xref: /openbmc/linux/drivers/usb/core/usb.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/usb/core/usb.c
4  *
5  * (C) Copyright Linus Torvalds 1999
6  * (C) Copyright Johannes Erdfelt 1999-2001
7  * (C) Copyright Andreas Gal 1999
8  * (C) Copyright Gregory P. Smith 1999
9  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10  * (C) Copyright Randy Dunlap 2000
11  * (C) Copyright David Brownell 2000-2004
12  * (C) Copyright Yggdrasil Computing, Inc. 2000
13  *     (usb_device_id matching changes by Adam J. Richter)
14  * (C) Copyright Greg Kroah-Hartman 2002-2003
15  *
16  * Released under the GPLv2 only.
17  *
18  * NOTE! This is not actually a driver at all, rather this is
19  * just a collection of helper routines that implement the
20  * generic USB things that the real drivers can use..
21  *
22  * Think of this as a "USB library" rather than anything else,
23  * with no callbacks.  Callbacks are evil.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/string.h>
29 #include <linux/bitops.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>  /* for in_interrupt() */
32 #include <linux/kmod.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/errno.h>
36 #include <linux/usb.h>
37 #include <linux/usb/hcd.h>
38 #include <linux/mutex.h>
39 #include <linux/workqueue.h>
40 #include <linux/debugfs.h>
41 #include <linux/usb/of.h>
42 
43 #include <asm/io.h>
44 #include <linux/scatterlist.h>
45 #include <linux/mm.h>
46 #include <linux/dma-mapping.h>
47 
48 #include "hub.h"
49 
50 const char *usbcore_name = "usbcore";
51 
52 static bool nousb;	/* Disable USB when built into kernel image */
53 
54 module_param(nousb, bool, 0444);
55 
56 /*
57  * for external read access to <nousb>
58  */
59 int usb_disabled(void)
60 {
61 	return nousb;
62 }
63 EXPORT_SYMBOL_GPL(usb_disabled);
64 
65 #ifdef	CONFIG_PM
66 /* Default delay value, in seconds */
67 static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
68 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
69 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
70 
71 #else
72 #define usb_autosuspend_delay		0
73 #endif
74 
75 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
76 		struct usb_endpoint_descriptor **bulk_in,
77 		struct usb_endpoint_descriptor **bulk_out,
78 		struct usb_endpoint_descriptor **int_in,
79 		struct usb_endpoint_descriptor **int_out)
80 {
81 	switch (usb_endpoint_type(epd)) {
82 	case USB_ENDPOINT_XFER_BULK:
83 		if (usb_endpoint_dir_in(epd)) {
84 			if (bulk_in && !*bulk_in) {
85 				*bulk_in = epd;
86 				break;
87 			}
88 		} else {
89 			if (bulk_out && !*bulk_out) {
90 				*bulk_out = epd;
91 				break;
92 			}
93 		}
94 
95 		return false;
96 	case USB_ENDPOINT_XFER_INT:
97 		if (usb_endpoint_dir_in(epd)) {
98 			if (int_in && !*int_in) {
99 				*int_in = epd;
100 				break;
101 			}
102 		} else {
103 			if (int_out && !*int_out) {
104 				*int_out = epd;
105 				break;
106 			}
107 		}
108 
109 		return false;
110 	default:
111 		return false;
112 	}
113 
114 	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
115 			(!int_in || *int_in) && (!int_out || *int_out);
116 }
117 
118 /**
119  * usb_find_common_endpoints() -- look up common endpoint descriptors
120  * @alt:	alternate setting to search
121  * @bulk_in:	pointer to descriptor pointer, or NULL
122  * @bulk_out:	pointer to descriptor pointer, or NULL
123  * @int_in:	pointer to descriptor pointer, or NULL
124  * @int_out:	pointer to descriptor pointer, or NULL
125  *
126  * Search the alternate setting's endpoint descriptors for the first bulk-in,
127  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
128  * provided pointers (unless they are NULL).
129  *
130  * If a requested endpoint is not found, the corresponding pointer is set to
131  * NULL.
