xref: /openbmc/linux/drivers/usb/core/usb.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/usb/core/usb.c
4  *
5  * (C) Copyright Linus Torvalds 1999
6  * (C) Copyright Johannes Erdfelt 1999-2001
7  * (C) Copyright Andreas Gal 1999
8  * (C) Copyright Gregory P. Smith 1999
9  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10  * (C) Copyright Randy Dunlap 2000
11  * (C) Copyright David Brownell 2000-2004
12  * (C) Copyright Yggdrasil Computing, Inc. 2000
13  *     (usb_device_id matching changes by Adam J. Richter)
14  * (C) Copyright Greg Kroah-Hartman 2002-2003
15  *
16  * Released under the GPLv2 only.
17  *
18  * NOTE! This is not actually a driver at all, rather this is
19  * just a collection of helper routines that implement the
20  * generic USB things that the real drivers can use..
21  *
22  * Think of this as a "USB library" rather than anything else.
23  * It should be considered a slave, with no callbacks. Callbacks
24  * are evil.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/string.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>  /* for in_interrupt() */
33 #include <linux/kmod.h>
34 #include <linux/init.h>
35 #include <linux/spinlock.h>
36 #include <linux/errno.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/mutex.h>
40 #include <linux/workqueue.h>
41 #include <linux/debugfs.h>
42 #include <linux/usb/of.h>
43 
44 #include <asm/io.h>
45 #include <linux/scatterlist.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48 
49 #include "hub.h"
50 
51 const char *usbcore_name = "usbcore";
52 
53 static bool nousb;	/* Disable USB when built into kernel image */
54 
55 module_param(nousb, bool, 0444);
56 
57 /*
58  * for external read access to <nousb>
59  */
60 int usb_disabled(void)
61 {
62 	return nousb;
63 }
64 EXPORT_SYMBOL_GPL(usb_disabled);
65 
66 #ifdef	CONFIG_PM
67 /* Default delay value, in seconds */
68 static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
69 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
70 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
71 
72 #else
73 #define usb_autosuspend_delay		0
74 #endif
75 
76 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
77 		struct usb_endpoint_descriptor **bulk_in,
78 		struct usb_endpoint_descriptor **bulk_out,
79 		struct usb_endpoint_descriptor **int_in,
80 		struct usb_endpoint_descriptor **int_out)
81 {
82 	switch (usb_endpoint_type(epd)) {
83 	case USB_ENDPOINT_XFER_BULK:
84 		if (usb_endpoint_dir_in(epd)) {
85 			if (bulk_in && !*bulk_in) {
86 				*bulk_in = epd;
87 				break;
88 			}
89 		} else {
90 			if (bulk_out && !*bulk_out) {
91 				*bulk_out = epd;
92 				break;
93 			}
94 		}
95 
96 		return false;
97 	case USB_ENDPOINT_XFER_INT:
98 		if (usb_endpoint_dir_in(epd)) {
99 			if (int_in && !*int_in) {
100 				*int_in = epd;
101 				break;
102 			}
103 		} else {
104 			if (int_out && !*int_out) {
105 				*int_out = epd;
106 				break;
107 			}
108 		}
109 
110 		return false;
111 	default:
112 		return false;
113 	}
114 
115 	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
116 			(!int_in || *int_in) && (!int_out || *int_out);
117 }
118 
119 /**
120  * usb_find_common_endpoints() -- look up common endpoint descriptors
121  * @alt:	alternate setting to search
122  * @bulk_in:	pointer to descriptor pointer, or NULL
123  * @bulk_out:	pointer to descriptor pointer, or NULL
124  * @int_in:	pointer to descriptor pointer, or NULL
125  * @int_out:	pointer to descriptor pointer, or NULL
126  *
127  * Search the alternate setting's endpoint descriptors for the first bulk-in,
128  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
129  * provided pointers (unless they are NULL).
130  *
131  * If a requested endpoint is not found, the corresponding pointer is set to
132  * NULL.
133  *
134  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
135  */
136 int usb_find_common_endpoints(struct usb_host_interface *alt,
137 		struct usb_endpoint_descriptor **bulk_in,
138 		struct usb_endpoint_descriptor **bulk_out,
139 		struct usb_endpoint_descriptor **int_in,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	struct usb_endpoint_descriptor *epd;
143 	int i;
144 
145 	if (bulk_in)
146 		*bulk_in = NULL;
147 	if (bulk_out)
148 		*bulk_out = NULL;
149 	if (int_in)
150 		*int_in = NULL;
151 	if (int_out)
152 		*int_out = NULL;
153 
154 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
155 		epd = &alt->endpoint[i].desc;
156 
157 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
158 			return 0;
159 	}
160 
161 	return -ENXIO;
162 }
163 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
164 
165 /**
166  * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
167  * @alt:	alternate setting to search
168  * @bulk_in:	pointer to descriptor pointer, or NULL
169  * @bulk_out:	pointer to descriptor pointer, or NULL
170  * @int_in:	pointer to descriptor pointer, or NULL
171  * @int_out:	pointer to descriptor pointer, or NULL
172  *
173  * Search the alternate setting's endpoint descriptors for the last bulk-in,
174  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
175  * provided pointers (unless they are NULL).
