xref: /openbmc/linux/drivers/usb/core/usb.c (revision e8e0929d)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37 #include <linux/debugfs.h>
38 
39 #include <asm/io.h>
40 #include <linux/scatterlist.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 
44 #include "hcd.h"
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static int nousb;	/* Disable USB when built into kernel image */
51 
52 /* Workqueue for autosuspend and for remote wakeup of root hubs */
53 struct workqueue_struct *ksuspend_usb_wq;
54 
55 #ifdef	CONFIG_USB_SUSPEND
56 static int usb_autosuspend_delay = 2;		/* Default delay value,
57 						 * in seconds */
58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
60 
61 #else
62 #define usb_autosuspend_delay		0
63 #endif
64 
65 
66 /**
67  * usb_ifnum_to_if - get the interface object with a given interface number
68  * @dev: the device whose current configuration is considered
69  * @ifnum: the desired interface
70  *
71  * This walks the device descriptor for the currently active configuration
72  * and returns a pointer to the interface with that particular interface
73  * number, or null.
74  *
75  * Note that configuration descriptors are not required to assign interface
76  * numbers sequentially, so that it would be incorrect to assume that
77  * the first interface in that descriptor corresponds to interface zero.
78  * This routine helps device drivers avoid such mistakes.
79  * However, you should make sure that you do the right thing with any
80  * alternate settings available for this interfaces.
81  *
82  * Don't call this function unless you are bound to one of the interfaces
83  * on this device or you have locked the device!
84  */
85 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
86 				      unsigned ifnum)
87 {
88 	struct usb_host_config *config = dev->actconfig;
89 	int i;
90 
91 	if (!config)
92 		return NULL;
93 	for (i = 0; i < config->desc.bNumInterfaces; i++)
94 		if (config->interface[i]->altsetting[0]
95 				.desc.bInterfaceNumber == ifnum)
96 			return config->interface[i];
97 
98 	return NULL;
99 }
100 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
101 
102 /**
103  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
104  * @intf: the interface containing the altsetting in question
105  * @altnum: the desired alternate setting number
106  *
107  * This searches the altsetting array of the specified interface for
108  * an entry with the correct bAlternateSetting value and returns a pointer
109  * to that entry, or null.
110  *
111  * Note that altsettings need not be stored sequentially by number, so
112  * it would be incorrect to assume that the first altsetting entry in
113  * the array corresponds to altsetting zero.  This routine helps device
114  * drivers avoid such mistakes.
115  *
116  * Don't call this function unless you are bound to the intf interface
117  * or you have locked the device!
118  */
119 struct usb_host_interface *usb_altnum_to_altsetting(
120 					const struct usb_interface *intf,
121 					unsigned int altnum)
122 {
123 	int i;
124 
125 	for (i = 0; i < intf->num_altsetting; i++) {
126 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
127 			return &intf->altsetting[i];
128 	}
129 	return NULL;
130 }
131 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
132 
133 struct find_interface_arg {
134 	int minor;
135 	struct usb_interface *interface;
136 };
137 
138 static int __find_interface(struct device *dev, void *data)
139 {
140 	struct find_interface_arg *arg = data;
141 	struct usb_interface *intf;
142 
143 	if (!is_usb_interface(dev))
144 		return 0;
145 
146 	intf = to_usb_interface(dev);
147 	if (intf->minor != -1 && intf->minor == arg->minor) {
148 		arg->interface = intf;
149 		return 1;
150 	}
151 	return 0;
152 }
153 
154 /**
155  * usb_find_interface - find usb_interface pointer for driver and device
156  * @drv: the driver whose current configuration is considered
157  * @minor: the minor number of the desired device
158  *
159  * This walks the driver device list and returns a pointer to the interface
160  * with the matching minor.  Note, this only works for devices that share the
161  * USB major number.
162  */
163 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
164 {
165 	struct find_interface_arg argb;
166 	int retval;
167 
168 	argb.minor = minor;
169 	argb.interface = NULL;
170 	/* eat the error, it will be in argb.interface */
171 	retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
172 					__find_interface);
173 	return argb.interface;
174 }
175 EXPORT_SYMBOL_GPL(usb_find_interface);
176 
177 /**
178  * usb_release_dev - free a usb device structure when all users of it are finished.
179  * @dev: device that's been disconnected
180  *
181  * Will be called only by the device core when all users of this usb device are
182  * done.
