1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */ 2 /* 3 * core.h - DesignWare HS OTG Controller common declarations 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The names of the above-listed copyright holders may not be used 17 * to endorse or promote products derived from this software without 18 * specific prior written permission. 19 * 20 * ALTERNATIVELY, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any 23 * later version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #ifndef __DWC2_CORE_H__ 39 #define __DWC2_CORE_H__ 40 41 #include <linux/phy/phy.h> 42 #include <linux/regulator/consumer.h> 43 #include <linux/usb/gadget.h> 44 #include <linux/usb/otg.h> 45 #include <linux/usb/phy.h> 46 #include "hw.h" 47 48 /* 49 * Suggested defines for tracers: 50 * - no_printk: Disable tracing 51 * - pr_info: Print this info to the console 52 * - trace_printk: Print this info to trace buffer (good for verbose logging) 53 */ 54 55 #define DWC2_TRACE_SCHEDULER no_printk 56 #define DWC2_TRACE_SCHEDULER_VB no_printk 57 58 /* Detailed scheduler tracing, but won't overwhelm console */ 59 #define dwc2_sch_dbg(hsotg, fmt, ...) \ 60 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \ 61 dev_name(hsotg->dev), ##__VA_ARGS__) 62 63 /* Verbose scheduler tracing */ 64 #define dwc2_sch_vdbg(hsotg, fmt, ...) \ 65 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \ 66 dev_name(hsotg->dev), ##__VA_ARGS__) 67 68 /* Maximum number of Endpoints/HostChannels */ 69 #define MAX_EPS_CHANNELS 16 70 71 /* dwc2-hsotg declarations */ 72 static const char * const dwc2_hsotg_supply_names[] = { 73 "vusb_d", /* digital USB supply, 1.2V */ 74 "vusb_a", /* analog USB supply, 1.1V */ 75 }; 76 77 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names) 78 79 /* 80 * EP0_MPS_LIMIT 81 * 82 * Unfortunately there seems to be a limit of the amount of data that can 83 * be transferred by IN transactions on EP0. This is either 127 bytes or 3 84 * packets (which practically means 1 packet and 63 bytes of data) when the 85 * MPS is set to 64. 86 * 87 * This means if we are wanting to move >127 bytes of data, we need to 88 * split the transactions up, but just doing one packet at a time does 89 * not work (this may be an implicit DATA0 PID on first packet of the 90 * transaction) and doing 2 packets is outside the controller's limits. 91 * 92 * If we try to lower the MPS size for EP0, then no transfers work properly 93 * for EP0, and the system will fail basic enumeration. As no cause for this 94 * has currently been found, we cannot support any large IN transfers for 95 * EP0. 96 */ 97 #define EP0_MPS_LIMIT 64 98 99 struct dwc2_hsotg; 100 struct dwc2_hsotg_req; 101 102 /** 103 * struct dwc2_hsotg_ep - driver endpoint definition. 104 * @ep: The gadget layer representation of the endpoint. 105 * @name: The driver generated name for the endpoint. 106 * @queue: Queue of requests for this endpoint. 107 * @parent: Reference back to the parent device structure. 108 * @req: The current request that the endpoint is processing. This is 109 * used to indicate an request has been loaded onto the endpoint 110 * and has yet to be completed (maybe due to data move, or simply 111 * awaiting an ack from the core all the data has been completed). 112 * @debugfs: File entry for debugfs file for this endpoint. 113 * @dir_in: Set to true if this endpoint is of the IN direction, which 114 * means that it is sending data to the Host. 115 * @index: The index for the endpoint registers. 116 * @mc: Multi Count - number of transactions per microframe 117 * @interval: Interval for periodic endpoints, in frames or microframes. 118 * @name: The name array passed to the USB core. 119 * @halted: Set if the endpoint has been halted. 120 * @periodic: Set if this is a periodic ep, such as Interrupt 121 * @isochronous: Set if this is a isochronous ep 122 * @send_zlp: Set if we need to send a zero-length packet. 123 * @desc_list_dma: The DMA address of descriptor chain currently in use. 124 * @desc_list: Pointer to descriptor DMA chain head currently in use. 125 * @desc_count: Count of entries within the DMA descriptor chain of EP. 126 * @next_desc: index of next free descriptor in the ISOC chain under SW control. 127 * @compl_desc: index of next descriptor to be completed by xFerComplete 128 * @total_data: The total number of data bytes done. 129 * @fifo_size: The size of the FIFO (for periodic IN endpoints) 130 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0. 131 * @fifo_load: The amount of data loaded into the FIFO (periodic IN) 132 * @last_load: The offset of data for the last start of request. 133 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN 134 * @target_frame: Targeted frame num to setup next ISOC transfer 135 * @frame_overrun: Indicates SOF number overrun in DSTS 136 * 137 * This is the driver's state for each registered endpoint, allowing it 138 * to keep track of transactions that need doing. Each endpoint has a 139 * lock to protect the state, to try and avoid using an overall lock 140 * for the host controller as much as possible. 141 * 142 * For periodic IN endpoints, we have fifo_size and fifo_load to try 143 * and keep track of the amount of data in the periodic FIFO for each 144 * of these as we don't have a status register that tells us how much 145 * is in each of them. (note, this may actually be useless information 146 * as in shared-fifo mode periodic in acts like a single-frame packet 147 * buffer than a fifo) 148 */ 149 struct dwc2_hsotg_ep { 150 struct usb_ep ep; 151 struct list_head queue; 152 struct dwc2_hsotg *parent; 153 struct dwc2_hsotg_req *req; 154 struct dentry *debugfs; 155 156 unsigned long total_data; 157 unsigned int size_loaded; 158 unsigned int last_load; 159 unsigned int fifo_load; 160 unsigned short fifo_size; 161 unsigned short fifo_index; 162 163 unsigned char dir_in; 164 unsigned char index; 165 unsigned char mc; 166 u16 interval; 167 168 unsigned int halted:1; 169 unsigned int periodic:1; 170 unsigned int isochronous:1; 171 unsigned int send_zlp:1; 172 unsigned int target_frame; 173 #define TARGET_FRAME_INITIAL 0xFFFFFFFF 174 bool frame_overrun; 175 176 dma_addr_t desc_list_dma; 177 struct dwc2_dma_desc *desc_list; 178 u8 desc_count; 179 180 unsigned int next_desc; 181 unsigned int compl_desc; 182 183 char name[10]; 184 }; 185 186 /** 187 * struct dwc2_hsotg_req - data transfer request 188 * @req: The USB gadget request 189 * @queue: The list of requests for the endpoint this is queued for. 190 * @saved_req_buf: variable to save req.buf when bounce buffers are used. 191 */ 192 struct dwc2_hsotg_req { 193 struct usb_request req; 194 struct list_head queue; 195 void *saved_req_buf; 196 }; 197 198 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 199 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 200 #define call_gadget(_hs, _entry) \ 201 do { \ 202 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \ 203 (_hs)->driver && (_hs)->driver->_entry) { \ 204 spin_unlock(&_hs->lock); \ 205 (_hs)->driver->_entry(&(_hs)->gadget); \ 206 spin_lock(&_hs->lock); \ 207 } \ 208 } while (0) 209 #else 210 #define call_gadget(_hs, _entry) do {} while (0) 211 #endif 212 213 struct dwc2_hsotg; 214 struct dwc2_host_chan; 215 216 /* Device States */ 217 enum dwc2_lx_state { 218 DWC2_L0, /* On state */ 219 DWC2_L1, /* LPM sleep state */ 220 DWC2_L2, /* USB suspend state */ 221 DWC2_L3, /* Off state */ 222 }; 223 224 /* Gadget ep0 states */ 225 enum dwc2_ep0_state { 226 DWC2_EP0_SETUP, 227 DWC2_EP0_DATA_IN, 228 DWC2_EP0_DATA_OUT, 229 DWC2_EP0_STATUS_IN, 230 DWC2_EP0_STATUS_OUT, 231 }; 232 233 /** 234 * struct dwc2_core_params - Parameters for configuring the core 235 * 236 * @otg_cap: Specifies the OTG capabilities. 