1 /* 2 * drivers/usb/core/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/string.h> 27 #include <linux/bitops.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> /* for in_interrupt() */ 30 #include <linux/kmod.h> 31 #include <linux/init.h> 32 #include <linux/spinlock.h> 33 #include <linux/errno.h> 34 #include <linux/usb.h> 35 #include <linux/mutex.h> 36 #include <linux/workqueue.h> 37 38 #include <asm/io.h> 39 #include <linux/scatterlist.h> 40 #include <linux/mm.h> 41 #include <linux/dma-mapping.h> 42 43 #include "hcd.h" 44 #include "usb.h" 45 46 47 const char *usbcore_name = "usbcore"; 48 49 static int nousb; /* Disable USB when built into kernel image */ 50 51 /* Workqueue for autosuspend and for remote wakeup of root hubs */ 52 struct workqueue_struct *ksuspend_usb_wq; 53 54 #ifdef CONFIG_USB_SUSPEND 55 static int usb_autosuspend_delay = 2; /* Default delay value, 56 * in seconds */ 57 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 58 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 59 60 #else 61 #define usb_autosuspend_delay 0 62 #endif 63 64 65 /** 66 * usb_ifnum_to_if - get the interface object with a given interface number 67 * @dev: the device whose current configuration is considered 68 * @ifnum: the desired interface 69 * 70 * This walks the device descriptor for the currently active configuration 71 * and returns a pointer to the interface with that particular interface 72 * number, or null. 73 * 74 * Note that configuration descriptors are not required to assign interface 75 * numbers sequentially, so that it would be incorrect to assume that 76 * the first interface in that descriptor corresponds to interface zero. 77 * This routine helps device drivers avoid such mistakes. 78 * However, you should make sure that you do the right thing with any 79 * alternate settings available for this interfaces. 80 * 81 * Don't call this function unless you are bound to one of the interfaces 82 * on this device or you have locked the device! 83 */ 84 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 85 unsigned ifnum) 86 { 87 struct usb_host_config *config = dev->actconfig; 88 int i; 89 90 if (!config) 91 return NULL; 92 for (i = 0; i < config->desc.bNumInterfaces; i++) 93 if (config->interface[i]->altsetting[0] 94 .desc.bInterfaceNumber == ifnum) 95 return config->interface[i]; 96 97 return NULL; 98 } 99 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 100 101 /** 102 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 103 * @intf: the interface containing the altsetting in question 104 * @altnum: the desired alternate setting number 105 * 106 * This searches the altsetting array of the specified interface for 107 * an entry with the correct bAlternateSetting value and returns a pointer 108 * to that entry, or null. 109 * 110 * Note that altsettings need not be stored sequentially by number, so 111 * it would be incorrect to assume that the first altsetting entry in 112 * the array corresponds to altsetting zero. This routine helps device 113 * drivers avoid such mistakes. 114 * 115 * Don't call this function unless you are bound to the intf interface 116 * or you have locked the device! 117 */ 118 struct usb_host_interface *usb_altnum_to_altsetting( 119 const struct usb_interface *intf, 120 unsigned int altnum) 121 { 122 int i; 123 124 for (i = 0; i < intf->num_altsetting; i++) { 125 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 126 return &intf->altsetting[i]; 127 } 128 return NULL; 129 } 130 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 131 132 struct find_interface_arg { 133 int minor; 134 struct usb_interface *interface; 135 }; 136 137 static int __find_interface(struct device *dev, void *data) 138 { 139 struct find_interface_arg *arg = data; 140 struct usb_interface *intf; 141 142 /* can't look at usb devices, only interfaces */ 143 if (is_usb_device(dev)) 144 return 0; 145 146 intf = to_usb_interface(dev); 147 if (intf->minor != -1 && intf->minor == arg->minor) { 148 arg->interface = intf; 149 return 1; 150 } 151 return 0; 152 } 153 154 /** 155 * usb_find_interface - find usb_interface pointer for driver and device 156 * @drv: the driver whose current configuration is considered 157 * @minor: the minor number of the desired device 158 * 159 * This walks the driver device list and returns a pointer to the interface 160 * with the matching minor. Note, this only works for devices that share the 161 * USB major number. 