132  *
133  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
134  */
135 int usb_find_common_endpoints(struct usb_host_interface *alt,
136 		struct usb_endpoint_descriptor **bulk_in,
137 		struct usb_endpoint_descriptor **bulk_out,
138 		struct usb_endpoint_descriptor **int_in,
139 		struct usb_endpoint_descriptor **int_out)
140 {
141 	struct usb_endpoint_descriptor *epd;
142 	int i;
143 
144 	if (bulk_in)
145 		*bulk_in = NULL;
146 	if (bulk_out)
147 		*bulk_out = NULL;
148 	if (int_in)
149 		*int_in = NULL;
150 	if (int_out)
151 		*int_out = NULL;
152 
153 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
154 		epd = &alt->endpoint[i].desc;
155 
156 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
157 			return 0;
158 	}
159 
160 	return -ENXIO;
161 }
162 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
163 
164 /**
165  * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
166  * @alt:	alternate setting to search
167  * @bulk_in:	pointer to descriptor pointer, or NULL
168  * @bulk_out:	pointer to descriptor pointer, or NULL
169  * @int_in:	pointer to descriptor pointer, or NULL
170  * @int_out:	pointer to descriptor pointer, or NULL
171  *
172  * Search the alternate setting's endpoint descriptors for the last bulk-in,
173  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
174  * provided pointers (unless they are NULL).
175  *
176  * If a requested endpoint is not found, the corresponding pointer is set to
177  * NULL.
178  *
179  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
180  */
181 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
182 		struct usb_endpoint_descriptor **bulk_in,
183 		struct usb_endpoint_descriptor **bulk_out,
184 		struct usb_endpoint_descriptor **int_in,
185 		struct usb_endpoint_descriptor **int_out)
186 {
187 	struct usb_endpoint_descriptor *epd;
188 	int i;
189 
190 	if (bulk_in)
191 		*bulk_in = NULL;
192 	if (bulk_out)
193 		*bulk_out = NULL;
194 	if (int_in)
195 		*int_in = NULL;
196 	if (int_out)
197 		*int_out = NULL;
198 
199 	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
200 		epd = &alt->endpoint[i].desc;
201 
202 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
203 			return 0;
204 	}
205 
206 	return -ENXIO;
207 }
208 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
209 
210 /**
211  * usb_find_alt_setting() - Given a configuration, find the alternate setting
212  * for the given interface.
213  * @config: the configuration to search (not necessarily the current config).
214  * @iface_num: interface number to search in
215  * @alt_num: alternate interface setting number to search for.
216  *
217  * Search the configuration's interface cache for the given alt setting.
218  *
219  * Return: The alternate setting, if found. %NULL otherwise.
220  */
221 struct usb_host_interface *usb_find_alt_setting(
222 		struct usb_host_config *config,
223 		unsigned int iface_num,
224 		unsigned int alt_num)
225 {
226 	struct usb_interface_cache *intf_cache = NULL;
227 	int i;
228 
229 	if (!config)
230 		return NULL;
231 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
232 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
233 				== iface_num) {
234 			intf_cache = config->intf_cache[i];
235 			break;
236 		}
237 	}
238 	if (!intf_cache)
239 		return NULL;
240 	for (i = 0; i < intf_cache->num_altsetting; i++)
241 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
242 			return &intf_cache->altsetting[i];
243 
244 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
245 			"config %u\n", alt_num, iface_num,
246 			config->desc.bConfigurationValue);
247 	return NULL;
248 }
249 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
250 
251 /**
252  * usb_ifnum_to_if - get the interface object with a given interface number
253  * @dev: the device whose current configuration is considered
254  * @ifnum: the desired interface
255  *
256  * This walks the device descriptor for the currently active configuration
257  * to find the interface object with the particular interface number.
258  *
259  * Note that configuration descriptors are not required to assign interface
260  * numbers sequentially, so that it would be incorrect to assume that
261  * the first interface in that descriptor corresponds to interface zero.
262  * This routine helps device drivers avoid such mistakes.
263  * However, you should make sure that you do the right thing with any
264  * alternate settings available for this interfaces.
265  *
266  * Don't call this function unless you are bound to one of the interfaces
267  * on this device or you have locked the device!
268  *
269  * Return: A pointer to the interface that has @ifnum as interface number,
270  * if found. %NULL otherwise.
