1 /* 2 * drivers/usb/core/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/string.h> 27 #include <linux/bitops.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> /* for in_interrupt() */ 30 #include <linux/kmod.h> 31 #include <linux/init.h> 32 #include <linux/spinlock.h> 33 #include <linux/errno.h> 34 #include <linux/usb.h> 35 #include <linux/mutex.h> 36 #include <linux/workqueue.h> 37 #include <linux/debugfs.h> 38 39 #include <asm/io.h> 40 #include <linux/scatterlist.h> 41 #include <linux/mm.h> 42 #include <linux/dma-mapping.h> 43 44 #include "hcd.h" 45 #include "usb.h" 46 47 48 const char *usbcore_name = "usbcore"; 49 50 static int nousb; /* Disable USB when built into kernel image */ 51 52 /* Workqueue for autosuspend and for remote wakeup of root hubs */ 53 struct workqueue_struct *ksuspend_usb_wq; 54 55 #ifdef CONFIG_USB_SUSPEND 56 static int usb_autosuspend_delay = 2; /* Default delay value, 57 * in seconds */ 58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 60 61 #else 62 #define usb_autosuspend_delay 0 63 #endif 64 65 66 /** 67 * usb_ifnum_to_if - get the interface object with a given interface number 68 * @dev: the device whose current configuration is considered 69 * @ifnum: the desired interface 70 * 71 * This walks the device descriptor for the currently active configuration 72 * and returns a pointer to the interface with that particular interface 73 * number, or null. 74 * 75 * Note that configuration descriptors are not required to assign interface 76 * numbers sequentially, so that it would be incorrect to assume that 77 * the first interface in that descriptor corresponds to interface zero. 78 * This routine helps device drivers avoid such mistakes. 79 * However, you should make sure that you do the right thing with any 80 * alternate settings available for this interfaces. 81 * 82 * Don't call this function unless you are bound to one of the interfaces 83 * on this device or you have locked the device! 84 */ 85 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 86 unsigned ifnum) 87 { 88 struct usb_host_config *config = dev->actconfig; 89 int i; 90 91 if (!config) 92 return NULL; 93 for (i = 0; i < config->desc.bNumInterfaces; i++) 94 if (config->interface[i]->altsetting[0] 95 .desc.bInterfaceNumber == ifnum) 96 return config->interface[i]; 97 98 return NULL; 99 } 100 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 101 102 /** 103 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 104 * @intf: the interface containing the altsetting in question 105 * @altnum: the desired alternate setting number 106 * 107 * This searches the altsetting array of the specified interface for 108 * an entry with the correct bAlternateSetting value and returns a pointer 109 * to that entry, or null. 110 * 111 * Note that altsettings need not be stored sequentially by number, so 112 * it would be incorrect to assume that the first altsetting entry in 113 * the array corresponds to altsetting zero. This routine helps device 114 * drivers avoid such mistakes. 115 * 116 * Don't call this function unless you are bound to the intf interface 117 * or you have locked the device! 118 */ 119 struct usb_host_interface *usb_altnum_to_altsetting( 120 const struct usb_interface *intf, 121 unsigned int altnum) 122 { 123 int i; 124 125 for (i = 0; i < intf->num_altsetting; i++) { 126 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 127 return &intf->altsetting[i]; 128 } 129 return NULL; 130 } 131 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 132 133 struct find_interface_arg { 134 int minor; 135 struct usb_interface *interface; 136 }; 137 138 static int __find_interface(struct device *dev, void *data) 139 { 140 struct find_interface_arg *arg = data; 141 struct usb_interface *intf; 142 143 if (!is_usb_interface(dev)) 144 return 0; 145 146 intf = to_usb_interface(dev); 147 if (intf->minor != -1 && intf->minor == arg->minor) { 148 arg->interface = intf; 149 return 1; 150 } 151 return 0; 152 } 153 154 /** 155 * usb_find_interface - find usb_interface pointer for driver and device 156 * @drv: the driver whose current configuration is considered 157 * @minor: the minor number of the desired device 158 * 159 * This walks the driver device list and returns a pointer to the interface 160 * with the matching minor. Note, this only works for devices that share the 161 * USB major number. 