xref: /openbmc/linux/drivers/usb/dwc2/core.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * core.c - DesignWare HS OTG Controller common routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * The Core code provides basic services for accessing and managing the
39  * DWC_otg hardware. These services are used by both the Host Controller
40  * Driver and the Peripheral Controller Driver.
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
60 /**
61  * dwc2_backup_host_registers() - Backup controller host registers.
62  * When suspending usb bus, registers needs to be backuped
63  * if controller power is disabled once suspended.
64  *
65  * @hsotg: Programming view of the DWC_otg controller
66  */
67 static int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
68 {
69 	struct dwc2_hregs_backup *hr;
70 	int i;
71 
72 	dev_dbg(hsotg->dev, "%s\n", __func__);
73 
74 	/* Backup Host regs */
75 	hr = &hsotg->hr_backup;
76 	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
77 	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
78 	for (i = 0; i < hsotg->core_params->host_channels; ++i)
79 		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
80 
81 	hr->hprt0 = dwc2_read_hprt0(hsotg);
82 	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
83 	hr->valid = true;
84 
85 	return 0;
86 }
87 
88 /**
89  * dwc2_restore_host_registers() - Restore controller host registers.
90  * When resuming usb bus, device registers needs to be restored
91  * if controller power were disabled.
92  *
93  * @hsotg: Programming view of the DWC_otg controller
94  */
95 static int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
96 {
97 	struct dwc2_hregs_backup *hr;
98 	int i;
99 
100 	dev_dbg(hsotg->dev, "%s\n", __func__);
101 
102 	/* Restore host regs */
103 	hr = &hsotg->hr_backup;
104 	if (!hr->valid) {
105 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
106 				__func__);
107 		return -EINVAL;
108 	}
109 	hr->valid = false;
110 
111 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
112 	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
113 
114 	for (i = 0; i < hsotg->core_params->host_channels; ++i)
115 		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
116 
117 	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
118 	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
119 	hsotg->frame_number = 0;
120 
121 	return 0;
122 }
123 #else
124 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
125 { return 0; }
126 
127 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
128 { return 0; }
129 #endif
130 
131 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
132 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
133 /**
134  * dwc2_backup_device_registers() - Backup controller device registers.
135  * When suspending usb bus, registers needs to be backuped
136  * if controller power is disabled once suspended.
137  *
138  * @hsotg: Programming view of the DWC_otg controller
139  */
140 static int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
141 {
142 	struct dwc2_dregs_backup *dr;
143 	int i;
144 
145 	dev_dbg(hsotg->dev, "%s\n", __func__);
146 
147 	/* Backup dev regs */
148 	dr = &hsotg->dr_backup;
149 
150 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
151 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
152 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
153 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
154 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
155 
156 	for (i = 0; i < hsotg->num_of_eps; i++) {
157 		/* Backup IN EPs */
158 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
159 
160 		/* Ensure DATA PID is correctly configured */
161 		if (dr->diepctl[i] & DXEPCTL_DPID)
162 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
163 		else
164 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
165 
166 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
167 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
168 
169 		/* Backup OUT EPs */
170 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
171 
172 		/* Ensure DATA PID is correctly configured */
173 		if (dr->doepctl[i] & DXEPCTL_DPID)
174 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
175 		else
176 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
177 
178 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
179 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
180 	}
181 	dr->valid = true;
182 	return 0;
183 }
184 
185 /**
186  * dwc2_restore_device_registers() - Restore controller device registers.
187  * When resuming usb bus, device registers needs to be restored
188  * if controller power were disabled.
189  *
190  * @hsotg: Programming view of the DWC_otg controller
191  */
192 static int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
193 {
194 	struct dwc2_dregs_backup *dr;
195 	u32 dctl;
196 	int i;
197 
198 	dev_dbg(hsotg->dev, "%s\n", __func__);
199 
200 	/* Restore dev regs */
201 	dr = &hsotg->dr_backup;
202 	if (!dr->valid) {
203 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
204 				__func__);
205 		return -EINVAL;
206 	}
207 	dr->valid = false;
208 
209 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
210 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
211 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
212 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
213 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
214 
215 	for (i = 0; i < hsotg->num_of_eps; i++) {
216 		/* Restore IN EPs */
217 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
218 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
219 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
220 
221 		/* Restore OUT EPs */
222 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
223 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
224 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
225 	}
226 
227 	/* Set the Power-On Programming done bit */
228 	dctl = dwc2_readl(hsotg->regs + DCTL);
229 	dctl |= DCTL_PWRONPRGDONE;
230 	dwc2_writel(dctl, hsotg->regs + DCTL);
231 
232 	return 0;
233 }
234 #else
235 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
236 { return 0; }
237 
238 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
239 { return 0; }
240 #endif
241 
242 /**
243  * dwc2_backup_global_registers() - Backup global controller registers.
244  * When suspending usb bus, registers needs to be backuped
245  * if controller power is disabled once suspended.
246  *
247  * @hsotg: Programming view of the DWC_otg controller
248  */
249 static int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
250 {
251 	struct dwc2_gregs_backup *gr;
252 	int i;
253 
254 	/* Backup global regs */
255 	gr = &hsotg->gr_backup;
256 
257 	gr->gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
258 	gr->gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
259 	gr->gahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
260 	gr->gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
261 	gr->grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
262 	gr->gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
263 	gr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
264 	gr->gdfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
265 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
266 		gr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
267 
268 	gr->valid = true;
269 	return 0;
270 }
271 
272 /**
273  * dwc2_restore_global_registers() - Restore controller global registers.
274  * When resuming usb bus, device registers needs to be restored
275  * if controller power were disabled.
276  *
277  * @hsotg: Programming view of the DWC_otg controller
278  */
279 static int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
280 {
281 	struct dwc2_gregs_backup *gr;
282 	int i;
283 
284 	dev_dbg(hsotg->dev, "%s\n", __func__);
285 
286 	/* Restore global regs */
287 	gr = &hsotg->gr_backup;
288 	if (!gr->valid) {
289 		dev_err(hsotg->dev, "%s: no global registers to restore\n",
290 				__func__);
291 		return -EINVAL;
292 	}
293 	gr->valid = false;
294 
295 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
296 	dwc2_writel(gr->gotgctl, hsotg->regs + GOTGCTL);
297 	dwc2_writel(gr->gintmsk, hsotg->regs + GINTMSK);
298 	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
299 	dwc2_writel(gr->gahbcfg, hsotg->regs + GAHBCFG);
300 	dwc2_writel(gr->grxfsiz, hsotg->regs + GRXFSIZ);
301 	dwc2_writel(gr->gnptxfsiz, hsotg->regs + GNPTXFSIZ);
302 	dwc2_writel(gr->hptxfsiz, hsotg->regs + HPTXFSIZ);
303 	dwc2_writel(gr->gdfifocfg, hsotg->regs + GDFIFOCFG);
304 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
305 		dwc2_writel(gr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
306 
307 	return 0;
308 }
309 
310 /**
311  * dwc2_exit_hibernation() - Exit controller from Partial Power Down.
312  *
313  * @hsotg: Programming view of the DWC_otg controller
314  * @restore: Controller registers need to be restored
315  */
316 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore)
317 {
318 	u32 pcgcctl;
319 	int ret = 0;
320 
321 	if (!hsotg->core_params->hibernation)
322 		return -ENOTSUPP;
323 
324 	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
325 	pcgcctl &= ~PCGCTL_STOPPCLK;
326 	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
327 
328 	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
329 	pcgcctl &= ~PCGCTL_PWRCLMP;
330 	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
331 
332 	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
333 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
334 	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
335 
336 	udelay(100);
337 	if (restore) {
338 		ret = dwc2_restore_global_registers(hsotg);
339 		if (ret) {
340 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
341 					__func__);
342 			return ret;
343 		}
344 		if (dwc2_is_host_mode(hsotg)) {
345 			ret = dwc2_restore_host_registers(hsotg);
346 			if (ret) {
347 				dev_err(hsotg->dev, "%s: failed to restore host registers\n",
348 						__func__);
349 				return ret;
350 			}
351 		} else {
352 			ret = dwc2_restore_device_registers(hsotg);
353 			if (ret) {
354 				dev_err(hsotg->dev, "%s: failed to restore device registers\n",
355 						__func__);
356 				return ret;
357 			}
358 		}
359 	}
360 
361 	return ret;
362 }
363 
364 /**
365  * dwc2_enter_hibernation() - Put controller in Partial Power Down.
366  *
367  * @hsotg: Programming view of the DWC_otg controller
368  */
369 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
370 {
371 	u32 pcgcctl;
372 	int ret = 0;
373 
374 	if (!hsotg->core_params->hibernation)
375 		return -ENOTSUPP;
376 
377 	/* Backup all registers */
378 	ret = dwc2_backup_global_registers(hsotg);
379 	if (ret) {
380 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
381 				__func__);
382 		return ret;
383 	}
384 
385 	if (dwc2_is_host_mode(hsotg)) {
386 		ret = dwc2_backup_host_registers(hsotg);
387 		if (ret) {
388 			dev_err(hsotg->dev, "%s: failed to backup host registers\n",
389 					__func__);
390 			return ret;
391 		}
392 	} else {
393 		ret = dwc2_backup_device_registers(hsotg);
394 		if (ret) {
395 			dev_err(hsotg->dev, "%s: failed to backup device registers\n",
396 					__func__);
397 			return ret;
398 		}
399 	}
400 
401 	/*
402 	 * Clear any pending interrupts since dwc2 will not be able to
403 	 * clear them after entering hibernation.
404 	 */
405 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
406 
407 	/* Put the controller in low power state */
408 	pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
409 
410 	pcgcctl |= PCGCTL_PWRCLMP;
411 	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
412 	ndelay(20);
413 
414 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
415 	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
416 	ndelay(20);
417 
418 	pcgcctl |= PCGCTL_STOPPCLK;
419 	dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
420 
421 	return ret;
422 }
423 
424 /**
425  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
426  * used in both device and host modes
427  *
428  * @hsotg: Programming view of the DWC_otg controller
429  */
430 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
431 {
432 	u32 intmsk;
433 
434 	/* Clear any pending OTG Interrupts */
435 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
436 
437 	/* Clear any pending interrupts */
438 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
439 
440 	/* Enable the interrupts in the GINTMSK */
441 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
442 
443 	if (hsotg->core_params->dma_enable <= 0)
444 		intmsk |= GINTSTS_RXFLVL;
445 	if (hsotg->core_params->external_id_pin_ctl <= 0)
446 		intmsk |= GINTSTS_CONIDSTSCHNG;
447 
448 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
449 		  GINTSTS_SESSREQINT;
450 
451 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
452 }
453 
454 /*
455  * Initializes the FSLSPClkSel field of the HCFG register depending on the
456  * PHY type
457  */
458 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
459 {
460 	u32 hcfg, val;
461 
462 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
463 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
464 	     hsotg->core_params->ulpi_fs_ls > 0) ||
465 	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
466 		/* Full speed PHY */
467 		val = HCFG_FSLSPCLKSEL_48_MHZ;
468 	} else {
469 		/* High speed PHY running at full speed or high speed */
470 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
471 	}
472 
473 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
474 	hcfg = dwc2_readl(hsotg->regs + HCFG);
475 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
476 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
477 	dwc2_writel(hcfg, hsotg->regs + HCFG);
478 }
479 
480 /*
481  * Do core a soft reset of the core.  Be careful with this because it
482  * resets all the internal state machines of the core.
483  */
484 int dwc2_core_reset(struct dwc2_hsotg *hsotg)
485 {
486 	u32 greset;
487 	int count = 0;
488 
489 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
490 
491 	/* Core Soft Reset */
492 	greset = dwc2_readl(hsotg->regs + GRSTCTL);
493 	greset |= GRSTCTL_CSFTRST;
494 	dwc2_writel(greset, hsotg->regs + GRSTCTL);
495 	do {
496 		udelay(1);
497 		greset = dwc2_readl(hsotg->regs + GRSTCTL);
498 		if (++count > 50) {
499 			dev_warn(hsotg->dev,
500 				 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
501 				 __func__, greset);
502 			return -EBUSY;
503 		}
504 	} while (greset & GRSTCTL_CSFTRST);
505 
506 	/* Wait for AHB master IDLE state */
507 	count = 0;
508 	do {
509 		udelay(1);
510 		greset = dwc2_readl(hsotg->regs + GRSTCTL);
511 		if (++count > 50) {
512 			dev_warn(hsotg->dev,
513 				 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
514 				 __func__, greset);
515 			return -EBUSY;
516 		}
517 	} while (!(greset & GRSTCTL_AHBIDLE));
518 
519 	return 0;
520 }
521 
522 /*
523  * Force the mode of the controller.
524  *
525  * Forcing the mode is needed for two cases:
526  *
527  * 1) If the dr_mode is set to either HOST or PERIPHERAL we force the
528  * controller to stay in a particular mode regardless of ID pin
529  * changes. We do this usually after a core reset.
530  *
531  * 2) During probe we want to read reset values of the hw
532  * configuration registers that are only available in either host or
533  * device mode. We may need to force the mode if the current mode does
534  * not allow us to access the register in the mode that we want.
535  *
536  * In either case it only makes sense to force the mode if the
537  * controller hardware is OTG capable.
538  *
539  * Checks are done in this function to determine whether doing a force
540  * would be valid or not.
541  *
542  * If a force is done, it requires a 25ms delay to take effect.
543  *
544  * Returns true if the mode was forced.
545  */
546 static bool dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host)
547 {
548 	u32 gusbcfg;
549 	u32 set;
550 	u32 clear;
551 
552 	dev_dbg(hsotg->dev, "Forcing mode to %s\n", host ? "host" : "device");
553 
554 	/*
555 	 * Force mode has no effect if the hardware is not OTG.
