xref: /openbmc/linux/drivers/usb/dwc2/core.h (revision 80483c3a)
1 /*
2  * core.h - DesignWare HS OTG Controller common declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #ifndef __DWC2_CORE_H__
38 #define __DWC2_CORE_H__
39 
40 #include <linux/phy/phy.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/usb/gadget.h>
43 #include <linux/usb/otg.h>
44 #include <linux/usb/phy.h>
45 #include "hw.h"
46 
47 /*
48  * Suggested defines for tracers:
49  * - no_printk:    Disable tracing
50  * - pr_info:      Print this info to the console
51  * - trace_printk: Print this info to trace buffer (good for verbose logging)
52  */
53 
54 #define DWC2_TRACE_SCHEDULER		no_printk
55 #define DWC2_TRACE_SCHEDULER_VB		no_printk
56 
57 /* Detailed scheduler tracing, but won't overwhelm console */
58 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
59 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
60 			     dev_name(hsotg->dev), ##__VA_ARGS__)
61 
62 /* Verbose scheduler tracing */
63 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
64 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
65 				dev_name(hsotg->dev), ##__VA_ARGS__)
66 
67 #ifdef CONFIG_MIPS
68 /*
69  * There are some MIPS machines that can run in either big-endian
70  * or little-endian mode and that use the dwc2 register without
71  * a byteswap in both ways.
72  * Unlike other architectures, MIPS apparently does not require a
73  * barrier before the __raw_writel() to synchronize with DMA but does
74  * require the barrier after the __raw_writel() to serialize a set of
75  * writes. This set of operations was added specifically for MIPS and
76  * should only be used there.
77  */
78 static inline u32 dwc2_readl(const void __iomem *addr)
79 {
80 	u32 value = __raw_readl(addr);
81 
82 	/* In order to preserve endianness __raw_* operation is used. Therefore
83 	 * a barrier is needed to ensure IO access is not re-ordered across
84 	 * reads or writes
85 	 */
86 	mb();
87 	return value;
88 }
89 
90 static inline void dwc2_writel(u32 value, void __iomem *addr)
91 {
92 	__raw_writel(value, addr);
93 
94 	/*
95 	 * In order to preserve endianness __raw_* operation is used. Therefore
96 	 * a barrier is needed to ensure IO access is not re-ordered across
97 	 * reads or writes
98 	 */
99 	mb();
100 #ifdef DWC2_LOG_WRITES
101 	pr_info("INFO:: wrote %08x to %p\n", value, addr);
102 #endif
103 }
104 #else
105 /* Normal architectures just use readl/write */
106 static inline u32 dwc2_readl(const void __iomem *addr)
107 {
108 	return readl(addr);
109 }
110 
111 static inline void dwc2_writel(u32 value, void __iomem *addr)
112 {
113 	writel(value, addr);
114 
115 #ifdef DWC2_LOG_WRITES
116 	pr_info("info:: wrote %08x to %p\n", value, addr);
117 #endif
118 }
119 #endif
120 
121 /* Maximum number of Endpoints/HostChannels */
122 #define MAX_EPS_CHANNELS	16
123 
124 /* dwc2-hsotg declarations */
125 static const char * const dwc2_hsotg_supply_names[] = {
126 	"vusb_d",               /* digital USB supply, 1.2V */
127 	"vusb_a",               /* analog USB supply, 1.1V */
128 };
129 
130 /*
131  * EP0_MPS_LIMIT
132  *
133  * Unfortunately there seems to be a limit of the amount of data that can
134  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
135  * packets (which practically means 1 packet and 63 bytes of data) when the
136  * MPS is set to 64.
137  *
138  * This means if we are wanting to move >127 bytes of data, we need to
139  * split the transactions up, but just doing one packet at a time does
140  * not work (this may be an implicit DATA0 PID on first packet of the
141  * transaction) and doing 2 packets is outside the controller's limits.
142  *
143  * If we try to lower the MPS size for EP0, then no transfers work properly
144  * for EP0, and the system will fail basic enumeration. As no cause for this
145  * has currently been found, we cannot support any large IN transfers for
146  * EP0.
147  */
148 #define EP0_MPS_LIMIT   64
149 
150 struct dwc2_hsotg;
151 struct dwc2_hsotg_req;
152 
153 /**
154  * struct dwc2_hsotg_ep - driver endpoint definition.
155  * @ep: The gadget layer representation of the endpoint.
156  * @name: The driver generated name for the endpoint.
157  * @queue: Queue of requests for this endpoint.
158  * @parent: Reference back to the parent device structure.
159  * @req: The current request that the endpoint is processing. This is
160  *       used to indicate an request has been loaded onto the endpoint
161  *       and has yet to be completed (maybe due to data move, or simply
162  *       awaiting an ack from the core all the data has been completed).
163  * @debugfs: File entry for debugfs file for this endpoint.
164  * @lock: State lock to protect contents of endpoint.
165  * @dir_in: Set to true if this endpoint is of the IN direction, which
166  *          means that it is sending data to the Host.
167  * @index: The index for the endpoint registers.
168  * @mc: Multi Count - number of transactions per microframe
169  * @interval - Interval for periodic endpoints, in frames or microframes.
170  * @name: The name array passed to the USB core.
171  * @halted: Set if the endpoint has been halted.
172  * @periodic: Set if this is a periodic ep, such as Interrupt
173  * @isochronous: Set if this is a isochronous ep
174  * @send_zlp: Set if we need to send a zero-length packet.
175  * @total_data: The total number of data bytes done.
176  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
177  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
178  * @last_load: The offset of data for the last start of request.
179  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
180  * @target_frame: Targeted frame num to setup next ISOC transfer
181  * @frame_overrun: Indicates SOF number overrun in DSTS
182  *
183  * This is the driver's state for each registered enpoint, allowing it
184  * to keep track of transactions that need doing. Each endpoint has a
185  * lock to protect the state, to try and avoid using an overall lock
186  * for the host controller as much as possible.