162 */ 163 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 164 { 165 struct find_interface_arg argb; 166 int retval; 167 168 argb.minor = minor; 169 argb.interface = NULL; 170 /* eat the error, it will be in argb.interface */ 171 retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb, 172 __find_interface); 173 return argb.interface; 174 } 175 EXPORT_SYMBOL_GPL(usb_find_interface); 176 177 /** 178 * usb_release_dev - free a usb device structure when all users of it are finished. 179 * @dev: device that's been disconnected 180 * 181 * Will be called only by the device core when all users of this usb device are 182 * done. 183 */ 184 static void usb_release_dev(struct device *dev) 185 { 186 struct usb_device *udev; 187 struct usb_hcd *hcd; 188 189 udev = to_usb_device(dev); 190 hcd = bus_to_hcd(udev->bus); 191 192 usb_destroy_configuration(udev); 193 /* Root hubs aren't real devices, so don't free HCD resources */ 194 if (hcd->driver->free_dev && udev->parent) 195 hcd->driver->free_dev(hcd, udev); 196 usb_put_hcd(hcd); 197 kfree(udev->product); 198 kfree(udev->manufacturer); 199 kfree(udev->serial); 200 kfree(udev); 201 } 202 203 #ifdef CONFIG_HOTPLUG 204 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 205 { 206 struct usb_device *usb_dev; 207 208 usb_dev = to_usb_device(dev); 209 210 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 211 return -ENOMEM; 212 213 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 214 return -ENOMEM; 215 216 return 0; 217 } 218 219 #else 220 221 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 222 { 223 return -ENODEV; 224 } 225 #endif /* CONFIG_HOTPLUG */ 226 227 #ifdef CONFIG_PM 228 229 static int ksuspend_usb_init(void) 230 { 231 /* This workqueue is supposed to be both freezable and 232 * singlethreaded. Its job doesn't justify running on more 233 * than one CPU. 234 */ 235 ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd"); 236 if (!ksuspend_usb_wq) 237 return -ENOMEM; 238 return 0; 239 } 240 241 static void ksuspend_usb_cleanup(void) 242 { 243 destroy_workqueue(ksuspend_usb_wq); 244 } 245 246 /* USB device Power-Management thunks. 247 * There's no need to distinguish here between quiescing a USB device 248 * and powering it down; the generic_suspend() routine takes care of 249 * it by skipping the usb_port_suspend() call for a quiesce. And for 250 * USB interfaces there's no difference at all. 251 */ 252 253 static int usb_dev_prepare(struct device *dev) 254 { 255 return 0; /* Implement eventually? */ 256 } 257 258 static void usb_dev_complete(struct device *dev) 259 { 260 /* Currently used only for rebinding interfaces */ 261 usb_resume(dev, PMSG_RESUME); /* Message event is meaningless */ 262 } 263 264 static int usb_dev_suspend(struct device *dev) 265 { 266 return usb_suspend(dev, PMSG_SUSPEND); 267 } 268 269 static int usb_dev_resume(struct device *dev) 270 { 271 return usb_resume(dev, PMSG_RESUME); 272 } 273 274 static int usb_dev_freeze(struct device *dev) 275 { 276 return usb_suspend(dev, PMSG_FREEZE); 277 } 278 279 static int usb_dev_thaw(struct device *dev) 280 { 281 return usb_resume(dev, PMSG_THAW); 282 } 283 284 static int usb_dev_poweroff(struct device *dev) 285 { 286 return usb_suspend(dev, PMSG_HIBERNATE); 287 } 288 289 static int usb_dev_restore(struct device *dev) 290 { 291 return usb_resume(dev, PMSG_RESTORE); 292 } 293 294 static struct dev_pm_ops usb_device_pm_ops = { 295 .prepare = usb_dev_prepare, 296 .complete = usb_dev_complete, 297 .suspend = usb_dev_suspend, 298 .resume = usb_dev_resume, 299 .freeze = usb_dev_freeze, 300 .thaw = usb_dev_thaw, 301 .poweroff = usb_dev_poweroff, 302 .restore = usb_dev_restore, 303 }; 304 305 #else 306 307 #define ksuspend_usb_init() 0 308 #define ksuspend_usb_cleanup() do {} while (0) 309 #define usb_device_pm_ops (*(struct dev_pm_ops *)0) 310 311 #endif /* CONFIG_PM */ 312 313 314 static char *usb_devnode(struct device *dev, mode_t *mode) 315 { 316 struct usb_device *usb_dev; 317 318 usb_dev = to_usb_device(dev); 319 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 320 usb_dev->bus->busnum, usb_dev->devnum); 321 } 322 323 struct device_type usb_device_type = { 324 .name = "usb_device", 325 .release = usb_release_dev, 326 .uevent = usb_dev_uevent, 327 .devnode = usb_devnode, 328 .pm = &usb_device_pm_ops, 329 }; 330 331 332 