xref: /openbmc/linux/drivers/usb/dwc2/core.h (revision 3805e6a1)
1 /*
2  * core.h - DesignWare HS OTG Controller common declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #ifndef __DWC2_CORE_H__
38 #define __DWC2_CORE_H__
39 
40 #include <linux/phy/phy.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/usb/gadget.h>
43 #include <linux/usb/otg.h>
44 #include <linux/usb/phy.h>
45 #include "hw.h"
46 
47 /*
48  * Suggested defines for tracers:
49  * - no_printk:    Disable tracing
50  * - pr_info:      Print this info to the console
51  * - trace_printk: Print this info to trace buffer (good for verbose logging)
52  */
53 
54 #define DWC2_TRACE_SCHEDULER		no_printk
55 #define DWC2_TRACE_SCHEDULER_VB		no_printk
56 
57 /* Detailed scheduler tracing, but won't overwhelm console */
58 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
59 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
60 			     dev_name(hsotg->dev), ##__VA_ARGS__)
61 
62 /* Verbose scheduler tracing */
63 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
64 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
65 				dev_name(hsotg->dev), ##__VA_ARGS__)
66 
67 static inline u32 dwc2_readl(const void __iomem *addr)
68 {
69 	u32 value = __raw_readl(addr);
70 
71 	/* In order to preserve endianness __raw_* operation is used. Therefore
72 	 * a barrier is needed to ensure IO access is not re-ordered across
73 	 * reads or writes
74 	 */
75 	mb();
76 	return value;
77 }
78 
79 static inline void dwc2_writel(u32 value, void __iomem *addr)
80 {
81 	__raw_writel(value, addr);
82 
83 	/*
84 	 * In order to preserve endianness __raw_* operation is used. Therefore
85 	 * a barrier is needed to ensure IO access is not re-ordered across
86 	 * reads or writes
87 	 */
88 	mb();
89 #ifdef DWC2_LOG_WRITES
90 	pr_info("INFO:: wrote %08x to %p\n", value, addr);
91 #endif
92 }
93 
94 /* Maximum number of Endpoints/HostChannels */
95 #define MAX_EPS_CHANNELS	16
96 
97 /* dwc2-hsotg declarations */
98 static const char * const dwc2_hsotg_supply_names[] = {
99 	"vusb_d",               /* digital USB supply, 1.2V */
100 	"vusb_a",               /* analog USB supply, 1.1V */
101 };
102 
103 /*
104  * EP0_MPS_LIMIT
105  *
106  * Unfortunately there seems to be a limit of the amount of data that can
107  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
108  * packets (which practically means 1 packet and 63 bytes of data) when the
109  * MPS is set to 64.
110  *
111  * This means if we are wanting to move >127 bytes of data, we need to
112  * split the transactions up, but just doing one packet at a time does
113  * not work (this may be an implicit DATA0 PID on first packet of the
114  * transaction) and doing 2 packets is outside the controller's limits.
115  *
116  * If we try to lower the MPS size for EP0, then no transfers work properly
117  * for EP0, and the system will fail basic enumeration. As no cause for this
118  * has currently been found, we cannot support any large IN transfers for
119  * EP0.
120  */
121 #define EP0_MPS_LIMIT   64
122 
123 struct dwc2_hsotg;
124 struct dwc2_hsotg_req;
125 
126 /**
127  * struct dwc2_hsotg_ep - driver endpoint definition.
128  * @ep: The gadget layer representation of the endpoint.
129  * @name: The driver generated name for the endpoint.
130  * @queue: Queue of requests for this endpoint.
131  * @parent: Reference back to the parent device structure.
132  * @req: The current request that the endpoint is processing. This is
133  *       used to indicate an request has been loaded onto the endpoint
134  *       and has yet to be completed (maybe due to data move, or simply
135  *       awaiting an ack from the core all the data has been completed).
136  * @debugfs: File entry for debugfs file for this endpoint.
137  * @lock: State lock to protect contents of endpoint.
138  * @dir_in: Set to true if this endpoint is of the IN direction, which
139  *          means that it is sending data to the Host.
140  * @index: The index for the endpoint registers.
141  * @mc: Multi Count - number of transactions per microframe
142  * @interval - Interval for periodic endpoints
143  * @name: The name array passed to the USB core.
144  * @halted: Set if the endpoint has been halted.
145  * @periodic: Set if this is a periodic ep, such as Interrupt
146  * @isochronous: Set if this is a isochronous ep
147  * @send_zlp: Set if we need to send a zero-length packet.
148  * @total_data: The total number of data bytes done.
149  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
150  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
151  * @last_load: The offset of data for the last start of request.
152  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
153  *
154  * This is the driver's state for each registered enpoint, allowing it
155  * to keep track of transactions that need doing. Each endpoint has a
156  * lock to protect the state, to try and avoid using an overall lock
157  * for the host controller as much as possible.
158  *
159  * For periodic IN endpoints, we have fifo_size and fifo_load to try
160  * and keep track of the amount of data in the periodic FIFO for each
161  * of these as we don't have a status register that tells us how much
162  * is in each of them. (note, this may actually be useless information
163  * as in shared-fifo mode periodic in acts like a single-frame packet
164  * buffer than a fifo)
165  */
166 struct dwc2_hsotg_ep {
167 	struct usb_ep           ep;
168 	struct list_head        queue;
169 	struct dwc2_hsotg       *parent;
170 	struct dwc2_hsotg_req    *req;
171 	struct dentry           *debugfs;
172 
173 	unsigned long           total_data;
174 	unsigned int            size_loaded;
175 	unsigned int            last_load;
176 	unsigned int            fifo_load;
177 	unsigned short          fifo_size;
178 	unsigned short		fifo_index;
179 
180 	unsigned char           dir_in;
181 	unsigned char           index;
182 	unsigned char           mc;
183 	unsigned char           interval;
184 
185 	unsigned int            halted:1;
186 	unsigned int            periodic:1;
187 	unsigned int            isochronous:1;
188 	unsigned int            send_zlp:1;
189 	unsigned int            has_correct_parity:1;
190 
191 	char                    name[10];
192 };
193 
194 /**
195  * struct dwc2_hsotg_req - data transfer request
196  * @req: The USB gadget request
197  * @queue: The list of requests for the endpoint this is queued for.
