1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */ 2 /* 3 * core.h - DesignWare HS OTG Controller common declarations 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The names of the above-listed copyright holders may not be used 17 * to endorse or promote products derived from this software without 18 * specific prior written permission. 19 * 20 * ALTERNATIVELY, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any 23 * later version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #ifndef __DWC2_CORE_H__ 39 #define __DWC2_CORE_H__ 40 41 #include <linux/acpi.h> 42 #include <linux/phy/phy.h> 43 #include <linux/regulator/consumer.h> 44 #include <linux/usb/gadget.h> 45 #include <linux/usb/otg.h> 46 #include <linux/usb/phy.h> 47 #include "hw.h" 48 49 /* 50 * Suggested defines for tracers: 51 * - no_printk: Disable tracing 52 * - pr_info: Print this info to the console 53 * - trace_printk: Print this info to trace buffer (good for verbose logging) 54 */ 55 56 #define DWC2_TRACE_SCHEDULER no_printk 57 #define DWC2_TRACE_SCHEDULER_VB no_printk 58 59 /* Detailed scheduler tracing, but won't overwhelm console */ 60 #define dwc2_sch_dbg(hsotg, fmt, ...) \ 61 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \ 62 dev_name(hsotg->dev), ##__VA_ARGS__) 63 64 /* Verbose scheduler tracing */ 65 #define dwc2_sch_vdbg(hsotg, fmt, ...) \ 66 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \ 67 dev_name(hsotg->dev), ##__VA_ARGS__) 68 69 /* Maximum number of Endpoints/HostChannels */ 70 #define MAX_EPS_CHANNELS 16 71 72 /* dwc2-hsotg declarations */ 73 static const char * const dwc2_hsotg_supply_names[] = { 74 "vusb_d", /* digital USB supply, 1.2V */ 75 "vusb_a", /* analog USB supply, 1.1V */ 76 }; 77 78 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names) 79 80 /* 81 * EP0_MPS_LIMIT 82 * 83 * Unfortunately there seems to be a limit of the amount of data that can 84 * be transferred by IN transactions on EP0. This is either 127 bytes or 3 85 * packets (which practically means 1 packet and 63 bytes of data) when the 86 * MPS is set to 64. 87 * 88 * This means if we are wanting to move >127 bytes of data, we need to 89 * split the transactions up, but just doing one packet at a time does 90 * not work (this may be an implicit DATA0 PID on first packet of the 91 * transaction) and doing 2 packets is outside the controller's limits. 92 * 93 * If we try to lower the MPS size for EP0, then no transfers work properly 94 * for EP0, and the system will fail basic enumeration. As no cause for this 95 * has currently been found, we cannot support any large IN transfers for 96 * EP0. 97 */ 98 #define EP0_MPS_LIMIT 64 99 100 struct dwc2_hsotg; 101 struct dwc2_hsotg_req; 102 103 /** 104 * struct dwc2_hsotg_ep - driver endpoint definition. 105 * @ep: The gadget layer representation of the endpoint. 106 * @name: The driver generated name for the endpoint. 107 * @queue: Queue of requests for this endpoint. 108 * @parent: Reference back to the parent device structure. 109 * @req: The current request that the endpoint is processing. This is 110 * used to indicate an request has been loaded onto the endpoint 111 * and has yet to be completed (maybe due to data move, or simply 112 * awaiting an ack from the core all the data has been completed). 113 * @debugfs: File entry for debugfs file for this endpoint. 114 * @dir_in: Set to true if this endpoint is of the IN direction, which 115 * means that it is sending data to the Host. 116 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped. 117 * @index: The index for the endpoint registers. 118 * @mc: Multi Count - number of transactions per microframe 119 * @interval: Interval for periodic endpoints, in frames or microframes. 120 * @name: The name array passed to the USB core. 121 * @halted: Set if the endpoint has been halted. 122 * @periodic: Set if this is a periodic ep, such as Interrupt 123 * @isochronous: Set if this is a isochronous ep 124 * @send_zlp: Set if we need to send a zero-length packet. 125 * @wedged: Set if ep is wedged. 126 * @desc_list_dma: The DMA address of descriptor chain currently in use. 127 * @desc_list: Pointer to descriptor DMA chain head currently in use. 128 * @desc_count: Count of entries within the DMA descriptor chain of EP. 129 * @next_desc: index of next free descriptor in the ISOC chain under SW control. 130 * @compl_desc: index of next descriptor to be completed by xFerComplete 131 * @total_data: The total number of data bytes done. 132 * @fifo_size: The size of the FIFO (for periodic IN endpoints) 133 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0. 134 * @fifo_load: The amount of data loaded into the FIFO (periodic IN) 135 * @last_load: The offset of data for the last start of request. 136 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN 137 * @target_frame: Targeted frame num to setup next ISOC transfer 138 * @frame_overrun: Indicates SOF number overrun in DSTS 139 * 140 * This is the driver's state for each registered endpoint, allowing it 141 * to keep track of transactions that need doing. Each endpoint has a 142 * lock to protect the state, to try and avoid using an overall lock 143 * for the host controller as much as possible. 144 * 145 * For periodic IN endpoints, we have fifo_size and fifo_load to try 146 * and keep track of the amount of data in the periodic FIFO for each 147 * of these as we don't have a status register that tells us how much 148 * is in each of them. (note, this may actually be useless information 149 * as in shared-fifo mode periodic in acts like a single-frame packet 150 * buffer than a fifo) 151 */ 152 struct dwc2_hsotg_ep { 153 struct usb_ep ep; 154 struct list_head queue; 155 struct dwc2_hsotg *parent; 156 struct dwc2_hsotg_req *req; 157 struct dentry *debugfs; 158 159 unsigned long total_data; 160 unsigned int size_loaded; 161 unsigned int last_load; 162 unsigned int fifo_load; 163 unsigned short fifo_size; 164 unsigned short fifo_index; 165 166 unsigned char dir_in; 167 unsigned char map_dir; 168 unsigned char index; 169 unsigned char mc; 170 u16 interval; 171 172 unsigned int halted:1; 173 unsigned int periodic:1; 174 unsigned int isochronous:1; 175 unsigned int send_zlp:1; 176 unsigned int wedged:1; 177 unsigned int target_frame; 178 #define TARGET_FRAME_INITIAL 0xFFFFFFFF 179 bool frame_overrun; 180 181 dma_addr_t desc_list_dma; 182 struct dwc2_dma_desc *desc_list; 183 u8 desc_count; 184 185 unsigned int next_desc; 186 unsigned int compl_desc; 187 188 char name[10]; 189 }; 190 191 /** 192 * struct dwc2_hsotg_req - data transfer request 193 * @req: The USB gadget request 194 * @queue: The list of requests for the endpoint this is queued for. 195 * @saved_req_buf: variable to save req.buf when bounce buffers are used. 196 */ 197 struct dwc2_hsotg_req { 198 struct usb_request req; 199 struct list_head queue; 200 void *saved_req_buf; 201 }; 202 203 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 204 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 205 #define call_gadget(_hs, _entry) \ 206 do { \ 207 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \ 208 (_hs)->driver && (_hs)->driver->_entry) { \ 209 spin_unlock(&_hs->lock); \ 210 (_hs)->driver->_entry(&(_hs)->gadget); \ 211 spin_lock(&_hs->lock); \ 212 } \ 213 } while (0) 214 #else 215 #define call_gadget(_hs, _entry) do {} while (0) 216 #endif 217 218 struct dwc2_hsotg; 219 struct dwc2_host_chan; 220 221 /* Device States */ 222 enum dwc2_lx_state { 223 DWC2_L0, /* On state */ 224 DWC2_L1, /* LPM sleep state */ 225 DWC2_L2, /* USB suspend state */ 226 DWC2_L3, /* Off state */ 227 }; 228 229 /* Gadget ep0 states */ 230 enum dwc2_ep0_state { 231 DWC2_EP0_SETUP, 232 DWC2_EP0_DATA_IN, 233 DWC2_EP0_DATA_OUT, 234 DWC2_EP0_STATUS_IN, 235 DWC2_EP0_STATUS_OUT, 236 }; 237 238 /** 239 * struct dwc2_core_params - Parameters for configuring the core 240 * 241 * @otg_caps: Specifies the OTG capabilities. OTG caps from the platform parameters, 242 * used to setup the: 243 * - HNP and SRP capable 244 * - SRP Only capable 245 * - No HNP/SRP capable (always available) 246 * Defaults to best available option 247 * - OTG revision number the device is compliant with, in binary-coded 248 * decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps) 249 * @host_dma: Specifies whether to use slave or DMA mode for accessing 250 * the data FIFOs. The driver will automatically detect the 251 * value for this parameter if none is specified. 