176  *
177  * If a requested endpoint is not found, the corresponding pointer is set to
178  * NULL.
179  *
180  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
181  */
182 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
183 		struct usb_endpoint_descriptor **bulk_in,
184 		struct usb_endpoint_descriptor **bulk_out,
185 		struct usb_endpoint_descriptor **int_in,
186 		struct usb_endpoint_descriptor **int_out)
187 {
188 	struct usb_endpoint_descriptor *epd;
189 	int i;
190 
191 	if (bulk_in)
192 		*bulk_in = NULL;
193 	if (bulk_out)
194 		*bulk_out = NULL;
195 	if (int_in)
196 		*int_in = NULL;
197 	if (int_out)
198 		*int_out = NULL;
199 
200 	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
201 		epd = &alt->endpoint[i].desc;
202 
203 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
204 			return 0;
205 	}
206 
207 	return -ENXIO;
208 }
209 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
210 
211 /**
212  * usb_find_alt_setting() - Given a configuration, find the alternate setting
213  * for the given interface.
214  * @config: the configuration to search (not necessarily the current config).
215  * @iface_num: interface number to search in
216  * @alt_num: alternate interface setting number to search for.
217  *
218  * Search the configuration's interface cache for the given alt setting.
219  *
220  * Return: The alternate setting, if found. %NULL otherwise.
221  */
222 struct usb_host_interface *usb_find_alt_setting(
223 		struct usb_host_config *config,
224 		unsigned int iface_num,
225 		unsigned int alt_num)
226 {
227 	struct usb_interface_cache *intf_cache = NULL;
228 	int i;
229 
230 	if (!config)
231 		return NULL;
232 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
233 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
234 				== iface_num) {
235 			intf_cache = config->intf_cache[i];
236 			break;
237 		}
238 	}
239 	if (!intf_cache)
240 		return NULL;
241 	for (i = 0; i < intf_cache->num_altsetting; i++)
242 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
243 			return &intf_cache->altsetting[i];
244 
245 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
246 			"config %u\n", alt_num, iface_num,
247 			config->desc.bConfigurationValue);
248 	return NULL;
249 }
250 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
251 
252 /**
253  * usb_ifnum_to_if - get the interface object with a given interface number
254  * @dev: the device whose current configuration is considered
255  * @ifnum: the desired interface
256  *
257  * This walks the device descriptor for the currently active configuration
258  * to find the interface object with the particular interface number.
259  *
260  * Note that configuration descriptors are not required to assign interface
261  * numbers sequentially, so that it would be incorrect to assume that
262  * the first interface in that descriptor corresponds to interface zero.
263  * This routine helps device drivers avoid such mistakes.
264  * However, you should make sure that you do the right thing with any
265  * alternate settings available for this interfaces.
266  *
267  * Don't call this function unless you are bound to one of the interfaces
268  * on this device or you have locked the device!
269  *
270  * Return: A pointer to the interface that has @ifnum as interface number,
271  * if found. %NULL otherwise.
272  */
273 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
274 				      unsigned ifnum)
275 {
276 	struct usb_host_config *config = dev->actconfig;
277 	int i;
278 
279 	if (!config)
280 		return NULL;
281 	for (i = 0; i < config->desc.bNumInterfaces; i++)
282 		if (config->interface[i]->altsetting[0]
283 				.desc.bInterfaceNumber == ifnum)
284 			return config->interface[i];
285 
286 	return NULL;
287 }
288 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
289 
290 /**
291  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
292  * @intf: the interface containing the altsetting in question
293  * @altnum: the desired alternate setting number
294  *
295  * This searches the altsetting array of the specified interface for
296  * an entry with the correct bAlternateSetting value.
297  *
298  * Note that altsettings need not be stored sequentially by number, so
299  * it would be incorrect to assume that the first altsetting entry in
300  * the array corresponds to altsetting zero.  This routine helps device
301  * drivers avoid such mistakes.
302  *
303  * Don't call this function unless you are bound to the intf interface
304  * or you have locked the device!
305  *
306  * Return: A pointer to the entry of the altsetting array of @intf that
307  * has @altnum as the alternate setting number. %NULL if not found.
