xref: /openbmc/linux/drivers/usb/dwc2/core.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * core.c - DesignWare HS OTG Controller common routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * The Core code provides basic services for accessing and managing the
39  * DWC_otg hardware. These services are used by both the Host Controller
40  * Driver and the Peripheral Controller Driver.
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
60 /**
61  * dwc2_backup_host_registers() - Backup controller host registers.
62  * When suspending usb bus, registers needs to be backuped
63  * if controller power is disabled once suspended.
64  *
65  * @hsotg: Programming view of the DWC_otg controller
66  */
67 static int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
68 {
69 	struct dwc2_hregs_backup *hr;
70 	int i;
71 
72 	dev_dbg(hsotg->dev, "%s\n", __func__);
73 
74 	/* Backup Host regs */
75 	hr = &hsotg->hr_backup;
76 	hr->hcfg = readl(hsotg->regs + HCFG);
77 	hr->haintmsk = readl(hsotg->regs + HAINTMSK);
78 	for (i = 0; i < hsotg->core_params->host_channels; ++i)
79 		hr->hcintmsk[i] = readl(hsotg->regs + HCINTMSK(i));
80 
81 	hr->hprt0 = readl(hsotg->regs + HPRT0);
82 	hr->hfir = readl(hsotg->regs + HFIR);
83 	hr->valid = true;
84 
85 	return 0;
86 }
87 
88 /**
89  * dwc2_restore_host_registers() - Restore controller host registers.
90  * When resuming usb bus, device registers needs to be restored
91  * if controller power were disabled.
92  *
93  * @hsotg: Programming view of the DWC_otg controller
94  */
95 static int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
96 {
97 	struct dwc2_hregs_backup *hr;
98 	int i;
99 
100 	dev_dbg(hsotg->dev, "%s\n", __func__);
101 
102 	/* Restore host regs */
103 	hr = &hsotg->hr_backup;
104 	if (!hr->valid) {
105 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
106 				__func__);
107 		return -EINVAL;
108 	}
109 	hr->valid = false;
110 
111 	writel(hr->hcfg, hsotg->regs + HCFG);
112 	writel(hr->haintmsk, hsotg->regs + HAINTMSK);
113 
114 	for (i = 0; i < hsotg->core_params->host_channels; ++i)
115 		writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
116 
117 	writel(hr->hprt0, hsotg->regs + HPRT0);
118 	writel(hr->hfir, hsotg->regs + HFIR);
119 
120 	return 0;
121 }
122 #else
123 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
124 { return 0; }
125 
126 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
127 { return 0; }
128 #endif
129 
130 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
131 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
132 /**
133  * dwc2_backup_device_registers() - Backup controller device registers.
134  * When suspending usb bus, registers needs to be backuped
135  * if controller power is disabled once suspended.
136  *
137  * @hsotg: Programming view of the DWC_otg controller
138  */
139 static int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
140 {
141 	struct dwc2_dregs_backup *dr;
142 	int i;
143 
144 	dev_dbg(hsotg->dev, "%s\n", __func__);
145 
146 	/* Backup dev regs */
147 	dr = &hsotg->dr_backup;
148 
149 	dr->dcfg = readl(hsotg->regs + DCFG);
150 	dr->dctl = readl(hsotg->regs + DCTL);
151 	dr->daintmsk = readl(hsotg->regs + DAINTMSK);
152 	dr->diepmsk = readl(hsotg->regs + DIEPMSK);
153 	dr->doepmsk = readl(hsotg->regs + DOEPMSK);
154 
155 	for (i = 0; i < hsotg->num_of_eps; i++) {
156 		/* Backup IN EPs */
157 		dr->diepctl[i] = readl(hsotg->regs + DIEPCTL(i));
158 
159 		/* Ensure DATA PID is correctly configured */
160 		if (dr->diepctl[i] & DXEPCTL_DPID)
161 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
162 		else
163 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
164 
165 		dr->dieptsiz[i] = readl(hsotg->regs + DIEPTSIZ(i));
166 		dr->diepdma[i] = readl(hsotg->regs + DIEPDMA(i));
167 
168 		/* Backup OUT EPs */
169 		dr->doepctl[i] = readl(hsotg->regs + DOEPCTL(i));
170 
171 		/* Ensure DATA PID is correctly configured */
172 		if (dr->doepctl[i] & DXEPCTL_DPID)
173 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
174 		else
175 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
176 
177 		dr->doeptsiz[i] = readl(hsotg->regs + DOEPTSIZ(i));
178 		dr->doepdma[i] = readl(hsotg->regs + DOEPDMA(i));
179 	}
180 	dr->valid = true;
181 	return 0;
182 }
183 
184 /**
185  * dwc2_restore_device_registers() - Restore controller device registers.
186  * When resuming usb bus, device registers needs to be restored
187  * if controller power were disabled.
188  *
189  * @hsotg: Programming view of the DWC_otg controller
190  */
191 static int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
192 {
193 	struct dwc2_dregs_backup *dr;
194 	u32 dctl;
195 	int i;
196 
197 	dev_dbg(hsotg->dev, "%s\n", __func__);
198 
199 	/* Restore dev regs */
200 	dr = &hsotg->dr_backup;
201 	if (!dr->valid) {
202 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
203 				__func__);
204 		return -EINVAL;
205 	}
206 	dr->valid = false;
207 
208 	writel(dr->dcfg, hsotg->regs + DCFG);
209 	writel(dr->dctl, hsotg->regs + DCTL);
210 	writel(dr->daintmsk, hsotg->regs + DAINTMSK);
211 	writel(dr->diepmsk, hsotg->regs + DIEPMSK);
212 	writel(dr->doepmsk, hsotg->regs + DOEPMSK);
213 
214 	for (i = 0; i < hsotg->num_of_eps; i++) {
215 		/* Restore IN EPs */
216 		writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
217 		writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
218 		writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
219 
220 		/* Restore OUT EPs */
221 		writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
222 		writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
223 		writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
224 	}
225 
226 	/* Set the Power-On Programming done bit */
227 	dctl = readl(hsotg->regs + DCTL);
228 	dctl |= DCTL_PWRONPRGDONE;
229 	writel(dctl, hsotg->regs + DCTL);
230 
231 	return 0;
232 }
233 #else
234 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
235 { return 0; }
236 
237 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
238 { return 0; }
239 #endif
240 
241 /**
242  * dwc2_backup_global_registers() - Backup global controller registers.
243  * When suspending usb bus, registers needs to be backuped
244  * if controller power is disabled once suspended.
245  *
246  * @hsotg: Programming view of the DWC_otg controller
247  */
248 static int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
249 {
250 	struct dwc2_gregs_backup *gr;
251 	int i;
252 
253 	/* Backup global regs */
254 	gr = &hsotg->gr_backup;
255 
256 	gr->gotgctl = readl(hsotg->regs + GOTGCTL);
257 	gr->gintmsk = readl(hsotg->regs + GINTMSK);
258 	gr->gahbcfg = readl(hsotg->regs + GAHBCFG);
259 	gr->gusbcfg = readl(hsotg->regs + GUSBCFG);
260 	gr->grxfsiz = readl(hsotg->regs + GRXFSIZ);
261 	gr->gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
262 	gr->hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
263 	gr->gdfifocfg = readl(hsotg->regs + GDFIFOCFG);
264 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
265 		gr->dtxfsiz[i] = readl(hsotg->regs + DPTXFSIZN(i));
266 
267 	gr->valid = true;
268 	return 0;
269 }
270 
271 /**
272  * dwc2_restore_global_registers() - Restore controller global registers.
273  * When resuming usb bus, device registers needs to be restored
274  * if controller power were disabled.
275  *
276  * @hsotg: Programming view of the DWC_otg controller
277  */
278 static int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
279 {
280 	struct dwc2_gregs_backup *gr;
281 	int i;
282 
283 	dev_dbg(hsotg->dev, "%s\n", __func__);
284 
285 	/* Restore global regs */
286 	gr = &hsotg->gr_backup;
287 	if (!gr->valid) {
288 		dev_err(hsotg->dev, "%s: no global registers to restore\n",
289 				__func__);
290 		return -EINVAL;
291 	}
292 	gr->valid = false;
293 
294 	writel(0xffffffff, hsotg->regs + GINTSTS);
295 	writel(gr->gotgctl, hsotg->regs + GOTGCTL);
296 	writel(gr->gintmsk, hsotg->regs + GINTMSK);
297 	writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
298 	writel(gr->gahbcfg, hsotg->regs + GAHBCFG);
299 	writel(gr->grxfsiz, hsotg->regs + GRXFSIZ);
300 	writel(gr->gnptxfsiz, hsotg->regs + GNPTXFSIZ);
301 	writel(gr->hptxfsiz, hsotg->regs + HPTXFSIZ);
302 	writel(gr->gdfifocfg, hsotg->regs + GDFIFOCFG);
303 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
304 		writel(gr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
305 
306 	return 0;
307 }
308 
309 /**
310  * dwc2_exit_hibernation() - Exit controller from Partial Power Down.
311  *
312  * @hsotg: Programming view of the DWC_otg controller
313  * @restore: Controller registers need to be restored
314  */
315 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore)
316 {
317 	u32 pcgcctl;
318 	int ret = 0;
319 
320 	if (!hsotg->core_params->hibernation)
321 		return -ENOTSUPP;
322 
323 	pcgcctl = readl(hsotg->regs + PCGCTL);
324 	pcgcctl &= ~PCGCTL_STOPPCLK;
325 	writel(pcgcctl, hsotg->regs + PCGCTL);
326 
327 	pcgcctl = readl(hsotg->regs + PCGCTL);
328 	pcgcctl &= ~PCGCTL_PWRCLMP;
329 	writel(pcgcctl, hsotg->regs + PCGCTL);
330 
331 	pcgcctl = readl(hsotg->regs + PCGCTL);
332 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
333 	writel(pcgcctl, hsotg->regs + PCGCTL);
334 
335 	udelay(100);
336 	if (restore) {
337 		ret = dwc2_restore_global_registers(hsotg);
338 		if (ret) {
339 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
340 					__func__);
341 			return ret;
342 		}
343 		if (dwc2_is_host_mode(hsotg)) {
344 			ret = dwc2_restore_host_registers(hsotg);
345 			if (ret) {
346 				dev_err(hsotg->dev, "%s: failed to restore host registers\n",
347 						__func__);
348 				return ret;
349 			}
350 		} else {
351 			ret = dwc2_restore_device_registers(hsotg);
352 			if (ret) {
353 				dev_err(hsotg->dev, "%s: failed to restore device registers\n",
354 						__func__);
355 				return ret;
356 			}
357 		}
358 	}
359 
360 	return ret;
361 }
362 
363 /**
364  * dwc2_enter_hibernation() - Put controller in Partial Power Down.
365  *
366  * @hsotg: Programming view of the DWC_otg controller
367  */
368 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
369 {
370 	u32 pcgcctl;
371 	int ret = 0;
372 
373 	if (!hsotg->core_params->hibernation)
374 		return -ENOTSUPP;
375 
376 	/* Backup all registers */
377 	ret = dwc2_backup_global_registers(hsotg);
378 	if (ret) {
379 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
380 				__func__);
381 		return ret;
382 	}
383 
384 	if (dwc2_is_host_mode(hsotg)) {
385 		ret = dwc2_backup_host_registers(hsotg);
386 		if (ret) {
387 			dev_err(hsotg->dev, "%s: failed to backup host registers\n",
388 					__func__);
389 			return ret;
390 		}
391 	} else {
392 		ret = dwc2_backup_device_registers(hsotg);
393 		if (ret) {
394 			dev_err(hsotg->dev, "%s: failed to backup device registers\n",
395 					__func__);
396 			return ret;
397 		}
398 	}
399 
400 	/* Put the controller in low power state */
401 	pcgcctl = readl(hsotg->regs + PCGCTL);
402 
403 	pcgcctl |= PCGCTL_PWRCLMP;
404 	writel(pcgcctl, hsotg->regs + PCGCTL);
405 	ndelay(20);
406 
407 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
408 	writel(pcgcctl, hsotg->regs + PCGCTL);
409 	ndelay(20);
410 
411 	pcgcctl |= PCGCTL_STOPPCLK;
412 	writel(pcgcctl, hsotg->regs + PCGCTL);
413 
414 	return ret;
415 }
416 
417 /**
418  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
419  * used in both device and host modes
420  *
421  * @hsotg: Programming view of the DWC_otg controller
422  */
423 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
424 {
425 	u32 intmsk;
426 
427 	/* Clear any pending OTG Interrupts */
428 	writel(0xffffffff, hsotg->regs + GOTGINT);
429 
430 	/* Clear any pending interrupts */
431 	writel(0xffffffff, hsotg->regs + GINTSTS);
432 
433 	/* Enable the interrupts in the GINTMSK */
434 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
435 
436 	if (hsotg->core_params->dma_enable <= 0)
437 		intmsk |= GINTSTS_RXFLVL;
438 	if (hsotg->core_params->external_id_pin_ctl <= 0)
439 		intmsk |= GINTSTS_CONIDSTSCHNG;
440 
441 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
442 		  GINTSTS_SESSREQINT;
443 
444 	writel(intmsk, hsotg->regs + GINTMSK);
445 }
446 
447 /*
448  * Initializes the FSLSPClkSel field of the HCFG register depending on the
449  * PHY type
450  */
451 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
452 {
453 	u32 hcfg, val;
454 
455 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
456 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
457 	     hsotg->core_params->ulpi_fs_ls > 0) ||
458 	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
459 		/* Full speed PHY */
460 		val = HCFG_FSLSPCLKSEL_48_MHZ;
461 	} else {
462 		/* High speed PHY running at full speed or high speed */
463 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
464 	}
465 
466 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
467 	hcfg = readl(hsotg->regs + HCFG);
468 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
469 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
470 	writel(hcfg, hsotg->regs + HCFG);
471 }
472 
473 /*
474  * Do core a soft reset of the core.  Be careful with this because it
475  * resets all the internal state machines of the core.