252 * 0 - Slave (always available) 253 * 1 - DMA (default, if available) 254 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use 255 * address DMA mode or descriptor DMA mode for accessing 256 * the data FIFOs. The driver will automatically detect the 257 * value for this if none is specified. 258 * 0 - Address DMA 259 * 1 - Descriptor DMA (default, if available) 260 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use 261 * address DMA mode or descriptor DMA mode for accessing 262 * the data FIFOs in Full Speed mode only. The driver 263 * will automatically detect the value for this if none is 264 * specified. 265 * 0 - Address DMA 266 * 1 - Descriptor DMA in FS (default, if available) 267 * @speed: Specifies the maximum speed of operation in host and 268 * device mode. The actual speed depends on the speed of 269 * the attached device and the value of phy_type. 270 * 0 - High Speed 271 * (default when phy_type is UTMI+ or ULPI) 272 * 1 - Full Speed 273 * (default when phy_type is Full Speed) 274 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters 275 * 1 - Allow dynamic FIFO sizing (default, if available) 276 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs 277 * are enabled for non-periodic IN endpoints in device 278 * mode. 279 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when 280 * dynamic FIFO sizing is enabled 281 * 16 to 32768 282 * Actual maximum value is autodetected and also 283 * the default. 284 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 285 * in host mode when dynamic FIFO sizing is enabled 286 * 16 to 32768 287 * Actual maximum value is autodetected and also 288 * the default. 289 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in 290 * host mode when dynamic FIFO sizing is enabled 291 * 16 to 32768 292 * Actual maximum value is autodetected and also 293 * the default. 294 * @max_transfer_size: The maximum transfer size supported, in bytes 295 * 2047 to 65,535 296 * Actual maximum value is autodetected and also 297 * the default. 298 * @max_packet_count: The maximum number of packets in a transfer 299 * 15 to 511 300 * Actual maximum value is autodetected and also 301 * the default. 302 * @host_channels: The number of host channel registers to use 303 * 1 to 16 304 * Actual maximum value is autodetected and also 305 * the default. 306 * @phy_type: Specifies the type of PHY interface to use. By default, 307 * the driver will automatically detect the phy_type. 308 * 0 - Full Speed Phy 309 * 1 - UTMI+ Phy 310 * 2 - ULPI Phy 311 * Defaults to best available option (2, 1, then 0) 312 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter 313 * is applicable for a phy_type of UTMI+ or ULPI. (For a 314 * ULPI phy_type, this parameter indicates the data width 315 * between the MAC and the ULPI Wrapper.) Also, this 316 * parameter is applicable only if the OTG_HSPHY_WIDTH cC 317 * parameter was set to "8 and 16 bits", meaning that the 318 * core has been configured to work at either data path 319 * width. 320 * 8 or 16 (default 16 if available) 321 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single 322 * data rate. This parameter is only applicable if phy_type 323 * is ULPI. 324 * 0 - single data rate ULPI interface with 8 bit wide 325 * data bus (default) 326 * 1 - double data rate ULPI interface with 4 bit wide 327 * data bus 328 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or 329 * external supply to drive the VBus 330 * 0 - Internal supply (default) 331 * 1 - External supply 332 * @i2c_enable: Specifies whether to use the I2Cinterface for a full 333 * speed PHY. This parameter is only applicable if phy_type 334 * is FS. 335 * 0 - No (default) 336 * 1 - Yes 337 * @ipg_isoc_en: Indicates the IPG supports is enabled or disabled. 338 * 0 - Disable (default) 339 * 1 - Enable 340 * @acg_enable: For enabling Active Clock Gating in the controller 341 * 0 - No 342 * 1 - Yes 343 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only 344 * 0 - No (default) 345 * 1 - Yes 346 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported 347 * when attached to a Full Speed or Low Speed device in 348 * host mode. 349 * 0 - Don't support low power mode (default) 350 * 1 - Support low power mode 351 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode 352 * when connected to a Low Speed device in host 353 * mode. This parameter is applicable only if 354 * host_support_fs_ls_low_power is enabled. 355 * 0 - 48 MHz 356 * (default when phy_type is UTMI+ or ULPI) 357 * 1 - 6 MHz 358 * (default when phy_type is Full Speed) 359 * @oc_disable: Flag to disable overcurrent condition. 360 * 0 - Allow overcurrent condition to get detected 361 * 1 - Disable overcurrent condtion to get detected 362 * @ts_dline: Enable Term Select Dline pulsing 363 * 0 - No (default) 364 * 1 - Yes 365 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime 366 * 0 - No (default for core < 2.92a) 367 * 1 - Yes (default for core >= 2.92a) 368 * @ahbcfg: This field allows the default value of the GAHBCFG 369 * register to be overridden 370 * -1 - GAHBCFG value will be set to 0x06 371 * (INCR, default) 372 * all others - GAHBCFG value will be overridden with 373 * this value 374 * Not all bits can be controlled like this, the 375 * bits defined by GAHBCFG_CTRL_MASK are controlled 376 * by the driver and are ignored in this 377 * configuration value. 378 * @uframe_sched: True to enable the microframe scheduler 379 * @external_id_pin_ctl: Specifies whether ID pin is handled externally. 380 * Disable CONIDSTSCHNG controller interrupt in such 381 * case. 382 * 0 - No (default) 383 * 1 - Yes 384 * @power_down: Specifies whether the controller support power_down. 385 * If power_down is enabled, the controller will enter 386 * power_down in both peripheral and host mode when 387 * needed. 388 * 0 - No (default) 389 * 1 - Partial power down 390 * 2 - Hibernation 391 * @no_clock_gating: Specifies whether to avoid clock gating feature. 392 * 0 - No (use clock gating) 393 * 1 - Yes (avoid it) 394 * @lpm: Enable LPM support. 395 * 0 - No 396 * 1 - Yes 397 * @lpm_clock_gating: Enable core PHY clock gating. 398 * 0 - No 399 * 1 - Yes 400 * @besl: Enable LPM Errata support. 401 * 0 - No 402 * 1 - Yes 403 * @hird_threshold_en: HIRD or HIRD Threshold enable. 404 * 0 - No 405 * 1 - Yes 406 * @hird_threshold: Value of BESL or HIRD Threshold. 