237 * 0 - HNP and SRP capable 238 * 1 - SRP Only capable 239 * 2 - No HNP/SRP capable (always available) 240 * Defaults to best available option (0, 1, then 2) 241 * @host_dma: Specifies whether to use slave or DMA mode for accessing 242 * the data FIFOs. The driver will automatically detect the 243 * value for this parameter if none is specified. 244 * 0 - Slave (always available) 245 * 1 - DMA (default, if available) 246 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use 247 * address DMA mode or descriptor DMA mode for accessing 248 * the data FIFOs. The driver will automatically detect the 249 * value for this if none is specified. 250 * 0 - Address DMA 251 * 1 - Descriptor DMA (default, if available) 252 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use 253 * address DMA mode or descriptor DMA mode for accessing 254 * the data FIFOs in Full Speed mode only. The driver 255 * will automatically detect the value for this if none is 256 * specified. 257 * 0 - Address DMA 258 * 1 - Descriptor DMA in FS (default, if available) 259 * @speed: Specifies the maximum speed of operation in host and 260 * device mode. The actual speed depends on the speed of 261 * the attached device and the value of phy_type. 262 * 0 - High Speed 263 * (default when phy_type is UTMI+ or ULPI) 264 * 1 - Full Speed 265 * (default when phy_type is Full Speed) 266 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters 267 * 1 - Allow dynamic FIFO sizing (default, if available) 268 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs 269 * are enabled for non-periodic IN endpoints in device 270 * mode. 271 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when 272 * dynamic FIFO sizing is enabled 273 * 16 to 32768 274 * Actual maximum value is autodetected and also 275 * the default. 276 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 277 * in host mode when dynamic FIFO sizing is enabled 278 * 16 to 32768 279 * Actual maximum value is autodetected and also 280 * the default. 281 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in 282 * host mode when dynamic FIFO sizing is enabled 283 * 16 to 32768 284 * Actual maximum value is autodetected and also 285 * the default. 286 * @max_transfer_size: The maximum transfer size supported, in bytes 287 * 2047 to 65,535 288 * Actual maximum value is autodetected and also 289 * the default. 290 * @max_packet_count: The maximum number of packets in a transfer 291 * 15 to 511 292 * Actual maximum value is autodetected and also 293 * the default. 294 * @host_channels: The number of host channel registers to use 295 * 1 to 16 296 * Actual maximum value is autodetected and also 297 * the default. 298 * @phy_type: Specifies the type of PHY interface to use. By default, 299 * the driver will automatically detect the phy_type. 300 * 0 - Full Speed Phy 301 * 1 - UTMI+ Phy 302 * 2 - ULPI Phy 303 * Defaults to best available option (2, 1, then 0) 304 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter 305 * is applicable for a phy_type of UTMI+ or ULPI. (For a 306 * ULPI phy_type, this parameter indicates the data width 307 * between the MAC and the ULPI Wrapper.) Also, this 308 * parameter is applicable only if the OTG_HSPHY_WIDTH cC 309 * parameter was set to "8 and 16 bits", meaning that the 310 * core has been configured to work at either data path 311 * width. 312 * 8 or 16 (default 16 if available) 313 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single 314 * data rate. This parameter is only applicable if phy_type 315 * is ULPI. 316 * 0 - single data rate ULPI interface with 8 bit wide 317 * data bus (default) 318 * 1 - double data rate ULPI interface with 4 bit wide 319 * data bus 320 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or 321 * external supply to drive the VBus 322 * 0 - Internal supply (default) 323 * 1 - External supply 324 * @i2c_enable: Specifies whether to use the I2Cinterface for a full 325 * speed PHY. This parameter is only applicable if phy_type 326 * is FS. 327 * 0 - No (default) 328 * 1 - Yes 329 * @ipg_isoc_en: Indicates the IPG supports is enabled or disabled. 330 * 0 - Disable (default) 331 * 1 - Enable 332 * @acg_enable: For enabling Active Clock Gating in the controller 333 * 0 - No 334 * 1 - Yes 335 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only 336 * 0 - No (default) 337 * 1 - Yes 338 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported 339 * when attached to a Full Speed or Low Speed device in 340 * host mode. 341 * 0 - Don't support low power mode (default) 342 * 1 - Support low power mode 343 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode 344 * when connected to a Low Speed device in host 345 * mode. This parameter is applicable only if 346 * host_support_fs_ls_low_power is enabled. 347 * 0 - 48 MHz 348 * (default when phy_type is UTMI+ or ULPI) 349 * 1 - 6 MHz 350 * (default when phy_type is Full Speed) 351 * @oc_disable: Flag to disable overcurrent condition. 352 * 0 - Allow overcurrent condition to get detected 353 * 1 - Disable overcurrent condtion to get detected 354 * @ts_dline: Enable Term Select Dline pulsing 355 * 0 - No (default) 356 * 1 - Yes 357 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime 358 * 0 - No (default for core < 2.92a) 359 * 1 - Yes (default for core >= 2.92a) 360 * @ahbcfg: This field allows the default value of the GAHBCFG 361 * register to be overridden 362 * -1 - GAHBCFG value will be set to 0x06 363 * (INCR, default) 364 * all others - GAHBCFG value will be overridden with 365 * this value 366 * Not all bits can be controlled like this, the 367 * bits defined by GAHBCFG_CTRL_MASK are controlled 368 * by the driver and are ignored in this 369 * configuration value. 370 * @uframe_sched: True to enable the microframe scheduler 371 * @external_id_pin_ctl: Specifies whether ID pin is handled externally. 372 * Disable CONIDSTSCHNG controller interrupt in such 373 * case. 374 * 0 - No (default) 375 * 1 - Yes 376 * @power_down: Specifies whether the controller support power_down. 377 * If power_down is enabled, the controller will enter 378 * power_down in both peripheral and host mode when 379 * needed. 380 * 0 - No (default) 381 * 1 - Partial power down 382 * 2 - Hibernation 383 * @lpm: Enable LPM support. 384 * 0 - No 385 * 1 - Yes 386 * @lpm_clock_gating: Enable core PHY clock gating. 387 * 0 - No 388 * 1 - Yes 389 * @besl: Enable LPM Errata support. 390 * 0 - No 391 * 1 - Yes 392 * @hird_threshold_en: HIRD or HIRD Threshold enable. 