1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/usb/core/usb.c 4 * 5 * (C) Copyright Linus Torvalds 1999 6 * (C) Copyright Johannes Erdfelt 1999-2001 7 * (C) Copyright Andreas Gal 1999 8 * (C) Copyright Gregory P. Smith 1999 9 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 10 * (C) Copyright Randy Dunlap 2000 11 * (C) Copyright David Brownell 2000-2004 12 * (C) Copyright Yggdrasil Computing, Inc. 2000 13 * (usb_device_id matching changes by Adam J. Richter) 14 * (C) Copyright Greg Kroah-Hartman 2002-2003 15 * 16 * Released under the GPLv2 only. 17 * 18 * NOTE! This is not actually a driver at all, rather this is 19 * just a collection of helper routines that implement the 20 * generic USB things that the real drivers can use.. 21 * 22 * Think of this as a "USB library" rather than anything else. 23 * It should be considered a slave, with no callbacks. Callbacks 24 * are evil. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/string.h> 30 #include <linux/bitops.h> 31 #include <linux/slab.h> 32 #include <linux/interrupt.h> /* for in_interrupt() */ 33 #include <linux/kmod.h> 34 #include <linux/init.h> 35 #include <linux/spinlock.h> 36 #include <linux/errno.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/mutex.h> 40 #include <linux/workqueue.h> 41 #include <linux/debugfs.h> 42 #include <linux/usb/of.h> 43 44 #include <asm/io.h> 45 #include <linux/scatterlist.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 49 #include "hub.h" 50 51 const char *usbcore_name = "usbcore"; 52 53 static bool nousb; /* Disable USB when built into kernel image */ 54 55 module_param(nousb, bool, 0444); 56 57 /* 58 * for external read access to <nousb> 59 */ 60 int usb_disabled(void) 61 { 62 return nousb; 63 } 64 EXPORT_SYMBOL_GPL(usb_disabled); 65 66 #ifdef CONFIG_PM 67 /* Default delay value, in seconds */ 68 static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY; 69 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 70 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 71 72 #else 73 #define usb_autosuspend_delay 0 74 #endif 75 76 static bool match_endpoint(struct usb_endpoint_descriptor *epd, 77 struct usb_endpoint_descriptor **bulk_in, 78 struct usb_endpoint_descriptor **bulk_out, 79 struct usb_endpoint_descriptor **int_in, 80 struct usb_endpoint_descriptor **int_out) 81 { 82 switch (usb_endpoint_type(epd)) { 83 case USB_ENDPOINT_XFER_BULK: 84 if (usb_endpoint_dir_in(epd)) { 85 if (bulk_in && !*bulk_in) { 86 *bulk_in = epd; 87 break; 88 } 89 } else { 90 if (bulk_out && !*bulk_out) { 91 *bulk_out = epd; 92 break; 93 } 94 } 95 96 return false; 97 case USB_ENDPOINT_XFER_INT: 98 if (usb_endpoint_dir_in(epd)) { 99 if (int_in && !*int_in) { 100 *int_in = epd; 101 break; 102 } 103 } else { 104 if (int_out && !*int_out) { 105 *int_out = epd; 106 break; 107 } 108 } 109 110 return false; 111 default: 112 return false; 113 } 114 115 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) && 116 (!int_in || *int_in) && (!int_out || *int_out); 117 } 118 119 /** 120 * usb_find_common_endpoints() -- look up common endpoint descriptors 121 * @alt: alternate setting to search 122 * @bulk_in: pointer to descriptor pointer, or NULL 123 * @bulk_out: pointer to descriptor pointer, or NULL 124 * @int_in: pointer to descriptor pointer, or NULL 125 * @int_out: pointer to descriptor pointer, or NULL 126 * 127 * Search the alternate setting's endpoint descriptors for the first bulk-in, 128 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 129 * provided pointers (unless they are NULL). 130 * 131 * If a requested endpoint is not found, the corresponding pointer is set to 132 * NULL. 133 * 134 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 135 */ 136 int usb_find_common_endpoints(struct usb_host_interface *alt, 137 struct usb_endpoint_descriptor **bulk_in, 138 struct usb_endpoint_descriptor **bulk_out, 139 struct usb_endpoint_descriptor **int_in, 140 struct usb_endpoint_descriptor **int_out) 141 { 142 struct usb_endpoint_descriptor *epd; 143 int i; 144 145 if (bulk_in) 146 *bulk_in = NULL; 147 if (bulk_out) 148 *bulk_out = NULL; 149 if (int_in) 150 *int_in = NULL; 151 if (int_out) 152 *int_out = NULL; 153 154 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 155 epd = &alt->endpoint[i].desc; 156 157 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 158 return 0; 159 } 160 161 return -ENXIO; 162 } 163 EXPORT_SYMBOL_GPL(usb_find_common_endpoints); 164 165 /** 166 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors 167 * @alt: alternate setting to search 168 * @bulk_in: pointer to descriptor pointer, or NULL 169 * @bulk_out: pointer to descriptor pointer, or NULL 170 * @int_in: pointer to descriptor pointer, or NULL 171 * @int_out: pointer to descriptor pointer, or NULL 172 * 173 * Search the alternate setting's endpoint descriptors for the last bulk-in, 174 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 175 * provided pointers (unless they are NULL). 