308  */
309 struct usb_host_interface *usb_altnum_to_altsetting(
310 					const struct usb_interface *intf,
311 					unsigned int altnum)
312 {
313 	int i;
314 
315 	for (i = 0; i < intf->num_altsetting; i++) {
316 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
317 			return &intf->altsetting[i];
318 	}
319 	return NULL;
320 }
321 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
322 
323 struct find_interface_arg {
324 	int minor;
325 	struct device_driver *drv;
326 };
327 
328 static int __find_interface(struct device *dev, void *data)
329 {
330 	struct find_interface_arg *arg = data;
331 	struct usb_interface *intf;
332 
333 	if (!is_usb_interface(dev))
334 		return 0;
335 
336 	if (dev->driver != arg->drv)
337 		return 0;
338 	intf = to_usb_interface(dev);
339 	return intf->minor == arg->minor;
340 }
341 
342 /**
343  * usb_find_interface - find usb_interface pointer for driver and device
344  * @drv: the driver whose current configuration is considered
345  * @minor: the minor number of the desired device
346  *
347  * This walks the bus device list and returns a pointer to the interface
348  * with the matching minor and driver.  Note, this only works for devices
349  * that share the USB major number.
350  *
351  * Return: A pointer to the interface with the matching major and @minor.
352  */
353 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
354 {
355 	struct find_interface_arg argb;
356 	struct device *dev;
357 
358 	argb.minor = minor;
359 	argb.drv = &drv->drvwrap.driver;
360 
361 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
362 
363 	/* Drop reference count from bus_find_device */
364 	put_device(dev);
365 
366 	return dev ? to_usb_interface(dev) : NULL;
367 }
368 EXPORT_SYMBOL_GPL(usb_find_interface);
369 
370 struct each_dev_arg {
371 	void *data;
372 	int (*fn)(struct usb_device *, void *);
373 };
374 
375 static int __each_dev(struct device *dev, void *data)
376 {
377 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
378 
379 	/* There are struct usb_interface on the same bus, filter them out */
380 	if (!is_usb_device(dev))
381 		return 0;
382 
383 	return arg->fn(to_usb_device(dev), arg->data);
384 }
385 
386 /**
387  * usb_for_each_dev - iterate over all USB devices in the system
388  * @data: data pointer that will be handed to the callback function
389  * @fn: callback function to be called for each USB device
390  *
391  * Iterate over all USB devices and call @fn for each, passing it @data. If it
392  * returns anything other than 0, we break the iteration prematurely and return
393  * that value.
394  */
395 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
396 {
397 	struct each_dev_arg arg = {data, fn};
398 
399 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
400 }
401 EXPORT_SYMBOL_GPL(usb_for_each_dev);
402 
403 /**
404  * usb_release_dev - free a usb device structure when all users of it are finished.
405  * @dev: device that's been disconnected
406  *
407  * Will be called only by the device core when all users of this usb device are
408  * done.
409  */
410 static void usb_release_dev(struct device *dev)
411 {
412 	struct usb_device *udev;
413 	struct usb_hcd *hcd;
414 
415 	udev = to_usb_device(dev);
416 	hcd = bus_to_hcd(udev->bus);
417 
418 	usb_destroy_configuration(udev);
419 	usb_release_bos_descriptor(udev);
420 	of_node_put(dev->of_node);
421 	usb_put_hcd(hcd);
422 	kfree(udev->product);
423 	kfree(udev->manufacturer);
424 	kfree(udev->serial);
425 	kfree(udev);
426 }
427 
428 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
429 {
430 	struct usb_device *usb_dev;
431 
432 	usb_dev = to_usb_device(dev);
433 
434 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
435 		return -ENOMEM;
436 
437 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
438 		return -ENOMEM;
439 
440 	return 0;
441 }
442 
443 #ifdef	CONFIG_PM
444 
445 /* USB device Power-Management thunks.
446  * There's no need to distinguish here between quiescing a USB device
447  * and powering it down; the generic_suspend() routine takes care of
448  * it by skipping the usb_port_suspend() call for a quiesce.  And for
449  * USB interfaces there's no difference at all.