187  *
188  * For periodic IN endpoints, we have fifo_size and fifo_load to try
189  * and keep track of the amount of data in the periodic FIFO for each
190  * of these as we don't have a status register that tells us how much
191  * is in each of them. (note, this may actually be useless information
192  * as in shared-fifo mode periodic in acts like a single-frame packet
193  * buffer than a fifo)
194  */
195 struct dwc2_hsotg_ep {
196 	struct usb_ep           ep;
197 	struct list_head        queue;
198 	struct dwc2_hsotg       *parent;
199 	struct dwc2_hsotg_req    *req;
200 	struct dentry           *debugfs;
201 
202 	unsigned long           total_data;
203 	unsigned int            size_loaded;
204 	unsigned int            last_load;
205 	unsigned int            fifo_load;
206 	unsigned short          fifo_size;
207 	unsigned short		fifo_index;
208 
209 	unsigned char           dir_in;
210 	unsigned char           index;
211 	unsigned char           mc;
212 	unsigned char           interval;
213 
214 	unsigned int            halted:1;
215 	unsigned int            periodic:1;
216 	unsigned int            isochronous:1;
217 	unsigned int            send_zlp:1;
218 	unsigned int            target_frame;
219 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
220 	bool			frame_overrun;
221 
222 	char                    name[10];
223 };
224 
225 /**
226  * struct dwc2_hsotg_req - data transfer request
227  * @req: The USB gadget request
228  * @queue: The list of requests for the endpoint this is queued for.
229  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
230  */
231 struct dwc2_hsotg_req {
232 	struct usb_request      req;
233 	struct list_head        queue;
234 	void *saved_req_buf;
235 };
236 
237 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
238 #define call_gadget(_hs, _entry) \
239 do { \
240 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
241 		(_hs)->driver && (_hs)->driver->_entry) { \
242 		spin_unlock(&_hs->lock); \
243 		(_hs)->driver->_entry(&(_hs)->gadget); \
244 		spin_lock(&_hs->lock); \
245 	} \
246 } while (0)
247 #else
248 #define call_gadget(_hs, _entry)	do {} while (0)
249 #endif
250 
251 struct dwc2_hsotg;
252 struct dwc2_host_chan;
253 
254 /* Device States */
255 enum dwc2_lx_state {
256 	DWC2_L0,	/* On state */
257 	DWC2_L1,	/* LPM sleep state */
258 	DWC2_L2,	/* USB suspend state */
259 	DWC2_L3,	/* Off state */
260 };
261 
262 /*
263  * Gadget periodic tx fifo sizes as used by legacy driver
264  * EP0 is not included
265  */
266 #define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
267 					   768, 0, 0, 0, 0, 0, 0, 0}
268 
269 /* Gadget ep0 states */
270 enum dwc2_ep0_state {
271 	DWC2_EP0_SETUP,
272 	DWC2_EP0_DATA_IN,
273 	DWC2_EP0_DATA_OUT,
274 	DWC2_EP0_STATUS_IN,
275 	DWC2_EP0_STATUS_OUT,
276 };
277 
278 /**
279  * struct dwc2_core_params - Parameters for configuring the core
280  *
281  * @otg_cap:            Specifies the OTG capabilities.
282  *                       0 - HNP and SRP capable
283  *                       1 - SRP Only capable
284  *                       2 - No HNP/SRP capable (always available)
285  *                      Defaults to best available option (0, 1, then 2)
286  * @otg_ver:            OTG version supported
287  *                       0 - 1.3 (default)
288  *                       1 - 2.0
289  * @dma_enable:         Specifies whether to use slave or DMA mode for accessing
290  *                      the data FIFOs. The driver will automatically detect the
291  *                      value for this parameter if none is specified.
292  *                       0 - Slave (always available)
293  *                       1 - DMA (default, if available)
294  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
295  *                      address DMA mode or descriptor DMA mode for accessing
296  *                      the data FIFOs. The driver will automatically detect the
297  *                      value for this if none is specified.
298  *                       0 - Address DMA
299  *                       1 - Descriptor DMA (default, if available)
300  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
301  *                      address DMA mode or descriptor DMA mode for accessing
302  *                      the data FIFOs in Full Speed mode only. The driver
303  *                      will automatically detect the value for this if none is
304  *                      specified.
305  *                       0 - Address DMA
306  *                       1 - Descriptor DMA in FS (default, if available)
307  * @speed:              Specifies the maximum speed of operation in host and
308  *                      device mode. The actual speed depends on the speed of
309  *                      the attached device and the value of phy_type.
310  *                       0 - High Speed
311  *                           (default when phy_type is UTMI+ or ULPI)
312  *                       1 - Full Speed
313  *                           (default when phy_type is Full Speed)
314  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
315  *                       1 - Allow dynamic FIFO sizing (default, if available)
316  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
317  *                      are enabled
318  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
319  *                      dynamic FIFO sizing is enabled
320  *                       16 to 32768
321  *                      Actual maximum value is autodetected and also
322  *                      the default.
323  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
324  *                      in host mode when dynamic FIFO sizing is enabled
325  *                       16 to 32768
326  *                      Actual maximum value is autodetected and also
327  *                      the default.
328  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
329  *                      host mode when dynamic FIFO sizing is enabled
330  *                       16 to 32768
331  *                      Actual maximum value is autodetected and also
332  *                      the default.
333  * @max_transfer_size:  The maximum transfer size supported, in bytes
334  *                       2047 to 65,535
335  *                      Actual maximum value is autodetected and also
336  *                      the default.
337  * @max_packet_count:   The maximum number of packets in a transfer
338  *                       15 to 511
339  *                      Actual maximum value is autodetected and also
340  *                      the default.
341  * @host_channels:      The number of host channel registers to use
342  *                       1 to 16
343  *                      Actual maximum value is autodetected and also
344  *                      the default.
345  * @phy_type:           Specifies the type of PHY interface to use. By default,
346  *                      the driver will automatically detect the phy_type.
