1 /* 2 * drivers/usb/core/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * Released under the GPLv2 only. 16 * SPDX-License-Identifier: GPL-2.0 17 * 18 * NOTE! This is not actually a driver at all, rather this is 19 * just a collection of helper routines that implement the 20 * generic USB things that the real drivers can use.. 21 * 22 * Think of this as a "USB library" rather than anything else. 23 * It should be considered a slave, with no callbacks. Callbacks 24 * are evil. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/string.h> 30 #include <linux/bitops.h> 31 #include <linux/slab.h> 32 #include <linux/interrupt.h> /* for in_interrupt() */ 33 #include <linux/kmod.h> 34 #include <linux/init.h> 35 #include <linux/spinlock.h> 36 #include <linux/errno.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/mutex.h> 40 #include <linux/workqueue.h> 41 #include <linux/debugfs.h> 42 #include <linux/usb/of.h> 43 44 #include <asm/io.h> 45 #include <linux/scatterlist.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 49 #include "usb.h" 50 51 52 const char *usbcore_name = "usbcore"; 53 54 static bool nousb; /* Disable USB when built into kernel image */ 55 56 module_param(nousb, bool, 0444); 57 58 /* 59 * for external read access to <nousb> 60 */ 61 int usb_disabled(void) 62 { 63 return nousb; 64 } 65 EXPORT_SYMBOL_GPL(usb_disabled); 66 67 #ifdef CONFIG_PM 68 static int usb_autosuspend_delay = 2; /* Default delay value, 69 * in seconds */ 70 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 71 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 72 73 #else 74 #define usb_autosuspend_delay 0 75 #endif 76 77 static bool match_endpoint(struct usb_endpoint_descriptor *epd, 78 struct usb_endpoint_descriptor **bulk_in, 79 struct usb_endpoint_descriptor **bulk_out, 80 struct usb_endpoint_descriptor **int_in, 81 struct usb_endpoint_descriptor **int_out) 82 { 83 switch (usb_endpoint_type(epd)) { 84 case USB_ENDPOINT_XFER_BULK: 85 if (usb_endpoint_dir_in(epd)) { 86 if (bulk_in && !*bulk_in) { 87 *bulk_in = epd; 88 break; 89 } 90 } else { 91 if (bulk_out && !*bulk_out) { 92 *bulk_out = epd; 93 break; 94 } 95 } 96 97 return false; 98 case USB_ENDPOINT_XFER_INT: 99 if (usb_endpoint_dir_in(epd)) { 100 if (int_in && !*int_in) { 101 *int_in = epd; 102 break; 103 } 104 } else { 105 if (int_out && !*int_out) { 106 *int_out = epd; 107 break; 108 } 109 } 110 111 return false; 112 default: 113 return false; 114 } 115 116 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) && 117 (!int_in || *int_in) && (!int_out || *int_out); 118 } 119 120 /** 121 * usb_find_common_endpoints() -- look up common endpoint descriptors 122 * @alt: alternate setting to search 123 * @bulk_in: pointer to descriptor pointer, or NULL 124 * @bulk_out: pointer to descriptor pointer, or NULL 125 * @int_in: pointer to descriptor pointer, or NULL 126 * @int_out: pointer to descriptor pointer, or NULL 127 * 128 * Search the alternate setting's endpoint descriptors for the first bulk-in, 129 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 130 * provided pointers (unless they are NULL). 131 * 132 * If a requested endpoint is not found, the corresponding pointer is set to 133 * NULL. 134 * 135 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 136 */ 137 int usb_find_common_endpoints(struct usb_host_interface *alt, 138 struct usb_endpoint_descriptor **bulk_in, 139 struct usb_endpoint_descriptor **bulk_out, 140 struct usb_endpoint_descriptor **int_in, 141 struct usb_endpoint_descriptor **int_out) 142 { 143 struct usb_endpoint_descriptor *epd; 144 int i; 145 146 if (bulk_in) 147 *bulk_in = NULL; 148 if (bulk_out) 149 *bulk_out = NULL; 150 if (int_in) 151 *int_in = NULL; 152 if (int_out) 153 *int_out = NULL; 154 155 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 156 epd = &alt->endpoint[i].desc; 157 158 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 159 return 0; 160 } 161 162 return -ENXIO; 163 } 164 EXPORT_SYMBOL_GPL(usb_find_common_endpoints); 165 166 /** 167 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors 168 * @alt: alternate setting to search 169 * @bulk_in: pointer to descriptor pointer, or NULL 170 * @bulk_out: pointer to descriptor pointer, or NULL 171 * @int_in: pointer to descriptor pointer, or NULL 172 * @int_out: pointer to descriptor pointer, or NULL 173 * 174 * Search the alternate setting's endpoint descriptors for the last bulk-in, 175 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 176 * provided pointers (unless they are NULL). 