183  */
184 static void usb_release_dev(struct device *dev)
185 {
186 	struct usb_device *udev;
187 	struct usb_hcd *hcd;
188 
189 	udev = to_usb_device(dev);
190 	hcd = bus_to_hcd(udev->bus);
191 
192 	usb_destroy_configuration(udev);
193 	/* Root hubs aren't real devices, so don't free HCD resources */
194 	if (hcd->driver->free_dev && udev->parent)
195 		hcd->driver->free_dev(hcd, udev);
196 	usb_put_hcd(hcd);
197 	kfree(udev->product);
198 	kfree(udev->manufacturer);
199 	kfree(udev->serial);
200 	kfree(udev);
201 }
202 
203 #ifdef	CONFIG_HOTPLUG
204 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
205 {
206 	struct usb_device *usb_dev;
207 
208 	usb_dev = to_usb_device(dev);
209 
210 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
211 		return -ENOMEM;
212 
213 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
214 		return -ENOMEM;
215 
216 	return 0;
217 }
218 
219 #else
220 
221 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
222 {
223 	return -ENODEV;
224 }
225 #endif	/* CONFIG_HOTPLUG */
226 
227 #ifdef	CONFIG_PM
228 
229 static int ksuspend_usb_init(void)
230 {
231 	/* This workqueue is supposed to be both freezable and
232 	 * singlethreaded.  Its job doesn't justify running on more
233 	 * than one CPU.
234 	 */
235 	ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
236 	if (!ksuspend_usb_wq)
237 		return -ENOMEM;
238 	return 0;
239 }
240 
241 static void ksuspend_usb_cleanup(void)
242 {
243 	destroy_workqueue(ksuspend_usb_wq);
244 }
245 
246 /* USB device Power-Management thunks.
247  * There's no need to distinguish here between quiescing a USB device
248  * and powering it down; the generic_suspend() routine takes care of
249  * it by skipping the usb_port_suspend() call for a quiesce.  And for
250  * USB interfaces there's no difference at all.
251  */
252 
253 static int usb_dev_prepare(struct device *dev)
254 {
255 	return 0;		/* Implement eventually? */
256 }
257 
258 static void usb_dev_complete(struct device *dev)
259 {
260 	/* Currently used only for rebinding interfaces */
261 	usb_resume(dev, PMSG_RESUME);	/* Message event is meaningless */
262 }
263 
264 static int usb_dev_suspend(struct device *dev)
265 {
266 	return usb_suspend(dev, PMSG_SUSPEND);
267 }
268 
269 static int usb_dev_resume(struct device *dev)
270 {
271 	return usb_resume(dev, PMSG_RESUME);
272 }
273 
274 static int usb_dev_freeze(struct device *dev)
275 {
276 	return usb_suspend(dev, PMSG_FREEZE);
277 }
278 
279 static int usb_dev_thaw(struct device *dev)
280 {
281 	return usb_resume(dev, PMSG_THAW);
282 }
283 
284 static int usb_dev_poweroff(struct device *dev)
285 {
286 	return usb_suspend(dev, PMSG_HIBERNATE);
287 }
288 
289 static int usb_dev_restore(struct device *dev)
290 {
291 	return usb_resume(dev, PMSG_RESTORE);
292 }
293 
294 static struct dev_pm_ops usb_device_pm_ops = {
295 	.prepare =	usb_dev_prepare,
296 	.complete =	usb_dev_complete,
297 	.suspend =	usb_dev_suspend,
298 	.resume =	usb_dev_resume,
299 	.freeze =	usb_dev_freeze,
300 	.thaw =		usb_dev_thaw,
301 	.poweroff =	usb_dev_poweroff,
302 	.restore =	usb_dev_restore,
303 };
304 
305 #else
306 
307 #define ksuspend_usb_init()	0
308 #define ksuspend_usb_cleanup()	do {} while (0)
309 #define usb_device_pm_ops	(*(struct dev_pm_ops *)0)
310 
311 #endif	/* CONFIG_PM */
312 
313 
314 static char *usb_devnode(struct device *dev, mode_t *mode)
315 {
316 	struct usb_device *usb_dev;
317 
318 	usb_dev = to_usb_device(dev);
319 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
320 			 usb_dev->bus->busnum, usb_dev->devnum);
321 }
322 
323 struct device_type usb_device_type = {
324 	.name =		"usb_device",
325 	.release =	usb_release_dev,
326 	.uevent =	usb_dev_uevent,
327 	.devnode = 	usb_devnode,
328 	.pm =		&usb_device_pm_ops,
329 };
330 
331 
332 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
333 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
334 {
335 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
336 	return hcd->wireless;
337 }
338 
339 
340 /**
341  * usb_alloc_dev - usb device constructor (usbcore-internal)
342  * @parent: hub to which device is connected; null to allocate a root hub
343  * @bus: bus used to access the device
344  * @port1: one-based index of port; ignored for root hubs
345  * Context: !in_interrupt()
346  *
347  * Only hub drivers (including virtual root hub drivers for host
348  * controllers) should ever call this.