393 * 0 - No 394 * 1 - Yes 395 * @hird_threshold: Value of BESL or HIRD Threshold. 396 * @ref_clk_per: Indicates in terms of pico seconds the period 397 * of ref_clk. 398 * 62500 - 16MHz 399 * 58823 - 17MHz 400 * 52083 - 19.2MHz 401 * 50000 - 20MHz 402 * 41666 - 24MHz 403 * 33333 - 30MHz (default) 404 * 25000 - 40MHz 405 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which 406 * the controller should generate an interrupt if the 407 * device had been in L1 state until that period. 408 * This is used by SW to initiate Remote WakeUp in the 409 * controller so as to sync to the uF number from the host. 410 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO 411 * register. 412 * 0 - Deactivate the transceiver (default) 413 * 1 - Activate the transceiver 414 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level 415 * detection using GGPIO register. 416 * 0 - Deactivate the external level detection (default) 417 * 1 - Activate the external level detection 418 * @g_dma: Enables gadget dma usage (default: autodetect). 419 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect). 420 * @g_rx_fifo_size: The periodic rx fifo size for the device, in 421 * DWORDS from 16-32768 (default: 2048 if 422 * possible, otherwise autodetect). 423 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in 424 * DWORDS from 16-32768 (default: 1024 if 425 * possible, otherwise autodetect). 426 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo 427 * mode. Each value corresponds to one EP 428 * starting from EP1 (max 15 values). Sizes are 429 * in DWORDS with possible values from from 430 * 16-32768 (default: 256, 256, 256, 256, 768, 431 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0). 432 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL 433 * while full&low speed device connect. And change speed 434 * back to DWC2_SPEED_PARAM_HIGH while device is gone. 435 * 0 - No (default) 436 * 1 - Yes 437 * @service_interval: Enable service interval based scheduling. 438 * 0 - No 439 * 1 - Yes 440 * 441 * The following parameters may be specified when starting the module. These 442 * parameters define how the DWC_otg controller should be configured. A 443 * value of -1 (or any other out of range value) for any parameter means 444 * to read the value from hardware (if possible) or use the builtin 445 * default described above. 446 */ 447 struct dwc2_core_params { 448 u8 otg_cap; 449 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0 450 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1 451 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 452 453 u8 phy_type; 454 #define DWC2_PHY_TYPE_PARAM_FS 0 455 #define DWC2_PHY_TYPE_PARAM_UTMI 1 456 #define DWC2_PHY_TYPE_PARAM_ULPI 2 457 458 u8 speed; 459 #define DWC2_SPEED_PARAM_HIGH 0 460 #define DWC2_SPEED_PARAM_FULL 1 461 #define DWC2_SPEED_PARAM_LOW 2 462 463 u8 phy_utmi_width; 464 bool phy_ulpi_ddr; 465 bool phy_ulpi_ext_vbus; 466 bool enable_dynamic_fifo; 467 bool en_multiple_tx_fifo; 468 bool i2c_enable; 469 bool acg_enable; 470 bool ulpi_fs_ls; 471 bool ts_dline; 472 bool reload_ctl; 473 bool uframe_sched; 474 bool external_id_pin_ctl; 475 476 int power_down; 477 #define DWC2_POWER_DOWN_PARAM_NONE 0 478 #define DWC2_POWER_DOWN_PARAM_PARTIAL 1 479 #define DWC2_POWER_DOWN_PARAM_HIBERNATION 2 480 481 bool lpm; 482 bool lpm_clock_gating; 483 bool besl; 484 bool hird_threshold_en; 485 bool service_interval; 486 u8 hird_threshold; 487 bool activate_stm_fs_transceiver; 488 bool activate_stm_id_vb_detection; 489 bool ipg_isoc_en; 490 u16 max_packet_count; 491 u32 max_transfer_size; 492 u32 ahbcfg; 493 494 /* GREFCLK parameters */ 495 u32 ref_clk_per; 496 u16 sof_cnt_wkup_alert; 497 498 /* Host parameters */ 499 bool host_dma; 500 bool dma_desc_enable; 501 bool dma_desc_fs_enable; 502 bool host_support_fs_ls_low_power; 503 bool host_ls_low_power_phy_clk; 504 bool oc_disable; 505 506 u8 host_channels; 507 u16 host_rx_fifo_size; 508 u16 host_nperio_tx_fifo_size; 509 u16 host_perio_tx_fifo_size; 510 511 /* Gadget parameters */ 512 bool g_dma; 513 bool g_dma_desc; 514 u32 g_rx_fifo_size; 515 u32 g_np_tx_fifo_size; 516 u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; 517 518 bool change_speed_quirk; 519 }; 520 521 /** 522 * struct dwc2_hw_params - Autodetected parameters. 523 * 524 * These parameters are the various parameters read from hardware 525 * registers during initialization. They typically contain the best 526 * supported or maximum value that can be configured in the 527 * corresponding dwc2_core_params value. 528 * 529 * The values that are not in dwc2_core_params are documented below. 530 * 531 * @op_mode: Mode of Operation 532 * 0 - HNP- and SRP-Capable OTG (Host & Device) 533 * 1 - SRP-Capable OTG (Host & Device) 534 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device) 535 * 3 - SRP-Capable Device 536 * 4 - Non-OTG Device 537 * 5 - SRP-Capable Host 538 * 6 - Non-OTG Host 539 * @arch: Architecture 540 * 0 - Slave only 541 * 1 - External DMA 542 * 2 - Internal DMA 543 * @ipg_isoc_en: This feature indicates that the controller supports 544 * the worst-case scenario of Rx followed by Rx 545 * Interpacket Gap (IPG) (32 bitTimes) as per the utmi 546 * specification for any token following ISOC OUT token. 547 * 0 - Don't support 548 * 1 - Support 549 * @power_optimized: Are power optimizations enabled? 550 * @num_dev_ep: Number of device endpoints available 551 * @num_dev_in_eps: Number of device IN endpoints available 552 * @num_dev_perio_in_ep: Number of device periodic IN endpoints 553 * available 554 * @dev_token_q_depth: Device Mode IN Token Sequence Learning Queue 555 * Depth 556 * 0 to 30 557 * @host_perio_tx_q_depth: 558 * Host Mode Periodic Request Queue Depth 559 * 2, 4 or 8 560 * @nperio_tx_q_depth: 561 * Non-Periodic Request Queue Depth 562 * 2, 4 or 8 563 * @hs_phy_type: High-speed PHY interface type 564 * 0 - High-speed interface not supported 565 * 1 - UTMI+ 566 * 2 - ULPI 567 * 3 - UTMI+ and ULPI 568 * @fs_phy_type: Full-speed PHY interface type 569 * 0 - Full speed interface not supported 570 * 1 - Dedicated full speed interface 571 * 2 - FS pins shared with UTMI+ pins 572 * 3 - FS pins shared with ULPI pins 573 * @total_fifo_size: Total internal RAM for FIFOs (bytes) 574 * @hibernation: Is hibernation enabled? 575 * @utmi_phy_data_width: UTMI+ PHY data width 576 * 0 - 8 bits 577 * 1 - 16 bits 578 * 2 - 8 or 16 bits 579 * @snpsid: Value from SNPSID register 580 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1) 581 * @g_tx_fifo_size: Power-on values of TxFIFO sizes 582 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use 583 * address DMA mode or descriptor DMA mode for accessing 584 * the data FIFOs. The driver will automatically detect the 585 * value for this if none is specified. 586 * 0 - Address DMA 587 * 1 - Descriptor DMA (default, if available) 588 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters 589 * 1 - Allow dynamic FIFO sizing (default, if available) 590 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs 591 * are enabled for non-periodic IN endpoints in device 592 * mode. 593 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 594 * in host mode when dynamic FIFO sizing is enabled 595 * 16 to 32768 596 * Actual maximum value is autodetected and also 597 * the default. 