271  */
272 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
273 				      unsigned ifnum)
274 {
275 	struct usb_host_config *config = dev->actconfig;
276 	int i;
277 
278 	if (!config)
279 		return NULL;
280 	for (i = 0; i < config->desc.bNumInterfaces; i++)
281 		if (config->interface[i]->altsetting[0]
282 				.desc.bInterfaceNumber == ifnum)
283 			return config->interface[i];
284 
285 	return NULL;
286 }
287 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
288 
289 /**
290  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
291  * @intf: the interface containing the altsetting in question
292  * @altnum: the desired alternate setting number
293  *
294  * This searches the altsetting array of the specified interface for
295  * an entry with the correct bAlternateSetting value.
296  *
297  * Note that altsettings need not be stored sequentially by number, so
298  * it would be incorrect to assume that the first altsetting entry in
299  * the array corresponds to altsetting zero.  This routine helps device
300  * drivers avoid such mistakes.
301  *
302  * Don't call this function unless you are bound to the intf interface
303  * or you have locked the device!
304  *
305  * Return: A pointer to the entry of the altsetting array of @intf that
306  * has @altnum as the alternate setting number. %NULL if not found.
307  */
308 struct usb_host_interface *usb_altnum_to_altsetting(
309 					const struct usb_interface *intf,
310 					unsigned int altnum)
311 {
312 	int i;
313 
314 	for (i = 0; i < intf->num_altsetting; i++) {
315 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
316 			return &intf->altsetting[i];
317 	}
318 	return NULL;
319 }
320 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
321 
322 struct find_interface_arg {
323 	int minor;
324 	struct device_driver *drv;
325 };
326 
327 static int __find_interface(struct device *dev, const void *data)
328 {
329 	const struct find_interface_arg *arg = data;
330 	struct usb_interface *intf;
331 
332 	if (!is_usb_interface(dev))
333 		return 0;
334 
335 	if (dev->driver != arg->drv)
336 		return 0;
337 	intf = to_usb_interface(dev);
338 	return intf->minor == arg->minor;
339 }
340 
341 /**
342  * usb_find_interface - find usb_interface pointer for driver and device
343  * @drv: the driver whose current configuration is considered
344  * @minor: the minor number of the desired device
345  *
346  * This walks the bus device list and returns a pointer to the interface
347  * with the matching minor and driver.  Note, this only works for devices
348  * that share the USB major number.
349  *
350  * Return: A pointer to the interface with the matching major and @minor.
351  */
352 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
353 {
354 	struct find_interface_arg argb;
355 	struct device *dev;
356 
357 	argb.minor = minor;
358 	argb.drv = &drv->drvwrap.driver;
359 
360 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
361 
362 	/* Drop reference count from bus_find_device */
363 	put_device(dev);
364 
365 	return dev ? to_usb_interface(dev) : NULL;
366 }
367 EXPORT_SYMBOL_GPL(usb_find_interface);
368 
369 struct each_dev_arg {
370 	void *data;
371 	int (*fn)(struct usb_device *, void *);
372 };
373 
374 static int __each_dev(struct device *dev, void *data)
375 {
376 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
377 
378 	/* There are struct usb_interface on the same bus, filter them out */
379 	if (!is_usb_device(dev))
380 		return 0;
381 
382 	return arg->fn(to_usb_device(dev), arg->data);
383 }
384 
385 /**
386  * usb_for_each_dev - iterate over all USB devices in the system
387  * @data: data pointer that will be handed to the callback function
388  * @fn: callback function to be called for each USB device
389  *
390  * Iterate over all USB devices and call @fn for each, passing it @data. If it
391  * returns anything other than 0, we break the iteration prematurely and return
392  * that value.
393  */
394 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
395 {
396 	struct each_dev_arg arg = {data, fn};
397 
398 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
399 }
400 EXPORT_SYMBOL_GPL(usb_for_each_dev);
401 
402 /**
403  * usb_release_dev - free a usb device structure when all users of it are finished.
404  * @dev: device that's been disconnected
405  *
406  * Will be called only by the device core when all users of this usb device are
407  * done.