556 	 */
557 	if (!dwc2_hw_is_otg(hsotg))
558 		return false;
559 
560 	/*
561 	 * If dr_mode is either peripheral or host only, there is no
562 	 * need to ever force the mode to the opposite mode.
563 	 */
564 	if (WARN_ON(host && hsotg->dr_mode == USB_DR_MODE_PERIPHERAL))
565 		return false;
566 
567 	if (WARN_ON(!host && hsotg->dr_mode == USB_DR_MODE_HOST))
568 		return false;
569 
570 	gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
571 
572 	set = host ? GUSBCFG_FORCEHOSTMODE : GUSBCFG_FORCEDEVMODE;
573 	clear = host ? GUSBCFG_FORCEDEVMODE : GUSBCFG_FORCEHOSTMODE;
574 
575 	gusbcfg &= ~clear;
576 	gusbcfg |= set;
577 	dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
578 
579 	msleep(25);
580 	return true;
581 }
582 
583 /*
584  * Clears the force mode bits.
585  */
586 static void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg)
587 {
588 	u32 gusbcfg;
589 
590 	gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
591 	gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
592 	gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
593 	dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
594 
595 	/*
596 	 * NOTE: This long sleep is _very_ important, otherwise the core will
597 	 * not stay in host mode after a connector ID change!
598 	 */
599 	msleep(25);
600 }
601 
602 /*
603  * Sets or clears force mode based on the dr_mode parameter.
604  */
605 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg)
606 {
607 	switch (hsotg->dr_mode) {
608 	case USB_DR_MODE_HOST:
609 		dwc2_force_mode(hsotg, true);
610 		break;
611 	case USB_DR_MODE_PERIPHERAL:
612 		dwc2_force_mode(hsotg, false);
613 		break;
614 	case USB_DR_MODE_OTG:
615 		dwc2_clear_force_mode(hsotg);
616 		break;
617 	default:
618 		dev_warn(hsotg->dev, "%s() Invalid dr_mode=%d\n",
619 			 __func__, hsotg->dr_mode);
620 		break;
621 	}
622 }
623 
624 /*
625  * Do core a soft reset of the core.  Be careful with this because it
626  * resets all the internal state machines of the core.
627  *
628  * Additionally this will apply force mode as per the hsotg->dr_mode
629  * parameter.
630  */
631 int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg)
632 {
633 	int retval;
634 
635 	retval = dwc2_core_reset(hsotg);
636 	if (retval)
637 		return retval;
638 
639 	dwc2_force_dr_mode(hsotg);
640 	return 0;
641 }
642 
643 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
644 {
645 	u32 usbcfg, i2cctl;
646 	int retval = 0;
647 
648 	/*
649 	 * core_init() is now called on every switch so only call the
650 	 * following for the first time through
651 	 */
652 	if (select_phy) {
653 		dev_dbg(hsotg->dev, "FS PHY selected\n");
654 
655 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
656 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
657 			usbcfg |= GUSBCFG_PHYSEL;
658 			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
659 
660 			/* Reset after a PHY select */
661 			retval = dwc2_core_reset_and_force_dr_mode(hsotg);
662 
663 			if (retval) {
664 				dev_err(hsotg->dev,
665 					"%s: Reset failed, aborting", __func__);
666 				return retval;
667 			}
668 		}
669 	}
670 
671 	/*
672 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
673 	 * do this on HNP Dev/Host mode switches (done in dev_init and
674 	 * host_init).
675 	 */
676 	if (dwc2_is_host_mode(hsotg))
677 		dwc2_init_fs_ls_pclk_sel(hsotg);
678 
679 	if (hsotg->core_params->i2c_enable > 0) {
680 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
681 
682 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
683 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
684 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
685 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
686 
687 		/* Program GI2CCTL.I2CEn */
688 		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
689 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
690 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
691 		i2cctl &= ~GI2CCTL_I2CEN;
692 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
693 		i2cctl |= GI2CCTL_I2CEN;
694 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
695 	}
696 
697 	return retval;
698 }
699 
700 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
701 {
702 	u32 usbcfg, usbcfg_old;
703 	int retval = 0;
704 
705 	if (!select_phy)
706 		return 0;
707 
708 	usbcfg = usbcfg_old = dwc2_readl(hsotg->regs + GUSBCFG);
709 
710 	/*
711 	 * HS PHY parameters. These parameters are preserved during soft reset
712 	 * so only program the first time. Do a soft reset immediately after
713 	 * setting phyif.
714 	 */
715 	switch (hsotg->core_params->phy_type) {
716 	case DWC2_PHY_TYPE_PARAM_ULPI:
717 		/* ULPI interface */
718 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
719 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
720 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
721 		if (hsotg->core_params->phy_ulpi_ddr > 0)
722 			usbcfg |= GUSBCFG_DDRSEL;
723 		break;
724 	case DWC2_PHY_TYPE_PARAM_UTMI:
725 		/* UTMI+ interface */
726 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
727 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
728 		if (hsotg->core_params->phy_utmi_width == 16)
729 			usbcfg |= GUSBCFG_PHYIF16;
730 		break;
731 	default:
732 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
733 		break;
734 	}
735 
736 	if (usbcfg != usbcfg_old) {
737 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
738 
739 		/* Reset after setting the PHY parameters */
740 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
741 		if (retval) {
742 			dev_err(hsotg->dev,
743 				"%s: Reset failed, aborting", __func__);
744 			return retval;
745 		}
746 	}
747 
748 	return retval;
749 }
750 
751 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
752 {
753 	u32 usbcfg;
754 	int retval = 0;
755 
756 	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
757 	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
758 		/* If FS mode with FS PHY */
759 		retval = dwc2_fs_phy_init(hsotg, select_phy);
760 		if (retval)
761 			return retval;
762 	} else {
763 		/* High speed PHY */
764 		retval = dwc2_hs_phy_init(hsotg, select_phy);
765 		if (retval)
766 			return retval;
767 	}
768 
769 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
770 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
771 	    hsotg->core_params->ulpi_fs_ls > 0) {
772 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
773 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
774 		usbcfg |= GUSBCFG_ULPI_FS_LS;
775 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
776 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
777 	} else {
778 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
779 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
780 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
781 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
782 	}
783 
784 	return retval;
785 }
786 
787 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
788 {
789 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
790 
791 	switch (hsotg->hw_params.arch) {
792 	case GHWCFG2_EXT_DMA_ARCH:
793 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
794 		return -EINVAL;
795 
796 	case GHWCFG2_INT_DMA_ARCH:
797 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
798 		if (hsotg->core_params->ahbcfg != -1) {
799 			ahbcfg &= GAHBCFG_CTRL_MASK;
800 			ahbcfg |= hsotg->core_params->ahbcfg &
801 				  ~GAHBCFG_CTRL_MASK;
802 		}
803 		break;
804 
805 	case GHWCFG2_SLAVE_ONLY_ARCH:
806 	default:
807 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
808 		break;
809 	}
810 
811 	dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
812 		hsotg->core_params->dma_enable,
813 		hsotg->core_params->dma_desc_enable);
814 
815 	if (hsotg->core_params->dma_enable > 0) {
816 		if (hsotg->core_params->dma_desc_enable > 0)
817 			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
818 		else
819 			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
820 	} else {
821 		dev_dbg(hsotg->dev, "Using Slave mode\n");
822 		hsotg->core_params->dma_desc_enable = 0;
823 	}
824 
825 	if (hsotg->core_params->dma_enable > 0)
826 		ahbcfg |= GAHBCFG_DMA_EN;
827 
828 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
829 
830 	return 0;
831 }
832 
833 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
834 {
835 	u32 usbcfg;
836 
837 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
838 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
839 
840 	switch (hsotg->hw_params.op_mode) {
841 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
842 		if (hsotg->core_params->otg_cap ==
843 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
844 			usbcfg |= GUSBCFG_HNPCAP;
845 		if (hsotg->core_params->otg_cap !=
846 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
847 			usbcfg |= GUSBCFG_SRPCAP;
848 		break;
849 
850 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
851 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
852 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
853 		if (hsotg->core_params->otg_cap !=
854 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
855 			usbcfg |= GUSBCFG_SRPCAP;
856 		break;
857 
858 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
859 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
860 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
861 	default:
862 		break;
863 	}
864 
865 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
866 }
867 
868 /**
869  * dwc2_core_init() - Initializes the DWC_otg controller registers and
870  * prepares the core for device mode or host mode operation
871  *
872  * @hsotg:         Programming view of the DWC_otg controller
873  * @initial_setup: If true then this is the first init for this instance.
874  */
875 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
876 {
877 	u32 usbcfg, otgctl;
878 	int retval;
879 
880 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
881 
882 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
883 
884 	/* Set ULPI External VBUS bit if needed */
885 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
886 	if (hsotg->core_params->phy_ulpi_ext_vbus ==
887 				DWC2_PHY_ULPI_EXTERNAL_VBUS)
888 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
889 
890 	/* Set external TS Dline pulsing bit if needed */
891 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
892 	if (hsotg->core_params->ts_dline > 0)
893 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
894 
895 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
896 
897 	/*
898 	 * Reset the Controller
899 	 *
900 	 * We only need to reset the controller if this is a re-init.
901 	 * For the first init we know for sure that earlier code reset us (it
902 	 * needed to in order to properly detect various parameters).
903 	 */
904 	if (!initial_setup) {
905 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
906 		if (retval) {
907 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
908 					__func__);
909 			return retval;
910 		}
911 	}
912 
913 	/*
914 	 * This needs to happen in FS mode before any other programming occurs
915 	 */
916 	retval = dwc2_phy_init(hsotg, initial_setup);
917 	if (retval)
918 		return retval;
919 
920 	/* Program the GAHBCFG Register */
921 	retval = dwc2_gahbcfg_init(hsotg);
922 	if (retval)
923 		return retval;
924 
925 	/* Program the GUSBCFG register */
926 	dwc2_gusbcfg_init(hsotg);
927 
928 	/* Program the GOTGCTL register */
929 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
930 	otgctl &= ~GOTGCTL_OTGVER;
931 	if (hsotg->core_params->otg_ver > 0)
932 		otgctl |= GOTGCTL_OTGVER;
933 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
934 	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
935 
936 	/* Clear the SRP success bit for FS-I2c */
937 	hsotg->srp_success = 0;
938 
939 	/* Enable common interrupts */
940 	dwc2_enable_common_interrupts(hsotg);
941 
942 	/*
943 	 * Do device or host initialization based on mode during PCD and
944 	 * HCD initialization
945 	 */
946 	if (dwc2_is_host_mode(hsotg)) {
947 		dev_dbg(hsotg->dev, "Host Mode\n");
948 		hsotg->op_state = OTG_STATE_A_HOST;
949 	} else {
950 		dev_dbg(hsotg->dev, "Device Mode\n");
951 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
952 	}
953 
954 	return 0;
955 }
956 
957 /**
958  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
959  *
960  * @hsotg: Programming view of DWC_otg controller
961  */
962 void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
963 {
964 	u32 intmsk;
965 
966 	dev_dbg(hsotg->dev, "%s()\n", __func__);
967 
968 	/* Disable all interrupts */
969 	dwc2_writel(0, hsotg->regs + GINTMSK);
970 	dwc2_writel(0, hsotg->regs + HAINTMSK);
971 
972 	/* Enable the common interrupts */
973 	dwc2_enable_common_interrupts(hsotg);
974 
975 	/* Enable host mode interrupts without disturbing common interrupts */
976 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
977 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
978 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
979 }
980 
981 /**
982  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
983  *
984  * @hsotg: Programming view of DWC_otg controller
985  */
986 void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
987 {
988 	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
989 
990 	/* Disable host mode interrupts without disturbing common interrupts */
991 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
992 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
993 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
994 }
995 
996 /*
997  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
998  * For system that have a total fifo depth that is smaller than the default
999  * RX + TX fifo size.
1000  *
1001  * @hsotg: Programming view of DWC_otg controller
1002  */
1003 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
1004 {
1005 	struct dwc2_core_params *params = hsotg->core_params;
1006 	struct dwc2_hw_params *hw = &hsotg->hw_params;
1007 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
1008 
1009 	total_fifo_size = hw->total_fifo_size;
1010 	rxfsiz = params->host_rx_fifo_size;
1011 	nptxfsiz = params->host_nperio_tx_fifo_size;
1012 	ptxfsiz = params->host_perio_tx_fifo_size;
1013 
1014 	/*
1015 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
1016 	 * allocation with support for high bandwidth endpoints. Synopsys
1017 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
1018 	 * non-periodic as 512.
1019 	 */
1020 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
1021 		/*
1022 		 * For Buffer DMA mode/Scatter Gather DMA mode
1023 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
1024 		 * with n = number of host channel.
1025 		 * 2 * ((1024/4) + 2) = 516
1026 		 */
1027 		rxfsiz = 516 + hw->host_channels;
1028 
1029 		/*
1030 		 * min non-periodic tx fifo depth
1031 		 * 2 * (largest non-periodic USB packet used / 4)
1032 		 * 2 * (512/4) = 256
1033 		 */
1034 		nptxfsiz = 256;
1035 
1036 		/*
1037 		 * min periodic tx fifo depth
1038 		 * (largest packet size*MC)/4
1039 		 * (1024 * 3)/4 = 768
1040 		 */
1041 		ptxfsiz = 768;
1042 
1043 		params->host_rx_fifo_size = rxfsiz;
1044 		params->host_nperio_tx_fifo_size = nptxfsiz;
1045 		params->host_perio_tx_fifo_size = ptxfsiz;
1046 	}
1047 
1048 	/*
1049 	 * If the summation of RX, NPTX and PTX fifo sizes is still
1050 	 * bigger than the total_fifo_size, then we have a problem.
