1 /* 2 * drivers/usb/core/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/string.h> 27 #include <linux/bitops.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> /* for in_interrupt() */ 30 #include <linux/kmod.h> 31 #include <linux/init.h> 32 #include <linux/spinlock.h> 33 #include <linux/errno.h> 34 #include <linux/usb.h> 35 #include <linux/mutex.h> 36 #include <linux/workqueue.h> 37 #include <linux/debugfs.h> 38 39 #include <asm/io.h> 40 #include <linux/scatterlist.h> 41 #include <linux/mm.h> 42 #include <linux/dma-mapping.h> 43 44 #include "hcd.h" 45 #include "usb.h" 46 47 48 const char *usbcore_name = "usbcore"; 49 50 static int nousb; /* Disable USB when built into kernel image */ 51 52 /* Workqueue for autosuspend and for remote wakeup of root hubs */ 53 struct workqueue_struct *ksuspend_usb_wq; 54 55 #ifdef CONFIG_USB_SUSPEND 56 static int usb_autosuspend_delay = 2; /* Default delay value, 57 * in seconds */ 58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 60 61 #else 62 #define usb_autosuspend_delay 0 63 #endif 64 65 66 /** 67 * usb_ifnum_to_if - get the interface object with a given interface number 68 * @dev: the device whose current configuration is considered 69 * @ifnum: the desired interface 70 * 71 * This walks the device descriptor for the currently active configuration 72 * and returns a pointer to the interface with that particular interface 73 * number, or null. 74 * 75 * Note that configuration descriptors are not required to assign interface 76 * numbers sequentially, so that it would be incorrect to assume that 77 * the first interface in that descriptor corresponds to interface zero. 78 * This routine helps device drivers avoid such mistakes. 79 * However, you should make sure that you do the right thing with any 80 * alternate settings available for this interfaces. 81 * 82 * Don't call this function unless you are bound to one of the interfaces 83 * on this device or you have locked the device! 84 */ 85 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 86 unsigned ifnum) 87 { 88 struct usb_host_config *config = dev->actconfig; 89 int i; 90 91 if (!config) 92 return NULL; 93 for (i = 0; i < config->desc.bNumInterfaces; i++) 94 if (config->interface[i]->altsetting[0] 95 .desc.bInterfaceNumber == ifnum) 96 return config->interface[i]; 97 98 return NULL; 99 } 100 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 101 102 /** 103 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 104 * @intf: the interface containing the altsetting in question 105 * @altnum: the desired alternate setting number 106 * 107 * This searches the altsetting array of the specified interface for 108 * an entry with the correct bAlternateSetting value and returns a pointer 109 * to that entry, or null. 110 * 111 * Note that altsettings need not be stored sequentially by number, so 112 * it would be incorrect to assume that the first altsetting entry in 113 * the array corresponds to altsetting zero. This routine helps device 114 * drivers avoid such mistakes. 115 * 116 * Don't call this function unless you are bound to the intf interface 117 * or you have locked the device! 118 */ 119 struct usb_host_interface *usb_altnum_to_altsetting( 120 const struct usb_interface *intf, 121 unsigned int altnum) 122 { 123 int i; 124 125 for (i = 0; i < intf->num_altsetting; i++) { 126 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 127 return &intf->altsetting[i]; 128 } 129 return NULL; 130 } 131 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 132 133 struct find_interface_arg { 134 int minor; 135 struct usb_interface *interface; 136 }; 137 138 static int __find_interface(struct device *dev, void *data) 139 { 140 struct find_interface_arg *arg = data; 141 struct usb_interface *intf; 142 143 if (!is_usb_interface(dev)) 144 return 0; 145 146 intf = to_usb_interface(dev); 147 if (intf->minor != -1 && intf->minor == arg->minor) { 148 arg->interface = intf; 149 return 1; 150 } 151 return 0; 152 } 153 154 /** 155 * usb_find_interface - find usb_interface pointer for driver and device 156 * @drv: the driver whose current configuration is considered 157 * @minor: the minor number of the desired device 158 * 159 * This walks the driver device list and returns a pointer to the interface 160 * with the matching minor. Note, this only works for devices that share the 161 * USB major number. 