198  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
199  */
200 struct dwc2_hsotg_req {
201 	struct usb_request      req;
202 	struct list_head        queue;
203 	void *saved_req_buf;
204 };
205 
206 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
207 #define call_gadget(_hs, _entry) \
208 do { \
209 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
210 		(_hs)->driver && (_hs)->driver->_entry) { \
211 		spin_unlock(&_hs->lock); \
212 		(_hs)->driver->_entry(&(_hs)->gadget); \
213 		spin_lock(&_hs->lock); \
214 	} \
215 } while (0)
216 #else
217 #define call_gadget(_hs, _entry)	do {} while (0)
218 #endif
219 
220 struct dwc2_hsotg;
221 struct dwc2_host_chan;
222 
223 /* Device States */
224 enum dwc2_lx_state {
225 	DWC2_L0,	/* On state */
226 	DWC2_L1,	/* LPM sleep state */
227 	DWC2_L2,	/* USB suspend state */
228 	DWC2_L3,	/* Off state */
229 };
230 
231 /*
232  * Gadget periodic tx fifo sizes as used by legacy driver
233  * EP0 is not included
234  */
235 #define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
236 					   768, 0, 0, 0, 0, 0, 0, 0}
237 
238 /* Gadget ep0 states */
239 enum dwc2_ep0_state {
240 	DWC2_EP0_SETUP,
241 	DWC2_EP0_DATA_IN,
242 	DWC2_EP0_DATA_OUT,
243 	DWC2_EP0_STATUS_IN,
244 	DWC2_EP0_STATUS_OUT,
245 };
246 
247 /**
248  * struct dwc2_core_params - Parameters for configuring the core
249  *
250  * @otg_cap:            Specifies the OTG capabilities.
251  *                       0 - HNP and SRP capable
252  *                       1 - SRP Only capable
253  *                       2 - No HNP/SRP capable (always available)
254  *                      Defaults to best available option (0, 1, then 2)
255  * @otg_ver:            OTG version supported
256  *                       0 - 1.3 (default)
257  *                       1 - 2.0
258  * @dma_enable:         Specifies whether to use slave or DMA mode for accessing
259  *                      the data FIFOs. The driver will automatically detect the
260  *                      value for this parameter if none is specified.
261  *                       0 - Slave (always available)
262  *                       1 - DMA (default, if available)
263  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
264  *                      address DMA mode or descriptor DMA mode for accessing
265  *                      the data FIFOs. The driver will automatically detect the
266  *                      value for this if none is specified.
267  *                       0 - Address DMA
268  *                       1 - Descriptor DMA (default, if available)
269  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
270  *                      address DMA mode or descriptor DMA mode for accessing
271  *                      the data FIFOs in Full Speed mode only. The driver
272  *                      will automatically detect the value for this if none is
273  *                      specified.
274  *                       0 - Address DMA
275  *                       1 - Descriptor DMA in FS (default, if available)
276  * @speed:              Specifies the maximum speed of operation in host and
277  *                      device mode. The actual speed depends on the speed of
278  *                      the attached device and the value of phy_type.
279  *                       0 - High Speed
280  *                           (default when phy_type is UTMI+ or ULPI)
281  *                       1 - Full Speed
282  *                           (default when phy_type is Full Speed)
283  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
284  *                       1 - Allow dynamic FIFO sizing (default, if available)
285  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
286  *                      are enabled
287  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
288  *                      dynamic FIFO sizing is enabled
289  *                       16 to 32768
290  *                      Actual maximum value is autodetected and also
291  *                      the default.
292  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
293  *                      in host mode when dynamic FIFO sizing is enabled
294  *                       16 to 32768
295  *                      Actual maximum value is autodetected and also
296  *                      the default.
297  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
298  *                      host mode when dynamic FIFO sizing is enabled
299  *                       16 to 32768
300  *                      Actual maximum value is autodetected and also
301  *                      the default.
302  * @max_transfer_size:  The maximum transfer size supported, in bytes
303  *                       2047 to 65,535
304  *                      Actual maximum value is autodetected and also
305  *                      the default.
306  * @max_packet_count:   The maximum number of packets in a transfer
307  *                       15 to 511
308  *                      Actual maximum value is autodetected and also
309  *                      the default.
310  * @host_channels:      The number of host channel registers to use
311  *                       1 to 16
312  *                      Actual maximum value is autodetected and also
313  *                      the default.
314  * @phy_type:           Specifies the type of PHY interface to use. By default,
315  *                      the driver will automatically detect the phy_type.
316  *                       0 - Full Speed Phy
317  *                       1 - UTMI+ Phy
318  *                       2 - ULPI Phy
319  *                      Defaults to best available option (2, 1, then 0)
320  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
321  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
322  *                      ULPI phy_type, this parameter indicates the data width
323  *                      between the MAC and the ULPI Wrapper.) Also, this
324  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
325  *                      parameter was set to "8 and 16 bits", meaning that the
326  *                      core has been configured to work at either data path
327  *                      width.
328  *                       8 or 16 (default 16 if available)
329  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
330  *                      data rate. This parameter is only applicable if phy_type
331  *                      is ULPI.
332  *                       0 - single data rate ULPI interface with 8 bit wide
333  *                           data bus (default)
334  *                       1 - double data rate ULPI interface with 4 bit wide
335  *                           data bus
336  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
337  *                      external supply to drive the VBus
338  *                       0 - Internal supply (default)
339  *                       1 - External supply
340  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
341  *                      speed PHY. This parameter is only applicable if phy_type
342  *                      is FS.