407 * @ref_clk_per: Indicates in terms of pico seconds the period 408 * of ref_clk. 409 * 62500 - 16MHz 410 * 58823 - 17MHz 411 * 52083 - 19.2MHz 412 * 50000 - 20MHz 413 * 41666 - 24MHz 414 * 33333 - 30MHz (default) 415 * 25000 - 40MHz 416 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which 417 * the controller should generate an interrupt if the 418 * device had been in L1 state until that period. 419 * This is used by SW to initiate Remote WakeUp in the 420 * controller so as to sync to the uF number from the host. 421 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO 422 * register. 423 * 0 - Deactivate the transceiver (default) 424 * 1 - Activate the transceiver 425 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level 426 * detection using GGPIO register. 427 * 0 - Deactivate the external level detection (default) 428 * 1 - Activate the external level detection 429 * @g_dma: Enables gadget dma usage (default: autodetect). 430 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect). 431 * @g_rx_fifo_size: The periodic rx fifo size for the device, in 432 * DWORDS from 16-32768 (default: 2048 if 433 * possible, otherwise autodetect). 434 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in 435 * DWORDS from 16-32768 (default: 1024 if 436 * possible, otherwise autodetect). 437 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo 438 * mode. Each value corresponds to one EP 439 * starting from EP1 (max 15 values). Sizes are 440 * in DWORDS with possible values from 441 * 16-32768 (default: 256, 256, 256, 256, 768, 442 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0). 443 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL 444 * while full&low speed device connect. And change speed 445 * back to DWC2_SPEED_PARAM_HIGH while device is gone. 446 * 0 - No (default) 447 * 1 - Yes 448 * @service_interval: Enable service interval based scheduling. 449 * 0 - No 450 * 1 - Yes 451 * 452 * The following parameters may be specified when starting the module. These 453 * parameters define how the DWC_otg controller should be configured. A 454 * value of -1 (or any other out of range value) for any parameter means 455 * to read the value from hardware (if possible) or use the builtin 456 * default described above. 457 */ 458 struct dwc2_core_params { 459 struct usb_otg_caps otg_caps; 460 u8 phy_type; 461 #define DWC2_PHY_TYPE_PARAM_FS 0 462 #define DWC2_PHY_TYPE_PARAM_UTMI 1 463 #define DWC2_PHY_TYPE_PARAM_ULPI 2 464 465 u8 speed; 466 #define DWC2_SPEED_PARAM_HIGH 0 467 #define DWC2_SPEED_PARAM_FULL 1 468 #define DWC2_SPEED_PARAM_LOW 2 469 470 u8 phy_utmi_width; 471 bool phy_ulpi_ddr; 472 bool phy_ulpi_ext_vbus; 473 bool enable_dynamic_fifo; 474 bool en_multiple_tx_fifo; 475 bool i2c_enable; 476 bool acg_enable; 477 bool ulpi_fs_ls; 478 bool ts_dline; 479 bool reload_ctl; 480 bool uframe_sched; 481 bool external_id_pin_ctl; 482 483 int power_down; 484 #define DWC2_POWER_DOWN_PARAM_NONE 0 485 #define DWC2_POWER_DOWN_PARAM_PARTIAL 1 486 #define DWC2_POWER_DOWN_PARAM_HIBERNATION 2 487 bool no_clock_gating; 488 489 bool lpm; 490 bool lpm_clock_gating; 491 bool besl; 492 bool hird_threshold_en; 493 bool service_interval; 494 u8 hird_threshold; 495 bool activate_stm_fs_transceiver; 496 bool activate_stm_id_vb_detection; 497 bool ipg_isoc_en; 498 u16 max_packet_count; 499 u32 max_transfer_size; 500 u32 ahbcfg; 501 502 /* GREFCLK parameters */ 503 u32 ref_clk_per; 504 u16 sof_cnt_wkup_alert; 505 506 /* Host parameters */ 507 bool host_dma; 508 bool dma_desc_enable; 509 bool dma_desc_fs_enable; 510 bool host_support_fs_ls_low_power; 511 bool host_ls_low_power_phy_clk; 512 bool oc_disable; 513 514 u8 host_channels; 515 u16 host_rx_fifo_size; 516 u16 host_nperio_tx_fifo_size; 517 u16 host_perio_tx_fifo_size; 518 519 /* Gadget parameters */ 520 bool g_dma; 521 bool g_dma_desc; 522 u32 g_rx_fifo_size; 523 u32 g_np_tx_fifo_size; 524 u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; 525 526 bool change_speed_quirk; 527 }; 528 529 /** 530 * struct dwc2_hw_params - Autodetected parameters. 531 * 532 * These parameters are the various parameters read from hardware 533 * registers during initialization. They typically contain the best 534 * supported or maximum value that can be configured in the 535 * corresponding dwc2_core_params value. 536 * 537 * The values that are not in dwc2_core_params are documented below. 538 * 539 * @op_mode: Mode of Operation 540 * 0 - HNP- and SRP-Capable OTG (Host & Device) 541 * 1 - SRP-Capable OTG (Host & Device) 542 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device) 543 * 3 - SRP-Capable Device 544 * 4 - Non-OTG Device 545 * 5 - SRP-Capable Host 546 * 6 - Non-OTG Host 547 * @arch: Architecture 548 * 0 - Slave only 549 * 1 - External DMA 550 * 2 - Internal DMA 551 * @ipg_isoc_en: This feature indicates that the controller supports 552 * the worst-case scenario of Rx followed by Rx 553 * Interpacket Gap (IPG) (32 bitTimes) as per the utmi 554 * specification for any token following ISOC OUT token. 555 * 0 - Don't support 556 * 1 - Support 557 * @power_optimized: Are power optimizations enabled? 558 * @num_dev_ep: Number of device endpoints available 559 * @num_dev_in_eps: Number of device IN endpoints available 560 * @num_dev_perio_in_ep: Number of device periodic IN endpoints 561 * available 562 * @dev_token_q_depth: Device Mode IN Token Sequence Learning Queue 563 * Depth 564 * 0 to 30 565 * @host_perio_tx_q_depth: 566 * Host Mode Periodic Request Queue Depth 567 * 2, 4 or 8 568 * @nperio_tx_q_depth: 569 * Non-Periodic Request Queue Depth 570 * 2, 4 or 8 571 * @hs_phy_type: High-speed PHY interface type 572 * 0 - High-speed interface not supported 573 * 1 - UTMI+ 574 * 2 - ULPI 575 * 3 - UTMI+ and ULPI 576 * @fs_phy_type: Full-speed PHY interface type 577 * 0 - Full speed interface not supported 578 * 1 - Dedicated full speed interface 579 * 2 - FS pins shared with UTMI+ pins 580 * 3 - FS pins shared with ULPI pins 581 * @total_fifo_size: Total internal RAM for FIFOs (bytes) 582 * @hibernation: Is hibernation enabled? 583 * @utmi_phy_data_width: UTMI+ PHY data width 584 * 0 - 8 bits 585 * 1 - 16 bits 586 * 2 - 8 or 16 bits 587 * @snpsid: Value from SNPSID register 588 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1) 589 * @g_tx_fifo_size: Power-on values of TxFIFO sizes 590 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use 591 * address DMA mode or descriptor DMA mode for accessing 592 * the data FIFOs. The driver will automatically detect the 593 * value for this if none is specified. 594 * 0 - Address DMA 595 * 1 - Descriptor DMA (default, if available) 596 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters 597 * 1 - Allow dynamic FIFO sizing (default, if available) 598 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs 599 * are enabled for non-periodic IN endpoints in device 600 * mode. 601 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 602 * in host mode when dynamic FIFO sizing is enabled 603 * 16 to 32768 604 * Actual maximum value is autodetected and also 605 * the default. 606 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in 607 * host mode when dynamic FIFO sizing is enabled 608 * 16 to 32768 609 * Actual maximum value is autodetected and also 610 * the default. 611 * @max_transfer_size: The maximum transfer size supported, in bytes 612 * 2047 to 65,535 613 * Actual maximum value is autodetected and also 614 * the default. 