176 * 177 * If a requested endpoint is not found, the corresponding pointer is set to 178 * NULL. 179 * 180 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 181 */ 182 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 183 struct usb_endpoint_descriptor **bulk_in, 184 struct usb_endpoint_descriptor **bulk_out, 185 struct usb_endpoint_descriptor **int_in, 186 struct usb_endpoint_descriptor **int_out) 187 { 188 struct usb_endpoint_descriptor *epd; 189 int i; 190 191 if (bulk_in) 192 *bulk_in = NULL; 193 if (bulk_out) 194 *bulk_out = NULL; 195 if (int_in) 196 *int_in = NULL; 197 if (int_out) 198 *int_out = NULL; 199 200 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) { 201 epd = &alt->endpoint[i].desc; 202 203 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 204 return 0; 205 } 206 207 return -ENXIO; 208 } 209 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse); 210 211 /** 212 * usb_find_alt_setting() - Given a configuration, find the alternate setting 213 * for the given interface. 214 * @config: the configuration to search (not necessarily the current config). 215 * @iface_num: interface number to search in 216 * @alt_num: alternate interface setting number to search for. 217 * 218 * Search the configuration's interface cache for the given alt setting. 219 * 220 * Return: The alternate setting, if found. %NULL otherwise. 221 */ 222 struct usb_host_interface *usb_find_alt_setting( 223 struct usb_host_config *config, 224 unsigned int iface_num, 225 unsigned int alt_num) 226 { 227 struct usb_interface_cache *intf_cache = NULL; 228 int i; 229 230 if (!config) 231 return NULL; 232 for (i = 0; i < config->desc.bNumInterfaces; i++) { 233 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 234 == iface_num) { 235 intf_cache = config->intf_cache[i]; 236 break; 237 } 238 } 239 if (!intf_cache) 240 return NULL; 241 for (i = 0; i < intf_cache->num_altsetting; i++) 242 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 243 return &intf_cache->altsetting[i]; 244 245 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 246 "config %u\n", alt_num, iface_num, 247 config->desc.bConfigurationValue); 248 return NULL; 249 } 250 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 251 252 /** 253 * usb_ifnum_to_if - get the interface object with a given interface number 254 * @dev: the device whose current configuration is considered 255 * @ifnum: the desired interface 256 * 257 * This walks the device descriptor for the currently active configuration 258 * to find the interface object with the particular interface number. 259 * 260 * Note that configuration descriptors are not required to assign interface 261 * numbers sequentially, so that it would be incorrect to assume that 262 * the first interface in that descriptor corresponds to interface zero. 263 * This routine helps device drivers avoid such mistakes. 264 * However, you should make sure that you do the right thing with any 265 * alternate settings available for this interfaces. 266 * 267 * Don't call this function unless you are bound to one of the interfaces 268 * on this device or you have locked the device! 269 * 270 * Return: A pointer to the interface that has @ifnum as interface number, 271 * if found. %NULL otherwise. 272 */ 273 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 274 unsigned ifnum) 275 { 276 struct usb_host_config *config = dev->actconfig; 277 int i; 278 279 if (!config) 280 return NULL; 281 for (i = 0; i < config->desc.bNumInterfaces; i++) 282 if (config->interface[i]->altsetting[0] 283 .desc.bInterfaceNumber == ifnum) 284 return config->interface[i]; 285 286 return NULL; 287 } 288 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 289 290 /** 291 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 292 * @intf: the interface containing the altsetting in question 293 * @altnum: the desired alternate setting number 294 * 295 * This searches the altsetting array of the specified interface for 296 * an entry with the correct bAlternateSetting value. 297 * 298 * Note that altsettings need not be stored sequentially by number, so 299 * it would be incorrect to assume that the first altsetting entry in 300 * the array corresponds to altsetting zero. This routine helps device 301 * drivers avoid such mistakes. 302 * 303 * Don't call this function unless you are bound to the intf interface 304 * or you have locked the device! 305 * 306 * Return: A pointer to the entry of the altsetting array of @intf that 307 * has @altnum as the alternate setting number. %NULL if not found. 