xref: /openbmc/linux/drivers/usb/dwc2/core.h (revision 0984d159)
1 /*
2  * core.h - DesignWare HS OTG Controller common declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #ifndef __DWC2_CORE_H__
38 #define __DWC2_CORE_H__
39 
40 #include <linux/phy/phy.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/usb/gadget.h>
43 #include <linux/usb/otg.h>
44 #include <linux/usb/phy.h>
45 #include "hw.h"
46 
47 /*
48  * Suggested defines for tracers:
49  * - no_printk:    Disable tracing
50  * - pr_info:      Print this info to the console
51  * - trace_printk: Print this info to trace buffer (good for verbose logging)
52  */
53 
54 #define DWC2_TRACE_SCHEDULER		no_printk
55 #define DWC2_TRACE_SCHEDULER_VB		no_printk
56 
57 /* Detailed scheduler tracing, but won't overwhelm console */
58 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
59 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
60 			     dev_name(hsotg->dev), ##__VA_ARGS__)
61 
62 /* Verbose scheduler tracing */
63 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
64 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
65 				dev_name(hsotg->dev), ##__VA_ARGS__)
66 
67 #ifdef CONFIG_MIPS
68 /*
69  * There are some MIPS machines that can run in either big-endian
70  * or little-endian mode and that use the dwc2 register without
71  * a byteswap in both ways.
72  * Unlike other architectures, MIPS apparently does not require a
73  * barrier before the __raw_writel() to synchronize with DMA but does
74  * require the barrier after the __raw_writel() to serialize a set of
75  * writes. This set of operations was added specifically for MIPS and
76  * should only be used there.
77  */
78 static inline u32 dwc2_readl(const void __iomem *addr)
79 {
80 	u32 value = __raw_readl(addr);
81 
82 	/* In order to preserve endianness __raw_* operation is used. Therefore
83 	 * a barrier is needed to ensure IO access is not re-ordered across
84 	 * reads or writes
85 	 */
86 	mb();
87 	return value;
88 }
89 
90 static inline void dwc2_writel(u32 value, void __iomem *addr)
91 {
92 	__raw_writel(value, addr);
93 
94 	/*
95 	 * In order to preserve endianness __raw_* operation is used. Therefore
96 	 * a barrier is needed to ensure IO access is not re-ordered across
97 	 * reads or writes
98 	 */
99 	mb();
100 #ifdef DWC2_LOG_WRITES
101 	pr_info("INFO:: wrote %08x to %p\n", value, addr);
102 #endif
103 }
104 #else
105 /* Normal architectures just use readl/write */
106 static inline u32 dwc2_readl(const void __iomem *addr)
107 {
108 	return readl(addr);
109 }
110 
111 static inline void dwc2_writel(u32 value, void __iomem *addr)
112 {
113 	writel(value, addr);
114 
115 #ifdef DWC2_LOG_WRITES
116 	pr_info("info:: wrote %08x to %p\n", value, addr);
117 #endif
118 }
119 #endif
120 
121 /* Maximum number of Endpoints/HostChannels */
122 #define MAX_EPS_CHANNELS	16
123 
124 /* dwc2-hsotg declarations */
125 static const char * const dwc2_hsotg_supply_names[] = {
126 	"vusb_d",               /* digital USB supply, 1.2V */
127 	"vusb_a",               /* analog USB supply, 1.1V */
128 };
129 
130 /*
131  * EP0_MPS_LIMIT
132  *
133  * Unfortunately there seems to be a limit of the amount of data that can
134  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
135  * packets (which practically means 1 packet and 63 bytes of data) when the
136  * MPS is set to 64.
137  *
138  * This means if we are wanting to move >127 bytes of data, we need to
139  * split the transactions up, but just doing one packet at a time does
140  * not work (this may be an implicit DATA0 PID on first packet of the
141  * transaction) and doing 2 packets is outside the controller's limits.
142  *
143  * If we try to lower the MPS size for EP0, then no transfers work properly
144  * for EP0, and the system will fail basic enumeration. As no cause for this
145  * has currently been found, we cannot support any large IN transfers for
146  * EP0.
147  */
148 #define EP0_MPS_LIMIT   64
149 
150 struct dwc2_hsotg;
151 struct dwc2_hsotg_req;
152 
153 /**
154  * struct dwc2_hsotg_ep - driver endpoint definition.
155  * @ep: The gadget layer representation of the endpoint.
156  * @name: The driver generated name for the endpoint.
157  * @queue: Queue of requests for this endpoint.
158  * @parent: Reference back to the parent device structure.
159  * @req: The current request that the endpoint is processing. This is
160  *       used to indicate an request has been loaded onto the endpoint
161  *       and has yet to be completed (maybe due to data move, or simply
162  *       awaiting an ack from the core all the data has been completed).
163  * @debugfs: File entry for debugfs file for this endpoint.
164  * @lock: State lock to protect contents of endpoint.
165  * @dir_in: Set to true if this endpoint is of the IN direction, which
166  *          means that it is sending data to the Host.
167  * @index: The index for the endpoint registers.
168  * @mc: Multi Count - number of transactions per microframe
169  * @interval - Interval for periodic endpoints
170  * @name: The name array passed to the USB core.
171  * @halted: Set if the endpoint has been halted.
172  * @periodic: Set if this is a periodic ep, such as Interrupt
173  * @isochronous: Set if this is a isochronous ep
174  * @send_zlp: Set if we need to send a zero-length packet.
175  * @total_data: The total number of data bytes done.
176  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
177  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
178  * @last_load: The offset of data for the last start of request.
179  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
180  *
181  * This is the driver's state for each registered enpoint, allowing it
182  * to keep track of transactions that need doing. Each endpoint has a
183  * lock to protect the state, to try and avoid using an overall lock
184  * for the host controller as much as possible.