615 * @max_packet_count: The maximum number of packets in a transfer 616 * 15 to 511 617 * Actual maximum value is autodetected and also 618 * the default. 619 * @host_channels: The number of host channel registers to use 620 * 1 to 16 621 * Actual maximum value is autodetected and also 622 * the default. 623 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 624 * in device mode when dynamic FIFO sizing is enabled 625 * 16 to 32768 626 * Actual maximum value is autodetected and also 627 * the default. 628 * @i2c_enable: Specifies whether to use the I2Cinterface for a full 629 * speed PHY. This parameter is only applicable if phy_type 630 * is FS. 631 * 0 - No (default) 632 * 1 - Yes 633 * @acg_enable: For enabling Active Clock Gating in the controller 634 * 0 - Disable 635 * 1 - Enable 636 * @lpm_mode: For enabling Link Power Management in the controller 637 * 0 - Disable 638 * 1 - Enable 639 * @rx_fifo_size: Number of 4-byte words in the Rx FIFO when dynamic 640 * FIFO sizing is enabled 16 to 32768 641 * Actual maximum value is autodetected and also 642 * the default. 643 * @service_interval_mode: For enabling service interval based scheduling in the 644 * controller. 645 * 0 - Disable 646 * 1 - Enable 647 */ 648 struct dwc2_hw_params { 649 unsigned op_mode:3; 650 unsigned arch:2; 651 unsigned dma_desc_enable:1; 652 unsigned enable_dynamic_fifo:1; 653 unsigned en_multiple_tx_fifo:1; 654 unsigned rx_fifo_size:16; 655 unsigned host_nperio_tx_fifo_size:16; 656 unsigned dev_nperio_tx_fifo_size:16; 657 unsigned host_perio_tx_fifo_size:16; 658 unsigned nperio_tx_q_depth:3; 659 unsigned host_perio_tx_q_depth:3; 660 unsigned dev_token_q_depth:5; 661 unsigned max_transfer_size:26; 662 unsigned max_packet_count:11; 663 unsigned host_channels:5; 664 unsigned hs_phy_type:2; 665 unsigned fs_phy_type:2; 666 unsigned i2c_enable:1; 667 unsigned acg_enable:1; 668 unsigned num_dev_ep:4; 669 unsigned num_dev_in_eps : 4; 670 unsigned num_dev_perio_in_ep:4; 671 unsigned total_fifo_size:16; 672 unsigned power_optimized:1; 673 unsigned hibernation:1; 674 unsigned utmi_phy_data_width:2; 675 unsigned lpm_mode:1; 676 unsigned ipg_isoc_en:1; 677 unsigned service_interval_mode:1; 678 u32 snpsid; 679 u32 dev_ep_dirs; 680 u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; 681 }; 682 683 /* Size of control and EP0 buffers */ 684 #define DWC2_CTRL_BUFF_SIZE 8 685 686 /** 687 * struct dwc2_gregs_backup - Holds global registers state before 688 * entering partial power down 689 * @gotgctl: Backup of GOTGCTL register 690 * @gintmsk: Backup of GINTMSK register 691 * @gahbcfg: Backup of GAHBCFG register 692 * @gusbcfg: Backup of GUSBCFG register 693 * @grxfsiz: Backup of GRXFSIZ register 694 * @gnptxfsiz: Backup of GNPTXFSIZ register 695 * @gi2cctl: Backup of GI2CCTL register 696 * @glpmcfg: Backup of GLPMCFG register 697 * @gdfifocfg: Backup of GDFIFOCFG register 698 * @pcgcctl: Backup of PCGCCTL register 699 * @pcgcctl1: Backup of PCGCCTL1 register 700 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint 701 * @gpwrdn: Backup of GPWRDN register 702 * @valid: True if registers values backuped. 703 */ 704 struct dwc2_gregs_backup { 705 u32 gotgctl; 706 u32 gintmsk; 707 u32 gahbcfg; 708 u32 gusbcfg; 709 u32 grxfsiz; 710 u32 gnptxfsiz; 711 u32 gi2cctl; 712 u32 glpmcfg; 713 u32 pcgcctl; 714 u32 pcgcctl1; 715 u32 gdfifocfg; 716 u32 gpwrdn; 717 bool valid; 718 }; 719 720 /** 721 * struct dwc2_dregs_backup - Holds device registers state before 722 * entering partial power down 723 * @dcfg: Backup of DCFG register 724 * @dctl: Backup of DCTL register 725 * @daintmsk: Backup of DAINTMSK register 726 * @diepmsk: Backup of DIEPMSK register 727 * @doepmsk: Backup of DOEPMSK register 728 * @diepctl: Backup of DIEPCTL register 729 * @dieptsiz: Backup of DIEPTSIZ register 730 * @diepdma: Backup of DIEPDMA register 731 * @doepctl: Backup of DOEPCTL register 732 * @doeptsiz: Backup of DOEPTSIZ register 733 * @doepdma: Backup of DOEPDMA register 734 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint 735 * @valid: True if registers values backuped. 736 */ 737 struct dwc2_dregs_backup { 738 u32 dcfg; 739 u32 dctl; 740 u32 daintmsk; 741 u32 diepmsk; 742 u32 doepmsk; 743 u32 diepctl[MAX_EPS_CHANNELS]; 744 u32 dieptsiz[MAX_EPS_CHANNELS]; 745 u32 diepdma[MAX_EPS_CHANNELS]; 746 u32 doepctl[MAX_EPS_CHANNELS]; 747 u32 doeptsiz[MAX_EPS_CHANNELS]; 748 u32 doepdma[MAX_EPS_CHANNELS]; 749 u32 dtxfsiz[MAX_EPS_CHANNELS]; 750 bool valid; 751 }; 752 753 /** 754 * struct dwc2_hregs_backup - Holds host registers state before 755 * entering partial power down 756 * @hcfg: Backup of HCFG register 757 * @haintmsk: Backup of HAINTMSK register 758 * @hcintmsk: Backup of HCINTMSK register 759 * @hprt0: Backup of HPTR0 register 760 * @hfir: Backup of HFIR register 761 * @hptxfsiz: Backup of HPTXFSIZ register 762 * @valid: True if registers values backuped. 763 */ 764 struct dwc2_hregs_backup { 765 u32 hcfg; 766 u32 haintmsk; 767 u32 hcintmsk[MAX_EPS_CHANNELS]; 768 u32 hprt0; 769 u32 hfir; 770 u32 hptxfsiz; 771 bool valid; 772 }; 773 774 /* 775 * Constants related to high speed periodic scheduling 776 * 777 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a 778 * reservation point of view it's assumed that the schedule goes right back to 779 * the beginning after the end of the schedule. 780 * 781 * What does that mean for scheduling things with a long interval? It means 782 * we'll reserve time for them in every possible microframe that they could 783 * ever be scheduled in. ...but we'll still only actually schedule them as 784 * often as they were requested. 785 * 786 * We keep our schedule in a "bitmap" structure. This simplifies having 787 * to keep track of and merge intervals: we just let the bitmap code do most 788 * of the heavy lifting. In a way scheduling is much like memory allocation. 789 * 790 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're 791 * supposed to schedule for periodic transfers). That's according to spec. 792 * 793 * Note that though we only schedule 80% of each microframe, the bitmap that we 794 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of 795 * space for each uFrame). 796 * 797 * Requirements: 798 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1) 799 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably 800 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might 801 * be bugs). The 8 comes from the USB spec: number of microframes per frame. 802 */ 803 #define DWC2_US_PER_UFRAME 125 804 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100 805 806 #define DWC2_HS_SCHEDULE_UFRAMES 8 807 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \ 808 DWC2_HS_PERIODIC_US_PER_UFRAME) 809 810 /* 811 * Constants related to low speed scheduling 812 * 813 * For high speed we schedule every 1us. For low speed that's a bit overkill, 814 * so we make up a unit called a "slice" that's worth 25us. There are 40 815 * slices in a full frame and we can schedule 36 of those (90%) for periodic 816 * transfers. 817 * 818 * Our low speed schedule can be as short as 1 frame or could be longer. When 819 * we only schedule 1 frame it means that we'll need to reserve a time every 820 * frame even for things that only transfer very rarely, so something that runs 821 * every 2048 frames will get time reserved in every frame. Our low speed 822 * schedule can be longer and we'll be able to handle more overlap, but that 823 * will come at increased memory cost and increased time to schedule. 