343  *                       0 - No (default)
344  *                       1 - Yes
345  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
346  *                       0 - No (default)
347  *                       1 - Yes
348  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
349  *                      when attached to a Full Speed or Low Speed device in
350  *                      host mode.
351  *                       0 - Don't support low power mode (default)
352  *                       1 - Support low power mode
353  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
354  *                      when connected to a Low Speed device in host
355  *                      mode. This parameter is applicable only if
356  *                      host_support_fs_ls_low_power is enabled.
357  *                       0 - 48 MHz
358  *                           (default when phy_type is UTMI+ or ULPI)
359  *                       1 - 6 MHz
360  *                           (default when phy_type is Full Speed)
361  * @ts_dline:           Enable Term Select Dline pulsing
362  *                       0 - No (default)
363  *                       1 - Yes
364  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
365  *                       0 - No (default for core < 2.92a)
366  *                       1 - Yes (default for core >= 2.92a)
367  * @ahbcfg:             This field allows the default value of the GAHBCFG
368  *                      register to be overridden
369  *                       -1         - GAHBCFG value will be set to 0x06
370  *                                    (INCR4, default)
371  *                       all others - GAHBCFG value will be overridden with
372  *                                    this value
373  *                      Not all bits can be controlled like this, the
374  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
375  *                      by the driver and are ignored in this
376  *                      configuration value.
377  * @uframe_sched:       True to enable the microframe scheduler
378  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
379  *                      Disable CONIDSTSCHNG controller interrupt in such
380  *                      case.
381  *                      0 - No (default)
382  *                      1 - Yes
383  * @hibernation:	Specifies whether the controller support hibernation.
384  *			If hibernation is enabled, the controller will enter
385  *			hibernation in both peripheral and host mode when
386  *			needed.
387  *			0 - No (default)
388  *			1 - Yes
389  *
390  * The following parameters may be specified when starting the module. These
391  * parameters define how the DWC_otg controller should be configured. A
392  * value of -1 (or any other out of range value) for any parameter means
393  * to read the value from hardware (if possible) or use the builtin
394  * default described above.
395  */
396 struct dwc2_core_params {
397 	/*
398 	 * Don't add any non-int members here, this will break
399 	 * dwc2_set_all_params!
400 	 */
401 	int otg_cap;
402 	int otg_ver;
403 	int dma_enable;
404 	int dma_desc_enable;
405 	int dma_desc_fs_enable;
406 	int speed;
407 	int enable_dynamic_fifo;
408 	int en_multiple_tx_fifo;
409 	int host_rx_fifo_size;
410 	int host_nperio_tx_fifo_size;
411 	int host_perio_tx_fifo_size;
412 	int max_transfer_size;
413 	int max_packet_count;
414 	int host_channels;
415 	int phy_type;
416 	int phy_utmi_width;
417 	int phy_ulpi_ddr;
418 	int phy_ulpi_ext_vbus;
419 	int i2c_enable;
420 	int ulpi_fs_ls;
421 	int host_support_fs_ls_low_power;
422 	int host_ls_low_power_phy_clk;
423 	int ts_dline;
424 	int reload_ctl;
425 	int ahbcfg;
426 	int uframe_sched;
427 	int external_id_pin_ctl;
428 	int hibernation;
429 };
430 
431 /**
432  * struct dwc2_hw_params - Autodetected parameters.
433  *
434  * These parameters are the various parameters read from hardware
435  * registers during initialization. They typically contain the best
436  * supported or maximum value that can be configured in the
437  * corresponding dwc2_core_params value.
438  *
439  * The values that are not in dwc2_core_params are documented below.
440  *
441  * @op_mode             Mode of Operation
442  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
443  *                       1 - SRP-Capable OTG (Host & Device)
444  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
445  *                       3 - SRP-Capable Device
446  *                       4 - Non-OTG Device
447  *                       5 - SRP-Capable Host
448  *                       6 - Non-OTG Host
449  * @arch                Architecture
450  *                       0 - Slave only
451  *                       1 - External DMA
452  *                       2 - Internal DMA
453  * @power_optimized     Are power optimizations enabled?