308 */ 309 struct usb_host_interface *usb_altnum_to_altsetting( 310 const struct usb_interface *intf, 311 unsigned int altnum) 312 { 313 int i; 314 315 for (i = 0; i < intf->num_altsetting; i++) { 316 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 317 return &intf->altsetting[i]; 318 } 319 return NULL; 320 } 321 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 322 323 struct find_interface_arg { 324 int minor; 325 struct device_driver *drv; 326 }; 327 328 static int __find_interface(struct device *dev, const void *data) 329 { 330 const struct find_interface_arg *arg = data; 331 struct usb_interface *intf; 332 333 if (!is_usb_interface(dev)) 334 return 0; 335 336 if (dev->driver != arg->drv) 337 return 0; 338 intf = to_usb_interface(dev); 339 return intf->minor == arg->minor; 340 } 341 342 /** 343 * usb_find_interface - find usb_interface pointer for driver and device 344 * @drv: the driver whose current configuration is considered 345 * @minor: the minor number of the desired device 346 * 347 * This walks the bus device list and returns a pointer to the interface 348 * with the matching minor and driver. Note, this only works for devices 349 * that share the USB major number. 350 * 351 * Return: A pointer to the interface with the matching major and @minor. 352 */ 353 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 354 { 355 struct find_interface_arg argb; 356 struct device *dev; 357 358 argb.minor = minor; 359 argb.drv = &drv->drvwrap.driver; 360 361 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); 362 363 /* Drop reference count from bus_find_device */ 364 put_device(dev); 365 366 return dev ? to_usb_interface(dev) : NULL; 367 } 368 EXPORT_SYMBOL_GPL(usb_find_interface); 369 370 struct each_dev_arg { 371 void *data; 372 int (*fn)(struct usb_device *, void *); 373 }; 374 375 static int __each_dev(struct device *dev, void *data) 376 { 377 struct each_dev_arg *arg = (struct each_dev_arg *)data; 378 379 /* There are struct usb_interface on the same bus, filter them out */ 380 if (!is_usb_device(dev)) 381 return 0; 382 383 return arg->fn(to_usb_device(dev), arg->data); 384 } 385 386 /** 387 * usb_for_each_dev - iterate over all USB devices in the system 388 * @data: data pointer that will be handed to the callback function 389 * @fn: callback function to be called for each USB device 390 * 391 * Iterate over all USB devices and call @fn for each, passing it @data. If it 392 * returns anything other than 0, we break the iteration prematurely and return 393 * that value. 394 */ 395 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) 396 { 397 struct each_dev_arg arg = {data, fn}; 398 399 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); 400 } 401 EXPORT_SYMBOL_GPL(usb_for_each_dev); 402 403 /** 404 * usb_release_dev - free a usb device structure when all users of it are finished. 405 * @dev: device that's been disconnected 406 * 407 * Will be called only by the device core when all users of this usb device are 408 * done. 409 */ 410 static void usb_release_dev(struct device *dev) 411 { 412 struct usb_device *udev; 413 struct usb_hcd *hcd; 414 415 udev = to_usb_device(dev); 416 hcd = bus_to_hcd(udev->bus); 417 418 usb_destroy_configuration(udev); 419 usb_release_bos_descriptor(udev); 420 of_node_put(dev->of_node); 421 usb_put_hcd(hcd); 422 kfree(udev->product); 423 kfree(udev->manufacturer); 424 kfree(udev->serial); 425 kfree(udev); 426 } 427 428 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 429 { 430 struct usb_device *usb_dev; 431 432 usb_dev = to_usb_device(dev); 433 434 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 435 return -ENOMEM; 436 437 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 438 return -ENOMEM; 439 440 return 0; 441 } 442 443 #ifdef CONFIG_PM 444 445 /* USB device Power-Management thunks. 446 * There's no need to distinguish here between quiescing a USB device 447 * and powering it down; the generic_suspend() routine takes care of 448 * it by skipping the usb_port_suspend() call for a quiesce. And for 449 * USB interfaces there's no difference at all. 450 */ 451 452 static int usb_dev_prepare(struct device *dev) 453 { 454 return 0; /* Implement eventually? */ 455 } 456 457 static void usb_dev_complete(struct device *dev) 458 { 459 /* Currently used only for rebinding interfaces */ 460 usb_resume_complete(dev); 461 } 462 463 static int usb_dev_suspend(struct device *dev) 464 { 465 return usb_suspend(dev, PMSG_SUSPEND); 466 } 467 468 static int usb_dev_resume(struct device *dev) 469 { 470 return usb_resume(dev, PMSG_RESUME); 471 } 472 473 static int usb_dev_freeze(struct device *dev) 474 { 475 return usb_suspend(dev, PMSG_FREEZE); 476 } 477 478 static int usb_dev_thaw(struct device *dev) 479 { 480 return usb_resume(dev, PMSG_THAW); 481 } 482 483 static int usb_dev_poweroff(struct device *dev) 484 { 485 return usb_suspend(dev, PMSG_HIBERNATE); 486 } 487 488 static int usb_dev_restore(struct device *dev) 489 { 490 return usb_resume(dev, PMSG_RESTORE); 491 } 492 493 static const struct dev_pm_ops usb_device_pm_ops = { 494 .prepare = usb_dev_prepare, 495 .complete = usb_dev_complete, 496 .suspend = usb_dev_suspend, 497 .resume = usb_dev_resume, 498 .freeze = usb_dev_freeze, 499 .thaw = usb_dev_thaw, 500 .poweroff = usb_dev_poweroff, 501 .restore = usb_dev_restore, 502 .runtime_suspend = usb_runtime_suspend, 503 .runtime_resume = usb_runtime_resume, 504 .runtime_idle = usb_runtime_idle, 505 }; 506 507 #endif /* CONFIG_PM */ 508 509 510 static char *usb_devnode(struct device *dev, 511 umode_t *mode, kuid_t *uid, kgid_t *gid) 512 { 513 struct usb_device *usb_dev; 514 515 usb_dev = to_usb_device(dev); 516 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 517 usb_dev->bus->busnum, usb_dev->devnum); 518 } 519 520 struct device_type usb_device_type = { 521 .name = "usb_device", 522 .release = usb_release_dev, 523 .uevent = usb_dev_uevent, 524 .devnode = usb_devnode, 525 #ifdef CONFIG_PM 526 .pm = &usb_device_pm_ops, 527 #endif 528 }; 529 530 531 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 532 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 533 { 534 struct usb_hcd *hcd = bus_to_hcd(bus); 535 return hcd->wireless; 536 } 537 538 static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd) 539 { 540 struct usb_hub *hub; 541 542 if (!dev->parent) 543 return true; /* Root hub always ok [and always wired] */ 544 545 switch (hcd->dev_policy) { 546 case USB_DEVICE_AUTHORIZE_NONE: 547 default: 548 return false; 549 550 case USB_DEVICE_AUTHORIZE_ALL: 551 return true; 552 553 case USB_DEVICE_AUTHORIZE_INTERNAL: 554 hub = usb_hub_to_struct_hub(dev->parent); 555 return hub->ports[dev->portnum - 1]->connect_type == 556 USB_PORT_CONNECT_TYPE_HARD_WIRED; 557 } 558 } 559 560 /** 561 * usb_alloc_dev - usb device constructor (usbcore-internal) 562 * @parent: hub to which device is connected; null to allocate a root hub 563 * @bus: bus used to access the device 564 * @port1: one-based index of port; ignored for root hubs 565 * Context: !in_interrupt() 566 * 567 * Only hub drivers (including virtual root hub drivers for host 568 * controllers) should ever call this. 569 * 570 * This call may not be used in a non-sleeping context. 571 * 572 * Return: On success, a pointer to the allocated usb device. %NULL on 573 * failure. 574 */ 575 struct usb_device *usb_alloc_dev(struct usb_device *parent, 576 struct usb_bus *bus, unsigned port1) 577 { 578 struct usb_device *dev; 579 struct usb_hcd *usb_hcd = bus_to_hcd(bus); 580 unsigned root_hub = 0; 581 unsigned raw_port = port1; 582 583 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 584 if (!dev) 585 return NULL; 586 587 if (!usb_get_hcd(usb_hcd)) { 588 kfree(dev); 589 return NULL; 590 } 591 /* Root hubs aren't true devices, so don't allocate HCD resources */ 592 if (usb_hcd->driver->alloc_dev && parent && 593 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 594 usb_put_hcd(bus_to_hcd(bus)); 595 kfree(dev); 596 return NULL; 597 } 598 599 device_initialize(&dev->dev); 600 dev->dev.bus = &usb_bus_type; 601 dev->dev.type = &usb_device_type; 602 dev->dev.groups = usb_device_groups; 603 /* 604 * Fake a dma_mask/offset for the USB device: 605 * We cannot really use the dma-mapping API (dma_alloc_* and 606 * dma_map_*) for USB devices but instead need to use 607 * usb_alloc_coherent and pass data in 'urb's, but some subsystems 608 * manually look into the mask/offset pair to determine whether 609 * they need bounce buffers. 610 * Note: calling dma_set_mask() on a USB device would set the 611 * mask for the entire HCD, so don't do that. 612 */ 613 dev->dev.dma_mask = bus->sysdev->dma_mask; 614 dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset; 615 set_dev_node(&dev->dev, dev_to_node(bus->sysdev)); 616 dev->state = USB_STATE_ATTACHED; 617 dev->lpm_disable_count = 1; 618 atomic_set(&dev->urbnum, 0); 619 620 INIT_LIST_HEAD(&dev->ep0.urb_list); 621 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 622 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 623 /* ep0 maxpacket comes later, from device descriptor */ 624 usb_enable_endpoint(dev, &dev->ep0, false); 625 dev->can_submit = 1; 626 627 /* Save readable and stable topology id, distinguishing devices 628 * by location for diagnostics, tools, driver model, etc. The 629 * string is a path along hub ports, from the root. Each device's 630 * dev->devpath will be stable until USB is re-cabled, and hubs 631 * are often labeled with these port numbers. The name isn't 632 * as stable: bus->busnum changes easily from modprobe order, 633 * cardbus or pci hotplugging, and so on. 634 */ 635 if (unlikely(!parent)) { 636 dev->devpath[0] = '0'; 637 dev->route = 0; 638 639 dev->dev.parent = bus->controller; 640 device_set_of_node_from_dev(&dev->dev, bus->sysdev); 641 dev_set_name(&dev->dev, "usb%d", bus->busnum); 642 root_hub = 1; 643 } else { 644 /* match any labeling on the hubs; it's one-based */ 645 if (parent->devpath[0] == '0') { 646 snprintf(dev->devpath, sizeof dev->devpath, 647 "%d", port1); 648 /* Root ports are not counted in route string */ 649 dev->route = 0; 650 } else { 651 snprintf(dev->devpath, sizeof dev->devpath, 652 "%s.