824 * 825 * Note: one other advantage of a short low speed schedule is that if we mess 826 * up and miss scheduling we can jump in and use any of the slots that we 827 * happened to reserve. 828 * 829 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for 830 * the schedule. There will be one schedule per TT. 831 * 832 * Requirements: 833 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME. 834 */ 835 #define DWC2_US_PER_SLICE 25 836 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE) 837 838 #define DWC2_ROUND_US_TO_SLICE(us) \ 839 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \ 840 DWC2_US_PER_SLICE) 841 842 #define DWC2_LS_PERIODIC_US_PER_FRAME \ 843 900 844 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \ 845 (DWC2_LS_PERIODIC_US_PER_FRAME / \ 846 DWC2_US_PER_SLICE) 847 848 #define DWC2_LS_SCHEDULE_FRAMES 1 849 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \ 850 DWC2_LS_PERIODIC_SLICES_PER_FRAME) 851 852 /** 853 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic 854 * and periodic schedules 855 * 856 * These are common for both host and peripheral modes: 857 * 858 * @dev: The struct device pointer 859 * @regs: Pointer to controller regs 860 * @hw_params: Parameters that were autodetected from the 861 * hardware registers 862 * @params: Parameters that define how the core should be configured 863 * @op_state: The operational State, during transitions (a_host=> 864 * a_peripheral and b_device=>b_host) this may not match 865 * the core, but allows the software to determine 866 * transitions 867 * @dr_mode: Requested mode of operation, one of following: 868 * - USB_DR_MODE_PERIPHERAL 869 * - USB_DR_MODE_HOST 870 * - USB_DR_MODE_OTG 871 * @role_sw: usb_role_switch handle 872 * @role_sw_default_mode: default operation mode of controller while usb role 873 * is USB_ROLE_NONE 874 * @hcd_enabled: Host mode sub-driver initialization indicator. 875 * @gadget_enabled: Peripheral mode sub-driver initialization indicator. 876 * @ll_hw_enabled: Status of low-level hardware resources. 877 * @hibernated: True if core is hibernated 878 * @in_ppd: True if core is partial power down mode. 879 * @bus_suspended: True if bus is suspended 880 * @reset_phy_on_wake: Quirk saying that we should assert PHY reset on a 881 * remote wakeup. 882 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend. 883 * @need_phy_for_wake: Quirk saying that we should keep the PHY on at 884 * suspend if we need USB to wake us up. 885 * @frame_number: Frame number read from the core. For both device 886 * and host modes. The value ranges are from 0 887 * to HFNUM_MAX_FRNUM. 888 * @phy: The otg phy transceiver structure for phy control. 889 * @uphy: The otg phy transceiver structure for old USB phy 890 * control. 891 * @plat: The platform specific configuration data. This can be 892 * removed once all SoCs support usb transceiver. 893 * @supplies: Definition of USB power supplies 894 * @vbus_supply: Regulator supplying vbus. 895 * @usb33d: Optional 3.3v regulator used on some stm32 devices to 896 * supply ID and VBUS detection hardware. 897 * @lock: Spinlock that protects all the driver data structures 898 * @priv: Stores a pointer to the struct usb_hcd 899 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth 900 * transfer are in process of being queued 901 * @srp_success: Stores status of SRP request in the case of a FS PHY 902 * with an I2C interface 903 * @wq_otg: Workqueue object used for handling of some interrupts 904 * @wf_otg: Work object for handling Connector ID Status Change 905 * interrupt 906 * @wkp_timer: Timer object for handling Wakeup Detected interrupt 907 * @lx_state: Lx state of connected device 908 * @gr_backup: Backup of global registers during suspend 909 * @dr_backup: Backup of device registers during suspend 910 * @hr_backup: Backup of host registers during suspend 911 * @needs_byte_swap: Specifies whether the opposite endianness. 912 * 913 * These are for host mode: 914 * 915 * @flags: Flags for handling root port state changes 916 * @flags.d32: Contain all root port flags 917 * @flags.b: Separate root port flags from each other 918 * @flags.b.port_connect_status_change: True if root port connect status 919 * changed 920 * @flags.b.port_connect_status: True if device connected to root port 921 * @flags.b.port_reset_change: True if root port reset status changed 922 * @flags.b.port_enable_change: True if root port enable status changed 923 * @flags.b.port_suspend_change: True if root port suspend status changed 924 * @flags.b.port_over_current_change: True if root port over current state 925 * changed. 926 * @flags.b.port_l1_change: True if root port l1 status changed 927 * @flags.b.reserved: Reserved bits of root port register 928 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule. 929 * Transfers associated with these QHs are not currently 930 * assigned to a host channel. 931 * @non_periodic_sched_active: Active QHs in the non-periodic schedule. 932 * Transfers associated with these QHs are currently 933 * assigned to a host channel. 934 * @non_periodic_qh_ptr: Pointer to next QH to process in the active 935 * non-periodic schedule 936 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule. 937 * Transfers associated with these QHs are not currently 938 * assigned to a host channel. 939 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a 940 * list of QHs for periodic transfers that are _not_ 941 * scheduled for the next frame. Each QH in the list has an 942 * interval counter that determines when it needs to be 943 * scheduled for execution. This scheduling mechanism 944 * allows only a simple calculation for periodic bandwidth 945 * used (i.e. must assume that all periodic transfers may 946 * need to execute in the same frame). However, it greatly 947 * simplifies scheduling and should be sufficient for the 948 * vast majority of OTG hosts, which need to connect to a 949 * small number of peripherals at one time. Items move from 950 * this list to periodic_sched_ready when the QH interval 951 * counter is 0 at SOF. 952 * @periodic_sched_ready: List of periodic QHs that are ready for execution in 953 * the next frame, but have not yet been assigned to host 954 * channels. Items move from this list to 955 * periodic_sched_assigned as host channels become 956 * available during the current frame. 957 * @periodic_sched_assigned: List of periodic QHs to be executed in the next 958 * frame that are assigned to host channels. Items move 959 * from this list to periodic_sched_queued as the 960 * transactions for the QH are queued to the DWC_otg 961 * controller. 962 * @periodic_sched_queued: List of periodic QHs that have been queued for 963 * execution. Items move from this list to either 964 * periodic_sched_inactive or periodic_sched_ready when the 965 * channel associated with the transfer is released. If the 966 * interval for the QH is 1, the item moves to 967 * periodic_sched_ready because it must be rescheduled for 968 * the next frame. Otherwise, the item moves to 969 * periodic_sched_inactive. 970 * @split_order: List keeping track of channels doing splits, in order. 971 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers. 972 * This value is in microseconds per (micro)frame. The 973 * assumption is that all periodic transfers may occur in 974 * the same (micro)frame. 