454  * @num_dev_ep          Number of device endpoints available
455  * @num_dev_perio_in_ep Number of device periodic IN endpoints
456  *                      available
457  * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
458  *                      Depth
459  *                       0 to 30
460  * @host_perio_tx_q_depth
461  *                      Host Mode Periodic Request Queue Depth
462  *                       2, 4 or 8
463  * @nperio_tx_q_depth
464  *                      Non-Periodic Request Queue Depth
465  *                       2, 4 or 8
466  * @hs_phy_type         High-speed PHY interface type
467  *                       0 - High-speed interface not supported
468  *                       1 - UTMI+
469  *                       2 - ULPI
470  *                       3 - UTMI+ and ULPI
471  * @fs_phy_type         Full-speed PHY interface type
472  *                       0 - Full speed interface not supported
473  *                       1 - Dedicated full speed interface
474  *                       2 - FS pins shared with UTMI+ pins
475  *                       3 - FS pins shared with ULPI pins
476  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
477  * @utmi_phy_data_width UTMI+ PHY data width
478  *                       0 - 8 bits
479  *                       1 - 16 bits
480  *                       2 - 8 or 16 bits
481  * @snpsid:             Value from SNPSID register
482  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
483  */
484 struct dwc2_hw_params {
485 	unsigned op_mode:3;
486 	unsigned arch:2;
487 	unsigned dma_desc_enable:1;
488 	unsigned dma_desc_fs_enable:1;
489 	unsigned enable_dynamic_fifo:1;
490 	unsigned en_multiple_tx_fifo:1;
491 	unsigned host_rx_fifo_size:16;
492 	unsigned host_nperio_tx_fifo_size:16;
493 	unsigned dev_nperio_tx_fifo_size:16;
494 	unsigned host_perio_tx_fifo_size:16;
495 	unsigned nperio_tx_q_depth:3;
496 	unsigned host_perio_tx_q_depth:3;
497 	unsigned dev_token_q_depth:5;
498 	unsigned max_transfer_size:26;
499 	unsigned max_packet_count:11;
500 	unsigned host_channels:5;
501 	unsigned hs_phy_type:2;
502 	unsigned fs_phy_type:2;
503 	unsigned i2c_enable:1;
504 	unsigned num_dev_ep:4;
505 	unsigned num_dev_perio_in_ep:4;
506 	unsigned total_fifo_size:16;
507 	unsigned power_optimized:1;
508 	unsigned utmi_phy_data_width:2;
509 	u32 snpsid;
510 	u32 dev_ep_dirs;
511 };
512 
513 /* Size of control and EP0 buffers */
514 #define DWC2_CTRL_BUFF_SIZE 8
515 
516 /**
517  * struct dwc2_gregs_backup - Holds global registers state before entering partial
518  * power down
519  * @gotgctl:		Backup of GOTGCTL register
520  * @gintmsk:		Backup of GINTMSK register
521  * @gahbcfg:		Backup of GAHBCFG register
522  * @gusbcfg:		Backup of GUSBCFG register
523  * @grxfsiz:		Backup of GRXFSIZ register
524  * @gnptxfsiz:		Backup of GNPTXFSIZ register
525  * @gi2cctl:		Backup of GI2CCTL register
526  * @hptxfsiz:		Backup of HPTXFSIZ register
527  * @gdfifocfg:		Backup of GDFIFOCFG register
528  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
529  * @gpwrdn:		Backup of GPWRDN register
530  */
531 struct dwc2_gregs_backup {
532 	u32 gotgctl;
533 	u32 gintmsk;
534 	u32 gahbcfg;
535 	u32 gusbcfg;
536 	u32 grxfsiz;
537 	u32 gnptxfsiz;
538 	u32 gi2cctl;
539 	u32 hptxfsiz;
540 	u32 pcgcctl;
541 	u32 gdfifocfg;
542 	u32 dtxfsiz[MAX_EPS_CHANNELS];
543 	u32 gpwrdn;
544 	bool valid;
545 };
546 
547 /**
548  * struct  dwc2_dregs_backup - Holds device registers state before entering partial
549  * power down
550  * @dcfg:		Backup of DCFG register
551  * @dctl:		Backup of DCTL register
552  * @daintmsk:		Backup of DAINTMSK register
553  * @diepmsk:		Backup of DIEPMSK register
554  * @doepmsk:		Backup of DOEPMSK register
555  * @diepctl:		Backup of DIEPCTL register
556  * @dieptsiz:		Backup of DIEPTSIZ register
557  * @diepdma:		Backup of DIEPDMA register
558  * @doepctl:		Backup of DOEPCTL register
559  * @doeptsiz:		Backup of DOEPTSIZ register
560  * @doepdma:		Backup of DOEPDMA register
561  */
562 struct dwc2_dregs_backup {
563 	u32 dcfg;
564 	u32 dctl;
565 	u32 daintmsk;
566 	u32 diepmsk;
567 	u32 doepmsk;
568 	u32 diepctl[MAX_EPS_CHANNELS];
569 	u32 dieptsiz[MAX_EPS_CHANNELS];
570 	u32 diepdma[MAX_EPS_CHANNELS];
571 	u32 doepctl[MAX_EPS_CHANNELS];
572 	u32 doeptsiz[MAX_EPS_CHANNELS];
573 	u32 doepdma[MAX_EPS_CHANNELS];
574 	bool valid;
575 };
576 
577 /**
578  * struct  dwc2_hregs_backup - Holds host registers state before entering partial
579  * power down
580  * @hcfg:		Backup of HCFG register
581  * @haintmsk:		Backup of HAINTMSK register
582  * @hcintmsk:		Backup of HCINTMSK register
583  * @hptr0:		Backup of HPTR0 register
584  * @hfir:		Backup of HFIR register
585  */
586 struct dwc2_hregs_backup {
587 	u32 hcfg;
588 	u32 haintmsk;
589 	u32 hcintmsk[MAX_EPS_CHANNELS];
590 	u32 hprt0;
591 	u32 hfir;
592 	bool valid;
593 };
594 
595 /*
596  * Constants related to high speed periodic scheduling
597  *
598  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
599  * reservation point of view it's assumed that the schedule goes right back to
600  * the beginning after the end of the schedule.
601  *
602  * What does that mean for scheduling things with a long interval?  It means
603  * we'll reserve time for them in every possible microframe that they could
604  * ever be scheduled in.  ...but we'll still only actually schedule them as
605  * often as they were requested.
606  *
607  * We keep our schedule in a "bitmap" structure.  This simplifies having
608  * to keep track of and merge intervals: we just let the bitmap code do most
609  * of the heavy lifting.  In a way scheduling is much like memory allocation.
610  *
611  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
612  * supposed to schedule for periodic transfers).  That's according to spec.
613  *
614  * Note that though we only schedule 80% of each microframe, the bitmap that we
615  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
616  * space for each uFrame).
617  *
618  * Requirements:
619  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
620  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
621  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
622  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
623  */
624 #define DWC2_US_PER_UFRAME		125
625 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
626 
627 #define DWC2_HS_SCHEDULE_UFRAMES	8
628 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
629 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
630 
631 /*
632  * Constants related to low speed scheduling
633  *
634  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
635  * so we make up a unit called a "slice" that's worth 25us.  There are 40
636  * slices in a full frame and we can schedule 36 of those (90%) for periodic
637  * transfers.