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 333 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 334 { 335 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self); 336 return hcd->wireless; 337 } 338 339 340 /** 341 * usb_alloc_dev - usb device constructor (usbcore-internal) 342 * @parent: hub to which device is connected; null to allocate a root hub 343 * @bus: bus used to access the device 344 * @port1: one-based index of port; ignored for root hubs 345 * Context: !in_interrupt() 346 * 347 * Only hub drivers (including virtual root hub drivers for host 348 * controllers) should ever call this. 349 * 350 * This call may not be used in a non-sleeping context. 351 */ 352 struct usb_device *usb_alloc_dev(struct usb_device *parent, 353 struct usb_bus *bus, unsigned port1) 354 { 355 struct usb_device *dev; 356 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self); 357 unsigned root_hub = 0; 358 359 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 360 if (!dev) 361 return NULL; 362 363 if (!usb_get_hcd(bus_to_hcd(bus))) { 364 kfree(dev); 365 return NULL; 366 } 367 /* Root hubs aren't true devices, so don't allocate HCD resources */ 368 if (usb_hcd->driver->alloc_dev && parent && 369 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 370 usb_put_hcd(bus_to_hcd(bus)); 371 kfree(dev); 372 return NULL; 373 } 374 375 device_initialize(&dev->dev); 376 dev->dev.bus = &usb_bus_type; 377 dev->dev.type = &usb_device_type; 378 dev->dev.groups = usb_device_groups; 379 dev->dev.dma_mask = bus->controller->dma_mask; 380 set_dev_node(&dev->dev, dev_to_node(bus->controller)); 381 dev->state = USB_STATE_ATTACHED; 382 atomic_set(&dev->urbnum, 0); 383 384 INIT_LIST_HEAD(&dev->ep0.urb_list); 385 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 386 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 387 /* ep0 maxpacket comes later, from device descriptor */ 388 usb_enable_endpoint(dev, &dev->ep0, false); 389 dev->can_submit = 1; 390 391 /* Save readable and stable topology id, distinguishing devices 392 * by location for diagnostics, tools, driver model, etc. The 393 * string is a path along hub ports, from the root. Each device's 394 * dev->devpath will be stable until USB is re-cabled, and hubs 395 * are often labeled with these port numbers. The name isn't 396 * as stable: bus->busnum changes easily from modprobe order, 397 * cardbus or pci hotplugging, and so on. 398 */ 399 if (unlikely(!parent)) { 400 dev->devpath[0] = '0'; 401 dev->route = 0; 402 403 dev->dev.parent = bus->controller; 404 dev_set_name(&dev->dev, "usb%d", bus->busnum); 405 root_hub = 1; 406 } else { 407 /* match any labeling on the hubs; it's one-based */ 408 if (parent->devpath[0] == '0') { 409 snprintf(dev->devpath, sizeof dev->devpath, 410 "%d", port1); 411 /* Root ports are not counted in route string */ 412 dev->route = 0; 413 } else { 414 snprintf(dev->devpath, sizeof dev->devpath, 415 "%s.%d", parent->devpath, port1); 416 /* Route string assumes hubs have less than 16 ports */ 417 if (port1 < 15) 418 dev->route = parent->route + 419 (port1 << ((parent->level - 1)*4)); 420 else 421 dev->route = parent->route + 422 (15 << ((parent->level - 1)*4)); 423 } 424 425 dev->dev.parent = &parent->dev; 426 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 427 428 /* hub driver sets up TT records */ 429 } 430 431 dev->portnum = port1; 432 dev->bus = bus; 433 dev->parent = parent; 434 INIT_LIST_HEAD(&dev->filelist); 435 436 #ifdef CONFIG_PM 437 mutex_init(&dev->pm_mutex); 438 INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work); 439 INIT_WORK(&dev->autoresume, usb_autoresume_work); 440 dev->autosuspend_delay = usb_autosuspend_delay * HZ; 441 dev->connect_time = jiffies; 442 dev->active_duration = -jiffies; 443 #endif 444 if (root_hub) /* Root hub always ok [and always wired] */ 445 dev->authorized = 1; 446 else { 447 dev->authorized = usb_hcd->authorized_default; 448 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0; 449 } 450 return dev; 451 } 452 453 /** 454 * usb_get_dev - increments the reference count of the usb device structure 455 * @dev: the device being referenced 456 * 457 * Each live reference to a device should be refcounted. 458 * 459 * Drivers for USB interfaces should normally record such references in 460 * their probe() methods, when they bind to an interface, and release 461 * them by calling usb_put_dev(), in their disconnect() methods. 