%d", parent->devpath, port1); 653 /* Route string assumes hubs have less than 16 ports */ 654 if (port1 < 15) 655 dev->route = parent->route + 656 (port1 << ((parent->level - 1)*4)); 657 else 658 dev->route = parent->route + 659 (15 << ((parent->level - 1)*4)); 660 } 661 662 dev->dev.parent = &parent->dev; 663 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 664 665 if (!parent->parent) { 666 /* device under root hub's port */ 667 raw_port = usb_hcd_find_raw_port_number(usb_hcd, 668 port1); 669 } 670 dev->dev.of_node = usb_of_get_device_node(parent, raw_port); 671 672 /* hub driver sets up TT records */ 673 } 674 675 dev->portnum = port1; 676 dev->bus = bus; 677 dev->parent = parent; 678 INIT_LIST_HEAD(&dev->filelist); 679 680 #ifdef CONFIG_PM 681 pm_runtime_set_autosuspend_delay(&dev->dev, 682 usb_autosuspend_delay * 1000); 683 dev->connect_time = jiffies; 684 dev->active_duration = -jiffies; 685 #endif 686 687 dev->authorized = usb_dev_authorized(dev, usb_hcd); 688 if (!root_hub) 689 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0; 690 691 return dev; 692 } 693 EXPORT_SYMBOL_GPL(usb_alloc_dev); 694 695 /** 696 * usb_get_dev - increments the reference count of the usb device structure 697 * @dev: the device being referenced 698 * 699 * Each live reference to a device should be refcounted. 700 * 701 * Drivers for USB interfaces should normally record such references in 702 * their probe() methods, when they bind to an interface, and release 703 * them by calling usb_put_dev(), in their disconnect() methods. 704 * 705 * Return: A pointer to the device with the incremented reference counter. 706 */ 707 struct usb_device *usb_get_dev(struct usb_device *dev) 708 { 709 if (dev) 710 get_device(&dev->dev); 711 return dev; 712 } 713 EXPORT_SYMBOL_GPL(usb_get_dev); 714 715 /** 716 * usb_put_dev - release a use of the usb device structure 717 * @dev: device that's been disconnected 718 * 719 * Must be called when a user of a device is finished with it. When the last 720 * user of the device calls this function, the memory of the device is freed. 721 */ 722 void usb_put_dev(struct usb_device *dev) 723 { 724 if (dev) 725 put_device(&dev->dev); 726 } 727 EXPORT_SYMBOL_GPL(usb_put_dev); 728 729 /** 730 * usb_get_intf - increments the reference count of the usb interface structure 731 * @intf: the interface being referenced 732 * 733 * Each live reference to a interface must be refcounted. 734 * 735 * Drivers for USB interfaces should normally record such references in 736 * their probe() methods, when they bind to an interface, and release 737 * them by calling usb_put_intf(), in their disconnect() methods. 738 * 739 * Return: A pointer to the interface with the incremented reference counter. 740 */ 741 struct usb_interface *usb_get_intf(struct usb_interface *intf) 742 { 743 if (intf) 744 get_device(&intf->dev); 745 return intf; 746 } 747 EXPORT_SYMBOL_GPL(usb_get_intf); 748 749 /** 750 * usb_put_intf - release a use of the usb interface structure 751 * @intf: interface that's been decremented 752 * 753 * Must be called when a user of an interface is finished with it. When the 754 * last user of the interface calls this function, the memory of the interface 755 * is freed. 756 */ 757 void usb_put_intf(struct usb_interface *intf) 758 { 759 if (intf) 760 put_device(&intf->dev); 761 } 762 EXPORT_SYMBOL_GPL(usb_put_intf); 763 764 /* USB device locking 765 * 766 * USB devices and interfaces are locked using the semaphore in their 767 * embedded struct device. The hub driver guarantees that whenever a 768 * device is connected or disconnected, drivers are called with the 769 * USB device locked as well as their particular interface. 770 * 771 * Complications arise when several devices are to be locked at the same 772 * time. Only hub-aware drivers that are part of usbcore ever have to 773 * do this; nobody else needs to worry about it. The rule for locking 774 * is simple: 775 * 776 * When locking both a device and its parent, always lock the 777 * the parent first. 778 */ 779 780 /** 781 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 782 * @udev: device that's being locked 783 * @iface: interface bound to the driver making the request (optional) 784 * 785 * Attempts to acquire the device lock, but fails if the device is 786 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 787 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 788 * lock, the routine polls repeatedly. This is to prevent deadlock with 789 * disconnect; in some drivers (such as usb-storage) the disconnect() 790 * or suspend() method will block waiting for a device reset to complete. 791 * 792 * Return: A negative error code for failure, otherwise 0. 