638  *
639  * Our low speed schedule can be as short as 1 frame or could be longer.  When
640  * we only schedule 1 frame it means that we'll need to reserve a time every
641  * frame even for things that only transfer very rarely, so something that runs
642  * every 2048 frames will get time reserved in every frame.  Our low speed
643  * schedule can be longer and we'll be able to handle more overlap, but that
644  * will come at increased memory cost and increased time to schedule.
645  *
646  * Note: one other advantage of a short low speed schedule is that if we mess
647  * up and miss scheduling we can jump in and use any of the slots that we
648  * happened to reserve.
649  *
650  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
651  * the schedule.  There will be one schedule per TT.
652  *
653  * Requirements:
654  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
655  */
656 #define DWC2_US_PER_SLICE	25
657 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
658 
659 #define DWC2_ROUND_US_TO_SLICE(us) \
660 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
661 				 DWC2_US_PER_SLICE)
662 
663 #define DWC2_LS_PERIODIC_US_PER_FRAME \
664 				900
665 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
666 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
667 				 DWC2_US_PER_SLICE)
668 
669 #define DWC2_LS_SCHEDULE_FRAMES	1
670 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
671 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
672 
673 /**
674  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
675  * and periodic schedules
676  *
677  * These are common for both host and peripheral modes:
678  *
679  * @dev:                The struct device pointer
680  * @regs:		Pointer to controller regs
681  * @hw_params:          Parameters that were autodetected from the
682  *                      hardware registers
683  * @core_params:	Parameters that define how the core should be configured
684  * @op_state:           The operational State, during transitions (a_host=>
685  *                      a_peripheral and b_device=>b_host) this may not match
686  *                      the core, but allows the software to determine
687  *                      transitions
688  * @dr_mode:            Requested mode of operation, one of following:
689  *                      - USB_DR_MODE_PERIPHERAL
690  *                      - USB_DR_MODE_HOST
691  *                      - USB_DR_MODE_OTG
692  * @hcd_enabled		Host mode sub-driver initialization indicator.
693  * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
694  * @ll_hw_enabled	Status of low-level hardware resources.
695  * @phy:                The otg phy transceiver structure for phy control.
696  * @uphy:               The otg phy transceiver structure for old USB phy control.
697  * @plat:               The platform specific configuration data. This can be removed once
698  *                      all SoCs support usb transceiver.
699  * @supplies:           Definition of USB power supplies
700  * @phyif:              PHY interface width
701  * @lock:		Spinlock that protects all the driver data structures
702  * @priv:		Stores a pointer to the struct usb_hcd
703  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
704  *                      transfer are in process of being queued
705  * @srp_success:        Stores status of SRP request in the case of a FS PHY
706  *                      with an I2C interface
707  * @wq_otg:             Workqueue object used for handling of some interrupts
708  * @wf_otg:             Work object for handling Connector ID Status Change
709  *                      interrupt
710  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
711  * @lx_state:           Lx state of connected device
712  * @gregs_backup: Backup of global registers during suspend
713  * @dregs_backup: Backup of device registers during suspend
714  * @hregs_backup: Backup of host registers during suspend
715  *
716  * These are for host mode:
717  *
718  * @flags:              Flags for handling root port state changes
719  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
720  *                      Transfers associated with these QHs are not currently
721  *                      assigned to a host channel.
722  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
723  *                      Transfers associated with these QHs are currently
724  *                      assigned to a host channel.
725  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
726  *                      non-periodic schedule
727  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
728  *                      list of QHs for periodic transfers that are _not_
729  *                      scheduled for the next frame. Each QH in the list has an
730  *                      interval counter that determines when it needs to be
731  *                      scheduled for execution. This scheduling mechanism
732  *                      allows only a simple calculation for periodic bandwidth
733  *                      used (i.e. must assume that all periodic transfers may
734  *                      need to execute in the same frame). However, it greatly
735  *                      simplifies scheduling and should be sufficient for the
736  *                      vast majority of OTG hosts, which need to connect to a
737  *                      small number of peripherals at one time. Items move from
738  *                      this list to periodic_sched_ready when the QH interval
739  *                      counter is 0 at SOF.
740  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
741  *                      the next frame, but have not yet been assigned to host
742  *                      channels. Items move from this list to
743  *                      periodic_sched_assigned as host channels become
744  *                      available during the current frame.
745  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
746  *                      frame that are assigned to host channels. Items move
747  *                      from this list to periodic_sched_queued as the
748  *                      transactions for the QH are queued to the DWC_otg
749  *                      controller.
750  * @periodic_sched_queued: List of periodic QHs that have been queued for
751  *                      execution. Items move from this list to either
752  *                      periodic_sched_inactive or periodic_sched_ready when the
753  *                      channel associated with the transfer is released. If the
754  *                      interval for the QH is 1, the item moves to
755  *                      periodic_sched_ready because it must be rescheduled for
756  *                      the next frame. Otherwise, the item moves to
757  *                      periodic_sched_inactive.
758  * @split_order:        List keeping track of channels doing splits, in order.
759  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
760  *                      This value is in microseconds per (micro)frame. The
761  *                      assumption is that all periodic transfers may occur in
762  *                      the same (micro)frame.
763  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
764  *                      host is in high speed mode; low speed schedules are
765  *                      stored elsewhere since we need one per TT.
766  * @frame_number:       Frame number read from the core at SOF. The value ranges
767  *                      from 0 to HFNUM_MAX_FRNUM.
768  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
769  *                      SOF enable/disable.
770  * @free_hc_list:       Free host channels in the controller. This is a list of
771  *                      struct dwc2_host_chan items.
772  * @periodic_channels:  Number of host channels assigned to periodic transfers.
773  *                      Currently assuming that there is a dedicated host
774  *                      channel for each periodic transaction and at least one
775  *                      host channel is available for non-periodic transactions.