347  *                       0 - Full Speed Phy
348  *                       1 - UTMI+ Phy
349  *                       2 - ULPI Phy
350  *                      Defaults to best available option (2, 1, then 0)
351  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
352  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
353  *                      ULPI phy_type, this parameter indicates the data width
354  *                      between the MAC and the ULPI Wrapper.) Also, this
355  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
356  *                      parameter was set to "8 and 16 bits", meaning that the
357  *                      core has been configured to work at either data path
358  *                      width.
359  *                       8 or 16 (default 16 if available)
360  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
361  *                      data rate. This parameter is only applicable if phy_type
362  *                      is ULPI.
363  *                       0 - single data rate ULPI interface with 8 bit wide
364  *                           data bus (default)
365  *                       1 - double data rate ULPI interface with 4 bit wide
366  *                           data bus
367  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
368  *                      external supply to drive the VBus
369  *                       0 - Internal supply (default)
370  *                       1 - External supply
371  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
372  *                      speed PHY. This parameter is only applicable if phy_type
373  *                      is FS.
374  *                       0 - No (default)
375  *                       1 - Yes
376  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
377  *                       0 - No (default)
378  *                       1 - Yes
379  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
380  *                      when attached to a Full Speed or Low Speed device in
381  *                      host mode.
382  *                       0 - Don't support low power mode (default)
383  *                       1 - Support low power mode
384  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
385  *                      when connected to a Low Speed device in host
386  *                      mode. This parameter is applicable only if
387  *                      host_support_fs_ls_low_power is enabled.
388  *                       0 - 48 MHz
389  *                           (default when phy_type is UTMI+ or ULPI)
390  *                       1 - 6 MHz
391  *                           (default when phy_type is Full Speed)
392  * @ts_dline:           Enable Term Select Dline pulsing
393  *                       0 - No (default)
394  *                       1 - Yes
395  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
396  *                       0 - No (default for core < 2.92a)
397  *                       1 - Yes (default for core >= 2.92a)
398  * @ahbcfg:             This field allows the default value of the GAHBCFG
399  *                      register to be overridden
400  *                       -1         - GAHBCFG value will be set to 0x06
401  *                                    (INCR4, default)
402  *                       all others - GAHBCFG value will be overridden with
403  *                                    this value
404  *                      Not all bits can be controlled like this, the
405  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
406  *                      by the driver and are ignored in this
407  *                      configuration value.
408  * @uframe_sched:       True to enable the microframe scheduler
409  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
410  *                      Disable CONIDSTSCHNG controller interrupt in such
411  *                      case.
412  *                      0 - No (default)
413  *                      1 - Yes
414  * @hibernation:	Specifies whether the controller support hibernation.
415  *			If hibernation is enabled, the controller will enter
416  *			hibernation in both peripheral and host mode when
417  *			needed.
418  *			0 - No (default)
419  *			1 - Yes
420  *
421  * The following parameters may be specified when starting the module. These
422  * parameters define how the DWC_otg controller should be configured. A
423  * value of -1 (or any other out of range value) for any parameter means
424  * to read the value from hardware (if possible) or use the builtin
425  * default described above.
426  */
427 struct dwc2_core_params {
428 	/*
429 	 * Don't add any non-int members here, this will break
430 	 * dwc2_set_all_params!
431 	 */
432 	int otg_cap;
433 	int otg_ver;
434 	int dma_enable;
435 	int dma_desc_enable;
436 	int dma_desc_fs_enable;
437 	int speed;
438 	int enable_dynamic_fifo;
439 	int en_multiple_tx_fifo;
440 	int host_rx_fifo_size;
441 	int host_nperio_tx_fifo_size;
442 	int host_perio_tx_fifo_size;
443 	int max_transfer_size;
444 	int max_packet_count;
445 	int host_channels;
446 	int phy_type;
447 	int phy_utmi_width;
448 	int phy_ulpi_ddr;
449 	int phy_ulpi_ext_vbus;
450 	int i2c_enable;
451 	int ulpi_fs_ls;
452 	int host_support_fs_ls_low_power;
453 	int host_ls_low_power_phy_clk;
454 	int ts_dline;
455 	int reload_ctl;
456 	int ahbcfg;
457 	int uframe_sched;
458 	int external_id_pin_ctl;
459 	int hibernation;
460 };
461 
462 /**
463  * struct dwc2_hw_params - Autodetected parameters.
464  *
465  * These parameters are the various parameters read from hardware
466  * registers during initialization. They typically contain the best
467  * supported or maximum value that can be configured in the
468  * corresponding dwc2_core_params value.
469  *
470  * The values that are not in dwc2_core_params are documented below.
471  *
472  * @op_mode             Mode of Operation
473  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
474  *                       1 - SRP-Capable OTG (Host & Device)
475  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
476  *                       3 - SRP-Capable Device
477  *                       4 - Non-OTG Device
478  *                       5 - SRP-Capable Host
479  *                       6 - Non-OTG Host
480  * @arch                Architecture
481  *                       0 - Slave only
482  *                       1 - External DMA
483  *                       2 - Internal DMA
484  * @power_optimized     Are power optimizations enabled?