408  */
409 static void usb_release_dev(struct device *dev)
410 {
411 	struct usb_device *udev;
412 	struct usb_hcd *hcd;
413 
414 	udev = to_usb_device(dev);
415 	hcd = bus_to_hcd(udev->bus);
416 
417 	usb_destroy_configuration(udev);
418 	usb_release_bos_descriptor(udev);
419 	of_node_put(dev->of_node);
420 	usb_put_hcd(hcd);
421 	kfree(udev->product);
422 	kfree(udev->manufacturer);
423 	kfree(udev->serial);
424 	kfree(udev);
425 }
426 
427 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
428 {
429 	struct usb_device *usb_dev;
430 
431 	usb_dev = to_usb_device(dev);
432 
433 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
434 		return -ENOMEM;
435 
436 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
437 		return -ENOMEM;
438 
439 	return 0;
440 }
441 
442 #ifdef	CONFIG_PM
443 
444 /* USB device Power-Management thunks.
445  * There's no need to distinguish here between quiescing a USB device
446  * and powering it down; the generic_suspend() routine takes care of
447  * it by skipping the usb_port_suspend() call for a quiesce.  And for
448  * USB interfaces there's no difference at all.
449  */
450 
451 static int usb_dev_prepare(struct device *dev)
452 {
453 	return 0;		/* Implement eventually? */
454 }
455 
456 static void usb_dev_complete(struct device *dev)
457 {
458 	/* Currently used only for rebinding interfaces */
459 	usb_resume_complete(dev);
460 }
461 
462 static int usb_dev_suspend(struct device *dev)
463 {
464 	return usb_suspend(dev, PMSG_SUSPEND);
465 }
466 
467 static int usb_dev_resume(struct device *dev)
468 {
469 	return usb_resume(dev, PMSG_RESUME);
470 }
471 
472 static int usb_dev_freeze(struct device *dev)
473 {
474 	return usb_suspend(dev, PMSG_FREEZE);
475 }
476 
477 static int usb_dev_thaw(struct device *dev)
478 {
479 	return usb_resume(dev, PMSG_THAW);
480 }
481 
482 static int usb_dev_poweroff(struct device *dev)
483 {
484 	return usb_suspend(dev, PMSG_HIBERNATE);
485 }
486 
487 static int usb_dev_restore(struct device *dev)
488 {
489 	return usb_resume(dev, PMSG_RESTORE);
490 }
491 
492 static const struct dev_pm_ops usb_device_pm_ops = {
493 	.prepare =	usb_dev_prepare,
494 	.complete =	usb_dev_complete,
495 	.suspend =	usb_dev_suspend,
496 	.resume =	usb_dev_resume,
497 	.freeze =	usb_dev_freeze,
498 	.thaw =		usb_dev_thaw,
499 	.poweroff =	usb_dev_poweroff,
500 	.restore =	usb_dev_restore,
501 	.runtime_suspend =	usb_runtime_suspend,
502 	.runtime_resume =	usb_runtime_resume,
503 	.runtime_idle =		usb_runtime_idle,
504 };
505 
506 #endif	/* CONFIG_PM */
507 
508 
509 static char *usb_devnode(struct device *dev,
510 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
511 {
512 	struct usb_device *usb_dev;
513 
514 	usb_dev = to_usb_device(dev);
515 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
516 			 usb_dev->bus->busnum, usb_dev->devnum);
517 }
518 
519 struct device_type usb_device_type = {
520 	.name =		"usb_device",
521 	.release =	usb_release_dev,
522 	.uevent =	usb_dev_uevent,
523 	.devnode = 	usb_devnode,
524 #ifdef CONFIG_PM
525 	.pm =		&usb_device_pm_ops,
526 #endif
527 };
528 
529 
530 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
531 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
532 {
533 	struct usb_hcd *hcd = bus_to_hcd(bus);
534 	return hcd->wireless;
535 }
536 
537 static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
538 {
539 	struct usb_hub *hub;
540 
541 	if (!dev->parent)
542 		return true; /* Root hub always ok [and always wired] */
543 
544 	switch (hcd->dev_policy) {
545 	case USB_DEVICE_AUTHORIZE_NONE:
546 	default:
547 		return false;
548 
549 	case USB_DEVICE_AUTHORIZE_ALL:
550 		return true;
551 
552 	case USB_DEVICE_AUTHORIZE_INTERNAL:
553 		hub = usb_hub_to_struct_hub(dev->parent);
554 		return hub->ports[dev->portnum - 1]->connect_type ==
555 				USB_PORT_CONNECT_TYPE_HARD_WIRED;
556 	}
557 }
558 
559 /**
560  * usb_alloc_dev - usb device constructor (usbcore-internal)
561  * @parent: hub to which device is connected; null to allocate a root hub
562  * @bus: bus used to access the device
563  * @port1: one-based index of port; ignored for root hubs
564  * Context: !in_interrupt()
565  *
566  * Only hub drivers (including virtual root hub drivers for host
567  * controllers) should ever call this.