162 */ 163 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 164 { 165 struct find_interface_arg argb; 166 int retval; 167 168 argb.minor = minor; 169 argb.interface = NULL; 170 /* eat the error, it will be in argb.interface */ 171 retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb, 172 __find_interface); 173 return argb.interface; 174 } 175 EXPORT_SYMBOL_GPL(usb_find_interface); 176 177 /** 178 * usb_release_dev - free a usb device structure when all users of it are finished. 179 * @dev: device that's been disconnected 180 * 181 * Will be called only by the device core when all users of this usb device are 182 * done. 183 */ 184 static void usb_release_dev(struct device *dev) 185 { 186 struct usb_device *udev; 187 struct usb_hcd *hcd; 188 189 udev = to_usb_device(dev); 190 hcd = bus_to_hcd(udev->bus); 191 192 usb_destroy_configuration(udev); 193 /* Root hubs aren't real devices, so don't free HCD resources */ 194 if (hcd->driver->free_dev && udev->parent) 195 hcd->driver->free_dev(hcd, udev); 196 usb_put_hcd(hcd); 197 kfree(udev->product); 198 kfree(udev->manufacturer); 199 kfree(udev->serial); 200 kfree(udev); 201 } 202 203 #ifdef CONFIG_HOTPLUG 204 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 205 { 206 struct usb_device *usb_dev; 207 208 usb_dev = to_usb_device(dev); 209 210 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 211 return -ENOMEM; 212 213 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 214 return -ENOMEM; 215 216 return 0; 217 } 218 219 #else 220 221 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 222 { 223 return -ENODEV; 224 } 225 #endif /* CONFIG_HOTPLUG */ 226 227 #ifdef CONFIG_PM 228 229 static int ksuspend_usb_init(void) 230 { 231 /* This workqueue is supposed to be both freezable and 232 * singlethreaded. Its job doesn't justify running on more 233 * than one CPU. 234 */ 235 ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd"); 236 if (!ksuspend_usb_wq) 237 return -ENOMEM; 238 return 0; 239 } 240 241 static void ksuspend_usb_cleanup(void) 242 { 243 destroy_workqueue(ksuspend_usb_wq); 244 } 245 246 /* USB device Power-Management thunks. 247 * There's no need to distinguish here between quiescing a USB device 248 * and powering it down; the generic_suspend() routine takes care of 249 * it by skipping the usb_port_suspend() call for a quiesce. And for 250 * USB interfaces there's no difference at all. 251 */ 252 253 static int usb_dev_prepare(struct device *dev) 254 { 255 return 0; /* Implement eventually? */ 256 } 257 258 static void usb_dev_complete(struct device *dev) 259 { 260 /* Currently used only for rebinding interfaces */ 261 usb_resume(dev, PMSG_RESUME); /* Message event is meaningless */ 262 } 263 264 static int usb_dev_suspend(struct device *dev) 265 { 266 return usb_suspend(dev, PMSG_SUSPEND); 267 } 268 269 static int usb_dev_resume(struct device *dev) 270 { 271 return usb_resume(dev, PMSG_RESUME); 272 } 273 274 static int usb_dev_freeze(struct device *dev) 275 { 276 return usb_suspend(dev, PMSG_FREEZE); 277 } 278 279 static int usb_dev_thaw(struct device *dev) 280 { 281 return usb_resume(dev, PMSG_THAW); 282 } 283 284 static int usb_dev_poweroff(struct device *dev) 285 { 286 return usb_suspend(dev, PMSG_HIBERNATE); 287 } 288 289 static int usb_dev_restore(struct device *dev) 290 { 291 return usb_resume(dev, PMSG_RESTORE); 292 } 293 294 static struct dev_pm_ops usb_device_pm_ops = { 295 .prepare = usb_dev_prepare, 296 .complete = usb_dev_complete, 297 .suspend = usb_dev_suspend, 298 .resume = usb_dev_resume, 299 .freeze = usb_dev_freeze, 300 .thaw = usb_dev_thaw, 301 .poweroff = usb_dev_poweroff, 302 .restore = usb_dev_restore, 303 }; 304 305 #else 306 307 #define ksuspend_usb_init() 0 308 #define ksuspend_usb_cleanup() do {} while (0) 309 #define usb_device_pm_ops (*(struct dev_pm_ops *)0) 310 311 #endif /* CONFIG_PM */ 312 313 314 static char *usb_devnode(struct device *dev, mode_t *mode) 315 { 316 struct usb_device *usb_dev; 317 318 usb_dev = to_usb_device(dev); 319 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 320 usb_dev->bus->busnum, usb_dev->devnum); 321 } 322 323 struct device_type usb_device_type = { 324 .name = "usb_device", 325 .release = usb_release_dev, 326 .uevent = usb_dev_uevent, 327 .devnode = usb_devnode, 328 .pm = &usb_device_pm_ops, 329 }; 330 331 332 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 333 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 334 { 335 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self); 336 return hcd->wireless; 337 } 338 339 340 /** 341 * usb_alloc_dev - usb device constructor (usbcore-internal) 342 * @parent: hub to which device is connected; null to allocate a root hub 343 * @bus: bus used to access the device 344 * @port1: one-based index of port; ignored for root hubs 345 * Context: !in_interrupt() 346 * 347 * Only hub drivers (including virtual root hub drivers for host 348 * controllers) should ever call this. 349 * 350 * This call may not be used in a non-sleeping context. 351 */ 352 struct usb_device *usb_alloc_dev(struct usb_device *parent, 353 struct usb_bus *bus, unsigned port1) 354 { 355 struct usb_device *dev; 356 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self); 357 unsigned root_hub = 0; 358 359 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 360 if (!dev) 361 return NULL; 362 363 if (!usb_get_hcd(bus_to_hcd(bus))) { 364 kfree(dev); 365 return NULL; 366 } 367 /* Root hubs aren't true devices, so don't allocate HCD resources */ 368 if (usb_hcd->driver->alloc_dev && parent && 369 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 370 usb_put_hcd(bus_to_hcd(bus)); 371 kfree(dev); 372 return NULL; 373 } 374 375 device_initialize(&dev->dev); 376 dev->dev.bus = &usb_bus_type; 377 dev->dev.type = &usb_device_type; 378 dev->dev.groups = usb_device_groups; 379 dev->dev.dma_mask = bus->controller->dma_mask; 380 set_dev_node(&dev->dev, dev_to_node(bus->controller)); 381 dev->state = USB_STATE_ATTACHED; 382 atomic_set(&dev->urbnum, 0); 383 384 INIT_LIST_HEAD(&dev->ep0.urb_list); 385 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 386 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 387 /* ep0 maxpacket comes later, from device descriptor */ 388 usb_enable_endpoint(dev, &dev->ep0, false); 389 dev->can_submit = 1; 390 391 /* Save readable and stable topology id, distinguishing devices 392 * by location for diagnostics, tools, driver model, etc. The 393 * string is a path along hub ports, from the root. Each device's 394 * dev->devpath will be stable until USB is re-cabled, and hubs 395 * are often labeled with these port numbers. The name isn't 396 * as stable: bus->busnum changes easily from modprobe order, 397 * cardbus or pci hotplugging, and so on. 398 */ 399 if (unlikely(!parent)) { 400 dev->devpath[0] = '0'; 401 dev->route = 0; 402 403 dev->dev.parent = bus->controller; 404 dev_set_name(&dev->dev, "usb%d", bus->busnum); 405 root_hub = 1; 406 } else { 407 /* match any labeling on the hubs; it's one-based */ 408 if (parent->devpath[0] == '0') { 409 snprintf(dev->devpath, sizeof dev->devpath, 410 "%d", port1); 411 /* Root ports are not counted in route string */ 412 dev->route = 0; 413 } else { 414 snprintf(dev->devpath, sizeof dev->devpath, 415 "%s.%d", parent->devpath, port1); 416 dev->route = parent->route + 417 (port1 << ((parent->level - 1)*4)); 418 } 419 420 dev->dev.parent = &parent->dev; 421 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 422 423 /* hub driver sets up TT records */ 424 } 425 426 dev->portnum = port1; 427 dev->bus = bus; 428 dev->parent = parent; 429 INIT_LIST_HEAD(&dev->filelist); 430 431 #ifdef CONFIG_PM 432 mutex_init(&dev->pm_mutex); 433 INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work); 434 INIT_WORK(&dev->autoresume, usb_autoresume_work); 435 dev->autosuspend_delay = usb_autosuspend_delay * HZ; 436 dev->connect_time = jiffies; 437 dev->active_duration = -jiffies; 438 #endif 439 if (root_hub) /* Root hub always ok [and always wired] */ 440 dev->authorized = 1; 441 else { 442 dev->authorized = usb_hcd->authorized_default; 443 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0; 444 } 445 return dev; 446 } 447 448 /** 449 * usb_get_dev - increments the reference count of the usb device structure 450 * @dev: the device being referenced 451 * 452 * Each live reference to a device should be refcounted. 453 * 454 * Drivers for USB interfaces should normally record such references in 455 * their probe() methods, when they bind to an interface, and release 456 * them by calling usb_put_dev(), in their disconnect() methods. 