1051 	 *
1052 	 * We won't be able to allocate as many endpoints. Right now,
1053 	 * we're just printing an error message, but ideally this FIFO
1054 	 * allocation algorithm would be improved in the future.
1055 	 *
1056 	 * FIXME improve this FIFO allocation algorithm.
1057 	 */
1058 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
1059 		dev_err(hsotg->dev, "invalid fifo sizes\n");
1060 }
1061 
1062 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
1063 {
1064 	struct dwc2_core_params *params = hsotg->core_params;
1065 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
1066 
1067 	if (!params->enable_dynamic_fifo)
1068 		return;
1069 
1070 	dwc2_calculate_dynamic_fifo(hsotg);
1071 
1072 	/* Rx FIFO */
1073 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
1074 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
1075 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
1076 	grxfsiz |= params->host_rx_fifo_size <<
1077 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
1078 	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
1079 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
1080 		dwc2_readl(hsotg->regs + GRXFSIZ));
1081 
1082 	/* Non-periodic Tx FIFO */
1083 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
1084 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
1085 	nptxfsiz = params->host_nperio_tx_fifo_size <<
1086 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
1087 	nptxfsiz |= params->host_rx_fifo_size <<
1088 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
1089 	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
1090 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
1091 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
1092 
1093 	/* Periodic Tx FIFO */
1094 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
1095 		dwc2_readl(hsotg->regs + HPTXFSIZ));
1096 	hptxfsiz = params->host_perio_tx_fifo_size <<
1097 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
1098 	hptxfsiz |= (params->host_rx_fifo_size +
1099 		     params->host_nperio_tx_fifo_size) <<
1100 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
1101 	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
1102 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
1103 		dwc2_readl(hsotg->regs + HPTXFSIZ));
1104 
1105 	if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
1106 	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
1107 		/*
1108 		 * Global DFIFOCFG calculation for Host mode -
1109 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
1110 		 */
1111 		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
1112 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
1113 		dfifocfg |= (params->host_rx_fifo_size +
1114 			     params->host_nperio_tx_fifo_size +
1115 			     params->host_perio_tx_fifo_size) <<
1116 			    GDFIFOCFG_EPINFOBASE_SHIFT &
1117 			    GDFIFOCFG_EPINFOBASE_MASK;
1118 		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
1119 	}
1120 }
1121 
1122 /**
1123  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
1124  * Host mode
1125  *
1126  * @hsotg: Programming view of DWC_otg controller
1127  *
1128  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
1129  * request queues. Host channels are reset to ensure that they are ready for
1130  * performing transfers.
1131  */
1132 void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
1133 {
1134 	u32 hcfg, hfir, otgctl;
1135 
1136 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
1137 
1138 	/* Restart the Phy Clock */
1139 	dwc2_writel(0, hsotg->regs + PCGCTL);
1140 
1141 	/* Initialize Host Configuration Register */
1142 	dwc2_init_fs_ls_pclk_sel(hsotg);
1143 	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
1144 		hcfg = dwc2_readl(hsotg->regs + HCFG);
1145 		hcfg |= HCFG_FSLSSUPP;
1146 		dwc2_writel(hcfg, hsotg->regs + HCFG);
1147 	}
1148 
1149 	/*
1150 	 * This bit allows dynamic reloading of the HFIR register during
1151 	 * runtime. This bit needs to be programmed during initial configuration
1152 	 * and its value must not be changed during runtime.
1153 	 */
1154 	if (hsotg->core_params->reload_ctl > 0) {
1155 		hfir = dwc2_readl(hsotg->regs + HFIR);
1156 		hfir |= HFIR_RLDCTRL;
1157 		dwc2_writel(hfir, hsotg->regs + HFIR);
1158 	}
1159 
1160 	if (hsotg->core_params->dma_desc_enable > 0) {
1161 		u32 op_mode = hsotg->hw_params.op_mode;
1162 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
1163 		    !hsotg->hw_params.dma_desc_enable ||
1164 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
1165 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
1166 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
1167 			dev_err(hsotg->dev,
1168 				"Hardware does not support descriptor DMA mode -\n");
1169 			dev_err(hsotg->dev,
1170 				"falling back to buffer DMA mode.\n");
1171 			hsotg->core_params->dma_desc_enable = 0;
1172 		} else {
1173 			hcfg = dwc2_readl(hsotg->regs + HCFG);
1174 			hcfg |= HCFG_DESCDMA;
1175 			dwc2_writel(hcfg, hsotg->regs + HCFG);
1176 		}
1177 	}
1178 
1179 	/* Configure data FIFO sizes */
1180 	dwc2_config_fifos(hsotg);
1181 
1182 	/* TODO - check this */
1183 	/* Clear Host Set HNP Enable in the OTG Control Register */
1184 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1185 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
1186 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1187 
1188 	/* Make sure the FIFOs are flushed */
1189 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
1190 	dwc2_flush_rx_fifo(hsotg);
1191 
1192 	/* Clear Host Set HNP Enable in the OTG Control Register */
1193 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1194 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
1195 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1196 
1197 	if (hsotg->core_params->dma_desc_enable <= 0) {
1198 		int num_channels, i;
1199 		u32 hcchar;
1200 
1201 		/* Flush out any leftover queued requests */
1202 		num_channels = hsotg->core_params->host_channels;
1203 		for (i = 0; i < num_channels; i++) {
1204 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1205 			hcchar &= ~HCCHAR_CHENA;
1206 			hcchar |= HCCHAR_CHDIS;
1207 			hcchar &= ~HCCHAR_EPDIR;
1208 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1209 		}
1210 
1211 		/* Halt all channels to put them into a known state */
1212 		for (i = 0; i < num_channels; i++) {
1213 			int count = 0;
1214 
1215 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1216 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
1217 			hcchar &= ~HCCHAR_EPDIR;
1218 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1219 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
1220 				__func__, i);
1221 			do {
1222 				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1223 				if (++count > 1000) {
1224 					dev_err(hsotg->dev,
1225 						"Unable to clear enable on channel %d\n",
1226 						i);
1227 					break;
1228 				}
1229 				udelay(1);
1230 			} while (hcchar & HCCHAR_CHENA);
1231 		}
1232 	}
1233 
1234 	/* Turn on the vbus power */
1235 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
1236 	if (hsotg->op_state == OTG_STATE_A_HOST) {
1237 		u32 hprt0 = dwc2_read_hprt0(hsotg);
1238 
1239 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
1240 			!!(hprt0 & HPRT0_PWR));
1241 		if (!(hprt0 & HPRT0_PWR)) {
1242 			hprt0 |= HPRT0_PWR;
1243 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
1244 		}
1245 	}
1246 
1247 	dwc2_enable_host_interrupts(hsotg);
1248 }
1249 
1250 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
1251 				      struct dwc2_host_chan *chan)
1252 {
1253 	u32 hcintmsk = HCINTMSK_CHHLTD;
1254 
1255 	switch (chan->ep_type) {
1256 	case USB_ENDPOINT_XFER_CONTROL:
1257 	case USB_ENDPOINT_XFER_BULK:
1258 		dev_vdbg(hsotg->dev, "control/bulk\n");
1259 		hcintmsk |= HCINTMSK_XFERCOMPL;
1260 		hcintmsk |= HCINTMSK_STALL;
1261 		hcintmsk |= HCINTMSK_XACTERR;
1262 		hcintmsk |= HCINTMSK_DATATGLERR;
1263 		if (chan->ep_is_in) {
1264 			hcintmsk |= HCINTMSK_BBLERR;
1265 		} else {
1266 			hcintmsk |= HCINTMSK_NAK;
1267 			hcintmsk |= HCINTMSK_NYET;
1268 			if (chan->do_ping)
1269 				hcintmsk |= HCINTMSK_ACK;
1270 		}
1271 
1272 		if (chan->do_split) {
1273 			hcintmsk |= HCINTMSK_NAK;
1274 			if (chan->complete_split)
1275 				hcintmsk |= HCINTMSK_NYET;
1276 			else
1277 				hcintmsk |= HCINTMSK_ACK;
1278 		}
1279 
1280 		if (chan->error_state)
1281 			hcintmsk |= HCINTMSK_ACK;
1282 		break;
1283 
1284 	case USB_ENDPOINT_XFER_INT:
1285 		if (dbg_perio())
1286 			dev_vdbg(hsotg->dev, "intr\n");
1287 		hcintmsk |= HCINTMSK_XFERCOMPL;
1288 		hcintmsk |= HCINTMSK_NAK;
1289 		hcintmsk |= HCINTMSK_STALL;
1290 		hcintmsk |= HCINTMSK_XACTERR;
1291 		hcintmsk |= HCINTMSK_DATATGLERR;
1292 		hcintmsk |= HCINTMSK_FRMOVRUN;
1293 
1294 		if (chan->ep_is_in)
1295 			hcintmsk |= HCINTMSK_BBLERR;
1296 		if (chan->error_state)
1297 			hcintmsk |= HCINTMSK_ACK;
1298 		if (chan->do_split) {
1299 			if (chan->complete_split)
1300 				hcintmsk |= HCINTMSK_NYET;
1301 			else
1302 				hcintmsk |= HCINTMSK_ACK;
1303 		}
1304 		break;
1305 
1306 	case USB_ENDPOINT_XFER_ISOC:
1307 		if (dbg_perio())
1308 			dev_vdbg(hsotg->dev, "isoc\n");
1309 		hcintmsk |= HCINTMSK_XFERCOMPL;
1310 		hcintmsk |= HCINTMSK_FRMOVRUN;
1311 		hcintmsk |= HCINTMSK_ACK;
1312 
1313 		if (chan->ep_is_in) {
1314 			hcintmsk |= HCINTMSK_XACTERR;
1315 			hcintmsk |= HCINTMSK_BBLERR;
1316 		}
1317 		break;
1318 	default:
1319 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
1320 		break;
1321 	}
1322 
1323 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1324 	if (dbg_hc(chan))
1325 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1326 }
1327 
1328 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
1329 				    struct dwc2_host_chan *chan)
1330 {
1331 	u32 hcintmsk = HCINTMSK_CHHLTD;
1332 
1333 	/*
1334 	 * For Descriptor DMA mode core halts the channel on AHB error.
1335 	 * Interrupt is not required.
1336 	 */
1337 	if (hsotg->core_params->dma_desc_enable <= 0) {
1338 		if (dbg_hc(chan))
1339 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1340 		hcintmsk |= HCINTMSK_AHBERR;
1341 	} else {
1342 		if (dbg_hc(chan))
1343 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
1344 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1345 			hcintmsk |= HCINTMSK_XFERCOMPL;
1346 	}
1347 
1348 	if (chan->error_state && !chan->do_split &&
1349 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
1350 		if (dbg_hc(chan))
1351 			dev_vdbg(hsotg->dev, "setting ACK\n");
1352 		hcintmsk |= HCINTMSK_ACK;
1353 		if (chan->ep_is_in) {
1354 			hcintmsk |= HCINTMSK_DATATGLERR;
1355 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
1356 				hcintmsk |= HCINTMSK_NAK;
1357 		}
1358 	}
1359 
1360 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1361 	if (dbg_hc(chan))
1362 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1363 }
1364 
1365 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
1366 				struct dwc2_host_chan *chan)
1367 {
1368 	u32 intmsk;
1369 
1370 	if (hsotg->core_params->dma_enable > 0) {
1371 		if (dbg_hc(chan))
1372 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1373 		dwc2_hc_enable_dma_ints(hsotg, chan);
1374 	} else {
1375 		if (dbg_hc(chan))
1376 			dev_vdbg(hsotg->dev, "DMA disabled\n");
1377 		dwc2_hc_enable_slave_ints(hsotg, chan);
1378 	}
1379 
1380 	/* Enable the top level host channel interrupt */
1381 	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
1382 	intmsk |= 1 << chan->hc_num;
1383 	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
1384 	if (dbg_hc(chan))
1385 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
1386 
1387 	/* Make sure host channel interrupts are enabled */
1388 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
1389 	intmsk |= GINTSTS_HCHINT;
1390 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
1391 	if (dbg_hc(chan))
1392 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
1393 }
1394 
1395 /**
1396  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
1397  * a specific endpoint
1398  *
1399  * @hsotg: Programming view of DWC_otg controller
1400  * @chan:  Information needed to initialize the host channel
1401  *
1402  * The HCCHARn register is set up with the characteristics specified in chan.
1403  * Host channel interrupts that may need to be serviced while this transfer is
1404  * in progress are enabled.
