame_num_idx;
1159 	int dumped_frame_num_array;
1160 #endif
1161 
1162 	struct list_head free_hc_list;
1163 	int periodic_channels;
1164 	int non_periodic_channels;
1165 	int available_host_channels;
1166 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1167 	u8 *status_buf;
1168 	dma_addr_t status_buf_dma;
1169 #define DWC2_HCD_STATUS_BUF_SIZE 64
1170 
1171 	struct delayed_work start_work;
1172 	struct delayed_work reset_work;
1173 	struct work_struct phy_reset_work;
1174 	u8 otg_port;
1175 	u32 *frame_list;
1176 	dma_addr_t frame_list_dma;
1177 	u32 frame_list_sz;
1178 	struct kmem_cache *desc_gen_cache;
1179 	struct kmem_cache *desc_hsisoc_cache;
1180 	struct kmem_cache *unaligned_cache;
1181 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1182 
1183 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1184 
1185 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1186 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1187 	/* Gadget structures */
1188 	struct usb_gadget_driver *driver;
1189 	int fifo_mem;
1190 	unsigned int dedicated_fifos:1;
1191 	unsigned char num_of_eps;
1192 	u32 fifo_map;
1193 
1194 	struct usb_request *ep0_reply;
1195 	struct usb_request *ctrl_req;
1196 	void *ep0_buff;
1197 	void *ctrl_buff;
1198 	enum dwc2_ep0_state ep0_state;
1199 	unsigned delayed_status : 1;
1200 	u8 test_mode;
1201 
1202 	dma_addr_t setup_desc_dma[2];
1203 	struct dwc2_dma_desc *setup_desc[2];
1204 	dma_addr_t ctrl_in_desc_dma;
1205 	struct dwc2_dma_desc *ctrl_in_desc;
1206 	dma_addr_t ctrl_out_desc_dma;
1207 	struct dwc2_dma_desc *ctrl_out_desc;
1208 
1209 	struct usb_gadget gadget;
1210 	unsigned int enabled:1;
1211 	unsigned int connected:1;
1212 	unsigned int remote_wakeup_allowed:1;
1213 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1214 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1215 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1216 };
1217 
1218 /* Normal architectures just use readl/write */
1219 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1220 {
1221 	u32 val;
1222 
1223 	val = readl(hsotg->regs + offset);
1224 	if (hsotg->needs_byte_swap)
1225 		return swab32(val);
1226 	else
1227 		return val;
1228 }
1229 
1230 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1231 {
1232 	if (hsotg->needs_byte_swap)
1233 		writel(swab32(value), hsotg->regs + offset);
1234 	else
1235 		writel(value, hsotg->regs + offset);
1236 
1237 #ifdef DWC2_LOG_WRITES
1238 	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1239 #endif
1240 }
1241 
1242 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1243 				  void *buffer, unsigned int count)
1244 {
1245 	if (count) {
1246 		u32 *buf = buffer;
1247 
1248 		do {
1249 			u32 x = dwc2_readl(hsotg, offset);
1250 			*buf++ = x;
1251 		} while (--count);
1252 	}
1253 }
1254 
1255 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1256 				   const void *buffer, unsigned int count)
1257 {
1258 	if (count) {
1259 		const u32 *buf = buffer;
1260 
1261 		do {
1262 			dwc2_writel(hsotg, *buf++, offset);
1263 		} while (--count);
1264 	}
1265 }
1266 
1267 /* Reasons for halting a host channel */
1268 enum dwc2_halt_status {
1269 	DWC2_HC_XFER_NO_HALT_STATUS,
1270 	DWC2_HC_XFER_COMPLETE,
1271 	DWC2_HC_XFER_URB_COMPLETE,
1272 	DWC2_HC_XFER_ACK,
1273 	DWC2_HC_XFER_NAK,
1274 	DWC2_HC_XFER_NYET,
1275 	DWC2_HC_XFER_STALL,
1276 	DWC2_HC_XFER_XACT_ERR,
1277 	DWC2_HC_XFER_FRAME_OVERRUN,
1278 	DWC2_HC_XFER_BABBLE_ERR,
1279 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1280 	DWC2_HC_XFER_AHB_ERR,
1281 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1282 	DWC2_HC_XFER_URB_DEQUEUE,
1283 };
1284 
1285 /* Core version information */
1286 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1287 {
1288 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1289 }
1290 
1291 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1292 {
1293 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1294 }
1295 
1296 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1297 {
1298 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1299 }
1300 
1301 /*
1302  * The following functions support initialization of the core driver component
1303  * and the DWC_otg controller
1304  */
1305 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1306 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1307 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1308 				 bool restore);
1309 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1310 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1311 		int reset, int is_host);
1312 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1313 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1314 
1315 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1316 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1317 
1318 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1319 
1320 int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1321 
1322 /*
1323  * Common core Functions.