793 */ 794 int usb_lock_device_for_reset(struct usb_device *udev, 795 const struct usb_interface *iface) 796 { 797 unsigned long jiffies_expire = jiffies + HZ; 798 799 if (udev->state == USB_STATE_NOTATTACHED) 800 return -ENODEV; 801 if (udev->state == USB_STATE_SUSPENDED) 802 return -EHOSTUNREACH; 803 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 804 iface->condition == USB_INTERFACE_UNBOUND)) 805 return -EINTR; 806 807 while (!usb_trylock_device(udev)) { 808 809 /* If we can't acquire the lock after waiting one second, 810 * we're probably deadlocked */ 811 if (time_after(jiffies, jiffies_expire)) 812 return -EBUSY; 813 814 msleep(15); 815 if (udev->state == USB_STATE_NOTATTACHED) 816 return -ENODEV; 817 if (udev->state == USB_STATE_SUSPENDED) 818 return -EHOSTUNREACH; 819 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 820 iface->condition == USB_INTERFACE_UNBOUND)) 821 return -EINTR; 822 } 823 return 0; 824 } 825 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 826 827 /** 828 * usb_get_current_frame_number - return current bus frame number 829 * @dev: the device whose bus is being queried 830 * 831 * Return: The current frame number for the USB host controller used 832 * with the given USB device. This can be used when scheduling 833 * isochronous requests. 834 * 835 * Note: Different kinds of host controller have different "scheduling 836 * horizons". While one type might support scheduling only 32 frames 837 * into the future, others could support scheduling up to 1024 frames 838 * into the future. 839 * 840 */ 841 int usb_get_current_frame_number(struct usb_device *dev) 842 { 843 return usb_hcd_get_frame_number(dev); 844 } 845 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 846 847 /*-------------------------------------------------------------------*/ 848 /* 849 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 850 * extra field of the interface and endpoint descriptor structs. 851 */ 852 853 int __usb_get_extra_descriptor(char *buffer, unsigned size, 854 unsigned char type, void **ptr, size_t minsize) 855 { 856 struct usb_descriptor_header *header; 857 858 while (size >= sizeof(struct usb_descriptor_header)) { 859 header = (struct usb_descriptor_header *)buffer; 860 861 if (header->bLength < 2 || header->bLength > size) { 862 printk(KERN_ERR 863 "%s: bogus descriptor, type %d length %d\n", 864 usbcore_name, 865 header->bDescriptorType, 866 header->bLength); 867 return -1; 868 } 869 870 if (header->bDescriptorType == type && header->bLength >= minsize) { 871 *ptr = header; 872 return 0; 873 } 874 875 buffer += header->bLength; 876 size -= header->bLength; 877 } 878 return -1; 879 } 880 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 881 882 /** 883 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 884 * @dev: device the buffer will be used with 885 * @size: requested buffer size 886 * @mem_flags: affect whether allocation may block 887 * @dma: used to return DMA address of buffer 888 * 889 * Return: Either null (indicating no buffer could be allocated), or the 890 * cpu-space pointer to a buffer that may be used to perform DMA to the 891 * specified device. Such cpu-space buffers are returned along with the DMA 892 * address (through the pointer provided). 893 * 894 * Note: 895 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 896 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 897 * hardware during URB completion/resubmit. The implementation varies between 898 * platforms, depending on details of how DMA will work to this device. 899 * Using these buffers also eliminates cacheline sharing problems on 900 * architectures where CPU caches are not DMA-coherent. On systems without 901 * bus-snooping caches, these buffers are uncached. 902 * 903 * When the buffer is no longer used, free it with usb_free_coherent(). 904 */ 905 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, 906 dma_addr_t *dma) 907 { 908 if (!dev || !dev->bus) 909 return NULL; 910 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 911 } 912 EXPORT_SYMBOL_GPL(usb_alloc_coherent); 913 914 /** 915 * usb_free_coherent - free memory allocated with usb_alloc_coherent() 916 * @dev: device the buffer was used with 917 * @size: requested buffer size 918 * @addr: CPU address of buffer 919 * @dma: DMA address of buffer 920 * 921 * This reclaims an I/O buffer, letting it be reused. The memory must have 922 * been allocated using usb_alloc_coherent(), and the parameters must match 923 * those provided in that allocation request. 924 */ 925 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, 926 dma_addr_t dma) 927 { 928 if (!dev || !dev->bus) 929 return; 930 if (!addr) 931 return; 932 hcd_buffer_free(dev->bus, size, addr, dma); 933 } 934 EXPORT_SYMBOL_GPL(usb_free_coherent); 935 936 /** 937 * usb_buffer_map - create DMA mapping(s) for an urb 938 * @urb: urb whose transfer_buffer/setup_packet will be mapped 939 * 940 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation 941 * succeeds. If the device is connected to this system through a non-DMA 942 * controller, this operation always succeeds. 943 * 944 * This call would normally be used for an urb which is reused, perhaps 945 * as the target of a large periodic transfer, with usb_buffer_dmasync() 946 * calls to synchronize memory and dma state. 947 * 948 * Reverse the effect of this call with usb_buffer_unmap(). 