457 * 458 * A pointer to the device with the incremented reference counter is returned. 459 */ 460 struct usb_device *usb_get_dev(struct usb_device *dev) 461 { 462 if (dev) 463 get_device(&dev->dev); 464 return dev; 465 } 466 EXPORT_SYMBOL_GPL(usb_get_dev); 467 468 /** 469 * usb_put_dev - release a use of the usb device structure 470 * @dev: device that's been disconnected 471 * 472 * Must be called when a user of a device is finished with it. When the last 473 * user of the device calls this function, the memory of the device is freed. 474 */ 475 void usb_put_dev(struct usb_device *dev) 476 { 477 if (dev) 478 put_device(&dev->dev); 479 } 480 EXPORT_SYMBOL_GPL(usb_put_dev); 481 482 /** 483 * usb_get_intf - increments the reference count of the usb interface structure 484 * @intf: the interface being referenced 485 * 486 * Each live reference to a interface must be refcounted. 487 * 488 * Drivers for USB interfaces should normally record such references in 489 * their probe() methods, when they bind to an interface, and release 490 * them by calling usb_put_intf(), in their disconnect() methods. 491 * 492 * A pointer to the interface with the incremented reference counter is 493 * returned. 494 */ 495 struct usb_interface *usb_get_intf(struct usb_interface *intf) 496 { 497 if (intf) 498 get_device(&intf->dev); 499 return intf; 500 } 501 EXPORT_SYMBOL_GPL(usb_get_intf); 502 503 /** 504 * usb_put_intf - release a use of the usb interface structure 505 * @intf: interface that's been decremented 506 * 507 * Must be called when a user of an interface is finished with it. When the 508 * last user of the interface calls this function, the memory of the interface 509 * is freed. 510 */ 511 void usb_put_intf(struct usb_interface *intf) 512 { 513 if (intf) 514 put_device(&intf->dev); 515 } 516 EXPORT_SYMBOL_GPL(usb_put_intf); 517 518 /* USB device locking 519 * 520 * USB devices and interfaces are locked using the semaphore in their 521 * embedded struct device. The hub driver guarantees that whenever a 522 * device is connected or disconnected, drivers are called with the 523 * USB device locked as well as their particular interface. 524 * 525 * Complications arise when several devices are to be locked at the same 526 * time. Only hub-aware drivers that are part of usbcore ever have to 527 * do this; nobody else needs to worry about it. The rule for locking 528 * is simple: 529 * 530 * When locking both a device and its parent, always lock the 531 * the parent first. 532 */ 533 534 /** 535 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 536 * @udev: device that's being locked 537 * @iface: interface bound to the driver making the request (optional) 538 * 539 * Attempts to acquire the device lock, but fails if the device is 540 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 541 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 542 * lock, the routine polls repeatedly. This is to prevent deadlock with 543 * disconnect; in some drivers (such as usb-storage) the disconnect() 544 * or suspend() method will block waiting for a device reset to complete. 545 * 546 * Returns a negative error code for failure, otherwise 0. 547 */ 548 int usb_lock_device_for_reset(struct usb_device *udev, 549 const struct usb_interface *iface) 550 { 551 unsigned long jiffies_expire = jiffies + HZ; 552 553 if (udev->state == USB_STATE_NOTATTACHED) 554 return -ENODEV; 555 if (udev->state == USB_STATE_SUSPENDED) 556 return -EHOSTUNREACH; 557 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 558 iface->condition == USB_INTERFACE_UNBOUND)) 559 return -EINTR; 560 561 while (usb_trylock_device(udev) != 0) { 562 563 /* If we can't acquire the lock after waiting one second, 564 * we're probably deadlocked */ 565 if (time_after(jiffies, jiffies_expire)) 566 return -EBUSY; 567 568 msleep(15); 569 if (udev->state == USB_STATE_NOTATTACHED) 570 return -ENODEV; 571 if (udev->state == USB_STATE_SUSPENDED) 572 return -EHOSTUNREACH; 573 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 574 iface->condition == USB_INTERFACE_UNBOUND)) 575 return -EINTR; 576 } 577 return 0; 578 } 579 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 580 581 static struct usb_device *match_device(struct usb_device *dev, 582 u16 vendor_id, u16 product_id) 583 { 584 struct usb_device *ret_dev = NULL; 585 int child; 586 587 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n", 588 le16_to_cpu(dev->descriptor.idVendor), 589 le16_to_cpu(dev->descriptor.idProduct)); 590 591 /* see if this device matches */ 592 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) && 593 (product_id == le16_to_cpu(dev->descriptor.idProduct))) { 594 dev_dbg(&dev->dev, "matched this device!