450  */
451 
452 static int usb_dev_prepare(struct device *dev)
453 {
454 	return 0;		/* Implement eventually? */
455 }
456 
457 static void usb_dev_complete(struct device *dev)
458 {
459 	/* Currently used only for rebinding interfaces */
460 	usb_resume_complete(dev);
461 }
462 
463 static int usb_dev_suspend(struct device *dev)
464 {
465 	return usb_suspend(dev, PMSG_SUSPEND);
466 }
467 
468 static int usb_dev_resume(struct device *dev)
469 {
470 	return usb_resume(dev, PMSG_RESUME);
471 }
472 
473 static int usb_dev_freeze(struct device *dev)
474 {
475 	return usb_suspend(dev, PMSG_FREEZE);
476 }
477 
478 static int usb_dev_thaw(struct device *dev)
479 {
480 	return usb_resume(dev, PMSG_THAW);
481 }
482 
483 static int usb_dev_poweroff(struct device *dev)
484 {
485 	return usb_suspend(dev, PMSG_HIBERNATE);
486 }
487 
488 static int usb_dev_restore(struct device *dev)
489 {
490 	return usb_resume(dev, PMSG_RESTORE);
491 }
492 
493 static const struct dev_pm_ops usb_device_pm_ops = {
494 	.prepare =	usb_dev_prepare,
495 	.complete =	usb_dev_complete,
496 	.suspend =	usb_dev_suspend,
497 	.resume =	usb_dev_resume,
498 	.freeze =	usb_dev_freeze,
499 	.thaw =		usb_dev_thaw,
500 	.poweroff =	usb_dev_poweroff,
501 	.restore =	usb_dev_restore,
502 	.runtime_suspend =	usb_runtime_suspend,
503 	.runtime_resume =	usb_runtime_resume,
504 	.runtime_idle =		usb_runtime_idle,
505 };
506 
507 #endif	/* CONFIG_PM */
508 
509 
510 static char *usb_devnode(struct device *dev,
511 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
512 {
513 	struct usb_device *usb_dev;
514 
515 	usb_dev = to_usb_device(dev);
516 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
517 			 usb_dev->bus->busnum, usb_dev->devnum);
518 }
519 
520 struct device_type usb_device_type = {
521 	.name =		"usb_device",
522 	.release =	usb_release_dev,
523 	.uevent =	usb_dev_uevent,
524 	.devnode = 	usb_devnode,
525 #ifdef CONFIG_PM
526 	.pm =		&usb_device_pm_ops,
527 #endif
528 };
529 
530 
531 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
532 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
533 {
534 	struct usb_hcd *hcd = bus_to_hcd(bus);
535 	return hcd->wireless;
536 }
537 
538 static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
539 {
540 	struct usb_hub *hub;
541 
542 	if (!dev->parent)
543 		return true; /* Root hub always ok [and always wired] */
544 
545 	switch (hcd->dev_policy) {
546 	case USB_DEVICE_AUTHORIZE_NONE:
547 	default:
548 		return false;
549 
550 	case USB_DEVICE_AUTHORIZE_ALL:
551 		return true;
552 
553 	case USB_DEVICE_AUTHORIZE_INTERNAL:
554 		hub = usb_hub_to_struct_hub(dev->parent);
555 		return hub->ports[dev->portnum - 1]->connect_type ==
556 				USB_PORT_CONNECT_TYPE_HARD_WIRED;
557 	}
558 }
559 
560 /**
561  * usb_alloc_dev - usb device constructor (usbcore-internal)
562  * @parent: hub to which device is connected; null to allocate a root hub
563  * @bus: bus used to access the device
564  * @port1: one-based index of port; ignored for root hubs
565  * Context: !in_interrupt()
566  *
567  * Only hub drivers (including virtual root hub drivers for host
568  * controllers) should ever call this.
569  *
570  * This call may not be used in a non-sleeping context.
571  *
572  * Return: On success, a pointer to the allocated usb device. %NULL on
573  * failure.
574  */
575 struct usb_device *usb_alloc_dev(struct usb_device *parent,
576 				 struct usb_bus *bus, unsigned port1)
577 {
578 	struct usb_device *dev;
579 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
580 	unsigned root_hub = 0;
581 	unsigned raw_port = port1;
582 
583 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
584 	if (!dev)
585 		return NULL;
586 
587 	if (!usb_get_hcd(usb_hcd)) {
588 		kfree(dev);
589 		return NULL;
590 	}
591 	/* Root hubs aren't true devices, so don't allocate HCD resources */
592 	if (usb_hcd->driver->alloc_dev && parent &&
593 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
594 		usb_put_hcd(bus_to_hcd(bus));
595 		kfree(dev);
596 		return NULL;
597 	}
598 
599 	device_initialize(&dev->dev);
600 	dev->dev.bus = &usb_bus_type;
601 	dev->dev.type = &usb_device_type;
602 	dev->dev.groups = usb_device_groups;
603 	/*
604 	 * Fake a dma_mask/offset for the USB device:
605 	 * We cannot really use the dma-mapping API (dma_alloc_* and
606 	 * dma_map_*) for USB devices but instead need to use
607 	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
608 	 * manually look into the mask/offset pair to determine whether
609 	 * they need bounce buffers.
610 	 * Note: calling dma_set_mask() on a USB device would set the
611 	 * mask for the entire HCD, so don't do that.