162 */ 163 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 164 { 165 struct find_interface_arg argb; 166 int retval; 167 168 argb.minor = minor; 169 argb.interface = NULL; 170 /* eat the error, it will be in argb.interface */ 171 retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb, 172 __find_interface); 173 return argb.interface; 174 } 175 EXPORT_SYMBOL_GPL(usb_find_interface); 176 177 /** 178 * usb_release_dev - free a usb device structure when all users of it are finished. 179 * @dev: device that's been disconnected 180 * 181 * Will be called only by the device core when all users of this usb device are 182 * done. 183 */ 184 static void usb_release_dev(struct device *dev) 185 { 186 struct usb_device *udev; 187 188 udev = to_usb_device(dev); 189 190 usb_destroy_configuration(udev); 191 usb_put_hcd(bus_to_hcd(udev->bus)); 192 kfree(udev->product); 193 kfree(udev->manufacturer); 194 kfree(udev->serial); 195 kfree(udev); 196 } 197 198 #ifdef CONFIG_HOTPLUG 199 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 200 { 201 struct usb_device *usb_dev; 202 203 usb_dev = to_usb_device(dev); 204 205 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 206 return -ENOMEM; 207 208 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 209 return -ENOMEM; 210 211 return 0; 212 } 213 214 #else 215 216 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 217 { 218 return -ENODEV; 219 } 220 #endif /* CONFIG_HOTPLUG */ 221 222 #ifdef CONFIG_PM 223 224 static int ksuspend_usb_init(void) 225 { 226 /* This workqueue is supposed to be both freezable and 227 * singlethreaded. Its job doesn't justify running on more 228 * than one CPU. 229 */ 230 ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd"); 231 if (!ksuspend_usb_wq) 232 return -ENOMEM; 233 return 0; 234 } 235 236 static void ksuspend_usb_cleanup(void) 237 { 238 destroy_workqueue(ksuspend_usb_wq); 239 } 240 241 /* USB device Power-Management thunks. 242 * There's no need to distinguish here between quiescing a USB device 243 * and powering it down; the generic_suspend() routine takes care of 244 * it by skipping the usb_port_suspend() call for a quiesce. And for 245 * USB interfaces there's no difference at all. 246 */ 247 248 static int usb_dev_prepare(struct device *dev) 249 { 250 return 0; /* Implement eventually? */ 251 } 252 253 static void usb_dev_complete(struct device *dev) 254 { 255 /* Currently used only for rebinding interfaces */ 256 usb_resume(dev, PMSG_RESUME); /* Message event is meaningless */ 257 } 258 259 static int usb_dev_suspend(struct device *dev) 260 { 261 return usb_suspend(dev, PMSG_SUSPEND); 262 } 263 264 static int usb_dev_resume(struct device *dev) 265 { 266 return usb_resume(dev, PMSG_RESUME); 267 } 268 269 static int usb_dev_freeze(struct device *dev) 270 { 271 return usb_suspend(dev, PMSG_FREEZE); 272 } 273 274 static int usb_dev_thaw(struct device *dev) 275 { 276 return usb_resume(dev, PMSG_THAW); 277 } 278 279 static int usb_dev_poweroff(struct device *dev) 280 { 281 return usb_suspend(dev, PMSG_HIBERNATE); 282 } 283 284 static int usb_dev_restore(struct device *dev) 285 { 286 return usb_resume(dev, PMSG_RESTORE); 287 } 288 289 static struct dev_pm_ops usb_device_pm_ops = { 290 .prepare = usb_dev_prepare, 291 .complete = usb_dev_complete, 292 .suspend = usb_dev_suspend, 293 .resume = usb_dev_resume, 294 .freeze = usb_dev_freeze, 295 .thaw = usb_dev_thaw, 296 .poweroff = usb_dev_poweroff, 297 .restore = usb_dev_restore, 298 }; 299 300 #else 301 302 #define ksuspend_usb_init() 0 303 #define ksuspend_usb_cleanup() do {} while (0) 304 #define usb_device_pm_ops (*(struct dev_pm_ops *)0) 305 306 #endif /* CONFIG_PM */ 307 308 struct device_type usb_device_type = { 309 .name = "usb_device", 310 .release = usb_release_dev, 311 .uevent = usb_dev_uevent, 312 .pm = &usb_device_pm_ops, 