776  * @non_periodic_channels: Number of host channels assigned to non-periodic
777  *                      transfers
778  * @available_host_channels Number of host channels available for the microframe
779  *                      scheduler to use
780  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
781  *                      Allows accessing a host channel descriptor given the
782  *                      host channel number. This is useful in interrupt
783  *                      handlers.
784  * @status_buf:         Buffer used for data received during the status phase of
785  *                      a control transfer.
786  * @status_buf_dma:     DMA address for status_buf
787  * @start_work:         Delayed work for handling host A-cable connection
788  * @reset_work:         Delayed work for handling a port reset
789  * @otg_port:           OTG port number
790  * @frame_list:         Frame list
791  * @frame_list_dma:     Frame list DMA address
792  * @frame_list_sz:      Frame list size
793  * @desc_gen_cache:     Kmem cache for generic descriptors
794  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
795  *
796  * These are for peripheral mode:
797  *
798  * @driver:             USB gadget driver
799  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
800  * @num_of_eps:         Number of available EPs (excluding EP0)
801  * @debug_root:         Root directrory for debugfs.
802  * @debug_file:         Main status file for debugfs.
803  * @debug_testmode:     Testmode status file for debugfs.
804  * @debug_fifo:         FIFO status file for debugfs.
805  * @ep0_reply:          Request used for ep0 reply.
806  * @ep0_buff:           Buffer for EP0 reply data, if needed.
807  * @ctrl_buff:          Buffer for EP0 control requests.
808  * @ctrl_req:           Request for EP0 control packets.
809  * @ep0_state:          EP0 control transfers state
810  * @test_mode:          USB test mode requested by the host
811  * @eps:                The endpoints being supplied to the gadget framework
812  * @g_using_dma:          Indicate if dma usage is enabled
813  * @g_rx_fifo_sz:         Contains rx fifo size value
814  * @g_np_g_tx_fifo_sz:      Contains Non-Periodic tx fifo size value
815  * @g_tx_fifo_sz:         Contains tx fifo size value per endpoints
816  */
817 struct dwc2_hsotg {
818 	struct device *dev;
819 	void __iomem *regs;
820 	/** Params detected from hardware */
821 	struct dwc2_hw_params hw_params;
822 	/** Params to actually use */
823 	struct dwc2_core_params *core_params;
824 	enum usb_otg_state op_state;
825 	enum usb_dr_mode dr_mode;
826 	unsigned int hcd_enabled:1;
827 	unsigned int gadget_enabled:1;
828 	unsigned int ll_hw_enabled:1;
829 
830 	struct phy *phy;
831 	struct usb_phy *uphy;
832 	struct dwc2_hsotg_plat *plat;
833 	struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
834 	u32 phyif;
835 
836 	spinlock_t lock;
837 	void *priv;
838 	int     irq;
839 	struct clk *clk;
840 
841 	unsigned int queuing_high_bandwidth:1;
842 	unsigned int srp_success:1;
843 
844 	struct workqueue_struct *wq_otg;
845 	struct work_struct wf_otg;
846 	struct timer_list wkp_timer;
847 	enum dwc2_lx_state lx_state;
848 	struct dwc2_gregs_backup gr_backup;
849 	struct dwc2_dregs_backup dr_backup;
850 	struct dwc2_hregs_backup hr_backup;
851 
852 	struct dentry *debug_root;
853 	struct debugfs_regset32 *regset;
854 
855 	/* DWC OTG HW Release versions */
856 #define DWC2_CORE_REV_2_71a	0x4f54271a
857 #define DWC2_CORE_REV_2_90a	0x4f54290a
858 #define DWC2_CORE_REV_2_92a	0x4f54292a
859 #define DWC2_CORE_REV_2_94a	0x4f54294a
860 #define DWC2_CORE_REV_3_00a	0x4f54300a
861 
862 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
863 	union dwc2_hcd_internal_flags {
864 		u32 d32;
865 		struct {
866 			unsigned port_connect_status_change:1;
867 			unsigned port_connect_status:1;
868 			unsigned port_reset_change:1;
869 			unsigned port_enable_change:1;
870 			unsigned port_suspend_change:1;
871 			unsigned port_over_current_change:1;
872 			unsigned port_l1_change:1;
873 			unsigned reserved:25;
874 		} b;
875 	} flags;
876 
877 	struct list_head non_periodic_sched_inactive;
878 	struct list_head non_periodic_sched_active;
879 	struct list_head *non_periodic_qh_ptr;
880 	struct list_head periodic_sched_inactive;
881 	struct list_head periodic_sched_ready;
882 	struct list_head periodic_sched_assigned;
883 	struct list_head periodic_sched_queued;
884 	struct list_head split_order;
885 	u16 periodic_usecs;
886 	unsigned long hs_periodic_bitmap[
887 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
888 	u16 frame_number;
889 	u16 periodic_qh_count;
890 	bool bus_suspended;
891 	bool new_connection;
892 
893 	u16 last_frame_num;
894 
895 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
896 #define FRAME_NUM_ARRAY_SIZE 1000
897 	u16 *frame_num_array;
898 	u16 *last_frame_num_array;
899 	int frame_num_idx;
900 	int dumped_frame_num_array;
901 #endif
902 
903 	struct list_head free_hc_list;
904 	int periodic_channels;
905 	int non_periodic_channels;
906 	int available_host_channels;
907 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
908 	u8 *status_buf;
909 	dma_addr_t status_buf_dma;
910 #define DWC2_HCD_STATUS_BUF_SIZE 64
911 
912 	struct delayed_work start_work;
913 	struct delayed_work reset_work;
914 	u8 otg_port;
915 	u32 *frame_list;
916 	dma_addr_t frame_list_dma;
917 	u32 frame_list_sz;
918 	struct kmem_cache *desc_gen_cache;
919 	struct kmem_cache *desc_hsisoc_cache;
920 
921 #ifdef DEBUG
922 	u32 frrem_samples;
923 	u64 frrem_accum;
924 
925 	u32 hfnum_7_samples_a;
926 	u64 hfnum_7_frrem_accum_a;