349  *
350  * This call may not be used in a non-sleeping context.
351  */
352 struct usb_device *usb_alloc_dev(struct usb_device *parent,
353 				 struct usb_bus *bus, unsigned port1)
354 {
355 	struct usb_device *dev;
356 	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
357 	unsigned root_hub = 0;
358 
359 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
360 	if (!dev)
361 		return NULL;
362 
363 	if (!usb_get_hcd(bus_to_hcd(bus))) {
364 		kfree(dev);
365 		return NULL;
366 	}
367 	/* Root hubs aren't true devices, so don't allocate HCD resources */
368 	if (usb_hcd->driver->alloc_dev && parent &&
369 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
370 		usb_put_hcd(bus_to_hcd(bus));
371 		kfree(dev);
372 		return NULL;
373 	}
374 
375 	device_initialize(&dev->dev);
376 	dev->dev.bus = &usb_bus_type;
377 	dev->dev.type = &usb_device_type;
378 	dev->dev.groups = usb_device_groups;
379 	dev->dev.dma_mask = bus->controller->dma_mask;
380 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
381 	dev->state = USB_STATE_ATTACHED;
382 	atomic_set(&dev->urbnum, 0);
383 
384 	INIT_LIST_HEAD(&dev->ep0.urb_list);
385 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
386 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
387 	/* ep0 maxpacket comes later, from device descriptor */
388 	usb_enable_endpoint(dev, &dev->ep0, false);
389 	dev->can_submit = 1;
390 
391 	/* Save readable and stable topology id, distinguishing devices
392 	 * by location for diagnostics, tools, driver model, etc.  The
393 	 * string is a path along hub ports, from the root.  Each device's
394 	 * dev->devpath will be stable until USB is re-cabled, and hubs
395 	 * are often labeled with these port numbers.  The name isn't
396 	 * as stable:  bus->busnum changes easily from modprobe order,
397 	 * cardbus or pci hotplugging, and so on.
398 	 */
399 	if (unlikely(!parent)) {
400 		dev->devpath[0] = '0';
401 		dev->route = 0;
402 
403 		dev->dev.parent = bus->controller;
404 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
405 		root_hub = 1;
406 	} else {
407 		/* match any labeling on the hubs; it's one-based */
408 		if (parent->devpath[0] == '0') {
409 			snprintf(dev->devpath, sizeof dev->devpath,
410 				"%d", port1);
411 			/* Root ports are not counted in route string */
412 			dev->route = 0;
413 		} else {
414 			snprintf(dev->devpath, sizeof dev->devpath,
415 				"%s.%d", parent->devpath, port1);
416 			/* Route string assumes hubs have less than 16 ports */
417 			if (port1 < 15)
418 				dev->route = parent->route +
419 					(port1 << ((parent->level - 1)*4));
420 			else
421 				dev->route = parent->route +
422 					(15 << ((parent->level - 1)*4));
423 		}
424 
425 		dev->dev.parent = &parent->dev;
426 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
427 
428 		/* hub driver sets up TT records */
429 	}
430 
431 	dev->portnum = port1;
432 	dev->bus = bus;
433 	dev->parent = parent;
434 	INIT_LIST_HEAD(&dev->filelist);
435 
436 #ifdef	CONFIG_PM
437 	mutex_init(&dev->pm_mutex);
438 	INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
439 	INIT_WORK(&dev->autoresume, usb_autoresume_work);
440 	dev->autosuspend_delay = usb_autosuspend_delay * HZ;
441 	dev->connect_time = jiffies;
442 	dev->active_duration = -jiffies;
443 #endif
444 	if (root_hub)	/* Root hub always ok [and always wired] */
445 		dev->authorized = 1;
446 	else {
447 		dev->authorized = usb_hcd->authorized_default;
448 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
449 	}
450 	return dev;
451 }
452 
453 /**
454  * usb_get_dev - increments the reference count of the usb device structure
455  * @dev: the device being referenced
456  *
457  * Each live reference to a device should be refcounted.
458  *
459  * Drivers for USB interfaces should normally record such references in
460  * their probe() methods, when they bind to an interface, and release
461  * them by calling usb_put_dev(), in their disconnect() methods.