177 * 178 * If a requested endpoint is not found, the corresponding pointer is set to 179 * NULL. 180 * 181 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 182 */ 183 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 184 struct usb_endpoint_descriptor **bulk_in, 185 struct usb_endpoint_descriptor **bulk_out, 186 struct usb_endpoint_descriptor **int_in, 187 struct usb_endpoint_descriptor **int_out) 188 { 189 struct usb_endpoint_descriptor *epd; 190 int i; 191 192 if (bulk_in) 193 *bulk_in = NULL; 194 if (bulk_out) 195 *bulk_out = NULL; 196 if (int_in) 197 *int_in = NULL; 198 if (int_out) 199 *int_out = NULL; 200 201 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) { 202 epd = &alt->endpoint[i].desc; 203 204 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 205 return 0; 206 } 207 208 return -ENXIO; 209 } 210 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse); 211 212 /** 213 * usb_find_alt_setting() - Given a configuration, find the alternate setting 214 * for the given interface. 215 * @config: the configuration to search (not necessarily the current config). 216 * @iface_num: interface number to search in 217 * @alt_num: alternate interface setting number to search for. 218 * 219 * Search the configuration's interface cache for the given alt setting. 220 * 221 * Return: The alternate setting, if found. %NULL otherwise. 222 */ 223 struct usb_host_interface *usb_find_alt_setting( 224 struct usb_host_config *config, 225 unsigned int iface_num, 226 unsigned int alt_num) 227 { 228 struct usb_interface_cache *intf_cache = NULL; 229 int i; 230 231 for (i = 0; i < config->desc.bNumInterfaces; i++) { 232 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 233 == iface_num) { 234 intf_cache = config->intf_cache[i]; 235 break; 236 } 237 } 238 if (!intf_cache) 239 return NULL; 240 for (i = 0; i < intf_cache->num_altsetting; i++) 241 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 242 return &intf_cache->altsetting[i]; 243 244 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 245 "config %u\n", alt_num, iface_num, 246 config->desc.bConfigurationValue); 247 return NULL; 248 } 249 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 250 251 /** 252 * usb_ifnum_to_if - get the interface object with a given interface number 253 * @dev: the device whose current configuration is considered 254 * @ifnum: the desired interface 255 * 256 * This walks the device descriptor for the currently active configuration 257 * to find the interface object with the particular interface number. 258 * 259 * Note that configuration descriptors are not required to assign interface 260 * numbers sequentially, so that it would be incorrect to assume that 261 * the first interface in that descriptor corresponds to interface zero. 262 * This routine helps device drivers avoid such mistakes. 263 * However, you should make sure that you do the right thing with any 264 * alternate settings available for this interfaces. 265 * 266 * Don't call this function unless you are bound to one of the interfaces 267 * on this device or you have locked the device! 268 * 269 * Return: A pointer to the interface that has @ifnum as interface number, 270 * if found. %NULL otherwise. 271 */ 272 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 273 unsigned ifnum) 274 { 275 struct usb_host_config *config = dev->actconfig; 276 int i; 277 278 if (!config) 279 return NULL; 280 for (i = 0; i < config->desc.bNumInterfaces; i++) 281 if (config->interface[i]->altsetting[0] 282 .desc.bInterfaceNumber == ifnum) 283 return config->interface[i]; 284 285 return NULL; 286 } 287 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 288 289 /** 290 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 291 * @intf: the interface containing the altsetting in question 292 * @altnum: the desired alternate setting number 293 * 294 * This searches the altsetting array of the specified interface for 295 * an entry with the correct bAlternateSetting value. 296 * 297 * Note that altsettings need not be stored sequentially by number, so 298 * it would be incorrect to assume that the first altsetting entry in 299 * the array corresponds to altsetting zero. This routine helps device 300 * drivers avoid such mistakes. 301 * 302 * Don't call this function unless you are bound to the intf interface 303 * or you have locked the device! 304 * 305 * Return: A pointer to the entry of the altsetting array of @intf that 306 * has @altnum as the alternate setting number. %NULL if not found. 307 */ 308 struct usb_host_interface *usb_altnum_to_altsetting( 309 const struct usb_interface *intf, 310 unsigned int altnum) 311 { 312 int i; 313 314 for (i = 0; i < intf->num_altsetting; i++) { 315 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 316 return &intf->altsetting[i]; 317 } 318 return NULL; 319 } 320 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 321 322 struct find_interface_arg { 323 int minor; 324 struct device_driver *drv; 325 }; 326 327 static int __find_interface(struct device *dev, void *data) 328 { 329 struct find_interface_arg *arg = data; 330 struct usb_interface *intf; 331 332 if (!is_usb_interface(dev)) 333 return 0; 334 335 if (dev->driver != arg->drv) 336 return 0; 337 intf = to_usb_interface(dev); 338 return intf->minor == arg->minor; 339 } 340 341 /** 342 * usb_find_interface - find usb_interface pointer for driver and device 343 * @drv: the driver whose current configuration is considered 344 * @minor: the minor number of the desired device 345 * 346 * This walks the bus device list and returns a pointer to the interface 347 * with the matching minor and driver. Note, this only works for devices 348 * that share the USB major number. 