485  * @num_dev_ep          Number of device endpoints available
486  * @num_dev_perio_in_ep Number of device periodic IN endpoints
487  *                      available
488  * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
489  *                      Depth
490  *                       0 to 30
491  * @host_perio_tx_q_depth
492  *                      Host Mode Periodic Request Queue Depth
493  *                       2, 4 or 8
494  * @nperio_tx_q_depth
495  *                      Non-Periodic Request Queue Depth
496  *                       2, 4 or 8
497  * @hs_phy_type         High-speed PHY interface type
498  *                       0 - High-speed interface not supported
499  *                       1 - UTMI+
500  *                       2 - ULPI
501  *                       3 - UTMI+ and ULPI
502  * @fs_phy_type         Full-speed PHY interface type
503  *                       0 - Full speed interface not supported
504  *                       1 - Dedicated full speed interface
505  *                       2 - FS pins shared with UTMI+ pins
506  *                       3 - FS pins shared with ULPI pins
507  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
508  * @utmi_phy_data_width UTMI+ PHY data width
509  *                       0 - 8 bits
510  *                       1 - 16 bits
511  *                       2 - 8 or 16 bits
512  * @snpsid:             Value from SNPSID register
513  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
514  */
515 struct dwc2_hw_params {
516 	unsigned op_mode:3;
517 	unsigned arch:2;
518 	unsigned dma_desc_enable:1;
519 	unsigned dma_desc_fs_enable:1;
520 	unsigned enable_dynamic_fifo:1;
521 	unsigned en_multiple_tx_fifo:1;
522 	unsigned host_rx_fifo_size:16;
523 	unsigned host_nperio_tx_fifo_size:16;
524 	unsigned dev_nperio_tx_fifo_size:16;
525 	unsigned host_perio_tx_fifo_size:16;
526 	unsigned nperio_tx_q_depth:3;
527 	unsigned host_perio_tx_q_depth:3;
528 	unsigned dev_token_q_depth:5;
529 	unsigned max_transfer_size:26;
530 	unsigned max_packet_count:11;
531 	unsigned host_channels:5;
532 	unsigned hs_phy_type:2;
533 	unsigned fs_phy_type:2;
534 	unsigned i2c_enable:1;
535 	unsigned num_dev_ep:4;
536 	unsigned num_dev_perio_in_ep:4;
537 	unsigned total_fifo_size:16;
538 	unsigned power_optimized:1;
539 	unsigned utmi_phy_data_width:2;
540 	u32 snpsid;
541 	u32 dev_ep_dirs;
542 };
543 
544 /* Size of control and EP0 buffers */
545 #define DWC2_CTRL_BUFF_SIZE 8
546 
547 /**
548  * struct dwc2_gregs_backup - Holds global registers state before entering partial
549  * power down
550  * @gotgctl:		Backup of GOTGCTL register
551  * @gintmsk:		Backup of GINTMSK register
552  * @gahbcfg:		Backup of GAHBCFG register
553  * @gusbcfg:		Backup of GUSBCFG register
554  * @grxfsiz:		Backup of GRXFSIZ register
555  * @gnptxfsiz:		Backup of GNPTXFSIZ register
556  * @gi2cctl:		Backup of GI2CCTL register
557  * @hptxfsiz:		Backup of HPTXFSIZ register
558  * @gdfifocfg:		Backup of GDFIFOCFG register
559  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
560  * @gpwrdn:		Backup of GPWRDN register
561  */
562 struct dwc2_gregs_backup {
563 	u32 gotgctl;
564 	u32 gintmsk;
565 	u32 gahbcfg;
566 	u32 gusbcfg;
567 	u32 grxfsiz;
568 	u32 gnptxfsiz;
569 	u32 gi2cctl;
570 	u32 hptxfsiz;
571 	u32 pcgcctl;
572 	u32 gdfifocfg;
573 	u32 dtxfsiz[MAX_EPS_CHANNELS];
574 	u32 gpwrdn;
575 	bool valid;
576 };
577 
578 /**
579  * struct  dwc2_dregs_backup - Holds device registers state before entering partial
580  * power down
581  * @dcfg:		Backup of DCFG register
582  * @dctl:		Backup of DCTL register
583  * @daintmsk:		Backup of DAINTMSK register
584  * @diepmsk:		Backup of DIEPMSK register
585  * @doepmsk:		Backup of DOEPMSK register
586  * @diepctl:		Backup of DIEPCTL register
587  * @dieptsiz:		Backup of DIEPTSIZ register
588  * @diepdma:		Backup of DIEPDMA register
589  * @doepctl:		Backup of DOEPCTL register
590  * @doeptsiz:		Backup of DOEPTSIZ register
591  * @doepdma:		Backup of DOEPDMA register
592  */
593 struct dwc2_dregs_backup {
594 	u32 dcfg;
595 	u32 dctl;
596 	u32 daintmsk;
597 	u32 diepmsk;
598 	u32 doepmsk;
599 	u32 diepctl[MAX_EPS_CHANNELS];
600 	u32 dieptsiz[MAX_EPS_CHANNELS];
601 	u32 diepdma[MAX_EPS_CHANNELS];
602 	u32 doepctl[MAX_EPS_CHANNELS];
603 	u32 doeptsiz[MAX_EPS_CHANNELS];
604 	u32 doepdma[MAX_EPS_CHANNELS];
605 	bool valid;
606 };
607 
608 /**
609  * struct  dwc2_hregs_backup - Holds host registers state before entering partial
610  * power down
611  * @hcfg:		Backup of HCFG register
612  * @haintmsk:		Backup of HAINTMSK register
613  * @hcintmsk:		Backup of HCINTMSK register
614  * @hptr0:		Backup of HPTR0 register
615  * @hfir:		Backup of HFIR register
616  */
617 struct dwc2_hregs_backup {
618 	u32 hcfg;
619 	u32 haintmsk;
620 	u32 hcintmsk[MAX_EPS_CHANNELS];
621 	u32 hprt0;
622 	u32 hfir;
623 	bool valid;
624 };
625 
626 /*
627  * Constants related to high speed periodic scheduling
628  *
629  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
630  * reservation point of view it's assumed that the schedule goes right back to
631  * the beginning after the end of the schedule.
632  *
633  * What does that mean for scheduling things with a long interval?  It means
634  * we'll reserve time for them in every possible microframe that they could
635  * ever be scheduled in.  ...but we'll still only actually schedule them as
636  * often as they were requested.
637  *
638  * We keep our schedule in a "bitmap" structure.  This simplifies having
639  * to keep track of and merge intervals: we just let the bitmap code do most
640  * of the heavy lifting.  In a way scheduling is much like memory allocation.
641  *
642  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
643  * supposed to schedule for periodic transfers).  That's according to spec.