185  *
186  * For periodic IN endpoints, we have fifo_size and fifo_load to try
187  * and keep track of the amount of data in the periodic FIFO for each
188  * of these as we don't have a status register that tells us how much
189  * is in each of them. (note, this may actually be useless information
190  * as in shared-fifo mode periodic in acts like a single-frame packet
191  * buffer than a fifo)
192  */
193 struct dwc2_hsotg_ep {
194 	struct usb_ep           ep;
195 	struct list_head        queue;
196 	struct dwc2_hsotg       *parent;
197 	struct dwc2_hsotg_req    *req;
198 	struct dentry           *debugfs;
199 
200 	unsigned long           total_data;
201 	unsigned int            size_loaded;
202 	unsigned int            last_load;
203 	unsigned int            fifo_load;
204 	unsigned short          fifo_size;
205 	unsigned short		fifo_index;
206 
207 	unsigned char           dir_in;
208 	unsigned char           index;
209 	unsigned char           mc;
210 	unsigned char           interval;
211 
212 	unsigned int            halted:1;
213 	unsigned int            periodic:1;
214 	unsigned int            isochronous:1;
215 	unsigned int            send_zlp:1;
216 	unsigned int            has_correct_parity:1;
217 
218 	char                    name[10];
219 };
220 
221 /**
222  * struct dwc2_hsotg_req - data transfer request
223  * @req: The USB gadget request
224  * @queue: The list of requests for the endpoint this is queued for.
225  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
226  */
227 struct dwc2_hsotg_req {
228 	struct usb_request      req;
229 	struct list_head        queue;
230 	void *saved_req_buf;
231 };
232 
233 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
234 #define call_gadget(_hs, _entry) \
235 do { \
236 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
237 		(_hs)->driver && (_hs)->driver->_entry) { \
238 		spin_unlock(&_hs->lock); \
239 		(_hs)->driver->_entry(&(_hs)->gadget); \
240 		spin_lock(&_hs->lock); \
241 	} \
242 } while (0)
243 #else
244 #define call_gadget(_hs, _entry)	do {} while (0)
245 #endif
246 
247 struct dwc2_hsotg;
248 struct dwc2_host_chan;
249 
250 /* Device States */
251 enum dwc2_lx_state {
252 	DWC2_L0,	/* On state */
253 	DWC2_L1,	/* LPM sleep state */
254 	DWC2_L2,	/* USB suspend state */
255 	DWC2_L3,	/* Off state */
256 };
257 
258 /*
259  * Gadget periodic tx fifo sizes as used by legacy driver
260  * EP0 is not included
261  */
262 #define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
263 					   768, 0, 0, 0, 0, 0, 0, 0}
264 
265 /* Gadget ep0 states */
266 enum dwc2_ep0_state {
267 	DWC2_EP0_SETUP,
268 	DWC2_EP0_DATA_IN,
269 	DWC2_EP0_DATA_OUT,
270 	DWC2_EP0_STATUS_IN,
271 	DWC2_EP0_STATUS_OUT,
272 };
273 
274 /**
275  * struct dwc2_core_params - Parameters for configuring the core
276  *
277  * @otg_cap:            Specifies the OTG capabilities.
278  *                       0 - HNP and SRP capable
279  *                       1 - SRP Only capable
280  *                       2 - No HNP/SRP capable (always available)
281  *                      Defaults to best available option (0, 1, then 2)
282  * @otg_ver:            OTG version supported
283  *                       0 - 1.3 (default)
284  *                       1 - 2.0
285  * @dma_enable:         Specifies whether to use slave or DMA mode for accessing
286  *                      the data FIFOs. The driver will automatically detect the
287  *                      value for this parameter if none is specified.
288  *                       0 - Slave (always available)
289  *                       1 - DMA (default, if available)
290  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
291  *                      address DMA mode or descriptor DMA mode for accessing
292  *                      the data FIFOs. The driver will automatically detect the
293  *                      value for this if none is specified.
294  *                       0 - Address DMA
295  *                       1 - Descriptor DMA (default, if available)
296  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
297  *                      address DMA mode or descriptor DMA mode for accessing
298  *                      the data FIFOs in Full Speed mode only. The driver
299  *                      will automatically detect the value for this if none is
300  *                      specified.
301  *                       0 - Address DMA
302  *                       1 - Descriptor DMA in FS (default, if available)
303  * @speed:              Specifies the maximum speed of operation in host and
304  *                      device mode. The actual speed depends on the speed of
305  *                      the attached device and the value of phy_type.
306  *                       0 - High Speed
307  *                           (default when phy_type is UTMI+ or ULPI)
308  *                       1 - Full Speed
309  *                           (default when phy_type is Full Speed)
310  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
311  *                       1 - Allow dynamic FIFO sizing (default, if available)
312  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
313  *                      are enabled
314  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
315  *                      dynamic FIFO sizing is enabled
316  *                       16 to 32768
317  *                      Actual maximum value is autodetected and also
318  *                      the default.
319  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
320  *                      in host mode when dynamic FIFO sizing is enabled
321  *                       16 to 32768
322  *                      Actual maximum value is autodetected and also
323  *                      the default.
324  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
325  *                      host mode when dynamic FIFO sizing is enabled
326  *                       16 to 32768
327  *                      Actual maximum value is autodetected and also
328  *                      the default.
329  * @max_transfer_size:  The maximum transfer size supported, in bytes
330  *                       2047 to 65,535
331  *                      Actual maximum value is autodetected and also
332  *                      the default.
333  * @max_packet_count:   The maximum number of packets in a transfer
334  *                       15 to 511
335  *                      Actual maximum value is autodetected and also
336  *                      the default.
337  * @host_channels:      The number of host channel registers to use
338  *                       1 to 16
339  *                      Actual maximum value is autodetected and also
340  *                      the default.
341  * @phy_type:           Specifies the type of PHY interface to use. By default,
342  *                      the driver will automatically detect the phy_type.