598 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in 599 * host mode when dynamic FIFO sizing is enabled 600 * 16 to 32768 601 * Actual maximum value is autodetected and also 602 * the default. 603 * @max_transfer_size: The maximum transfer size supported, in bytes 604 * 2047 to 65,535 605 * Actual maximum value is autodetected and also 606 * the default. 607 * @max_packet_count: The maximum number of packets in a transfer 608 * 15 to 511 609 * Actual maximum value is autodetected and also 610 * the default. 611 * @host_channels: The number of host channel registers to use 612 * 1 to 16 613 * Actual maximum value is autodetected and also 614 * the default. 615 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 616 * in device mode when dynamic FIFO sizing is enabled 617 * 16 to 32768 618 * Actual maximum value is autodetected and also 619 * the default. 620 * @i2c_enable: Specifies whether to use the I2Cinterface for a full 621 * speed PHY. This parameter is only applicable if phy_type 622 * is FS. 623 * 0 - No (default) 624 * 1 - Yes 625 * @acg_enable: For enabling Active Clock Gating in the controller 626 * 0 - Disable 627 * 1 - Enable 628 * @lpm_mode: For enabling Link Power Management in the controller 629 * 0 - Disable 630 * 1 - Enable 631 * @rx_fifo_size: Number of 4-byte words in the Rx FIFO when dynamic 632 * FIFO sizing is enabled 16 to 32768 633 * Actual maximum value is autodetected and also 634 * the default. 635 * @service_interval_mode: For enabling service interval based scheduling in the 636 * controller. 637 * 0 - Disable 638 * 1 - Enable 639 */ 640 struct dwc2_hw_params { 641 unsigned op_mode:3; 642 unsigned arch:2; 643 unsigned dma_desc_enable:1; 644 unsigned enable_dynamic_fifo:1; 645 unsigned en_multiple_tx_fifo:1; 646 unsigned rx_fifo_size:16; 647 unsigned host_nperio_tx_fifo_size:16; 648 unsigned dev_nperio_tx_fifo_size:16; 649 unsigned host_perio_tx_fifo_size:16; 650 unsigned nperio_tx_q_depth:3; 651 unsigned host_perio_tx_q_depth:3; 652 unsigned dev_token_q_depth:5; 653 unsigned max_transfer_size:26; 654 unsigned max_packet_count:11; 655 unsigned host_channels:5; 656 unsigned hs_phy_type:2; 657 unsigned fs_phy_type:2; 658 unsigned i2c_enable:1; 659 unsigned acg_enable:1; 660 unsigned num_dev_ep:4; 661 unsigned num_dev_in_eps : 4; 662 unsigned num_dev_perio_in_ep:4; 663 unsigned total_fifo_size:16; 664 unsigned power_optimized:1; 665 unsigned hibernation:1; 666 unsigned utmi_phy_data_width:2; 667 unsigned lpm_mode:1; 668 unsigned ipg_isoc_en:1; 669 unsigned service_interval_mode:1; 670 u32 snpsid; 671 u32 dev_ep_dirs; 672 u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; 673 }; 674 675 /* Size of control and EP0 buffers */ 676 #define DWC2_CTRL_BUFF_SIZE 8 677 678 /** 679 * struct dwc2_gregs_backup - Holds global registers state before 680 * entering partial power down 681 * @gotgctl: Backup of GOTGCTL register 682 * @gintmsk: Backup of GINTMSK register 683 * @gahbcfg: Backup of GAHBCFG register 684 * @gusbcfg: Backup of GUSBCFG register 685 * @grxfsiz: Backup of GRXFSIZ register 686 * @gnptxfsiz: Backup of GNPTXFSIZ register 687 * @gi2cctl: Backup of GI2CCTL register 688 * @glpmcfg: Backup of GLPMCFG register 689 * @gdfifocfg: Backup of GDFIFOCFG register 690 * @pcgcctl: Backup of PCGCCTL register 691 * @pcgcctl1: Backup of PCGCCTL1 register 692 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint 693 * @gpwrdn: Backup of GPWRDN register 694 * @valid: True if registers values backuped. 695 */ 696 struct dwc2_gregs_backup { 697 u32 gotgctl; 698 u32 gintmsk; 699 u32 gahbcfg; 700 u32 gusbcfg; 701 u32 grxfsiz; 702 u32 gnptxfsiz; 703 u32 gi2cctl; 704 u32 glpmcfg; 705 u32 pcgcctl; 706 u32 pcgcctl1; 707 u32 gdfifocfg; 708 u32 gpwrdn; 709 bool valid; 710 }; 711 712 /** 713 * struct dwc2_dregs_backup - Holds device registers state before 714 * entering partial power down 715 * @dcfg: Backup of DCFG register 716 * @dctl: Backup of DCTL register 717 * @daintmsk: Backup of DAINTMSK register 718 * @diepmsk: Backup of DIEPMSK register 719 * @doepmsk: Backup of DOEPMSK register 720 * @diepctl: Backup of DIEPCTL register 721 * @dieptsiz: Backup of DIEPTSIZ register 722 * @diepdma: Backup of DIEPDMA register 723 * @doepctl: Backup of DOEPCTL register 724 * @doeptsiz: Backup of DOEPTSIZ register 725 * @doepdma: Backup of DOEPDMA register 726 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint 727 * @valid: True if registers values backuped. 728 */ 729 struct dwc2_dregs_backup { 730 u32 dcfg; 731 u32 dctl; 732 u32 daintmsk; 733 u32 diepmsk; 734 u32 doepmsk; 735 u32 diepctl[MAX_EPS_CHANNELS]; 736 u32 dieptsiz[MAX_EPS_CHANNELS]; 737 u32 diepdma[MAX_EPS_CHANNELS]; 738 u32 doepctl[MAX_EPS_CHANNELS]; 739 u32 doeptsiz[MAX_EPS_CHANNELS]; 740 u32 doepdma[MAX_EPS_CHANNELS]; 741 u32 dtxfsiz[MAX_EPS_CHANNELS]; 742 bool valid; 743 }; 744 745 /** 746 * struct dwc2_hregs_backup - Holds host registers state before 747 * entering partial power down 748 * @hcfg: Backup of HCFG register 749 * @haintmsk: Backup of HAINTMSK register 750 * @hcintmsk: Backup of HCINTMSK register 751 * @hprt0: Backup of HPTR0 register 752 * @hfir: Backup of HFIR register 753 * @hptxfsiz: Backup of HPTXFSIZ register 754 * @valid: True if registers values backuped. 755 */ 756 struct dwc2_hregs_backup { 757 u32 hcfg; 758 u32 haintmsk; 759 u32 hcintmsk[MAX_EPS_CHANNELS]; 760 u32 hprt0; 761 u32 hfir; 762 u32 hptxfsiz; 763 bool valid; 764 }; 765 766 /* 767 * Constants related to high speed periodic scheduling 768 * 769 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a 770 * reservation point of view it's assumed that the schedule goes right back to 771 * the beginning after the end of the schedule. 772 * 773 * What does that mean for scheduling things with a long interval? It means 774 * we'll reserve time for them in every possible microframe that they could 775 * ever be scheduled in. ...but we'll still only actually schedule them as 776 * often as they were requested. 777 * 778 * We keep our schedule in a "bitmap" structure. This simplifies having 779 * to keep track of and merge intervals: we just let the bitmap code do most 780 * of the heavy lifting. In a way scheduling is much like memory allocation. 781 * 782 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're 783 * supposed to schedule for periodic transfers). That's according to spec. 784 * 785 * Note that though we only schedule 80% of each microframe, the bitmap that we 786 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of 787 * space for each uFrame). 788 * 789 * Requirements: 790 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1) 791 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably 792 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might 793 * be bugs). The 8 comes from the USB spec: number of microframes per frame. 