949 * 950 * Return: Either %NULL (indicating no buffer could be mapped), or @urb. 951 * 952 */ 953 #if 0 954 struct urb *usb_buffer_map(struct urb *urb) 955 { 956 struct usb_bus *bus; 957 struct device *controller; 958 959 if (!urb 960 || !urb->dev 961 || !(bus = urb->dev->bus) 962 || !(controller = bus->sysdev)) 963 return NULL; 964 965 if (controller->dma_mask) { 966 urb->transfer_dma = dma_map_single(controller, 967 urb->transfer_buffer, urb->transfer_buffer_length, 968 usb_pipein(urb->pipe) 969 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 970 /* FIXME generic api broken like pci, can't report errors */ 971 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 972 } else 973 urb->transfer_dma = ~0; 974 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 975 return urb; 976 } 977 EXPORT_SYMBOL_GPL(usb_buffer_map); 978 #endif /* 0 */ 979 980 /* XXX DISABLED, no users currently. If you wish to re-enable this 981 * XXX please determine whether the sync is to transfer ownership of 982 * XXX the buffer from device to cpu or vice verse, and thusly use the 983 * XXX appropriate _for_{cpu,device}() method. -DaveM 984 */ 985 #if 0 986 987 /** 988 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 989 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 990 */ 991 void usb_buffer_dmasync(struct urb *urb) 992 { 993 struct usb_bus *bus; 994 struct device *controller; 995 996 if (!urb 997 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 998 || !urb->dev 999 || !(bus = urb->dev->bus) 1000 || !(controller = bus->sysdev)) 1001 return; 1002 1003 if (controller->dma_mask) { 1004 dma_sync_single_for_cpu(controller, 1005 urb->transfer_dma, urb->transfer_buffer_length, 1006 usb_pipein(urb->pipe) 1007 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1008 if (usb_pipecontrol(urb->pipe)) 1009 dma_sync_single_for_cpu(controller, 1010 urb->setup_dma, 1011 sizeof(struct usb_ctrlrequest), 1012 DMA_TO_DEVICE); 1013 } 1014 } 1015 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 1016 #endif 1017 1018 /** 1019 * usb_buffer_unmap - free DMA mapping(s) for an urb 1020 * @urb: urb whose transfer_buffer will be unmapped 1021 * 1022 * Reverses the effect of usb_buffer_map(). 1023 */ 1024 #if 0 1025 void usb_buffer_unmap(struct urb *urb) 1026 { 1027 struct usb_bus *bus; 1028 struct device *controller; 1029 1030 if (!urb 1031 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 1032 || !urb->dev 1033 || !(bus = urb->dev->bus) 1034 || !(controller = bus->sysdev)) 1035 return; 1036 1037 if (controller->dma_mask) { 1038 dma_unmap_single(controller, 1039 urb->transfer_dma, urb->transfer_buffer_length, 1040 usb_pipein(urb->pipe) 1041 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1042 } 1043 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP; 1044 } 1045 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 1046 #endif /* 0 */ 1047 1048 #if 0 1049 /** 1050 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 1051 * @dev: device to which the scatterlist will be mapped 1052 * @is_in: mapping transfer direction 1053 * @sg: the scatterlist to map 1054 * @nents: the number of entries in the scatterlist 1055 * 1056 * Return: Either < 0 (indicating no buffers could be mapped), or the 1057 * number of DMA mapping array entries in the scatterlist. 1058 * 1059 * Note: 1060 * The caller is responsible for placing the resulting DMA addresses from 1061 * the scatterlist into URB transfer buffer pointers, and for setting the 1062 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 1063 * 1064 * Top I/O rates come from queuing URBs, instead of waiting for each one 1065 * to complete before starting the next I/O. This is particularly easy 1066 * to do with scatterlists. Just allocate and submit one URB for each DMA 1067 * mapping entry returned, stopping on the first error or when all succeed. 1068 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 1069 * 1070 * This call would normally be used when translating scatterlist requests, 1071 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 1072 * may be able to coalesce mappings for improved I/O efficiency. 1073 * 1074 * Reverse the effect of this call with usb_buffer_unmap_sg(). 1075 */ 1076 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1077 struct scatterlist *sg, int nents) 1078 { 1079 struct usb_bus *bus; 1080 struct device *controller; 1081 1082 if (!dev 1083 || !(bus = dev->bus) 1084 || !(controller = bus->sysdev) 1085 || !controller->dma_mask) 1086 return -EINVAL; 1087 1088 /* FIXME generic api broken like pci, can't report errors */ 1089 return dma_map_sg(controller, sg, nents, 1090 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM; 1091 } 1092 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 1093 #endif 1094 1095 /* XXX DISABLED, no users currently. If you wish to re-enable this 1096 * XXX please determine whether the sync is to transfer ownership of 1097 * XXX the buffer from device to cpu or vice verse, and thusly use the 1098 * XXX appropriate _for_{cpu,device}() method. -DaveM 1099 */ 1100 #if 0 1101 1102 /** 1103 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 1104 * @dev: device to which the scatterlist will be mapped 1105 * @is_in: mapping transfer direction 1106 * @sg: the scatterlist to synchronize 1107 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1108 * 1109 * Use this when you are re-using a scatterlist's data buffers for 1110 * another USB request. 