568  *
569  * This call may not be used in a non-sleeping context.
570  *
571  * Return: On success, a pointer to the allocated usb device. %NULL on
572  * failure.
573  */
574 struct usb_device *usb_alloc_dev(struct usb_device *parent,
575 				 struct usb_bus *bus, unsigned port1)
576 {
577 	struct usb_device *dev;
578 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
579 	unsigned root_hub = 0;
580 	unsigned raw_port = port1;
581 
582 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
583 	if (!dev)
584 		return NULL;
585 
586 	if (!usb_get_hcd(usb_hcd)) {
587 		kfree(dev);
588 		return NULL;
589 	}
590 	/* Root hubs aren't true devices, so don't allocate HCD resources */
591 	if (usb_hcd->driver->alloc_dev && parent &&
592 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
593 		usb_put_hcd(bus_to_hcd(bus));
594 		kfree(dev);
595 		return NULL;
596 	}
597 
598 	device_initialize(&dev->dev);
599 	dev->dev.bus = &usb_bus_type;
600 	dev->dev.type = &usb_device_type;
601 	dev->dev.groups = usb_device_groups;
602 	/*
603 	 * Fake a dma_mask/offset for the USB device:
604 	 * We cannot really use the dma-mapping API (dma_alloc_* and
605 	 * dma_map_*) for USB devices but instead need to use
606 	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
607 	 * manually look into the mask/offset pair to determine whether
608 	 * they need bounce buffers.
609 	 * Note: calling dma_set_mask() on a USB device would set the
610 	 * mask for the entire HCD, so don't do that.
611 	 */
612 	dev->dev.dma_mask = bus->sysdev->dma_mask;
613 	dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
614 	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
615 	dev->state = USB_STATE_ATTACHED;
616 	dev->lpm_disable_count = 1;
617 	atomic_set(&dev->urbnum, 0);
618 
619 	INIT_LIST_HEAD(&dev->ep0.urb_list);
620 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
621 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
622 	/* ep0 maxpacket comes later, from device descriptor */
623 	usb_enable_endpoint(dev, &dev->ep0, false);
624 	dev->can_submit = 1;
625 
626 	/* Save readable and stable topology id, distinguishing devices
627 	 * by location for diagnostics, tools, driver model, etc.  The
628 	 * string is a path along hub ports, from the root.  Each device's
629 	 * dev->devpath will be stable until USB is re-cabled, and hubs
630 	 * are often labeled with these port numbers.  The name isn't
631 	 * as stable:  bus->busnum changes easily from modprobe order,
632 	 * cardbus or pci hotplugging, and so on.
633 	 */
634 	if (unlikely(!parent)) {
635 		dev->devpath[0] = '0';
636 		dev->route = 0;
637 
638 		dev->dev.parent = bus->controller;
639 		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
640 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
641 		root_hub = 1;
642 	} else {
643 		/* match any labeling on the hubs; it's one-based */
644 		if (parent->devpath[0] == '0') {
645 			snprintf(dev->devpath, sizeof dev->devpath,
646 				"%d", port1);
647 			/* Root ports are not counted in route string */
648 			dev->route = 0;
649 		} else {
650 			snprintf(dev->devpath, sizeof dev->devpath,
651 				"%s.%d", parent->devpath, port1);
652 			/* Route string assumes hubs have less than 16 ports */
653 			if (port1 < 15)
654 				dev->route = parent->route +
655 					(port1 << ((parent->level - 1)*4));
656 			else
657 				dev->route = parent->route +
658 					(15 << ((parent->level - 1)*4));
659 		}
660 
661 		dev->dev.parent = &parent->dev;
662 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
663 
664 		if (!parent->parent) {
665 			/* device under root hub's port */
666 			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
667 				port1);
668 		}
669 		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
670 
671 		/* hub driver sets up TT records */
672 	}
673 
674 	dev->portnum = port1;
675 	dev->bus = bus;
676 	dev->parent = parent;
677 	INIT_LIST_HEAD(&dev->filelist);
678 
679 #ifdef	CONFIG_PM
680 	pm_runtime_set_autosuspend_delay(&dev->dev,
681 			usb_autosuspend_delay * 1000);
682 	dev->connect_time = jiffies;
683 	dev->active_duration = -jiffies;
684 #endif
685 
686 	dev->authorized = usb_dev_authorized(dev, usb_hcd);
687 	if (!root_hub)
688 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
689 
690 	return dev;
691 }
692 EXPORT_SYMBOL_GPL(usb_alloc_dev);
693 
694 /**
695  * usb_get_dev - increments the reference count of the usb device structure
696  * @dev: the device being referenced
697  *
698  * Each live reference to a device should be refcounted.
