1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/usb/core/usb.c 4 * 5 * (C) Copyright Linus Torvalds 1999 6 * (C) Copyright Johannes Erdfelt 1999-2001 7 * (C) Copyright Andreas Gal 1999 8 * (C) Copyright Gregory P. Smith 1999 9 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 10 * (C) Copyright Randy Dunlap 2000 11 * (C) Copyright David Brownell 2000-2004 12 * (C) Copyright Yggdrasil Computing, Inc. 2000 13 * (usb_device_id matching changes by Adam J. Richter) 14 * (C) Copyright Greg Kroah-Hartman 2002-2003 15 * 16 * Released under the GPLv2 only. 17 * 18 * NOTE! This is not actually a driver at all, rather this is 19 * just a collection of helper routines that implement the 20 * generic USB things that the real drivers can use.. 21 * 22 * Think of this as a "USB library" rather than anything else. 23 * It should be considered a slave, with no callbacks. Callbacks 24 * are evil. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/string.h> 30 #include <linux/bitops.h> 31 #include <linux/slab.h> 32 #include <linux/interrupt.h> /* for in_interrupt() */ 33 #include <linux/kmod.h> 34 #include <linux/init.h> 35 #include <linux/spinlock.h> 36 #include <linux/errno.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/mutex.h> 40 #include <linux/workqueue.h> 41 #include <linux/debugfs.h> 42 #include <linux/usb/of.h> 43 44 #include <asm/io.h> 45 #include <linux/scatterlist.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 49 #include "usb.h" 50 51 52 const char *usbcore_name = "usbcore"; 53 54 static bool nousb; /* Disable USB when built into kernel image */ 55 56 module_param(nousb, bool, 0444); 57 58 /* 59 * for external read access to <nousb> 60 */ 61 int usb_disabled(void) 62 { 63 return nousb; 64 } 65 EXPORT_SYMBOL_GPL(usb_disabled); 66 67 #ifdef CONFIG_PM 68 static int usb_autosuspend_delay = 2; /* Default delay value, 69 * in seconds */ 70 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 71 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 72 73 #else 74 #define usb_autosuspend_delay 0 75 #endif 76 77 static bool match_endpoint(struct usb_endpoint_descriptor *epd, 78 struct usb_endpoint_descriptor **bulk_in, 79 struct usb_endpoint_descriptor **bulk_out, 80 struct usb_endpoint_descriptor **int_in, 81 struct usb_endpoint_descriptor **int_out) 82 { 83 switch (usb_endpoint_type(epd)) { 84 case USB_ENDPOINT_XFER_BULK: 85 if (usb_endpoint_dir_in(epd)) { 86 if (bulk_in && !*bulk_in) { 87 *bulk_in = epd; 88 break; 89 } 90 } else { 91 if (bulk_out && !*bulk_out) { 92 *bulk_out = epd; 93 break; 94 } 95 } 96 97 return false; 98 case USB_ENDPOINT_XFER_INT: 99 if (usb_endpoint_dir_in(epd)) { 100 if (int_in && !*int_in) { 101 *int_in = epd; 102 break; 103 } 104 } else { 105 if (int_out && !*int_out) { 106 *int_out = epd; 107 break; 108 } 109 } 110 111 return false; 112 default: 113 return false; 114 } 115 116 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) && 117 (!int_in || *int_in) && (!int_out || *int_out); 118 } 119 120 /** 121 * usb_find_common_endpoints() -- look up common endpoint descriptors 122 * @alt: alternate setting to search 123 * @bulk_in: pointer to descriptor pointer, or NULL 124 * @bulk_out: pointer to descriptor pointer, or NULL 125 * @int_in: pointer to descriptor pointer, or NULL 126 * @int_out: pointer to descriptor pointer, or NULL 127 * 128 * Search the alternate setting's endpoint descriptors for the first bulk-in, 129 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 130 * provided pointers (unless they are NULL). 131 * 132 * If a requested endpoint is not found, the corresponding pointer is set to 133 * NULL. 134 * 135 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 136 */ 137 int usb_find_common_endpoints(struct usb_host_interface *alt, 138 struct usb_endpoint_descriptor **bulk_in, 139 struct usb_endpoint_descriptor **bulk_out, 140 struct usb_endpoint_descriptor **int_in, 141 struct usb_endpoint_descriptor **int_out) 142 { 143 struct usb_endpoint_descriptor *epd; 144 int i; 145 146 if (bulk_in) 147 *bulk_in = NULL; 148 if (bulk_out) 149 *bulk_out = NULL; 150 if (int_in) 151 *int_in = NULL; 152 if (int_out) 153 *int_out = NULL; 154 155 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 156 epd = &alt->endpoint[i].desc; 157 158 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 159 return 0; 160 } 161 162 return -ENXIO; 163 } 164 EXPORT_SYMBOL_GPL(usb_find_common_endpoints); 165 166 /** 167 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors 168 * @alt: alternate setting to search 169 * @bulk_in: pointer to descriptor pointer, or NULL 170 * @bulk_out: pointer to descriptor pointer, or NULL 171 * @int_in: pointer to descriptor pointer, or NULL 172 * @int_out: pointer to descriptor pointer, or NULL 173 * 174 * Search the alternate setting's endpoint descriptors for the last bulk-in, 175 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 176 * provided pointers (unless they are NULL). 