1405  */
1406 void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1407 {
1408 	u8 hc_num = chan->hc_num;
1409 	u32 hcintmsk;
1410 	u32 hcchar;
1411 	u32 hcsplt = 0;
1412 
1413 	if (dbg_hc(chan))
1414 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1415 
1416 	/* Clear old interrupt conditions for this host channel */
1417 	hcintmsk = 0xffffffff;
1418 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1419 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
1420 
1421 	/* Enable channel interrupts required for this transfer */
1422 	dwc2_hc_enable_ints(hsotg, chan);
1423 
1424 	/*
1425 	 * Program the HCCHARn register with the endpoint characteristics for
1426 	 * the current transfer
1427 	 */
1428 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
1429 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
1430 	if (chan->ep_is_in)
1431 		hcchar |= HCCHAR_EPDIR;
1432 	if (chan->speed == USB_SPEED_LOW)
1433 		hcchar |= HCCHAR_LSPDDEV;
1434 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
1435 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
1436 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
1437 	if (dbg_hc(chan)) {
1438 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
1439 			 hc_num, hcchar);
1440 
1441 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
1442 			 __func__, hc_num);
1443 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
1444 			 chan->dev_addr);
1445 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
1446 			 chan->ep_num);
1447 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
1448 			 chan->ep_is_in);
1449 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
1450 			 chan->speed == USB_SPEED_LOW);
1451 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
1452 			 chan->ep_type);
1453 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
1454 			 chan->max_packet);
1455 	}
1456 
1457 	/* Program the HCSPLT register for SPLITs */
1458 	if (chan->do_split) {
1459 		if (dbg_hc(chan))
1460 			dev_vdbg(hsotg->dev,
1461 				 "Programming HC %d with split --> %s\n",
1462 				 hc_num,
1463 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
1464 		if (chan->complete_split)
1465 			hcsplt |= HCSPLT_COMPSPLT;
1466 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
1467 			  HCSPLT_XACTPOS_MASK;
1468 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
1469 			  HCSPLT_HUBADDR_MASK;
1470 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
1471 			  HCSPLT_PRTADDR_MASK;
1472 		if (dbg_hc(chan)) {
1473 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
1474 				 chan->complete_split);
1475 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
1476 				 chan->xact_pos);
1477 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
1478 				 chan->hub_addr);
1479 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
1480 				 chan->hub_port);
1481 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
1482 				 chan->ep_is_in);
1483 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
1484 				 chan->max_packet);
1485 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
1486 				 chan->xfer_len);
1487 		}
1488 	}
1489 
1490 	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
1491 }
1492 
1493 /**
1494  * dwc2_hc_halt() - Attempts to halt a host channel
1495  *
1496  * @hsotg:       Controller register interface
1497  * @chan:        Host channel to halt
1498  * @halt_status: Reason for halting the channel
1499  *
1500  * This function should only be called in Slave mode or to abort a transfer in
1501  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
1502  * controller halts the channel when the transfer is complete or a condition
1503  * occurs that requires application intervention.
1504  *
1505  * In slave mode, checks for a free request queue entry, then sets the Channel
1506  * Enable and Channel Disable bits of the Host Channel Characteristics
1507  * register of the specified channel to intiate the halt. If there is no free
1508  * request queue entry, sets only the Channel Disable bit of the HCCHARn
1509  * register to flush requests for this channel. In the latter case, sets a
1510  * flag to indicate that the host channel needs to be halted when a request
1511  * queue slot is open.
1512  *
1513  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
1514  * HCCHARn register. The controller ensures there is space in the request
1515  * queue before submitting the halt request.
1516  *
1517  * Some time may elapse before the core flushes any posted requests for this
1518  * host channel and halts. The Channel Halted interrupt handler completes the
1519  * deactivation of the host channel.
1520  */
1521 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
1522 		  enum dwc2_halt_status halt_status)
1523 {
1524 	u32 nptxsts, hptxsts, hcchar;
1525 
1526 	if (dbg_hc(chan))
1527 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1528 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1529 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1530 
1531 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1532 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1533 		/*
1534 		 * Disable all channel interrupts except Ch Halted. The QTD
1535 		 * and QH state associated with this transfer has been cleared
1536 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1537 		 * shut down carefully to prevent crashes.
1538 		 */
1539 		u32 hcintmsk = HCINTMSK_CHHLTD;
1540 
1541 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1542 		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1543 
1544 		/*
1545 		 * Make sure no other interrupts besides halt are currently
1546 		 * pending. Handling another interrupt could cause a crash due
1547 		 * to the QTD and QH state.
1548 		 */
1549 		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1550 
1551 		/*
1552 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1553 		 * even if the channel was already halted for some other
1554 		 * reason
1555 		 */
1556 		chan->halt_status = halt_status;
1557 
1558 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1559 		if (!(hcchar & HCCHAR_CHENA)) {
1560 			/*
1561 			 * The channel is either already halted or it hasn't
1562 			 * started yet. In DMA mode, the transfer may halt if
1563 			 * it finishes normally or a condition occurs that
1564 			 * requires driver intervention. Don't want to halt
1565 			 * the channel again. In either Slave or DMA mode,
1566 			 * it's possible that the transfer has been assigned
1567 			 * to a channel, but not started yet when an URB is
1568 			 * dequeued. Don't want to halt a channel that hasn't
1569 			 * started yet.
1570 			 */
1571 			return;
1572 		}
1573 	}
1574 	if (chan->halt_pending) {
1575 		/*
1576 		 * A halt has already been issued for this channel. This might
1577 		 * happen when a transfer is aborted by a higher level in
1578 		 * the stack.
1579 		 */
1580 		dev_vdbg(hsotg->dev,
1581 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1582 			 __func__, chan->hc_num);
1583 		return;
1584 	}
1585 
1586 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1587 
1588 	/* No need to set the bit in DDMA for disabling the channel */
1589 	/* TODO check it everywhere channel is disabled */
1590 	if (hsotg->core_params->dma_desc_enable <= 0) {
1591 		if (dbg_hc(chan))
1592 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1593 		hcchar |= HCCHAR_CHENA;
1594 	} else {
1595 		if (dbg_hc(chan))
1596 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1597 	}
1598 	hcchar |= HCCHAR_CHDIS;
1599 
1600 	if (hsotg->core_params->dma_enable <= 0) {
1601 		if (dbg_hc(chan))
1602 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1603 		hcchar |= HCCHAR_CHENA;
1604 
1605 		/* Check for space in the request queue to issue the halt */
1606 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1607 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1608 			dev_vdbg(hsotg->dev, "control/bulk\n");
1609 			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1610 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1611 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1612 				hcchar &= ~HCCHAR_CHENA;
1613 			}
1614 		} else {
1615 			if (dbg_perio())
1616 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1617 			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1618 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1619 			    hsotg->queuing_high_bandwidth) {
1620 				if (dbg_perio())
1621 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1622 				hcchar &= ~HCCHAR_CHENA;
1623 			}
1624 		}
1625 	} else {
1626 		if (dbg_hc(chan))
1627 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1628 	}
1629 
1630 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1631 	chan->halt_status = halt_status;
1632 
1633 	if (hcchar & HCCHAR_CHENA) {
1634 		if (dbg_hc(chan))
1635 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1636 		chan->halt_pending = 1;
1637 		chan->halt_on_queue = 0;
1638 	} else {
1639 		if (dbg_hc(chan))
1640 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1641 		chan->halt_on_queue = 1;
1642 	}
1643 
1644 	if (dbg_hc(chan)) {
1645 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1646 			 chan->hc_num);
1647 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1648 			 hcchar);
1649 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1650 			 chan->halt_pending);
1651 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1652 			 chan->halt_on_queue);
1653 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1654 			 chan->halt_status);
1655 	}
1656 }
1657 
1658 /**
1659  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1660  *
1661  * @hsotg: Programming view of DWC_otg controller
1662  * @chan:  Identifies the host channel to clean up
1663  *
1664  * This function is normally called after a transfer is done and the host
1665  * channel is being released
1666  */
1667 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1668 {
1669 	u32 hcintmsk;
1670 
1671 	chan->xfer_started = 0;
1672 
1673 	/*
1674 	 * Clear channel interrupt enables and any unhandled channel interrupt
1675 	 * conditions
1676 	 */
1677 	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1678 	hcintmsk = 0xffffffff;
1679 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1680 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1681 }
1682 
1683 /**
1684  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1685  * which frame a periodic transfer should occur
1686  *
1687  * @hsotg:  Programming view of DWC_otg controller
1688  * @chan:   Identifies the host channel to set up and its properties
1689  * @hcchar: Current value of the HCCHAR register for the specified host channel
1690  *
1691  * This function has no effect on non-periodic transfers
1692  */
1693 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1694 				       struct dwc2_host_chan *chan, u32 *hcchar)
1695 {
1696 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1697 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1698 		/* 1 if _next_ frame is odd, 0 if it's even */
1699 		if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
1700 			*hcchar |= HCCHAR_ODDFRM;
1701 	}
1702 }
1703 
1704 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1705 {
1706 	/* Set up the initial PID for the transfer */
1707 	if (chan->speed == USB_SPEED_HIGH) {
1708 		if (chan->ep_is_in) {
1709 			if (chan->multi_count == 1)
1710 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1711 			else if (chan->multi_count == 2)
1712 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1713 			else
1714 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1715 		} else {
1716 			if (chan->multi_count == 1)
1717 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1718 			else
1719 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1720 		}
1721 	} else {
1722 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1723 	}
1724 }
1725 
1726 /**
1727  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1728  * the Host Channel
1729  *
1730  * @hsotg: Programming view of DWC_otg controller
1731  * @chan:  Information needed to initialize the host channel
1732  *
1733  * This function should only be called in Slave mode. For a channel associated
1734  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1735  * associated with a periodic EP, the periodic Tx FIFO is written.
1736  *
1737  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1738  * the number of bytes written to the Tx FIFO.
1739  */
1740 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1741 				 struct dwc2_host_chan *chan)
1742 {
1743 	u32 i;
1744 	u32 remaining_count;
1745 	u32 byte_count;
1746 	u32 dword_count;
1747 	u32 __iomem *data_fifo;
1748 	u32 *data_buf = (u32 *)chan->xfer_buf;
1749 
1750 	if (dbg_hc(chan))
1751 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1752 
1753 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1754 
1755 	remaining_count = chan->xfer_len - chan->xfer_count;
1756 	if (remaining_count > chan->max_packet)
1757 		byte_count = chan->max_packet;
1758 	else
1759 		byte_count = remaining_count;
1760 
1761 	dword_count = (byte_count + 3) / 4;
1762 
1763 	if (((unsigned long)data_buf & 0x3) == 0) {
1764 		/* xfer_buf is DWORD aligned */
1765 		for (i = 0; i < dword_count; i++, data_buf++)
1766 			dwc2_writel(*data_buf, data_fifo);
1767 	} else {
1768 		/* xfer_buf is not DWORD aligned */
1769 		for (i = 0; i < dword_count; i++, data_buf++) {
1770 			u32 data = data_buf[0] | data_buf[1] << 8 |
1771 				   data_buf[2] << 16 | data_buf[3] << 24;
1772 			dwc2_writel(data, data_fifo);
1773 		}
1774 	}
1775 
1776 	chan->xfer_count += byte_count;
1777 	chan->xfer_buf += byte_count;
1778 }
1779 
1780 /**
1781  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1782  * channel and starts the transfer
1783  *
1784  * @hsotg: Programming view of DWC_otg controller
1785  * @chan:  Information needed to initialize the host channel. The xfer_len value
1786  *         may be reduced to accommodate the max widths of the XferSize and
1787  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1788  *         changed to reflect the final xfer_len value.
1789  *
1790  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1791  * the caller must ensure that there is sufficient space in the request queue
1792  * and Tx Data FIFO.
1793  *
1794  * For an OUT transfer in Slave mode, it loads a data packet into the
1795  * appropriate FIFO. If necessary, additional data packets are loaded in the
1796  * Host ISR.
1797  *
1798  * For an IN transfer in Slave mode, a data packet is requested. The data
1799  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1800  * additional data packets are requested in the Host ISR.
1801  *
1802  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1803  * register along with a packet count of 1 and the channel is enabled. This
1804  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1805  * simply set to 0 since no data transfer occurs in this case.
1806  *
1807  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1808  * all the information required to perform the subsequent data transfer. In
1809  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1810  * controller performs the entire PING protocol, then starts the data
1811  * transfer.
1812  */
1813 void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1814 			    struct dwc2_host_chan *chan)
1815 {
1816 	u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1817 	u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1818 	u32 hcchar;
1819 	u32 hctsiz = 0;
1820 	u16 num_packets;
1821 	u32 ec_mc;
1822 
1823 	if (dbg_hc(chan))
1824 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1825 
1826 	if (chan->do_ping) {
1827 		if (hsotg->core_params->dma_enable <= 0) {
1828 			if (dbg_hc(chan))
1829 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1830 			dwc2_hc_do_ping(hsotg, chan);
1831 			chan->xfer_started = 1;
1832 			return;
1833 		} else {
1834 			if (dbg_hc(chan))
1835 				dev_vdbg(hsotg->dev, "ping, DMA\n");
1836 			hctsiz |= TSIZ_DOPNG;
1837 		}
1838 	}
1839 
1840 	if (chan->do_split) {
1841 		if (dbg_hc(chan))
1842 			dev_vdbg(hsotg->dev, "split\n");
1843 		num_packets = 1;
1844 
1845 		if (chan->complete_split && !chan->ep_is_in)
1846 			/*
1847 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1848 			 * core doesn't expect any data written to the FIFO
1849 			 */
1850 			chan->xfer_len = 0;
1851 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1852 			chan->xfer_len = chan->max_packet;
1853 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1854 			chan->xfer_len = 188;
1855 
1856 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1857 			  TSIZ_XFERSIZE_MASK;
1858 
1859 		/* For split set ec_mc for immediate retries */
1860 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1861 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1862 			ec_mc = 3;
1863 		else
1864 			ec_mc = 1;
1865 	} else {
1866 		if (dbg_hc(chan))
1867 			dev_vdbg(hsotg->dev, "no split\n");
1868 		/*
1869 		 * Ensure that the transfer length and packet count will fit
1870 		 * in the widths allocated for them in the HCTSIZn register
1871 		 */
1872 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1873 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1874 			/*
1875 			 * Make sure the transfer size is no larger than one
1876 			 * (micro)frame's worth of data. (A check was done
1877 			 * when the periodic transfer was accepted to ensure
1878 			 * that a (micro)frame's worth of data can be
1879 			 * programmed into a channel.)