794 */ 795 #define DWC2_US_PER_UFRAME 125 796 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100 797 798 #define DWC2_HS_SCHEDULE_UFRAMES 8 799 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \ 800 DWC2_HS_PERIODIC_US_PER_UFRAME) 801 802 /* 803 * Constants related to low speed scheduling 804 * 805 * For high speed we schedule every 1us. For low speed that's a bit overkill, 806 * so we make up a unit called a "slice" that's worth 25us. There are 40 807 * slices in a full frame and we can schedule 36 of those (90%) for periodic 808 * transfers. 809 * 810 * Our low speed schedule can be as short as 1 frame or could be longer. When 811 * we only schedule 1 frame it means that we'll need to reserve a time every 812 * frame even for things that only transfer very rarely, so something that runs 813 * every 2048 frames will get time reserved in every frame. Our low speed 814 * schedule can be longer and we'll be able to handle more overlap, but that 815 * will come at increased memory cost and increased time to schedule. 816 * 817 * Note: one other advantage of a short low speed schedule is that if we mess 818 * up and miss scheduling we can jump in and use any of the slots that we 819 * happened to reserve. 820 * 821 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for 822 * the schedule. There will be one schedule per TT. 823 * 824 * Requirements: 825 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME. 826 */ 827 #define DWC2_US_PER_SLICE 25 828 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE) 829 830 #define DWC2_ROUND_US_TO_SLICE(us) \ 831 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \ 832 DWC2_US_PER_SLICE) 833 834 #define DWC2_LS_PERIODIC_US_PER_FRAME \ 835 900 836 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \ 837 (DWC2_LS_PERIODIC_US_PER_FRAME / \ 838 DWC2_US_PER_SLICE) 839 840 #define DWC2_LS_SCHEDULE_FRAMES 1 841 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \ 842 DWC2_LS_PERIODIC_SLICES_PER_FRAME) 843 844 /** 845 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic 846 * and periodic schedules 847 * 848 * These are common for both host and peripheral modes: 849 * 850 * @dev: The struct device pointer 851 * @regs: Pointer to controller regs 852 * @hw_params: Parameters that were autodetected from the 853 * hardware registers 854 * @params: Parameters that define how the core should be configured 855 * @op_state: The operational State, during transitions (a_host=> 856 * a_peripheral and b_device=>b_host) this may not match 857 * the core, but allows the software to determine 858 * transitions 859 * @dr_mode: Requested mode of operation, one of following: 860 * - USB_DR_MODE_PERIPHERAL 861 * - USB_DR_MODE_HOST 862 * - USB_DR_MODE_OTG 863 * @role_sw: usb_role_switch handle 864 * @hcd_enabled: Host mode sub-driver initialization indicator. 865 * @gadget_enabled: Peripheral mode sub-driver initialization indicator. 866 * @ll_hw_enabled: Status of low-level hardware resources. 867 * @hibernated: True if core is hibernated 868 * @reset_phy_on_wake: Quirk saying that we should assert PHY reset on a 869 * remote wakeup. 870 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend. 871 * @need_phy_for_wake: Quirk saying that we should keep the PHY on at 872 * suspend if we need USB to wake us up. 873 * @frame_number: Frame number read from the core. For both device 874 * and host modes. The value ranges are from 0 875 * to HFNUM_MAX_FRNUM. 876 * @phy: The otg phy transceiver structure for phy control. 877 * @uphy: The otg phy transceiver structure for old USB phy 878 * control. 879 * @plat: The platform specific configuration data. This can be 880 * removed once all SoCs support usb transceiver. 881 * @supplies: Definition of USB power supplies 882 * @vbus_supply: Regulator supplying vbus. 883 * @usb33d: Optional 3.3v regulator used on some stm32 devices to 884 * supply ID and VBUS detection hardware. 885 * @lock: Spinlock that protects all the driver data structures 886 * @priv: Stores a pointer to the struct usb_hcd 887 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth 888 * transfer are in process of being queued 889 * @srp_success: Stores status of SRP request in the case of a FS PHY 890 * with an I2C interface 891 * @wq_otg: Workqueue object used for handling of some interrupts 892 * @wf_otg: Work object for handling Connector ID Status Change 893 * interrupt 894 * @wkp_timer: Timer object for handling Wakeup Detected interrupt 895 * @lx_state: Lx state of connected device 896 * @gr_backup: Backup of global registers during suspend 897 * @dr_backup: Backup of device registers during suspend 898 * @hr_backup: Backup of host registers during suspend 899 * @needs_byte_swap: Specifies whether the opposite endianness. 900 * 901 * These are for host mode: 902 * 903 * @flags: Flags for handling root port state changes 904 * @flags.d32: Contain all root port flags 905 * @flags.b: Separate root port flags from each other 906 * @flags.b.port_connect_status_change: True if root port connect status 907 * changed 908 * @flags.b.port_connect_status: True if device connected to root port 909 * @flags.b.port_reset_change: True if root port reset status changed 910 * @flags.b.port_enable_change: True if root port enable status changed 911 * @flags.b.port_suspend_change: True if root port suspend status changed 912 * @flags.b.port_over_current_change: True if root port over current state 913 * changed. 914 * @flags.b.port_l1_change: True if root port l1 status changed 915 * @flags.b.reserved: Reserved bits of root port register 916 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule. 917 * Transfers associated with these QHs are not currently 918 * assigned to a host channel. 919 * @non_periodic_sched_active: Active QHs in the non-periodic schedule. 920 * Transfers associated with these QHs are currently 921 * assigned to a host channel. 922 * @non_periodic_qh_ptr: Pointer to next QH to process in the active 923 * non-periodic schedule 924 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule. 925 * Transfers associated with these QHs are not currently 926 * assigned to a host channel. 927 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a 928 * list of QHs for periodic transfers that are _not_ 929 * scheduled for the next frame. Each QH in the list has an 930 * interval counter that determines when it needs to be 931 * scheduled for execution. This scheduling mechanism 932 * allows only a simple calculation for periodic bandwidth 933 * used (i.e. must assume that all periodic transfers may 934 * need to execute in the same frame). However, it greatly 935 * simplifies scheduling and should be sufficient for the 936 * vast majority of OTG hosts, which need to connect to a 937 * small number of peripherals at one time. Items move from 938 * this list to periodic_sched_ready when the QH interval 939 * counter is 0 at SOF. 940 * @periodic_sched_ready: List of periodic QHs that are ready for execution in 941 * the next frame, but have not yet been assigned to host 942 * channels. Items move from this list to 943 * periodic_sched_assigned as host channels become 944 * available during the current frame. 945 * @periodic_sched_assigned: List of periodic QHs to be executed in the next 946 * frame that are assigned to host channels. Items move 947 * from this list to periodic_sched_queued as the 948 * transactions for the QH are queued to the DWC_otg 949 * controller. 