699  *
700  * Drivers for USB interfaces should normally record such references in
701  * their probe() methods, when they bind to an interface, and release
702  * them by calling usb_put_dev(), in their disconnect() methods.
703  *
704  * Return: A pointer to the device with the incremented reference counter.
705  */
706 struct usb_device *usb_get_dev(struct usb_device *dev)
707 {
708 	if (dev)
709 		get_device(&dev->dev);
710 	return dev;
711 }
712 EXPORT_SYMBOL_GPL(usb_get_dev);
713 
714 /**
715  * usb_put_dev - release a use of the usb device structure
716  * @dev: device that's been disconnected
717  *
718  * Must be called when a user of a device is finished with it.  When the last
719  * user of the device calls this function, the memory of the device is freed.
720  */
721 void usb_put_dev(struct usb_device *dev)
722 {
723 	if (dev)
724 		put_device(&dev->dev);
725 }
726 EXPORT_SYMBOL_GPL(usb_put_dev);
727 
728 /**
729  * usb_get_intf - increments the reference count of the usb interface structure
730  * @intf: the interface being referenced
731  *
732  * Each live reference to a interface must be refcounted.
733  *
734  * Drivers for USB interfaces should normally record such references in
735  * their probe() methods, when they bind to an interface, and release
736  * them by calling usb_put_intf(), in their disconnect() methods.
737  *
738  * Return: A pointer to the interface with the incremented reference counter.
739  */
740 struct usb_interface *usb_get_intf(struct usb_interface *intf)
741 {
742 	if (intf)
743 		get_device(&intf->dev);
744 	return intf;
745 }
746 EXPORT_SYMBOL_GPL(usb_get_intf);
747 
748 /**
749  * usb_put_intf - release a use of the usb interface structure
750  * @intf: interface that's been decremented
751  *
752  * Must be called when a user of an interface is finished with it.  When the
753  * last user of the interface calls this function, the memory of the interface
754  * is freed.
755  */
756 void usb_put_intf(struct usb_interface *intf)
757 {
758 	if (intf)
759 		put_device(&intf->dev);
760 }
761 EXPORT_SYMBOL_GPL(usb_put_intf);
762 
763 /*			USB device locking
764  *
765  * USB devices and interfaces are locked using the semaphore in their
766  * embedded struct device.  The hub driver guarantees that whenever a
767  * device is connected or disconnected, drivers are called with the
768  * USB device locked as well as their particular interface.
769  *
770  * Complications arise when several devices are to be locked at the same
771  * time.  Only hub-aware drivers that are part of usbcore ever have to
772  * do this; nobody else needs to worry about it.  The rule for locking
773  * is simple:
774  *
775  *	When locking both a device and its parent, always lock the
776  *	the parent first.
777  */
778 
779 /**
780  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
781  * @udev: device that's being locked
782  * @iface: interface bound to the driver making the request (optional)
783  *
784  * Attempts to acquire the device lock, but fails if the device is
785  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
786  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
787  * lock, the routine polls repeatedly.  This is to prevent deadlock with
788  * disconnect; in some drivers (such as usb-storage) the disconnect()
789  * or suspend() method will block waiting for a device reset to complete.