177 * 178 * If a requested endpoint is not found, the corresponding pointer is set to 179 * NULL. 180 * 181 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 182 */ 183 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 184 struct usb_endpoint_descriptor **bulk_in, 185 struct usb_endpoint_descriptor **bulk_out, 186 struct usb_endpoint_descriptor **int_in, 187 struct usb_endpoint_descriptor **int_out) 188 { 189 struct usb_endpoint_descriptor *epd; 190 int i; 191 192 if (bulk_in) 193 *bulk_in = NULL; 194 if (bulk_out) 195 *bulk_out = NULL; 196 if (int_in) 197 *int_in = NULL; 198 if (int_out) 199 *int_out = NULL; 200 201 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) { 202 epd = &alt->endpoint[i].desc; 203 204 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 205 return 0; 206 } 207 208 return -ENXIO; 209 } 210 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse); 211 212 /** 213 * usb_find_alt_setting() - Given a configuration, find the alternate setting 214 * for the given interface. 215 * @config: the configuration to search (not necessarily the current config). 216 * @iface_num: interface number to search in 217 * @alt_num: alternate interface setting number to search for. 218 * 219 * Search the configuration's interface cache for the given alt setting. 220 * 221 * Return: The alternate setting, if found. %NULL otherwise. 222 */ 223 struct usb_host_interface *usb_find_alt_setting( 224 struct usb_host_config *config, 225 unsigned int iface_num, 226 unsigned int alt_num) 227 { 228 struct usb_interface_cache *intf_cache = NULL; 229 int i; 230 231 if (!config) 232 return NULL; 233 for (i = 0; i < config->desc.bNumInterfaces; i++) { 234 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 235 == iface_num) { 236 intf_cache = config->intf_cache[i]; 237 break; 238 } 239 } 240 if (!intf_cache) 241 return NULL; 242 for (i = 0; i < intf_cache->num_altsetting; i++) 243 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 244 return &intf_cache->altsetting[i]; 245 246 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 247 "config %u\n", alt_num, iface_num, 248 config->desc.bConfigurationValue); 249 return NULL; 250 } 251 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 252 253 /** 254 * usb_ifnum_to_if - get the interface object with a given interface number 255 * @dev: the device whose current configuration is considered 256 * @ifnum: the desired interface 257 * 258 * This walks the device descriptor for the currently active configuration 259 * to find the interface object with the particular interface number. 260 * 261 * Note that configuration descriptors are not required to assign interface 262 * numbers sequentially, so that it would be incorrect to assume that 263 * the first interface in that descriptor corresponds to interface zero. 264 * This routine helps device drivers avoid such mistakes. 265 * However, you should make sure that you do the right thing with any 266 * alternate settings available for this interfaces. 267 * 268 * Don't call this function unless you are bound to one of the interfaces 269 * on this device or you have locked the device! 270 * 271 * Return: A pointer to the interface that has @ifnum as interface number, 272 * if found. %NULL otherwise. 273 */ 274 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 275 unsigned ifnum) 276 { 277 struct usb_host_config *config = dev->actconfig; 278 int i; 279 280 if (!config) 281 return NULL; 282 for (i = 0; i < config->desc.bNumInterfaces; i++) 283 if (config->interface[i]->altsetting[0] 284 .desc.bInterfaceNumber == ifnum) 285 return config->interface[i]; 286 287 return NULL; 288 } 289 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 290 291 /** 292 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 293 * @intf: the interface containing the altsetting in question 294 * @altnum: the desired alternate setting number 295 * 296 * This searches the altsetting array of the specified interface for 297 * an entry with the correct bAlternateSetting value. 298 * 299 * Note that altsettings need not be stored sequentially by number, so 300 * it would be incorrect to assume that the first altsetting entry in 301 * the array corresponds to altsetting zero. This routine helps device 302 * drivers avoid such mistakes. 303 * 304 * Don't call this function unless you are bound to the intf interface 305 * or you have locked the device! 306 * 307 * Return: A pointer to the entry of the altsetting array of @intf that 308 * has @altnum as the alternate setting number. %NULL if not found. 