462 * 463 * A pointer to the device with the incremented reference counter is returned. 464 */ 465 struct usb_device *usb_get_dev(struct usb_device *dev) 466 { 467 if (dev) 468 get_device(&dev->dev); 469 return dev; 470 } 471 EXPORT_SYMBOL_GPL(usb_get_dev); 472 473 /** 474 * usb_put_dev - release a use of the usb device structure 475 * @dev: device that's been disconnected 476 * 477 * Must be called when a user of a device is finished with it. When the last 478 * user of the device calls this function, the memory of the device is freed. 479 */ 480 void usb_put_dev(struct usb_device *dev) 481 { 482 if (dev) 483 put_device(&dev->dev); 484 } 485 EXPORT_SYMBOL_GPL(usb_put_dev); 486 487 /** 488 * usb_get_intf - increments the reference count of the usb interface structure 489 * @intf: the interface being referenced 490 * 491 * Each live reference to a interface must be refcounted. 492 * 493 * Drivers for USB interfaces should normally record such references in 494 * their probe() methods, when they bind to an interface, and release 495 * them by calling usb_put_intf(), in their disconnect() methods. 496 * 497 * A pointer to the interface with the incremented reference counter is 498 * returned. 499 */ 500 struct usb_interface *usb_get_intf(struct usb_interface *intf) 501 { 502 if (intf) 503 get_device(&intf->dev); 504 return intf; 505 } 506 EXPORT_SYMBOL_GPL(usb_get_intf); 507 508 /** 509 * usb_put_intf - release a use of the usb interface structure 510 * @intf: interface that's been decremented 511 * 512 * Must be called when a user of an interface is finished with it. When the 513 * last user of the interface calls this function, the memory of the interface 514 * is freed. 515 */ 516 void usb_put_intf(struct usb_interface *intf) 517 { 518 if (intf) 519 put_device(&intf->dev); 520 } 521 EXPORT_SYMBOL_GPL(usb_put_intf); 522 523 /* USB device locking 524 * 525 * USB devices and interfaces are locked using the semaphore in their 526 * embedded struct device. The hub driver guarantees that whenever a 527 * device is connected or disconnected, drivers are called with the 528 * USB device locked as well as their particular interface. 529 * 530 * Complications arise when several devices are to be locked at the same 531 * time. Only hub-aware drivers that are part of usbcore ever have to 532 * do this; nobody else needs to worry about it. The rule for locking 533 * is simple: 534 * 535 * When locking both a device and its parent, always lock the 536 * the parent first. 537 */ 538 539 /** 540 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 541 * @udev: device that's being locked 542 * @iface: interface bound to the driver making the request (optional) 543 * 544 * Attempts to acquire the device lock, but fails if the device is 545 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 546 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 547 * lock, the routine polls repeatedly. This is to prevent deadlock with 548 * disconnect; in some drivers (such as usb-storage) the disconnect() 549 * or suspend() method will block waiting for a device reset to complete. 550 * 551 * Returns a negative error code for failure, otherwise 0. 552 */ 553 int usb_lock_device_for_reset(struct usb_device *udev, 554 const struct usb_interface *iface) 555 { 556 unsigned long jiffies_expire = jiffies + HZ; 557 558 if (udev->state == USB_STATE_NOTATTACHED) 559 return -ENODEV; 560 if (udev->state == USB_STATE_SUSPENDED) 561 return -EHOSTUNREACH; 562 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 563 iface->condition == USB_INTERFACE_UNBOUND)) 564 return -EINTR; 565 566 while (usb_trylock_device(udev) != 0) { 567 568 /* If we can't acquire the lock after waiting one second, 569 * we're probably deadlocked */ 570 if (time_after(jiffies, jiffies_expire)) 571 return -EBUSY; 572 573 msleep(15); 574 if (udev->state == USB_STATE_NOTATTACHED) 575 return -ENODEV; 576 if (udev->state == USB_STATE_SUSPENDED) 577 return -EHOSTUNREACH; 578 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 579 iface->condition == USB_INTERFACE_UNBOUND)) 580 return -EINTR; 581 } 582 return 0; 583 } 584 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 585 586 static struct usb_device *match_device(struct usb_device *dev, 587 u16 vendor_id, u16 product_id) 588 { 589 struct usb_device *ret_dev = NULL; 590 int child; 591 592 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n", 593 le16_to_cpu(dev->descriptor.idVendor), 594 le16_to_cpu(dev->descriptor.idProduct)); 595 596 /* see if this device matches */ 597 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) && 598 (product_id == le16_to_cpu(dev->descriptor.idProduct))) { 599 dev_dbg(&dev->dev, "matched this device!