612 	 */
613 	dev->dev.dma_mask = bus->sysdev->dma_mask;
614 	dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
615 	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
616 	dev->state = USB_STATE_ATTACHED;
617 	dev->lpm_disable_count = 1;
618 	atomic_set(&dev->urbnum, 0);
619 
620 	INIT_LIST_HEAD(&dev->ep0.urb_list);
621 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
622 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
623 	/* ep0 maxpacket comes later, from device descriptor */
624 	usb_enable_endpoint(dev, &dev->ep0, false);
625 	dev->can_submit = 1;
626 
627 	/* Save readable and stable topology id, distinguishing devices
628 	 * by location for diagnostics, tools, driver model, etc.  The
629 	 * string is a path along hub ports, from the root.  Each device's
630 	 * dev->devpath will be stable until USB is re-cabled, and hubs
631 	 * are often labeled with these port numbers.  The name isn't
632 	 * as stable:  bus->busnum changes easily from modprobe order,
633 	 * cardbus or pci hotplugging, and so on.
634 	 */
635 	if (unlikely(!parent)) {
636 		dev->devpath[0] = '0';
637 		dev->route = 0;
638 
639 		dev->dev.parent = bus->controller;
640 		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
641 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
642 		root_hub = 1;
643 	} else {
644 		/* match any labeling on the hubs; it's one-based */
645 		if (parent->devpath[0] == '0') {
646 			snprintf(dev->devpath, sizeof dev->devpath,
647 				"%d", port1);
648 			/* Root ports are not counted in route string */
649 			dev->route = 0;
650 		} else {
651 			snprintf(dev->devpath, sizeof dev->devpath,
652 				"%s.%d", parent->devpath, port1);
653 			/* Route string assumes hubs have less than 16 ports */
654 			if (port1 < 15)
655 				dev->route = parent->route +
656 					(port1 << ((parent->level - 1)*4));
657 			else
658 				dev->route = parent->route +
659 					(15 << ((parent->level - 1)*4));
660 		}
661 
662 		dev->dev.parent = &parent->dev;
663 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
664 
665 		if (!parent->parent) {
666 			/* device under root hub's port */
667 			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
668 				port1);
669 		}
670 		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
671 
672 		/* hub driver sets up TT records */
673 	}
674 
675 	dev->portnum = port1;
676 	dev->bus = bus;
677 	dev->parent = parent;
678 	INIT_LIST_HEAD(&dev->filelist);
679 
680 #ifdef	CONFIG_PM
681 	pm_runtime_set_autosuspend_delay(&dev->dev,
682 			usb_autosuspend_delay * 1000);
683 	dev->connect_time = jiffies;
684 	dev->active_duration = -jiffies;
685 #endif
686 
687 	dev->authorized = usb_dev_authorized(dev, usb_hcd);
688 	if (!root_hub)
689 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
690 
691 	return dev;
692 }
693 EXPORT_SYMBOL_GPL(usb_alloc_dev);
694 
695 /**
696  * usb_get_dev - increments the reference count of the usb device structure
697  * @dev: the device being referenced
698  *
699  * Each live reference to a device should be refcounted.
700  *
701  * Drivers for USB interfaces should normally record such references in
702  * their probe() methods, when they bind to an interface, and release
703  * them by calling usb_put_dev(), in their disconnect() methods.
704  *
705  * Return: A pointer to the device with the incremented reference counter.
706  */
707 struct usb_device *usb_get_dev(struct usb_device *dev)
708 {
709 	if (dev)
710 		get_device(&dev->dev);
711 	return dev;
712 }
713 EXPORT_SYMBOL_GPL(usb_get_dev);
714 
715 /**
716  * usb_put_dev - release a use of the usb device structure
717  * @dev: device that's been disconnected
718  *
719  * Must be called when a user of a device is finished with it.  When the last
720  * user of the device calls this function, the memory of the device is freed.
721  */
722 void usb_put_dev(struct usb_device *dev)
723 {
724 	if (dev)
725 		put_device(&dev->dev);
726 }
727 EXPORT_SYMBOL_GPL(usb_put_dev);
728 
729 /**
730  * usb_get_intf - increments the reference count of the usb interface structure
731  * @intf: the interface being referenced
732  *
733  * Each live reference to a interface must be refcounted.
734  *
735  * Drivers for USB interfaces should normally record such references in
736  * their probe() methods, when they bind to an interface, and release
737  * them by calling usb_put_intf(), in their disconnect() methods.
738  *
739  * Return: A pointer to the interface with the incremented reference counter.
740  */
741 struct usb_interface *usb_get_intf(struct usb_interface *intf)
742 {
743 	if (intf)
744 		get_device(&intf->dev);
745 	return intf;
746 }
747 EXPORT_SYMBOL_GPL(usb_get_intf);
748 
749 /**
750  * usb_put_intf - release a use of the usb interface structure
751  * @intf: interface that's been decremented
752  *
753  * Must be called when a user of an interface is finished with it.  When the
754  * last user of the interface calls this function, the memory of the interface
755  * is freed.