313 }; 314 315 316 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 317 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 318 { 319 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self); 320 return hcd->wireless; 321 } 322 323 324 /** 325 * usb_alloc_dev - usb device constructor (usbcore-internal) 326 * @parent: hub to which device is connected; null to allocate a root hub 327 * @bus: bus used to access the device 328 * @port1: one-based index of port; ignored for root hubs 329 * Context: !in_interrupt() 330 * 331 * Only hub drivers (including virtual root hub drivers for host 332 * controllers) should ever call this. 333 * 334 * This call may not be used in a non-sleeping context. 335 */ 336 struct usb_device *usb_alloc_dev(struct usb_device *parent, 337 struct usb_bus *bus, unsigned port1) 338 { 339 struct usb_device *dev; 340 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self); 341 unsigned root_hub = 0; 342 343 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 344 if (!dev) 345 return NULL; 346 347 if (!usb_get_hcd(bus_to_hcd(bus))) { 348 kfree(dev); 349 return NULL; 350 } 351 352 device_initialize(&dev->dev); 353 dev->dev.bus = &usb_bus_type; 354 dev->dev.type = &usb_device_type; 355 dev->dev.groups = usb_device_groups; 356 dev->dev.dma_mask = bus->controller->dma_mask; 357 set_dev_node(&dev->dev, dev_to_node(bus->controller)); 358 dev->state = USB_STATE_ATTACHED; 359 atomic_set(&dev->urbnum, 0); 360 361 INIT_LIST_HEAD(&dev->ep0.urb_list); 362 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 363 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 364 /* ep0 maxpacket comes later, from device descriptor */ 365 usb_enable_endpoint(dev, &dev->ep0, true); 366 dev->can_submit = 1; 367 368 /* Save readable and stable topology id, distinguishing devices 369 * by location for diagnostics, tools, driver model, etc. The 370 * string is a path along hub ports, from the root. Each device's 371 * dev->devpath will be stable until USB is re-cabled, and hubs 372 * are often labeled with these port numbers. The name isn't 373 * as stable: bus->busnum changes easily from modprobe order, 374 * cardbus or pci hotplugging, and so on. 375 */ 376 if (unlikely(!parent)) { 377 dev->devpath[0] = '0'; 378 379 dev->dev.parent = bus->controller; 380 dev_set_name(&dev->dev, "usb%d", bus->busnum); 381 root_hub = 1; 382 } else { 383 /* match any labeling on the hubs; it's one-based */ 384 if (parent->devpath[0] == '0') 385 snprintf(dev->devpath, sizeof dev->devpath, 386 "%d", port1); 387 else 388 snprintf(dev->devpath, sizeof dev->devpath, 389 "%s.%d", parent->devpath, port1); 390 391 dev->dev.parent = &parent->dev; 392 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 393 394 /* hub driver sets up TT records */ 395 } 396 397 dev->portnum = port1; 398 dev->bus = bus; 399 dev->parent = parent; 400 INIT_LIST_HEAD(&dev->filelist); 401 402 #ifdef CONFIG_PM 403 mutex_init(&dev->pm_mutex); 404 INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work); 405 INIT_WORK(&dev->autoresume, usb_autoresume_work); 406 dev->autosuspend_delay = usb_autosuspend_delay * HZ; 407 dev->connect_time = jiffies; 408 dev->active_duration = -jiffies; 409 #endif 410 if (root_hub) /* Root hub always ok [and always wired] */ 411 dev->authorized = 1; 412 else { 413 dev->authorized = usb_hcd->authorized_default; 414 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0; 415 } 416 return dev; 417 } 418 419 /** 420 * usb_get_dev - increments the reference count of the usb device structure 421 * @dev: the device being referenced 422 * 423 * Each live reference to a device should be refcounted. 424 * 425 * Drivers for USB interfaces should normally record such references in 426 * their probe() methods, when they bind to an interface, and release 427 * them by calling usb_put_dev(), in their disconnect() methods. 428 * 429 * A pointer to the device with the incremented reference counter is returned. 