309 */ 310 struct usb_host_interface *usb_altnum_to_altsetting( 311 const struct usb_interface *intf, 312 unsigned int altnum) 313 { 314 int i; 315 316 for (i = 0; i < intf->num_altsetting; i++) { 317 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 318 return &intf->altsetting[i]; 319 } 320 return NULL; 321 } 322 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 323 324 struct find_interface_arg { 325 int minor; 326 struct device_driver *drv; 327 }; 328 329 static int __find_interface(struct device *dev, void *data) 330 { 331 struct find_interface_arg *arg = data; 332 struct usb_interface *intf; 333 334 if (!is_usb_interface(dev)) 335 return 0; 336 337 if (dev->driver != arg->drv) 338 return 0; 339 intf = to_usb_interface(dev); 340 return intf->minor == arg->minor; 341 } 342 343 /** 344 * usb_find_interface - find usb_interface pointer for driver and device 345 * @drv: the driver whose current configuration is considered 346 * @minor: the minor number of the desired device 347 * 348 * This walks the bus device list and returns a pointer to the interface 349 * with the matching minor and driver. Note, this only works for devices 350 * that share the USB major number. 351 * 352 * Return: A pointer to the interface with the matching major and @minor. 353 */ 354 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 355 { 356 struct find_interface_arg argb; 357 struct device *dev; 358 359 argb.minor = minor; 360 argb.drv = &drv->drvwrap.driver; 361 362 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); 363 364 /* Drop reference count from bus_find_device */ 365 put_device(dev); 366 367 return dev ? to_usb_interface(dev) : NULL; 368 } 369 EXPORT_SYMBOL_GPL(usb_find_interface); 370 371 struct each_dev_arg { 372 void *data; 373 int (*fn)(struct usb_device *, void *); 374 }; 375 376 static int __each_dev(struct device *dev, void *data) 377 { 378 struct each_dev_arg *arg = (struct each_dev_arg *)data; 379 380 /* There are struct usb_interface on the same bus, filter them out */ 381 if (!is_usb_device(dev)) 382 return 0; 383 384 return arg->fn(to_usb_device(dev), arg->data); 385 } 386 387 /** 388 * usb_for_each_dev - iterate over all USB devices in the system 389 * @data: data pointer that will be handed to the callback function 390 * @fn: callback function to be called for each USB device 391 * 392 * Iterate over all USB devices and call @fn for each, passing it @data. If it 393 * returns anything other than 0, we break the iteration prematurely and return 394 * that value. 395 */ 396 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) 397 { 398 struct each_dev_arg arg = {data, fn}; 399 400 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); 401 } 402 EXPORT_SYMBOL_GPL(usb_for_each_dev); 403 404 /** 405 * usb_release_dev - free a usb device structure when all users of it are finished. 406 * @dev: device that's been disconnected 407 * 408 * Will be called only by the device core when all users of this usb device are 409 * done. 410 */ 411 static void usb_release_dev(struct device *dev) 412 { 413 struct usb_device *udev; 414 struct usb_hcd *hcd; 415 416 udev = to_usb_device(dev); 417 hcd = bus_to_hcd(udev->bus); 418 419 usb_destroy_configuration(udev); 420 usb_release_bos_descriptor(udev); 421 of_node_put(dev->of_node); 422 usb_put_hcd(hcd); 423 kfree(udev->product); 424 kfree(udev->manufacturer); 425 kfree(udev->serial); 426 kfree(udev); 427 } 428 429 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 430 { 431 struct usb_device *usb_dev; 432 433 usb_dev = to_usb_device(dev); 434 435 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 436 return -ENOMEM; 437 438 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 439 return -ENOMEM; 440 441 return 0; 442 } 443 444 #ifdef CONFIG_PM 445 446 /* USB device Power-Management thunks. 447 * There's no need to distinguish here between quiescing a USB device 448 * and powering it down; the generic_suspend() routine takes care of 449 * it by skipping the usb_port_suspend() call for a quiesce. And for 450 * USB interfaces there's no difference at all. 451 */ 452 453 static int usb_dev_prepare(struct device *dev) 454 { 455 return 0; /* Implement eventually? */ 456 } 457 458 static void usb_dev_complete(struct device *dev) 459 { 460 /* Currently used only for rebinding interfaces */ 461 usb_resume_complete(dev); 462 } 463 464 static int usb_dev_suspend(struct device *dev) 465 { 466 return usb_suspend(dev, PMSG_SUSPEND); 467 } 468 469 static int usb_dev_resume(struct device *dev) 470 { 471 return usb_resume(dev, PMSG_RESUME); 472 } 473 474 static int usb_dev_freeze(struct device *dev) 475 { 476 return usb_suspend(dev, PMSG_FREEZE); 477 } 478 479 static int usb_dev_thaw(struct device *dev) 480 { 481 return usb_resume(dev, PMSG_THAW); 482 } 483 484 static int usb_dev_poweroff(struct device *dev) 485 { 486 return usb_suspend(dev, PMSG_HIBERNATE); 487 } 488 489 static int usb_dev_restore(struct device *dev) 490 { 491 return usb_resume(dev, PMSG_RESTORE); 492 } 493 494 static const struct dev_pm_ops usb_device_pm_ops = { 495 .prepare = usb_dev_prepare, 496 .complete = usb_dev_complete, 497 .suspend = usb_dev_suspend, 498 .resume = usb_dev_resume, 499 .freeze = usb_dev_freeze, 500 .thaw = usb_dev_thaw, 501 .poweroff = usb_dev_poweroff, 502 .restore = usb_dev_restore, 503 .runtime_suspend = usb_runtime_suspend, 504 .runtime_resume = usb_runtime_resume, 505 .runtime_idle = usb_runtime_idle, 506 }; 507 508 #endif /* CONFIG_PM */ 509 510 511 static char *usb_devnode(struct device *dev, 512 umode_t *mode, kuid_t *uid, kgid_t *gid) 513 { 514 struct usb_device *usb_dev; 515 516 usb_dev = to_usb_device(dev); 517 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 518 usb_dev->bus->busnum, usb_dev->devnum); 519 } 520 521 struct device_type usb_device_type = { 522 .name = "usb_device", 523 .release = usb_release_dev, 524 .uevent = usb_dev_uevent, 525 .devnode = usb_devnode, 526 #ifdef CONFIG_PM 527 .pm = &usb_device_pm_ops, 528 #endif 529 }; 530 531 532 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 533 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 534 { 535 struct usb_hcd *hcd = bus_to_hcd(bus); 536 return hcd->wireless; 537 } 538 539 540 /** 541 * usb_alloc_dev - usb device constructor (usbcore-internal) 542 * @parent: hub to which device is connected; null to allocate a root hub 543 * @bus: bus used to access the device 544 * @port1: one-based index of port; ignored for root hubs 545 * Context: !in_interrupt() 546 * 547 * Only hub drivers (including virtual root hub drivers for host 548 * controllers) should ever call this. 549 * 550 * This call may not be used in a non-sleeping context. 551 * 552 * Return: On success, a pointer to the allocated usb device. %NULL on 553 * failure. 554 */ 555 struct usb_device *usb_alloc_dev(struct usb_device *parent, 556 struct usb_bus *bus, unsigned port1) 557 { 558 struct usb_device *dev; 559 struct usb_hcd *usb_hcd = bus_to_hcd(bus); 560 unsigned root_hub = 0; 561 unsigned raw_port = port1; 562 563 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 564 if (!dev) 565 return NULL; 566 567 if (!usb_get_hcd(usb_hcd)) { 568 kfree(dev); 569 return NULL; 570 } 571 /* Root hubs aren't true devices, so don't allocate HCD resources */ 572 if (usb_hcd->driver->alloc_dev && parent && 573 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 574 usb_put_hcd(bus_to_hcd(bus)); 575 kfree(dev); 576 return NULL; 577 } 578 579 device_initialize(&dev->dev); 580 dev->dev.bus = &usb_bus_type; 581 dev->dev.type = &usb_device_type; 582 dev->dev.groups = usb_device_groups; 583 /* 584 * Fake a dma_mask/offset for the USB device: 585 * We cannot really use the dma-mapping API (dma_alloc_* and 586 * dma_map_*) for USB devices but instead need to use 587 * usb_alloc_coherent and pass data in 'urb's, but some subsystems 588 * manually look into the mask/offset pair to determine whether 589 * they need bounce buffers. 590 * Note: calling dma_set_mask() on a USB device would set the 591 * mask for the entire HCD, so don't do that. 592 */ 593 dev->dev.dma_mask = bus->sysdev->dma_mask; 594 dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset; 595 set_dev_node(&dev->dev, dev_to_node(bus->sysdev)); 596 dev->state = USB_STATE_ATTACHED; 597 dev->lpm_disable_count = 1; 598 atomic_set(&dev->urbnum, 0); 599 600 INIT_LIST_HEAD(&dev->ep0.urb_list); 601 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 602 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 603 /* ep0 maxpacket comes later, from device descriptor */ 604 usb_enable_endpoint(dev, &dev->ep0, false); 605 dev->can_submit = 1; 606 607 /* Save readable and stable topology id, distinguishing devices 608 * by location for diagnostics, tools, driver model, etc. The 609 * string is a path along hub ports, from the root. Each device's 610 * dev->devpath will be stable until USB is re-cabled, and hubs 611 * are often labeled with these port numbers. The name isn't 612 * as stable: bus->busnum changes easily from modprobe order, 613 * cardbus or pci hotplugging, and so on. 614 */ 615 if (unlikely(!parent)) { 616 dev->devpath[0] = '0'; 617 dev->route = 0; 618 619 dev->dev.parent = bus->controller; 620 device_set_of_node_from_dev(&dev->dev, bus->sysdev); 621 dev_set_name(&dev->dev, "usb%d", bus->busnum); 622 root_hub = 1; 623 } else { 624 /* match any labeling on the hubs; it's one-based */ 625 if (parent->devpath[0] == '0') { 626 snprintf(dev->devpath, sizeof dev->devpath, 627 "%d", port1); 628 /* Root ports are not counted in route string */ 629 dev->route = 0; 630 } else { 631 snprintf(dev->devpath, sizeof dev->devpath, 632 "%s.