1880 			 */
1881 			u32 max_periodic_len =
1882 				chan->multi_count * chan->max_packet;
1883 
1884 			if (chan->xfer_len > max_periodic_len)
1885 				chan->xfer_len = max_periodic_len;
1886 		} else if (chan->xfer_len > max_hc_xfer_size) {
1887 			/*
1888 			 * Make sure that xfer_len is a multiple of max packet
1889 			 * size
1890 			 */
1891 			chan->xfer_len =
1892 				max_hc_xfer_size - chan->max_packet + 1;
1893 		}
1894 
1895 		if (chan->xfer_len > 0) {
1896 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1897 					chan->max_packet;
1898 			if (num_packets > max_hc_pkt_count) {
1899 				num_packets = max_hc_pkt_count;
1900 				chan->xfer_len = num_packets * chan->max_packet;
1901 			}
1902 		} else {
1903 			/* Need 1 packet for transfer length of 0 */
1904 			num_packets = 1;
1905 		}
1906 
1907 		if (chan->ep_is_in)
1908 			/*
1909 			 * Always program an integral # of max packets for IN
1910 			 * transfers
1911 			 */
1912 			chan->xfer_len = num_packets * chan->max_packet;
1913 
1914 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1915 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1916 			/*
1917 			 * Make sure that the multi_count field matches the
1918 			 * actual transfer length
1919 			 */
1920 			chan->multi_count = num_packets;
1921 
1922 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1923 			dwc2_set_pid_isoc(chan);
1924 
1925 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1926 			  TSIZ_XFERSIZE_MASK;
1927 
1928 		/* The ec_mc gets the multi_count for non-split */
1929 		ec_mc = chan->multi_count;
1930 	}
1931 
1932 	chan->start_pkt_count = num_packets;
1933 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1934 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1935 		  TSIZ_SC_MC_PID_MASK;
1936 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1937 	if (dbg_hc(chan)) {
1938 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1939 			 hctsiz, chan->hc_num);
1940 
1941 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1942 			 chan->hc_num);
1943 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1944 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1945 			 TSIZ_XFERSIZE_SHIFT);
1946 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1947 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1948 			 TSIZ_PKTCNT_SHIFT);
1949 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1950 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1951 			 TSIZ_SC_MC_PID_SHIFT);
1952 	}
1953 
1954 	if (hsotg->core_params->dma_enable > 0) {
1955 		dma_addr_t dma_addr;
1956 
1957 		if (chan->align_buf) {
1958 			if (dbg_hc(chan))
1959 				dev_vdbg(hsotg->dev, "align_buf\n");
1960 			dma_addr = chan->align_buf;
1961 		} else {
1962 			dma_addr = chan->xfer_dma;
1963 		}
1964 		dwc2_writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1965 		if (dbg_hc(chan))
1966 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1967 				 (unsigned long)dma_addr, chan->hc_num);
1968 	}
1969 
1970 	/* Start the split */
1971 	if (chan->do_split) {
1972 		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1973 
1974 		hcsplt |= HCSPLT_SPLTENA;
1975 		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1976 	}
1977 
1978 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1979 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1980 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1981 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1982 
1983 	if (hcchar & HCCHAR_CHDIS)
1984 		dev_warn(hsotg->dev,
1985 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1986 			 __func__, chan->hc_num, hcchar);
1987 
1988 	/* Set host channel enable after all other setup is complete */
1989 	hcchar |= HCCHAR_CHENA;
1990 	hcchar &= ~HCCHAR_CHDIS;
1991 
1992 	if (dbg_hc(chan))
1993 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1994 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1995 			 HCCHAR_MULTICNT_SHIFT);
1996 
1997 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1998 	if (dbg_hc(chan))
1999 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
2000 			 chan->hc_num);
2001 
2002 	chan->xfer_started = 1;
2003 	chan->requests++;
2004 
2005 	if (hsotg->core_params->dma_enable <= 0 &&
2006 	    !chan->ep_is_in && chan->xfer_len > 0)
2007 		/* Load OUT packet into the appropriate Tx FIFO */
2008 		dwc2_hc_write_packet(hsotg, chan);
2009 }
2010 
2011 /**
2012  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
2013  * host channel and starts the transfer in Descriptor DMA mode
2014  *
2015  * @hsotg: Programming view of DWC_otg controller
2016  * @chan:  Information needed to initialize the host channel
2017  *
2018  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
2019  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
2020  * with micro-frame bitmap.
2021  *
2022  * Initializes HCDMA register with descriptor list address and CTD value then
2023  * starts the transfer via enabling the channel.
2024  */
2025 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
2026 				 struct dwc2_host_chan *chan)
2027 {
2028 	u32 hcchar;
2029 	u32 hctsiz = 0;
2030 
2031 	if (chan->do_ping)
2032 		hctsiz |= TSIZ_DOPNG;
2033 
2034 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2035 		dwc2_set_pid_isoc(chan);
2036 
2037 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
2038 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
2039 		  TSIZ_SC_MC_PID_MASK;
2040 
2041 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
2042 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
2043 
2044 	/* Non-zero only for high-speed interrupt endpoints */
2045 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
2046 
2047 	if (dbg_hc(chan)) {
2048 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2049 			 chan->hc_num);
2050 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
2051 			 chan->data_pid_start);
2052 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
2053 	}
2054 
2055 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2056 
2057 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
2058 				   chan->desc_list_sz, DMA_TO_DEVICE);
2059 
2060 	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
2061 
2062 	if (dbg_hc(chan))
2063 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
2064 			 &chan->desc_list_addr, chan->hc_num);
2065 
2066 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2067 	hcchar &= ~HCCHAR_MULTICNT_MASK;
2068 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
2069 		  HCCHAR_MULTICNT_MASK;
2070 
2071 	if (hcchar & HCCHAR_CHDIS)
2072 		dev_warn(hsotg->dev,
2073 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
2074 			 __func__, chan->hc_num, hcchar);
2075 
2076 	/* Set host channel enable after all other setup is complete */
2077 	hcchar |= HCCHAR_CHENA;
2078 	hcchar &= ~HCCHAR_CHDIS;
2079 
2080 	if (dbg_hc(chan))
2081 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
2082 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
2083 			 HCCHAR_MULTICNT_SHIFT);
2084 
2085 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2086 	if (dbg_hc(chan))
2087 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
2088 			 chan->hc_num);
2089 
2090 	chan->xfer_started = 1;
2091 	chan->requests++;
2092 }
2093 
2094 /**
2095  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
2096  * a previous call to dwc2_hc_start_transfer()
2097  *
2098  * @hsotg: Programming view of DWC_otg controller
2099  * @chan:  Information needed to initialize the host channel
2100  *
2101  * The caller must ensure there is sufficient space in the request queue and Tx
2102  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
2103  * the controller acts autonomously to complete transfers programmed to a host
2104  * channel.
2105  *
2106  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
2107  * if there is any data remaining to be queued. For an IN transfer, another
2108  * data packet is always requested. For the SETUP phase of a control transfer,
2109  * this function does nothing.
2110  *
2111  * Return: 1 if a new request is queued, 0 if no more requests are required
2112  * for this transfer
2113  */
2114 int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
2115 			      struct dwc2_host_chan *chan)
2116 {
2117 	if (dbg_hc(chan))
2118 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2119 			 chan->hc_num);
2120 
2121 	if (chan->do_split)
2122 		/* SPLITs always queue just once per channel */
2123 		return 0;
2124 
2125 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
2126 		/* SETUPs are queued only once since they can't be NAK'd */
2127 		return 0;
2128 
2129 	if (chan->ep_is_in) {
2130 		/*
2131 		 * Always queue another request for other IN transfers. If
2132 		 * back-to-back INs are issued and NAKs are received for both,
2133 		 * the driver may still be processing the first NAK when the
2134 		 * second NAK is received. When the interrupt handler clears
2135 		 * the NAK interrupt for the first NAK, the second NAK will
2136 		 * not be seen. So we can't depend on the NAK interrupt
2137 		 * handler to requeue a NAK'd request. Instead, IN requests
2138 		 * are issued each time this function is called. When the
2139 		 * transfer completes, the extra requests for the channel will
2140 		 * be flushed.
2141 		 */
2142 		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2143 
2144 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
2145 		hcchar |= HCCHAR_CHENA;
2146 		hcchar &= ~HCCHAR_CHDIS;
2147 		if (dbg_hc(chan))
2148 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
2149 				 hcchar);
2150 		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2151 		chan->requests++;
2152 		return 1;
2153 	}
2154 
2155 	/* OUT transfers */
2156 
2157 	if (chan->xfer_count < chan->xfer_len) {
2158 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2159 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2160 			u32 hcchar = dwc2_readl(hsotg->regs +
2161 						HCCHAR(chan->hc_num));
2162 
2163 			dwc2_hc_set_even_odd_frame(hsotg, chan,
2164 						   &hcchar);
2165 		}
2166 
2167 		/* Load OUT packet into the appropriate Tx FIFO */
2168 		dwc2_hc_write_packet(hsotg, chan);
2169 		chan->requests++;
2170 		return 1;
2171 	}
2172 
2173 	return 0;
2174 }
2175 
2176 /**
2177  * dwc2_hc_do_ping() - Starts a PING transfer
2178  *
2179  * @hsotg: Programming view of DWC_otg controller
2180  * @chan:  Information needed to initialize the host channel
2181  *
2182  * This function should only be called in Slave mode. The Do Ping bit is set in
2183  * the HCTSIZ register, then the channel is enabled.
2184  */
2185 void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
2186 {
2187 	u32 hcchar;
2188 	u32 hctsiz;
2189 
2190 	if (dbg_hc(chan))
2191 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2192 			 chan->hc_num);
2193 
2194 
2195 	hctsiz = TSIZ_DOPNG;
2196 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
2197 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2198 
2199 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2200 	hcchar |= HCCHAR_CHENA;
2201 	hcchar &= ~HCCHAR_CHDIS;
2202 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2203 }
2204 
2205 /**
2206  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
2207  * the HFIR register according to PHY type and speed
2208  *
2209  * @hsotg: Programming view of DWC_otg controller
2210  *
2211  * NOTE: The caller can modify the value of the HFIR register only after the
2212  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
2213  * has been set
2214  */
2215 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
2216 {
2217 	u32 usbcfg;
2218 	u32 hprt0;
2219 	int clock = 60;	/* default value */
2220 
2221 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2222 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2223 
2224 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
2225 	    !(usbcfg & GUSBCFG_PHYIF16))
2226 		clock = 60;
2227 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
2228 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
2229 		clock = 48;
2230 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2231 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2232 		clock = 30;
2233 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2234 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
2235 		clock = 60;
2236 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2237 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2238 		clock = 48;
2239 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
2240 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
2241 		clock = 48;
2242 	if ((usbcfg & GUSBCFG_PHYSEL) &&
2243 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2244 		clock = 48;
2245 
2246 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
2247 		/* High speed case */
2248 		return 125 * clock;
2249 	else
2250 		/* FS/LS case */
2251 		return 1000 * clock;
2252 }
2253 
2254 /**
2255  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
2256  * buffer
2257  *
2258  * @core_if: Programming view of DWC_otg controller
2259  * @dest:    Destination buffer for the packet
2260  * @bytes:   Number of bytes to copy to the destination
2261  */
2262 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
2263 {
2264 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
2265 	u32 *data_buf = (u32 *)dest;
2266 	int word_count = (bytes + 3) / 4;
2267 	int i;
2268 
2269 	/*
2270 	 * Todo: Account for the case where dest is not dword aligned. This
2271 	 * requires reading data from the FIFO into a u32 temp buffer, then
2272 	 * moving it into the data buffer.