430 */ 431 struct usb_device *usb_get_dev(struct usb_device *dev) 432 { 433 if (dev) 434 get_device(&dev->dev); 435 return dev; 436 } 437 EXPORT_SYMBOL_GPL(usb_get_dev); 438 439 /** 440 * usb_put_dev - release a use of the usb device structure 441 * @dev: device that's been disconnected 442 * 443 * Must be called when a user of a device is finished with it. When the last 444 * user of the device calls this function, the memory of the device is freed. 445 */ 446 void usb_put_dev(struct usb_device *dev) 447 { 448 if (dev) 449 put_device(&dev->dev); 450 } 451 EXPORT_SYMBOL_GPL(usb_put_dev); 452 453 /** 454 * usb_get_intf - increments the reference count of the usb interface structure 455 * @intf: the interface being referenced 456 * 457 * Each live reference to a interface must be refcounted. 458 * 459 * Drivers for USB interfaces should normally record such references in 460 * their probe() methods, when they bind to an interface, and release 461 * them by calling usb_put_intf(), in their disconnect() methods. 462 * 463 * A pointer to the interface with the incremented reference counter is 464 * returned. 465 */ 466 struct usb_interface *usb_get_intf(struct usb_interface *intf) 467 { 468 if (intf) 469 get_device(&intf->dev); 470 return intf; 471 } 472 EXPORT_SYMBOL_GPL(usb_get_intf); 473 474 /** 475 * usb_put_intf - release a use of the usb interface structure 476 * @intf: interface that's been decremented 477 * 478 * Must be called when a user of an interface is finished with it. When the 479 * last user of the interface calls this function, the memory of the interface 480 * is freed. 481 */ 482 void usb_put_intf(struct usb_interface *intf) 483 { 484 if (intf) 485 put_device(&intf->dev); 486 } 487 EXPORT_SYMBOL_GPL(usb_put_intf); 488 489 /* USB device locking 490 * 491 * USB devices and interfaces are locked using the semaphore in their 492 * embedded struct device. The hub driver guarantees that whenever a 493 * device is connected or disconnected, drivers are called with the 494 * USB device locked as well as their particular interface. 495 * 496 * Complications arise when several devices are to be locked at the same 497 * time. Only hub-aware drivers that are part of usbcore ever have to 498 * do this; nobody else needs to worry about it. The rule for locking 499 * is simple: 500 * 501 * When locking both a device and its parent, always lock the 502 * the parent first. 503 */ 504 505 /** 506 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 507 * @udev: device that's being locked 508 * @iface: interface bound to the driver making the request (optional) 509 * 510 * Attempts to acquire the device lock, but fails if the device is 511 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 512 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 513 * lock, the routine polls repeatedly. This is to prevent deadlock with 514 * disconnect; in some drivers (such as usb-storage) the disconnect() 515 * or suspend() method will block waiting for a device reset to complete. 516 * 517 * Returns a negative error code for failure, otherwise 0. 518 */ 519 int usb_lock_device_for_reset(struct usb_device *udev, 520 const struct usb_interface *iface) 521 { 522 unsigned long jiffies_expire = jiffies + HZ; 523 524 if (udev->state == USB_STATE_NOTATTACHED) 525 return -ENODEV; 526 if (udev->state == USB_STATE_SUSPENDED) 527 return -EHOSTUNREACH; 528 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 529 iface->condition == USB_INTERFACE_UNBOUND)) 530 return -EINTR; 531 532 while (usb_trylock_device(udev) != 0) { 533 534 /* If we can't acquire the lock after waiting one second, 535 * we're probably deadlocked */ 536 if (time_after(jiffies, jiffies_expire)) 537 return -EBUSY; 538 539 msleep(15); 540 if (udev->state == USB_STATE_NOTATTACHED) 541 return -ENODEV; 542 if (udev->state == USB_STATE_SUSPENDED) 543 return -EHOSTUNREACH; 544 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 545 iface->condition == USB_INTERFACE_UNBOUND)) 546 return -EINTR; 547 } 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 551 552 static struct usb_device *match_device(struct usb_device *dev, 553 u16 vendor_id, u16 product_id) 554 { 555 struct usb_device *ret_dev = NULL; 556 int child; 557 558 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n", 559 le16_to_cpu(dev->descriptor.idVendor), 560 le16_to_cpu(dev->descriptor.idProduct)); 561 562 /* see if this device matches */ 563 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) && 564 (product_id == le16_to_cpu(dev->descriptor.idProduct))) { 565 dev_dbg(&dev->dev, "matched this device!