790  *
791  * Return: A negative error code for failure, otherwise 0.
792  */
793 int usb_lock_device_for_reset(struct usb_device *udev,
794 			      const struct usb_interface *iface)
795 {
796 	unsigned long jiffies_expire = jiffies + HZ;
797 
798 	if (udev->state == USB_STATE_NOTATTACHED)
799 		return -ENODEV;
800 	if (udev->state == USB_STATE_SUSPENDED)
801 		return -EHOSTUNREACH;
802 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
803 			iface->condition == USB_INTERFACE_UNBOUND))
804 		return -EINTR;
805 
806 	while (!usb_trylock_device(udev)) {
807 
808 		/* If we can't acquire the lock after waiting one second,
809 		 * we're probably deadlocked */
810 		if (time_after(jiffies, jiffies_expire))
811 			return -EBUSY;
812 
813 		msleep(15);
814 		if (udev->state == USB_STATE_NOTATTACHED)
815 			return -ENODEV;
816 		if (udev->state == USB_STATE_SUSPENDED)
817 			return -EHOSTUNREACH;
818 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
819 				iface->condition == USB_INTERFACE_UNBOUND))
820 			return -EINTR;
821 	}
822 	return 0;
823 }
824 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
825 
826 /**
827  * usb_get_current_frame_number - return current bus frame number
828  * @dev: the device whose bus is being queried
829  *
830  * Return: The current frame number for the USB host controller used
831  * with the given USB device. This can be used when scheduling
832  * isochronous requests.
833  *
834  * Note: Different kinds of host controller have different "scheduling
835  * horizons". While one type might support scheduling only 32 frames
836  * into the future, others could support scheduling up to 1024 frames
837  * into the future.
838  *
839  */
840 int usb_get_current_frame_number(struct usb_device *dev)
841 {
842 	return usb_hcd_get_frame_number(dev);
843 }
844 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
845 
846 /*-------------------------------------------------------------------*/
847 /*
848  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
849  * extra field of the interface and endpoint descriptor structs.
850  */
851 
852 int __usb_get_extra_descriptor(char *buffer, unsigned size,
853 			       unsigned char type, void **ptr, size_t minsize)
854 {
855 	struct usb_descriptor_header *header;
856 
857 	while (size >= sizeof(struct usb_descriptor_header)) {
858 		header = (struct usb_descriptor_header *)buffer;
859 
860 		if (header->bLength < 2 || header->bLength > size) {
861 			printk(KERN_ERR
862 				"%s: bogus descriptor, type %d length %d\n",
863 				usbcore_name,
864 				header->bDescriptorType,
865 				header->bLength);
866 			return -1;
867 		}
868 
869 		if (header->bDescriptorType == type && header->bLength >= minsize) {
870 			*ptr = header;
871 			return 0;
872 		}
873 
874 		buffer += header->bLength;
875 		size -= header->bLength;
876 	}
877 	return -1;
878 }
879 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
880 
881 /**
882  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
883  * @dev: device the buffer will be used with
884  * @size: requested buffer size
885  * @mem_flags: affect whether allocation may block
886  * @dma: used to return DMA address of buffer
887  *
888  * Return: Either null (indicating no buffer could be allocated), or the
889  * cpu-space pointer to a buffer that may be used to perform DMA to the
890  * specified device.  Such cpu-space buffers are returned along with the DMA
891  * address (through the pointer provided).
892  *
893  * Note:
894  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
895  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
896  * hardware during URB completion/resubmit.  The implementation varies between
897  * platforms, depending on details of how DMA will work to this device.
898  * Using these buffers also eliminates cacheline sharing problems on
899  * architectures where CPU caches are not DMA-coherent.  On systems without
900  * bus-snooping caches, these buffers are uncached.
901  *
902  * When the buffer is no longer used, free it with usb_free_coherent().
903  */
904 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
905 			 dma_addr_t *dma)
906 {
907 	if (!dev || !dev->bus)
908 		return NULL;
909 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
910 }
911 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
912 
913 /**
914  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
915  * @dev: device the buffer was used with
916  * @size: requested buffer size
917  * @addr: CPU address of buffer
918  * @dma: DMA address of buffer
919  *
920  * This reclaims an I/O buffer, letting it be reused.  The memory must have
921  * been allocated using usb_alloc_coherent(), and the parameters must match
922  * those provided in that allocation request.