2273 	 */
2274 
2275 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
2276 
2277 	for (i = 0; i < word_count; i++, data_buf++)
2278 		*data_buf = dwc2_readl(fifo);
2279 }
2280 
2281 /**
2282  * dwc2_dump_host_registers() - Prints the host registers
2283  *
2284  * @hsotg: Programming view of DWC_otg controller
2285  *
2286  * NOTE: This function will be removed once the peripheral controller code
2287  * is integrated and the driver is stable
2288  */
2289 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
2290 {
2291 #ifdef DEBUG
2292 	u32 __iomem *addr;
2293 	int i;
2294 
2295 	dev_dbg(hsotg->dev, "Host Global Registers\n");
2296 	addr = hsotg->regs + HCFG;
2297 	dev_dbg(hsotg->dev, "HCFG	 @0x%08lX : 0x%08X\n",
2298 		(unsigned long)addr, dwc2_readl(addr));
2299 	addr = hsotg->regs + HFIR;
2300 	dev_dbg(hsotg->dev, "HFIR	 @0x%08lX : 0x%08X\n",
2301 		(unsigned long)addr, dwc2_readl(addr));
2302 	addr = hsotg->regs + HFNUM;
2303 	dev_dbg(hsotg->dev, "HFNUM	 @0x%08lX : 0x%08X\n",
2304 		(unsigned long)addr, dwc2_readl(addr));
2305 	addr = hsotg->regs + HPTXSTS;
2306 	dev_dbg(hsotg->dev, "HPTXSTS	 @0x%08lX : 0x%08X\n",
2307 		(unsigned long)addr, dwc2_readl(addr));
2308 	addr = hsotg->regs + HAINT;
2309 	dev_dbg(hsotg->dev, "HAINT	 @0x%08lX : 0x%08X\n",
2310 		(unsigned long)addr, dwc2_readl(addr));
2311 	addr = hsotg->regs + HAINTMSK;
2312 	dev_dbg(hsotg->dev, "HAINTMSK	 @0x%08lX : 0x%08X\n",
2313 		(unsigned long)addr, dwc2_readl(addr));
2314 	if (hsotg->core_params->dma_desc_enable > 0) {
2315 		addr = hsotg->regs + HFLBADDR;
2316 		dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
2317 			(unsigned long)addr, dwc2_readl(addr));
2318 	}
2319 
2320 	addr = hsotg->regs + HPRT0;
2321 	dev_dbg(hsotg->dev, "HPRT0	 @0x%08lX : 0x%08X\n",
2322 		(unsigned long)addr, dwc2_readl(addr));
2323 
2324 	for (i = 0; i < hsotg->core_params->host_channels; i++) {
2325 		dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
2326 		addr = hsotg->regs + HCCHAR(i);
2327 		dev_dbg(hsotg->dev, "HCCHAR	 @0x%08lX : 0x%08X\n",
2328 			(unsigned long)addr, dwc2_readl(addr));
2329 		addr = hsotg->regs + HCSPLT(i);
2330 		dev_dbg(hsotg->dev, "HCSPLT	 @0x%08lX : 0x%08X\n",
2331 			(unsigned long)addr, dwc2_readl(addr));
2332 		addr = hsotg->regs + HCINT(i);
2333 		dev_dbg(hsotg->dev, "HCINT	 @0x%08lX : 0x%08X\n",
2334 			(unsigned long)addr, dwc2_readl(addr));
2335 		addr = hsotg->regs + HCINTMSK(i);
2336 		dev_dbg(hsotg->dev, "HCINTMSK	 @0x%08lX : 0x%08X\n",
2337 			(unsigned long)addr, dwc2_readl(addr));
2338 		addr = hsotg->regs + HCTSIZ(i);
2339 		dev_dbg(hsotg->dev, "HCTSIZ	 @0x%08lX : 0x%08X\n",
2340 			(unsigned long)addr, dwc2_readl(addr));
2341 		addr = hsotg->regs + HCDMA(i);
2342 		dev_dbg(hsotg->dev, "HCDMA	 @0x%08lX : 0x%08X\n",
2343 			(unsigned long)addr, dwc2_readl(addr));
2344 		if (hsotg->core_params->dma_desc_enable > 0) {
2345 			addr = hsotg->regs + HCDMAB(i);
2346 			dev_dbg(hsotg->dev, "HCDMAB	 @0x%08lX : 0x%08X\n",
2347 				(unsigned long)addr, dwc2_readl(addr));
2348 		}
2349 	}
2350 #endif
2351 }
2352 
2353 /**
2354  * dwc2_dump_global_registers() - Prints the core global registers
2355  *
2356  * @hsotg: Programming view of DWC_otg controller
2357  *
2358  * NOTE: This function will be removed once the peripheral controller code
2359  * is integrated and the driver is stable
2360  */
2361 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
2362 {
2363 #ifdef DEBUG
2364 	u32 __iomem *addr;
2365 
2366 	dev_dbg(hsotg->dev, "Core Global Registers\n");
2367 	addr = hsotg->regs + GOTGCTL;
2368 	dev_dbg(hsotg->dev, "GOTGCTL	 @0x%08lX : 0x%08X\n",
2369 		(unsigned long)addr, dwc2_readl(addr));
2370 	addr = hsotg->regs + GOTGINT;
2371 	dev_dbg(hsotg->dev, "GOTGINT	 @0x%08lX : 0x%08X\n",
2372 		(unsigned long)addr, dwc2_readl(addr));
2373 	addr = hsotg->regs + GAHBCFG;
2374 	dev_dbg(hsotg->dev, "GAHBCFG	 @0x%08lX : 0x%08X\n",
2375 		(unsigned long)addr, dwc2_readl(addr));
2376 	addr = hsotg->regs + GUSBCFG;
2377 	dev_dbg(hsotg->dev, "GUSBCFG	 @0x%08lX : 0x%08X\n",
2378 		(unsigned long)addr, dwc2_readl(addr));
2379 	addr = hsotg->regs + GRSTCTL;
2380 	dev_dbg(hsotg->dev, "GRSTCTL	 @0x%08lX : 0x%08X\n",
2381 		(unsigned long)addr, dwc2_readl(addr));
2382 	addr = hsotg->regs + GINTSTS;
2383 	dev_dbg(hsotg->dev, "GINTSTS	 @0x%08lX : 0x%08X\n",
2384 		(unsigned long)addr, dwc2_readl(addr));
2385 	addr = hsotg->regs + GINTMSK;
2386 	dev_dbg(hsotg->dev, "GINTMSK	 @0x%08lX : 0x%08X\n",
2387 		(unsigned long)addr, dwc2_readl(addr));
2388 	addr = hsotg->regs + GRXSTSR;
2389 	dev_dbg(hsotg->dev, "GRXSTSR	 @0x%08lX : 0x%08X\n",
2390 		(unsigned long)addr, dwc2_readl(addr));
2391 	addr = hsotg->regs + GRXFSIZ;
2392 	dev_dbg(hsotg->dev, "GRXFSIZ	 @0x%08lX : 0x%08X\n",
2393 		(unsigned long)addr, dwc2_readl(addr));
2394 	addr = hsotg->regs + GNPTXFSIZ;
2395 	dev_dbg(hsotg->dev, "GNPTXFSIZ	 @0x%08lX : 0x%08X\n",
2396 		(unsigned long)addr, dwc2_readl(addr));
2397 	addr = hsotg->regs + GNPTXSTS;
2398 	dev_dbg(hsotg->dev, "GNPTXSTS	 @0x%08lX : 0x%08X\n",
2399 		(unsigned long)addr, dwc2_readl(addr));
2400 	addr = hsotg->regs + GI2CCTL;
2401 	dev_dbg(hsotg->dev, "GI2CCTL	 @0x%08lX : 0x%08X\n",
2402 		(unsigned long)addr, dwc2_readl(addr));
2403 	addr = hsotg->regs + GPVNDCTL;
2404 	dev_dbg(hsotg->dev, "GPVNDCTL	 @0x%08lX : 0x%08X\n",
2405 		(unsigned long)addr, dwc2_readl(addr));
2406 	addr = hsotg->regs + GGPIO;
2407 	dev_dbg(hsotg->dev, "GGPIO	 @0x%08lX : 0x%08X\n",
2408 		(unsigned long)addr, dwc2_readl(addr));
2409 	addr = hsotg->regs + GUID;
2410 	dev_dbg(hsotg->dev, "GUID	 @0x%08lX : 0x%08X\n",
2411 		(unsigned long)addr, dwc2_readl(addr));
2412 	addr = hsotg->regs + GSNPSID;
2413 	dev_dbg(hsotg->dev, "GSNPSID	 @0x%08lX : 0x%08X\n",
2414 		(unsigned long)addr, dwc2_readl(addr));
2415 	addr = hsotg->regs + GHWCFG1;
2416 	dev_dbg(hsotg->dev, "GHWCFG1	 @0x%08lX : 0x%08X\n",
2417 		(unsigned long)addr, dwc2_readl(addr));
2418 	addr = hsotg->regs + GHWCFG2;
2419 	dev_dbg(hsotg->dev, "GHWCFG2	 @0x%08lX : 0x%08X\n",
2420 		(unsigned long)addr, dwc2_readl(addr));
2421 	addr = hsotg->regs + GHWCFG3;
2422 	dev_dbg(hsotg->dev, "GHWCFG3	 @0x%08lX : 0x%08X\n",
2423 		(unsigned long)addr, dwc2_readl(addr));
2424 	addr = hsotg->regs + GHWCFG4;
2425 	dev_dbg(hsotg->dev, "GHWCFG4	 @0x%08lX : 0x%08X\n",
2426 		(unsigned long)addr, dwc2_readl(addr));
2427 	addr = hsotg->regs + GLPMCFG;
2428 	dev_dbg(hsotg->dev, "GLPMCFG	 @0x%08lX : 0x%08X\n",
2429 		(unsigned long)addr, dwc2_readl(addr));
2430 	addr = hsotg->regs + GPWRDN;
2431 	dev_dbg(hsotg->dev, "GPWRDN	 @0x%08lX : 0x%08X\n",
2432 		(unsigned long)addr, dwc2_readl(addr));
2433 	addr = hsotg->regs + GDFIFOCFG;
2434 	dev_dbg(hsotg->dev, "GDFIFOCFG	 @0x%08lX : 0x%08X\n",
2435 		(unsigned long)addr, dwc2_readl(addr));
2436 	addr = hsotg->regs + HPTXFSIZ;
2437 	dev_dbg(hsotg->dev, "HPTXFSIZ	 @0x%08lX : 0x%08X\n",
2438 		(unsigned long)addr, dwc2_readl(addr));
2439 
2440 	addr = hsotg->regs + PCGCTL;
2441 	dev_dbg(hsotg->dev, "PCGCTL	 @0x%08lX : 0x%08X\n",
2442 		(unsigned long)addr, dwc2_readl(addr));
2443 #endif
2444 }
2445 
2446 /**
2447  * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
2448  *
2449  * @hsotg: Programming view of DWC_otg controller
2450  * @num:   Tx FIFO to flush
2451  */
2452 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
2453 {
2454 	u32 greset;
2455 	int count = 0;
2456 
2457 	dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
2458 
2459 	greset = GRSTCTL_TXFFLSH;
2460 	greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
2461 	dwc2_writel(greset, hsotg->regs + GRSTCTL);
2462 
2463 	do {
2464 		greset = dwc2_readl(hsotg->regs + GRSTCTL);
2465 		if (++count > 10000) {
2466 			dev_warn(hsotg->dev,
2467 				 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
2468 				 __func__, greset,
2469 				 dwc2_readl(hsotg->regs + GNPTXSTS));
2470 			break;
2471 		}
2472 		udelay(1);
2473 	} while (greset & GRSTCTL_TXFFLSH);
2474 
2475 	/* Wait for at least 3 PHY Clocks */
2476 	udelay(1);
2477 }
2478 
2479 /**
2480  * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
2481  *
2482  * @hsotg: Programming view of DWC_otg controller
2483  */
2484 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
2485 {
2486 	u32 greset;
2487 	int count = 0;
2488 
2489 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
2490 
2491 	greset = GRSTCTL_RXFFLSH;
2492 	dwc2_writel(greset, hsotg->regs + GRSTCTL);
2493 
2494 	do {
2495 		greset = dwc2_readl(hsotg->regs + GRSTCTL);
2496 		if (++count > 10000) {
2497 			dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
2498 				 __func__, greset);
2499 			break;
2500 		}
2501 		udelay(1);
2502 	} while (greset & GRSTCTL_RXFFLSH);
2503 
2504 	/* Wait for at least 3 PHY Clocks */
2505 	udelay(1);
2506 }
2507 
2508 #define DWC2_OUT_OF_BOUNDS(a, b, c)	((a) < (b) || (a) > (c))
2509 
2510 /* Parameter access functions */
2511 void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
2512 {
2513 	int valid = 1;
2514 
2515 	switch (val) {
2516 	case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
2517 		if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
2518 			valid = 0;
2519 		break;
2520 	case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
2521 		switch (hsotg->hw_params.op_mode) {
2522 		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2523 		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2524 		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2525 		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2526 			break;
2527 		default:
2528 			valid = 0;
2529 			break;
2530 		}
2531 		break;
2532 	case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
2533 		/* always valid */
2534 		break;
2535 	default:
2536 		valid = 0;
2537 		break;
2538 	}
2539 
2540 	if (!valid) {
2541 		if (val >= 0)
2542 			dev_err(hsotg->dev,
2543 				"%d invalid for otg_cap parameter. Check HW configuration.\n",
2544 				val);
2545 		switch (hsotg->hw_params.op_mode) {
2546 		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2547 			val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
2548 			break;
2549 		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2550 		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2551 		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2552 			val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
2553 			break;
2554 		default:
2555 			val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
2556 			break;
2557 		}
2558 		dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
2559 	}
2560 
2561 	hsotg->core_params->otg_cap = val;
2562 }
2563 
2564 void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
2565 {
2566 	int valid = 1;
2567 
2568 	if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
2569 		valid = 0;
2570 	if (val < 0)
2571 		valid = 0;
2572 
2573 	if (!valid) {
2574 		if (val >= 0)
2575 			dev_err(hsotg->dev,
2576 				"%d invalid for dma_enable parameter. Check HW configuration.\n",
2577 				val);
2578 		val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
2579 		dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
2580 	}
2581 
2582 	hsotg->core_params->dma_enable = val;
2583 }
2584 
2585 void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
2586 {
2587 	int valid = 1;
2588 
2589 	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2590 			!hsotg->hw_params.dma_desc_enable))
2591 		valid = 0;
2592 	if (val < 0)
2593 		valid = 0;
2594 
2595 	if (!valid) {
2596 		if (val >= 0)
2597 			dev_err(hsotg->dev,
2598 				"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
2599 				val);
2600 		val = (hsotg->core_params->dma_enable > 0 &&
2601 			hsotg->hw_params.dma_desc_enable);
2602 		dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
2603 	}
2604 
2605 	hsotg->core_params->dma_desc_enable = val;
2606 }
2607 
2608 void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg, int val)
2609 {
2610 	int valid = 1;
2611 
2612 	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2613 			!hsotg->hw_params.dma_desc_enable))
2614 		valid = 0;
2615 	if (val < 0)
2616 		valid = 0;
2617 
2618 	if (!valid) {
2619 		if (val >= 0)
2620 			dev_err(hsotg->dev,
2621 				"%d invalid for dma_desc_fs_enable parameter. Check HW configuration.\n",
2622 				val);
2623 		val = (hsotg->core_params->dma_enable > 0 &&
2624 			hsotg->hw_params.dma_desc_enable);
2625 	}
2626 
2627 	hsotg->core_params->dma_desc_fs_enable = val;
2628 	dev_dbg(hsotg->dev, "Setting dma_desc_fs_enable to %d\n", val);
2629 }
2630 
2631 void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
2632 						 int val)
2633 {
2634 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2635 		if (val >= 0) {
2636 			dev_err(hsotg->dev,
2637 				"Wrong value for host_support_fs_low_power\n");
2638 			dev_err(hsotg->dev,
2639 				"host_support_fs_low_power must be 0 or 1\n");
2640 		}
2641 		val = 0;
2642 		dev_dbg(hsotg->dev,
2643 			"Setting host_support_fs_low_power to %d\n", val);
2644 	}
2645 
2646 	hsotg->core_params->host_support_fs_ls_low_power = val;
2647 }
2648 
2649 void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
2650 {
2651 	int valid = 1;
2652 
2653 	if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
2654 		valid = 0;
2655 	if (val < 0)
2656 		valid = 0;
2657 
2658 	if (!valid) {
2659 		if (val >= 0)
2660 			dev_err(hsotg->dev,
2661 				"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
2662 				val);
2663 		val = hsotg->hw_params.enable_dynamic_fifo;
2664 		dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
2665 	}
2666 
2667 	hsotg->core_params->enable_dynamic_fifo = val;
2668 }
2669 
2670 void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2671 {
2672 	int valid = 1;
2673 
2674 	if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
2675 		valid = 0;
2676 
2677 	if (!valid) {
2678 		if (val >= 0)
2679 			dev_err(hsotg->dev,
2680 				"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
2681 				val);
2682 		val = hsotg->hw_params.host_rx_fifo_size;