%d", parent->devpath, port1); 633 /* Route string assumes hubs have less than 16 ports */ 634 if (port1 < 15) 635 dev->route = parent->route + 636 (port1 << ((parent->level - 1)*4)); 637 else 638 dev->route = parent->route + 639 (15 << ((parent->level - 1)*4)); 640 } 641 642 dev->dev.parent = &parent->dev; 643 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 644 645 if (!parent->parent) { 646 /* device under root hub's port */ 647 raw_port = usb_hcd_find_raw_port_number(usb_hcd, 648 port1); 649 } 650 dev->dev.of_node = usb_of_get_device_node(parent, raw_port); 651 652 /* hub driver sets up TT records */ 653 } 654 655 dev->portnum = port1; 656 dev->bus = bus; 657 dev->parent = parent; 658 INIT_LIST_HEAD(&dev->filelist); 659 660 #ifdef CONFIG_PM 661 pm_runtime_set_autosuspend_delay(&dev->dev, 662 usb_autosuspend_delay * 1000); 663 dev->connect_time = jiffies; 664 dev->active_duration = -jiffies; 665 #endif 666 if (root_hub) /* Root hub always ok [and always wired] */ 667 dev->authorized = 1; 668 else { 669 dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd); 670 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0; 671 } 672 return dev; 673 } 674 EXPORT_SYMBOL_GPL(usb_alloc_dev); 675 676 /** 677 * usb_get_dev - increments the reference count of the usb device structure 678 * @dev: the device being referenced 679 * 680 * Each live reference to a device should be refcounted. 681 * 682 * Drivers for USB interfaces should normally record such references in 683 * their probe() methods, when they bind to an interface, and release 684 * them by calling usb_put_dev(), in their disconnect() methods. 685 * 686 * Return: A pointer to the device with the incremented reference counter. 687 */ 688 struct usb_device *usb_get_dev(struct usb_device *dev) 689 { 690 if (dev) 691 get_device(&dev->dev); 692 return dev; 693 } 694 EXPORT_SYMBOL_GPL(usb_get_dev); 695 696 /** 697 * usb_put_dev - release a use of the usb device structure 698 * @dev: device that's been disconnected 699 * 700 * Must be called when a user of a device is finished with it. When the last 701 * user of the device calls this function, the memory of the device is freed. 702 */ 703 void usb_put_dev(struct usb_device *dev) 704 { 705 if (dev) 706 put_device(&dev->dev); 707 } 708 EXPORT_SYMBOL_GPL(usb_put_dev); 709 710 /** 711 * usb_get_intf - increments the reference count of the usb interface structure 712 * @intf: the interface being referenced 713 * 714 * Each live reference to a interface must be refcounted. 715 * 716 * Drivers for USB interfaces should normally record such references in 717 * their probe() methods, when they bind to an interface, and release 718 * them by calling usb_put_intf(), in their disconnect() methods. 719 * 720 * Return: A pointer to the interface with the incremented reference counter. 721 */ 722 struct usb_interface *usb_get_intf(struct usb_interface *intf) 723 { 724 if (intf) 725 get_device(&intf->dev); 726 return intf; 727 } 728 EXPORT_SYMBOL_GPL(usb_get_intf); 729 730 /** 731 * usb_put_intf - release a use of the usb interface structure 732 * @intf: interface that's been decremented 733 * 734 * Must be called when a user of an interface is finished with it. When the 735 * last user of the interface calls this function, the memory of the interface 736 * is freed. 737 */ 738 void usb_put_intf(struct usb_interface *intf) 739 { 740 if (intf) 741 put_device(&intf->dev); 742 } 743 EXPORT_SYMBOL_GPL(usb_put_intf); 744 745 /* USB device locking 746 * 747 * USB devices and interfaces are locked using the semaphore in their 748 * embedded struct device. The hub driver guarantees that whenever a 749 * device is connected or disconnected, drivers are called with the 750 * USB device locked as well as their particular interface. 751 * 752 * Complications arise when several devices are to be locked at the same 753 * time. Only hub-aware drivers that are part of usbcore ever have to 754 * do this; nobody else needs to worry about it. The rule for locking 755 * is simple: 756 * 757 * When locking both a device and its parent, always lock the 758 * the parent first. 759 */ 760 761 /** 762 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 763 * @udev: device that's being locked 764 * @iface: interface bound to the driver making the request (optional) 765 * 766 * Attempts to acquire the device lock, but fails if the device is 767 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 768 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 769 * lock, the routine polls repeatedly. This is to prevent deadlock with 770 * disconnect; in some drivers (such as usb-storage) the disconnect() 771 * or suspend() method will block waiting for a device reset to complete. 772 * 773 * Return: A negative error code for failure, otherwise 0. 774 */ 775 int usb_lock_device_for_reset(struct usb_device *udev, 776 const struct usb_interface *iface) 777 { 778 unsigned long jiffies_expire = jiffies + HZ; 779 780 if (udev->state == USB_STATE_NOTATTACHED) 781 return -ENODEV; 782 if (udev->state == USB_STATE_SUSPENDED) 783 return -EHOSTUNREACH; 784 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 785 iface->condition == USB_INTERFACE_UNBOUND)) 786 return -EINTR; 787 788 while (!usb_trylock_device(udev)) { 789 790 /* If we can't acquire the lock after waiting one second, 791 * we're probably deadlocked */ 792 if (time_after(jiffies, jiffies_expire)) 793 return -EBUSY; 794 795 msleep(15); 796 if (udev->state == USB_STATE_NOTATTACHED) 797 return -ENODEV; 798 if (udev->state == USB_STATE_SUSPENDED) 799 return -EHOSTUNREACH; 800 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 801 iface->condition == USB_INTERFACE_UNBOUND)) 802 return -EINTR; 803 } 804 return 0; 805 } 806 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 807 808 /** 809 * usb_get_current_frame_number - return current bus frame number 810 * @dev: the device whose bus is being queried 811 * 812 * Return: The current frame number for the USB host controller used 813 * with the given USB device. This can be used when scheduling 814 * isochronous requests. 