1111 */ 1112 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1113 struct scatterlist *sg, int n_hw_ents) 1114 { 1115 struct usb_bus *bus; 1116 struct device *controller; 1117 1118 if (!dev 1119 || !(bus = dev->bus) 1120 || !(controller = bus->sysdev) 1121 || !controller->dma_mask) 1122 return; 1123 1124 dma_sync_sg_for_cpu(controller, sg, n_hw_ents, 1125 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1126 } 1127 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 1128 #endif 1129 1130 #if 0 1131 /** 1132 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 1133 * @dev: device to which the scatterlist will be mapped 1134 * @is_in: mapping transfer direction 1135 * @sg: the scatterlist to unmap 1136 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1137 * 1138 * Reverses the effect of usb_buffer_map_sg(). 1139 */ 1140 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1141 struct scatterlist *sg, int n_hw_ents) 1142 { 1143 struct usb_bus *bus; 1144 struct device *controller; 1145 1146 if (!dev 1147 || !(bus = dev->bus) 1148 || !(controller = bus->sysdev) 1149 || !controller->dma_mask) 1150 return; 1151 1152 dma_unmap_sg(controller, sg, n_hw_ents, 1153 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1154 } 1155 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 1156 #endif 1157 1158 /* 1159 * Notifications of device and interface registration 1160 */ 1161 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1162 void *data) 1163 { 1164 struct device *dev = data; 1165 1166 switch (action) { 1167 case BUS_NOTIFY_ADD_DEVICE: 1168 if (dev->type == &usb_device_type) 1169 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1170 else if (dev->type == &usb_if_device_type) 1171 usb_create_sysfs_intf_files(to_usb_interface(dev)); 1172 break; 1173 1174 case BUS_NOTIFY_DEL_DEVICE: 1175 if (dev->type == &usb_device_type) 1176 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1177 else if (dev->type == &usb_if_device_type) 1178 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1179 break; 1180 } 1181 return 0; 1182 } 1183 1184 static struct notifier_block usb_bus_nb = { 1185 .notifier_call = usb_bus_notify, 1186 }; 1187 1188 static struct dentry *usb_devices_root; 1189 1190 static void usb_debugfs_init(void) 1191 { 1192 usb_devices_root = debugfs_create_file("devices", 0444, usb_debug_root, 1193 NULL, &usbfs_devices_fops); 1194 } 1195 1196 static void usb_debugfs_cleanup(void) 1197 { 1198 debugfs_remove(usb_devices_root); 1199 } 1200 1201 /* 1202 * Init 1203 */ 1204 static int __init usb_init(void) 1205 { 1206 int retval; 1207 if (usb_disabled()) { 1208 pr_info("%s: USB support disabled\n", usbcore_name); 1209 return 0; 1210 } 1211 usb_init_pool_max(); 1212 1213 usb_debugfs_init(); 1214 1215 usb_acpi_register(); 1216 retval = bus_register(&usb_bus_type); 1217 if (retval) 1218 goto bus_register_failed; 1219 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1220 if (retval) 1221 goto bus_notifier_failed; 1222 retval = usb_major_init(); 1223 if (retval) 1224 goto major_init_failed; 1225 retval = usb_register(&usbfs_driver); 1226 if (retval) 1227 goto driver_register_failed; 1228 retval = usb_devio_init(); 1229 if (retval) 1230 goto usb_devio_init_failed; 1231 retval = usb_hub_init(); 1232 if (retval) 1233 goto hub_init_failed; 1234 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1235 if (!retval) 1236 goto out; 1237 1238 usb_hub_cleanup(); 1239 hub_init_failed: 1240 usb_devio_cleanup(); 1241 usb_devio_init_failed: 1242 usb_deregister(&usbfs_driver); 1243 driver_register_failed: 1244 usb_major_cleanup(); 1245 major_init_failed: 1246 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1247 bus_notifier_failed: 1248 bus_unregister(&usb_bus_type); 1249 bus_register_failed: 1250 usb_acpi_unregister(); 1251 usb_debugfs_cleanup(); 1252 out: 1253 return retval; 1254 } 1255 1256 /* 1257 * Cleanup 1258 */ 1259 static void __exit usb_exit(void) 1260 { 1261 /* This will matter if shutdown/reboot does exitcalls. */ 1262 if (usb_disabled()) 1263 return; 1264 1265 usb_release_quirk_list(); 1266 usb_deregister_device_driver(&usb_generic_driver); 1267 usb_major_cleanup(); 1268 usb_deregister(&usbfs_driver); 1269 usb_devio_cleanup(); 1270 usb_hub_cleanup(); 1271 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1272 bus_unregister(&usb_bus_type); 1273 usb_acpi_unregister(); 1274 usb_debugfs_cleanup(); 1275 idr_destroy(&usb_bus_idr); 1276 } 1277 1278 subsys_initcall(usb_init); 1279 module_exit(usb_exit); 1280 MODULE_LICENSE("GPL"); 1281