756  */
757 void usb_put_intf(struct usb_interface *intf)
758 {
759 	if (intf)
760 		put_device(&intf->dev);
761 }
762 EXPORT_SYMBOL_GPL(usb_put_intf);
763 
764 /*			USB device locking
765  *
766  * USB devices and interfaces are locked using the semaphore in their
767  * embedded struct device.  The hub driver guarantees that whenever a
768  * device is connected or disconnected, drivers are called with the
769  * USB device locked as well as their particular interface.
770  *
771  * Complications arise when several devices are to be locked at the same
772  * time.  Only hub-aware drivers that are part of usbcore ever have to
773  * do this; nobody else needs to worry about it.  The rule for locking
774  * is simple:
775  *
776  *	When locking both a device and its parent, always lock the
777  *	the parent first.
778  */
779 
780 /**
781  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
782  * @udev: device that's being locked
783  * @iface: interface bound to the driver making the request (optional)
784  *
785  * Attempts to acquire the device lock, but fails if the device is
786  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
787  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
788  * lock, the routine polls repeatedly.  This is to prevent deadlock with
789  * disconnect; in some drivers (such as usb-storage) the disconnect()
790  * or suspend() method will block waiting for a device reset to complete.
791  *
792  * Return: A negative error code for failure, otherwise 0.
793  */
794 int usb_lock_device_for_reset(struct usb_device *udev,
795 			      const struct usb_interface *iface)
796 {
797 	unsigned long jiffies_expire = jiffies + HZ;
798 
799 	if (udev->state == USB_STATE_NOTATTACHED)
800 		return -ENODEV;
801 	if (udev->state == USB_STATE_SUSPENDED)
802 		return -EHOSTUNREACH;
803 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
804 			iface->condition == USB_INTERFACE_UNBOUND))
805 		return -EINTR;
806 
807 	while (!usb_trylock_device(udev)) {
808 
809 		/* If we can't acquire the lock after waiting one second,
810 		 * we're probably deadlocked */
811 		if (time_after(jiffies, jiffies_expire))
812 			return -EBUSY;
813 
814 		msleep(15);
815 		if (udev->state == USB_STATE_NOTATTACHED)
816 			return -ENODEV;
817 		if (udev->state == USB_STATE_SUSPENDED)
818 			return -EHOSTUNREACH;
819 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
820 				iface->condition == USB_INTERFACE_UNBOUND))
821 			return -EINTR;
822 	}
823 	return 0;
824 }
825 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
826 
827 /**
828  * usb_get_current_frame_number - return current bus frame number
829  * @dev: the device whose bus is being queried
830  *
831  * Return: The current frame number for the USB host controller used
832  * with the given USB device. This can be used when scheduling
833  * isochronous requests.
834  *
835  * Note: Different kinds of host controller have different "scheduling
836  * horizons". While one type might support scheduling only 32 frames
837  * into the future, others could support scheduling up to 1024 frames
838  * into the future.
839  *
840  */
841 int usb_get_current_frame_number(struct usb_device *dev)
842 {
843 	return usb_hcd_get_frame_number(dev);
844 }
845 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
846 
847 /*-------------------------------------------------------------------*/
848 /*
849  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
850  * extra field of the interface and endpoint descriptor structs.
851  */
852 
853 int __usb_get_extra_descriptor(char *buffer, unsigned size,
854 			       unsigned char type, void **ptr, size_t minsize)
855 {
856 	struct usb_descriptor_header *header;
857 
858 	while (size >= sizeof(struct usb_descriptor_header)) {
859 		header = (struct usb_descriptor_header *)buffer;
860 
861 		if (header->bLength < 2 || header->bLength > size) {
862 			printk(KERN_ERR
863 				"%s: bogus descriptor, type %d length %d\n",
864 				usbcore_name,
865 				header->bDescriptorType,
866 				header->bLength);
867 			return -1;
868 		}
869 
870 		if (header->bDescriptorType == type && header->bLength >= minsize) {
871 			*ptr = header;
872 			return 0;
873 		}
874 
875 		buffer += header->bLength;
876 		size -= header->bLength;
877 	}
878 	return -1;
879 }
880 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
881 
882 /**
883  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
884  * @dev: device the buffer will be used with
885  * @size: requested buffer size
886  * @mem_flags: affect whether allocation may block
887  * @dma: used to return DMA address of buffer
888  *
889  * Return: Either null (indicating no buffer could be allocated), or the
890  * cpu-space pointer to a buffer that may be used to perform DMA to the
891  * specified device.  Such cpu-space buffers are returned along with the DMA
892  * address (through the pointer provided).
893  *
894  * Note:
895  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
896  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
897  * hardware during URB completion/resubmit.  The implementation varies between
898  * platforms, depending on details of how DMA will work to this device.