\n"); 566 ret_dev = usb_get_dev(dev); 567 goto exit; 568 } 569 570 /* look through all of the children of this device */ 571 for (child = 0; child < dev->maxchild; ++child) { 572 if (dev->children[child]) { 573 usb_lock_device(dev->children[child]); 574 ret_dev = match_device(dev->children[child], 575 vendor_id, product_id); 576 usb_unlock_device(dev->children[child]); 577 if (ret_dev) 578 goto exit; 579 } 580 } 581 exit: 582 return ret_dev; 583 } 584 585 /** 586 * usb_find_device - find a specific usb device in the system 587 * @vendor_id: the vendor id of the device to find 588 * @product_id: the product id of the device to find 589 * 590 * Returns a pointer to a struct usb_device if such a specified usb 591 * device is present in the system currently. The usage count of the 592 * device will be incremented if a device is found. Make sure to call 593 * usb_put_dev() when the caller is finished with the device. 594 * 595 * If a device with the specified vendor and product id is not found, 596 * NULL is returned. 597 */ 598 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id) 599 { 600 struct list_head *buslist; 601 struct usb_bus *bus; 602 struct usb_device *dev = NULL; 603 604 mutex_lock(&usb_bus_list_lock); 605 for (buslist = usb_bus_list.next; 606 buslist != &usb_bus_list; 607 buslist = buslist->next) { 608 bus = container_of(buslist, struct usb_bus, bus_list); 609 if (!bus->root_hub) 610 continue; 611 usb_lock_device(bus->root_hub); 612 dev = match_device(bus->root_hub, vendor_id, product_id); 613 usb_unlock_device(bus->root_hub); 614 if (dev) 615 goto exit; 616 } 617 exit: 618 mutex_unlock(&usb_bus_list_lock); 619 return dev; 620 } 621 622 /** 623 * usb_get_current_frame_number - return current bus frame number 624 * @dev: the device whose bus is being queried 625 * 626 * Returns the current frame number for the USB host controller 627 * used with the given USB device. This can be used when scheduling 628 * isochronous requests. 629 * 630 * Note that different kinds of host controller have different 631 * "scheduling horizons". While one type might support scheduling only 632 * 32 frames into the future, others could support scheduling up to 633 * 1024 frames into the future. 634 */ 635 int usb_get_current_frame_number(struct usb_device *dev) 636 { 637 return usb_hcd_get_frame_number(dev); 638 } 639 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 640 641 /*-------------------------------------------------------------------*/ 642 /* 643 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 644 * extra field of the interface and endpoint descriptor structs. 645 */ 646 647 int __usb_get_extra_descriptor(char *buffer, unsigned size, 648 unsigned char type, void **ptr) 649 { 650 struct usb_descriptor_header *header; 651 652 while (size >= sizeof(struct usb_descriptor_header)) { 653 header = (struct usb_descriptor_header *)buffer; 654 655 if (header->bLength < 2) { 656 printk(KERN_ERR 657 "%s: bogus descriptor, type %d length %d\n", 658 usbcore_name, 659 header->bDescriptorType, 660 header->bLength); 661 return -1; 662 } 663 664 if (header->bDescriptorType == type) { 665 *ptr = header; 666 return 0; 667 } 668 669 buffer += header->bLength; 670 size -= header->bLength; 671 } 672 return -1; 673 } 674 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 675 676 /** 677 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 678 * @dev: device the buffer will be used with 679 * @size: requested buffer size 680 * @mem_flags: affect whether allocation may block 681 * @dma: used to return DMA address of buffer 682 * 683 * Return value is either null (indicating no buffer could be allocated), or 684 * the cpu-space pointer to a buffer that may be used to perform DMA to the 685 * specified device. Such cpu-space buffers are returned along with the DMA 686 * address (through the pointer provided). 