476  */
477 static int dwc2_core_reset(struct dwc2_hsotg *hsotg)
478 {
479 	u32 greset;
480 	int count = 0;
481 	u32 gusbcfg;
482 
483 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
484 
485 	/* Wait for AHB master IDLE state */
486 	do {
487 		usleep_range(20000, 40000);
488 		greset = readl(hsotg->regs + GRSTCTL);
489 		if (++count > 50) {
490 			dev_warn(hsotg->dev,
491 				 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
492 				 __func__, greset);
493 			return -EBUSY;
494 		}
495 	} while (!(greset & GRSTCTL_AHBIDLE));
496 
497 	/* Core Soft Reset */
498 	count = 0;
499 	greset |= GRSTCTL_CSFTRST;
500 	writel(greset, hsotg->regs + GRSTCTL);
501 	do {
502 		usleep_range(20000, 40000);
503 		greset = readl(hsotg->regs + GRSTCTL);
504 		if (++count > 50) {
505 			dev_warn(hsotg->dev,
506 				 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
507 				 __func__, greset);
508 			return -EBUSY;
509 		}
510 	} while (greset & GRSTCTL_CSFTRST);
511 
512 	if (hsotg->dr_mode == USB_DR_MODE_HOST) {
513 		gusbcfg = readl(hsotg->regs + GUSBCFG);
514 		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
515 		gusbcfg |= GUSBCFG_FORCEHOSTMODE;
516 		writel(gusbcfg, hsotg->regs + GUSBCFG);
517 	} else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
518 		gusbcfg = readl(hsotg->regs + GUSBCFG);
519 		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
520 		gusbcfg |= GUSBCFG_FORCEDEVMODE;
521 		writel(gusbcfg, hsotg->regs + GUSBCFG);
522 	} else if (hsotg->dr_mode == USB_DR_MODE_OTG) {
523 		gusbcfg = readl(hsotg->regs + GUSBCFG);
524 		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
525 		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
526 		writel(gusbcfg, hsotg->regs + GUSBCFG);
527 	}
528 
529 	/*
530 	 * NOTE: This long sleep is _very_ important, otherwise the core will
531 	 * not stay in host mode after a connector ID change!
532 	 */
533 	usleep_range(150000, 200000);
534 
535 	return 0;
536 }
537 
538 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
539 {
540 	u32 usbcfg, i2cctl;
541 	int retval = 0;
542 
543 	/*
544 	 * core_init() is now called on every switch so only call the
545 	 * following for the first time through
546 	 */
547 	if (select_phy) {
548 		dev_dbg(hsotg->dev, "FS PHY selected\n");
549 		usbcfg = readl(hsotg->regs + GUSBCFG);
550 		usbcfg |= GUSBCFG_PHYSEL;
551 		writel(usbcfg, hsotg->regs + GUSBCFG);
552 
553 		/* Reset after a PHY select */
554 		retval = dwc2_core_reset(hsotg);
555 		if (retval) {
556 			dev_err(hsotg->dev, "%s() Reset failed, aborting",
557 					__func__);
558 			return retval;
559 		}
560 	}
561 
562 	/*
563 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
564 	 * do this on HNP Dev/Host mode switches (done in dev_init and
565 	 * host_init).
566 	 */
567 	if (dwc2_is_host_mode(hsotg))
568 		dwc2_init_fs_ls_pclk_sel(hsotg);
569 
570 	if (hsotg->core_params->i2c_enable > 0) {
571 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
572 
573 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
574 		usbcfg = readl(hsotg->regs + GUSBCFG);
575 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
576 		writel(usbcfg, hsotg->regs + GUSBCFG);
577 
578 		/* Program GI2CCTL.I2CEn */
579 		i2cctl = readl(hsotg->regs + GI2CCTL);
580 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
581 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
582 		i2cctl &= ~GI2CCTL_I2CEN;
583 		writel(i2cctl, hsotg->regs + GI2CCTL);
584 		i2cctl |= GI2CCTL_I2CEN;
585 		writel(i2cctl, hsotg->regs + GI2CCTL);
586 	}
587 
588 	return retval;
589 }
590 
591 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
592 {
593 	u32 usbcfg;
594 	int retval = 0;
595 
596 	if (!select_phy)
597 		return 0;
598 
599 	usbcfg = readl(hsotg->regs + GUSBCFG);
600 
601 	/*
602 	 * HS PHY parameters. These parameters are preserved during soft reset
603 	 * so only program the first time. Do a soft reset immediately after
604 	 * setting phyif.
605 	 */
606 	switch (hsotg->core_params->phy_type) {
607 	case DWC2_PHY_TYPE_PARAM_ULPI:
608 		/* ULPI interface */
609 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
610 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
611 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
612 		if (hsotg->core_params->phy_ulpi_ddr > 0)
613 			usbcfg |= GUSBCFG_DDRSEL;
614 		break;
615 	case DWC2_PHY_TYPE_PARAM_UTMI:
616 		/* UTMI+ interface */
617 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
618 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
619 		if (hsotg->core_params->phy_utmi_width == 16)
620 			usbcfg |= GUSBCFG_PHYIF16;
621 		break;
622 	default:
623 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
624 		break;
625 	}
626 
627 	writel(usbcfg, hsotg->regs + GUSBCFG);
628 
629 	/* Reset after setting the PHY parameters */
630 	retval = dwc2_core_reset(hsotg);
631 	if (retval) {
632 		dev_err(hsotg->dev, "%s() Reset failed, aborting",
633 				__func__);
634 		return retval;
635 	}
636 
637 	return retval;
638 }
639 
640 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
641 {
642 	u32 usbcfg;
643 	int retval = 0;
644 
645 	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
646 	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
647 		/* If FS mode with FS PHY */
648 		retval = dwc2_fs_phy_init(hsotg, select_phy);
649 		if (retval)
650 			return retval;
651 	} else {
652 		/* High speed PHY */
653 		retval = dwc2_hs_phy_init(hsotg, select_phy);
654 		if (retval)
655 			return retval;
656 	}
657 
658 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
659 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
660 	    hsotg->core_params->ulpi_fs_ls > 0) {
661 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
662 		usbcfg = readl(hsotg->regs + GUSBCFG);
663 		usbcfg |= GUSBCFG_ULPI_FS_LS;
664 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
665 		writel(usbcfg, hsotg->regs + GUSBCFG);
666 	} else {
667 		usbcfg = readl(hsotg->regs + GUSBCFG);
668 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
669 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
670 		writel(usbcfg, hsotg->regs + GUSBCFG);
671 	}
672 
673 	return retval;
674 }
675 
676 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
677 {
678 	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
679 
680 	switch (hsotg->hw_params.arch) {
681 	case GHWCFG2_EXT_DMA_ARCH:
682 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
683 		return -EINVAL;
684 
685 	case GHWCFG2_INT_DMA_ARCH:
686 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
687 		if (hsotg->core_params->ahbcfg != -1) {
688 			ahbcfg &= GAHBCFG_CTRL_MASK;
689 			ahbcfg |= hsotg->core_params->ahbcfg &
690 				  ~GAHBCFG_CTRL_MASK;
691 		}
692 		break;
693 
694 	case GHWCFG2_SLAVE_ONLY_ARCH:
695 	default:
696 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
697 		break;
698 	}
699 
700 	dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
701 		hsotg->core_params->dma_enable,
702 		hsotg->core_params->dma_desc_enable);
703 
704 	if (hsotg->core_params->dma_enable > 0) {
705 		if (hsotg->core_params->dma_desc_enable > 0)
706 			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
707 		else
708 			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
709 	} else {
710 		dev_dbg(hsotg->dev, "Using Slave mode\n");
711 		hsotg->core_params->dma_desc_enable = 0;
712 	}
713 
714 	if (hsotg->core_params->dma_enable > 0)
715 		ahbcfg |= GAHBCFG_DMA_EN;
716 
717 	writel(ahbcfg, hsotg->regs + GAHBCFG);
718 
719 	return 0;
720 }
721 
722 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
723 {
724 	u32 usbcfg;
725 
726 	usbcfg = readl(hsotg->regs + GUSBCFG);
727 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
728 
729 	switch (hsotg->hw_params.op_mode) {
730 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
731 		if (hsotg->core_params->otg_cap ==
732 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
733 			usbcfg |= GUSBCFG_HNPCAP;
734 		if (hsotg->core_params->otg_cap !=
735 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
736 			usbcfg |= GUSBCFG_SRPCAP;
737 		break;
738 
739 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
740 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
741 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
742 		if (hsotg->core_params->otg_cap !=
743 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
744 			usbcfg |= GUSBCFG_SRPCAP;
745 		break;
746 
747 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
748 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
749 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
750 	default:
751 		break;
752 	}
753 
754 	writel(usbcfg, hsotg->regs + GUSBCFG);
755 }
756 
757 /**
758  * dwc2_core_init() - Initializes the DWC_otg controller registers and
759  * prepares the core for device mode or host mode operation
760  *
761  * @hsotg:      Programming view of the DWC_otg controller
762  * @select_phy: If true then also set the Phy type
763  * @irq:        If >= 0, the irq to register
764  */
765 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy, int irq)
766 {
767 	u32 usbcfg, otgctl;
768 	int retval;
769 
770 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
771 
772 	usbcfg = readl(hsotg->regs + GUSBCFG);
773 
774 	/* Set ULPI External VBUS bit if needed */
775 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
776 	if (hsotg->core_params->phy_ulpi_ext_vbus ==
777 				DWC2_PHY_ULPI_EXTERNAL_VBUS)
778 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
779 
780 	/* Set external TS Dline pulsing bit if needed */
781 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
782 	if (hsotg->core_params->ts_dline > 0)
783 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
784 
785 	writel(usbcfg, hsotg->regs + GUSBCFG);
786 
787 	/* Reset the Controller */
788 	retval = dwc2_core_reset(hsotg);
789 	if (retval) {
790 		dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
791 				__func__);
792 		return retval;
793 	}
794 
795 	/*
796 	 * This needs to happen in FS mode before any other programming occurs
797 	 */
798 	retval = dwc2_phy_init(hsotg, select_phy);
799 	if (retval)
800 		return retval;
801 
802 	/* Program the GAHBCFG Register */
803 	retval = dwc2_gahbcfg_init(hsotg);
804 	if (retval)
805 		return retval;
806 
807 	/* Program the GUSBCFG register */
808 	dwc2_gusbcfg_init(hsotg);
809 
810 	/* Program the GOTGCTL register */
811 	otgctl = readl(hsotg->regs + GOTGCTL);
812 	otgctl &= ~GOTGCTL_OTGVER;
813 	if (hsotg->core_params->otg_ver > 0)
814 		otgctl |= GOTGCTL_OTGVER;
815 	writel(otgctl, hsotg->regs + GOTGCTL);
816 	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
817 
818 	/* Clear the SRP success bit for FS-I2c */
819 	hsotg->srp_success = 0;
820 
821 	/* Enable common interrupts */
822 	dwc2_enable_common_interrupts(hsotg);
823 
824 	/*
825 	 * Do device or host initialization based on mode during PCD and
826 	 * HCD initialization
827 	 */
828 	if (dwc2_is_host_mode(hsotg)) {
829 		dev_dbg(hsotg->dev, "Host Mode\n");
830 		hsotg->op_state = OTG_STATE_A_HOST;
831 	} else {
832 		dev_dbg(hsotg->dev, "Device Mode\n");
833 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
834 	}
835 
836 	return 0;
837 }
838 
839 /**
840  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
841  *
842  * @hsotg: Programming view of DWC_otg controller
843  */
844 void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
845 {
846 	u32 intmsk;
847 
848 	dev_dbg(hsotg->dev, "%s()\n", __func__);
849 
850 	/* Disable all interrupts */
851 	writel(0, hsotg->regs + GINTMSK);
852 	writel(0, hsotg->regs + HAINTMSK);
853 
854 	/* Enable the common interrupts */
855 	dwc2_enable_common_interrupts(hsotg);
856 
857 	/* Enable host mode interrupts without disturbing common interrupts */
858 	intmsk = readl(hsotg->regs + GINTMSK);
859 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
860 	writel(intmsk, hsotg->regs + GINTMSK);
861 }
862 
863 /**
864  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
865  *
866  * @hsotg: Programming view of DWC_otg controller
867  */
868 void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
869 {
870 	u32 intmsk = readl(hsotg->regs + GINTMSK);
871 
872 	/* Disable host mode interrupts without disturbing common interrupts */
873 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
874 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP);
875 	writel(intmsk, hsotg->regs + GINTMSK);
876 }
877 
878 /*
879  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
880  * For system that have a total fifo depth that is smaller than the default
881  * RX + TX fifo size.