343  *                       0 - Full Speed Phy
344  *                       1 - UTMI+ Phy
345  *                       2 - ULPI Phy
346  *                      Defaults to best available option (2, 1, then 0)
347  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
348  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
349  *                      ULPI phy_type, this parameter indicates the data width
350  *                      between the MAC and the ULPI Wrapper.) Also, this
351  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
352  *                      parameter was set to "8 and 16 bits", meaning that the
353  *                      core has been configured to work at either data path
354  *                      width.
355  *                       8 or 16 (default 16 if available)
356  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
357  *                      data rate. This parameter is only applicable if phy_type
358  *                      is ULPI.
359  *                       0 - single data rate ULPI interface with 8 bit wide
360  *                           data bus (default)
361  *                       1 - double data rate ULPI interface with 4 bit wide
362  *                           data bus
363  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
364  *                      external supply to drive the VBus
365  *                       0 - Internal supply (default)
366  *                       1 - External supply
367  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
368  *                      speed PHY. This parameter is only applicable if phy_type
369  *                      is FS.
370  *                       0 - No (default)
371  *                       1 - Yes
372  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
373  *                       0 - No (default)
374  *                       1 - Yes
375  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
376  *                      when attached to a Full Speed or Low Speed device in
377  *                      host mode.
378  *                       0 - Don't support low power mode (default)
379  *                       1 - Support low power mode
380  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
381  *                      when connected to a Low Speed device in host
382  *                      mode. This parameter is applicable only if
383  *                      host_support_fs_ls_low_power is enabled.
384  *                       0 - 48 MHz
385  *                           (default when phy_type is UTMI+ or ULPI)
386  *                       1 - 6 MHz
387  *                           (default when phy_type is Full Speed)
388  * @ts_dline:           Enable Term Select Dline pulsing
389  *                       0 - No (default)
390  *                       1 - Yes
391  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
392  *                       0 - No (default for core < 2.92a)
393  *                       1 - Yes (default for core >= 2.92a)
394  * @ahbcfg:             This field allows the default value of the GAHBCFG
395  *                      register to be overridden
396  *                       -1         - GAHBCFG value will be set to 0x06
397  *                                    (INCR4, default)
398  *                       all others - GAHBCFG value will be overridden with
399  *                                    this value
400  *                      Not all bits can be controlled like this, the
401  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
402  *                      by the driver and are ignored in this
403  *                      configuration value.
404  * @uframe_sched:       True to enable the microframe scheduler
405  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
406  *                      Disable CONIDSTSCHNG controller interrupt in such
407  *                      case.
408  *                      0 - No (default)
409  *                      1 - Yes
410  * @hibernation:	Specifies whether the controller support hibernation.
411  *			If hibernation is enabled, the controller will enter
412  *			hibernation in both peripheral and host mode when
413  *			needed.
414  *			0 - No (default)
415  *			1 - Yes
416  *
417  * The following parameters may be specified when starting the module. These
418  * parameters define how the DWC_otg controller should be configured. A
419  * value of -1 (or any other out of range value) for any parameter means
420  * to read the value from hardware (if possible) or use the builtin
421  * default described above.
422  */
423 struct dwc2_core_params {
424 	/*
425 	 * Don't add any non-int members here, this will break
426 	 * dwc2_set_all_params!
427 	 */
428 	int otg_cap;
429 	int otg_ver;
430 	int dma_enable;
431 	int dma_desc_enable;
432 	int dma_desc_fs_enable;
433 	int speed;
434 	int enable_dynamic_fifo;
435 	int en_multiple_tx_fifo;
436 	int host_rx_fifo_size;
437 	int host_nperio_tx_fifo_size;
438 	int host_perio_tx_fifo_size;
439 	int max_transfer_size;
440 	int max_packet_count;
441 	int host_channels;
442 	int phy_type;
443 	int phy_utmi_width;
444 	int phy_ulpi_ddr;
445 	int phy_ulpi_ext_vbus;
446 	int i2c_enable;
447 	int ulpi_fs_ls;
448 	int host_support_fs_ls_low_power;
449 	int host_ls_low_power_phy_clk;
450 	int ts_dline;
451 	int reload_ctl;
452 	int ahbcfg;
453 	int uframe_sched;
454 	int external_id_pin_ctl;
455 	int hibernation;
456 };
457 
458 /**
459  * struct dwc2_hw_params - Autodetected parameters.
460  *
461  * These parameters are the various parameters read from hardware
462  * registers during initialization. They typically contain the best
463  * supported or maximum value that can be configured in the
464  * corresponding dwc2_core_params value.
465  *
466  * The values that are not in dwc2_core_params are documented below.
467  *
468  * @op_mode             Mode of Operation
469  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
470  *                       1 - SRP-Capable OTG (Host & Device)
471  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
472  *                       3 - SRP-Capable Device
473  *                       4 - Non-OTG Device
474  *                       5 - SRP-Capable Host
475  *                       6 - Non-OTG Host
476  * @arch                Architecture
477  *                       0 - Slave only
478  *                       1 - External DMA
479  *                       2 - Internal DMA
480  * @power_optimized     Are power optimizations enabled?