687 * 688 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 689 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 690 * hardware during URB completion/resubmit. The implementation varies between 691 * platforms, depending on details of how DMA will work to this device. 692 * Using these buffers also eliminates cacheline sharing problems on 693 * architectures where CPU caches are not DMA-coherent. On systems without 694 * bus-snooping caches, these buffers are uncached. 695 * 696 * When the buffer is no longer used, free it with usb_buffer_free(). 697 */ 698 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags, 699 dma_addr_t *dma) 700 { 701 if (!dev || !dev->bus) 702 return NULL; 703 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 704 } 705 EXPORT_SYMBOL_GPL(usb_buffer_alloc); 706 707 /** 708 * usb_buffer_free - free memory allocated with usb_buffer_alloc() 709 * @dev: device the buffer was used with 710 * @size: requested buffer size 711 * @addr: CPU address of buffer 712 * @dma: DMA address of buffer 713 * 714 * This reclaims an I/O buffer, letting it be reused. The memory must have 715 * been allocated using usb_buffer_alloc(), and the parameters must match 716 * those provided in that allocation request. 717 */ 718 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr, 719 dma_addr_t dma) 720 { 721 if (!dev || !dev->bus) 722 return; 723 if (!addr) 724 return; 725 hcd_buffer_free(dev->bus, size, addr, dma); 726 } 727 EXPORT_SYMBOL_GPL(usb_buffer_free); 728 729 /** 730 * usb_buffer_map - create DMA mapping(s) for an urb 731 * @urb: urb whose transfer_buffer/setup_packet will be mapped 732 * 733 * Return value is either null (indicating no buffer could be mapped), or 734 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are 735 * added to urb->transfer_flags if the operation succeeds. If the device 736 * is connected to this system through a non-DMA controller, this operation 737 * always succeeds. 738 * 739 * This call would normally be used for an urb which is reused, perhaps 740 * as the target of a large periodic transfer, with usb_buffer_dmasync() 741 * calls to synchronize memory and dma state. 742 * 743 * Reverse the effect of this call with usb_buffer_unmap(). 744 */ 745 #if 0 746 struct urb *usb_buffer_map(struct urb *urb) 747 { 748 struct usb_bus *bus; 749 struct device *controller; 750 751 if (!urb 752 || !urb->dev 753 || !(bus = urb->dev->bus) 754 || !(controller = bus->controller)) 755 return NULL; 756 757 if (controller->dma_mask) { 758 urb->transfer_dma = dma_map_single(controller, 759 urb->transfer_buffer, urb->transfer_buffer_length, 760 usb_pipein(urb->pipe) 761 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 762 if (usb_pipecontrol(urb->pipe)) 763 urb->setup_dma = dma_map_single(controller, 764 urb->setup_packet, 765 sizeof(struct usb_ctrlrequest), 766 DMA_TO_DEVICE); 767 /* FIXME generic api broken like pci, can't report errors */ 768 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 769 } else 770 urb->transfer_dma = ~0; 771 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP 772 | URB_NO_SETUP_DMA_MAP); 773 return urb; 774 } 775 EXPORT_SYMBOL_GPL(usb_buffer_map); 776 #endif /* 0 */ 777 778 /* XXX DISABLED, no users currently. If you wish to re-enable this 779 * XXX please determine whether the sync is to transfer ownership of 780 * XXX the buffer from device to cpu or vice verse, and thusly use the 781 * XXX appropriate _for_{cpu,device}() method. -DaveM 782 */ 783 #if 0 784 785 /** 786 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 787 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 788 */ 789 void usb_buffer_dmasync(struct urb *urb) 790 { 791 struct usb_bus *bus; 792 struct device *controller; 793 794 if (!urb 795 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 796 || !urb->dev 797 || !(bus = urb->dev->bus) 798 || !