975 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the 976 * host is in high speed mode; low speed schedules are 977 * stored elsewhere since we need one per TT. 978 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for 979 * SOF enable/disable. 980 * @free_hc_list: Free host channels in the controller. This is a list of 981 * struct dwc2_host_chan items. 982 * @periodic_channels: Number of host channels assigned to periodic transfers. 983 * Currently assuming that there is a dedicated host 984 * channel for each periodic transaction and at least one 985 * host channel is available for non-periodic transactions. 986 * @non_periodic_channels: Number of host channels assigned to non-periodic 987 * transfers 988 * @available_host_channels: Number of host channels available for the 989 * microframe scheduler to use 990 * @hc_ptr_array: Array of pointers to the host channel descriptors. 991 * Allows accessing a host channel descriptor given the 992 * host channel number. This is useful in interrupt 993 * handlers. 994 * @status_buf: Buffer used for data received during the status phase of 995 * a control transfer. 996 * @status_buf_dma: DMA address for status_buf 997 * @start_work: Delayed work for handling host A-cable connection 998 * @reset_work: Delayed work for handling a port reset 999 * @phy_reset_work: Work structure for doing a PHY reset 1000 * @otg_port: OTG port number 1001 * @frame_list: Frame list 1002 * @frame_list_dma: Frame list DMA address 1003 * @frame_list_sz: Frame list size 1004 * @desc_gen_cache: Kmem cache for generic descriptors 1005 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors 1006 * @unaligned_cache: Kmem cache for DMA mode to handle non-aligned buf 1007 * 1008 * These are for peripheral mode: 1009 * 1010 * @driver: USB gadget driver 1011 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos. 1012 * @num_of_eps: Number of available EPs (excluding EP0) 1013 * @debug_root: Root directrory for debugfs. 1014 * @ep0_reply: Request used for ep0 reply. 1015 * @ep0_buff: Buffer for EP0 reply data, if needed. 1016 * @ctrl_buff: Buffer for EP0 control requests. 1017 * @ctrl_req: Request for EP0 control packets. 1018 * @ep0_state: EP0 control transfers state 1019 * @delayed_status: true when gadget driver asks for delayed status 1020 * @test_mode: USB test mode requested by the host 1021 * @remote_wakeup_allowed: True if device is allowed to wake-up host by 1022 * remote-wakeup signalling 1023 * @setup_desc_dma: EP0 setup stage desc chain DMA address 1024 * @setup_desc: EP0 setup stage desc chain pointer 1025 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address 1026 * @ctrl_in_desc: EP0 IN data phase desc chain pointer 1027 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address 1028 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer 1029 * @irq: Interrupt request line number 1030 * @clk: Pointer to otg clock 1031 * @reset: Pointer to dwc2 reset controller 1032 * @reset_ecc: Pointer to dwc2 optional reset controller in Stratix10. 1033 * @regset: A pointer to a struct debugfs_regset32, which contains 1034 * a pointer to an array of register definitions, the 1035 * array size and the base address where the register bank 1036 * is to be found. 1037 * @last_frame_num: Number of last frame. Range from 0 to 32768 1038 * @frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is 1039 * defined, for missed SOFs tracking. Array holds that 1040 * frame numbers, which not equal to last_frame_num +1 1041 * @last_frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is 1042 * defined, for missed SOFs tracking. 1043 * If current_frame_number != last_frame_num+1 1044 * then last_frame_num added to this array 1045 * @frame_num_idx: Actual size of frame_num_array and last_frame_num_array 1046 * @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed 1047 * 0 - if missed SOFs frame numbers not dumbed 1048 * @fifo_mem: Total internal RAM for FIFOs (bytes) 1049 * @fifo_map: Each bit intend for concrete fifo. If that bit is set, 1050 * then that fifo is used 1051 * @gadget: Represents a usb gadget device 1052 * @connected: Used in slave mode. True if device connected with host 1053 * @eps_in: The IN endpoints being supplied to the gadget framework 1054 * @eps_out: The OUT endpoints being supplied to the gadget framework 1055 * @new_connection: Used in host mode. True if there are new connected 1056 * device 1057 * @enabled: Indicates the enabling state of controller 1058 * 1059 */ 1060 struct dwc2_hsotg { 1061 struct device *dev; 1062 void __iomem *regs; 1063 /** Params detected from hardware */ 1064 struct dwc2_hw_params hw_params; 1065 /** Params to actually use */ 1066 struct dwc2_core_params params; 1067 enum usb_otg_state op_state; 1068 enum usb_dr_mode dr_mode; 1069 struct usb_role_switch *role_sw; 1070 enum usb_dr_mode role_sw_default_mode; 1071 unsigned int hcd_enabled:1; 1072 unsigned int gadget_enabled:1; 1073 unsigned int ll_hw_enabled:1; 1074 unsigned int hibernated:1; 1075 unsigned int in_ppd:1; 1076 bool bus_suspended; 1077 unsigned int reset_phy_on_wake:1; 1078 unsigned int need_phy_for_wake:1; 1079 unsigned int phy_off_for_suspend:1; 1080 u16 frame_number; 1081 1082 struct phy *phy; 1083 struct usb_phy *uphy; 1084 struct dwc2_hsotg_plat *plat; 1085 struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES]; 1086 struct regulator *vbus_supply; 1087 struct regulator *usb33d; 1088 1089 spinlock_t lock; 1090 void *priv; 1091 int irq; 1092 struct clk *clk; 1093 struct reset_control *reset; 1094 struct reset_control *reset_ecc; 1095 1096 unsigned int queuing_high_bandwidth:1; 1097 unsigned int srp_success:1; 1098 1099 struct workqueue_struct *wq_otg; 1100 struct work_struct wf_otg; 1101 struct timer_list wkp_timer; 1102 enum dwc2_lx_state lx_state; 1103 struct dwc2_gregs_backup gr_backup; 1104 struct dwc2_dregs_backup dr_backup; 1105 struct dwc2_hregs_backup hr_backup; 1106 1107 struct dentry *debug_root; 1108 struct debugfs_regset32 *regset; 1109 bool needs_byte_swap; 1110 1111 /* DWC OTG HW Release versions */ 1112 #define DWC2_CORE_REV_2_71a 0x4f54271a 1113 #define DWC2_CORE_REV_2_72a 0x4f54272a 1114 #define DWC2_CORE_REV_2_80a 0x4f54280a 1115 #define DWC2_CORE_REV_2_90a 0x4f54290a 1116 #define DWC2_CORE_REV_2_91a 0x4f54291a 1117 #define DWC2_CORE_REV_2_92a 0x4f54292a 1118 #define DWC2_CORE_REV_2_94a 0x4f54294a 1119 #define DWC2_CORE_REV_3_00a 0x4f54300a 1120 #define DWC2_CORE_REV_3_10a 0x4f54310a 1121 #define DWC2_CORE_REV_4_00a 0x4f54400a 1122 #define DWC2_CORE_REV_4_20a 0x4f54420a 1123 #define DWC2_FS_IOT_REV_1_00a 0x5531100a 1124 #define DWC2_HS_IOT_REV_1_00a 0x5532100a 1125 #define DWC2_CORE_REV_MASK 0x0000ffff 1126 1127 /* DWC OTG HW Core ID */ 1128 #define DWC2_OTG_ID 0x4f540000 1129 #define DWC2_FS_IOT_ID 0x55310000 1130 #define DWC2_HS_IOT_ID 0x55320000 1131 1132 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1133 union dwc2_hcd_internal_flags { 1134 u32 d32; 1135 struct { 1136 unsigned port_connect_status_change:1; 1137 unsigned port_connect_status:1; 1138 unsigned port_reset_change:1; 1139 unsigned port_enable_change:1; 1140 unsigned port_suspend_change:1; 1141 unsigned port_over_current_change:1; 1142 unsigned port_l1_change:1; 1143 unsigned reserved:25; 1144 } b; 1145 } flags; 1146 1147 struct list_head non_periodic_sched_inactive; 1148 struct list_head non_periodic_sched_waiting; 1149 struct list_head non_periodic_sched_active; 