349 * 350 * Return: A pointer to the interface with the matching major and @minor. 351 */ 352 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 353 { 354 struct find_interface_arg argb; 355 struct device *dev; 356 357 argb.minor = minor; 358 argb.drv = &drv->drvwrap.driver; 359 360 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); 361 362 /* Drop reference count from bus_find_device */ 363 put_device(dev); 364 365 return dev ? to_usb_interface(dev) : NULL; 366 } 367 EXPORT_SYMBOL_GPL(usb_find_interface); 368 369 struct each_dev_arg { 370 void *data; 371 int (*fn)(struct usb_device *, void *); 372 }; 373 374 static int __each_dev(struct device *dev, void *data) 375 { 376 struct each_dev_arg *arg = (struct each_dev_arg *)data; 377 378 /* There are struct usb_interface on the same bus, filter them out */ 379 if (!is_usb_device(dev)) 380 return 0; 381 382 return arg->fn(to_usb_device(dev), arg->data); 383 } 384 385 /** 386 * usb_for_each_dev - iterate over all USB devices in the system 387 * @data: data pointer that will be handed to the callback function 388 * @fn: callback function to be called for each USB device 389 * 390 * Iterate over all USB devices and call @fn for each, passing it @data. If it 391 * returns anything other than 0, we break the iteration prematurely and return 392 * that value. 393 */ 394 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) 395 { 396 struct each_dev_arg arg = {data, fn}; 397 398 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); 399 } 400 EXPORT_SYMBOL_GPL(usb_for_each_dev); 401 402 /** 403 * usb_release_dev - free a usb device structure when all users of it are finished. 404 * @dev: device that's been disconnected 405 * 406 * Will be called only by the device core when all users of this usb device are 407 * done. 408 */ 409 static void usb_release_dev(struct device *dev) 410 { 411 struct usb_device *udev; 412 struct usb_hcd *hcd; 413 414 udev = to_usb_device(dev); 415 hcd = bus_to_hcd(udev->bus); 416 417 usb_destroy_configuration(udev); 418 usb_release_bos_descriptor(udev); 419 usb_put_hcd(hcd); 420 kfree(udev->product); 421 kfree(udev->manufacturer); 422 kfree(udev->serial); 423 kfree(udev); 424 } 425 426 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 427 { 428 struct usb_device *usb_dev; 429 430 usb_dev = to_usb_device(dev); 431 432 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 433 return -ENOMEM; 434 435 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 436 return -ENOMEM; 437 438 return 0; 439 } 440 441 #ifdef CONFIG_PM 442 443 /* USB device Power-Management thunks. 444 * There's no need to distinguish here between quiescing a USB device 445 * and powering it down; the generic_suspend() routine takes care of 446 * it by skipping the usb_port_suspend() call for a quiesce. And for 447 * USB interfaces there's no difference at all. 448 */ 449 450 static int usb_dev_prepare(struct device *dev) 451 { 452 return 0; /* Implement eventually? */ 453 } 454 455 static void usb_dev_complete(struct device *dev) 456 { 457 /* Currently used only for rebinding interfaces */ 458 usb_resume_complete(dev); 459 } 460 461 static int usb_dev_suspend(struct device *dev) 462 { 463 return usb_suspend(dev, PMSG_SUSPEND); 464 } 465 466 static int usb_dev_resume(struct device *dev) 467 { 468 return usb_resume(dev, PMSG_RESUME); 469 } 470 471 static int usb_dev_freeze(struct device *dev) 472 { 473 return usb_suspend(dev, PMSG_FREEZE); 474 } 475 476 static int usb_dev_thaw(struct device *dev) 477 { 478 return usb_resume(dev, PMSG_THAW); 479 } 480 481 static int usb_dev_poweroff(struct device *dev) 482 { 483 return usb_suspend(dev, PMSG_HIBERNATE); 484 } 485 486 static int usb_dev_restore(struct device *dev) 487 { 488 return usb_resume(dev, PMSG_RESTORE); 489 } 490 491 static const struct dev_pm_ops usb_device_pm_ops = { 492 .prepare = usb_dev_prepare, 493 .complete = usb_dev_complete, 494 .suspend = usb_dev_suspend, 495 .resume = usb_dev_resume, 496 .freeze = usb_dev_freeze, 497 .thaw = usb_dev_thaw, 498 .poweroff = usb_dev_poweroff, 499 .restore = usb_dev_restore, 500 .runtime_suspend = usb_runtime_suspend, 501 .runtime_resume = usb_runtime_resume, 502 .runtime_idle = usb_runtime_idle, 503 }; 504 505 #endif /* CONFIG_PM */ 506 507 508 static char *usb_devnode(struct device *dev, 509 umode_t *mode, kuid_t *uid, kgid_t *gid) 510 { 511 struct usb_device *usb_dev; 512 513 