(controller = bus->controller)) 799 return; 800 801 if (controller->dma_mask) { 802 dma_sync_single(controller, 803 urb->transfer_dma, urb->transfer_buffer_length, 804 usb_pipein(urb->pipe) 805 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 806 if (usb_pipecontrol(urb->pipe)) 807 dma_sync_single(controller, 808 urb->setup_dma, 809 sizeof(struct usb_ctrlrequest), 810 DMA_TO_DEVICE); 811 } 812 } 813 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 814 #endif 815 816 /** 817 * usb_buffer_unmap - free DMA mapping(s) for an urb 818 * @urb: urb whose transfer_buffer will be unmapped 819 * 820 * Reverses the effect of usb_buffer_map(). 821 */ 822 #if 0 823 void usb_buffer_unmap(struct urb *urb) 824 { 825 struct usb_bus *bus; 826 struct device *controller; 827 828 if (!urb 829 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 830 || !urb->dev 831 || !(bus = urb->dev->bus) 832 || !(controller = bus->controller)) 833 return; 834 835 if (controller->dma_mask) { 836 dma_unmap_single(controller, 837 urb->transfer_dma, urb->transfer_buffer_length, 838 usb_pipein(urb->pipe) 839 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 840 if (usb_pipecontrol(urb->pipe)) 841 dma_unmap_single(controller, 842 urb->setup_dma, 843 sizeof(struct usb_ctrlrequest), 844 DMA_TO_DEVICE); 845 } 846 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP 847 | URB_NO_SETUP_DMA_MAP); 848 } 849 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 850 #endif /* 0 */ 851 852 /** 853 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 854 * @dev: device to which the scatterlist will be mapped 855 * @is_in: mapping transfer direction 856 * @sg: the scatterlist to map 857 * @nents: the number of entries in the scatterlist 858 * 859 * Return value is either < 0 (indicating no buffers could be mapped), or 860 * the number of DMA mapping array entries in the scatterlist. 861 * 862 * The caller is responsible for placing the resulting DMA addresses from 863 * the scatterlist into URB transfer buffer pointers, and for setting the 864 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 865 * 866 * Top I/O rates come from queuing URBs, instead of waiting for each one 867 * to complete before starting the next I/O. This is particularly easy 868 * to do with scatterlists. Just allocate and submit one URB for each DMA 869 * mapping entry returned, stopping on the first error or when all succeed. 870 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 871 * 872 * This call would normally be used when translating scatterlist requests, 873 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 874 * may be able to coalesce mappings for improved I/O efficiency. 875 * 876 * Reverse the effect of this call with usb_buffer_unmap_sg(). 877 */ 878 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 879 struct scatterlist *sg, int nents) 880 { 881 struct usb_bus *bus; 882 struct device *controller; 883 884 if (!dev 885 || !(bus = dev->bus) 886 || !(controller = bus->controller) 887 || !controller->dma_mask) 888 return -1; 889 890 /* FIXME generic api broken like pci, can't report errors */ 891 return dma_map_sg(controller, sg, nents, 892 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 893 } 894 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 895 896 /* XXX DISABLED, no users currently. If you wish to re-enable this 897 * XXX please determine whether the sync is to transfer ownership of 898 * XXX the buffer from device to cpu or vice verse, and thusly use the 899 * XXX appropriate _for_{cpu,device}() method. -DaveM 900 */ 901 #if 0 902 903 /** 904 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 905 * @dev: device to which the scatterlist will be mapped 906 * @is_in: mapping transfer direction 907 * @sg: the scatterlist to synchronize 908 * @n_hw_ents: the positive return value from usb_buffer_map_sg 909 * 910 * Use this when you are re-using a scatterlist's data buffers for 911 * another USB request. 912 */ 913 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 914 struct scatterlist *sg, int n_hw_ents) 915 { 916 struct usb_bus *bus; 917 struct device *controller; 918 919 if (!dev 920 || !(bus = dev->bus) 921 || !