927 	u32 hfnum_0_samples_a;
928 	u64 hfnum_0_frrem_accum_a;
929 	u32 hfnum_other_samples_a;
930 	u64 hfnum_other_frrem_accum_a;
931 
932 	u32 hfnum_7_samples_b;
933 	u64 hfnum_7_frrem_accum_b;
934 	u32 hfnum_0_samples_b;
935 	u64 hfnum_0_frrem_accum_b;
936 	u32 hfnum_other_samples_b;
937 	u64 hfnum_other_frrem_accum_b;
938 #endif
939 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
940 
941 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
942 	/* Gadget structures */
943 	struct usb_gadget_driver *driver;
944 	int fifo_mem;
945 	unsigned int dedicated_fifos:1;
946 	unsigned char num_of_eps;
947 	u32 fifo_map;
948 
949 	struct usb_request *ep0_reply;
950 	struct usb_request *ctrl_req;
951 	void *ep0_buff;
952 	void *ctrl_buff;
953 	enum dwc2_ep0_state ep0_state;
954 	u8 test_mode;
955 
956 	struct usb_gadget gadget;
957 	unsigned int enabled:1;
958 	unsigned int connected:1;
959 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
960 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
961 	u32 g_using_dma;
962 	u32 g_rx_fifo_sz;
963 	u32 g_np_g_tx_fifo_sz;
964 	u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
965 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
966 };
967 
968 /* Reasons for halting a host channel */
969 enum dwc2_halt_status {
970 	DWC2_HC_XFER_NO_HALT_STATUS,
971 	DWC2_HC_XFER_COMPLETE,
972 	DWC2_HC_XFER_URB_COMPLETE,
973 	DWC2_HC_XFER_ACK,
974 	DWC2_HC_XFER_NAK,
975 	DWC2_HC_XFER_NYET,
976 	DWC2_HC_XFER_STALL,
977 	DWC2_HC_XFER_XACT_ERR,
978 	DWC2_HC_XFER_FRAME_OVERRUN,
979 	DWC2_HC_XFER_BABBLE_ERR,
980 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
981 	DWC2_HC_XFER_AHB_ERR,
982 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
983 	DWC2_HC_XFER_URB_DEQUEUE,
984 };
985 
986 /*
987  * The following functions support initialization of the core driver component
988  * and the DWC_otg controller
989  */
990 extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
991 extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
992 extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
993 extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
994 
995 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
996 
997 extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
998 
999 /*
1000  * Common core Functions.
1001  * The following functions support managing the DWC_otg controller in either
1002  * device or host mode.
1003  */
1004 extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1005 extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1006 extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1007 
1008 extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1009 extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1010 
1011 /* This function should be called on every hardware interrupt. */
1012 extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1013 
1014 /* OTG Core Parameters */
1015 
1016 /*
1017  * Specifies the OTG capabilities. The driver will automatically
1018  * detect the value for this parameter if none is specified.
1019  * 0 - HNP and SRP capable (default)
1020  * 1 - SRP Only capable
1021  * 2 - No HNP/SRP capable
1022  */
1023 extern void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
1024 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
1025 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
1026 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
1027 
1028 /*
1029  * Specifies whether to use slave or DMA mode for accessing the data
1030  * FIFOs. The driver will automatically detect the value for this
1031  * parameter if none is specified.
1032  * 0 - Slave
1033  * 1 - DMA (default, if available)
1034  */
1035 extern void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
1036 
1037 /*
1038  * When DMA mode is enabled specifies whether to use
1039  * address DMA or DMA Descritor mode for accessing the data
1040  * FIFOs in device mode. The driver will automatically detect
1041  * the value for this parameter if none is specified.
1042  * 0 - address DMA
1043  * 1 - DMA Descriptor(default, if available)
1044  */
1045 extern void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
1046 
1047 /*
1048  * When DMA mode is enabled specifies whether to use
1049  * address DMA or DMA Descritor mode with full speed devices
1050  * for accessing the data FIFOs in host mode.
1051  * 0 - address DMA
1052  * 1 - FS DMA Descriptor(default, if available)
1053  */
1054 extern void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg,
1055 					      int val);
1056 
1057 /*
1058  * Specifies the maximum speed of operation in host and device mode.
1059  * The actual speed depends on the speed of the attached device and
1060  * the value of phy_type. The actual speed depends on the speed of the
1061  * attached device.
1062  * 0 - High Speed (default)
1063  * 1 - Full Speed
1064  */
1065 extern void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
1066 #define DWC2_SPEED_PARAM_HIGH	0
1067 #define DWC2_SPEED_PARAM_FULL	1
1068 
1069 /*
1070  * Specifies whether low power mode is supported when attached
1071  * to a Full Speed or Low Speed device in host mode.
1072  *
1073  * 0 - Don't support low power mode (default)
1074  * 1 - Support low power mode
1075  */
1076 extern void dwc2_set_param_host_support_fs_ls_low_power(
1077 		struct dwc2_hsotg *hsotg, int val);
1078 
1079 /*
1080  * Specifies the PHY clock rate in low power mode when connected to a
1081  * Low Speed device in host mode. This parameter is applicable only if
1082  * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
1083  * then defaults to 6 MHZ otherwise 48 MHZ.