815 * 816 * Note: Different kinds of host controller have different "scheduling 817 * horizons". While one type might support scheduling only 32 frames 818 * into the future, others could support scheduling up to 1024 frames 819 * into the future. 820 * 821 */ 822 int usb_get_current_frame_number(struct usb_device *dev) 823 { 824 return usb_hcd_get_frame_number(dev); 825 } 826 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 827 828 /*-------------------------------------------------------------------*/ 829 /* 830 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 831 * extra field of the interface and endpoint descriptor structs. 832 */ 833 834 int __usb_get_extra_descriptor(char *buffer, unsigned size, 835 unsigned char type, void **ptr, size_t minsize) 836 { 837 struct usb_descriptor_header *header; 838 839 while (size >= sizeof(struct usb_descriptor_header)) { 840 header = (struct usb_descriptor_header *)buffer; 841 842 if (header->bLength < 2 || header->bLength > size) { 843 printk(KERN_ERR 844 "%s: bogus descriptor, type %d length %d\n", 845 usbcore_name, 846 header->bDescriptorType, 847 header->bLength); 848 return -1; 849 } 850 851 if (header->bDescriptorType == type && header->bLength >= minsize) { 852 *ptr = header; 853 return 0; 854 } 855 856 buffer += header->bLength; 857 size -= header->bLength; 858 } 859 return -1; 860 } 861 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 862 863 /** 864 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 865 * @dev: device the buffer will be used with 866 * @size: requested buffer size 867 * @mem_flags: affect whether allocation may block 868 * @dma: used to return DMA address of buffer 869 * 870 * Return: Either null (indicating no buffer could be allocated), or the 871 * cpu-space pointer to a buffer that may be used to perform DMA to the 872 * specified device. Such cpu-space buffers are returned along with the DMA 873 * address (through the pointer provided). 874 * 875 * Note: 876 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 877 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 878 * hardware during URB completion/resubmit. The implementation varies between 879 * platforms, depending on details of how DMA will work to this device. 880 * Using these buffers also eliminates cacheline sharing problems on 881 * architectures where CPU caches are not DMA-coherent. On systems without 882 * bus-snooping caches, these buffers are uncached. 883 * 884 * When the buffer is no longer used, free it with usb_free_coherent(). 885 */ 886 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, 887 dma_addr_t *dma) 888 { 889 if (!dev || !dev->bus) 890 return NULL; 891 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 892 } 893 EXPORT_SYMBOL_GPL(usb_alloc_coherent); 894 895 /** 896 * usb_free_coherent - free memory allocated with usb_alloc_coherent() 897 * @dev: device the buffer was used with 898 * @size: requested buffer size 899 * @addr: CPU address of buffer 900 * @dma: DMA address of buffer 901 * 902 * This reclaims an I/O buffer, letting it be reused. The memory must have 903 * been allocated using usb_alloc_coherent(), and the parameters must match 904 * those provided in that allocation request. 905 */ 906 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, 907 dma_addr_t dma) 908 { 909 if (!dev || !dev->bus) 910 return; 911 if (!addr) 912 return; 913 hcd_buffer_free(dev->bus, size, addr, dma); 914 } 915 EXPORT_SYMBOL_GPL(usb_free_coherent); 916 917 /** 918 * usb_buffer_map - create DMA mapping(s) for an urb 919 * @urb: urb whose transfer_buffer/setup_packet will be mapped 920 * 921 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation 922 * succeeds. If the device is connected to this system through a non-DMA 923 * controller, this operation always succeeds. 924 * 925 * This call would normally be used for an urb which is reused, perhaps 926 * as the target of a large periodic transfer, with usb_buffer_dmasync() 927 * calls to synchronize memory and dma state. 928 * 929 * Reverse the effect of this call with usb_buffer_unmap(). 930 * 931 * Return: Either %NULL (indicating no buffer could be mapped), or @urb. 932 * 933 */ 934 #if 0 935 struct urb *usb_buffer_map(struct urb *urb) 936 { 937 struct usb_bus *bus; 938 struct device *controller; 939 940 if (!urb 941 || !urb->dev 942 || !