(controller = bus->controller) 922 || !controller->dma_mask) 923 return; 924 925 dma_sync_sg(controller, sg, n_hw_ents, 926 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 927 } 928 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 929 #endif 930 931 /** 932 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 933 * @dev: device to which the scatterlist will be mapped 934 * @is_in: mapping transfer direction 935 * @sg: the scatterlist to unmap 936 * @n_hw_ents: the positive return value from usb_buffer_map_sg 937 * 938 * Reverses the effect of usb_buffer_map_sg(). 939 */ 940 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 941 struct scatterlist *sg, int n_hw_ents) 942 { 943 struct usb_bus *bus; 944 struct device *controller; 945 946 if (!dev 947 || !(bus = dev->bus) 948 || !(controller = bus->controller) 949 || !controller->dma_mask) 950 return; 951 952 dma_unmap_sg(controller, sg, n_hw_ents, 953 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 954 } 955 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 956 957 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */ 958 #ifdef MODULE 959 module_param(nousb, bool, 0444); 960 #else 961 core_param(nousb, nousb, bool, 0444); 962 #endif 963 964 /* 965 * for external read access to <nousb> 966 */ 967 int usb_disabled(void) 968 { 969 return nousb; 970 } 971 EXPORT_SYMBOL_GPL(usb_disabled); 972 973 /* 974 * Notifications of device and interface registration 975 */ 976 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 977 void *data) 978 { 979 struct device *dev = data; 980 981 switch (action) { 982 case BUS_NOTIFY_ADD_DEVICE: 983 if (dev->type == &usb_device_type) 984 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 985 else if (dev->type == &usb_if_device_type) 986 (void) usb_create_sysfs_intf_files( 987 to_usb_interface(dev)); 988 break; 989 990 case BUS_NOTIFY_DEL_DEVICE: 991 if (dev->type == &usb_device_type) 992 usb_remove_sysfs_dev_files(to_usb_device(dev)); 993 else if (dev->type == &usb_if_device_type) 994 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 995 break; 996 } 997 return 0; 998 } 999 1000 static struct notifier_block usb_bus_nb = { 1001 .notifier_call = usb_bus_notify, 1002 }; 1003 1004 /* 1005 * Init 1006 */ 1007 static int __init usb_init(void) 1008 { 1009 int retval; 1010 if (nousb) { 1011 pr_info("%s: USB support disabled\n", usbcore_name); 1012 return 0; 1013 } 1014 1015 retval = ksuspend_usb_init(); 1016 if (retval) 1017 goto out; 1018 retval = bus_register(&usb_bus_type); 1019 if (retval) 1020 goto bus_register_failed; 1021 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1022 if (retval) 1023 goto bus_notifier_failed; 1024 retval = usb_host_init(); 1025 if (retval) 1026 goto host_init_failed; 1027 retval = usb_major_init(); 1028 if (retval) 1029 goto major_init_failed; 1030 retval = usb_register(&usbfs_driver); 1031 if (retval) 1032 goto driver_register_failed; 1033 retval = usb_devio_init(); 1034 if (retval) 1035 goto usb_devio_init_failed; 1036 retval = usbfs_init(); 1037 if (retval) 1038 goto fs_init_failed; 1039 retval = usb_hub_init(); 1040 if (retval) 1041 goto hub_init_failed; 1042 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1043 if (!retval) 1044 goto out; 1045 1046 usb_hub_cleanup(); 1047 hub_init_failed: 1048 usbfs_cleanup(); 1049 fs_init_failed: 1050 usb_devio_cleanup(); 1051 usb_devio_init_failed: 1052 usb_deregister(&usbfs_driver); 1053 driver_register_failed: 1054 usb_major_cleanup(); 1055 major_init_failed: 1056 usb_host_cleanup(); 1057 host_init_failed: 1058 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1059 bus_notifier_failed: 1060 bus_unregister(&usb_bus_type); 1061 bus_register_failed: 1062 ksuspend_usb_cleanup(); 1063 out: 1064 return retval; 1065 } 1066 1067 /* 1068 * Cleanup 1069 */ 1070 static void __exit usb_exit(void) 1071 { 1072 /* This will matter if shutdown/reboot does exitcalls. */ 1073 if (nousb) 1074 return; 1075 1076 usb_deregister_device_driver(&usb_generic_driver); 1077 usb_major_cleanup(); 1078 usbfs_cleanup(); 1079 usb_deregister(&usbfs_driver); 1080 usb_devio_cleanup(); 1081 usb_hub_cleanup(); 1082 usb_host_cleanup(); 1083 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1084 bus_unregister(&usb_bus_type); 1085 ksuspend_usb_cleanup(); 1086 } 1087 1088 subsys_initcall(usb_init); 1089 module_exit(usb_exit); 1090 MODULE_LICENSE("GPL"); 1091