882  *
883  * @hsotg: Programming view of DWC_otg controller
884  */
885 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
886 {
887 	struct dwc2_core_params *params = hsotg->core_params;
888 	struct dwc2_hw_params *hw = &hsotg->hw_params;
889 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
890 
891 	total_fifo_size = hw->total_fifo_size;
892 	rxfsiz = params->host_rx_fifo_size;
893 	nptxfsiz = params->host_nperio_tx_fifo_size;
894 	ptxfsiz = params->host_perio_tx_fifo_size;
895 
896 	/*
897 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
898 	 * allocation with support for high bandwidth endpoints. Synopsys
899 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
900 	 * non-periodic as 512.
901 	 */
902 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
903 		/*
904 		 * For Buffer DMA mode/Scatter Gather DMA mode
905 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
906 		 * with n = number of host channel.
907 		 * 2 * ((1024/4) + 2) = 516
908 		 */
909 		rxfsiz = 516 + hw->host_channels;
910 
911 		/*
912 		 * min non-periodic tx fifo depth
913 		 * 2 * (largest non-periodic USB packet used / 4)
914 		 * 2 * (512/4) = 256
915 		 */
916 		nptxfsiz = 256;
917 
918 		/*
919 		 * min periodic tx fifo depth
920 		 * (largest packet size*MC)/4
921 		 * (1024 * 3)/4 = 768
922 		 */
923 		ptxfsiz = 768;
924 
925 		params->host_rx_fifo_size = rxfsiz;
926 		params->host_nperio_tx_fifo_size = nptxfsiz;
927 		params->host_perio_tx_fifo_size = ptxfsiz;
928 	}
929 
930 	/*
931 	 * If the summation of RX, NPTX and PTX fifo sizes is still
932 	 * bigger than the total_fifo_size, then we have a problem.
933 	 *
934 	 * We won't be able to allocate as many endpoints. Right now,
935 	 * we're just printing an error message, but ideally this FIFO
936 	 * allocation algorithm would be improved in the future.
937 	 *
938 	 * FIXME improve this FIFO allocation algorithm.
939 	 */
940 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
941 		dev_err(hsotg->dev, "invalid fifo sizes\n");
942 }
943 
944 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
945 {
946 	struct dwc2_core_params *params = hsotg->core_params;
947 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
948 
949 	if (!params->enable_dynamic_fifo)
950 		return;
951 
952 	dwc2_calculate_dynamic_fifo(hsotg);
953 
954 	/* Rx FIFO */
955 	grxfsiz = readl(hsotg->regs + GRXFSIZ);
956 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
957 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
958 	grxfsiz |= params->host_rx_fifo_size <<
959 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
960 	writel(grxfsiz, hsotg->regs + GRXFSIZ);
961 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", readl(hsotg->regs + GRXFSIZ));
962 
963 	/* Non-periodic Tx FIFO */
964 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
965 		readl(hsotg->regs + GNPTXFSIZ));
966 	nptxfsiz = params->host_nperio_tx_fifo_size <<
967 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
968 	nptxfsiz |= params->host_rx_fifo_size <<
969 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
970 	writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
971 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
972 		readl(hsotg->regs + GNPTXFSIZ));
973 
974 	/* Periodic Tx FIFO */
975 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
976 		readl(hsotg->regs + HPTXFSIZ));
977 	hptxfsiz = params->host_perio_tx_fifo_size <<
978 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
979 	hptxfsiz |= (params->host_rx_fifo_size +
980 		     params->host_nperio_tx_fifo_size) <<
981 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
982 	writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
983 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
984 		readl(hsotg->regs + HPTXFSIZ));
985 
986 	if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
987 	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
988 		/*
989 		 * Global DFIFOCFG calculation for Host mode -
990 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
991 		 */
992 		dfifocfg = readl(hsotg->regs + GDFIFOCFG);
993 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
994 		dfifocfg |= (params->host_rx_fifo_size +
995 			     params->host_nperio_tx_fifo_size +
996 			     params->host_perio_tx_fifo_size) <<
997 			    GDFIFOCFG_EPINFOBASE_SHIFT &
998 			    GDFIFOCFG_EPINFOBASE_MASK;
999 		writel(dfifocfg, hsotg->regs + GDFIFOCFG);
1000 	}
1001 }
1002 
1003 /**
1004  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
1005  * Host mode
1006  *
1007  * @hsotg: Programming view of DWC_otg controller
1008  *
1009  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
1010  * request queues. Host channels are reset to ensure that they are ready for
1011  * performing transfers.
1012  */
1013 void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
1014 {
1015 	u32 hcfg, hfir, otgctl;
1016 
1017 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
1018 
1019 	/* Restart the Phy Clock */
1020 	writel(0, hsotg->regs + PCGCTL);
1021 
1022 	/* Initialize Host Configuration Register */
1023 	dwc2_init_fs_ls_pclk_sel(hsotg);
1024 	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
1025 		hcfg = readl(hsotg->regs + HCFG);
1026 		hcfg |= HCFG_FSLSSUPP;
1027 		writel(hcfg, hsotg->regs + HCFG);
1028 	}
1029 
1030 	/*
1031 	 * This bit allows dynamic reloading of the HFIR register during
1032 	 * runtime. This bit needs to be programmed during initial configuration
1033 	 * and its value must not be changed during runtime.
1034 	 */
1035 	if (hsotg->core_params->reload_ctl > 0) {
1036 		hfir = readl(hsotg->regs + HFIR);
1037 		hfir |= HFIR_RLDCTRL;
1038 		writel(hfir, hsotg->regs + HFIR);
1039 	}
1040 
1041 	if (hsotg->core_params->dma_desc_enable > 0) {
1042 		u32 op_mode = hsotg->hw_params.op_mode;
1043 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
1044 		    !hsotg->hw_params.dma_desc_enable ||
1045 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
1046 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
1047 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
1048 			dev_err(hsotg->dev,
1049 				"Hardware does not support descriptor DMA mode -\n");
1050 			dev_err(hsotg->dev,
1051 				"falling back to buffer DMA mode.\n");
1052 			hsotg->core_params->dma_desc_enable = 0;
1053 		} else {
1054 			hcfg = readl(hsotg->regs + HCFG);
1055 			hcfg |= HCFG_DESCDMA;
1056 			writel(hcfg, hsotg->regs + HCFG);
1057 		}
1058 	}
1059 
1060 	/* Configure data FIFO sizes */
1061 	dwc2_config_fifos(hsotg);
1062 
1063 	/* TODO - check this */
1064 	/* Clear Host Set HNP Enable in the OTG Control Register */
1065 	otgctl = readl(hsotg->regs + GOTGCTL);
1066 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
1067 	writel(otgctl, hsotg->regs + GOTGCTL);
1068 
1069 	/* Make sure the FIFOs are flushed */
1070 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
1071 	dwc2_flush_rx_fifo(hsotg);
1072 
1073 	/* Clear Host Set HNP Enable in the OTG Control Register */
1074 	otgctl = readl(hsotg->regs + GOTGCTL);
1075 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
1076 	writel(otgctl, hsotg->regs + GOTGCTL);
1077 
1078 	if (hsotg->core_params->dma_desc_enable <= 0) {
1079 		int num_channels, i;
1080 		u32 hcchar;
1081 
1082 		/* Flush out any leftover queued requests */
1083 		num_channels = hsotg->core_params->host_channels;
1084 		for (i = 0; i < num_channels; i++) {
1085 			hcchar = readl(hsotg->regs + HCCHAR(i));
1086 			hcchar &= ~HCCHAR_CHENA;
1087 			hcchar |= HCCHAR_CHDIS;
1088 			hcchar &= ~HCCHAR_EPDIR;
1089 			writel(hcchar, hsotg->regs + HCCHAR(i));
1090 		}
1091 
1092 		/* Halt all channels to put them into a known state */
1093 		for (i = 0; i < num_channels; i++) {
1094 			int count = 0;
1095 
1096 			hcchar = readl(hsotg->regs + HCCHAR(i));
1097 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
1098 			hcchar &= ~HCCHAR_EPDIR;
1099 			writel(hcchar, hsotg->regs + HCCHAR(i));
1100 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
1101 				__func__, i);
1102 			do {
1103 				hcchar = readl(hsotg->regs + HCCHAR(i));
1104 				if (++count > 1000) {
1105 					dev_err(hsotg->dev,
1106 						"Unable to clear enable on channel %d\n",
1107 						i);
1108 					break;
1109 				}
1110 				udelay(1);
1111 			} while (hcchar & HCCHAR_CHENA);
1112 		}
1113 	}
1114 
1115 	/* Turn on the vbus power */
1116 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
1117 	if (hsotg->op_state == OTG_STATE_A_HOST) {
1118 		u32 hprt0 = dwc2_read_hprt0(hsotg);
1119 
1120 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
1121 			!!(hprt0 & HPRT0_PWR));
1122 		if (!(hprt0 & HPRT0_PWR)) {
1123 			hprt0 |= HPRT0_PWR;
1124 			writel(hprt0, hsotg->regs + HPRT0);
1125 		}
1126 	}
1127 
1128 	dwc2_enable_host_interrupts(hsotg);
1129 }
1130 
1131 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
1132 				      struct dwc2_host_chan *chan)
1133 {
1134 	u32 hcintmsk = HCINTMSK_CHHLTD;
1135 
1136 	switch (chan->ep_type) {
1137 	case USB_ENDPOINT_XFER_CONTROL:
1138 	case USB_ENDPOINT_XFER_BULK:
1139 		dev_vdbg(hsotg->dev, "control/bulk\n");
1140 		hcintmsk |= HCINTMSK_XFERCOMPL;
1141 		hcintmsk |= HCINTMSK_STALL;
1142 		hcintmsk |= HCINTMSK_XACTERR;
1143 		hcintmsk |= HCINTMSK_DATATGLERR;
1144 		if (chan->ep_is_in) {
1145 			hcintmsk |= HCINTMSK_BBLERR;
1146 		} else {
1147 			hcintmsk |= HCINTMSK_NAK;
1148 			hcintmsk |= HCINTMSK_NYET;
1149 			if (chan->do_ping)
1150 				hcintmsk |= HCINTMSK_ACK;
1151 		}
1152 
1153 		if (chan->do_split) {
1154 			hcintmsk |= HCINTMSK_NAK;
1155 			if (chan->complete_split)
1156 				hcintmsk |= HCINTMSK_NYET;
1157 			else
1158 				hcintmsk |= HCINTMSK_ACK;
1159 		}
1160 
1161 		if (chan->error_state)
1162 			hcintmsk |= HCINTMSK_ACK;
1163 		break;
1164 
1165 	case USB_ENDPOINT_XFER_INT:
1166 		if (dbg_perio())
1167 			dev_vdbg(hsotg->dev, "intr\n");
1168 		hcintmsk |= HCINTMSK_XFERCOMPL;
1169 		hcintmsk |= HCINTMSK_NAK;
1170 		hcintmsk |= HCINTMSK_STALL;
1171 		hcintmsk |= HCINTMSK_XACTERR;
1172 		hcintmsk |= HCINTMSK_DATATGLERR;
1173 		hcintmsk |= HCINTMSK_FRMOVRUN;
1174 
1175 		if (chan->ep_is_in)
1176 			hcintmsk |= HCINTMSK_BBLERR;
1177 		if (chan->error_state)
1178 			hcintmsk |= HCINTMSK_ACK;
1179 		if (chan->do_split) {
1180 			if (chan->complete_split)
1181 				hcintmsk |= HCINTMSK_NYET;
1182 			else
1183 				hcintmsk |= HCINTMSK_ACK;
1184 		}
1185 		break;
1186 
1187 	case USB_ENDPOINT_XFER_ISOC:
1188 		if (dbg_perio())
1189 			dev_vdbg(hsotg->dev, "isoc\n");
1190 		hcintmsk |= HCINTMSK_XFERCOMPL;
1191 		hcintmsk |= HCINTMSK_FRMOVRUN;
1192 		hcintmsk |= HCINTMSK_ACK;
1193 
1194 		if (chan->ep_is_in) {
1195 			hcintmsk |= HCINTMSK_XACTERR;
1196 			hcintmsk |= HCINTMSK_BBLERR;
1197 		}
1198 		break;
1199 	default:
1200 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
1201 		break;
1202 	}
1203 
1204 	writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1205 	if (dbg_hc(chan))
1206 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1207 }
1208 
1209 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
1210 				    struct dwc2_host_chan *chan)
1211 {
1212 	u32 hcintmsk = HCINTMSK_CHHLTD;
1213 
1214 	/*
1215 	 * For Descriptor DMA mode core halts the channel on AHB error.
1216 	 * Interrupt is not required.