2683 		dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
2684 	}
2685 
2686 	hsotg->core_params->host_rx_fifo_size = val;
2687 }
2688 
2689 void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2690 {
2691 	int valid = 1;
2692 
2693 	if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
2694 		valid = 0;
2695 
2696 	if (!valid) {
2697 		if (val >= 0)
2698 			dev_err(hsotg->dev,
2699 				"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
2700 				val);
2701 		val = hsotg->hw_params.host_nperio_tx_fifo_size;
2702 		dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
2703 			val);
2704 	}
2705 
2706 	hsotg->core_params->host_nperio_tx_fifo_size = val;
2707 }
2708 
2709 void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2710 {
2711 	int valid = 1;
2712 
2713 	if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
2714 		valid = 0;
2715 
2716 	if (!valid) {
2717 		if (val >= 0)
2718 			dev_err(hsotg->dev,
2719 				"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
2720 				val);
2721 		val = hsotg->hw_params.host_perio_tx_fifo_size;
2722 		dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
2723 			val);
2724 	}
2725 
2726 	hsotg->core_params->host_perio_tx_fifo_size = val;
2727 }
2728 
2729 void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
2730 {
2731 	int valid = 1;
2732 
2733 	if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
2734 		valid = 0;
2735 
2736 	if (!valid) {
2737 		if (val >= 0)
2738 			dev_err(hsotg->dev,
2739 				"%d invalid for max_transfer_size. Check HW configuration.\n",
2740 				val);
2741 		val = hsotg->hw_params.max_transfer_size;
2742 		dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
2743 	}
2744 
2745 	hsotg->core_params->max_transfer_size = val;
2746 }
2747 
2748 void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
2749 {
2750 	int valid = 1;
2751 
2752 	if (val < 15 || val > hsotg->hw_params.max_packet_count)
2753 		valid = 0;
2754 
2755 	if (!valid) {
2756 		if (val >= 0)
2757 			dev_err(hsotg->dev,
2758 				"%d invalid for max_packet_count. Check HW configuration.\n",
2759 				val);
2760 		val = hsotg->hw_params.max_packet_count;
2761 		dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
2762 	}
2763 
2764 	hsotg->core_params->max_packet_count = val;
2765 }
2766 
2767 void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
2768 {
2769 	int valid = 1;
2770 
2771 	if (val < 1 || val > hsotg->hw_params.host_channels)
2772 		valid = 0;
2773 
2774 	if (!valid) {
2775 		if (val >= 0)
2776 			dev_err(hsotg->dev,
2777 				"%d invalid for host_channels. Check HW configuration.\n",
2778 				val);
2779 		val = hsotg->hw_params.host_channels;
2780 		dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
2781 	}
2782 
2783 	hsotg->core_params->host_channels = val;
2784 }
2785 
2786 void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
2787 {
2788 	int valid = 0;
2789 	u32 hs_phy_type, fs_phy_type;
2790 
2791 	if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
2792 			       DWC2_PHY_TYPE_PARAM_ULPI)) {
2793 		if (val >= 0) {
2794 			dev_err(hsotg->dev, "Wrong value for phy_type\n");
2795 			dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
2796 		}
2797 
2798 		valid = 0;
2799 	}
2800 
2801 	hs_phy_type = hsotg->hw_params.hs_phy_type;
2802 	fs_phy_type = hsotg->hw_params.fs_phy_type;
2803 	if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
2804 	    (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2805 	     hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2806 		valid = 1;
2807 	else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
2808 		 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
2809 		  hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2810 		valid = 1;
2811 	else if (val == DWC2_PHY_TYPE_PARAM_FS &&
2812 		 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2813 		valid = 1;
2814 
2815 	if (!valid) {
2816 		if (val >= 0)
2817 			dev_err(hsotg->dev,
2818 				"%d invalid for phy_type. Check HW configuration.\n",
2819 				val);
2820 		val = DWC2_PHY_TYPE_PARAM_FS;
2821 		if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
2822 			if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2823 			    hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
2824 				val = DWC2_PHY_TYPE_PARAM_UTMI;
2825 			else
2826 				val = DWC2_PHY_TYPE_PARAM_ULPI;
2827 		}
2828 		dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
2829 	}
2830 
2831 	hsotg->core_params->phy_type = val;
2832 }
2833 
2834 static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
2835 {
2836 	return hsotg->core_params->phy_type;
2837 }
2838 
2839 void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
2840 {
2841 	int valid = 1;
2842 
2843 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2844 		if (val >= 0) {
2845 			dev_err(hsotg->dev, "Wrong value for speed parameter\n");
2846 			dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
2847 		}
2848 		valid = 0;
2849 	}
2850 
2851 	if (val == DWC2_SPEED_PARAM_HIGH &&
2852 	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2853 		valid = 0;
2854 
2855 	if (!valid) {
2856 		if (val >= 0)
2857 			dev_err(hsotg->dev,
2858 				"%d invalid for speed parameter. Check HW configuration.\n",
2859 				val);
2860 		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
2861 				DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
2862 		dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
2863 	}
2864 
2865 	hsotg->core_params->speed = val;
2866 }
2867 
2868 void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
2869 {
2870 	int valid = 1;
2871 
2872 	if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
2873 			       DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
2874 		if (val >= 0) {
2875 			dev_err(hsotg->dev,
2876 				"Wrong value for host_ls_low_power_phy_clk parameter\n");
2877 			dev_err(hsotg->dev,
2878 				"host_ls_low_power_phy_clk must be 0 or 1\n");
2879 		}
2880 		valid = 0;
2881 	}
2882 
2883 	if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
2884 	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2885 		valid = 0;
2886 
2887 	if (!valid) {
2888 		if (val >= 0)
2889 			dev_err(hsotg->dev,
2890 				"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
2891 				val);
2892 		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
2893 			? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
2894 			: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
2895 		dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
2896 			val);
2897 	}
2898 
2899 	hsotg->core_params->host_ls_low_power_phy_clk = val;
2900 }
2901 
2902 void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
2903 {
2904 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2905 		if (val >= 0) {
2906 			dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
2907 			dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
2908 		}
2909 		val = 0;
2910 		dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
2911 	}
2912 
2913 	hsotg->core_params->phy_ulpi_ddr = val;
2914 }
2915 
2916 void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
2917 {
2918 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2919 		if (val >= 0) {
2920 			dev_err(hsotg->dev,
2921 				"Wrong value for phy_ulpi_ext_vbus\n");
2922 			dev_err(hsotg->dev,
2923 				"phy_ulpi_ext_vbus must be 0 or 1\n");
2924 		}
2925 		val = 0;
2926 		dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
2927 	}
2928 
2929 	hsotg->core_params->phy_ulpi_ext_vbus = val;
2930 }
2931 
2932 void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
2933 {
2934 	int valid = 0;
2935 
2936 	switch (hsotg->hw_params.utmi_phy_data_width) {
2937 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
2938 		valid = (val == 8);
2939 		break;
2940 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
2941 		valid = (val == 16);
2942 		break;
2943 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
2944 		valid = (val == 8 || val == 16);
2945 		break;
2946 	}
2947 
2948 	if (!valid) {
2949 		if (val >= 0) {
2950 			dev_err(hsotg->dev,
2951 				"%d invalid for phy_utmi_width. Check HW configuration.\n",
2952 				val);
2953 		}
2954 		val = (hsotg->hw_params.utmi_phy_data_width ==
2955 		       GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
2956 		dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
2957 	}
2958 
2959 	hsotg->core_params->phy_utmi_width = val;
2960 }
2961 
2962 void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
2963 {
2964 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2965 		if (val >= 0) {
2966 			dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
2967 			dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
2968 		}
2969 		val = 0;
2970 		dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
2971 	}
2972 
2973 	hsotg->core_params->ulpi_fs_ls = val;
2974 }
2975 
2976 void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
2977 {
2978 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2979 		if (val >= 0) {
2980 			dev_err(hsotg->dev, "Wrong value for ts_dline\n");
2981 			dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
2982 		}
2983 		val = 0;
2984 		dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
2985 	}
2986 
2987 	hsotg->core_params->ts_dline = val;
2988 }
2989 
2990 void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
2991 {
2992 	int valid = 1;
2993 
2994 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2995 		if (val >= 0) {
2996 			dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
2997 			dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
2998 		}
2999 
3000 		valid = 0;
3001 	}
3002 
3003 	if (val == 1 && !(hsotg->hw_params.i2c_enable))
3004 		valid = 0;
3005 
3006 	if (!valid) {
3007 		if (val >= 0)
3008 			dev_err(hsotg->dev,
3009 				"%d invalid for i2c_enable. Check HW configuration.\n",
3010 				val);
3011 		val = hsotg->hw_params.i2c_enable;
3012 		dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
3013 	}
3014 
3015 	hsotg->core_params->i2c_enable = val;
3016 }
3017 
3018 void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
3019 {
3020 	int valid = 1;
3021 
3022 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3023 		if (val >= 0) {
3024 			dev_err(hsotg->dev,
3025 				"Wrong value for en_multiple_tx_fifo,\n");
3026 			dev_err(hsotg->dev,
3027 				"en_multiple_tx_fifo must be 0 or 1\n");
3028 		}
3029 		valid = 0;
3030 	}
3031 
3032 	if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
3033 		valid = 0;
3034 
3035 	if (!valid) {
3036 		if (val >= 0)
3037 			dev_err(hsotg->dev,
3038 				"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
3039 				val);
3040 		val = hsotg->hw_params.en_multiple_tx_fifo;
3041 		dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
3042 	}
3043 
3044 	hsotg->core_params->en_multiple_tx_fifo = val;
3045 }
3046 
3047 void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
3048 {
3049 	int valid = 1;
3050 
3051 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3052 		if (val >= 0) {
3053 			dev_err(hsotg->dev,
3054 				"'%d' invalid for parameter reload_ctl\n", val);
3055 			dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
3056 		}
3057 		valid = 0;
3058 	}
3059 
3060 	if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
3061 		valid = 0;
3062 
3063 	if (!valid) {
3064 		if (val >= 0)
3065 			dev_err(hsotg->dev,
3066 				"%d invalid for parameter reload_ctl. Check HW configuration.\n",
3067 				val);
3068 		val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
3069 		dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
3070 	}
3071 
3072 	hsotg->core_params->reload_ctl = val;
3073 }
3074 
3075 void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
3076 {
3077 	if (val != -1)
3078 		hsotg->core_params->ahbcfg = val;
3079 	else
3080 		hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
3081 						GAHBCFG_HBSTLEN_SHIFT;
3082 }
3083 
3084 void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
3085 {
3086 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3087 		if (val >= 0) {
3088 			dev_err(hsotg->dev,
3089 				"'%d' invalid for parameter otg_ver\n", val);
3090 			dev_err(hsotg->dev,
3091 				"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
3092 		}
3093 		val = 0;
3094 		dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
3095 	}
3096 
3097 	hsotg->core_params->otg_ver = val;
3098 }
3099 
3100 static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
3101 {
3102 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3103 		if (val >= 0) {
3104 			dev_err(hsotg->dev,
3105 				"'%d' invalid for parameter uframe_sched\n",
3106 				val);
3107 			dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
3108 		}
3109 		val = 1;
3110 		dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
3111 	}
3112 
3113 	hsotg->core_params->uframe_sched = val;
3114 }
3115 
3116 static void dwc2_set_param_external_id_pin_ctl(struct dwc2_hsotg *hsotg,
3117 		int val)
3118 {
3119 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3120 		if (val >= 0) {
3121 			dev_err(hsotg->dev,
3122 				"'%d' invalid for parameter external_id_pin_ctl\n",
3123 				val);
3124 			dev_err(hsotg->dev, "external_id_pin_ctl must be 0 or 1\n");
3125 		}
3126 		val = 0;
3127 		dev_dbg(hsotg->dev, "Setting external_id_pin_ctl to %d\n", val);
3128 	}
3129 
3130 	hsotg->core_params->external_id_pin_ctl = val;
3131 }
3132 
3133 static void dwc2_set_param_hibernation(struct dwc2_hsotg *hsotg,
3134 		int val)
3135 {
3136 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3137 		if (val >= 0) {
3138 			dev_err(hsotg->dev,
3139 				"'%d' invalid for parameter hibernation\n",
3140 				val);
3141 			dev_err(hsotg->dev, "hibernation must be 0 or 1\n");
3142 		}
3143 		val = 0;
3144 		dev_dbg(hsotg->dev, "Setting hibernation to %d\n", val);
3145 	}
3146 
3147 	hsotg->core_params->hibernation = val;
3148 }
3149 
3150 /*
3151  * This function is called during module intialization to pass module parameters
3152  * for the DWC_otg core.