1150 struct list_head *non_periodic_qh_ptr; 1151 struct list_head periodic_sched_inactive; 1152 struct list_head periodic_sched_ready; 1153 struct list_head periodic_sched_assigned; 1154 struct list_head periodic_sched_queued; 1155 struct list_head split_order; 1156 u16 periodic_usecs; 1157 DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US); 1158 u16 periodic_qh_count; 1159 bool new_connection; 1160 1161 u16 last_frame_num; 1162 1163 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 1164 #define FRAME_NUM_ARRAY_SIZE 1000 1165 u16 *frame_num_array; 1166 u16 *last_frame_num_array; 1167 int frame_num_idx; 1168 int dumped_frame_num_array; 1169 #endif 1170 1171 struct list_head free_hc_list; 1172 int periodic_channels; 1173 int non_periodic_channels; 1174 int available_host_channels; 1175 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS]; 1176 u8 *status_buf; 1177 dma_addr_t status_buf_dma; 1178 #define DWC2_HCD_STATUS_BUF_SIZE 64 1179 1180 struct delayed_work start_work; 1181 struct delayed_work reset_work; 1182 struct work_struct phy_reset_work; 1183 u8 otg_port; 1184 u32 *frame_list; 1185 dma_addr_t frame_list_dma; 1186 u32 frame_list_sz; 1187 struct kmem_cache *desc_gen_cache; 1188 struct kmem_cache *desc_hsisoc_cache; 1189 struct kmem_cache *unaligned_cache; 1190 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024 1191 1192 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */ 1193 1194 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 1195 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1196 /* Gadget structures */ 1197 struct usb_gadget_driver *driver; 1198 int fifo_mem; 1199 unsigned int dedicated_fifos:1; 1200 unsigned char num_of_eps; 1201 u32 fifo_map; 1202 1203 struct usb_request *ep0_reply; 1204 struct usb_request *ctrl_req; 1205 void *ep0_buff; 1206 void *ctrl_buff; 1207 enum dwc2_ep0_state ep0_state; 1208 unsigned delayed_status : 1; 1209 u8 test_mode; 1210 1211 dma_addr_t setup_desc_dma[2]; 1212 struct dwc2_dma_desc *setup_desc[2]; 1213 dma_addr_t ctrl_in_desc_dma; 1214 struct dwc2_dma_desc *ctrl_in_desc; 1215 dma_addr_t ctrl_out_desc_dma; 1216 struct dwc2_dma_desc *ctrl_out_desc; 1217 1218 struct usb_gadget gadget; 1219 unsigned int enabled:1; 1220 unsigned int connected:1; 1221 unsigned int remote_wakeup_allowed:1; 1222 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS]; 1223 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS]; 1224 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */ 1225 }; 1226 1227 /* Normal architectures just use readl/write */ 1228 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset) 1229 { 1230 u32 val; 1231 1232 val = readl(hsotg->regs + offset); 1233 if (hsotg->needs_byte_swap) 1234 return swab32(val); 1235 else 1236 return val; 1237 } 1238 1239 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset) 1240 { 1241 if (hsotg->needs_byte_swap) 1242 writel(swab32(value), hsotg->regs + offset); 1243 else 1244 writel(value, hsotg->regs + offset); 1245 1246 #ifdef DWC2_LOG_WRITES 1247 pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset); 1248 #endif 1249 } 1250 1251 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset, 1252 void *buffer, unsigned int count) 1253 { 1254 if (count) { 1255 u32 *buf = buffer; 1256 1257 do { 1258 u32 x = dwc2_readl(hsotg, offset); 1259 *buf++ = x; 1260 } while (--count); 1261 } 1262 } 1263 1264 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset, 1265 const void *buffer, unsigned int count) 1266 { 1267 if (count) { 1268 const u32 *buf = buffer; 1269 1270 do { 1271 dwc2_writel(hsotg, *buf++, offset); 1272 } while (--count); 1273 } 1274 } 1275 1276 /* Reasons for halting a host channel */ 1277 enum dwc2_halt_status { 1278 DWC2_HC_XFER_NO_HALT_STATUS, 1279 DWC2_HC_XFER_COMPLETE, 1280 DWC2_HC_XFER_URB_COMPLETE, 1281 DWC2_HC_XFER_ACK, 1282 DWC2_HC_XFER_NAK, 1283 DWC2_HC_XFER_NYET, 1284 DWC2_HC_XFER_STALL, 1285 DWC2_HC_XFER_XACT_ERR, 1286 DWC2_HC_XFER_FRAME_OVERRUN, 1287 DWC2_HC_XFER_BABBLE_ERR, 1288 DWC2_HC_XFER_DATA_TOGGLE_ERR, 1289 DWC2_HC_XFER_AHB_ERR, 1290 DWC2_HC_XFER_PERIODIC_INCOMPLETE, 1291 DWC2_HC_XFER_URB_DEQUEUE, 1292 }; 1293 1294 /* Core version information */ 1295 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg) 1296 { 1297 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000; 1298 } 1299 1300 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg) 1301 { 1302 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000; 1303 } 1304 1305 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg) 1306 { 1307 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000; 1308 } 1309 1310 /* 1311 * The following functions support initialization of the core driver component 1312 * and the DWC_otg controller 1313 */ 1314 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait); 1315 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1316 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup, 1317 bool restore); 1318 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host); 1319 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, 1320 int reset, int is_host); 1321 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg); 1322 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy); 1323 1324 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host); 1325 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg); 1326 1327 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg); 1328 1329 int dwc2_check_core_version(struct dwc2_hsotg *hsotg); 1330 1331 /* 1332 * Common core Functions. 1333 * The following functions support managing the DWC_otg controller in either 1334 * device or host mode. 1335 */ 1336 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes); 1337 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num); 1338 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg); 1339 1340 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd); 1341 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd); 1342 1343 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup, 1344 int is_host); 1345 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg); 1346 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg); 1347 1348 void dwc2_enable_acg(struct dwc2_hsotg *hsotg); 1349 1350 /* This function should be called on every hardware interrupt. */ 1351 irqreturn_t dwc2_handle_common_intr(int irq, void *dev); 1352 1353 /* The device ID match table */ 1354 extern const struct of_device_id dwc2_of_match_table[]; 1355 extern const struct acpi_device_id dwc2_acpi_match[]; 1356 1357 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg); 1358 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg); 1359 1360 /* Common polling functions */ 1361 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit, 1362 u32 timeout); 1363 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit, 1364 u32 timeout); 1365 /* Parameters */ 1366 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg); 1367 int dwc2_init_params(struct dwc2_hsotg *hsotg); 1368 1369 /* 1370 * The following functions check the controller's OTG operation mode 1371 * capability (GHWCFG2.OTG_MODE). 1372 * 1373 * These functions can be used before the internal hsotg->hw_params 1374 * are read in and cached so they always read directly from the 1375 * GHWCFG2 register. 