\n"); 600 ret_dev = usb_get_dev(dev); 601 goto exit; 602 } 603 604 /* look through all of the children of this device */ 605 for (child = 0; child < dev->maxchild; ++child) { 606 if (dev->children[child]) { 607 usb_lock_device(dev->children[child]); 608 ret_dev = match_device(dev->children[child], 609 vendor_id, product_id); 610 usb_unlock_device(dev->children[child]); 611 if (ret_dev) 612 goto exit; 613 } 614 } 615 exit: 616 return ret_dev; 617 } 618 619 /** 620 * usb_find_device - find a specific usb device in the system 621 * @vendor_id: the vendor id of the device to find 622 * @product_id: the product id of the device to find 623 * 624 * Returns a pointer to a struct usb_device if such a specified usb 625 * device is present in the system currently. The usage count of the 626 * device will be incremented if a device is found. Make sure to call 627 * usb_put_dev() when the caller is finished with the device. 628 * 629 * If a device with the specified vendor and product id is not found, 630 * NULL is returned. 631 */ 632 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id) 633 { 634 struct list_head *buslist; 635 struct usb_bus *bus; 636 struct usb_device *dev = NULL; 637 638 mutex_lock(&usb_bus_list_lock); 639 for (buslist = usb_bus_list.next; 640 buslist != &usb_bus_list; 641 buslist = buslist->next) { 642 bus = container_of(buslist, struct usb_bus, bus_list); 643 if (!bus->root_hub) 644 continue; 645 usb_lock_device(bus->root_hub); 646 dev = match_device(bus->root_hub, vendor_id, product_id); 647 usb_unlock_device(bus->root_hub); 648 if (dev) 649 goto exit; 650 } 651 exit: 652 mutex_unlock(&usb_bus_list_lock); 653 return dev; 654 } 655 656 /** 657 * usb_get_current_frame_number - return current bus frame number 658 * @dev: the device whose bus is being queried 659 * 660 * Returns the current frame number for the USB host controller 661 * used with the given USB device. This can be used when scheduling 662 * isochronous requests. 663 * 664 * Note that different kinds of host controller have different 665 * "scheduling horizons". While one type might support scheduling only 666 * 32 frames into the future, others could support scheduling up to 667 * 1024 frames into the future. 668 */ 669 int usb_get_current_frame_number(struct usb_device *dev) 670 { 671 return usb_hcd_get_frame_number(dev); 672 } 673 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 674 675 /*-------------------------------------------------------------------*/ 676 /* 677 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 678 * extra field of the interface and endpoint descriptor structs. 679 */ 680 681 int __usb_get_extra_descriptor(char *buffer, unsigned size, 682 unsigned char type, void **ptr) 683 { 684 struct usb_descriptor_header *header; 685 686 while (size >= sizeof(struct usb_descriptor_header)) { 687 header = (struct usb_descriptor_header *)buffer; 688 689 if (header->bLength < 2) { 690 printk(KERN_ERR 691 "%s: bogus descriptor, type %d length %d\n", 692 usbcore_name, 693 header->bDescriptorType, 694 header->bLength); 695 return -1; 696 } 697 698 if (header->bDescriptorType == type) { 699 *ptr = header; 700 return 0; 701 } 702 703 buffer += header->bLength; 704 size -= header->bLength; 705 } 706 return -1; 707 } 708 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 709 710 /** 711 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 712 * @dev: device the buffer will be used with 713 * @size: requested buffer size 714 * @mem_flags: affect whether allocation may block 715 * @dma: used to return DMA address of buffer 716 * 717 * Return value is either null (indicating no buffer could be allocated), or 718 * the cpu-space pointer to a buffer that may be used to perform DMA to the 719 * specified device. Such cpu-space buffers are returned along with the DMA 720 * address (through the pointer provided). 