462  *
463  * A pointer to the device with the incremented reference counter is returned.
464  */
465 struct usb_device *usb_get_dev(struct usb_device *dev)
466 {
467 	if (dev)
468 		get_device(&dev->dev);
469 	return dev;
470 }
471 EXPORT_SYMBOL_GPL(usb_get_dev);
472 
473 /**
474  * usb_put_dev - release a use of the usb device structure
475  * @dev: device that's been disconnected
476  *
477  * Must be called when a user of a device is finished with it.  When the last
478  * user of the device calls this function, the memory of the device is freed.
479  */
480 void usb_put_dev(struct usb_device *dev)
481 {
482 	if (dev)
483 		put_device(&dev->dev);
484 }
485 EXPORT_SYMBOL_GPL(usb_put_dev);
486 
487 /**
488  * usb_get_intf - increments the reference count of the usb interface structure
489  * @intf: the interface being referenced
490  *
491  * Each live reference to a interface must be refcounted.
492  *
493  * Drivers for USB interfaces should normally record such references in
494  * their probe() methods, when they bind to an interface, and release
495  * them by calling usb_put_intf(), in their disconnect() methods.
496  *
497  * A pointer to the interface with the incremented reference counter is
498  * returned.
499  */
500 struct usb_interface *usb_get_intf(struct usb_interface *intf)
501 {
502 	if (intf)
503 		get_device(&intf->dev);
504 	return intf;
505 }
506 EXPORT_SYMBOL_GPL(usb_get_intf);
507 
508 /**
509  * usb_put_intf - release a use of the usb interface structure
510  * @intf: interface that's been decremented
511  *
512  * Must be called when a user of an interface is finished with it.  When the
513  * last user of the interface calls this function, the memory of the interface
514  * is freed.
515  */
516 void usb_put_intf(struct usb_interface *intf)
517 {
518 	if (intf)
519 		put_device(&intf->dev);
520 }
521 EXPORT_SYMBOL_GPL(usb_put_intf);
522 
523 /*			USB device locking
524  *
525  * USB devices and interfaces are locked using the semaphore in their
526  * embedded struct device.  The hub driver guarantees that whenever a
527  * device is connected or disconnected, drivers are called with the
528  * USB device locked as well as their particular interface.
529  *
530  * Complications arise when several devices are to be locked at the same
531  * time.  Only hub-aware drivers that are part of usbcore ever have to
532  * do this; nobody else needs to worry about it.  The rule for locking
533  * is simple:
534  *
535  *	When locking both a device and its parent, always lock the
536  *	the parent first.
537  */
538 
539 /**
540  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
541  * @udev: device that's being locked
542  * @iface: interface bound to the driver making the request (optional)
543  *
544  * Attempts to acquire the device lock, but fails if the device is
545  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
546  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
547  * lock, the routine polls repeatedly.  This is to prevent deadlock with
548  * disconnect; in some drivers (such as usb-storage) the disconnect()
549  * or suspend() method will block waiting for a device reset to complete.
550  *
551  * Returns a negative error code for failure, otherwise 0.
552  */
553 int usb_lock_device_for_reset(struct usb_device *udev,
554 			      const struct usb_interface *iface)
555 {
556 	unsigned long jiffies_expire = jiffies + HZ;
557 
558 	if (udev->state == USB_STATE_NOTATTACHED)
559 		return -ENODEV;
560 	if (udev->state == USB_STATE_SUSPENDED)
561 		return -EHOSTUNREACH;
562 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
563 			iface->condition == USB_INTERFACE_UNBOUND))
564 		return -EINTR;
565 
566 	while (usb_trylock_device(udev) != 0) {
567 
568 		/* If we can't acquire the lock after waiting one second,
569 		 * we're probably deadlocked */
570 		if (time_after(jiffies, jiffies_expire))
571 			return -EBUSY;
572 
573 		msleep(15);
574 		if (udev->state == USB_STATE_NOTATTACHED)
575 			return -ENODEV;
576 		if (udev->state == USB_STATE_SUSPENDED)
577 			return -EHOSTUNREACH;
578 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
579 				iface->condition == USB_INTERFACE_UNBOUND))
580 			return -EINTR;
581 	}
582 	return 0;
583 }
584 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
585 
586 static struct usb_device *match_device(struct usb_device *dev,
587 				       u16 vendor_id, u16 product_id)
588 {
589 	struct usb_device *ret_dev = NULL;
590 	int child;
591 
592 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
593 	    le16_to_cpu(dev->descriptor.idVendor),
594 	    le16_to_cpu(dev->descriptor.idProduct));
595 
596 	/* see if this device matches */
597 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
598 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
599 		dev_dbg(&dev->dev, "matched this device!\n");
600 		ret_dev = usb_get_dev(dev);
601 		goto exit;
602 	}
603 
604 	/* look through all of the children of this device */
605 	for (child = 0; child < dev->maxchild; ++child) {
606 		if (dev->children[child]) {
607 			usb_lock_device(dev->children[child]);
608 			ret_dev = match_device(dev->children[child],
609 					       vendor_id, product_id);
610 			usb_unlock_device(dev->children[child]);
611 			if (ret_dev)
612 				goto exit;
613 		}
614 	}
615 exit:
616 	return ret_dev;
617 }
618 
619 /**
620  * usb_find_device - find a specific usb device in the system
621  * @vendor_id: the vendor id of the device to find
622  * @product_id: the product id of the device to find
623  *
624  * Returns a pointer to a struct usb_device if such a specified usb
625  * device is present in the system currently.  The usage count of the
626  * device will be incremented if a device is found.  Make sure to call
627  * usb_put_dev() when the caller is finished with the device.