644  *
645  * Note that though we only schedule 80% of each microframe, the bitmap that we
646  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
647  * space for each uFrame).
648  *
649  * Requirements:
650  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
651  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
652  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
653  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
654  */
655 #define DWC2_US_PER_UFRAME		125
656 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
657 
658 #define DWC2_HS_SCHEDULE_UFRAMES	8
659 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
660 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
661 
662 /*
663  * Constants related to low speed scheduling
664  *
665  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
666  * so we make up a unit called a "slice" that's worth 25us.  There are 40
667  * slices in a full frame and we can schedule 36 of those (90%) for periodic
668  * transfers.
669  *
670  * Our low speed schedule can be as short as 1 frame or could be longer.  When
671  * we only schedule 1 frame it means that we'll need to reserve a time every
672  * frame even for things that only transfer very rarely, so something that runs
673  * every 2048 frames will get time reserved in every frame.  Our low speed
674  * schedule can be longer and we'll be able to handle more overlap, but that
675  * will come at increased memory cost and increased time to schedule.
676  *
677  * Note: one other advantage of a short low speed schedule is that if we mess
678  * up and miss scheduling we can jump in and use any of the slots that we
679  * happened to reserve.
680  *
681  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
682  * the schedule.  There will be one schedule per TT.
683  *
684  * Requirements:
685  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
686  */
687 #define DWC2_US_PER_SLICE	25
688 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
689 
690 #define DWC2_ROUND_US_TO_SLICE(us) \
691 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
692 				 DWC2_US_PER_SLICE)
693 
694 #define DWC2_LS_PERIODIC_US_PER_FRAME \
695 				900
696 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
697 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
698 				 DWC2_US_PER_SLICE)
699 
700 #define DWC2_LS_SCHEDULE_FRAMES	1
701 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
702 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
703 
704 /**
705  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
706  * and periodic schedules
707  *
708  * These are common for both host and peripheral modes:
709  *
710  * @dev:                The struct device pointer
711  * @regs:		Pointer to controller regs
712  * @hw_params:          Parameters that were autodetected from the
713  *                      hardware registers
714  * @core_params:	Parameters that define how the core should be configured
715  * @op_state:           The operational State, during transitions (a_host=>
716  *                      a_peripheral and b_device=>b_host) this may not match
717  *                      the core, but allows the software to determine
718  *                      transitions
719  * @dr_mode:            Requested mode of operation, one of following:
720  *                      - USB_DR_MODE_PERIPHERAL
721  *                      - USB_DR_MODE_HOST
722  *                      - USB_DR_MODE_OTG
723  * @hcd_enabled		Host mode sub-driver initialization indicator.
724  * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
725  * @ll_hw_enabled	Status of low-level hardware resources.
726  * @phy:                The otg phy transceiver structure for phy control.
727  * @uphy:               The otg phy transceiver structure for old USB phy control.
728  * @plat:               The platform specific configuration data. This can be removed once
729  *                      all SoCs support usb transceiver.
730  * @supplies:           Definition of USB power supplies
731  * @phyif:              PHY interface width
732  * @lock:		Spinlock that protects all the driver data structures
733  * @priv:		Stores a pointer to the struct usb_hcd
734  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
735  *                      transfer are in process of being queued
736  * @srp_success:        Stores status of SRP request in the case of a FS PHY
737  *                      with an I2C interface
738  * @wq_otg:             Workqueue object used for handling of some interrupts
739  * @wf_otg:             Work object for handling Connector ID Status Change
740  *                      interrupt
741  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
742  * @lx_state:           Lx state of connected device
743  * @gregs_backup: Backup of global registers during suspend
744  * @dregs_backup: Backup of device registers during suspend
745  * @hregs_backup: Backup of host registers during suspend
746  *
747  * These are for host mode:
748  *
749  * @flags:              Flags for handling root port state changes
750  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
751  *                      Transfers associated with these QHs are not currently
752  *                      assigned to a host channel.
753  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
754  *                      Transfers associated with these QHs are currently
755  *                      assigned to a host channel.
756  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
757  *                      non-periodic schedule
758  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
759  *                      list of QHs for periodic transfers that are _not_
760  *                      scheduled for the next frame. Each QH in the list has an
761  *                      interval counter that determines when it needs to be
762  *                      scheduled for execution. This scheduling mechanism
763  *                      allows only a simple calculation for periodic bandwidth
764  *                      used (i.e. must assume that all periodic transfers may
765  *                      need to execute in the same frame). However, it greatly
766  *                      simplifies scheduling and should be sufficient for the
767  *                      vast majority of OTG hosts, which need to connect to a
768  *                      small number of peripherals at one time. Items move from
769  *                      this list to periodic_sched_ready when the QH interval
770  *                      counter is 0 at SOF.
771  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
772  *                      the next frame, but have not yet been assigned to host
773  *                      channels. Items move from this list to
774  *                      periodic_sched_assigned as host channels become
775  *                      available during the current frame.
776  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
777  *                      frame that are assigned to host channels. Items move
778  *                      from this list to periodic_sched_queued as the
779  *                      transactions for the QH are queued to the DWC_otg
780  *                      controller.
781  * @periodic_sched_queued: List of periodic QHs that have been queued for
782  *                      execution. Items move from this list to either
783  *                      periodic_sched_inactive or periodic_sched_ready when the
784  *                      channel associated with the transfer is released. If the
785  *                      interval for the QH is 1, the item moves to
786  *                      periodic_sched_ready because it must be rescheduled for
787  *                      the next frame. Otherwise, the item moves to
788  *                      periodic_sched_inactive.
789  * @split_order:        List keeping track of channels doing splits, in order.
790  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
791  *                      This value is in microseconds per (micro)frame. The
792  *                      assumption is that all periodic transfers may occur in
793  *                      the same (micro)frame.
794  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
795  *                      host is in high speed mode; low speed schedules are
796  *                      stored elsewhere since we need one per TT.