721 * 722 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 723 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 724 * hardware during URB completion/resubmit. The implementation varies between 725 * platforms, depending on details of how DMA will work to this device. 726 * Using these buffers also eliminates cacheline sharing problems on 727 * architectures where CPU caches are not DMA-coherent. On systems without 728 * bus-snooping caches, these buffers are uncached. 729 * 730 * When the buffer is no longer used, free it with usb_buffer_free(). 731 */ 732 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags, 733 dma_addr_t *dma) 734 { 735 if (!dev || !dev->bus) 736 return NULL; 737 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 738 } 739 EXPORT_SYMBOL_GPL(usb_buffer_alloc); 740 741 /** 742 * usb_buffer_free - free memory allocated with usb_buffer_alloc() 743 * @dev: device the buffer was used with 744 * @size: requested buffer size 745 * @addr: CPU address of buffer 746 * @dma: DMA address of buffer 747 * 748 * This reclaims an I/O buffer, letting it be reused. The memory must have 749 * been allocated using usb_buffer_alloc(), and the parameters must match 750 * those provided in that allocation request. 751 */ 752 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr, 753 dma_addr_t dma) 754 { 755 if (!dev || !dev->bus) 756 return; 757 if (!addr) 758 return; 759 hcd_buffer_free(dev->bus, size, addr, dma); 760 } 761 EXPORT_SYMBOL_GPL(usb_buffer_free); 762 763 /** 764 * usb_buffer_map - create DMA mapping(s) for an urb 765 * @urb: urb whose transfer_buffer/setup_packet will be mapped 766 * 767 * Return value is either null (indicating no buffer could be mapped), or 768 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are 769 * added to urb->transfer_flags if the operation succeeds. If the device 770 * is connected to this system through a non-DMA controller, this operation 771 * always succeeds. 772 * 773 * This call would normally be used for an urb which is reused, perhaps 774 * as the target of a large periodic transfer, with usb_buffer_dmasync() 775 * calls to synchronize memory and dma state. 776 * 777 * Reverse the effect of this call with usb_buffer_unmap(). 778 */ 779 #if 0 780 struct urb *usb_buffer_map(struct urb *urb) 781 { 782 struct usb_bus *bus; 783 struct device *controller; 784 785 if (!urb 786 || !urb->dev 787 || !(bus = urb->dev->bus) 788 || !(controller = bus->controller)) 789 return NULL; 790 791 if (controller->dma_mask) { 792 urb->transfer_dma = dma_map_single(controller, 793 urb->transfer_buffer, urb->transfer_buffer_length, 794 usb_pipein(urb->pipe) 795 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 796 if (usb_pipecontrol(urb->pipe)) 797 urb->setup_dma = dma_map_single(controller, 798 urb->setup_packet, 799 sizeof(struct usb_ctrlrequest), 800 DMA_TO_DEVICE); 801 /* FIXME generic api broken like pci, can't report errors */ 802 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 803 } else 804 urb->transfer_dma = ~0; 805 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP 806 | URB_NO_SETUP_DMA_MAP); 807 return urb; 808 } 809 EXPORT_SYMBOL_GPL(usb_buffer_map); 810 #endif /* 0 */ 811 812 /* XXX DISABLED, no users currently. If you wish to re-enable this 813 * XXX please determine whether the sync is to transfer ownership of 814 * XXX the buffer from device to cpu or vice verse, and thusly use the 815 * XXX appropriate _for_{cpu,device}() method. -DaveM 816 */ 817 #if 0 818 819 /** 820 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 821 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 822 */ 823 void usb_buffer_dmasync(struct urb *urb) 824 { 825 struct usb_bus *bus; 826 struct device *controller; 827 828 if (!urb 829 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 830 || !urb->dev 831 || !(bus = urb->dev->bus) 832 || !(controller = bus->controller)) 833 return; 834 835 if (controller->dma_mask) { 836 dma_sync_single_for_cpu(controller, 837 urb->transfer_dma, urb->transfer_buffer_length, 838 usb_pipein(urb->pipe) 839 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 840 if (usb_pipecontrol(urb->pipe)) 841 dma_sync_single_for_cpu(controller, 842 urb->setup_dma, 843 sizeof(struct usb_ctrlrequest), 844 DMA_TO_DEVICE); 845 } 846 } 847 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 848 #endif 849 850 /** 851 * usb_buffer_unmap - free DMA mapping(s) for an urb 852 * @urb: urb whose transfer_buffer will be unmapped 853 * 854 * Reverses the effect of usb_buffer_map(). 