\n"); 595 ret_dev = usb_get_dev(dev); 596 goto exit; 597 } 598 599 /* look through all of the children of this device */ 600 for (child = 0; child < dev->maxchild; ++child) { 601 if (dev->children[child]) { 602 usb_lock_device(dev->children[child]); 603 ret_dev = match_device(dev->children[child], 604 vendor_id, product_id); 605 usb_unlock_device(dev->children[child]); 606 if (ret_dev) 607 goto exit; 608 } 609 } 610 exit: 611 return ret_dev; 612 } 613 614 /** 615 * usb_find_device - find a specific usb device in the system 616 * @vendor_id: the vendor id of the device to find 617 * @product_id: the product id of the device to find 618 * 619 * Returns a pointer to a struct usb_device if such a specified usb 620 * device is present in the system currently. The usage count of the 621 * device will be incremented if a device is found. Make sure to call 622 * usb_put_dev() when the caller is finished with the device. 623 * 624 * If a device with the specified vendor and product id is not found, 625 * NULL is returned. 626 */ 627 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id) 628 { 629 struct list_head *buslist; 630 struct usb_bus *bus; 631 struct usb_device *dev = NULL; 632 633 mutex_lock(&usb_bus_list_lock); 634 for (buslist = usb_bus_list.next; 635 buslist != &usb_bus_list; 636 buslist = buslist->next) { 637 bus = container_of(buslist, struct usb_bus, bus_list); 638 if (!bus->root_hub) 639 continue; 640 usb_lock_device(bus->root_hub); 641 dev = match_device(bus->root_hub, vendor_id, product_id); 642 usb_unlock_device(bus->root_hub); 643 if (dev) 644 goto exit; 645 } 646 exit: 647 mutex_unlock(&usb_bus_list_lock); 648 return dev; 649 } 650 651 /** 652 * usb_get_current_frame_number - return current bus frame number 653 * @dev: the device whose bus is being queried 654 * 655 * Returns the current frame number for the USB host controller 656 * used with the given USB device. This can be used when scheduling 657 * isochronous requests. 658 * 659 * Note that different kinds of host controller have different 660 * "scheduling horizons". While one type might support scheduling only 661 * 32 frames into the future, others could support scheduling up to 662 * 1024 frames into the future. 663 */ 664 int usb_get_current_frame_number(struct usb_device *dev) 665 { 666 return usb_hcd_get_frame_number(dev); 667 } 668 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 669 670 /*-------------------------------------------------------------------*/ 671 /* 672 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 673 * extra field of the interface and endpoint descriptor structs. 674 */ 675 676 int __usb_get_extra_descriptor(char *buffer, unsigned size, 677 unsigned char type, void **ptr) 678 { 679 struct usb_descriptor_header *header; 680 681 while (size >= sizeof(struct usb_descriptor_header)) { 682 header = (struct usb_descriptor_header *)buffer; 683 684 if (header->bLength < 2) { 685 printk(KERN_ERR 686 "%s: bogus descriptor, type %d length %d\n", 687 usbcore_name, 688 header->bDescriptorType, 689 header->bLength); 690 return -1; 691 } 692 693 if (header->bDescriptorType == type) { 694 *ptr = header; 695 return 0; 696 } 697 698 buffer += header->bLength; 699 size -= header->bLength; 700 } 701 return -1; 702 } 703 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 704 705 /** 706 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 707 * @dev: device the buffer will be used with 708 * @size: requested buffer size 709 * @mem_flags: affect whether allocation may block 710 * @dma: used to return DMA address of buffer 711 * 712 * Return value is either null (indicating no buffer could be allocated), or 713 * the cpu-space pointer to a buffer that may be used to perform DMA to the 714 * specified device. Such cpu-space buffers are returned along with the DMA 715 * address (through the pointer provided). 