797  * @frame_number:       Frame number read from the core at SOF. The value ranges
798  *                      from 0 to HFNUM_MAX_FRNUM.
799  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
800  *                      SOF enable/disable.
801  * @free_hc_list:       Free host channels in the controller. This is a list of
802  *                      struct dwc2_host_chan items.
803  * @periodic_channels:  Number of host channels assigned to periodic transfers.
804  *                      Currently assuming that there is a dedicated host
805  *                      channel for each periodic transaction and at least one
806  *                      host channel is available for non-periodic transactions.
807  * @non_periodic_channels: Number of host channels assigned to non-periodic
808  *                      transfers
809  * @available_host_channels Number of host channels available for the microframe
810  *                      scheduler to use
811  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
812  *                      Allows accessing a host channel descriptor given the
813  *                      host channel number. This is useful in interrupt
814  *                      handlers.
815  * @status_buf:         Buffer used for data received during the status phase of
816  *                      a control transfer.
817  * @status_buf_dma:     DMA address for status_buf
818  * @start_work:         Delayed work for handling host A-cable connection
819  * @reset_work:         Delayed work for handling a port reset
820  * @otg_port:           OTG port number
821  * @frame_list:         Frame list
822  * @frame_list_dma:     Frame list DMA address
823  * @frame_list_sz:      Frame list size
824  * @desc_gen_cache:     Kmem cache for generic descriptors
825  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
826  *
827  * These are for peripheral mode:
828  *
829  * @driver:             USB gadget driver
830  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
831  * @num_of_eps:         Number of available EPs (excluding EP0)
832  * @debug_root:         Root directrory for debugfs.
833  * @debug_file:         Main status file for debugfs.
834  * @debug_testmode:     Testmode status file for debugfs.
835  * @debug_fifo:         FIFO status file for debugfs.
836  * @ep0_reply:          Request used for ep0 reply.
837  * @ep0_buff:           Buffer for EP0 reply data, if needed.
838  * @ctrl_buff:          Buffer for EP0 control requests.
839  * @ctrl_req:           Request for EP0 control packets.
840  * @ep0_state:          EP0 control transfers state
841  * @test_mode:          USB test mode requested by the host
842  * @eps:                The endpoints being supplied to the gadget framework
843  * @g_using_dma:          Indicate if dma usage is enabled
844  * @g_rx_fifo_sz:         Contains rx fifo size value
845  * @g_np_g_tx_fifo_sz:      Contains Non-Periodic tx fifo size value
846  * @g_tx_fifo_sz:         Contains tx fifo size value per endpoints
847  */
848 struct dwc2_hsotg {
849 	struct device *dev;
850 	void __iomem *regs;
851 	/** Params detected from hardware */
852 	struct dwc2_hw_params hw_params;
853 	/** Params to actually use */
854 	struct dwc2_core_params *core_params;
855 	enum usb_otg_state op_state;
856 	enum usb_dr_mode dr_mode;
857 	unsigned int hcd_enabled:1;
858 	unsigned int gadget_enabled:1;
859 	unsigned int ll_hw_enabled:1;
860 
861 	struct phy *phy;
862 	struct usb_phy *uphy;
863 	struct dwc2_hsotg_plat *plat;
864 	struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
865 	u32 phyif;
866 
867 	spinlock_t lock;
868 	void *priv;
869 	int     irq;
870 	struct clk *clk;
871 
872 	unsigned int queuing_high_bandwidth:1;
873 	unsigned int srp_success:1;
874 
875 	struct workqueue_struct *wq_otg;
876 	struct work_struct wf_otg;
877 	struct timer_list wkp_timer;
878 	enum dwc2_lx_state lx_state;
879 	struct dwc2_gregs_backup gr_backup;
880 	struct dwc2_dregs_backup dr_backup;
881 	struct dwc2_hregs_backup hr_backup;
882 
883 	struct dentry *debug_root;
884 	struct debugfs_regset32 *regset;
885 
886 	/* DWC OTG HW Release versions */
887 #define DWC2_CORE_REV_2_71a	0x4f54271a
888 #define DWC2_CORE_REV_2_90a	0x4f54290a
889 #define DWC2_CORE_REV_2_92a	0x4f54292a
890 #define DWC2_CORE_REV_2_94a	0x4f54294a
891 #define DWC2_CORE_REV_3_00a	0x4f54300a
892 
893 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
894 	union dwc2_hcd_internal_flags {
895 		u32 d32;
896 		struct {
897 			unsigned port_connect_status_change:1;
898 			unsigned port_connect_status:1;
899 			unsigned port_reset_change:1;
900 			unsigned port_enable_change:1;
901 			unsigned port_suspend_change:1;
902 			unsigned port_over_current_change:1;
903 			unsigned port_l1_change:1;
904 			unsigned reserved:25;
905 		} b;
906 	} flags;
907 
908 	struct list_head non_periodic_sched_inactive;
909 	struct list_head non_periodic_sched_active;
910 	struct list_head *non_periodic_qh_ptr;
911 	struct list_head periodic_sched_inactive;
912 	struct list_head periodic_sched_ready;
913 	struct list_head periodic_sched_assigned;
914 	struct list_head periodic_sched_queued;
915 	struct list_head split_order;
916 	u16 periodic_usecs;
917 	unsigned long hs_periodic_bitmap[
918 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
919 	u16 frame_number;
920 	u16 periodic_qh_count;
921 	bool bus_suspended;
922 	bool new_connection;
923 
924 	u16 last_frame_num;
925 
926 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
927 #define FRAME_NUM_ARRAY_SIZE 1000
928 	u16 *frame_num_array;
929 	u16 *last_frame_num_array;
930 	int frame_num_idx;
931 	int dumped_frame_num_array;
932 #endif
933 
934 	struct list_head free_hc_list;
935 	int periodic_channels;
936 	int non_periodic_channels;
937 	int available_host_channels;
938 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
939 	u8 *status_buf;
940 	dma_addr_t status_buf_dma;
941 #define DWC2_HCD_STATUS_BUF_SIZE 64
942 
943 	struct delayed_work start_work;