899  * Using these buffers also eliminates cacheline sharing problems on
900  * architectures where CPU caches are not DMA-coherent.  On systems without
901  * bus-snooping caches, these buffers are uncached.
902  *
903  * When the buffer is no longer used, free it with usb_free_coherent().
904  */
905 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
906 			 dma_addr_t *dma)
907 {
908 	if (!dev || !dev->bus)
909 		return NULL;
910 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
911 }
912 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
913 
914 /**
915  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
916  * @dev: device the buffer was used with
917  * @size: requested buffer size
918  * @addr: CPU address of buffer
919  * @dma: DMA address of buffer
920  *
921  * This reclaims an I/O buffer, letting it be reused.  The memory must have
922  * been allocated using usb_alloc_coherent(), and the parameters must match
923  * those provided in that allocation request.
924  */
925 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
926 		       dma_addr_t dma)
927 {
928 	if (!dev || !dev->bus)
929 		return;
930 	if (!addr)
931 		return;
932 	hcd_buffer_free(dev->bus, size, addr, dma);
933 }
934 EXPORT_SYMBOL_GPL(usb_free_coherent);
935 
936 /**
937  * usb_buffer_map - create DMA mapping(s) for an urb
938  * @urb: urb whose transfer_buffer/setup_packet will be mapped
939  *
940  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
941  * succeeds. If the device is connected to this system through a non-DMA
942  * controller, this operation always succeeds.
943  *
944  * This call would normally be used for an urb which is reused, perhaps
945  * as the target of a large periodic transfer, with usb_buffer_dmasync()
946  * calls to synchronize memory and dma state.
947  *
948  * Reverse the effect of this call with usb_buffer_unmap().
949  *
950  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
951  *
952  */
953 #if 0
954 struct urb *usb_buffer_map(struct urb *urb)
955 {
956 	struct usb_bus		*bus;
957 	struct device		*controller;
958 
959 	if (!urb
960 			|| !urb->dev
961 			|| !(bus = urb->dev->bus)
962 			|| !(controller = bus->sysdev))
963 		return NULL;
964 
965 	if (controller->dma_mask) {
966 		urb->transfer_dma = dma_map_single(controller,
967 			urb->transfer_buffer, urb->transfer_buffer_length,
968 			usb_pipein(urb->pipe)
969 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
970 	/* FIXME generic api broken like pci, can't report errors */
971 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
972 	} else
973 		urb->transfer_dma = ~0;
974 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
975 	return urb;
976 }
977 EXPORT_SYMBOL_GPL(usb_buffer_map);
978 #endif  /*  0  */
979 
980 /* XXX DISABLED, no users currently.  If you wish to re-enable this
981  * XXX please determine whether the sync is to transfer ownership of
982  * XXX the buffer from device to cpu or vice verse, and thusly use the
983  * XXX appropriate _for_{cpu,device}() method.  -DaveM
984  */
985 #if 0
986 
987 /**
988  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
989  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
990  */
991 void usb_buffer_dmasync(struct urb *urb)
992 {
993 	struct usb_bus		*bus;
994 	struct device		*controller;
995 
996 	if (!urb
997 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
998 			|| !urb->dev
999 			|| !(bus = urb->dev->bus)
1000 			|| !(controller = bus->sysdev))
1001 		return;
1002 
1003 	if (controller->dma_mask) {
1004 		dma_sync_single_for_cpu(controller,
1005 			urb->transfer_dma, urb->transfer_buffer_length,
1006 			usb_pipein(urb->pipe)
1007 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1008 		if (usb_pipecontrol(urb->pipe))
1009 			dma_sync_single_for_cpu(controller,
1010 					urb->setup_dma,
1011 					sizeof(struct usb_ctrlrequest),
1012 					DMA_TO_DEVICE);
1013 	}
1014 }
1015 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
1016 #endif
1017 
1018 /**
1019  * usb_buffer_unmap - free DMA mapping(s) for an urb
1020  * @urb: urb whose transfer_buffer will be unmapped
1021  *
1022  * Reverses the effect of usb_buffer_map().
1023  */
1024 #if 0
1025 void usb_buffer_unmap(struct urb *urb)
1026 {
1027 	struct usb_bus		*bus;
1028 	struct device		*controller;
1029 
1030 	if (!urb
1031 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1032 			|| !urb->dev
1033 			|| !(bus = urb->dev->bus)
1034 			|| !(controller = bus->sysdev))
1035 		return;
1036 
1037 	if (controller->dma_mask) {
1038 		dma_unmap_single(controller,
1039 			urb->transfer_dma, urb->transfer_buffer_length,
1040 			usb_pipein(urb->pipe)
1041 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1042 	}
1043 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
1044 }
1045 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
1046 #endif  /*  0  */
1047 
1048 #if 0
1049 /**
1050  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1051  * @dev: device to which the scatterlist will be mapped
1052  * @is_in: mapping transfer direction
1053  * @sg: the scatterlist to map
1054  * @nents: the number of entries in the scatterlist
1055  *
1056  * Return: Either < 0 (indicating no buffers could be mapped), or the
1057  * number of DMA mapping array entries in the scatterlist.