923  */
924 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
925 		       dma_addr_t dma)
926 {
927 	if (!dev || !dev->bus)
928 		return;
929 	if (!addr)
930 		return;
931 	hcd_buffer_free(dev->bus, size, addr, dma);
932 }
933 EXPORT_SYMBOL_GPL(usb_free_coherent);
934 
935 /*
936  * Notifications of device and interface registration
937  */
938 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
939 		void *data)
940 {
941 	struct device *dev = data;
942 
943 	switch (action) {
944 	case BUS_NOTIFY_ADD_DEVICE:
945 		if (dev->type == &usb_device_type)
946 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
947 		else if (dev->type == &usb_if_device_type)
948 			usb_create_sysfs_intf_files(to_usb_interface(dev));
949 		break;
950 
951 	case BUS_NOTIFY_DEL_DEVICE:
952 		if (dev->type == &usb_device_type)
953 			usb_remove_sysfs_dev_files(to_usb_device(dev));
954 		else if (dev->type == &usb_if_device_type)
955 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
956 		break;
957 	}
958 	return 0;
959 }
960 
961 static struct notifier_block usb_bus_nb = {
962 	.notifier_call = usb_bus_notify,
963 };
964 
965 static struct dentry *usb_devices_root;
966 
967 static void usb_debugfs_init(void)
968 {
969 	usb_devices_root = debugfs_create_file("devices", 0444, usb_debug_root,
970 					       NULL, &usbfs_devices_fops);
971 }
972 
973 static void usb_debugfs_cleanup(void)
974 {
975 	debugfs_remove(usb_devices_root);
976 }
977 
978 /*
979  * Init
980  */
981 static int __init usb_init(void)
982 {
983 	int retval;
984 	if (usb_disabled()) {
985 		pr_info("%s: USB support disabled\n", usbcore_name);
986 		return 0;
987 	}
988 	usb_init_pool_max();
989 
990 	usb_debugfs_init();
991 
992 	usb_acpi_register();
993 	retval = bus_register(&usb_bus_type);
994 	if (retval)
995 		goto bus_register_failed;
996 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
997 	if (retval)
998 		goto bus_notifier_failed;
999 	retval = usb_major_init();
1000 	if (retval)
1001 		goto major_init_failed;
1002 	retval = usb_register(&usbfs_driver);
1003 	if (retval)
1004 		goto driver_register_failed;
1005 	retval = usb_devio_init();
1006 	if (retval)
1007 		goto usb_devio_init_failed;
1008 	retval = usb_hub_init();
1009 	if (retval)
1010 		goto hub_init_failed;
1011 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1012 	if (!retval)
1013 		goto out;
1014 
1015 	usb_hub_cleanup();
1016 hub_init_failed:
1017 	usb_devio_cleanup();
1018 usb_devio_init_failed:
1019 	usb_deregister(&usbfs_driver);
1020 driver_register_failed:
1021 	usb_major_cleanup();
1022 major_init_failed:
1023 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1024 bus_notifier_failed:
1025 	bus_unregister(&usb_bus_type);
1026 bus_register_failed:
1027 	usb_acpi_unregister();
1028 	usb_debugfs_cleanup();
1029 out:
1030 	return retval;
1031 }
1032 
1033 /*
1034  * Cleanup
1035  */
1036 static void __exit usb_exit(void)
1037 {
1038 	/* This will matter if shutdown/reboot does exitcalls. */
1039 	if (usb_disabled())
1040 		return;
1041 
1042 	usb_release_quirk_list();
1043 	usb_deregister_device_driver(&usb_generic_driver);
1044 	usb_major_cleanup();
1045 	usb_deregister(&usbfs_driver);
1046 	usb_devio_cleanup();
1047 	usb_hub_cleanup();
1048 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1049 	bus_unregister(&usb_bus_type);
1050 	usb_acpi_unregister();
1051 	usb_debugfs_cleanup();
1052 	idr_destroy(&usb_bus_idr);
1053 }
1054 
1055 subsys_initcall(usb_init);
1056 module_exit(usb_exit);
1057 MODULE_LICENSE("GPL");
1058