(bus = urb->dev->bus) 943 || !(controller = bus->sysdev)) 944 return NULL; 945 946 if (controller->dma_mask) { 947 urb->transfer_dma = dma_map_single(controller, 948 urb->transfer_buffer, urb->transfer_buffer_length, 949 usb_pipein(urb->pipe) 950 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 951 /* FIXME generic api broken like pci, can't report errors */ 952 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 953 } else 954 urb->transfer_dma = ~0; 955 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 956 return urb; 957 } 958 EXPORT_SYMBOL_GPL(usb_buffer_map); 959 #endif /* 0 */ 960 961 /* XXX DISABLED, no users currently. If you wish to re-enable this 962 * XXX please determine whether the sync is to transfer ownership of 963 * XXX the buffer from device to cpu or vice verse, and thusly use the 964 * XXX appropriate _for_{cpu,device}() method. -DaveM 965 */ 966 #if 0 967 968 /** 969 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 970 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 971 */ 972 void usb_buffer_dmasync(struct urb *urb) 973 { 974 struct usb_bus *bus; 975 struct device *controller; 976 977 if (!urb 978 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 979 || !urb->dev 980 || !(bus = urb->dev->bus) 981 || !(controller = bus->sysdev)) 982 return; 983 984 if (controller->dma_mask) { 985 dma_sync_single_for_cpu(controller, 986 urb->transfer_dma, urb->transfer_buffer_length, 987 usb_pipein(urb->pipe) 988 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 989 if (usb_pipecontrol(urb->pipe)) 990 dma_sync_single_for_cpu(controller, 991 urb->setup_dma, 992 sizeof(struct usb_ctrlrequest), 993 DMA_TO_DEVICE); 994 } 995 } 996 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 997 #endif 998 999 /** 1000 * usb_buffer_unmap - free DMA mapping(s) for an urb 1001 * @urb: urb whose transfer_buffer will be unmapped 1002 * 1003 * Reverses the effect of usb_buffer_map(). 1004 */ 1005 #if 0 1006 void usb_buffer_unmap(struct urb *urb) 1007 { 1008 struct usb_bus *bus; 1009 struct device *controller; 1010 1011 if (!urb 1012 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 1013 || !urb->dev 1014 || !(bus = urb->dev->bus) 1015 || !(controller = bus->sysdev)) 1016 return; 1017 1018 if (controller->dma_mask) { 1019 dma_unmap_single(controller, 1020 urb->transfer_dma, urb->transfer_buffer_length, 1021 usb_pipein(urb->pipe) 1022 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1023 } 1024 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP; 1025 } 1026 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 1027 #endif /* 0 */ 1028 1029 #if 0 1030 /** 1031 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 1032 * @dev: device to which the scatterlist will be mapped 1033 * @is_in: mapping transfer direction 1034 * @sg: the scatterlist to map 1035 * @nents: the number of entries in the scatterlist 1036 * 1037 * Return: Either < 0 (indicating no buffers could be mapped), or the 1038 * number of DMA mapping array entries in the scatterlist. 1039 * 1040 * Note: 1041 * The caller is responsible for placing the resulting DMA addresses from 1042 * the scatterlist into URB transfer buffer pointers, and for setting the 1043 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 1044 * 1045 * Top I/O rates come from queuing URBs, instead of waiting for each one 1046 * to complete before starting the next I/O. This is particularly easy 1047 * to do with scatterlists. Just allocate and submit one URB for each DMA 1048 * mapping entry returned, stopping on the first error or when all succeed. 1049 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 1050 * 1051 * This call would normally be used when translating scatterlist requests, 1052 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 1053 * may be able to coalesce mappings for improved I/O efficiency. 1054 * 1055 * Reverse the effect of this call with usb_buffer_unmap_sg(). 1056 */ 1057 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1058 struct scatterlist *sg, int nents) 1059 { 1060 struct usb_bus *bus; 1061 struct device *controller; 1062 1063 if (!dev 1064 || !(bus = dev->bus) 1065 || !(controller = bus->sysdev) 1066 || !controller->dma_mask) 1067 return -EINVAL; 1068 1069 /* FIXME generic api broken like pci, can't report errors */ 1070 return dma_map_sg(controller, sg, nents, 1071 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM; 1072 } 1073 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 1074 #endif 1075 1076 /* XXX DISABLED, no users currently. If you wish to re-enable this 1077 * XXX please determine whether the sync is to transfer ownership of 1078 * XXX the buffer from device to cpu or vice verse, and thusly use the 1079 * XXX appropriate _for_{cpu,device}() method. -DaveM 1080 */ 1081 #if 0 1082 1083 /** 1084 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 1085 * @dev: device to which the scatterlist will be mapped 1086 * @is_in: mapping transfer direction 1087 * @sg: the scatterlist to synchronize 1088 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1089 * 1090 * Use this when you are re-using a scatterlist's data buffers for 1091 * another USB request. 