1217 	 */
1218 	if (hsotg->core_params->dma_desc_enable <= 0) {
1219 		if (dbg_hc(chan))
1220 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1221 		hcintmsk |= HCINTMSK_AHBERR;
1222 	} else {
1223 		if (dbg_hc(chan))
1224 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
1225 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1226 			hcintmsk |= HCINTMSK_XFERCOMPL;
1227 	}
1228 
1229 	if (chan->error_state && !chan->do_split &&
1230 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
1231 		if (dbg_hc(chan))
1232 			dev_vdbg(hsotg->dev, "setting ACK\n");
1233 		hcintmsk |= HCINTMSK_ACK;
1234 		if (chan->ep_is_in) {
1235 			hcintmsk |= HCINTMSK_DATATGLERR;
1236 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
1237 				hcintmsk |= HCINTMSK_NAK;
1238 		}
1239 	}
1240 
1241 	writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1242 	if (dbg_hc(chan))
1243 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1244 }
1245 
1246 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
1247 				struct dwc2_host_chan *chan)
1248 {
1249 	u32 intmsk;
1250 
1251 	if (hsotg->core_params->dma_enable > 0) {
1252 		if (dbg_hc(chan))
1253 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1254 		dwc2_hc_enable_dma_ints(hsotg, chan);
1255 	} else {
1256 		if (dbg_hc(chan))
1257 			dev_vdbg(hsotg->dev, "DMA disabled\n");
1258 		dwc2_hc_enable_slave_ints(hsotg, chan);
1259 	}
1260 
1261 	/* Enable the top level host channel interrupt */
1262 	intmsk = readl(hsotg->regs + HAINTMSK);
1263 	intmsk |= 1 << chan->hc_num;
1264 	writel(intmsk, hsotg->regs + HAINTMSK);
1265 	if (dbg_hc(chan))
1266 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
1267 
1268 	/* Make sure host channel interrupts are enabled */
1269 	intmsk = readl(hsotg->regs + GINTMSK);
1270 	intmsk |= GINTSTS_HCHINT;
1271 	writel(intmsk, hsotg->regs + GINTMSK);
1272 	if (dbg_hc(chan))
1273 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
1274 }
1275 
1276 /**
1277  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
1278  * a specific endpoint
1279  *
1280  * @hsotg: Programming view of DWC_otg controller
1281  * @chan:  Information needed to initialize the host channel
1282  *
1283  * The HCCHARn register is set up with the characteristics specified in chan.
1284  * Host channel interrupts that may need to be serviced while this transfer is
1285  * in progress are enabled.
1286  */
1287 void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1288 {
1289 	u8 hc_num = chan->hc_num;
1290 	u32 hcintmsk;
1291 	u32 hcchar;
1292 	u32 hcsplt = 0;
1293 
1294 	if (dbg_hc(chan))
1295 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1296 
1297 	/* Clear old interrupt conditions for this host channel */
1298 	hcintmsk = 0xffffffff;
1299 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1300 	writel(hcintmsk, hsotg->regs + HCINT(hc_num));
1301 
1302 	/* Enable channel interrupts required for this transfer */
1303 	dwc2_hc_enable_ints(hsotg, chan);
1304 
1305 	/*
1306 	 * Program the HCCHARn register with the endpoint characteristics for
1307 	 * the current transfer
1308 	 */
1309 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
1310 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
1311 	if (chan->ep_is_in)
1312 		hcchar |= HCCHAR_EPDIR;
1313 	if (chan->speed == USB_SPEED_LOW)
1314 		hcchar |= HCCHAR_LSPDDEV;
1315 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
1316 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
1317 	writel(hcchar, hsotg->regs + HCCHAR(hc_num));
1318 	if (dbg_hc(chan)) {
1319 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
1320 			 hc_num, hcchar);
1321 
1322 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
1323 			 __func__, hc_num);
1324 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
1325 			 chan->dev_addr);
1326 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
1327 			 chan->ep_num);
1328 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
1329 			 chan->ep_is_in);
1330 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
1331 			 chan->speed == USB_SPEED_LOW);
1332 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
1333 			 chan->ep_type);
1334 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
1335 			 chan->max_packet);
1336 	}
1337 
1338 	/* Program the HCSPLT register for SPLITs */
1339 	if (chan->do_split) {
1340 		if (dbg_hc(chan))
1341 			dev_vdbg(hsotg->dev,
1342 				 "Programming HC %d with split --> %s\n",
1343 				 hc_num,
1344 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
1345 		if (chan->complete_split)
1346 			hcsplt |= HCSPLT_COMPSPLT;
1347 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
1348 			  HCSPLT_XACTPOS_MASK;
1349 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
1350 			  HCSPLT_HUBADDR_MASK;
1351 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
1352 			  HCSPLT_PRTADDR_MASK;
1353 		if (dbg_hc(chan)) {
1354 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
1355 				 chan->complete_split);
1356 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
1357 				 chan->xact_pos);
1358 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
1359 				 chan->hub_addr);
1360 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
1361 				 chan->hub_port);
1362 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
1363 				 chan->ep_is_in);
1364 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
1365 				 chan->max_packet);
1366 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
1367 				 chan->xfer_len);
1368 		}
1369 	}
1370 
1371 	writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
1372 }
1373 
1374 /**
1375  * dwc2_hc_halt() - Attempts to halt a host channel
1376  *
1377  * @hsotg:       Controller register interface
1378  * @chan:        Host channel to halt
1379  * @halt_status: Reason for halting the channel
1380  *
1381  * This function should only be called in Slave mode or to abort a transfer in
1382  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
1383  * controller halts the channel when the transfer is complete or a condition
1384  * occurs that requires application intervention.
1385  *
1386  * In slave mode, checks for a free request queue entry, then sets the Channel
1387  * Enable and Channel Disable bits of the Host Channel Characteristics
1388  * register of the specified channel to intiate the halt. If there is no free
1389  * request queue entry, sets only the Channel Disable bit of the HCCHARn
1390  * register to flush requests for this channel. In the latter case, sets a
1391  * flag to indicate that the host channel needs to be halted when a request
1392  * queue slot is open.
1393  *
1394  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
1395  * HCCHARn register. The controller ensures there is space in the request
1396  * queue before submitting the halt request.
1397  *
1398  * Some time may elapse before the core flushes any posted requests for this
1399  * host channel and halts. The Channel Halted interrupt handler completes the
1400  * deactivation of the host channel.
1401  */
1402 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
1403 		  enum dwc2_halt_status halt_status)
1404 {
1405 	u32 nptxsts, hptxsts, hcchar;
1406 
1407 	if (dbg_hc(chan))
1408 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1409 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1410 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1411 
1412 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1413 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1414 		/*
1415 		 * Disable all channel interrupts except Ch Halted. The QTD
1416 		 * and QH state associated with this transfer has been cleared
1417 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1418 		 * shut down carefully to prevent crashes.
1419 		 */
1420 		u32 hcintmsk = HCINTMSK_CHHLTD;
1421 
1422 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1423 		writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1424 
1425 		/*
1426 		 * Make sure no other interrupts besides halt are currently
1427 		 * pending. Handling another interrupt could cause a crash due
1428 		 * to the QTD and QH state.
1429 		 */
1430 		writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1431 
1432 		/*
1433 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1434 		 * even if the channel was already halted for some other
1435 		 * reason
1436 		 */
1437 		chan->halt_status = halt_status;
1438 
1439 		hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1440 		if (!(hcchar & HCCHAR_CHENA)) {
1441 			/*
1442 			 * The channel is either already halted or it hasn't
1443 			 * started yet. In DMA mode, the transfer may halt if
1444 			 * it finishes normally or a condition occurs that
1445 			 * requires driver intervention. Don't want to halt
1446 			 * the channel again. In either Slave or DMA mode,
1447 			 * it's possible that the transfer has been assigned
1448 			 * to a channel, but not started yet when an URB is
1449 			 * dequeued. Don't want to halt a channel that hasn't
1450 			 * started yet.
1451 			 */
1452 			return;
1453 		}
1454 	}
1455 	if (chan->halt_pending) {
1456 		/*
1457 		 * A halt has already been issued for this channel. This might
1458 		 * happen when a transfer is aborted by a higher level in
1459 		 * the stack.
1460 		 */
1461 		dev_vdbg(hsotg->dev,
1462 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1463 			 __func__, chan->hc_num);
1464 		return;
1465 	}
1466 
1467 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1468 
1469 	/* No need to set the bit in DDMA for disabling the channel */
1470 	/* TODO check it everywhere channel is disabled */
1471 	if (hsotg->core_params->dma_desc_enable <= 0) {
1472 		if (dbg_hc(chan))
1473 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1474 		hcchar |= HCCHAR_CHENA;
1475 	} else {
1476 		if (dbg_hc(chan))
1477 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1478 	}
1479 	hcchar |= HCCHAR_CHDIS;
1480 
1481 	if (hsotg->core_params->dma_enable <= 0) {
1482 		if (dbg_hc(chan))
1483 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1484 		hcchar |= HCCHAR_CHENA;
1485 
1486 		/* Check for space in the request queue to issue the halt */
1487 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1488 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1489 			dev_vdbg(hsotg->dev, "control/bulk\n");
1490 			nptxsts = readl(hsotg->regs + GNPTXSTS);
1491 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1492 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1493 				hcchar &= ~HCCHAR_CHENA;
1494 			}
1495 		} else {
1496 			if (dbg_perio())
1497 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1498 			hptxsts = readl(hsotg->regs + HPTXSTS);
1499 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1500 			    hsotg->queuing_high_bandwidth) {
1501 				if (dbg_perio())
1502 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1503 				hcchar &= ~HCCHAR_CHENA;
1504 			}
1505 		}
1506 	} else {
1507 		if (dbg_hc(chan))
1508 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1509 	}
1510 
1511 	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1512 	chan->halt_status = halt_status;
1513 
1514 	if (hcchar & HCCHAR_CHENA) {
1515 		if (dbg_hc(chan))
1516 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1517 		chan->halt_pending = 1;
1518 		chan->halt_on_queue = 0;
1519 	} else {
1520 		if (dbg_hc(chan))
1521 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1522 		chan->halt_on_queue = 1;
1523 	}
1524 
1525 	if (dbg_hc(chan)) {
1526 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1527 			 chan->hc_num);
1528 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1529 			 hcchar);
1530 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1531 			 chan->halt_pending);
1532 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1533 			 chan->halt_on_queue);
1534 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1535 			 chan->halt_status);
1536 	}
1537 }
1538 
1539 /**
1540  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1541  *
1542  * @hsotg: Programming view of DWC_otg controller
1543  * @chan:  Identifies the host channel to clean up
1544  *
1545  * This function is normally called after a transfer is done and the host
1546  * channel is being released
1547  */
1548 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1549 {
1550 	u32 hcintmsk;
1551 
1552 	chan->xfer_started = 0;
1553 
1554 	/*
1555 	 * Clear channel interrupt enables and any unhandled channel interrupt
1556 	 * conditions
1557 	 */
1558 	writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1559 	hcintmsk = 0xffffffff;
1560 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1561 	writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1562 }
1563 
1564 /**
1565  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1566  * which frame a periodic transfer should occur
1567  *
1568  * @hsotg:  Programming view of DWC_otg controller
1569  * @chan:   Identifies the host channel to set up and its properties
1570  * @hcchar: Current value of the HCCHAR register for the specified host channel
1571  *
1572  * This function has no effect on non-periodic transfers
1573  */
1574 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1575 				       struct dwc2_host_chan *chan, u32 *hcchar)
1576 {
1577 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1578 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1579 		/* 1 if _next_ frame is odd, 0 if it's even */
1580 		if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
1581 			*hcchar |= HCCHAR_ODDFRM;
1582 	}
1583 }
1584 
1585 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1586 {
1587 	/* Set up the initial PID for the transfer */
1588 	if (chan->speed == USB_SPEED_HIGH) {
1589 		if (chan->ep_is_in) {
1590 			if (chan->multi_count == 1)
1591 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1592 			else if (chan->multi_count == 2)
1593 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1594 			else
1595 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1596 		} else {
1597 			if (chan->multi_count == 1)
1598 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1599 			else
1600 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1601 		}
1602 	} else {
1603 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1604 	}
1605 }
1606 
1607 /**
1608  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1609  * the Host Channel
1610  *
1611  * @hsotg: Programming view of DWC_otg controller
1612  * @chan:  Information needed to initialize the host channel
1613  *
1614  * This function should only be called in Slave mode. For a channel associated
1615  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1616  * associated with a periodic EP, the periodic Tx FIFO is written.
1617  *
1618  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1619  * the number of bytes written to the Tx FIFO.
1620  */
1621 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1622 				 struct dwc2_host_chan *chan)
1623 {
1624 	u32 i;
1625 	u32 remaining_count;
1626 	u32 byte_count;
1627 	u32 dword_count;
1628 	u32 __iomem *data_fifo;
1629 	u32 *data_buf = (u32 *)chan->xfer_buf;
1630 
1631 	if (dbg_hc(chan))
1632 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1633 
1634 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1635 
1636 	remaining_count = chan->xfer_len - chan->xfer_count;
1637 	if (remaining_count > chan->max_packet)
1638 		byte_count = chan->max_packet;
1639 	else
1640 		byte_count = remaining_count;
1641 
1642 	dword_count = (byte_count + 3) / 4;
1643 
1644 	if (((unsigned long)data_buf & 0x3) == 0) {
1645 		/* xfer_buf is DWORD aligned */
1646 		for (i = 0; i < dword_count; i++, data_buf++)
1647 			writel(*data_buf, data_fifo);
1648 	} else {
1649 		/* xfer_buf is not DWORD aligned */
1650 		for (i = 0; i < dword_count; i++, data_buf++) {
1651 			u32 data = data_buf[0] | data_buf[1] << 8 |
1652 				   data_buf[2] << 16 | data_buf[3] << 24;
1653 			writel(data, data_fifo);
1654 		}
1655 	}
1656 
1657 	chan->xfer_count += byte_count;
1658 	chan->xfer_buf += byte_count;
1659 }
1660 
1661 /**
1662  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1663  * channel and starts the transfer
1664  *
1665  * @hsotg: Programming view of DWC_otg controller
1666  * @chan:  Information needed to initialize the host channel. The xfer_len value
1667  *         may be reduced to accommodate the max widths of the XferSize and
1668  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1669  *         changed to reflect the final xfer_len value.
1670  *
1671  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1672  * the caller must ensure that there is sufficient space in the request queue
1673  * and Tx Data FIFO.