716 * 717 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 718 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 719 * hardware during URB completion/resubmit. The implementation varies between 720 * platforms, depending on details of how DMA will work to this device. 721 * Using these buffers also eliminates cacheline sharing problems on 722 * architectures where CPU caches are not DMA-coherent. On systems without 723 * bus-snooping caches, these buffers are uncached. 724 * 725 * When the buffer is no longer used, free it with usb_buffer_free(). 726 */ 727 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags, 728 dma_addr_t *dma) 729 { 730 if (!dev || !dev->bus) 731 return NULL; 732 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 733 } 734 EXPORT_SYMBOL_GPL(usb_buffer_alloc); 735 736 /** 737 * usb_buffer_free - free memory allocated with usb_buffer_alloc() 738 * @dev: device the buffer was used with 739 * @size: requested buffer size 740 * @addr: CPU address of buffer 741 * @dma: DMA address of buffer 742 * 743 * This reclaims an I/O buffer, letting it be reused. The memory must have 744 * been allocated using usb_buffer_alloc(), and the parameters must match 745 * those provided in that allocation request. 746 */ 747 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr, 748 dma_addr_t dma) 749 { 750 if (!dev || !dev->bus) 751 return; 752 if (!addr) 753 return; 754 hcd_buffer_free(dev->bus, size, addr, dma); 755 } 756 EXPORT_SYMBOL_GPL(usb_buffer_free); 757 758 /** 759 * usb_buffer_map - create DMA mapping(s) for an urb 760 * @urb: urb whose transfer_buffer/setup_packet will be mapped 761 * 762 * Return value is either null (indicating no buffer could be mapped), or 763 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are 764 * added to urb->transfer_flags if the operation succeeds. If the device 765 * is connected to this system through a non-DMA controller, this operation 766 * always succeeds. 767 * 768 * This call would normally be used for an urb which is reused, perhaps 769 * as the target of a large periodic transfer, with usb_buffer_dmasync() 770 * calls to synchronize memory and dma state. 771 * 772 * Reverse the effect of this call with usb_buffer_unmap(). 773 */ 774 #if 0 775 struct urb *usb_buffer_map(struct urb *urb) 776 { 777 struct usb_bus *bus; 778 struct device *controller; 779 780 if (!urb 781 || !urb->dev 782 || !(bus = urb->dev->bus) 783 || !(controller = bus->controller)) 784 return NULL; 785 786 if (controller->dma_mask) { 787 urb->transfer_dma = dma_map_single(controller, 788 urb->transfer_buffer, urb->transfer_buffer_length, 789 usb_pipein(urb->pipe) 790 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 791 if (usb_pipecontrol(urb->pipe)) 792 urb->setup_dma = dma_map_single(controller, 793 urb->setup_packet, 794 sizeof(struct usb_ctrlrequest), 795 DMA_TO_DEVICE); 796 /* FIXME generic api broken like pci, can't report errors */ 797 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 798 } else 799 urb->transfer_dma = ~0; 800 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP 801 | URB_NO_SETUP_DMA_MAP); 802 return urb; 803 } 804 EXPORT_SYMBOL_GPL(usb_buffer_map); 805 #endif /* 0 */ 806 807 /* XXX DISABLED, no users currently. If you wish to re-enable this 808 * XXX please determine whether the sync is to transfer ownership of 809 * XXX the buffer from device to cpu or vice verse, and thusly use the 810 * XXX appropriate _for_{cpu,device}() method. -DaveM 811 */ 812 #if 0 813 814 /** 815 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 816 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 817 */ 818 void usb_buffer_dmasync(struct urb *urb) 819 { 820 struct usb_bus *bus; 821 struct device *controller; 822 823 if (!urb 824 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 825 || !urb->dev 826 || !(bus = urb->dev->bus) 827 || !(controller = bus->controller)) 828 return; 829 830 if (controller->dma_mask) { 831 dma_sync_single_for_cpu(controller, 832 urb->transfer_dma, urb->transfer_buffer_length, 833 usb_pipein(urb->pipe) 834 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 835 if (usb_pipecontrol(urb->pipe)) 836 dma_sync_single_for_cpu(controller, 837 urb->setup_dma, 838 sizeof(struct usb_ctrlrequest), 839 DMA_TO_DEVICE); 840 } 841 } 842 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 843 #endif 844 845 /** 846 * usb_buffer_unmap - free DMA mapping(s) for an urb 847 * @urb: urb whose transfer_buffer will be unmapped 848 * 849 * Reverses the effect of usb_buffer_map(). 