855 */ 856 #if 0 857 void usb_buffer_unmap(struct urb *urb) 858 { 859 struct usb_bus *bus; 860 struct device *controller; 861 862 if (!urb 863 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 864 || !urb->dev 865 || !(bus = urb->dev->bus) 866 || !(controller = bus->controller)) 867 return; 868 869 if (controller->dma_mask) { 870 dma_unmap_single(controller, 871 urb->transfer_dma, urb->transfer_buffer_length, 872 usb_pipein(urb->pipe) 873 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 874 if (usb_pipecontrol(urb->pipe)) 875 dma_unmap_single(controller, 876 urb->setup_dma, 877 sizeof(struct usb_ctrlrequest), 878 DMA_TO_DEVICE); 879 } 880 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP 881 | URB_NO_SETUP_DMA_MAP); 882 } 883 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 884 #endif /* 0 */ 885 886 /** 887 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 888 * @dev: device to which the scatterlist will be mapped 889 * @is_in: mapping transfer direction 890 * @sg: the scatterlist to map 891 * @nents: the number of entries in the scatterlist 892 * 893 * Return value is either < 0 (indicating no buffers could be mapped), or 894 * the number of DMA mapping array entries in the scatterlist. 895 * 896 * The caller is responsible for placing the resulting DMA addresses from 897 * the scatterlist into URB transfer buffer pointers, and for setting the 898 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 899 * 900 * Top I/O rates come from queuing URBs, instead of waiting for each one 901 * to complete before starting the next I/O. This is particularly easy 902 * to do with scatterlists. Just allocate and submit one URB for each DMA 903 * mapping entry returned, stopping on the first error or when all succeed. 904 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 905 * 906 * This call would normally be used when translating scatterlist requests, 907 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 908 * may be able to coalesce mappings for improved I/O efficiency. 909 * 910 * Reverse the effect of this call with usb_buffer_unmap_sg(). 911 */ 912 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 913 struct scatterlist *sg, int nents) 914 { 915 struct usb_bus *bus; 916 struct device *controller; 917 918 if (!dev 919 || !(bus = dev->bus) 920 || !(controller = bus->controller) 921 || !controller->dma_mask) 922 return -EINVAL; 923 924 /* FIXME generic api broken like pci, can't report errors */ 925 return dma_map_sg(controller, sg, nents, 926 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM; 927 } 928 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 929 930 /* XXX DISABLED, no users currently. If you wish to re-enable this 931 * XXX please determine whether the sync is to transfer ownership of 932 * XXX the buffer from device to cpu or vice verse, and thusly use the 933 * XXX appropriate _for_{cpu,device}() method. -DaveM 934 */ 935 #if 0 936 937 /** 938 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 939 * @dev: device to which the scatterlist will be mapped 940 * @is_in: mapping transfer direction 941 * @sg: the scatterlist to synchronize 942 * @n_hw_ents: the positive return value from usb_buffer_map_sg 943 * 944 * Use this when you are re-using a scatterlist's data buffers for 945 * another USB request. 946 */ 947 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 948 struct scatterlist *sg, int n_hw_ents) 949 { 950 struct usb_bus *bus; 951 struct device *controller; 952 953 if (!dev 954 || !(bus = dev->bus) 955 || !(controller = bus->controller) 956 || !controller->dma_mask) 957 return; 958 959 dma_sync_sg_for_cpu(controller, sg, n_hw_ents, 960 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 961 } 962 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 963 #endif 964 965 /** 966 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 967 * @dev: device to which the scatterlist will be mapped 968 * @is_in: mapping transfer direction 969 * @sg: the scatterlist to unmap 970 * @n_hw_ents: the positive return value from usb_buffer_map_sg 971 * 972 * Reverses the effect of usb_buffer_map_sg(). 973 */ 974 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 975 struct scatterlist *sg, int n_hw_ents) 976 { 977 struct usb_bus *bus; 978 struct device *controller; 979 980 if (!dev 981 || !