1674  *
1675  * For an OUT transfer in Slave mode, it loads a data packet into the
1676  * appropriate FIFO. If necessary, additional data packets are loaded in the
1677  * Host ISR.
1678  *
1679  * For an IN transfer in Slave mode, a data packet is requested. The data
1680  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1681  * additional data packets are requested in the Host ISR.
1682  *
1683  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1684  * register along with a packet count of 1 and the channel is enabled. This
1685  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1686  * simply set to 0 since no data transfer occurs in this case.
1687  *
1688  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1689  * all the information required to perform the subsequent data transfer. In
1690  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1691  * controller performs the entire PING protocol, then starts the data
1692  * transfer.
1693  */
1694 void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1695 			    struct dwc2_host_chan *chan)
1696 {
1697 	u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1698 	u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1699 	u32 hcchar;
1700 	u32 hctsiz = 0;
1701 	u16 num_packets;
1702 
1703 	if (dbg_hc(chan))
1704 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1705 
1706 	if (chan->do_ping) {
1707 		if (hsotg->core_params->dma_enable <= 0) {
1708 			if (dbg_hc(chan))
1709 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1710 			dwc2_hc_do_ping(hsotg, chan);
1711 			chan->xfer_started = 1;
1712 			return;
1713 		} else {
1714 			if (dbg_hc(chan))
1715 				dev_vdbg(hsotg->dev, "ping, DMA\n");
1716 			hctsiz |= TSIZ_DOPNG;
1717 		}
1718 	}
1719 
1720 	if (chan->do_split) {
1721 		if (dbg_hc(chan))
1722 			dev_vdbg(hsotg->dev, "split\n");
1723 		num_packets = 1;
1724 
1725 		if (chan->complete_split && !chan->ep_is_in)
1726 			/*
1727 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1728 			 * core doesn't expect any data written to the FIFO
1729 			 */
1730 			chan->xfer_len = 0;
1731 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1732 			chan->xfer_len = chan->max_packet;
1733 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1734 			chan->xfer_len = 188;
1735 
1736 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1737 			  TSIZ_XFERSIZE_MASK;
1738 	} else {
1739 		if (dbg_hc(chan))
1740 			dev_vdbg(hsotg->dev, "no split\n");
1741 		/*
1742 		 * Ensure that the transfer length and packet count will fit
1743 		 * in the widths allocated for them in the HCTSIZn register
1744 		 */
1745 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1746 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1747 			/*
1748 			 * Make sure the transfer size is no larger than one
1749 			 * (micro)frame's worth of data. (A check was done
1750 			 * when the periodic transfer was accepted to ensure
1751 			 * that a (micro)frame's worth of data can be
1752 			 * programmed into a channel.)
1753 			 */
1754 			u32 max_periodic_len =
1755 				chan->multi_count * chan->max_packet;
1756 
1757 			if (chan->xfer_len > max_periodic_len)
1758 				chan->xfer_len = max_periodic_len;
1759 		} else if (chan->xfer_len > max_hc_xfer_size) {
1760 			/*
1761 			 * Make sure that xfer_len is a multiple of max packet
1762 			 * size
1763 			 */
1764 			chan->xfer_len =
1765 				max_hc_xfer_size - chan->max_packet + 1;
1766 		}
1767 
1768 		if (chan->xfer_len > 0) {
1769 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1770 					chan->max_packet;
1771 			if (num_packets > max_hc_pkt_count) {
1772 				num_packets = max_hc_pkt_count;
1773 				chan->xfer_len = num_packets * chan->max_packet;
1774 			}
1775 		} else {
1776 			/* Need 1 packet for transfer length of 0 */
1777 			num_packets = 1;
1778 		}
1779 
1780 		if (chan->ep_is_in)
1781 			/*
1782 			 * Always program an integral # of max packets for IN
1783 			 * transfers
1784 			 */
1785 			chan->xfer_len = num_packets * chan->max_packet;
1786 
1787 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1788 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1789 			/*
1790 			 * Make sure that the multi_count field matches the
1791 			 * actual transfer length
1792 			 */
1793 			chan->multi_count = num_packets;
1794 
1795 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1796 			dwc2_set_pid_isoc(chan);
1797 
1798 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1799 			  TSIZ_XFERSIZE_MASK;
1800 	}
1801 
1802 	chan->start_pkt_count = num_packets;
1803 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1804 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1805 		  TSIZ_SC_MC_PID_MASK;
1806 	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1807 	if (dbg_hc(chan)) {
1808 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1809 			 hctsiz, chan->hc_num);
1810 
1811 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1812 			 chan->hc_num);
1813 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1814 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1815 			 TSIZ_XFERSIZE_SHIFT);
1816 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1817 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1818 			 TSIZ_PKTCNT_SHIFT);
1819 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1820 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1821 			 TSIZ_SC_MC_PID_SHIFT);
1822 	}
1823 
1824 	if (hsotg->core_params->dma_enable > 0) {
1825 		dma_addr_t dma_addr;
1826 
1827 		if (chan->align_buf) {
1828 			if (dbg_hc(chan))
1829 				dev_vdbg(hsotg->dev, "align_buf\n");
1830 			dma_addr = chan->align_buf;
1831 		} else {
1832 			dma_addr = chan->xfer_dma;
1833 		}
1834 		writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1835 		if (dbg_hc(chan))
1836 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1837 				 (unsigned long)dma_addr, chan->hc_num);
1838 	}
1839 
1840 	/* Start the split */
1841 	if (chan->do_split) {
1842 		u32 hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
1843 
1844 		hcsplt |= HCSPLT_SPLTENA;
1845 		writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1846 	}
1847 
1848 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1849 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1850 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1851 		  HCCHAR_MULTICNT_MASK;
1852 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1853 
1854 	if (hcchar & HCCHAR_CHDIS)
1855 		dev_warn(hsotg->dev,
1856 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1857 			 __func__, chan->hc_num, hcchar);
1858 
1859 	/* Set host channel enable after all other setup is complete */
1860 	hcchar |= HCCHAR_CHENA;
1861 	hcchar &= ~HCCHAR_CHDIS;
1862 
1863 	if (dbg_hc(chan))
1864 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1865 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1866 			 HCCHAR_MULTICNT_SHIFT);
1867 
1868 	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1869 	if (dbg_hc(chan))
1870 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1871 			 chan->hc_num);
1872 
1873 	chan->xfer_started = 1;
1874 	chan->requests++;
1875 
1876 	if (hsotg->core_params->dma_enable <= 0 &&
1877 	    !chan->ep_is_in && chan->xfer_len > 0)
1878 		/* Load OUT packet into the appropriate Tx FIFO */
1879 		dwc2_hc_write_packet(hsotg, chan);
1880 }
1881 
1882 /**
1883  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1884  * host channel and starts the transfer in Descriptor DMA mode
1885  *
1886  * @hsotg: Programming view of DWC_otg controller
1887  * @chan:  Information needed to initialize the host channel
1888  *
1889  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1890  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1891  * with micro-frame bitmap.
1892  *
1893  * Initializes HCDMA register with descriptor list address and CTD value then
1894  * starts the transfer via enabling the channel.
1895  */
1896 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1897 				 struct dwc2_host_chan *chan)
1898 {
1899 	u32 hcchar;
1900 	u32 hc_dma;
1901 	u32 hctsiz = 0;
1902 
1903 	if (chan->do_ping)
1904 		hctsiz |= TSIZ_DOPNG;
1905 
1906 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1907 		dwc2_set_pid_isoc(chan);
1908 
1909 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1910 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1911 		  TSIZ_SC_MC_PID_MASK;
1912 
1913 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1914 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1915 
1916 	/* Non-zero only for high-speed interrupt endpoints */
1917 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1918 
1919 	if (dbg_hc(chan)) {
1920 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1921 			 chan->hc_num);
1922 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1923 			 chan->data_pid_start);
1924 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1925 	}
1926 
1927 	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1928 
1929 	hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK;
1930 
1931 	/* Always start from first descriptor */
1932 	hc_dma &= ~HCDMA_CTD_MASK;
1933 	writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num));
1934 	if (dbg_hc(chan))
1935 		dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n",
1936 			 hc_dma, chan->hc_num);
1937 
1938 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1939 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1940 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1941 		  HCCHAR_MULTICNT_MASK;
1942 
1943 	if (hcchar & HCCHAR_CHDIS)
1944 		dev_warn(hsotg->dev,
1945 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1946 			 __func__, chan->hc_num, hcchar);
1947 
1948 	/* Set host channel enable after all other setup is complete */
1949 	hcchar |= HCCHAR_CHENA;
1950 	hcchar &= ~HCCHAR_CHDIS;
1951 
1952 	if (dbg_hc(chan))
1953 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1954 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1955 			 HCCHAR_MULTICNT_SHIFT);
1956 
1957 	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1958 	if (dbg_hc(chan))
1959 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1960 			 chan->hc_num);
1961 
1962 	chan->xfer_started = 1;
1963 	chan->requests++;
1964 }
1965 
1966 /**
1967  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1968  * a previous call to dwc2_hc_start_transfer()
1969  *
1970  * @hsotg: Programming view of DWC_otg controller
1971  * @chan:  Information needed to initialize the host channel
1972  *
1973  * The caller must ensure there is sufficient space in the request queue and Tx
1974  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1975  * the controller acts autonomously to complete transfers programmed to a host
1976  * channel.
1977  *
1978  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1979  * if there is any data remaining to be queued. For an IN transfer, another
1980  * data packet is always requested. For the SETUP phase of a control transfer,
1981  * this function does nothing.
1982  *
1983  * Return: 1 if a new request is queued, 0 if no more requests are required
1984  * for this transfer
1985  */
1986 int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1987 			      struct dwc2_host_chan *chan)
1988 {
1989 	if (dbg_hc(chan))
1990 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1991 			 chan->hc_num);
1992 
1993 	if (chan->do_split)
1994 		/* SPLITs always queue just once per channel */
1995 		return 0;
1996 
1997 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1998 		/* SETUPs are queued only once since they can't be NAK'd */
1999 		return 0;
2000 
2001 	if (chan->ep_is_in) {
2002 		/*
2003 		 * Always queue another request for other IN transfers. If
2004 		 * back-to-back INs are issued and NAKs are received for both,
2005 		 * the driver may still be processing the first NAK when the
2006 		 * second NAK is received. When the interrupt handler clears
2007 		 * the NAK interrupt for the first NAK, the second NAK will
2008 		 * not be seen. So we can't depend on the NAK interrupt
2009 		 * handler to requeue a NAK'd request. Instead, IN requests
2010 		 * are issued each time this function is called. When the
2011 		 * transfer completes, the extra requests for the channel will
2012 		 * be flushed.
2013 		 */
2014 		u32 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
2015 
2016 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
2017 		hcchar |= HCCHAR_CHENA;
2018 		hcchar &= ~HCCHAR_CHDIS;
2019 		if (dbg_hc(chan))
2020 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
2021 				 hcchar);
2022 		writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2023 		chan->requests++;
2024 		return 1;
2025 	}
2026 
2027 	/* OUT transfers */
2028 
2029 	if (chan->xfer_count < chan->xfer_len) {
2030 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2031 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2032 			u32 hcchar = readl(hsotg->regs +
2033 					   HCCHAR(chan->hc_num));
2034 
2035 			dwc2_hc_set_even_odd_frame(hsotg, chan,
2036 						   &hcchar);
2037 		}
2038 
2039 		/* Load OUT packet into the appropriate Tx FIFO */
2040 		dwc2_hc_write_packet(hsotg, chan);
2041 		chan->requests++;
2042 		return 1;
2043 	}
2044 
2045 	return 0;
2046 }
2047 
2048 /**
2049  * dwc2_hc_do_ping() - Starts a PING transfer
2050  *
2051  * @hsotg: Programming view of DWC_otg controller
2052  * @chan:  Information needed to initialize the host channel
2053  *
2054  * This function should only be called in Slave mode. The Do Ping bit is set in
2055  * the HCTSIZ register, then the channel is enabled.
2056  */
2057 void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
2058 {
2059 	u32 hcchar;
2060 	u32 hctsiz;
2061 
2062 	if (dbg_hc(chan))
2063 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2064 			 chan->hc_num);
2065 
2066 
2067 	hctsiz = TSIZ_DOPNG;
2068 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
2069 	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2070 
2071 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
2072 	hcchar |= HCCHAR_CHENA;
2073 	hcchar &= ~HCCHAR_CHDIS;
2074 	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2075 }
2076 
2077 /**
2078  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
2079  * the HFIR register according to PHY type and speed
2080  *
2081  * @hsotg: Programming view of DWC_otg controller
2082  *
2083  * NOTE: The caller can modify the value of the HFIR register only after the
2084  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
2085  * has been set
2086  */
2087 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
2088 {
2089 	u32 usbcfg;
2090 	u32 hprt0;
2091 	int clock = 60;	/* default value */
2092 
2093 	usbcfg = readl(hsotg->regs + GUSBCFG);
2094 	hprt0 = readl(hsotg->regs + HPRT0);
2095 
2096 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
2097 	    !(usbcfg & GUSBCFG_PHYIF16))
2098 		clock = 60;
2099 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
2100 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
2101 		clock = 48;
2102 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2103 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2104 		clock = 30;
2105 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2106 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
2107 		clock = 60;
2108 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2109 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2110 		clock = 48;
2111 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
2112 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
2113 		clock = 48;
2114 	if ((usbcfg & GUSBCFG_PHYSEL) &&
2115 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2116 		clock = 48;
2117 
2118 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
2119 		/* High speed case */
2120 		return 125 * clock;
2121 	else
2122 		/* FS/LS case */
2123 		return 1000 * clock;
2124 }
2125 
2126 /**
2127  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
2128  * buffer
2129  *
2130  * @core_if: Programming view of DWC_otg controller
2131  * @dest:    Destination buffer for the packet
2132  * @bytes:   Number of bytes to copy to the destination
2133  */
2134 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
2135 {
2136 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
2137 	u32 *data_buf = (u32 *)dest;
2138 	int word_count = (bytes + 3) / 4;
2139 	int i;
2140 
2141 	/*
2142 	 * Todo: Account for the case where dest is not dword aligned. This
2143 	 * requires reading data from the FIFO into a u32 temp buffer, then
2144 	 * moving it into the data buffer.