944 	struct delayed_work reset_work;
945 	u8 otg_port;
946 	u32 *frame_list;
947 	dma_addr_t frame_list_dma;
948 	u32 frame_list_sz;
949 	struct kmem_cache *desc_gen_cache;
950 	struct kmem_cache *desc_hsisoc_cache;
951 
952 #ifdef DEBUG
953 	u32 frrem_samples;
954 	u64 frrem_accum;
955 
956 	u32 hfnum_7_samples_a;
957 	u64 hfnum_7_frrem_accum_a;
958 	u32 hfnum_0_samples_a;
959 	u64 hfnum_0_frrem_accum_a;
960 	u32 hfnum_other_samples_a;
961 	u64 hfnum_other_frrem_accum_a;
962 
963 	u32 hfnum_7_samples_b;
964 	u64 hfnum_7_frrem_accum_b;
965 	u32 hfnum_0_samples_b;
966 	u64 hfnum_0_frrem_accum_b;
967 	u32 hfnum_other_samples_b;
968 	u64 hfnum_other_frrem_accum_b;
969 #endif
970 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
971 
972 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
973 	/* Gadget structures */
974 	struct usb_gadget_driver *driver;
975 	int fifo_mem;
976 	unsigned int dedicated_fifos:1;
977 	unsigned char num_of_eps;
978 	u32 fifo_map;
979 
980 	struct usb_request *ep0_reply;
981 	struct usb_request *ctrl_req;
982 	void *ep0_buff;
983 	void *ctrl_buff;
984 	enum dwc2_ep0_state ep0_state;
985 	u8 test_mode;
986 
987 	struct usb_gadget gadget;
988 	unsigned int enabled:1;
989 	unsigned int connected:1;
990 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
991 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
992 	u32 g_using_dma;
993 	u32 g_rx_fifo_sz;
994 	u32 g_np_g_tx_fifo_sz;
995 	u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
996 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
997 };
998 
999 /* Reasons for halting a host channel */
1000 enum dwc2_halt_status {
1001 	DWC2_HC_XFER_NO_HALT_STATUS,
1002 	DWC2_HC_XFER_COMPLETE,
1003 	DWC2_HC_XFER_URB_COMPLETE,
1004 	DWC2_HC_XFER_ACK,
1005 	DWC2_HC_XFER_NAK,
1006 	DWC2_HC_XFER_NYET,
1007 	DWC2_HC_XFER_STALL,
1008 	DWC2_HC_XFER_XACT_ERR,
1009 	DWC2_HC_XFER_FRAME_OVERRUN,
1010 	DWC2_HC_XFER_BABBLE_ERR,
1011 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1012 	DWC2_HC_XFER_AHB_ERR,
1013 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1014 	DWC2_HC_XFER_URB_DEQUEUE,
1015 };
1016 
1017 /*
1018  * The following functions support initialization of the core driver component
1019  * and the DWC_otg controller
1020  */
1021 extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
1022 extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1023 extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1024 extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1025 
1026 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1027 
1028 extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1029 
1030 /*
1031  * Common core Functions.
1032  * The following functions support managing the DWC_otg controller in either
1033  * device or host mode.
1034  */
1035 extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1036 extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1037 extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1038 
1039 extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1040 extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1041 
1042 /* This function should be called on every hardware interrupt. */
1043 extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1044 
1045 /* OTG Core Parameters */
1046 
1047 /*
1048  * Specifies the OTG capabilities. The driver will automatically
1049  * detect the value for this parameter if none is specified.
1050  * 0 - HNP and SRP capable (default)
1051  * 1 - SRP Only capable
1052  * 2 - No HNP/SRP capable
1053  */
1054 extern void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
1055 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
1056 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
1057 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
1058 
1059 /*
1060  * Specifies whether to use slave or DMA mode for accessing the data
1061  * FIFOs. The driver will automatically detect the value for this
1062  * parameter if none is specified.
1063  * 0 - Slave
1064  * 1 - DMA (default, if available)
1065  */
1066 extern void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
1067 
1068 /*
1069  * When DMA mode is enabled specifies whether to use
1070  * address DMA or DMA Descritor mode for accessing the data
1071  * FIFOs in device mode. The driver will automatically detect
1072  * the value for this parameter if none is specified.
1073  * 0 - address DMA
1074  * 1 - DMA Descriptor(default, if available)
1075  */
1076 extern void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
1077 
1078 /*
1079  * When DMA mode is enabled specifies whether to use
1080  * address DMA or DMA Descritor mode with full speed devices
1081  * for accessing the data FIFOs in host mode.
1082  * 0 - address DMA
1083  * 1 - FS DMA Descriptor(default, if available)
1084  */
1085 extern void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg,
1086 					      int val);
1087 
1088 /*
1089  * Specifies the maximum speed of operation in host and device mode.
1090  * The actual speed depends on the speed of the attached device and
1091  * the value of phy_type. The actual speed depends on the speed of the
1092  * attached device.
1093  * 0 - High Speed (default)
1094  * 1 - Full Speed
1095  */
1096 extern void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
1097 #define DWC2_SPEED_PARAM_HIGH	0
1098 #define DWC2_SPEED_PARAM_FULL	1
1099 
1100 /*
1101  * Specifies whether low power mode is supported when attached
1102  * to a Full Speed or Low Speed device in host mode.
1103  *
1104  * 0 - Don't support low power mode (default)
1105  * 1 - Support low power mode
1106  */
1107 extern void dwc2_set_param_host_support_fs_ls_low_power(
1108 		struct dwc2_hsotg *hsotg, int val);
1109 
1110 /*
1111  * Specifies the PHY clock rate in low power mode when connected to a
1112  * Low Speed device in host mode. This parameter is applicable only if
1113  * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
1114  * then defaults to 6 MHZ otherwise 48 MHZ.