1084  *
1085  * 0 - 48 MHz
1086  * 1 - 6 MHz
1087  */
1088 extern void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
1089 						     int val);
1090 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ	0
1091 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ	1
1092 
1093 /*
1094  * 0 - Use cC FIFO size parameters
1095  * 1 - Allow dynamic FIFO sizing (default)
1096  */
1097 extern void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
1098 					       int val);
1099 
1100 /*
1101  * Number of 4-byte words in the Rx FIFO in host mode when dynamic
1102  * FIFO sizing is enabled.
1103  * 16 to 32768 (default 1024)
1104  */
1105 extern void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
1106 
1107 /*
1108  * Number of 4-byte words in the non-periodic Tx FIFO in host mode
1109  * when Dynamic FIFO sizing is enabled in the core.
1110  * 16 to 32768 (default 256)
1111  */
1112 extern void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1113 						    int val);
1114 
1115 /*
1116  * Number of 4-byte words in the host periodic Tx FIFO when dynamic
1117  * FIFO sizing is enabled.
1118  * 16 to 32768 (default 256)
1119  */
1120 extern void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1121 						   int val);
1122 
1123 /*
1124  * The maximum transfer size supported in bytes.
1125  * 2047 to 65,535  (default 65,535)
1126  */
1127 extern void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
1128 
1129 /*
1130  * The maximum number of packets in a transfer.
1131  * 15 to 511  (default 511)
1132  */
1133 extern void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
1134 
1135 /*
1136  * The number of host channel registers to use.
1137  * 1 to 16 (default 11)
1138  * Note: The FPGA configuration supports a maximum of 11 host channels.
1139  */
1140 extern void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
1141 
1142 /*
1143  * Specifies the type of PHY interface to use. By default, the driver
1144  * will automatically detect the phy_type.
1145  *
1146  * 0 - Full Speed PHY
1147  * 1 - UTMI+ (default)
1148  * 2 - ULPI
1149  */
1150 extern void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
1151 #define DWC2_PHY_TYPE_PARAM_FS		0
1152 #define DWC2_PHY_TYPE_PARAM_UTMI	1
1153 #define DWC2_PHY_TYPE_PARAM_ULPI	2
1154 
1155 /*
1156  * Specifies the UTMI+ Data Width. This parameter is
1157  * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
1158  * PHY_TYPE, this parameter indicates the data width between
1159  * the MAC and the ULPI Wrapper.) Also, this parameter is
1160  * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
1161  * to "8 and 16 bits", meaning that the core has been
1162  * configured to work at either data path width.
1163  *
1164  * 8 or 16 bits (default 16)
1165  */
1166 extern void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
1167 
1168 /*
1169  * Specifies whether the ULPI operates at double or single
1170  * data rate. This parameter is only applicable if PHY_TYPE is
1171  * ULPI.
1172  *
1173  * 0 - single data rate ULPI interface with 8 bit wide data
1174  * bus (default)
1175  * 1 - double data rate ULPI interface with 4 bit wide data
1176  * bus
1177  */
1178 extern void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
1179 
1180 /*
1181  * Specifies whether to use the internal or external supply to
1182  * drive the vbus with a ULPI phy.
1183  */
1184 extern void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
1185 #define DWC2_PHY_ULPI_INTERNAL_VBUS	0
1186 #define DWC2_PHY_ULPI_EXTERNAL_VBUS	1
1187 
1188 /*
1189  * Specifies whether to use the I2Cinterface for full speed PHY. This
1190  * parameter is only applicable if PHY_TYPE is FS.
1191  * 0 - No (default)
1192  * 1 - Yes
1193  */
1194 extern void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
1195 
1196 extern void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
1197 
1198 extern void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
1199 
1200 /*
1201  * Specifies whether dedicated transmit FIFOs are
1202  * enabled for non periodic IN endpoints in device mode
1203  * 0 - No
1204  * 1 - Yes
1205  */
1206 extern void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
1207 					       int val);
1208 
1209 extern void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
1210 
1211 extern void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val);
1212 
1213 extern void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
1214 
1215 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
1216 				const struct dwc2_core_params *params);
1217 
1218 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
1219 
1220 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1221 
1222 extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1223 extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1224 
1225 /*
1226  * The following functions check the controller's OTG operation mode
1227  * capability (GHWCFG2.OTG_MODE).
1228  *
1229  * These functions can be used before the internal hsotg->hw_params
1230  * are read in and cached so they always read directly from the
1231  * GHWCFG2 register.
1232  */
1233 unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1234 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1235 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1236 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1237 
1238 /*
1239  * Returns the mode of operation, host or device
1240  */
1241 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1242 {
1243 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1244 }
1245 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1246 {
1247 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1248 }
1249 
1250 /*
1251  * Dump core registers and SPRAM
1252  */
1253 extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1254 extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1255 extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1256 
1257 /*
1258  * Return OTG version - either 1.3 or 2.0
1259  */
1260 extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1261 
1262 /* Gadget defines */
1263 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1264 extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1265 extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1266 extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1267 extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1268 extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1269 		bool reset);
1270 extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1271 extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1272 extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1273 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1274 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1275 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1276 #else
1277 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1278 { return 0; }
1279 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1280 { return 0; }
1281 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1282 { return 0; }
1283 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1284 { return 0; }
1285 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1286 		bool reset) {}
1287 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1288 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1289 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1290 							int testmode)
1291 { return 0; }
1292 #define dwc2_is_device_connected(hsotg) (0)
1293 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1294 { return 0; }
1295 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1296 { return 0; }
1297 #endif
1298 
1299 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1300 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1301 extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1302 extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1303 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1304 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1305 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1306 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1307 #else
1308 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1309 { return 0; }
1310 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1311 						   int us)
1312 { return 0; }
1313 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1314 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1315 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1316 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1317 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1318 { return 0; }
1319 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1320 { return 0; }
1321 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1322 { return 0; }
1323 
1324 #endif
1325 
1326 #endif /* __DWC2_CORE_H__ */
1327