usb_dev = to_usb_device(dev); 514 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 515 usb_dev->bus->busnum, usb_dev->devnum); 516 } 517 518 struct device_type usb_device_type = { 519 .name = "usb_device", 520 .release = usb_release_dev, 521 .uevent = usb_dev_uevent, 522 .devnode = usb_devnode, 523 #ifdef CONFIG_PM 524 .pm = &usb_device_pm_ops, 525 #endif 526 }; 527 528 529 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 530 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 531 { 532 struct usb_hcd *hcd = bus_to_hcd(bus); 533 return hcd->wireless; 534 } 535 536 537 /** 538 * usb_alloc_dev - usb device constructor (usbcore-internal) 539 * @parent: hub to which device is connected; null to allocate a root hub 540 * @bus: bus used to access the device 541 * @port1: one-based index of port; ignored for root hubs 542 * Context: !in_interrupt() 543 * 544 * Only hub drivers (including virtual root hub drivers for host 545 * controllers) should ever call this. 546 * 547 * This call may not be used in a non-sleeping context. 548 * 549 * Return: On success, a pointer to the allocated usb device. %NULL on 550 * failure. 551 */ 552 struct usb_device *usb_alloc_dev(struct usb_device *parent, 553 struct usb_bus *bus, unsigned port1) 554 { 555 struct usb_device *dev; 556 struct usb_hcd *usb_hcd = bus_to_hcd(bus); 557 unsigned root_hub = 0; 558 unsigned raw_port = port1; 559 560 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 561 if (!dev) 562 return NULL; 563 564 if (!usb_get_hcd(usb_hcd)) { 565 kfree(dev); 566 return NULL; 567 } 568 /* Root hubs aren't true devices, so don't allocate HCD resources */ 569 if (usb_hcd->driver->alloc_dev && parent && 570 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 571 usb_put_hcd(bus_to_hcd(bus)); 572 kfree(dev); 573 return NULL; 574 } 575 576 device_initialize(&dev->dev); 577 dev->dev.bus = &usb_bus_type; 578 dev->dev.type = &usb_device_type; 579 dev->dev.groups = usb_device_groups; 580 /* 581 * Fake a dma_mask/offset for the USB device: 582 * We cannot really use the dma-mapping API (dma_alloc_* and 583 * dma_map_*) for USB devices but instead need to use 584 * usb_alloc_coherent and pass data in 'urb's, but some subsystems 585 * manually look into the mask/offset pair to determine whether 586 * they need bounce buffers. 587 * Note: calling dma_set_mask() on a USB device would set the 588 * mask for the entire HCD, so don't do that. 589 */ 590 dev->dev.dma_mask = bus->sysdev->dma_mask; 591 dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset; 592 set_dev_node(&dev->dev, dev_to_node(bus->sysdev)); 593 dev->state = USB_STATE_ATTACHED; 594 dev->lpm_disable_count = 1; 595 atomic_set(&dev->urbnum, 0); 596 597 INIT_LIST_HEAD(&dev->ep0.urb_list); 598 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 599 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 600 /* ep0 maxpacket comes later, from device descriptor */ 601 usb_enable_endpoint(dev, &dev->ep0, false); 602 dev->can_submit = 1; 603 604 /* Save readable and stable topology id, distinguishing devices 605 * by location for diagnostics, tools, driver model, etc. The 606 * string is a path along hub ports, from the root. Each device's 607 * dev->devpath will be stable until USB is re-cabled, and hubs 608 * are often labeled with these port numbers. The name isn't 609 * as stable: bus->busnum changes easily from modprobe order, 610 * cardbus or pci hotplugging, and so on. 611 */ 612 if (unlikely(!parent)) { 613 dev->devpath[0] = '0'; 614 dev->route = 0; 615 616 dev->dev.parent = bus->controller; 617 dev_set_name(&dev->dev, "usb%d", bus->busnum); 618 root_hub = 1; 619 } else { 620 /* match any labeling on the hubs; it's one-based */ 621 if (parent->devpath[0] == '0') { 622 snprintf(dev->devpath, sizeof dev->devpath, 623 "%d", port1); 624 /* Root ports are not counted in route string */ 625 dev->route = 0; 626 } else { 627 snprintf(dev->devpath, sizeof dev->devpath, 628 "%s.%d", parent->devpath, port1); 629 /* Route string assumes hubs have less than 16 ports */ 630 if (port1 < 15) 631 dev->route = parent->route + 632 (port1 << ((parent->level - 1)*4)); 633 else 634 dev->route = parent->route + 635 (15 << ((parent->level - 1)*4)); 636 } 637 638 dev->dev.parent = &parent->dev; 639 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 640 641 if (!parent->parent) { 642 /* device under root hub's port */ 643 raw_port = usb_hcd_find_raw_port_number(usb_hcd, 644 port1); 645 } 646 dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node, 647 raw_port); 648 649 /* hub driver sets up TT records */ 650 } 651 652 dev->portnum = port1; 653 dev->bus = bus; 654 dev->parent = parent; 655 INIT_LIST_HEAD(&dev->filelist); 656 657 #ifdef CONFIG_PM 658 pm_runtime_set_autosuspend_delay(&dev->dev, 659 usb_autosuspend_delay * 1000); 660 dev->connect_time = jiffies; 661 dev->active_duration = -jiffies; 662 #endif 663 if (root_hub) /* Root hub always ok [and always wired] */ 664 dev->authorized = 1; 665 else { 666 dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd); 667 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0; 668 } 669 return dev; 670 } 671 EXPORT_SYMBOL_GPL(usb_alloc_dev); 672 673 /** 674 * usb_get_dev - increments the reference count of the usb device structure 675 * @dev: the device being referenced 676 * 677 * Each live reference to a device should be refcounted. 