628  *
629  * If a device with the specified vendor and product id is not found,
630  * NULL is returned.
631  */
632 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
633 {
634 	struct list_head *buslist;
635 	struct usb_bus *bus;
636 	struct usb_device *dev = NULL;
637 
638 	mutex_lock(&usb_bus_list_lock);
639 	for (buslist = usb_bus_list.next;
640 	     buslist != &usb_bus_list;
641 	     buslist = buslist->next) {
642 		bus = container_of(buslist, struct usb_bus, bus_list);
643 		if (!bus->root_hub)
644 			continue;
645 		usb_lock_device(bus->root_hub);
646 		dev = match_device(bus->root_hub, vendor_id, product_id);
647 		usb_unlock_device(bus->root_hub);
648 		if (dev)
649 			goto exit;
650 	}
651 exit:
652 	mutex_unlock(&usb_bus_list_lock);
653 	return dev;
654 }
655 
656 /**
657  * usb_get_current_frame_number - return current bus frame number
658  * @dev: the device whose bus is being queried
659  *
660  * Returns the current frame number for the USB host controller
661  * used with the given USB device.  This can be used when scheduling
662  * isochronous requests.
663  *
664  * Note that different kinds of host controller have different
665  * "scheduling horizons".  While one type might support scheduling only
666  * 32 frames into the future, others could support scheduling up to
667  * 1024 frames into the future.
668  */
669 int usb_get_current_frame_number(struct usb_device *dev)
670 {
671 	return usb_hcd_get_frame_number(dev);
672 }
673 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
674 
675 /*-------------------------------------------------------------------*/
676 /*
677  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
678  * extra field of the interface and endpoint descriptor structs.
679  */
680 
681 int __usb_get_extra_descriptor(char *buffer, unsigned size,
682 			       unsigned char type, void **ptr)
683 {
684 	struct usb_descriptor_header *header;
685 
686 	while (size >= sizeof(struct usb_descriptor_header)) {
687 		header = (struct usb_descriptor_header *)buffer;
688 
689 		if (header->bLength < 2) {
690 			printk(KERN_ERR
691 				"%s: bogus descriptor, type %d length %d\n",
692 				usbcore_name,
693 				header->bDescriptorType,
694 				header->bLength);
695 			return -1;
696 		}
697 
698 		if (header->bDescriptorType == type) {
699 			*ptr = header;
700 			return 0;
701 		}
702 
703 		buffer += header->bLength;
704 		size -= header->bLength;
705 	}
706 	return -1;
707 }
708 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
709 
710 /**
711  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
712  * @dev: device the buffer will be used with
713  * @size: requested buffer size
714  * @mem_flags: affect whether allocation may block
715  * @dma: used to return DMA address of buffer
716  *
717  * Return value is either null (indicating no buffer could be allocated), or
718  * the cpu-space pointer to a buffer that may be used to perform DMA to the
719  * specified device.  Such cpu-space buffers are returned along with the DMA
720  * address (through the pointer provided).
721  *
722  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
723  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
724  * hardware during URB completion/resubmit.  The implementation varies between
725  * platforms, depending on details of how DMA will work to this device.
726  * Using these buffers also eliminates cacheline sharing problems on
727  * architectures where CPU caches are not DMA-coherent.  On systems without
728  * bus-snooping caches, these buffers are uncached.