1324  * The following functions support managing the DWC_otg controller in either
1325  * device or host mode.
1326  */
1327 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1328 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1329 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1330 
1331 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1332 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1333 
1334 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1335 			     int is_host);
1336 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1337 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1338 
1339 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1340 
1341 /* This function should be called on every hardware interrupt. */
1342 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1343 
1344 /* The device ID match table */
1345 extern const struct of_device_id dwc2_of_match_table[];
1346 extern const struct acpi_device_id dwc2_acpi_match[];
1347 
1348 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1349 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1350 
1351 /* Common polling functions */
1352 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1353 			    u32 timeout);
1354 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1355 			      u32 timeout);
1356 /* Parameters */
1357 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1358 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1359 
1360 /*
1361  * The following functions check the controller's OTG operation mode
1362  * capability (GHWCFG2.OTG_MODE).
1363  *
1364  * These functions can be used before the internal hsotg->hw_params
1365  * are read in and cached so they always read directly from the
1366  * GHWCFG2 register.
1367  */
1368 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1369 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1370 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1371 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1372 
1373 /*
1374  * Returns the mode of operation, host or device
1375  */
1376 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1377 {
1378 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1379 }
1380 
1381 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1382 {
1383 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1384 }
1385 
1386 int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1387 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1388 void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1389 void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1390 
1391 /*
1392  * Dump core registers and SPRAM
1393  */
1394 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1395 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1396 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1397 
1398 /* Gadget defines */
1399 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1400 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1401 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1402 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1403 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1404 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1405 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1406 				       bool reset);
1407 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1408 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1409 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1410 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1411 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1412 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1413 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1414 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1415 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1416 				 int rem_wakeup, int reset);
1417 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1418 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1419 					bool restore);
1420 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1421 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1422 				   int rem_wakeup);
1423 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1424 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1425 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1426 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1427 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1428 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1429 { hsotg->fifo_map = 0; }
1430 #else
1431 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1432 { return 0; }
1433 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1434 { return 0; }
1435 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1436 { return 0; }
1437 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1438 { return 0; }
1439 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1440 						     bool reset) {}
1441 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1442 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1443 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1444 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1445 					   int testmode)
1446 { return 0; }
1447 #define dwc2_is_device_connected(hsotg) (0)
1448 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1449 { return 0; }
1450 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1451 						int remote_wakeup)
1452 { return 0; }
1453 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1454 { return 0; }
1455 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1456 					       int rem_wakeup, int reset)
1457 { return 0; }
1458 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1459 { return 0; }
1460 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1461 						      bool restore)
1462 { return 0; }
1463 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1464 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1465 						 int rem_wakeup) {}
1466 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1467 { return 0; }
1468 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1469 { return 0; }
1470 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1471 { return 0; }
1472 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1473 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1474 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1475 #endif
1476 
1477 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1478 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1479 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1480 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1481 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1482 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1483 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1484 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1485 int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1486 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1487 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1488 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1489 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1490 			       int rem_wakeup, int reset);
1491 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1492 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1493 				      int rem_wakeup, bool restore);
1494 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1495 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1496 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1497 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1498 { schedule_work(&hsotg->phy_reset_work); }
1499 #else
1500 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1501 { return 0; }
1502 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1503 						   int us)
1504 { return 0; }
1505 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1506 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1507 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1508 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1509 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1510 { return 0; }
1511 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1512 { return 0; }
1513 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1514 { return 0; }
1515 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1516 { return 0; }
1517 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1518 { return 0; }
1519 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1520 { return 0; }
1521 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1522 { return 0; }
1523 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1524 					     int rem_wakeup, int reset)
1525 { return 0; }
1526 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1527 { return 0; }
1528 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1529 						    int rem_wakeup, bool restore)
1530 { return 0; }
1531 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1532 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1533 					       int rem_wakeup) {}
1534 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1535 { return false; }
1536 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1537 
1538 #endif
1539 
1540 #endif /* __DWC2_CORE_H__ */
1541