850 */ 851 #if 0 852 void usb_buffer_unmap(struct urb *urb) 853 { 854 struct usb_bus *bus; 855 struct device *controller; 856 857 if (!urb 858 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 859 || !urb->dev 860 || !(bus = urb->dev->bus) 861 || !(controller = bus->controller)) 862 return; 863 864 if (controller->dma_mask) { 865 dma_unmap_single(controller, 866 urb->transfer_dma, urb->transfer_buffer_length, 867 usb_pipein(urb->pipe) 868 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 869 if (usb_pipecontrol(urb->pipe)) 870 dma_unmap_single(controller, 871 urb->setup_dma, 872 sizeof(struct usb_ctrlrequest), 873 DMA_TO_DEVICE); 874 } 875 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP 876 | URB_NO_SETUP_DMA_MAP); 877 } 878 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 879 #endif /* 0 */ 880 881 /** 882 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 883 * @dev: device to which the scatterlist will be mapped 884 * @is_in: mapping transfer direction 885 * @sg: the scatterlist to map 886 * @nents: the number of entries in the scatterlist 887 * 888 * Return value is either < 0 (indicating no buffers could be mapped), or 889 * the number of DMA mapping array entries in the scatterlist. 890 * 891 * The caller is responsible for placing the resulting DMA addresses from 892 * the scatterlist into URB transfer buffer pointers, and for setting the 893 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 894 * 895 * Top I/O rates come from queuing URBs, instead of waiting for each one 896 * to complete before starting the next I/O. This is particularly easy 897 * to do with scatterlists. Just allocate and submit one URB for each DMA 898 * mapping entry returned, stopping on the first error or when all succeed. 899 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 900 * 901 * This call would normally be used when translating scatterlist requests, 902 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 903 * may be able to coalesce mappings for improved I/O efficiency. 904 * 905 * Reverse the effect of this call with usb_buffer_unmap_sg(). 906 */ 907 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 908 struct scatterlist *sg, int nents) 909 { 910 struct usb_bus *bus; 911 struct device *controller; 912 913 if (!dev 914 || !(bus = dev->bus) 915 || !(controller = bus->controller) 916 || !controller->dma_mask) 917 return -1; 918 919 /* FIXME generic api broken like pci, can't report errors */ 920 return dma_map_sg(controller, sg, nents, 921 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 922 } 923 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 924 925 /* XXX DISABLED, no users currently. If you wish to re-enable this 926 * XXX please determine whether the sync is to transfer ownership of 927 * XXX the buffer from device to cpu or vice verse, and thusly use the 928 * XXX appropriate _for_{cpu,device}() method. -DaveM 929 */ 930 #if 0 931 932 /** 933 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 934 * @dev: device to which the scatterlist will be mapped 935 * @is_in: mapping transfer direction 936 * @sg: the scatterlist to synchronize 937 * @n_hw_ents: the positive return value from usb_buffer_map_sg 938 * 939 * Use this when you are re-using a scatterlist's data buffers for 940 * another USB request. 941 */ 942 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 943 struct scatterlist *sg, int n_hw_ents) 944 { 945 struct usb_bus *bus; 946 struct device *controller; 947 948 if (!dev 949 || !(bus = dev->bus) 950 || !(controller = bus->controller) 951 || !controller->dma_mask) 952 return; 953 954 dma_sync_sg_for_cpu(controller, sg, n_hw_ents, 955 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 956 } 957 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 958 #endif 959 960 /** 961 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 962 * @dev: device to which the scatterlist will be mapped 963 * @is_in: mapping transfer direction 964 * @sg: the scatterlist to unmap 965 * @n_hw_ents: the positive return value from usb_buffer_map_sg 966 * 967 * Reverses the effect of usb_buffer_map_sg(). 968 */ 969 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 970 struct scatterlist *sg, int n_hw_ents) 971 { 972 struct usb_bus *bus; 973 struct device *controller; 974 975 if (!dev 976 || !