950 * @periodic_sched_queued: List of periodic QHs that have been queued for 951 * execution. Items move from this list to either 952 * periodic_sched_inactive or periodic_sched_ready when the 953 * channel associated with the transfer is released. If the 954 * interval for the QH is 1, the item moves to 955 * periodic_sched_ready because it must be rescheduled for 956 * the next frame. Otherwise, the item moves to 957 * periodic_sched_inactive. 958 * @split_order: List keeping track of channels doing splits, in order. 959 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers. 960 * This value is in microseconds per (micro)frame. The 961 * assumption is that all periodic transfers may occur in 962 * the same (micro)frame. 963 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the 964 * host is in high speed mode; low speed schedules are 965 * stored elsewhere since we need one per TT. 966 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for 967 * SOF enable/disable. 968 * @free_hc_list: Free host channels in the controller. This is a list of 969 * struct dwc2_host_chan items. 970 * @periodic_channels: Number of host channels assigned to periodic transfers. 971 * Currently assuming that there is a dedicated host 972 * channel for each periodic transaction and at least one 973 * host channel is available for non-periodic transactions. 974 * @non_periodic_channels: Number of host channels assigned to non-periodic 975 * transfers 976 * @available_host_channels: Number of host channels available for the 977 * microframe scheduler to use 978 * @hc_ptr_array: Array of pointers to the host channel descriptors. 979 * Allows accessing a host channel descriptor given the 980 * host channel number. This is useful in interrupt 981 * handlers. 982 * @status_buf: Buffer used for data received during the status phase of 983 * a control transfer. 984 * @status_buf_dma: DMA address for status_buf 985 * @start_work: Delayed work for handling host A-cable connection 986 * @reset_work: Delayed work for handling a port reset 987 * @phy_reset_work: Work structure for doing a PHY reset 988 * @otg_port: OTG port number 989 * @frame_list: Frame list 990 * @frame_list_dma: Frame list DMA address 991 * @frame_list_sz: Frame list size 992 * @desc_gen_cache: Kmem cache for generic descriptors 993 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors 994 * @unaligned_cache: Kmem cache for DMA mode to handle non-aligned buf 995 * 996 * These are for peripheral mode: 997 * 998 * @driver: USB gadget driver 999 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos. 1000 * @num_of_eps: Number of available EPs (excluding EP0) 1001 * @debug_root: Root directrory for debugfs. 1002 * @ep0_reply: Request used for ep0 reply. 1003 * @ep0_buff: Buffer for EP0 reply data, if needed. 1004 * @ctrl_buff: Buffer for EP0 control requests. 1005 * @ctrl_req: Request for EP0 control packets. 1006 * @ep0_state: EP0 control transfers state 1007 * @delayed_status: true when gadget driver asks for delayed status 1008 * @test_mode: USB test mode requested by the host 1009 * @remote_wakeup_allowed: True if device is allowed to wake-up host by 1010 * remote-wakeup signalling 1011 * @setup_desc_dma: EP0 setup stage desc chain DMA address 1012 * @setup_desc: EP0 setup stage desc chain pointer 1013 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address 1014 * @ctrl_in_desc: EP0 IN data phase desc chain pointer 1015 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address 1016 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer 1017 * @irq: Interrupt request line number 1018 * @clk: Pointer to otg clock 1019 * @reset: Pointer to dwc2 reset controller 1020 * @reset_ecc: Pointer to dwc2 optional reset controller in Stratix10. 1021 * @regset: A pointer to a struct debugfs_regset32, which contains 1022 * a pointer to an array of register definitions, the 1023 * array size and the base address where the register bank 1024 * is to be found. 1025 * @bus_suspended: True if bus is suspended 1026 * @last_frame_num: Number of last frame. Range from 0 to 32768 1027 * @frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is 1028 * defined, for missed SOFs tracking. Array holds that 1029 * frame numbers, which not equal to last_frame_num +1 1030 * @last_frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is 1031 * defined, for missed SOFs tracking. 1032 * If current_frame_number != last_frame_num+1 1033 * then last_frame_num added to this array 1034 * @frame_num_idx: Actual size of frame_num_array and last_frame_num_array 1035 * @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed 1036 * 0 - if missed SOFs frame numbers not dumbed 1037 * @fifo_mem: Total internal RAM for FIFOs (bytes) 1038 * @fifo_map: Each bit intend for concrete fifo. If that bit is set, 1039 * then that fifo is used 1040 * @gadget: Represents a usb gadget device 1041 * @connected: Used in slave mode. True if device connected with host 1042 * @eps_in: The IN endpoints being supplied to the gadget framework 1043 * @eps_out: The OUT endpoints being supplied to the gadget framework 1044 * @new_connection: Used in host mode. True if there are new connected 1045 * device 1046 * @enabled: Indicates the enabling state of controller 1047 * 1048 */ 1049 struct dwc2_hsotg { 1050 struct device *dev; 1051 void __iomem *regs; 1052 /** Params detected from hardware */ 1053 struct dwc2_hw_params hw_params; 1054 /** Params to actually use */ 1055 struct dwc2_core_params params; 1056 enum usb_otg_state op_state; 1057 enum usb_dr_mode dr_mode; 1058 struct usb_role_switch *role_sw; 1059 unsigned int hcd_enabled:1; 1060 unsigned int gadget_enabled:1; 1061 unsigned int ll_hw_enabled:1; 1062 unsigned int hibernated:1; 1063 unsigned int reset_phy_on_wake:1; 1064 unsigned int need_phy_for_wake:1; 1065 unsigned int phy_off_for_suspend:1; 1066 u16 frame_number; 1067 1068 struct phy *phy; 1069 struct usb_phy *uphy; 1070 struct dwc2_hsotg_plat *plat; 1071 struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES]; 1072 struct regulator *vbus_supply; 1073 struct regulator *usb33d; 1074 1075 spinlock_t lock; 1076 void *priv; 1077 int irq; 1078 struct clk *clk; 1079 struct reset_control *reset; 1080 struct reset_control *reset_ecc; 1081 1082 unsigned int queuing_high_bandwidth:1; 1083 unsigned int srp_success:1; 1084 1085 struct workqueue_struct *wq_otg; 1086 struct work_struct wf_otg; 1087 struct timer_list wkp_timer; 1088 enum dwc2_lx_state lx_state; 1089 struct dwc2_gregs_backup gr_backup; 1090 struct dwc2_dregs_backup dr_backup; 1091 struct dwc2_hregs_backup hr_backup; 1092 1093 struct dentry *debug_root; 1094 struct debugfs_regset32 *regset; 1095 bool needs_byte_swap; 1096 1097 /* DWC OTG HW Release versions */ 1098 #define DWC2_CORE_REV_2_71a 0x4f54271a 1099 #define DWC2_CORE_REV_2_72a 0x4f54272a 1100 #define DWC2_CORE_REV_2_80a 0x4f54280a 1101 #define DWC2_CORE_REV_2_90a 0x4f54290a 1102 #define DWC2_CORE_REV_2_91a 0x4f54291a 1103 #define DWC2_CORE_REV_2_92a 0x4f54292a 1104 #define