729  *
730  * When the buffer is no longer used, free it with usb_buffer_free().
731  */
732 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags,
733 		       dma_addr_t *dma)
734 {
735 	if (!dev || !dev->bus)
736 		return NULL;
737 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
738 }
739 EXPORT_SYMBOL_GPL(usb_buffer_alloc);
740 
741 /**
742  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
743  * @dev: device the buffer was used with
744  * @size: requested buffer size
745  * @addr: CPU address of buffer
746  * @dma: DMA address of buffer
747  *
748  * This reclaims an I/O buffer, letting it be reused.  The memory must have
749  * been allocated using usb_buffer_alloc(), and the parameters must match
750  * those provided in that allocation request.
751  */
752 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr,
753 		     dma_addr_t dma)
754 {
755 	if (!dev || !dev->bus)
756 		return;
757 	if (!addr)
758 		return;
759 	hcd_buffer_free(dev->bus, size, addr, dma);
760 }
761 EXPORT_SYMBOL_GPL(usb_buffer_free);
762 
763 /**
764  * usb_buffer_map - create DMA mapping(s) for an urb
765  * @urb: urb whose transfer_buffer/setup_packet will be mapped
766  *
767  * Return value is either null (indicating no buffer could be mapped), or
768  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
769  * added to urb->transfer_flags if the operation succeeds.  If the device
770  * is connected to this system through a non-DMA controller, this operation
771  * always succeeds.
772  *
773  * This call would normally be used for an urb which is reused, perhaps
774  * as the target of a large periodic transfer, with usb_buffer_dmasync()
775  * calls to synchronize memory and dma state.
776  *
777  * Reverse the effect of this call with usb_buffer_unmap().
778  */
779 #if 0
780 struct urb *usb_buffer_map(struct urb *urb)
781 {
782 	struct usb_bus		*bus;
783 	struct device		*controller;
784 
785 	if (!urb
786 			|| !urb->dev
787 			|| !(bus = urb->dev->bus)
788 			|| !(controller = bus->controller))
789 		return NULL;
790 
791 	if (controller->dma_mask) {
792 		urb->transfer_dma = dma_map_single(controller,
793 			urb->transfer_buffer, urb->transfer_buffer_length,
794 			usb_pipein(urb->pipe)
795 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
796 		if (usb_pipecontrol(urb->pipe))
797 			urb->setup_dma = dma_map_single(controller,
798 					urb->setup_packet,
799 					sizeof(struct usb_ctrlrequest),
800 					DMA_TO_DEVICE);
801 	/* FIXME generic api broken like pci, can't report errors */
802 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
803 	} else
804 		urb->transfer_dma = ~0;
805 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
806 				| URB_NO_SETUP_DMA_MAP);
807 	return urb;
808 }
809 EXPORT_SYMBOL_GPL(usb_buffer_map);
810 #endif  /*  0  */
811 
812 /* XXX DISABLED, no users currently.  If you wish to re-enable this
813  * XXX please determine whether the sync is to transfer ownership of
814  * XXX the buffer from device to cpu or vice verse, and thusly use the
815  * XXX appropriate _for_{cpu,device}() method.  -DaveM
816  */
817 #if 0
818 
819 /**
820  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
821  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
822  */
823 void usb_buffer_dmasync(struct urb *urb)
824 {
825 	struct usb_bus		*bus;
826 	struct device		*controller;
827 
828 	if (!urb
829 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
830 			|| !urb->dev
831 			|| !(bus = urb->dev->bus)
832 			|| !(controller = bus->controller))
833 		return;
834 
835 	if (controller->dma_mask) {
836 		dma_sync_single_for_cpu(controller,
837 			urb->transfer_dma, urb->transfer_buffer_length,
838 			usb_pipein(urb->pipe)
839 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
840 		if (usb_pipecontrol(urb->pipe))
841 			dma_sync_single_for_cpu(controller,
842 					urb->setup_dma,
843 					sizeof(struct usb_ctrlrequest),
844 					DMA_TO_DEVICE);
845 	}
846 }
847 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
848 #endif
849 
850 /**
851  * usb_buffer_unmap - free DMA mapping(s) for an urb
852  * @urb: urb whose transfer_buffer will be unmapped
853  *
854  * Reverses the effect of usb_buffer_map().