2145 	 */
2146 
2147 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
2148 
2149 	for (i = 0; i < word_count; i++, data_buf++)
2150 		*data_buf = readl(fifo);
2151 }
2152 
2153 /**
2154  * dwc2_dump_host_registers() - Prints the host registers
2155  *
2156  * @hsotg: Programming view of DWC_otg controller
2157  *
2158  * NOTE: This function will be removed once the peripheral controller code
2159  * is integrated and the driver is stable
2160  */
2161 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
2162 {
2163 #ifdef DEBUG
2164 	u32 __iomem *addr;
2165 	int i;
2166 
2167 	dev_dbg(hsotg->dev, "Host Global Registers\n");
2168 	addr = hsotg->regs + HCFG;
2169 	dev_dbg(hsotg->dev, "HCFG	 @0x%08lX : 0x%08X\n",
2170 		(unsigned long)addr, readl(addr));
2171 	addr = hsotg->regs + HFIR;
2172 	dev_dbg(hsotg->dev, "HFIR	 @0x%08lX : 0x%08X\n",
2173 		(unsigned long)addr, readl(addr));
2174 	addr = hsotg->regs + HFNUM;
2175 	dev_dbg(hsotg->dev, "HFNUM	 @0x%08lX : 0x%08X\n",
2176 		(unsigned long)addr, readl(addr));
2177 	addr = hsotg->regs + HPTXSTS;
2178 	dev_dbg(hsotg->dev, "HPTXSTS	 @0x%08lX : 0x%08X\n",
2179 		(unsigned long)addr, readl(addr));
2180 	addr = hsotg->regs + HAINT;
2181 	dev_dbg(hsotg->dev, "HAINT	 @0x%08lX : 0x%08X\n",
2182 		(unsigned long)addr, readl(addr));
2183 	addr = hsotg->regs + HAINTMSK;
2184 	dev_dbg(hsotg->dev, "HAINTMSK	 @0x%08lX : 0x%08X\n",
2185 		(unsigned long)addr, readl(addr));
2186 	if (hsotg->core_params->dma_desc_enable > 0) {
2187 		addr = hsotg->regs + HFLBADDR;
2188 		dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
2189 			(unsigned long)addr, readl(addr));
2190 	}
2191 
2192 	addr = hsotg->regs + HPRT0;
2193 	dev_dbg(hsotg->dev, "HPRT0	 @0x%08lX : 0x%08X\n",
2194 		(unsigned long)addr, readl(addr));
2195 
2196 	for (i = 0; i < hsotg->core_params->host_channels; i++) {
2197 		dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
2198 		addr = hsotg->regs + HCCHAR(i);
2199 		dev_dbg(hsotg->dev, "HCCHAR	 @0x%08lX : 0x%08X\n",
2200 			(unsigned long)addr, readl(addr));
2201 		addr = hsotg->regs + HCSPLT(i);
2202 		dev_dbg(hsotg->dev, "HCSPLT	 @0x%08lX : 0x%08X\n",
2203 			(unsigned long)addr, readl(addr));
2204 		addr = hsotg->regs + HCINT(i);
2205 		dev_dbg(hsotg->dev, "HCINT	 @0x%08lX : 0x%08X\n",
2206 			(unsigned long)addr, readl(addr));
2207 		addr = hsotg->regs + HCINTMSK(i);
2208 		dev_dbg(hsotg->dev, "HCINTMSK	 @0x%08lX : 0x%08X\n",
2209 			(unsigned long)addr, readl(addr));
2210 		addr = hsotg->regs + HCTSIZ(i);
2211 		dev_dbg(hsotg->dev, "HCTSIZ	 @0x%08lX : 0x%08X\n",
2212 			(unsigned long)addr, readl(addr));
2213 		addr = hsotg->regs + HCDMA(i);
2214 		dev_dbg(hsotg->dev, "HCDMA	 @0x%08lX : 0x%08X\n",
2215 			(unsigned long)addr, readl(addr));
2216 		if (hsotg->core_params->dma_desc_enable > 0) {
2217 			addr = hsotg->regs + HCDMAB(i);
2218 			dev_dbg(hsotg->dev, "HCDMAB	 @0x%08lX : 0x%08X\n",
2219 				(unsigned long)addr, readl(addr));
2220 		}
2221 	}
2222 #endif
2223 }
2224 
2225 /**
2226  * dwc2_dump_global_registers() - Prints the core global registers
2227  *
2228  * @hsotg: Programming view of DWC_otg controller
2229  *
2230  * NOTE: This function will be removed once the peripheral controller code
2231  * is integrated and the driver is stable
2232  */
2233 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
2234 {
2235 #ifdef DEBUG
2236 	u32 __iomem *addr;
2237 
2238 	dev_dbg(hsotg->dev, "Core Global Registers\n");
2239 	addr = hsotg->regs + GOTGCTL;
2240 	dev_dbg(hsotg->dev, "GOTGCTL	 @0x%08lX : 0x%08X\n",
2241 		(unsigned long)addr, readl(addr));
2242 	addr = hsotg->regs + GOTGINT;
2243 	dev_dbg(hsotg->dev, "GOTGINT	 @0x%08lX : 0x%08X\n",
2244 		(unsigned long)addr, readl(addr));
2245 	addr = hsotg->regs + GAHBCFG;
2246 	dev_dbg(hsotg->dev, "GAHBCFG	 @0x%08lX : 0x%08X\n",
2247 		(unsigned long)addr, readl(addr));
2248 	addr = hsotg->regs + GUSBCFG;
2249 	dev_dbg(hsotg->dev, "GUSBCFG	 @0x%08lX : 0x%08X\n",
2250 		(unsigned long)addr, readl(addr));
2251 	addr = hsotg->regs + GRSTCTL;
2252 	dev_dbg(hsotg->dev, "GRSTCTL	 @0x%08lX : 0x%08X\n",
2253 		(unsigned long)addr, readl(addr));
2254 	addr = hsotg->regs + GINTSTS;
2255 	dev_dbg(hsotg->dev, "GINTSTS	 @0x%08lX : 0x%08X\n",
2256 		(unsigned long)addr, readl(addr));
2257 	addr = hsotg->regs + GINTMSK;
2258 	dev_dbg(hsotg->dev, "GINTMSK	 @0x%08lX : 0x%08X\n",
2259 		(unsigned long)addr, readl(addr));
2260 	addr = hsotg->regs + GRXSTSR;
2261 	dev_dbg(hsotg->dev, "GRXSTSR	 @0x%08lX : 0x%08X\n",
2262 		(unsigned long)addr, readl(addr));
2263 	addr = hsotg->regs + GRXFSIZ;
2264 	dev_dbg(hsotg->dev, "GRXFSIZ	 @0x%08lX : 0x%08X\n",
2265 		(unsigned long)addr, readl(addr));
2266 	addr = hsotg->regs + GNPTXFSIZ;
2267 	dev_dbg(hsotg->dev, "GNPTXFSIZ	 @0x%08lX : 0x%08X\n",
2268 		(unsigned long)addr, readl(addr));
2269 	addr = hsotg->regs + GNPTXSTS;
2270 	dev_dbg(hsotg->dev, "GNPTXSTS	 @0x%08lX : 0x%08X\n",
2271 		(unsigned long)addr, readl(addr));
2272 	addr = hsotg->regs + GI2CCTL;
2273 	dev_dbg(hsotg->dev, "GI2CCTL	 @0x%08lX : 0x%08X\n",
2274 		(unsigned long)addr, readl(addr));
2275 	addr = hsotg->regs + GPVNDCTL;
2276 	dev_dbg(hsotg->dev, "GPVNDCTL	 @0x%08lX : 0x%08X\n",
2277 		(unsigned long)addr, readl(addr));
2278 	addr = hsotg->regs + GGPIO;
2279 	dev_dbg(hsotg->dev, "GGPIO	 @0x%08lX : 0x%08X\n",
2280 		(unsigned long)addr, readl(addr));
2281 	addr = hsotg->regs + GUID;
2282 	dev_dbg(hsotg->dev, "GUID	 @0x%08lX : 0x%08X\n",
2283 		(unsigned long)addr, readl(addr));
2284 	addr = hsotg->regs + GSNPSID;
2285 	dev_dbg(hsotg->dev, "GSNPSID	 @0x%08lX : 0x%08X\n",
2286 		(unsigned long)addr, readl(addr));
2287 	addr = hsotg->regs + GHWCFG1;
2288 	dev_dbg(hsotg->dev, "GHWCFG1	 @0x%08lX : 0x%08X\n",
2289 		(unsigned long)addr, readl(addr));
2290 	addr = hsotg->regs + GHWCFG2;
2291 	dev_dbg(hsotg->dev, "GHWCFG2	 @0x%08lX : 0x%08X\n",
2292 		(unsigned long)addr, readl(addr));
2293 	addr = hsotg->regs + GHWCFG3;
2294 	dev_dbg(hsotg->dev, "GHWCFG3	 @0x%08lX : 0x%08X\n",
2295 		(unsigned long)addr, readl(addr));
2296 	addr = hsotg->regs + GHWCFG4;
2297 	dev_dbg(hsotg->dev, "GHWCFG4	 @0x%08lX : 0x%08X\n",
2298 		(unsigned long)addr, readl(addr));
2299 	addr = hsotg->regs + GLPMCFG;
2300 	dev_dbg(hsotg->dev, "GLPMCFG	 @0x%08lX : 0x%08X\n",
2301 		(unsigned long)addr, readl(addr));
2302 	addr = hsotg->regs + GPWRDN;
2303 	dev_dbg(hsotg->dev, "GPWRDN	 @0x%08lX : 0x%08X\n",
2304 		(unsigned long)addr, readl(addr));
2305 	addr = hsotg->regs + GDFIFOCFG;
2306 	dev_dbg(hsotg->dev, "GDFIFOCFG	 @0x%08lX : 0x%08X\n",
2307 		(unsigned long)addr, readl(addr));
2308 	addr = hsotg->regs + HPTXFSIZ;
2309 	dev_dbg(hsotg->dev, "HPTXFSIZ	 @0x%08lX : 0x%08X\n",
2310 		(unsigned long)addr, readl(addr));
2311 
2312 	addr = hsotg->regs + PCGCTL;
2313 	dev_dbg(hsotg->dev, "PCGCTL	 @0x%08lX : 0x%08X\n",
2314 		(unsigned long)addr, readl(addr));
2315 #endif
2316 }
2317 
2318 /**
2319  * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
2320  *
2321  * @hsotg: Programming view of DWC_otg controller
2322  * @num:   Tx FIFO to flush
2323  */
2324 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
2325 {
2326 	u32 greset;
2327 	int count = 0;
2328 
2329 	dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
2330 
2331 	greset = GRSTCTL_TXFFLSH;
2332 	greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
2333 	writel(greset, hsotg->regs + GRSTCTL);
2334 
2335 	do {
2336 		greset = readl(hsotg->regs + GRSTCTL);
2337 		if (++count > 10000) {
2338 			dev_warn(hsotg->dev,
2339 				 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
2340 				 __func__, greset,
2341 				 readl(hsotg->regs + GNPTXSTS));
2342 			break;
2343 		}
2344 		udelay(1);
2345 	} while (greset & GRSTCTL_TXFFLSH);
2346 
2347 	/* Wait for at least 3 PHY Clocks */
2348 	udelay(1);
2349 }
2350 
2351 /**
2352  * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
2353  *
2354  * @hsotg: Programming view of DWC_otg controller
2355  */
2356 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
2357 {
2358 	u32 greset;
2359 	int count = 0;
2360 
2361 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
2362 
2363 	greset = GRSTCTL_RXFFLSH;
2364 	writel(greset, hsotg->regs + GRSTCTL);
2365 
2366 	do {
2367 		greset = readl(hsotg->regs + GRSTCTL);
2368 		if (++count > 10000) {
2369 			dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
2370 				 __func__, greset);
2371 			break;
2372 		}
2373 		udelay(1);
2374 	} while (greset & GRSTCTL_RXFFLSH);
2375 
2376 	/* Wait for at least 3 PHY Clocks */
2377 	udelay(1);
2378 }
2379 
2380 #define DWC2_OUT_OF_BOUNDS(a, b, c)	((a) < (b) || (a) > (c))
2381 
2382 /* Parameter access functions */
2383 void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
2384 {
2385 	int valid = 1;
2386 
2387 	switch (val) {
2388 	case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
2389 		if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
2390 			valid = 0;
2391 		break;
2392 	case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
2393 		switch (hsotg->hw_params.op_mode) {
2394 		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2395 		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2396 		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2397 		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2398 			break;
2399 		default:
2400 			valid = 0;
2401 			break;
2402 		}
2403 		break;
2404 	case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
2405 		/* always valid */
2406 		break;
2407 	default:
2408 		valid = 0;
2409 		break;
2410 	}
2411 
2412 	if (!valid) {
2413 		if (val >= 0)
2414 			dev_err(hsotg->dev,
2415 				"%d invalid for otg_cap parameter. Check HW configuration.\n",
2416 				val);
2417 		switch (hsotg->hw_params.op_mode) {
2418 		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2419 			val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
2420 			break;
2421 		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2422 		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2423 		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2424 			val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
2425 			break;
2426 		default:
2427 			val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
2428 			break;
2429 		}
2430 		dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
2431 	}
2432 
2433 	hsotg->core_params->otg_cap = val;
2434 }
2435 
2436 void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
2437 {
2438 	int valid = 1;
2439 
2440 	if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
2441 		valid = 0;
2442 	if (val < 0)
2443 		valid = 0;
2444 
2445 	if (!valid) {
2446 		if (val >= 0)
2447 			dev_err(hsotg->dev,
2448 				"%d invalid for dma_enable parameter. Check HW configuration.\n",
2449 				val);
2450 		val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
2451 		dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
2452 	}
2453 
2454 	hsotg->core_params->dma_enable = val;
2455 }
2456 
2457 void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
2458 {
2459 	int valid = 1;
2460 
2461 	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2462 			!hsotg->hw_params.dma_desc_enable))
2463 		valid = 0;
2464 	if (val < 0)
2465 		valid = 0;
2466 
2467 	if (!valid) {
2468 		if (val >= 0)
2469 			dev_err(hsotg->dev,
2470 				"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
2471 				val);
2472 		val = (hsotg->core_params->dma_enable > 0 &&
2473 			hsotg->hw_params.dma_desc_enable);
2474 		dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
2475 	}
2476 
2477 	hsotg->core_params->dma_desc_enable = val;
2478 }
2479 
2480 void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
2481 						 int val)
2482 {
2483 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2484 		if (val >= 0) {
2485 			dev_err(hsotg->dev,
2486 				"Wrong value for host_support_fs_low_power\n");
2487 			dev_err(hsotg->dev,
2488 				"host_support_fs_low_power must be 0 or 1\n");
2489 		}
2490 		val = 0;
2491 		dev_dbg(hsotg->dev,
2492 			"Setting host_support_fs_low_power to %d\n", val);
2493 	}
2494 
2495 	hsotg->core_params->host_support_fs_ls_low_power = val;
2496 }
2497 
2498 void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
2499 {
2500 	int valid = 1;
2501 
2502 	if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
2503 		valid = 0;
2504 	if (val < 0)
2505 		valid = 0;
2506 
2507 	if (!valid) {
2508 		if (val >= 0)
2509 			dev_err(hsotg->dev,
2510 				"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
2511 				val);
2512 		val = hsotg->hw_params.enable_dynamic_fifo;
2513 		dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
2514 	}
2515 
2516 	hsotg->core_params->enable_dynamic_fifo = val;
2517 }
2518 
2519 void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2520 {
2521 	int valid = 1;
2522 
2523 	if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
2524 		valid = 0;
2525 
2526 	if (!valid) {
2527 		if (val >= 0)
2528 			dev_err(hsotg->dev,
2529 				"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
2530 				val);
2531 		val = hsotg->hw_params.host_rx_fifo_size;
2532 		dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
2533 	}
2534 
2535 	hsotg->core_params->host_rx_fifo_size = val;
2536 }
2537 
2538 void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2539 {
2540 	int valid = 1;
2541 
2542 	if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
2543 		valid = 0;
2544 
2545 	if (!valid) {
2546 		if (val >= 0)
2547 			dev_err(hsotg->dev,
2548 				"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
2549 				val);