481  * @num_dev_ep          Number of device endpoints available
482  * @num_dev_perio_in_ep Number of device periodic IN endpoints
483  *                      available
484  * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
485  *                      Depth
486  *                       0 to 30
487  * @host_perio_tx_q_depth
488  *                      Host Mode Periodic Request Queue Depth
489  *                       2, 4 or 8
490  * @nperio_tx_q_depth
491  *                      Non-Periodic Request Queue Depth
492  *                       2, 4 or 8
493  * @hs_phy_type         High-speed PHY interface type
494  *                       0 - High-speed interface not supported
495  *                       1 - UTMI+
496  *                       2 - ULPI
497  *                       3 - UTMI+ and ULPI
498  * @fs_phy_type         Full-speed PHY interface type
499  *                       0 - Full speed interface not supported
500  *                       1 - Dedicated full speed interface
501  *                       2 - FS pins shared with UTMI+ pins
502  *                       3 - FS pins shared with ULPI pins
503  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
504  * @utmi_phy_data_width UTMI+ PHY data width
505  *                       0 - 8 bits
506  *                       1 - 16 bits
507  *                       2 - 8 or 16 bits
508  * @snpsid:             Value from SNPSID register
509  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
510  */
511 struct dwc2_hw_params {
512 	unsigned op_mode:3;
513 	unsigned arch:2;
514 	unsigned dma_desc_enable:1;
515 	unsigned dma_desc_fs_enable:1;
516 	unsigned enable_dynamic_fifo:1;
517 	unsigned en_multiple_tx_fifo:1;
518 	unsigned host_rx_fifo_size:16;
519 	unsigned host_nperio_tx_fifo_size:16;
520 	unsigned dev_nperio_tx_fifo_size:16;
521 	unsigned host_perio_tx_fifo_size:16;
522 	unsigned nperio_tx_q_depth:3;
523 	unsigned host_perio_tx_q_depth:3;
524 	unsigned dev_token_q_depth:5;
525 	unsigned max_transfer_size:26;
526 	unsigned max_packet_count:11;
527 	unsigned host_channels:5;
528 	unsigned hs_phy_type:2;
529 	unsigned fs_phy_type:2;
530 	unsigned i2c_enable:1;
531 	unsigned num_dev_ep:4;
532 	unsigned num_dev_perio_in_ep:4;
533 	unsigned total_fifo_size:16;
534 	unsigned power_optimized:1;
535 	unsigned utmi_phy_data_width:2;
536 	u32 snpsid;
537 	u32 dev_ep_dirs;
538 };
539 
540 /* Size of control and EP0 buffers */
541 #define DWC2_CTRL_BUFF_SIZE 8
542 
543 /**
544  * struct dwc2_gregs_backup - Holds global registers state before entering partial
545  * power down
546  * @gotgctl:		Backup of GOTGCTL register
547  * @gintmsk:		Backup of GINTMSK register
548  * @gahbcfg:		Backup of GAHBCFG register
549  * @gusbcfg:		Backup of GUSBCFG register
550  * @grxfsiz:		Backup of GRXFSIZ register
551  * @gnptxfsiz:		Backup of GNPTXFSIZ register
552  * @gi2cctl:		Backup of GI2CCTL register
553  * @hptxfsiz:		Backup of HPTXFSIZ register
554  * @gdfifocfg:		Backup of GDFIFOCFG register
555  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
556  * @gpwrdn:		Backup of GPWRDN register
557  */
558 struct dwc2_gregs_backup {
559 	u32 gotgctl;
560 	u32 gintmsk;
561 	u32 gahbcfg;
562 	u32 gusbcfg;
563 	u32 grxfsiz;
564 	u32 gnptxfsiz;
565 	u32 gi2cctl;
566 	u32 hptxfsiz;
567 	u32 pcgcctl;
568 	u32 gdfifocfg;
569 	u32 dtxfsiz[MAX_EPS_CHANNELS];
570 	u32 gpwrdn;
571 	bool valid;
572 };
573 
574 /**
575  * struct  dwc2_dregs_backup - Holds device registers state before entering partial
576  * power down
577  * @dcfg:		Backup of DCFG register
578  * @dctl:		Backup of DCTL register
579  * @daintmsk:		Backup of DAINTMSK register
580  * @diepmsk:		Backup of DIEPMSK register
581  * @doepmsk:		Backup of DOEPMSK register
582  * @diepctl:		Backup of DIEPCTL register
583  * @dieptsiz:		Backup of DIEPTSIZ register
584  * @diepdma:		Backup of DIEPDMA register
585  * @doepctl:		Backup of DOEPCTL register
586  * @doeptsiz:		Backup of DOEPTSIZ register
587  * @doepdma:		Backup of DOEPDMA register
588  */
589 struct dwc2_dregs_backup {
590 	u32 dcfg;
591 	u32 dctl;
592 	u32 daintmsk;
593 	u32 diepmsk;
594 	u32 doepmsk;
595 	u32 diepctl[MAX_EPS_CHANNELS];
596 	u32 dieptsiz[MAX_EPS_CHANNELS];
597 	u32 diepdma[MAX_EPS_CHANNELS];
598 	u32 doepctl[MAX_EPS_CHANNELS];
599 	u32 doeptsiz[MAX_EPS_CHANNELS];
600 	u32 doepdma[MAX_EPS_CHANNELS];
601 	bool valid;
602 };
603 
604 /**
605  * struct  dwc2_hregs_backup - Holds host registers state before entering partial
606  * power down
607  * @hcfg:		Backup of HCFG register
608  * @haintmsk:		Backup of HAINTMSK register
609  * @hcintmsk:		Backup of HCINTMSK register
610  * @hptr0:		Backup of HPTR0 register
611  * @hfir:		Backup of HFIR register
612  */
613 struct dwc2_hregs_backup {
614 	u32 hcfg;
615 	u32 haintmsk;
616 	u32 hcintmsk[MAX_EPS_CHANNELS];
617 	u32 hprt0;
618 	u32 hfir;
619 	bool valid;
620 };
621 
622 /*
623  * Constants related to high speed periodic scheduling
624  *
625  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
626  * reservation point of view it's assumed that the schedule goes right back to
627  * the beginning after the end of the schedule.
628  *
629  * What does that mean for scheduling things with a long interval?  It means
630  * we'll reserve time for them in every possible microframe that they could
631  * ever be scheduled in.  ...but we'll still only actually schedule them as
632  * often as they were requested.
633  *
634  * We keep our schedule in a "bitmap" structure.  This simplifies having
635  * to keep track of and merge intervals: we just let the bitmap code do most
636  * of the heavy lifting.  In a way scheduling is much like memory allocation.
637  *
638  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
639  * supposed to schedule for periodic transfers).  That's according to spec.
640  *
641  * Note that though we only schedule 80% of each microframe, the bitmap that we
642  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
643  * space for each uFrame).