1376 */ 1377 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg); 1378 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg); 1379 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg); 1380 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg); 1381 1382 /* 1383 * Returns the mode of operation, host or device 1384 */ 1385 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg) 1386 { 1387 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0; 1388 } 1389 1390 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg) 1391 { 1392 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0; 1393 } 1394 1395 int dwc2_drd_init(struct dwc2_hsotg *hsotg); 1396 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg); 1397 void dwc2_drd_resume(struct dwc2_hsotg *hsotg); 1398 void dwc2_drd_exit(struct dwc2_hsotg *hsotg); 1399 1400 /* 1401 * Dump core registers and SPRAM 1402 */ 1403 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg); 1404 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg); 1405 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg); 1406 1407 /* Gadget defines */ 1408 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 1409 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1410 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg); 1411 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2); 1412 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2); 1413 int dwc2_gadget_init(struct dwc2_hsotg *hsotg); 1414 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, 1415 bool reset); 1416 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg); 1417 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg); 1418 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2); 1419 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode); 1420 #define dwc2_is_device_connected(hsotg) (hsotg->connected) 1421 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg); 1422 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup); 1423 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg); 1424 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 1425 int rem_wakeup, int reset); 1426 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1427 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1428 bool restore); 1429 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg); 1430 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, 1431 int rem_wakeup); 1432 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg); 1433 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg); 1434 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg); 1435 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg); 1436 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg); 1437 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) 1438 { hsotg->fifo_map = 0; } 1439 #else 1440 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2) 1441 { return 0; } 1442 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2) 1443 { return 0; } 1444 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2) 1445 { return 0; } 1446 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 1447 { return 0; } 1448 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, 1449 bool reset) {} 1450 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {} 1451 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {} 1452 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {} 1453 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, 1454 int testmode) 1455 { return 0; } 1456 #define dwc2_is_device_connected(hsotg) (0) 1457 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 1458 { return 0; } 1459 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, 1460 int remote_wakeup) 1461 { return 0; } 1462 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 1463 { return 0; } 1464 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 1465 int rem_wakeup, int reset) 1466 { return 0; } 1467 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 1468 { return 0; } 1469 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1470 bool restore) 1471 { return 0; } 1472 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {} 1473 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, 1474 int rem_wakeup) {} 1475 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 1476 { return 0; } 1477 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 1478 { return 0; } 1479 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 1480 { return 0; } 1481 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {} 1482 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {} 1483 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {} 1484 #endif 1485 1486 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1487 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg); 1488 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us); 1489 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg); 1490 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force); 1491 void dwc2_hcd_start(struct dwc2_hsotg *hsotg); 1492 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup); 1493 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex); 1494 int dwc2_port_resume(struct dwc2_hsotg *hsotg); 1495 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg); 1496 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg); 1497 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg); 1498 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, 1499 int rem_wakeup, int reset); 1500 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1501 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1502 int rem_wakeup, bool restore); 1503 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg); 1504 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup); 1505 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2); 1506 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) 1507 { schedule_work(&hsotg->phy_reset_work); } 1508 #else 1509 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 1510 { return 0; } 1511 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, 1512 int us) 1513 { return 0; } 1514 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {} 1515 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {} 1516 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {} 1517 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {} 1518 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) 1519 { return 0; } 1520 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) 1521 { return 0; } 1522 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg) 1523 { return 0; } 1524 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg) 1525 { return 0; } 1526 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) 1527 { return 0; } 1528 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) 1529 { return 0; } 1530 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg) 1531 { return 0; } 1532 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, 1533 int rem_wakeup, int reset) 1534 { return 0; } 1535 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg) 1536 { return 0; } 1537 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1538 int rem_wakeup, bool restore) 1539 { return 0; } 1540 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {} 1541 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, 1542 int rem_wakeup) {} 1543 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2) 1544 { return false; } 1545 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {} 1546 1547 #endif 1548 1549 #endif /* __DWC2_CORE_H__ */ 1550