DWC2_CORE_REV_2_94a 0x4f54294a 1105 #define DWC2_CORE_REV_3_00a 0x4f54300a 1106 #define DWC2_CORE_REV_3_10a 0x4f54310a 1107 #define DWC2_CORE_REV_4_00a 0x4f54400a 1108 #define DWC2_CORE_REV_4_20a 0x4f54420a 1109 #define DWC2_FS_IOT_REV_1_00a 0x5531100a 1110 #define DWC2_HS_IOT_REV_1_00a 0x5532100a 1111 #define DWC2_CORE_REV_MASK 0x0000ffff 1112 1113 /* DWC OTG HW Core ID */ 1114 #define DWC2_OTG_ID 0x4f540000 1115 #define DWC2_FS_IOT_ID 0x55310000 1116 #define DWC2_HS_IOT_ID 0x55320000 1117 1118 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1119 union dwc2_hcd_internal_flags { 1120 u32 d32; 1121 struct { 1122 unsigned port_connect_status_change:1; 1123 unsigned port_connect_status:1; 1124 unsigned port_reset_change:1; 1125 unsigned port_enable_change:1; 1126 unsigned port_suspend_change:1; 1127 unsigned port_over_current_change:1; 1128 unsigned port_l1_change:1; 1129 unsigned reserved:25; 1130 } b; 1131 } flags; 1132 1133 struct list_head non_periodic_sched_inactive; 1134 struct list_head non_periodic_sched_waiting; 1135 struct list_head non_periodic_sched_active; 1136 struct list_head *non_periodic_qh_ptr; 1137 struct list_head periodic_sched_inactive; 1138 struct list_head periodic_sched_ready; 1139 struct list_head periodic_sched_assigned; 1140 struct list_head periodic_sched_queued; 1141 struct list_head split_order; 1142 u16 periodic_usecs; 1143 unsigned long hs_periodic_bitmap[ 1144 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)]; 1145 u16 periodic_qh_count; 1146 bool bus_suspended; 1147 bool new_connection; 1148 1149 u16 last_frame_num; 1150 1151 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 1152 #define FRAME_NUM_ARRAY_SIZE 1000 1153 u16 *frame_num_array; 1154 u16 *last_frame_num_array; 1155 int frame_num_idx; 1156 int dumped_frame_num_array; 1157 #endif 1158 1159 struct list_head free_hc_list; 1160 int periodic_channels; 1161 int non_periodic_channels; 1162 int available_host_channels; 1163 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS]; 1164 u8 *status_buf; 1165 dma_addr_t status_buf_dma; 1166 #define DWC2_HCD_STATUS_BUF_SIZE 64 1167 1168 struct delayed_work start_work; 1169 struct delayed_work reset_work; 1170 struct work_struct phy_reset_work; 1171 u8 otg_port; 1172 u32 *frame_list; 1173 dma_addr_t frame_list_dma; 1174 u32 frame_list_sz; 1175 struct kmem_cache *desc_gen_cache; 1176 struct kmem_cache *desc_hsisoc_cache; 1177 struct kmem_cache *unaligned_cache; 1178 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024 1179 1180 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */ 1181 1182 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 1183 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1184 /* Gadget structures */ 1185 struct usb_gadget_driver *driver; 1186 int fifo_mem; 1187 unsigned int dedicated_fifos:1; 1188 unsigned char num_of_eps; 1189 u32 fifo_map; 1190 1191 struct usb_request *ep0_reply; 1192 struct usb_request *ctrl_req; 1193 void *ep0_buff; 1194 void *ctrl_buff; 1195 enum dwc2_ep0_state ep0_state; 1196 unsigned delayed_status : 1; 1197 u8 test_mode; 1198 1199 dma_addr_t setup_desc_dma[2]; 1200 struct dwc2_dma_desc *setup_desc[2]; 1201 dma_addr_t ctrl_in_desc_dma; 1202 struct dwc2_dma_desc *ctrl_in_desc; 1203 dma_addr_t ctrl_out_desc_dma; 1204 struct dwc2_dma_desc *ctrl_out_desc; 1205 1206 struct usb_gadget gadget; 1207 unsigned int enabled:1; 1208 unsigned int connected:1; 1209 unsigned int remote_wakeup_allowed:1; 1210 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS]; 1211 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS]; 1212 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */ 1213 }; 1214 1215 /* Normal architectures just use readl/write */ 1216 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset) 1217 { 1218 u32 val; 1219 1220 val = readl(hsotg->regs + offset); 1221 if (hsotg->needs_byte_swap) 1222 return swab32(val); 1223 else 1224 return val; 1225 } 1226 1227 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset) 1228 { 1229 if (hsotg->needs_byte_swap) 1230 writel(swab32(value), hsotg->regs + offset); 1231 else 1232 writel(value, hsotg->regs + offset); 1233 1234 #ifdef DWC2_LOG_WRITES 1235 pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset); 1236 #endif 1237 } 1238 1239 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset, 1240 void *buffer, unsigned int count) 1241 { 1242 if (count) { 1243 u32 *buf = buffer; 1244 1245 do { 1246 u32 x = dwc2_readl(hsotg, offset); 1247 *buf++ = x; 1248 } while (--count); 1249 } 1250 } 1251 1252 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset, 1253 const void *buffer, unsigned int count) 1254 { 1255 if (count) { 1256 const u32 *buf = buffer; 1257 1258 do { 1259 dwc2_writel(hsotg, *buf++, offset); 1260 } while (--count); 1261 } 1262 } 1263 1264 /* Reasons for halting a host channel */ 1265 enum dwc2_halt_status { 1266 DWC2_HC_XFER_NO_HALT_STATUS, 1267 DWC2_HC_XFER_COMPLETE, 1268 DWC2_HC_XFER_URB_COMPLETE, 1269 DWC2_HC_XFER_ACK, 1270 DWC2_HC_XFER_NAK, 1271 DWC2_HC_XFER_NYET, 1272 DWC2_HC_XFER_STALL, 1273 DWC2_HC_XFER_XACT_ERR, 1274 DWC2_HC_XFER_FRAME_OVERRUN, 1275 DWC2_HC_XFER_BABBLE_ERR, 1276 DWC2_HC_XFER_DATA_TOGGLE_ERR, 1277 DWC2_HC_XFER_AHB_ERR, 1278 DWC2_HC_XFER_PERIODIC_INCOMPLETE, 1279 DWC2_HC_XFER_URB_DEQUEUE, 1280 }; 1281 1282 /* Core version information */ 1283 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg) 1284 { 1285 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000; 1286 } 1287 1288 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg) 1289 { 1290 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000; 1291 } 1292 1293 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg) 1294 { 1295 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000; 1296 } 1297 1298 /* 1299 * The following functions support initialization of the core driver component 1300 * and the DWC_otg controller 1301 */ 1302 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait); 1303 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1304 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore); 1305 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host); 1306 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, 1307 int reset, int is_host); 1308 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg); 1309 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy); 1310 1311 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host); 1312 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg); 1313 1314 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg); 1315 1316 int dwc2_check_core_version(struct dwc2_hsotg *hsotg); 1317 1318 /* 1319 * Common core Functions. 