644  *
645  * Requirements:
646  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
647  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
648  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
649  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
650  */
651 #define DWC2_US_PER_UFRAME		125
652 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
653 
654 #define DWC2_HS_SCHEDULE_UFRAMES	8
655 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
656 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
657 
658 /*
659  * Constants related to low speed scheduling
660  *
661  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
662  * so we make up a unit called a "slice" that's worth 25us.  There are 40
663  * slices in a full frame and we can schedule 36 of those (90%) for periodic
664  * transfers.
665  *
666  * Our low speed schedule can be as short as 1 frame or could be longer.  When
667  * we only schedule 1 frame it means that we'll need to reserve a time every
668  * frame even for things that only transfer very rarely, so something that runs
669  * every 2048 frames will get time reserved in every frame.  Our low speed
670  * schedule can be longer and we'll be able to handle more overlap, but that
671  * will come at increased memory cost and increased time to schedule.
672  *
673  * Note: one other advantage of a short low speed schedule is that if we mess
674  * up and miss scheduling we can jump in and use any of the slots that we
675  * happened to reserve.
676  *
677  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
678  * the schedule.  There will be one schedule per TT.
679  *
680  * Requirements:
681  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
682  */
683 #define DWC2_US_PER_SLICE	25
684 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
685 
686 #define DWC2_ROUND_US_TO_SLICE(us) \
687 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
688 				 DWC2_US_PER_SLICE)
689 
690 #define DWC2_LS_PERIODIC_US_PER_FRAME \
691 				900
692 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
693 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
694 				 DWC2_US_PER_SLICE)
695 
696 #define DWC2_LS_SCHEDULE_FRAMES	1
697 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
698 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
699 
700 /**
701  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
702  * and periodic schedules
703  *
704  * These are common for both host and peripheral modes:
705  *
706  * @dev:                The struct device pointer
707  * @regs:		Pointer to controller regs
708  * @hw_params:          Parameters that were autodetected from the
709  *                      hardware registers
710  * @core_params:	Parameters that define how the core should be configured
711  * @op_state:           The operational State, during transitions (a_host=>
712  *                      a_peripheral and b_device=>b_host) this may not match
713  *                      the core, but allows the software to determine
714  *                      transitions
715  * @dr_mode:            Requested mode of operation, one of following:
716  *                      - USB_DR_MODE_PERIPHERAL
717  *                      - USB_DR_MODE_HOST
718  *                      - USB_DR_MODE_OTG
719  * @hcd_enabled		Host mode sub-driver initialization indicator.
720  * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
721  * @ll_hw_enabled	Status of low-level hardware resources.
722  * @phy:                The otg phy transceiver structure for phy control.
723  * @uphy:               The otg phy transceiver structure for old USB phy control.
724  * @plat:               The platform specific configuration data. This can be removed once
725  *                      all SoCs support usb transceiver.
726  * @supplies:           Definition of USB power supplies
727  * @phyif:              PHY interface width
728  * @lock:		Spinlock that protects all the driver data structures
729  * @priv:		Stores a pointer to the struct usb_hcd
730  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
731  *                      transfer are in process of being queued
732  * @srp_success:        Stores status of SRP request in the case of a FS PHY
733  *                      with an I2C interface
734  * @wq_otg:             Workqueue object used for handling of some interrupts
735  * @wf_otg:             Work object for handling Connector ID Status Change
736  *                      interrupt
737  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
738  * @lx_state:           Lx state of connected device
739  * @gregs_backup: Backup of global registers during suspend
740  * @dregs_backup: Backup of device registers during suspend
741  * @hregs_backup: Backup of host registers during suspend
742  *
743  * These are for host mode:
744  *
745  * @flags:              Flags for handling root port state changes
746  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
747  *                      Transfers associated with these QHs are not currently
748  *                      assigned to a host channel.
749  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
750  *                      Transfers associated with these QHs are currently
751  *                      assigned to a host channel.
752  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
753  *                      non-periodic schedule
754  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
755  *                      list of QHs for periodic transfers that are _not_
756  *                      scheduled for the next frame. Each QH in the list has an
757  *                      interval counter that determines when it needs to be
758  *                      scheduled for execution. This scheduling mechanism
759  *                      allows only a simple calculation for periodic bandwidth
760  *                      used (i.e. must assume that all periodic transfers may
761  *                      need to execute in the same frame). However, it greatly
762  *                      simplifies scheduling and should be sufficient for the
763  *                      vast majority of OTG hosts, which need to connect to a
764  *                      small number of peripherals at one time. Items move from
765  *                      this list to periodic_sched_ready when the QH interval
766  *                      counter is 0 at SOF.
767  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
768  *                      the next frame, but have not yet been assigned to host
769  *                      channels. Items move from this list to
770  *                      periodic_sched_assigned as host channels become
771  *                      available during the current frame.
772  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
773  *                      frame that are assigned to host channels. Items move
774  *                      from this list to periodic_sched_queued as the
775  *                      transactions for the QH are queued to the DWC_otg
776  *                      controller.
777  * @periodic_sched_queued: List of periodic QHs that have been queued for
778  *                      execution. Items move from this list to either
779  *                      periodic_sched_inactive or periodic_sched_ready when the
780  *                      channel associated with the transfer is released. If the
781  *                      interval for the QH is 1, the item moves to
782  *                      periodic_sched_ready because it must be rescheduled for
783  *                      the next frame. Otherwise, the item moves to
784  *                      periodic_sched_inactive.
785  * @split_order:        List keeping track of channels doing splits, in order.
786  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
787  *                      This value is in microseconds per (micro)frame. The
788  *                      assumption is that all periodic transfers may occur in
789  *                      the same (micro)frame.
790  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
791  *                      host is in high speed mode; low speed schedules are
792  *                      stored elsewhere since we need one per TT.
793  * @frame_number:       Frame number read from the core at SOF. The value ranges
794  *                      from 0 to HFNUM_MAX_FRNUM.