678 * 679 * Drivers for USB interfaces should normally record such references in 680 * their probe() methods, when they bind to an interface, and release 681 * them by calling usb_put_dev(), in their disconnect() methods. 682 * 683 * Return: A pointer to the device with the incremented reference counter. 684 */ 685 struct usb_device *usb_get_dev(struct usb_device *dev) 686 { 687 if (dev) 688 get_device(&dev->dev); 689 return dev; 690 } 691 EXPORT_SYMBOL_GPL(usb_get_dev); 692 693 /** 694 * usb_put_dev - release a use of the usb device structure 695 * @dev: device that's been disconnected 696 * 697 * Must be called when a user of a device is finished with it. When the last 698 * user of the device calls this function, the memory of the device is freed. 699 */ 700 void usb_put_dev(struct usb_device *dev) 701 { 702 if (dev) 703 put_device(&dev->dev); 704 } 705 EXPORT_SYMBOL_GPL(usb_put_dev); 706 707 /** 708 * usb_get_intf - increments the reference count of the usb interface structure 709 * @intf: the interface being referenced 710 * 711 * Each live reference to a interface must be refcounted. 712 * 713 * Drivers for USB interfaces should normally record such references in 714 * their probe() methods, when they bind to an interface, and release 715 * them by calling usb_put_intf(), in their disconnect() methods. 716 * 717 * Return: A pointer to the interface with the incremented reference counter. 718 */ 719 struct usb_interface *usb_get_intf(struct usb_interface *intf) 720 { 721 if (intf) 722 get_device(&intf->dev); 723 return intf; 724 } 725 EXPORT_SYMBOL_GPL(usb_get_intf); 726 727 /** 728 * usb_put_intf - release a use of the usb interface structure 729 * @intf: interface that's been decremented 730 * 731 * Must be called when a user of an interface is finished with it. When the 732 * last user of the interface calls this function, the memory of the interface 733 * is freed. 734 */ 735 void usb_put_intf(struct usb_interface *intf) 736 { 737 if (intf) 738 put_device(&intf->dev); 739 } 740 EXPORT_SYMBOL_GPL(usb_put_intf); 741 742 /* USB device locking 743 * 744 * USB devices and interfaces are locked using the semaphore in their 745 * embedded struct device. The hub driver guarantees that whenever a 746 * device is connected or disconnected, drivers are called with the 747 * USB device locked as well as their particular interface. 748 * 749 * Complications arise when several devices are to be locked at the same 750 * time. Only hub-aware drivers that are part of usbcore ever have to 751 * do this; nobody else needs to worry about it. The rule for locking 752 * is simple: 753 * 754 * When locking both a device and its parent, always lock the 755 * the parent first. 756 */ 757 758 /** 759 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 760 * @udev: device that's being locked 761 * @iface: interface bound to the driver making the request (optional) 762 * 763 * Attempts to acquire the device lock, but fails if the device is 764 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 765 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 766 * lock, the routine polls repeatedly. This is to prevent deadlock with 767 * disconnect; in some drivers (such as usb-storage) the disconnect() 768 * or suspend() method will block waiting for a device reset to complete. 769 * 770 * Return: A negative error code for failure, otherwise 0. 771 */ 772 int usb_lock_device_for_reset(struct usb_device *udev, 773 const struct usb_interface *iface) 774 { 775 unsigned long jiffies_expire = jiffies + HZ; 776 777 if (udev->state == USB_STATE_NOTATTACHED) 778 return -ENODEV; 779 if (udev->state == USB_STATE_SUSPENDED) 780 return -EHOSTUNREACH; 781 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 782 iface->condition == USB_INTERFACE_UNBOUND)) 783 return -EINTR; 784 785 while (!usb_trylock_device(udev)) { 786 787 /* If we can't acquire the lock after waiting one second, 788 * we're probably deadlocked */ 789 if (time_after(jiffies, jiffies_expire)) 790 return -EBUSY; 791 792 msleep(15); 793 if (udev->state == USB_STATE_NOTATTACHED) 794 return -ENODEV; 795 if (udev->state == USB_STATE_SUSPENDED) 796 return -EHOSTUNREACH; 797 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 798 iface->condition == USB_INTERFACE_UNBOUND)) 799 return -EINTR; 800 } 801 return 0; 802 } 803 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 804 805 /** 806 * usb_get_current_frame_number - return current bus frame number 807 * @dev: the device whose bus is being queried 808 * 809 * Return: The current frame number for the USB host controller used 810 * with the given USB device. This can be used when scheduling 811 * isochronous requests. 