1115  *
1116  * 0 - 48 MHz
1117  * 1 - 6 MHz
1118  */
1119 extern void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
1120 						     int val);
1121 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ	0
1122 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ	1
1123 
1124 /*
1125  * 0 - Use cC FIFO size parameters
1126  * 1 - Allow dynamic FIFO sizing (default)
1127  */
1128 extern void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
1129 					       int val);
1130 
1131 /*
1132  * Number of 4-byte words in the Rx FIFO in host mode when dynamic
1133  * FIFO sizing is enabled.
1134  * 16 to 32768 (default 1024)
1135  */
1136 extern void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
1137 
1138 /*
1139  * Number of 4-byte words in the non-periodic Tx FIFO in host mode
1140  * when Dynamic FIFO sizing is enabled in the core.
1141  * 16 to 32768 (default 256)
1142  */
1143 extern void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1144 						    int val);
1145 
1146 /*
1147  * Number of 4-byte words in the host periodic Tx FIFO when dynamic
1148  * FIFO sizing is enabled.
1149  * 16 to 32768 (default 256)
1150  */
1151 extern void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1152 						   int val);
1153 
1154 /*
1155  * The maximum transfer size supported in bytes.
1156  * 2047 to 65,535  (default 65,535)
1157  */
1158 extern void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
1159 
1160 /*
1161  * The maximum number of packets in a transfer.
1162  * 15 to 511  (default 511)
1163  */
1164 extern void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
1165 
1166 /*
1167  * The number of host channel registers to use.
1168  * 1 to 16 (default 11)
1169  * Note: The FPGA configuration supports a maximum of 11 host channels.
1170  */
1171 extern void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
1172 
1173 /*
1174  * Specifies the type of PHY interface to use. By default, the driver
1175  * will automatically detect the phy_type.
1176  *
1177  * 0 - Full Speed PHY
1178  * 1 - UTMI+ (default)
1179  * 2 - ULPI
1180  */
1181 extern void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
1182 #define DWC2_PHY_TYPE_PARAM_FS		0
1183 #define DWC2_PHY_TYPE_PARAM_UTMI	1
1184 #define DWC2_PHY_TYPE_PARAM_ULPI	2
1185 
1186 /*
1187  * Specifies the UTMI+ Data Width. This parameter is
1188  * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
1189  * PHY_TYPE, this parameter indicates the data width between
1190  * the MAC and the ULPI Wrapper.) Also, this parameter is
1191  * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
1192  * to "8 and 16 bits", meaning that the core has been
1193  * configured to work at either data path width.
1194  *
1195  * 8 or 16 bits (default 16)
1196  */
1197 extern void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
1198 
1199 /*
1200  * Specifies whether the ULPI operates at double or single
1201  * data rate. This parameter is only applicable if PHY_TYPE is
1202  * ULPI.
1203  *
1204  * 0 - single data rate ULPI interface with 8 bit wide data
1205  * bus (default)
1206  * 1 - double data rate ULPI interface with 4 bit wide data
1207  * bus
1208  */
1209 extern void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
1210 
1211 /*
1212  * Specifies whether to use the internal or external supply to
1213  * drive the vbus with a ULPI phy.
1214  */
1215 extern void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
1216 #define DWC2_PHY_ULPI_INTERNAL_VBUS	0
1217 #define DWC2_PHY_ULPI_EXTERNAL_VBUS	1
1218 
1219 /*
1220  * Specifies whether to use the I2Cinterface for full speed PHY. This
1221  * parameter is only applicable if PHY_TYPE is FS.
1222  * 0 - No (default)
1223  * 1 - Yes
1224  */
1225 extern void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
1226 
1227 extern void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
1228 
1229 extern void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
1230 
1231 /*
1232  * Specifies whether dedicated transmit FIFOs are
1233  * enabled for non periodic IN endpoints in device mode
1234  * 0 - No
1235  * 1 - Yes
1236  */
1237 extern void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
1238 					       int val);
1239 
1240 extern void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
1241 
1242 extern void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val);
1243 
1244 extern void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
1245 
1246 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
1247 				const struct dwc2_core_params *params);
1248 
1249 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
1250 
1251 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1252 
1253 extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1254 extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1255 
1256 /*
1257  * The following functions check the controller's OTG operation mode
1258  * capability (GHWCFG2.OTG_MODE).
1259  *
1260  * These functions can be used before the internal hsotg->hw_params
1261  * are read in and cached so they always read directly from the
1262  * GHWCFG2 register.
1263  */
1264 unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1265 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1266 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1267 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1268 
1269 /*
1270  * Returns the mode of operation, host or device
1271  */
1272 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1273 {
1274 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1275 }
1276 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1277 {
1278 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1279 }
1280 
1281 /*
1282  * Dump core registers and SPRAM
1283  */
1284 extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1285 extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1286 extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1287 
1288 /*
1289  * Return OTG version - either 1.3 or 2.0
1290  */
1291 extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1292 
1293 /* Gadget defines */
1294 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1295 extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1296 extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1297 extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1298 extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1299 extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1300 		bool reset);
1301 extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1302 extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1303 extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1304 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1305 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1306 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1307 #else
1308 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1309 { return 0; }
1310 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1311 { return 0; }
1312 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1313 { return 0; }
1314 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1315 { return 0; }
1316 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1317 		bool reset) {}
1318 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1319 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1320 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1321 							int testmode)
1322 { return 0; }
1323 #define dwc2_is_device_connected(hsotg) (0)
1324 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1325 { return 0; }
1326 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1327 { return 0; }
1328 #endif
1329 
1330 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1331 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1332 extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1333 extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1334 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1335 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1336 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1337 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1338 #else
1339 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1340 { return 0; }
1341 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1342 						   int us)
1343 { return 0; }
1344 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1345 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1346 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1347 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1348 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1349 { return 0; }
1350 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1351 { return 0; }
1352 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1353 { return 0; }
1354 
1355 #endif
1356 
1357 #endif /* __DWC2_CORE_H__ */
1358