795  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
796  *                      SOF enable/disable.
797  * @free_hc_list:       Free host channels in the controller. This is a list of
798  *                      struct dwc2_host_chan items.
799  * @periodic_channels:  Number of host channels assigned to periodic transfers.
800  *                      Currently assuming that there is a dedicated host
801  *                      channel for each periodic transaction and at least one
802  *                      host channel is available for non-periodic transactions.
803  * @non_periodic_channels: Number of host channels assigned to non-periodic
804  *                      transfers
805  * @available_host_channels Number of host channels available for the microframe
806  *                      scheduler to use
807  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
808  *                      Allows accessing a host channel descriptor given the
809  *                      host channel number. This is useful in interrupt
810  *                      handlers.
811  * @status_buf:         Buffer used for data received during the status phase of
812  *                      a control transfer.
813  * @status_buf_dma:     DMA address for status_buf
814  * @start_work:         Delayed work for handling host A-cable connection
815  * @reset_work:         Delayed work for handling a port reset
816  * @otg_port:           OTG port number
817  * @frame_list:         Frame list
818  * @frame_list_dma:     Frame list DMA address
819  * @frame_list_sz:      Frame list size
820  * @desc_gen_cache:     Kmem cache for generic descriptors
821  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
822  *
823  * These are for peripheral mode:
824  *
825  * @driver:             USB gadget driver
826  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
827  * @num_of_eps:         Number of available EPs (excluding EP0)
828  * @debug_root:         Root directrory for debugfs.
829  * @debug_file:         Main status file for debugfs.
830  * @debug_testmode:     Testmode status file for debugfs.
831  * @debug_fifo:         FIFO status file for debugfs.
832  * @ep0_reply:          Request used for ep0 reply.
833  * @ep0_buff:           Buffer for EP0 reply data, if needed.
834  * @ctrl_buff:          Buffer for EP0 control requests.
835  * @ctrl_req:           Request for EP0 control packets.
836  * @ep0_state:          EP0 control transfers state
837  * @test_mode:          USB test mode requested by the host
838  * @eps:                The endpoints being supplied to the gadget framework
839  * @g_using_dma:          Indicate if dma usage is enabled
840  * @g_rx_fifo_sz:         Contains rx fifo size value
841  * @g_np_g_tx_fifo_sz:      Contains Non-Periodic tx fifo size value
842  * @g_tx_fifo_sz:         Contains tx fifo size value per endpoints
843  */
844 struct dwc2_hsotg {
845 	struct device *dev;
846 	void __iomem *regs;
847 	/** Params detected from hardware */
848 	struct dwc2_hw_params hw_params;
849 	/** Params to actually use */
850 	struct dwc2_core_params *core_params;
851 	enum usb_otg_state op_state;
852 	enum usb_dr_mode dr_mode;
853 	unsigned int hcd_enabled:1;
854 	unsigned int gadget_enabled:1;
855 	unsigned int ll_hw_enabled:1;
856 
857 	struct phy *phy;
858 	struct usb_phy *uphy;
859 	struct dwc2_hsotg_plat *plat;
860 	struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
861 	u32 phyif;
862 
863 	spinlock_t lock;
864 	void *priv;
865 	int     irq;
866 	struct clk *clk;
867 
868 	unsigned int queuing_high_bandwidth:1;
869 	unsigned int srp_success:1;
870 
871 	struct workqueue_struct *wq_otg;
872 	struct work_struct wf_otg;
873 	struct timer_list wkp_timer;
874 	enum dwc2_lx_state lx_state;
875 	struct dwc2_gregs_backup gr_backup;
876 	struct dwc2_dregs_backup dr_backup;
877 	struct dwc2_hregs_backup hr_backup;
878 
879 	struct dentry *debug_root;
880 	struct debugfs_regset32 *regset;
881 
882 	/* DWC OTG HW Release versions */
883 #define DWC2_CORE_REV_2_71a	0x4f54271a
884 #define DWC2_CORE_REV_2_90a	0x4f54290a
885 #define DWC2_CORE_REV_2_92a	0x4f54292a
886 #define DWC2_CORE_REV_2_94a	0x4f54294a
887 #define DWC2_CORE_REV_3_00a	0x4f54300a
888 
889 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
890 	union dwc2_hcd_internal_flags {
891 		u32 d32;
892 		struct {
893 			unsigned port_connect_status_change:1;
894 			unsigned port_connect_status:1;
895 			unsigned port_reset_change:1;
896 			unsigned port_enable_change:1;
897 			unsigned port_suspend_change:1;
898 			unsigned port_over_current_change:1;
899 			unsigned port_l1_change:1;
900 			unsigned reserved:25;
901 		} b;
902 	} flags;
903 
904 	struct list_head non_periodic_sched_inactive;
905 	struct list_head non_periodic_sched_active;
906 	struct list_head *non_periodic_qh_ptr;
907 	struct list_head periodic_sched_inactive;
908 	struct list_head periodic_sched_ready;
909 	struct list_head periodic_sched_assigned;
910 	struct list_head periodic_sched_queued;
911 	struct list_head split_order;
912 	u16 periodic_usecs;
913 	unsigned long hs_periodic_bitmap[
914 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
915 	u16 frame_number;
916 	u16 periodic_qh_count;
917 	bool bus_suspended;
918 	bool new_connection;
919 
920 	u16 last_frame_num;
921 
922 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
923 #define FRAME_NUM_ARRAY_SIZE 1000
924 	u16 *frame_num_array;
925 	u16 *last_frame_num_array;
926 	int frame_num_idx;
927 	int dumped_frame_num_array;
928 #endif
929 
930 	struct list_head free_hc_list;
931 	int periodic_channels;
932 	int non_periodic_channels;
933 	int available_host_channels;
934 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
935 	u8 *status_buf;
936 	dma_addr_t status_buf_dma;
937 #define DWC2_HCD_STATUS_BUF_SIZE 64
938 
939 	struct delayed_work start_work;
940 	struct delayed_work reset_work;
941 	u8 otg_port;
942 	u32 *frame_list;