(bus = dev->bus) 982 || !(controller = bus->controller) 983 || !controller->dma_mask) 984 return; 985 986 dma_unmap_sg(controller, sg, n_hw_ents, 987 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 988 } 989 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 990 991 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */ 992 #ifdef MODULE 993 module_param(nousb, bool, 0444); 994 #else 995 core_param(nousb, nousb, bool, 0444); 996 #endif 997 998 /* 999 * for external read access to <nousb> 1000 */ 1001 int usb_disabled(void) 1002 { 1003 return nousb; 1004 } 1005 EXPORT_SYMBOL_GPL(usb_disabled); 1006 1007 /* 1008 * Notifications of device and interface registration 1009 */ 1010 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1011 void *data) 1012 { 1013 struct device *dev = data; 1014 1015 switch (action) { 1016 case BUS_NOTIFY_ADD_DEVICE: 1017 if (dev->type == &usb_device_type) 1018 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1019 else if (dev->type == &usb_if_device_type) 1020 (void) usb_create_sysfs_intf_files( 1021 to_usb_interface(dev)); 1022 break; 1023 1024 case BUS_NOTIFY_DEL_DEVICE: 1025 if (dev->type == &usb_device_type) 1026 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1027 else if (dev->type == &usb_if_device_type) 1028 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1029 break; 1030 } 1031 return 0; 1032 } 1033 1034 static struct notifier_block usb_bus_nb = { 1035 .notifier_call = usb_bus_notify, 1036 }; 1037 1038 struct dentry *usb_debug_root; 1039 EXPORT_SYMBOL_GPL(usb_debug_root); 1040 1041 struct dentry *usb_debug_devices; 1042 1043 static int usb_debugfs_init(void) 1044 { 1045 usb_debug_root = debugfs_create_dir("usb", NULL); 1046 if (!usb_debug_root) 1047 return -ENOENT; 1048 1049 usb_debug_devices = debugfs_create_file("devices", 0444, 1050 usb_debug_root, NULL, 1051 &usbfs_devices_fops); 1052 if (!usb_debug_devices) { 1053 debugfs_remove(usb_debug_root); 1054 usb_debug_root = NULL; 1055 return -ENOENT; 1056 } 1057 1058 return 0; 1059 } 1060 1061 static void usb_debugfs_cleanup(void) 1062 { 1063 debugfs_remove(usb_debug_devices); 1064 debugfs_remove(usb_debug_root); 1065 } 1066 1067 /* 1068 * Init 1069 */ 1070 static int __init usb_init(void) 1071 { 1072 int retval; 1073 if (nousb) { 1074 pr_info("%s: USB support disabled\n", usbcore_name); 1075 return 0; 1076 } 1077 1078 retval = usb_debugfs_init(); 1079 if (retval) 1080 goto out; 1081 1082 retval = ksuspend_usb_init(); 1083 if (retval) 1084 goto out; 1085 retval = bus_register(&usb_bus_type); 1086 if (retval) 1087 goto bus_register_failed; 1088 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1089 if (retval) 1090 goto bus_notifier_failed; 1091 retval = usb_major_init(); 1092 if (retval) 1093 goto major_init_failed; 1094 retval = usb_register(&usbfs_driver); 1095 if (retval) 1096 goto driver_register_failed; 1097 retval = usb_devio_init(); 1098 if (retval) 1099 goto usb_devio_init_failed; 1100 retval = usbfs_init(); 1101 if (retval) 1102 goto fs_init_failed; 1103 retval = usb_hub_init(); 1104 if (retval) 1105 goto hub_init_failed; 1106 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1107 if (!retval) 1108 goto out; 1109 1110 usb_hub_cleanup(); 1111 hub_init_failed: 1112 usbfs_cleanup(); 1113 fs_init_failed: 1114 usb_devio_cleanup(); 1115 usb_devio_init_failed: 1116 usb_deregister(&usbfs_driver); 1117 driver_register_failed: 1118 usb_major_cleanup(); 1119 major_init_failed: 1120 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1121 bus_notifier_failed: 1122 bus_unregister(&usb_bus_type); 1123 bus_register_failed: 1124 ksuspend_usb_cleanup(); 1125 out: 1126 return retval; 1127 } 1128 1129 /* 1130 * Cleanup 1131 */ 1132 static void __exit usb_exit(void) 1133 { 1134 /* This will matter if shutdown/reboot does exitcalls. */ 1135 if (nousb) 1136 return; 1137 1138 usb_deregister_device_driver(&usb_generic_driver); 1139 usb_major_cleanup(); 1140 usbfs_cleanup(); 1141 usb_deregister(&usbfs_driver); 1142 usb_devio_cleanup(); 1143 usb_hub_cleanup(); 1144 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1145 bus_unregister(&usb_bus_type); 1146 ksuspend_usb_cleanup(); 1147 usb_debugfs_cleanup(); 1148 } 1149 1150 subsys_initcall(usb_init); 1151 module_exit(usb_exit); 1152 MODULE_LICENSE("GPL"); 1153