812 * 813 * Note: Different kinds of host controller have different "scheduling 814 * horizons". While one type might support scheduling only 32 frames 815 * into the future, others could support scheduling up to 1024 frames 816 * into the future. 817 * 818 */ 819 int usb_get_current_frame_number(struct usb_device *dev) 820 { 821 return usb_hcd_get_frame_number(dev); 822 } 823 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 824 825 /*-------------------------------------------------------------------*/ 826 /* 827 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 828 * extra field of the interface and endpoint descriptor structs. 829 */ 830 831 int __usb_get_extra_descriptor(char *buffer, unsigned size, 832 unsigned char type, void **ptr) 833 { 834 struct usb_descriptor_header *header; 835 836 while (size >= sizeof(struct usb_descriptor_header)) { 837 header = (struct usb_descriptor_header *)buffer; 838 839 if (header->bLength < 2) { 840 printk(KERN_ERR 841 "%s: bogus descriptor, type %d length %d\n", 842 usbcore_name, 843 header->bDescriptorType, 844 header->bLength); 845 return -1; 846 } 847 848 if (header->bDescriptorType == type) { 849 *ptr = header; 850 return 0; 851 } 852 853 buffer += header->bLength; 854 size -= header->bLength; 855 } 856 return -1; 857 } 858 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 859 860 /** 861 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 862 * @dev: device the buffer will be used with 863 * @size: requested buffer size 864 * @mem_flags: affect whether allocation may block 865 * @dma: used to return DMA address of buffer 866 * 867 * Return: Either null (indicating no buffer could be allocated), or the 868 * cpu-space pointer to a buffer that may be used to perform DMA to the 869 * specified device. Such cpu-space buffers are returned along with the DMA 870 * address (through the pointer provided). 871 * 872 * Note: 873 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 874 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 875 * hardware during URB completion/resubmit. The implementation varies between 876 * platforms, depending on details of how DMA will work to this device. 877 * Using these buffers also eliminates cacheline sharing problems on 878 * architectures where CPU caches are not DMA-coherent. On systems without 879 * bus-snooping caches, these buffers are uncached. 880 * 881 * When the buffer is no longer used, free it with usb_free_coherent(). 882 */ 883 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, 884 dma_addr_t *dma) 885 { 886 if (!dev || !dev->bus) 887 return NULL; 888 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 889 } 890 EXPORT_SYMBOL_GPL(usb_alloc_coherent); 891 892 /** 893 * usb_free_coherent - free memory allocated with usb_alloc_coherent() 894 * @dev: device the buffer was used with 895 * @size: requested buffer size 896 * @addr: CPU address of buffer 897 * @dma: DMA address of buffer 898 * 899 * This reclaims an I/O buffer, letting it be reused. The memory must have 900 * been allocated using usb_alloc_coherent(), and the parameters must match 901 * those provided in that allocation request. 902 */ 903 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, 904 dma_addr_t dma) 905 { 906 if (!dev || !dev->bus) 907 return; 908 if (!addr) 909 return; 910 hcd_buffer_free(dev->bus, size, addr, dma); 911 } 912 EXPORT_SYMBOL_GPL(usb_free_coherent); 913 914 /** 915 * usb_buffer_map - create DMA mapping(s) for an urb 916 * @urb: urb whose transfer_buffer/setup_packet will be mapped 917 * 918 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation 919 * succeeds. If the device is connected to this system through a non-DMA 920 * controller, this operation always succeeds. 921 * 922 * This call would normally be used for an urb which is reused, perhaps 923 * as the target of a large periodic transfer, with usb_buffer_dmasync() 924 * calls to synchronize memory and dma state. 925 * 926 * Reverse the effect of this call with usb_buffer_unmap(). 927 * 928 * Return: Either %NULL (indicating no buffer could be mapped), or @urb. 929 * 930 */ 931 #if 0 932 struct urb *usb_buffer_map(struct urb *urb) 933 { 934 struct usb_bus *bus; 935 struct device *controller; 936 937 if (!urb 938 || !urb->dev 939 || !(bus = urb->dev->bus) 940 || !