(bus = dev->bus) 977 || !(controller = bus->controller) 978 || !controller->dma_mask) 979 return; 980 981 dma_unmap_sg(controller, sg, n_hw_ents, 982 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 983 } 984 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 985 986 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */ 987 #ifdef MODULE 988 module_param(nousb, bool, 0444); 989 #else 990 core_param(nousb, nousb, bool, 0444); 991 #endif 992 993 /* 994 * for external read access to <nousb> 995 */ 996 int usb_disabled(void) 997 { 998 return nousb; 999 } 1000 EXPORT_SYMBOL_GPL(usb_disabled); 1001 1002 /* 1003 * Notifications of device and interface registration 1004 */ 1005 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1006 void *data) 1007 { 1008 struct device *dev = data; 1009 1010 switch (action) { 1011 case BUS_NOTIFY_ADD_DEVICE: 1012 if (dev->type == &usb_device_type) 1013 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1014 else if (dev->type == &usb_if_device_type) 1015 (void) usb_create_sysfs_intf_files( 1016 to_usb_interface(dev)); 1017 break; 1018 1019 case BUS_NOTIFY_DEL_DEVICE: 1020 if (dev->type == &usb_device_type) 1021 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1022 else if (dev->type == &usb_if_device_type) 1023 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1024 break; 1025 } 1026 return 0; 1027 } 1028 1029 static struct notifier_block usb_bus_nb = { 1030 .notifier_call = usb_bus_notify, 1031 }; 1032 1033 struct dentry *usb_debug_root; 1034 EXPORT_SYMBOL_GPL(usb_debug_root); 1035 1036 struct dentry *usb_debug_devices; 1037 1038 static int usb_debugfs_init(void) 1039 { 1040 usb_debug_root = debugfs_create_dir("usb", NULL); 1041 if (!usb_debug_root) 1042 return -ENOENT; 1043 1044 usb_debug_devices = debugfs_create_file("devices", 0444, 1045 usb_debug_root, NULL, 1046 &usbfs_devices_fops); 1047 if (!usb_debug_devices) { 1048 debugfs_remove(usb_debug_root); 1049 usb_debug_root = NULL; 1050 return -ENOENT; 1051 } 1052 1053 return 0; 1054 } 1055 1056 static void usb_debugfs_cleanup(void) 1057 { 1058 debugfs_remove(usb_debug_devices); 1059 debugfs_remove(usb_debug_root); 1060 } 1061 1062 /* 1063 * Init 1064 */ 1065 static int __init usb_init(void) 1066 { 1067 int retval; 1068 if (nousb) { 1069 pr_info("%s: USB support disabled\n", usbcore_name); 1070 return 0; 1071 } 1072 1073 retval = usb_debugfs_init(); 1074 if (retval) 1075 goto out; 1076 1077 retval = ksuspend_usb_init(); 1078 if (retval) 1079 goto out; 1080 retval = bus_register(&usb_bus_type); 1081 if (retval) 1082 goto bus_register_failed; 1083 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1084 if (retval) 1085 goto bus_notifier_failed; 1086 retval = usb_major_init(); 1087 if (retval) 1088 goto major_init_failed; 1089 retval = usb_register(&usbfs_driver); 1090 if (retval) 1091 goto driver_register_failed; 1092 retval = usb_devio_init(); 1093 if (retval) 1094 goto usb_devio_init_failed; 1095 retval = usbfs_init(); 1096 if (retval) 1097 goto fs_init_failed; 1098 retval = usb_hub_init(); 1099 if (retval) 1100 goto hub_init_failed; 1101 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1102 if (!retval) 1103 goto out; 1104 1105 usb_hub_cleanup(); 1106 hub_init_failed: 1107 usbfs_cleanup(); 1108 fs_init_failed: 1109 usb_devio_cleanup(); 1110 usb_devio_init_failed: 1111 usb_deregister(&usbfs_driver); 1112 driver_register_failed: 1113 usb_major_cleanup(); 1114 major_init_failed: 1115 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1116 bus_notifier_failed: 1117 bus_unregister(&usb_bus_type); 1118 bus_register_failed: 1119 ksuspend_usb_cleanup(); 1120 out: 1121 return retval; 1122 } 1123 1124 /* 1125 * Cleanup 1126 */ 1127 static void __exit usb_exit(void) 1128 { 1129 /* This will matter if shutdown/reboot does exitcalls. */ 1130 if (nousb) 1131 return; 1132 1133 usb_deregister_device_driver(&usb_generic_driver); 1134 usb_major_cleanup(); 1135 usbfs_cleanup(); 1136 usb_deregister(&usbfs_driver); 1137 usb_devio_cleanup(); 1138 usb_hub_cleanup(); 1139 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1140 bus_unregister(&usb_bus_type); 1141 ksuspend_usb_cleanup(); 1142 usb_debugfs_cleanup(); 1143 } 1144 1145 subsys_initcall(usb_init); 1146 module_exit(usb_exit); 1147 MODULE_LICENSE("GPL"); 1148