2550 		val = hsotg->hw_params.host_nperio_tx_fifo_size;
2551 		dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
2552 			val);
2553 	}
2554 
2555 	hsotg->core_params->host_nperio_tx_fifo_size = val;
2556 }
2557 
2558 void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2559 {
2560 	int valid = 1;
2561 
2562 	if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
2563 		valid = 0;
2564 
2565 	if (!valid) {
2566 		if (val >= 0)
2567 			dev_err(hsotg->dev,
2568 				"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
2569 				val);
2570 		val = hsotg->hw_params.host_perio_tx_fifo_size;
2571 		dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
2572 			val);
2573 	}
2574 
2575 	hsotg->core_params->host_perio_tx_fifo_size = val;
2576 }
2577 
2578 void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
2579 {
2580 	int valid = 1;
2581 
2582 	if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
2583 		valid = 0;
2584 
2585 	if (!valid) {
2586 		if (val >= 0)
2587 			dev_err(hsotg->dev,
2588 				"%d invalid for max_transfer_size. Check HW configuration.\n",
2589 				val);
2590 		val = hsotg->hw_params.max_transfer_size;
2591 		dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
2592 	}
2593 
2594 	hsotg->core_params->max_transfer_size = val;
2595 }
2596 
2597 void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
2598 {
2599 	int valid = 1;
2600 
2601 	if (val < 15 || val > hsotg->hw_params.max_packet_count)
2602 		valid = 0;
2603 
2604 	if (!valid) {
2605 		if (val >= 0)
2606 			dev_err(hsotg->dev,
2607 				"%d invalid for max_packet_count. Check HW configuration.\n",
2608 				val);
2609 		val = hsotg->hw_params.max_packet_count;
2610 		dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
2611 	}
2612 
2613 	hsotg->core_params->max_packet_count = val;
2614 }
2615 
2616 void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
2617 {
2618 	int valid = 1;
2619 
2620 	if (val < 1 || val > hsotg->hw_params.host_channels)
2621 		valid = 0;
2622 
2623 	if (!valid) {
2624 		if (val >= 0)
2625 			dev_err(hsotg->dev,
2626 				"%d invalid for host_channels. Check HW configuration.\n",
2627 				val);
2628 		val = hsotg->hw_params.host_channels;
2629 		dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
2630 	}
2631 
2632 	hsotg->core_params->host_channels = val;
2633 }
2634 
2635 void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
2636 {
2637 	int valid = 0;
2638 	u32 hs_phy_type, fs_phy_type;
2639 
2640 	if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
2641 			       DWC2_PHY_TYPE_PARAM_ULPI)) {
2642 		if (val >= 0) {
2643 			dev_err(hsotg->dev, "Wrong value for phy_type\n");
2644 			dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
2645 		}
2646 
2647 		valid = 0;
2648 	}
2649 
2650 	hs_phy_type = hsotg->hw_params.hs_phy_type;
2651 	fs_phy_type = hsotg->hw_params.fs_phy_type;
2652 	if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
2653 	    (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2654 	     hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2655 		valid = 1;
2656 	else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
2657 		 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
2658 		  hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2659 		valid = 1;
2660 	else if (val == DWC2_PHY_TYPE_PARAM_FS &&
2661 		 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2662 		valid = 1;
2663 
2664 	if (!valid) {
2665 		if (val >= 0)
2666 			dev_err(hsotg->dev,
2667 				"%d invalid for phy_type. Check HW configuration.\n",
2668 				val);
2669 		val = DWC2_PHY_TYPE_PARAM_FS;
2670 		if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
2671 			if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2672 			    hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
2673 				val = DWC2_PHY_TYPE_PARAM_UTMI;
2674 			else
2675 				val = DWC2_PHY_TYPE_PARAM_ULPI;
2676 		}
2677 		dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
2678 	}
2679 
2680 	hsotg->core_params->phy_type = val;
2681 }
2682 
2683 static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
2684 {
2685 	return hsotg->core_params->phy_type;
2686 }
2687 
2688 void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
2689 {
2690 	int valid = 1;
2691 
2692 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2693 		if (val >= 0) {
2694 			dev_err(hsotg->dev, "Wrong value for speed parameter\n");
2695 			dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
2696 		}
2697 		valid = 0;
2698 	}
2699 
2700 	if (val == DWC2_SPEED_PARAM_HIGH &&
2701 	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2702 		valid = 0;
2703 
2704 	if (!valid) {
2705 		if (val >= 0)
2706 			dev_err(hsotg->dev,
2707 				"%d invalid for speed parameter. Check HW configuration.\n",
2708 				val);
2709 		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
2710 				DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
2711 		dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
2712 	}
2713 
2714 	hsotg->core_params->speed = val;
2715 }
2716 
2717 void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
2718 {
2719 	int valid = 1;
2720 
2721 	if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
2722 			       DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
2723 		if (val >= 0) {
2724 			dev_err(hsotg->dev,
2725 				"Wrong value for host_ls_low_power_phy_clk parameter\n");
2726 			dev_err(hsotg->dev,
2727 				"host_ls_low_power_phy_clk must be 0 or 1\n");
2728 		}
2729 		valid = 0;
2730 	}
2731 
2732 	if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
2733 	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2734 		valid = 0;
2735 
2736 	if (!valid) {
2737 		if (val >= 0)
2738 			dev_err(hsotg->dev,
2739 				"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
2740 				val);
2741 		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
2742 			? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
2743 			: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
2744 		dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
2745 			val);
2746 	}
2747 
2748 	hsotg->core_params->host_ls_low_power_phy_clk = val;
2749 }
2750 
2751 void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
2752 {
2753 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2754 		if (val >= 0) {
2755 			dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
2756 			dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
2757 		}
2758 		val = 0;
2759 		dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
2760 	}
2761 
2762 	hsotg->core_params->phy_ulpi_ddr = val;
2763 }
2764 
2765 void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
2766 {
2767 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2768 		if (val >= 0) {
2769 			dev_err(hsotg->dev,
2770 				"Wrong value for phy_ulpi_ext_vbus\n");
2771 			dev_err(hsotg->dev,
2772 				"phy_ulpi_ext_vbus must be 0 or 1\n");
2773 		}
2774 		val = 0;
2775 		dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
2776 	}
2777 
2778 	hsotg->core_params->phy_ulpi_ext_vbus = val;
2779 }
2780 
2781 void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
2782 {
2783 	int valid = 0;
2784 
2785 	switch (hsotg->hw_params.utmi_phy_data_width) {
2786 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
2787 		valid = (val == 8);
2788 		break;
2789 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
2790 		valid = (val == 16);
2791 		break;
2792 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
2793 		valid = (val == 8 || val == 16);
2794 		break;
2795 	}
2796 
2797 	if (!valid) {
2798 		if (val >= 0) {
2799 			dev_err(hsotg->dev,
2800 				"%d invalid for phy_utmi_width. Check HW configuration.\n",
2801 				val);
2802 		}
2803 		val = (hsotg->hw_params.utmi_phy_data_width ==
2804 		       GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
2805 		dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
2806 	}
2807 
2808 	hsotg->core_params->phy_utmi_width = val;
2809 }
2810 
2811 void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
2812 {
2813 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2814 		if (val >= 0) {
2815 			dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
2816 			dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
2817 		}
2818 		val = 0;
2819 		dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
2820 	}
2821 
2822 	hsotg->core_params->ulpi_fs_ls = val;
2823 }
2824 
2825 void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
2826 {
2827 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2828 		if (val >= 0) {
2829 			dev_err(hsotg->dev, "Wrong value for ts_dline\n");
2830 			dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
2831 		}
2832 		val = 0;
2833 		dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
2834 	}
2835 
2836 	hsotg->core_params->ts_dline = val;
2837 }
2838 
2839 void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
2840 {
2841 	int valid = 1;
2842 
2843 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2844 		if (val >= 0) {
2845 			dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
2846 			dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
2847 		}
2848 
2849 		valid = 0;
2850 	}
2851 
2852 	if (val == 1 && !(hsotg->hw_params.i2c_enable))
2853 		valid = 0;
2854 
2855 	if (!valid) {
2856 		if (val >= 0)
2857 			dev_err(hsotg->dev,
2858 				"%d invalid for i2c_enable. Check HW configuration.\n",
2859 				val);
2860 		val = hsotg->hw_params.i2c_enable;
2861 		dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
2862 	}
2863 
2864 	hsotg->core_params->i2c_enable = val;
2865 }
2866 
2867 void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
2868 {
2869 	int valid = 1;
2870 
2871 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2872 		if (val >= 0) {
2873 			dev_err(hsotg->dev,
2874 				"Wrong value for en_multiple_tx_fifo,\n");
2875 			dev_err(hsotg->dev,
2876 				"en_multiple_tx_fifo must be 0 or 1\n");
2877 		}
2878 		valid = 0;
2879 	}
2880 
2881 	if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
2882 		valid = 0;
2883 
2884 	if (!valid) {
2885 		if (val >= 0)
2886 			dev_err(hsotg->dev,
2887 				"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
2888 				val);
2889 		val = hsotg->hw_params.en_multiple_tx_fifo;
2890 		dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
2891 	}
2892 
2893 	hsotg->core_params->en_multiple_tx_fifo = val;
2894 }
2895 
2896 void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
2897 {
2898 	int valid = 1;
2899 
2900 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2901 		if (val >= 0) {
2902 			dev_err(hsotg->dev,
2903 				"'%d' invalid for parameter reload_ctl\n", val);
2904 			dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
2905 		}
2906 		valid = 0;
2907 	}
2908 
2909 	if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
2910 		valid = 0;
2911 
2912 	if (!valid) {
2913 		if (val >= 0)
2914 			dev_err(hsotg->dev,
2915 				"%d invalid for parameter reload_ctl. Check HW configuration.\n",
2916 				val);
2917 		val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
2918 		dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
2919 	}
2920 
2921 	hsotg->core_params->reload_ctl = val;
2922 }
2923 
2924 void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
2925 {
2926 	if (val != -1)
2927 		hsotg->core_params->ahbcfg = val;
2928 	else
2929 		hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
2930 						GAHBCFG_HBSTLEN_SHIFT;
2931 }
2932 
2933 void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
2934 {
2935 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2936 		if (val >= 0) {
2937 			dev_err(hsotg->dev,
2938 				"'%d' invalid for parameter otg_ver\n", val);
2939 			dev_err(hsotg->dev,
2940 				"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
2941 		}
2942 		val = 0;
2943 		dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
2944 	}
2945 
2946 	hsotg->core_params->otg_ver = val;
2947 }
2948 
2949 static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
2950 {
2951 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2952 		if (val >= 0) {
2953 			dev_err(hsotg->dev,
2954 				"'%d' invalid for parameter uframe_sched\n",
2955 				val);
2956 			dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
2957 		}
2958 		val = 1;
2959 		dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
2960 	}
2961 
2962 	hsotg->core_params->uframe_sched = val;
2963 }
2964 
2965 static void dwc2_set_param_external_id_pin_ctl(struct dwc2_hsotg *hsotg,
2966 		int val)
2967 {
2968 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2969 		if (val >= 0) {
2970 			dev_err(hsotg->dev,
2971 				"'%d' invalid for parameter external_id_pin_ctl\n",
2972 				val);
2973 			dev_err(hsotg->dev, "external_id_pin_ctl must be 0 or 1\n");
2974 		}
2975 		val = 0;
2976 		dev_dbg(hsotg->dev, "Setting external_id_pin_ctl to %d\n", val);
2977 	}
2978 
2979 	hsotg->core_params->external_id_pin_ctl = val;
2980 }
2981 
2982 static void dwc2_set_param_hibernation(struct dwc2_hsotg *hsotg,
2983 		int val)
2984 {
2985 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2986 		if (val >= 0) {
2987 			dev_err(hsotg->dev,
2988 				"'%d' invalid for parameter hibernation\n",
2989 				val);
2990 			dev_err(hsotg->dev, "hibernation must be 0 or 1\n");
2991 		}
2992 		val = 0;
2993 		dev_dbg(hsotg->dev, "Setting hibernation to %d\n", val);
2994 	}
2995 
2996 	hsotg->core_params->hibernation = val;
2997 }
2998 
2999 /*
3000  * This function is called during module intialization to pass module parameters
3001  * for the DWC_otg core.