(controller = bus->sysdev)) 941 return NULL; 942 943 if (controller->dma_mask) { 944 urb->transfer_dma = dma_map_single(controller, 945 urb->transfer_buffer, urb->transfer_buffer_length, 946 usb_pipein(urb->pipe) 947 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 948 /* FIXME generic api broken like pci, can't report errors */ 949 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 950 } else 951 urb->transfer_dma = ~0; 952 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 953 return urb; 954 } 955 EXPORT_SYMBOL_GPL(usb_buffer_map); 956 #endif /* 0 */ 957 958 /* XXX DISABLED, no users currently. If you wish to re-enable this 959 * XXX please determine whether the sync is to transfer ownership of 960 * XXX the buffer from device to cpu or vice verse, and thusly use the 961 * XXX appropriate _for_{cpu,device}() method. -DaveM 962 */ 963 #if 0 964 965 /** 966 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 967 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 968 */ 969 void usb_buffer_dmasync(struct urb *urb) 970 { 971 struct usb_bus *bus; 972 struct device *controller; 973 974 if (!urb 975 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 976 || !urb->dev 977 || !(bus = urb->dev->bus) 978 || !(controller = bus->sysdev)) 979 return; 980 981 if (controller->dma_mask) { 982 dma_sync_single_for_cpu(controller, 983 urb->transfer_dma, urb->transfer_buffer_length, 984 usb_pipein(urb->pipe) 985 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 986 if (usb_pipecontrol(urb->pipe)) 987 dma_sync_single_for_cpu(controller, 988 urb->setup_dma, 989 sizeof(struct usb_ctrlrequest), 990 DMA_TO_DEVICE); 991 } 992 } 993 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 994 #endif 995 996 /** 997 * usb_buffer_unmap - free DMA mapping(s) for an urb 998 * @urb: urb whose transfer_buffer will be unmapped 999 * 1000 * Reverses the effect of usb_buffer_map(). 1001 */ 1002 #if 0 1003 void usb_buffer_unmap(struct urb *urb) 1004 { 1005 struct usb_bus *bus; 1006 struct device *controller; 1007 1008 if (!urb 1009 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 1010 || !urb->dev 1011 || !(bus = urb->dev->bus) 1012 || !(controller = bus->sysdev)) 1013 return; 1014 1015 if (controller->dma_mask) { 1016 dma_unmap_single(controller, 1017 urb->transfer_dma, urb->transfer_buffer_length, 1018 usb_pipein(urb->pipe) 1019 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1020 } 1021 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP; 1022 } 1023 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 1024 #endif /* 0 */ 1025 1026 #if 0 1027 /** 1028 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 1029 * @dev: device to which the scatterlist will be mapped 1030 * @is_in: mapping transfer direction 1031 * @sg: the scatterlist to map 1032 * @nents: the number of entries in the scatterlist 1033 * 1034 * Return: Either < 0 (indicating no buffers could be mapped), or the 1035 * number of DMA mapping array entries in the scatterlist. 1036 * 1037 * Note: 1038 * The caller is responsible for placing the resulting DMA addresses from 1039 * the scatterlist into URB transfer buffer pointers, and for setting the 1040 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 1041 * 1042 * Top I/O rates come from queuing URBs, instead of waiting for each one 1043 * to complete before starting the next I/O. This is particularly easy 1044 * to do with scatterlists. Just allocate and submit one URB for each DMA 1045 * mapping entry returned, stopping on the first error or when all succeed. 1046 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 1047 * 1048 * This call would normally be used when translating scatterlist requests, 1049 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 1050 * may be able to coalesce mappings for improved I/O efficiency. 1051 * 1052 * Reverse the effect of this call with usb_buffer_unmap_sg(). 1053 */ 1054 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1055 struct scatterlist *sg, int nents) 1056 { 1057 struct usb_bus *bus; 1058 struct device *controller; 1059 1060 if (!dev 1061 || !(bus = dev->bus) 1062 || !(controller = bus->sysdev) 1063 || !controller->dma_mask) 1064 return -EINVAL; 1065 1066 /* FIXME generic api broken like pci, can't report errors */ 1067 return dma_map_sg(controller, sg, nents, 1068 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM; 1069 } 1070 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 1071 #endif 1072 1073 /* XXX DISABLED, no users currently. If you wish to re-enable this 1074 * XXX please determine whether the sync is to transfer ownership of 1075 * XXX the buffer from device to cpu or vice verse, and thusly use the 1076 * XXX appropriate _for_{cpu,device}() method. -DaveM 1077 */ 1078 #if 0 1079 1080 /** 1081 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 1082 * @dev: device to which the scatterlist will be mapped 1083 * @is_in: mapping transfer direction 1084 * @sg: the scatterlist to synchronize 1085 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1086 * 1087 * Use this when you are re-using a scatterlist's data buffers for 1088 * another USB request. 