1320 * The following functions support managing the DWC_otg controller in either 1321 * device or host mode. 1322 */ 1323 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes); 1324 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num); 1325 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg); 1326 1327 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd); 1328 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd); 1329 1330 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup, 1331 int is_host); 1332 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg); 1333 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg); 1334 1335 void dwc2_enable_acg(struct dwc2_hsotg *hsotg); 1336 1337 /* This function should be called on every hardware interrupt. */ 1338 irqreturn_t dwc2_handle_common_intr(int irq, void *dev); 1339 1340 /* The device ID match table */ 1341 extern const struct of_device_id dwc2_of_match_table[]; 1342 1343 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg); 1344 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg); 1345 1346 /* Common polling functions */ 1347 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit, 1348 u32 timeout); 1349 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit, 1350 u32 timeout); 1351 /* Parameters */ 1352 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg); 1353 int dwc2_init_params(struct dwc2_hsotg *hsotg); 1354 1355 /* 1356 * The following functions check the controller's OTG operation mode 1357 * capability (GHWCFG2.OTG_MODE). 1358 * 1359 * These functions can be used before the internal hsotg->hw_params 1360 * are read in and cached so they always read directly from the 1361 * GHWCFG2 register. 1362 */ 1363 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg); 1364 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg); 1365 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg); 1366 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg); 1367 1368 /* 1369 * Returns the mode of operation, host or device 1370 */ 1371 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg) 1372 { 1373 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0; 1374 } 1375 1376 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg) 1377 { 1378 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0; 1379 } 1380 1381 int dwc2_drd_init(struct dwc2_hsotg *hsotg); 1382 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg); 1383 void dwc2_drd_resume(struct dwc2_hsotg *hsotg); 1384 void dwc2_drd_exit(struct dwc2_hsotg *hsotg); 1385 1386 /* 1387 * Dump core registers and SPRAM 1388 */ 1389 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg); 1390 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg); 1391 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg); 1392 1393 /* Gadget defines */ 1394 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 1395 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1396 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg); 1397 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2); 1398 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2); 1399 int dwc2_gadget_init(struct dwc2_hsotg *hsotg); 1400 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, 1401 bool reset); 1402 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg); 1403 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg); 1404 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2); 1405 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode); 1406 #define dwc2_is_device_connected(hsotg) (hsotg->connected) 1407 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg); 1408 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup); 1409 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg); 1410 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 1411 int rem_wakeup, int reset); 1412 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg); 1413 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg); 1414 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg); 1415 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg); 1416 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg); 1417 #else 1418 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2) 1419 { return 0; } 1420 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2) 1421 { return 0; } 1422 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2) 1423 { return 0; } 1424 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 1425 { return 0; } 1426 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, 1427 bool reset) {} 1428 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {} 1429 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {} 1430 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {} 1431 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, 1432 int testmode) 1433 { return 0; } 1434 #define dwc2_is_device_connected(hsotg) (0) 1435 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 1436 { return 0; } 1437 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, 1438 int remote_wakeup) 1439 { return 0; } 1440 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 1441 { return 0; } 1442 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 1443 int rem_wakeup, int reset) 1444 { return 0; } 1445 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 1446 { return 0; } 1447 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 1448 { return 0; } 1449 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 1450 { return 0; } 1451 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {} 1452 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {} 1453 #endif 1454 1455 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1456 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg); 1457 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us); 1458 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg); 1459 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force); 1460 void dwc2_hcd_start(struct dwc2_hsotg *hsotg); 1461 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup); 1462 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg); 1463 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg); 1464 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg); 1465 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, 1466 int rem_wakeup, int reset); 1467 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2); 1468 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) 1469 { schedule_work(&hsotg->phy_reset_work); } 1470 #else 1471 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 1472 { return 0; } 1473 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, 1474 int us) 1475 { return 0; } 1476 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {} 1477 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {} 1478 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {} 1479 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {} 1480 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) 1481 { return 0; } 1482 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg) 1483 { return 0; } 1484 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) 1485 { return 0; } 1486 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) 1487 { return 0; } 1488 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg) 1489 { return 0; } 1490 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, 1491 int rem_wakeup, int reset) 1492 { return 0; } 1493 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2) 1494 { return false; } 1495 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {} 1496 1497 #endif 1498 1499 #endif /* __DWC2_CORE_H__ */ 1500