855  */
856 #if 0
857 void usb_buffer_unmap(struct urb *urb)
858 {
859 	struct usb_bus		*bus;
860 	struct device		*controller;
861 
862 	if (!urb
863 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
864 			|| !urb->dev
865 			|| !(bus = urb->dev->bus)
866 			|| !(controller = bus->controller))
867 		return;
868 
869 	if (controller->dma_mask) {
870 		dma_unmap_single(controller,
871 			urb->transfer_dma, urb->transfer_buffer_length,
872 			usb_pipein(urb->pipe)
873 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
874 		if (usb_pipecontrol(urb->pipe))
875 			dma_unmap_single(controller,
876 					urb->setup_dma,
877 					sizeof(struct usb_ctrlrequest),
878 					DMA_TO_DEVICE);
879 	}
880 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
881 				| URB_NO_SETUP_DMA_MAP);
882 }
883 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
884 #endif  /*  0  */
885 
886 /**
887  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
888  * @dev: device to which the scatterlist will be mapped
889  * @is_in: mapping transfer direction
890  * @sg: the scatterlist to map
891  * @nents: the number of entries in the scatterlist
892  *
893  * Return value is either < 0 (indicating no buffers could be mapped), or
894  * the number of DMA mapping array entries in the scatterlist.
895  *
896  * The caller is responsible for placing the resulting DMA addresses from
897  * the scatterlist into URB transfer buffer pointers, and for setting the
898  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
899  *
900  * Top I/O rates come from queuing URBs, instead of waiting for each one
901  * to complete before starting the next I/O.   This is particularly easy
902  * to do with scatterlists.  Just allocate and submit one URB for each DMA
903  * mapping entry returned, stopping on the first error or when all succeed.
904  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
905  *
906  * This call would normally be used when translating scatterlist requests,
907  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
908  * may be able to coalesce mappings for improved I/O efficiency.
909  *
910  * Reverse the effect of this call with usb_buffer_unmap_sg().
911  */
912 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
913 		      struct scatterlist *sg, int nents)
914 {
915 	struct usb_bus		*bus;
916 	struct device		*controller;
917 
918 	if (!dev
919 			|| !(bus = dev->bus)
920 			|| !(controller = bus->controller)
921 			|| !controller->dma_mask)
922 		return -EINVAL;
923 
924 	/* FIXME generic api broken like pci, can't report errors */
925 	return dma_map_sg(controller, sg, nents,
926 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
927 }
928 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
929 
930 /* XXX DISABLED, no users currently.  If you wish to re-enable this
931  * XXX please determine whether the sync is to transfer ownership of
932  * XXX the buffer from device to cpu or vice verse, and thusly use the
933  * XXX appropriate _for_{cpu,device}() method.  -DaveM
934  */
935 #if 0
936 
937 /**
938  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
939  * @dev: device to which the scatterlist will be mapped
940  * @is_in: mapping transfer direction
941  * @sg: the scatterlist to synchronize
942  * @n_hw_ents: the positive return value from usb_buffer_map_sg
943  *
944  * Use this when you are re-using a scatterlist's data buffers for
945  * another USB request.
946  */
947 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
948 			   struct scatterlist *sg, int n_hw_ents)
949 {
950 	struct usb_bus		*bus;
951 	struct device		*controller;
952 
953 	if (!dev
954 			|| !(bus = dev->bus)
955 			|| !(controller = bus->controller)
956 			|| !controller->dma_mask)
957 		return;
958 
959 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
960 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
961 }
962 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
963 #endif
964 
965 /**
966  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
967  * @dev: device to which the scatterlist will be mapped
968  * @is_in: mapping transfer direction
969  * @sg: the scatterlist to unmap
970  * @n_hw_ents: the positive return value from usb_buffer_map_sg
971  *
972  * Reverses the effect of usb_buffer_map_sg().