1089 */ 1090 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1091 struct scatterlist *sg, int n_hw_ents) 1092 { 1093 struct usb_bus *bus; 1094 struct device *controller; 1095 1096 if (!dev 1097 || !(bus = dev->bus) 1098 || !(controller = bus->sysdev) 1099 || !controller->dma_mask) 1100 return; 1101 1102 dma_sync_sg_for_cpu(controller, sg, n_hw_ents, 1103 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1104 } 1105 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 1106 #endif 1107 1108 #if 0 1109 /** 1110 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 1111 * @dev: device to which the scatterlist will be mapped 1112 * @is_in: mapping transfer direction 1113 * @sg: the scatterlist to unmap 1114 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1115 * 1116 * Reverses the effect of usb_buffer_map_sg(). 1117 */ 1118 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1119 struct scatterlist *sg, int n_hw_ents) 1120 { 1121 struct usb_bus *bus; 1122 struct device *controller; 1123 1124 if (!dev 1125 || !(bus = dev->bus) 1126 || !(controller = bus->sysdev) 1127 || !controller->dma_mask) 1128 return; 1129 1130 dma_unmap_sg(controller, sg, n_hw_ents, 1131 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1132 } 1133 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 1134 #endif 1135 1136 /* 1137 * Notifications of device and interface registration 1138 */ 1139 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1140 void *data) 1141 { 1142 struct device *dev = data; 1143 1144 switch (action) { 1145 case BUS_NOTIFY_ADD_DEVICE: 1146 if (dev->type == &usb_device_type) 1147 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1148 else if (dev->type == &usb_if_device_type) 1149 usb_create_sysfs_intf_files(to_usb_interface(dev)); 1150 break; 1151 1152 case BUS_NOTIFY_DEL_DEVICE: 1153 if (dev->type == &usb_device_type) 1154 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1155 else if (dev->type == &usb_if_device_type) 1156 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1157 break; 1158 } 1159 return 0; 1160 } 1161 1162 static struct notifier_block usb_bus_nb = { 1163 .notifier_call = usb_bus_notify, 1164 }; 1165 1166 struct dentry *usb_debug_root; 1167 EXPORT_SYMBOL_GPL(usb_debug_root); 1168 1169 static struct dentry *usb_debug_devices; 1170 1171 static int usb_debugfs_init(void) 1172 { 1173 usb_debug_root = debugfs_create_dir("usb", NULL); 1174 if (!usb_debug_root) 1175 return -ENOENT; 1176 1177 usb_debug_devices = debugfs_create_file("devices", 0444, 1178 usb_debug_root, NULL, 1179 &usbfs_devices_fops); 1180 if (!usb_debug_devices) { 1181 debugfs_remove(usb_debug_root); 1182 usb_debug_root = NULL; 1183 return -ENOENT; 1184 } 1185 1186 return 0; 1187 } 1188 1189 static void usb_debugfs_cleanup(void) 1190 { 1191 debugfs_remove(usb_debug_devices); 1192 debugfs_remove(usb_debug_root); 1193 } 1194 1195 /* 1196 * Init 1197 */ 1198 static int __init usb_init(void) 1199 { 1200 int retval; 1201 if (usb_disabled()) { 1202 pr_info("%s: USB support disabled\n", usbcore_name); 1203 return 0; 1204 } 1205 usb_init_pool_max(); 1206 1207 retval = usb_debugfs_init(); 1208 if (retval) 1209 goto out; 1210 1211 usb_acpi_register(); 1212 retval = bus_register(&usb_bus_type); 1213 if (retval) 1214 goto bus_register_failed; 1215 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1216 if (retval) 1217 goto bus_notifier_failed; 1218 retval = usb_major_init(); 1219 if (retval) 1220 goto major_init_failed; 1221 retval = usb_register(&usbfs_driver); 1222 if (retval) 1223 goto driver_register_failed; 1224 retval = usb_devio_init(); 1225 if (retval) 1226 goto usb_devio_init_failed; 1227 retval = usb_hub_init(); 1228 if (retval) 1229 goto hub_init_failed; 1230 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1231 if (!retval) 1232 goto out; 1233 1234 usb_hub_cleanup(); 1235 hub_init_failed: 1236 usb_devio_cleanup(); 1237 usb_devio_init_failed: 1238 usb_deregister(&usbfs_driver); 1239 driver_register_failed: 1240 usb_major_cleanup(); 1241 major_init_failed: 1242 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1243 bus_notifier_failed: 1244 bus_unregister(&usb_bus_type); 1245 bus_register_failed: 1246 usb_acpi_unregister(); 1247 usb_debugfs_cleanup(); 1248 out: 1249 return retval; 1250 } 1251 1252 /* 1253 * Cleanup 1254 */ 1255 static void __exit usb_exit(void) 1256 { 1257 /* This will matter if shutdown/reboot does exitcalls. */ 1258 if (usb_disabled()) 1259 return; 1260 1261 usb_deregister_device_driver(&usb_generic_driver); 1262 usb_major_cleanup(); 1263 usb_deregister(&usbfs_driver); 1264 usb_devio_cleanup(); 1265 usb_hub_cleanup(); 1266 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1267 bus_unregister(&usb_bus_type); 1268 usb_acpi_unregister(); 1269 usb_debugfs_cleanup(); 1270 idr_destroy(&usb_bus_idr); 1271 } 1272 1273 subsys_initcall(usb_init); 1274 module_exit(usb_exit); 1275 MODULE_LICENSE("GPL"); 1276