3002  */
3003 void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
3004 			 const struct dwc2_core_params *params)
3005 {
3006 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3007 
3008 	dwc2_set_param_otg_cap(hsotg, params->otg_cap);
3009 	dwc2_set_param_dma_enable(hsotg, params->dma_enable);
3010 	dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
3011 	dwc2_set_param_host_support_fs_ls_low_power(hsotg,
3012 			params->host_support_fs_ls_low_power);
3013 	dwc2_set_param_enable_dynamic_fifo(hsotg,
3014 			params->enable_dynamic_fifo);
3015 	dwc2_set_param_host_rx_fifo_size(hsotg,
3016 			params->host_rx_fifo_size);
3017 	dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
3018 			params->host_nperio_tx_fifo_size);
3019 	dwc2_set_param_host_perio_tx_fifo_size(hsotg,
3020 			params->host_perio_tx_fifo_size);
3021 	dwc2_set_param_max_transfer_size(hsotg,
3022 			params->max_transfer_size);
3023 	dwc2_set_param_max_packet_count(hsotg,
3024 			params->max_packet_count);
3025 	dwc2_set_param_host_channels(hsotg, params->host_channels);
3026 	dwc2_set_param_phy_type(hsotg, params->phy_type);
3027 	dwc2_set_param_speed(hsotg, params->speed);
3028 	dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
3029 			params->host_ls_low_power_phy_clk);
3030 	dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
3031 	dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
3032 			params->phy_ulpi_ext_vbus);
3033 	dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
3034 	dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
3035 	dwc2_set_param_ts_dline(hsotg, params->ts_dline);
3036 	dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
3037 	dwc2_set_param_en_multiple_tx_fifo(hsotg,
3038 			params->en_multiple_tx_fifo);
3039 	dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
3040 	dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
3041 	dwc2_set_param_otg_ver(hsotg, params->otg_ver);
3042 	dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
3043 	dwc2_set_param_external_id_pin_ctl(hsotg, params->external_id_pin_ctl);
3044 	dwc2_set_param_hibernation(hsotg, params->hibernation);
3045 }
3046 
3047 /**
3048  * During device initialization, read various hardware configuration
3049  * registers and interpret the contents.
3050  */
3051 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
3052 {
3053 	struct dwc2_hw_params *hw = &hsotg->hw_params;
3054 	unsigned width;
3055 	u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
3056 	u32 hptxfsiz, grxfsiz, gnptxfsiz;
3057 	u32 gusbcfg;
3058 
3059 	/*
3060 	 * Attempt to ensure this device is really a DWC_otg Controller.
3061 	 * Read and verify the GSNPSID register contents. The value should be
3062 	 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
3063 	 * as in "OTG version 2.xx" or "OTG version 3.xx".
3064 	 */
3065 	hw->snpsid = readl(hsotg->regs + GSNPSID);
3066 	if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
3067 	    (hw->snpsid & 0xfffff000) != 0x4f543000) {
3068 		dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
3069 			hw->snpsid);
3070 		return -ENODEV;
3071 	}
3072 
3073 	dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
3074 		hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
3075 		hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);
3076 
3077 	hwcfg1 = readl(hsotg->regs + GHWCFG1);
3078 	hwcfg2 = readl(hsotg->regs + GHWCFG2);
3079 	hwcfg3 = readl(hsotg->regs + GHWCFG3);
3080 	hwcfg4 = readl(hsotg->regs + GHWCFG4);
3081 	grxfsiz = readl(hsotg->regs + GRXFSIZ);
3082 
3083 	dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
3084 	dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
3085 	dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
3086 	dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
3087 	dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);
3088 
3089 	/* Force host mode to get HPTXFSIZ / GNPTXFSIZ exact power on value */
3090 	gusbcfg = readl(hsotg->regs + GUSBCFG);
3091 	gusbcfg |= GUSBCFG_FORCEHOSTMODE;
3092 	writel(gusbcfg, hsotg->regs + GUSBCFG);
3093 	usleep_range(100000, 150000);
3094 
3095 	gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
3096 	hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
3097 	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
3098 	dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
3099 	gusbcfg = readl(hsotg->regs + GUSBCFG);
3100 	gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
3101 	writel(gusbcfg, hsotg->regs + GUSBCFG);
3102 	usleep_range(100000, 150000);
3103 
3104 	/* hwcfg2 */
3105 	hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
3106 		      GHWCFG2_OP_MODE_SHIFT;
3107 	hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
3108 		   GHWCFG2_ARCHITECTURE_SHIFT;
3109 	hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
3110 	hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
3111 				GHWCFG2_NUM_HOST_CHAN_SHIFT);
3112 	hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
3113 			  GHWCFG2_HS_PHY_TYPE_SHIFT;
3114 	hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
3115 			  GHWCFG2_FS_PHY_TYPE_SHIFT;
3116 	hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
3117 			 GHWCFG2_NUM_DEV_EP_SHIFT;
3118 	hw->nperio_tx_q_depth =
3119 		(hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
3120 		GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
3121 	hw->host_perio_tx_q_depth =
3122 		(hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
3123 		GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
3124 	hw->dev_token_q_depth =
3125 		(hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
3126 		GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;
3127 
3128 	/* hwcfg3 */
3129 	width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
3130 		GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
3131 	hw->max_transfer_size = (1 << (width + 11)) - 1;
3132 	/*
3133 	 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
3134 	 * coherent buffers with this size, and if it's too large we can
3135 	 * exhaust the coherent DMA pool.
3136 	 */
3137 	if (hw->max_transfer_size > 65535)
3138 		hw->max_transfer_size = 65535;
3139 	width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
3140 		GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
3141 	hw->max_packet_count = (1 << (width + 4)) - 1;
3142 	hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
3143 	hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
3144 			      GHWCFG3_DFIFO_DEPTH_SHIFT;
3145 
3146 	/* hwcfg4 */
3147 	hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
3148 	hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
3149 				  GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
3150 	hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
3151 	hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
3152 	hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
3153 				  GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
3154 
3155 	/* fifo sizes */
3156 	hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
3157 				GRXFSIZ_DEPTH_SHIFT;
3158 	hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3159 				       FIFOSIZE_DEPTH_SHIFT;
3160 	hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3161 				      FIFOSIZE_DEPTH_SHIFT;
3162 
3163 	dev_dbg(hsotg->dev, "Detected values from hardware:\n");
3164 	dev_dbg(hsotg->dev, "  op_mode=%d\n",
3165 		hw->op_mode);
3166 	dev_dbg(hsotg->dev, "  arch=%d\n",
3167 		hw->arch);
3168 	dev_dbg(hsotg->dev, "  dma_desc_enable=%d\n",
3169 		hw->dma_desc_enable);
3170 	dev_dbg(hsotg->dev, "  power_optimized=%d\n",
3171 		hw->power_optimized);
3172 	dev_dbg(hsotg->dev, "  i2c_enable=%d\n",
3173 		hw->i2c_enable);
3174 	dev_dbg(hsotg->dev, "  hs_phy_type=%d\n",
3175 		hw->hs_phy_type);
3176 	dev_dbg(hsotg->dev, "  fs_phy_type=%d\n",
3177 		hw->fs_phy_type);
3178 	dev_dbg(hsotg->dev, "  utmi_phy_data_width=%d\n",
3179 		hw->utmi_phy_data_width);
3180 	dev_dbg(hsotg->dev, "  num_dev_ep=%d\n",
3181 		hw->num_dev_ep);
3182 	dev_dbg(hsotg->dev, "  num_dev_perio_in_ep=%d\n",
3183 		hw->num_dev_perio_in_ep);
3184 	dev_dbg(hsotg->dev, "  host_channels=%d\n",
3185 		hw->host_channels);
3186 	dev_dbg(hsotg->dev, "  max_transfer_size=%d\n",
3187 		hw->max_transfer_size);
3188 	dev_dbg(hsotg->dev, "  max_packet_count=%d\n",
3189 		hw->max_packet_count);
3190 	dev_dbg(hsotg->dev, "  nperio_tx_q_depth=0x%0x\n",
3191 		hw->nperio_tx_q_depth);
3192 	dev_dbg(hsotg->dev, "  host_perio_tx_q_depth=0x%0x\n",
3193 		hw->host_perio_tx_q_depth);
3194 	dev_dbg(hsotg->dev, "  dev_token_q_depth=0x%0x\n",
3195 		hw->dev_token_q_depth);
3196 	dev_dbg(hsotg->dev, "  enable_dynamic_fifo=%d\n",
3197 		hw->enable_dynamic_fifo);
3198 	dev_dbg(hsotg->dev, "  en_multiple_tx_fifo=%d\n",
3199 		hw->en_multiple_tx_fifo);
3200 	dev_dbg(hsotg->dev, "  total_fifo_size=%d\n",
3201 		hw->total_fifo_size);
3202 	dev_dbg(hsotg->dev, "  host_rx_fifo_size=%d\n",
3203 		hw->host_rx_fifo_size);
3204 	dev_dbg(hsotg->dev, "  host_nperio_tx_fifo_size=%d\n",
3205 		hw->host_nperio_tx_fifo_size);
3206 	dev_dbg(hsotg->dev, "  host_perio_tx_fifo_size=%d\n",
3207 		hw->host_perio_tx_fifo_size);
3208 	dev_dbg(hsotg->dev, "\n");
3209 
3210 	return 0;
3211 }
3212 
3213 /*
3214  * Sets all parameters to the given value.
3215  *
3216  * Assumes that the dwc2_core_params struct contains only integers.
3217  */
3218 void dwc2_set_all_params(struct dwc2_core_params *params, int value)
3219 {
3220 	int *p = (int *)params;
3221 	size_t size = sizeof(*params) / sizeof(*p);
3222 	int i;
3223 
3224 	for (i = 0; i < size; i++)
3225 		p[i] = value;
3226 }
3227 
3228 
3229 u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
3230 {
3231 	return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
3232 }
3233 
3234 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
3235 {
3236 	if (readl(hsotg->regs + GSNPSID) == 0xffffffff)
3237 		return false;
3238 	else
3239 		return true;
3240 }
3241 
3242 /**
3243  * dwc2_enable_global_interrupts() - Enables the controller's Global
3244  * Interrupt in the AHB Config register
3245  *
3246  * @hsotg: Programming view of DWC_otg controller
3247  */
3248 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
3249 {
3250 	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
3251 
3252 	ahbcfg |= GAHBCFG_GLBL_INTR_EN;
3253 	writel(ahbcfg, hsotg->regs + GAHBCFG);
3254 }
3255 
3256 /**
3257  * dwc2_disable_global_interrupts() - Disables the controller's Global
3258  * Interrupt in the AHB Config register
3259  *
3260  * @hsotg: Programming view of DWC_otg controller
3261  */
3262 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
3263 {
3264 	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
3265 
3266 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
3267 	writel(ahbcfg, hsotg->regs + GAHBCFG);
3268 }
3269 
3270 MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
3271 MODULE_AUTHOR("Synopsys, Inc.");
3272 MODULE_LICENSE("Dual BSD/GPL");
3273