973  */
974 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
975 			 struct scatterlist *sg, int n_hw_ents)
976 {
977 	struct usb_bus		*bus;
978 	struct device		*controller;
979 
980 	if (!dev
981 			|| !(bus = dev->bus)
982 			|| !(controller = bus->controller)
983 			|| !controller->dma_mask)
984 		return;
985 
986 	dma_unmap_sg(controller, sg, n_hw_ents,
987 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
988 }
989 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
990 
991 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
992 #ifdef MODULE
993 module_param(nousb, bool, 0444);
994 #else
995 core_param(nousb, nousb, bool, 0444);
996 #endif
997 
998 /*
999  * for external read access to <nousb>
1000  */
1001 int usb_disabled(void)
1002 {
1003 	return nousb;
1004 }
1005 EXPORT_SYMBOL_GPL(usb_disabled);
1006 
1007 /*
1008  * Notifications of device and interface registration
1009  */
1010 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1011 		void *data)
1012 {
1013 	struct device *dev = data;
1014 
1015 	switch (action) {
1016 	case BUS_NOTIFY_ADD_DEVICE:
1017 		if (dev->type == &usb_device_type)
1018 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1019 		else if (dev->type == &usb_if_device_type)
1020 			(void) usb_create_sysfs_intf_files(
1021 					to_usb_interface(dev));
1022 		break;
1023 
1024 	case BUS_NOTIFY_DEL_DEVICE:
1025 		if (dev->type == &usb_device_type)
1026 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1027 		else if (dev->type == &usb_if_device_type)
1028 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1029 		break;
1030 	}
1031 	return 0;
1032 }
1033 
1034 static struct notifier_block usb_bus_nb = {
1035 	.notifier_call = usb_bus_notify,
1036 };
1037 
1038 struct dentry *usb_debug_root;
1039 EXPORT_SYMBOL_GPL(usb_debug_root);
1040 
1041 struct dentry *usb_debug_devices;
1042 
1043 static int usb_debugfs_init(void)
1044 {
1045 	usb_debug_root = debugfs_create_dir("usb", NULL);
1046 	if (!usb_debug_root)
1047 		return -ENOENT;
1048 
1049 	usb_debug_devices = debugfs_create_file("devices", 0444,
1050 						usb_debug_root, NULL,
1051 						&usbfs_devices_fops);
1052 	if (!usb_debug_devices) {
1053 		debugfs_remove(usb_debug_root);
1054 		usb_debug_root = NULL;
1055 		return -ENOENT;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static void usb_debugfs_cleanup(void)
1062 {
1063 	debugfs_remove(usb_debug_devices);
1064 	debugfs_remove(usb_debug_root);
1065 }
1066 
1067 /*
1068  * Init
1069  */
1070 static int __init usb_init(void)
1071 {
1072 	int retval;
1073 	if (nousb) {
1074 		pr_info("%s: USB support disabled\n", usbcore_name);
1075 		return 0;
1076 	}
1077 
1078 	retval = usb_debugfs_init();
1079 	if (retval)
1080 		goto out;
1081 
1082 	retval = ksuspend_usb_init();
1083 	if (retval)
1084 		goto out;
1085 	retval = bus_register(&usb_bus_type);
1086 	if (retval)
1087 		goto bus_register_failed;
1088 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1089 	if (retval)
1090 		goto bus_notifier_failed;
1091 	retval = usb_major_init();
1092 	if (retval)
1093 		goto major_init_failed;
1094 	retval = usb_register(&usbfs_driver);
1095 	if (retval)
1096 		goto driver_register_failed;
1097 	retval = usb_devio_init();
1098 	if (retval)
1099 		goto usb_devio_init_failed;
1100 	retval = usbfs_init();
1101 	if (retval)
1102 		goto fs_init_failed;
1103 	retval = usb_hub_init();
1104 	if (retval)
1105 		goto hub_init_failed;
1106 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1107 	if (!retval)
1108 		goto out;
1109 
1110 	usb_hub_cleanup();
1111 hub_init_failed:
1112 	usbfs_cleanup();
1113 fs_init_failed:
1114 	usb_devio_cleanup();
1115 usb_devio_init_failed:
1116 	usb_deregister(&usbfs_driver);
1117 driver_register_failed:
1118 	usb_major_cleanup();
1119 major_init_failed:
1120 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1121 bus_notifier_failed:
1122 	bus_unregister(&usb_bus_type);
1123 bus_register_failed:
1124 	ksuspend_usb_cleanup();
1125 out:
1126 	return retval;
1127 }
1128 
1129 /*
1130  * Cleanup
1131  */
1132 static void __exit usb_exit(void)
1133 {
1134 	/* This will matter if shutdown/reboot does exitcalls. */
1135 	if (nousb)
1136 		return;
1137 
1138 	usb_deregister_device_driver(&usb_generic_driver);
1139 	usb_major_cleanup();
1140 	usbfs_cleanup();
1141 	usb_deregister(&usbfs_driver);
1142 	usb_devio_cleanup();
1143 	usb_hub_cleanup();
1144 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1145 	bus_unregister(&usb_bus_type);
1146 	ksuspend_usb_cleanup();
1147 	usb_debugfs_cleanup();
1148 }
1149 
1150 subsys_initcall(usb_init);
1151 module_exit(usb_exit);
1152 MODULE_LICENSE("GPL");
1153