943 	dma_addr_t frame_list_dma;
944 	u32 frame_list_sz;
945 	struct kmem_cache *desc_gen_cache;
946 	struct kmem_cache *desc_hsisoc_cache;
947 
948 #ifdef DEBUG
949 	u32 frrem_samples;
950 	u64 frrem_accum;
951 
952 	u32 hfnum_7_samples_a;
953 	u64 hfnum_7_frrem_accum_a;
954 	u32 hfnum_0_samples_a;
955 	u64 hfnum_0_frrem_accum_a;
956 	u32 hfnum_other_samples_a;
957 	u64 hfnum_other_frrem_accum_a;
958 
959 	u32 hfnum_7_samples_b;
960 	u64 hfnum_7_frrem_accum_b;
961 	u32 hfnum_0_samples_b;
962 	u64 hfnum_0_frrem_accum_b;
963 	u32 hfnum_other_samples_b;
964 	u64 hfnum_other_frrem_accum_b;
965 #endif
966 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
967 
968 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
969 	/* Gadget structures */
970 	struct usb_gadget_driver *driver;
971 	int fifo_mem;
972 	unsigned int dedicated_fifos:1;
973 	unsigned char num_of_eps;
974 	u32 fifo_map;
975 
976 	struct usb_request *ep0_reply;
977 	struct usb_request *ctrl_req;
978 	void *ep0_buff;
979 	void *ctrl_buff;
980 	enum dwc2_ep0_state ep0_state;
981 	u8 test_mode;
982 
983 	struct usb_gadget gadget;
984 	unsigned int enabled:1;
985 	unsigned int connected:1;
986 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
987 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
988 	u32 g_using_dma;
989 	u32 g_rx_fifo_sz;
990 	u32 g_np_g_tx_fifo_sz;
991 	u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
992 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
993 };
994 
995 /* Reasons for halting a host channel */
996 enum dwc2_halt_status {
997 	DWC2_HC_XFER_NO_HALT_STATUS,
998 	DWC2_HC_XFER_COMPLETE,
999 	DWC2_HC_XFER_URB_COMPLETE,
1000 	DWC2_HC_XFER_ACK,
1001 	DWC2_HC_XFER_NAK,
1002 	DWC2_HC_XFER_NYET,
1003 	DWC2_HC_XFER_STALL,
1004 	DWC2_HC_XFER_XACT_ERR,
1005 	DWC2_HC_XFER_FRAME_OVERRUN,
1006 	DWC2_HC_XFER_BABBLE_ERR,
1007 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1008 	DWC2_HC_XFER_AHB_ERR,
1009 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1010 	DWC2_HC_XFER_URB_DEQUEUE,
1011 };
1012 
1013 /*
1014  * The following functions support initialization of the core driver component
1015  * and the DWC_otg controller
1016  */
1017 extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
1018 extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1019 extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1020 extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1021 
1022 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1023 
1024 extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1025 
1026 /*
1027  * Common core Functions.
1028  * The following functions support managing the DWC_otg controller in either
1029  * device or host mode.
1030  */
1031 extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1032 extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1033 extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1034 
1035 extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1036 extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1037 
1038 /* This function should be called on every hardware interrupt. */
1039 extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1040 
1041 /* OTG Core Parameters */
1042 
1043 /*
1044  * Specifies the OTG capabilities. The driver will automatically
1045  * detect the value for this parameter if none is specified.
1046  * 0 - HNP and SRP capable (default)
1047  * 1 - SRP Only capable
1048  * 2 - No HNP/SRP capable
1049  */
1050 extern void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
1051 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
1052 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
1053 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
1054 
1055 /*
1056  * Specifies whether to use slave or DMA mode for accessing the data
1057  * FIFOs. The driver will automatically detect the value for this
1058  * parameter if none is specified.
1059  * 0 - Slave
1060  * 1 - DMA (default, if available)
1061  */
1062 extern void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
1063 
1064 /*
1065  * When DMA mode is enabled specifies whether to use
1066  * address DMA or DMA Descritor mode for accessing the data
1067  * FIFOs in device mode. The driver will automatically detect
1068  * the value for this parameter if none is specified.
1069  * 0 - address DMA
1070  * 1 - DMA Descriptor(default, if available)
1071  */
1072 extern void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
1073 
1074 /*
1075  * When DMA mode is enabled specifies whether to use
1076  * address DMA or DMA Descritor mode with full speed devices
1077  * for accessing the data FIFOs in host mode.
1078  * 0 - address DMA
1079  * 1 - FS DMA Descriptor(default, if available)
1080  */
1081 extern void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg,
1082 					      int val);
1083 
1084 /*
1085  * Specifies the maximum speed of operation in host and device mode.
1086  * The actual speed depends on the speed of the attached device and
1087  * the value of phy_type. The actual speed depends on the speed of the
1088  * attached device.
1089  * 0 - High Speed (default)
1090  * 1 - Full Speed
1091  */
1092 extern void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
1093 #define DWC2_SPEED_PARAM_HIGH	0
1094 #define DWC2_SPEED_PARAM_FULL	1
1095 
1096 /*
1097  * Specifies whether low power mode is supported when attached
1098  * to a Full Speed or Low Speed device in host mode.
1099  *
1100  * 0 - Don't support low power mode (default)
1101  * 1 - Support low power mode
1102  */
1103 extern void dwc2_set_param_host_support_fs_ls_low_power(
1104 		struct dwc2_hsotg *hsotg, int val);
1105 
1106 /*
1107  * Specifies the PHY clock rate in low power mode when connected to a
1108  * Low Speed device in host mode. This parameter is applicable only if
1109  * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
1110  * then defaults to 6 MHZ otherwise 48 MHZ.