3153  */
3154 void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
3155 			 const struct dwc2_core_params *params)
3156 {
3157 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3158 
3159 	dwc2_set_param_otg_cap(hsotg, params->otg_cap);
3160 	dwc2_set_param_dma_enable(hsotg, params->dma_enable);
3161 	dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
3162 	dwc2_set_param_dma_desc_fs_enable(hsotg, params->dma_desc_fs_enable);
3163 	dwc2_set_param_host_support_fs_ls_low_power(hsotg,
3164 			params->host_support_fs_ls_low_power);
3165 	dwc2_set_param_enable_dynamic_fifo(hsotg,
3166 			params->enable_dynamic_fifo);
3167 	dwc2_set_param_host_rx_fifo_size(hsotg,
3168 			params->host_rx_fifo_size);
3169 	dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
3170 			params->host_nperio_tx_fifo_size);
3171 	dwc2_set_param_host_perio_tx_fifo_size(hsotg,
3172 			params->host_perio_tx_fifo_size);
3173 	dwc2_set_param_max_transfer_size(hsotg,
3174 			params->max_transfer_size);
3175 	dwc2_set_param_max_packet_count(hsotg,
3176 			params->max_packet_count);
3177 	dwc2_set_param_host_channels(hsotg, params->host_channels);
3178 	dwc2_set_param_phy_type(hsotg, params->phy_type);
3179 	dwc2_set_param_speed(hsotg, params->speed);
3180 	dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
3181 			params->host_ls_low_power_phy_clk);
3182 	dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
3183 	dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
3184 			params->phy_ulpi_ext_vbus);
3185 	dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
3186 	dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
3187 	dwc2_set_param_ts_dline(hsotg, params->ts_dline);
3188 	dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
3189 	dwc2_set_param_en_multiple_tx_fifo(hsotg,
3190 			params->en_multiple_tx_fifo);
3191 	dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
3192 	dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
3193 	dwc2_set_param_otg_ver(hsotg, params->otg_ver);
3194 	dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
3195 	dwc2_set_param_external_id_pin_ctl(hsotg, params->external_id_pin_ctl);
3196 	dwc2_set_param_hibernation(hsotg, params->hibernation);
3197 }
3198 
3199 /*
3200  * Forces either host or device mode if the controller is not
3201  * currently in that mode.
3202  *
3203  * Returns true if the mode was forced.
3204  */
3205 static bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host)
3206 {
3207 	if (host && dwc2_is_host_mode(hsotg))
3208 		return false;
3209 	else if (!host && dwc2_is_device_mode(hsotg))
3210 		return false;
3211 
3212 	return dwc2_force_mode(hsotg, host);
3213 }
3214 
3215 /*
3216  * Gets host hardware parameters. Forces host mode if not currently in
3217  * host mode. Should be called immediately after a core soft reset in
3218  * order to get the reset values.
3219  */
3220 static void dwc2_get_host_hwparams(struct dwc2_hsotg *hsotg)
3221 {
3222 	struct dwc2_hw_params *hw = &hsotg->hw_params;
3223 	u32 gnptxfsiz;
3224 	u32 hptxfsiz;
3225 	bool forced;
3226 
3227 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3228 		return;
3229 
3230 	forced = dwc2_force_mode_if_needed(hsotg, true);
3231 
3232 	gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
3233 	hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
3234 	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
3235 	dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
3236 
3237 	if (forced)
3238 		dwc2_clear_force_mode(hsotg);
3239 
3240 	hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3241 				       FIFOSIZE_DEPTH_SHIFT;
3242 	hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3243 				      FIFOSIZE_DEPTH_SHIFT;
3244 }
3245 
3246 /*
3247  * Gets device hardware parameters. Forces device mode if not
3248  * currently in device mode. Should be called immediately after a core
3249  * soft reset in order to get the reset values.
3250  */
3251 static void dwc2_get_dev_hwparams(struct dwc2_hsotg *hsotg)
3252 {
3253 	struct dwc2_hw_params *hw = &hsotg->hw_params;
3254 	bool forced;
3255 	u32 gnptxfsiz;
3256 
3257 	if (hsotg->dr_mode == USB_DR_MODE_HOST)
3258 		return;
3259 
3260 	forced = dwc2_force_mode_if_needed(hsotg, false);
3261 
3262 	gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
3263 	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
3264 
3265 	if (forced)
3266 		dwc2_clear_force_mode(hsotg);
3267 
3268 	hw->dev_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3269 				       FIFOSIZE_DEPTH_SHIFT;
3270 }
3271 
3272 /**
3273  * During device initialization, read various hardware configuration
3274  * registers and interpret the contents.
3275  */
3276 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
3277 {
3278 	struct dwc2_hw_params *hw = &hsotg->hw_params;
3279 	unsigned width;
3280 	u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
3281 	u32 grxfsiz;
3282 
3283 	/*
3284 	 * Attempt to ensure this device is really a DWC_otg Controller.
3285 	 * Read and verify the GSNPSID register contents. The value should be
3286 	 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
3287 	 * as in "OTG version 2.xx" or "OTG version 3.xx".
3288 	 */
3289 	hw->snpsid = dwc2_readl(hsotg->regs + GSNPSID);
3290 	if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
3291 	    (hw->snpsid & 0xfffff000) != 0x4f543000) {
3292 		dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
3293 			hw->snpsid);
3294 		return -ENODEV;
3295 	}
3296 
3297 	dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
3298 		hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
3299 		hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);
3300 
3301 	hwcfg1 = dwc2_readl(hsotg->regs + GHWCFG1);
3302 	hwcfg2 = dwc2_readl(hsotg->regs + GHWCFG2);
3303 	hwcfg3 = dwc2_readl(hsotg->regs + GHWCFG3);
3304 	hwcfg4 = dwc2_readl(hsotg->regs + GHWCFG4);
3305 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
3306 
3307 	dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
3308 	dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
3309 	dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
3310 	dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
3311 	dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);
3312 
3313 	/*
3314 	 * Host specific hardware parameters. Reading these parameters
3315 	 * requires the controller to be in host mode. The mode will
3316 	 * be forced, if necessary, to read these values.
3317 	 */
3318 	dwc2_get_host_hwparams(hsotg);
3319 	dwc2_get_dev_hwparams(hsotg);
3320 
3321 	/* hwcfg1 */
3322 	hw->dev_ep_dirs = hwcfg1;
3323 
3324 	/* hwcfg2 */
3325 	hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
3326 		      GHWCFG2_OP_MODE_SHIFT;
3327 	hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
3328 		   GHWCFG2_ARCHITECTURE_SHIFT;
3329 	hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
3330 	hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
3331 				GHWCFG2_NUM_HOST_CHAN_SHIFT);
3332 	hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
3333 			  GHWCFG2_HS_PHY_TYPE_SHIFT;
3334 	hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
3335 			  GHWCFG2_FS_PHY_TYPE_SHIFT;
3336 	hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
3337 			 GHWCFG2_NUM_DEV_EP_SHIFT;
3338 	hw->nperio_tx_q_depth =
3339 		(hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
3340 		GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
3341 	hw->host_perio_tx_q_depth =
3342 		(hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
3343 		GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
3344 	hw->dev_token_q_depth =
3345 		(hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
3346 		GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;
3347 
3348 	/* hwcfg3 */
3349 	width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
3350 		GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
3351 	hw->max_transfer_size = (1 << (width + 11)) - 1;
3352 	/*
3353 	 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
3354 	 * coherent buffers with this size, and if it's too large we can
3355 	 * exhaust the coherent DMA pool.
3356 	 */
3357 	if (hw->max_transfer_size > 65535)
3358 		hw->max_transfer_size = 65535;
3359 	width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
3360 		GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
3361 	hw->max_packet_count = (1 << (width + 4)) - 1;
3362 	hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
3363 	hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
3364 			      GHWCFG3_DFIFO_DEPTH_SHIFT;
3365 
3366 	/* hwcfg4 */
3367 	hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
3368 	hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
3369 				  GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
3370 	hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
3371 	hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
3372 	hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
3373 				  GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
3374 
3375 	/* fifo sizes */
3376 	hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
3377 				GRXFSIZ_DEPTH_SHIFT;
3378 
3379 	dev_dbg(hsotg->dev, "Detected values from hardware:\n");
3380 	dev_dbg(hsotg->dev, "  op_mode=%d\n",
3381 		hw->op_mode);
3382 	dev_dbg(hsotg->dev, "  arch=%d\n",
3383 		hw->arch);
3384 	dev_dbg(hsotg->dev, "  dma_desc_enable=%d\n",
3385 		hw->dma_desc_enable);
3386 	dev_dbg(hsotg->dev, "  power_optimized=%d\n",
3387 		hw->power_optimized);
3388 	dev_dbg(hsotg->dev, "  i2c_enable=%d\n",
3389 		hw->i2c_enable);
3390 	dev_dbg(hsotg->dev, "  hs_phy_type=%d\n",
3391 		hw->hs_phy_type);
3392 	dev_dbg(hsotg->dev, "  fs_phy_type=%d\n",
3393 		hw->fs_phy_type);
3394 	dev_dbg(hsotg->dev, "  utmi_phy_data_width=%d\n",
3395 		hw->utmi_phy_data_width);
3396 	dev_dbg(hsotg->dev, "  num_dev_ep=%d\n",
3397 		hw->num_dev_ep);
3398 	dev_dbg(hsotg->dev, "  num_dev_perio_in_ep=%d\n",
3399 		hw->num_dev_perio_in_ep);
3400 	dev_dbg(hsotg->dev, "  host_channels=%d\n",
3401 		hw->host_channels);
3402 	dev_dbg(hsotg->dev, "  max_transfer_size=%d\n",
3403 		hw->max_transfer_size);
3404 	dev_dbg(hsotg->dev, "  max_packet_count=%d\n",
3405 		hw->max_packet_count);
3406 	dev_dbg(hsotg->dev, "  nperio_tx_q_depth=0x%0x\n",
3407 		hw->nperio_tx_q_depth);
3408 	dev_dbg(hsotg->dev, "  host_perio_tx_q_depth=0x%0x\n",
3409 		hw->host_perio_tx_q_depth);
3410 	dev_dbg(hsotg->dev, "  dev_token_q_depth=0x%0x\n",
3411 		hw->dev_token_q_depth);
3412 	dev_dbg(hsotg->dev, "  enable_dynamic_fifo=%d\n",
3413 		hw->enable_dynamic_fifo);
3414 	dev_dbg(hsotg->dev, "  en_multiple_tx_fifo=%d\n",
3415 		hw->en_multiple_tx_fifo);
3416 	dev_dbg(hsotg->dev, "  total_fifo_size=%d\n",
3417 		hw->total_fifo_size);
3418 	dev_dbg(hsotg->dev, "  host_rx_fifo_size=%d\n",
3419 		hw->host_rx_fifo_size);
3420 	dev_dbg(hsotg->dev, "  host_nperio_tx_fifo_size=%d\n",
3421 		hw->host_nperio_tx_fifo_size);
3422 	dev_dbg(hsotg->dev, "  host_perio_tx_fifo_size=%d\n",
3423 		hw->host_perio_tx_fifo_size);
3424 	dev_dbg(hsotg->dev, "\n");
3425 
3426 	return 0;
3427 }
3428 
3429 /*
3430  * Sets all parameters to the given value.
3431  *
3432  * Assumes that the dwc2_core_params struct contains only integers.
3433  */
3434 void dwc2_set_all_params(struct dwc2_core_params *params, int value)
3435 {
3436 	int *p = (int *)params;
3437 	size_t size = sizeof(*params) / sizeof(*p);
3438 	int i;
3439 
3440 	for (i = 0; i < size; i++)
3441 		p[i] = value;
3442 }
3443 
3444 
3445 u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
3446 {
3447 	return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
3448 }
3449 
3450 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
3451 {
3452 	if (dwc2_readl(hsotg->regs + GSNPSID) == 0xffffffff)
3453 		return false;
3454 	else
3455 		return true;
3456 }
3457 
3458 /**
3459  * dwc2_enable_global_interrupts() - Enables the controller's Global
3460  * Interrupt in the AHB Config register
3461  *
3462  * @hsotg: Programming view of DWC_otg controller
3463  */
3464 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
3465 {
3466 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3467 
3468 	ahbcfg |= GAHBCFG_GLBL_INTR_EN;
3469 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3470 }
3471 
3472 /**
3473  * dwc2_disable_global_interrupts() - Disables the controller's Global
3474  * Interrupt in the AHB Config register
3475  *
3476  * @hsotg: Programming view of DWC_otg controller
3477  */
3478 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
3479 {
3480 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3481 
3482 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
3483 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3484 }
3485 
3486 /* Returns the controller's GHWCFG2.OTG_MODE. */
3487 unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg)
3488 {
3489 	u32 ghwcfg2 = dwc2_readl(hsotg->regs + GHWCFG2);
3490 
3491 	return (ghwcfg2 & GHWCFG2_OP_MODE_MASK) >>
3492 		GHWCFG2_OP_MODE_SHIFT;
3493 }
3494 
3495 /* Returns true if the controller is capable of DRD. */
3496 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg)
3497 {
3498 	unsigned op_mode = dwc2_op_mode(hsotg);
3499 
3500 	return (op_mode == GHWCFG2_OP_MODE_HNP_SRP_CAPABLE) ||
3501 		(op_mode == GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE) ||
3502 		(op_mode == GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE);
3503 }
3504 
3505 /* Returns true if the controller is host-only. */
3506 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg)
3507 {
3508 	unsigned op_mode = dwc2_op_mode(hsotg);
3509 
3510 	return (op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_HOST) ||
3511 		(op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST);
3512 }
3513 
3514 /* Returns true if the controller is device-only. */
3515 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg)
3516 {
3517 	unsigned op_mode = dwc2_op_mode(hsotg);
3518 
3519 	return (op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
3520 		(op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE);
3521 }
3522 
3523 MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
3524 MODULE_AUTHOR("Synopsys, Inc.");
3525 MODULE_LICENSE("Dual BSD/GPL");
3526