1092 */ 1093 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1094 struct scatterlist *sg, int n_hw_ents) 1095 { 1096 struct usb_bus *bus; 1097 struct device *controller; 1098 1099 if (!dev 1100 || !(bus = dev->bus) 1101 || !(controller = bus->sysdev) 1102 || !controller->dma_mask) 1103 return; 1104 1105 dma_sync_sg_for_cpu(controller, sg, n_hw_ents, 1106 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1107 } 1108 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 1109 #endif 1110 1111 #if 0 1112 /** 1113 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 1114 * @dev: device to which the scatterlist will be mapped 1115 * @is_in: mapping transfer direction 1116 * @sg: the scatterlist to unmap 1117 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1118 * 1119 * Reverses the effect of usb_buffer_map_sg(). 1120 */ 1121 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1122 struct scatterlist *sg, int n_hw_ents) 1123 { 1124 struct usb_bus *bus; 1125 struct device *controller; 1126 1127 if (!dev 1128 || !(bus = dev->bus) 1129 || !(controller = bus->sysdev) 1130 || !controller->dma_mask) 1131 return; 1132 1133 dma_unmap_sg(controller, sg, n_hw_ents, 1134 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1135 } 1136 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 1137 #endif 1138 1139 /* 1140 * Notifications of device and interface registration 1141 */ 1142 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1143 void *data) 1144 { 1145 struct device *dev = data; 1146 1147 switch (action) { 1148 case BUS_NOTIFY_ADD_DEVICE: 1149 if (dev->type == &usb_device_type) 1150 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1151 else if (dev->type == &usb_if_device_type) 1152 usb_create_sysfs_intf_files(to_usb_interface(dev)); 1153 break; 1154 1155 case BUS_NOTIFY_DEL_DEVICE: 1156 if (dev->type == &usb_device_type) 1157 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1158 else if (dev->type == &usb_if_device_type) 1159 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1160 break; 1161 } 1162 return 0; 1163 } 1164 1165 static struct notifier_block usb_bus_nb = { 1166 .notifier_call = usb_bus_notify, 1167 }; 1168 1169 struct dentry *usb_debug_root; 1170 EXPORT_SYMBOL_GPL(usb_debug_root); 1171 1172 static void usb_debugfs_init(void) 1173 { 1174 usb_debug_root = debugfs_create_dir("usb", NULL); 1175 debugfs_create_file("devices", 0444, usb_debug_root, NULL, 1176 &usbfs_devices_fops); 1177 } 1178 1179 static void usb_debugfs_cleanup(void) 1180 { 1181 debugfs_remove_recursive(usb_debug_root); 1182 } 1183 1184 /* 1185 * Init 1186 */ 1187 static int __init usb_init(void) 1188 { 1189 int retval; 1190 if (usb_disabled()) { 1191 pr_info("%s: USB support disabled\n", usbcore_name); 1192 return 0; 1193 } 1194 usb_init_pool_max(); 1195 1196 usb_debugfs_init(); 1197 1198 usb_acpi_register(); 1199 retval = bus_register(&usb_bus_type); 1200 if (retval) 1201 goto bus_register_failed; 1202 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1203 if (retval) 1204 goto bus_notifier_failed; 1205 retval = usb_major_init(); 1206 if (retval) 1207 goto major_init_failed; 1208 retval = usb_register(&usbfs_driver); 1209 if (retval) 1210 goto driver_register_failed; 1211 retval = usb_devio_init(); 1212 if (retval) 1213 goto usb_devio_init_failed; 1214 retval = usb_hub_init(); 1215 if (retval) 1216 goto hub_init_failed; 1217 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1218 if (!retval) 1219 goto out; 1220 1221 usb_hub_cleanup(); 1222 hub_init_failed: 1223 usb_devio_cleanup(); 1224 usb_devio_init_failed: 1225 usb_deregister(&usbfs_driver); 1226 driver_register_failed: 1227 usb_major_cleanup(); 1228 major_init_failed: 1229 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1230 bus_notifier_failed: 1231 bus_unregister(&usb_bus_type); 1232 bus_register_failed: 1233 usb_acpi_unregister(); 1234 usb_debugfs_cleanup(); 1235 out: 1236 return retval; 1237 } 1238 1239 /* 1240 * Cleanup 1241 */ 1242 static void __exit usb_exit(void) 1243 { 1244 /* This will matter if shutdown/reboot does exitcalls. */ 1245 if (usb_disabled()) 1246 return; 1247 1248 usb_release_quirk_list(); 1249 usb_deregister_device_driver(&usb_generic_driver); 1250 usb_major_cleanup(); 1251 usb_deregister(&usbfs_driver); 1252 usb_devio_cleanup(); 1253 usb_hub_cleanup(); 1254 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1255 bus_unregister(&usb_bus_type); 1256 usb_acpi_unregister(); 1257 usb_debugfs_cleanup(); 1258 idr_destroy(&usb_bus_idr); 1259 } 1260 1261 subsys_initcall(usb_init); 1262 module_exit(usb_exit); 1263 MODULE_LICENSE("GPL"); 1264