1111  *
1112  * 0 - 48 MHz
1113  * 1 - 6 MHz
1114  */
1115 extern void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
1116 						     int val);
1117 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ	0
1118 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ	1
1119 
1120 /*
1121  * 0 - Use cC FIFO size parameters
1122  * 1 - Allow dynamic FIFO sizing (default)
1123  */
1124 extern void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
1125 					       int val);
1126 
1127 /*
1128  * Number of 4-byte words in the Rx FIFO in host mode when dynamic
1129  * FIFO sizing is enabled.
1130  * 16 to 32768 (default 1024)
1131  */
1132 extern void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
1133 
1134 /*
1135  * Number of 4-byte words in the non-periodic Tx FIFO in host mode
1136  * when Dynamic FIFO sizing is enabled in the core.
1137  * 16 to 32768 (default 256)
1138  */
1139 extern void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1140 						    int val);
1141 
1142 /*
1143  * Number of 4-byte words in the host periodic Tx FIFO when dynamic
1144  * FIFO sizing is enabled.
1145  * 16 to 32768 (default 256)
1146  */
1147 extern void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1148 						   int val);
1149 
1150 /*
1151  * The maximum transfer size supported in bytes.
1152  * 2047 to 65,535  (default 65,535)
1153  */
1154 extern void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
1155 
1156 /*
1157  * The maximum number of packets in a transfer.
1158  * 15 to 511  (default 511)
1159  */
1160 extern void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
1161 
1162 /*
1163  * The number of host channel registers to use.
1164  * 1 to 16 (default 11)
1165  * Note: The FPGA configuration supports a maximum of 11 host channels.
1166  */
1167 extern void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
1168 
1169 /*
1170  * Specifies the type of PHY interface to use. By default, the driver
1171  * will automatically detect the phy_type.
1172  *
1173  * 0 - Full Speed PHY
1174  * 1 - UTMI+ (default)
1175  * 2 - ULPI
1176  */
1177 extern void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
1178 #define DWC2_PHY_TYPE_PARAM_FS		0
1179 #define DWC2_PHY_TYPE_PARAM_UTMI	1
1180 #define DWC2_PHY_TYPE_PARAM_ULPI	2
1181 
1182 /*
1183  * Specifies the UTMI+ Data Width. This parameter is
1184  * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
1185  * PHY_TYPE, this parameter indicates the data width between
1186  * the MAC and the ULPI Wrapper.) Also, this parameter is
1187  * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
1188  * to "8 and 16 bits", meaning that the core has been
1189  * configured to work at either data path width.
1190  *
1191  * 8 or 16 bits (default 16)
1192  */
1193 extern void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
1194 
1195 /*
1196  * Specifies whether the ULPI operates at double or single
1197  * data rate. This parameter is only applicable if PHY_TYPE is
1198  * ULPI.
1199  *
1200  * 0 - single data rate ULPI interface with 8 bit wide data
1201  * bus (default)
1202  * 1 - double data rate ULPI interface with 4 bit wide data
1203  * bus
1204  */
1205 extern void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
1206 
1207 /*
1208  * Specifies whether to use the internal or external supply to
1209  * drive the vbus with a ULPI phy.
1210  */
1211 extern void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
1212 #define DWC2_PHY_ULPI_INTERNAL_VBUS	0
1213 #define DWC2_PHY_ULPI_EXTERNAL_VBUS	1
1214 
1215 /*
1216  * Specifies whether to use the I2Cinterface for full speed PHY. This
1217  * parameter is only applicable if PHY_TYPE is FS.
1218  * 0 - No (default)
1219  * 1 - Yes
1220  */
1221 extern void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
1222 
1223 extern void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
1224 
1225 extern void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
1226 
1227 /*
1228  * Specifies whether dedicated transmit FIFOs are
1229  * enabled for non periodic IN endpoints in device mode
1230  * 0 - No
1231  * 1 - Yes
1232  */
1233 extern void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
1234 					       int val);
1235 
1236 extern void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
1237 
1238 extern void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val);
1239 
1240 extern void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
1241 
1242 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
1243 				const struct dwc2_core_params *params);
1244 
1245 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
1246 
1247 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1248 
1249 extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1250 extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1251 
1252 /*
1253  * The following functions check the controller's OTG operation mode
1254  * capability (GHWCFG2.OTG_MODE).
1255  *
1256  * These functions can be used before the internal hsotg->hw_params
1257  * are read in and cached so they always read directly from the
1258  * GHWCFG2 register.
1259  */
1260 unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1261 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1262 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1263 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1264 
1265 /*
1266  * Returns the mode of operation, host or device
1267  */
1268 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1269 {
1270 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1271 }
1272 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1273 {
1274 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1275 }
1276 
1277 /*
1278  * Dump core registers and SPRAM
1279  */
1280 extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1281 extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1282 extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1283 
1284 /*
1285  * Return OTG version - either 1.3 or 2.0
1286  */
1287 extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1288 
1289 /* Gadget defines */
1290 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1291 extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1292 extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1293 extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1294 extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1295 extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1296 		bool reset);
1297 extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1298 extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1299 extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1300 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1301 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1302 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1303 #else
1304 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1305 { return 0; }
1306 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1307 { return 0; }
1308 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1309 { return 0; }
1310 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1311 { return 0; }
1312 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1313 		bool reset) {}
1314 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1315 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1316 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1317 							int testmode)
1318 { return 0; }
1319 #define dwc2_is_device_connected(hsotg) (0)
1320 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1321 { return 0; }
1322 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1323 { return 0; }
1324 #endif
1325 
1326 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1327 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1328 extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1329 extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1330 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1331 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1332 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1333 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1334 #else
1335 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1336 { return 0; }
1337 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1338 						   int us)
1339 { return 0; }
1340 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1341 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1342 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1343 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1344 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1345 { return 0; }
1346 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1347 { return 0; }
1348 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1349 { return 0; }
1350 
1351 #endif
1352 
1353 #endif /* __DWC2_CORE_H__ */
1354