1058  *
1059  * Note:
1060  * The caller is responsible for placing the resulting DMA addresses from
1061  * the scatterlist into URB transfer buffer pointers, and for setting the
1062  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1063  *
1064  * Top I/O rates come from queuing URBs, instead of waiting for each one
1065  * to complete before starting the next I/O.   This is particularly easy
1066  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1067  * mapping entry returned, stopping on the first error or when all succeed.
1068  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1069  *
1070  * This call would normally be used when translating scatterlist requests,
1071  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1072  * may be able to coalesce mappings for improved I/O efficiency.
1073  *
1074  * Reverse the effect of this call with usb_buffer_unmap_sg().
1075  */
1076 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1077 		      struct scatterlist *sg, int nents)
1078 {
1079 	struct usb_bus		*bus;
1080 	struct device		*controller;
1081 
1082 	if (!dev
1083 			|| !(bus = dev->bus)
1084 			|| !(controller = bus->sysdev)
1085 			|| !controller->dma_mask)
1086 		return -EINVAL;
1087 
1088 	/* FIXME generic api broken like pci, can't report errors */
1089 	return dma_map_sg(controller, sg, nents,
1090 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
1091 }
1092 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
1093 #endif
1094 
1095 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1096  * XXX please determine whether the sync is to transfer ownership of
1097  * XXX the buffer from device to cpu or vice verse, and thusly use the
1098  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1099  */
1100 #if 0
1101 
1102 /**
1103  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1104  * @dev: device to which the scatterlist will be mapped
1105  * @is_in: mapping transfer direction
1106  * @sg: the scatterlist to synchronize
1107  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1108  *
1109  * Use this when you are re-using a scatterlist's data buffers for
1110  * another USB request.
1111  */
1112 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1113 			   struct scatterlist *sg, int n_hw_ents)
1114 {
1115 	struct usb_bus		*bus;
1116 	struct device		*controller;
1117 
1118 	if (!dev
1119 			|| !(bus = dev->bus)
1120 			|| !(controller = bus->sysdev)
1121 			|| !controller->dma_mask)
1122 		return;
1123 
1124 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
1125 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1126 }
1127 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
1128 #endif
1129 
1130 #if 0
1131 /**
1132  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1133  * @dev: device to which the scatterlist will be mapped
1134  * @is_in: mapping transfer direction
1135  * @sg: the scatterlist to unmap
1136  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1137  *
1138  * Reverses the effect of usb_buffer_map_sg().
1139  */
1140 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1141 			 struct scatterlist *sg, int n_hw_ents)
1142 {
1143 	struct usb_bus		*bus;
1144 	struct device		*controller;
1145 
1146 	if (!dev
1147 			|| !(bus = dev->bus)
1148 			|| !(controller = bus->sysdev)
1149 			|| !controller->dma_mask)
1150 		return;
1151 
1152 	dma_unmap_sg(controller, sg, n_hw_ents,
1153 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1154 }
1155 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1156 #endif
1157 
1158 /*
1159  * Notifications of device and interface registration
1160  */
1161 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1162 		void *data)
1163 {
1164 	struct device *dev = data;
1165 
1166 	switch (action) {
1167 	case BUS_NOTIFY_ADD_DEVICE:
1168 		if (dev->type == &usb_device_type)
1169 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1170 		else if (dev->type == &usb_if_device_type)
1171 			usb_create_sysfs_intf_files(to_usb_interface(dev));
1172 		break;
1173 
1174 	case BUS_NOTIFY_DEL_DEVICE:
1175 		if (dev->type == &usb_device_type)
1176 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1177 		else if (dev->type == &usb_if_device_type)
1178 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1179 		break;
1180 	}
1181 	return 0;
1182 }
1183 
1184 static struct notifier_block usb_bus_nb = {
1185 	.notifier_call = usb_bus_notify,
1186 };
1187 
1188 struct dentry *usb_debug_root;
1189 EXPORT_SYMBOL_GPL(usb_debug_root);
1190 
1191 static void usb_debugfs_init(void)
1192 {
1193 	usb_debug_root = debugfs_create_dir("usb", NULL);
1194 	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1195 			    &usbfs_devices_fops);
1196 }
1197 
1198 static void usb_debugfs_cleanup(void)
1199 {
1200 	debugfs_remove_recursive(usb_debug_root);
1201 }
1202 
1203 /*
1204  * Init
1205  */
1206 static int __init usb_init(void)
1207 {
1208 	int retval;
1209 	if (usb_disabled()) {
1210 		pr_info("%s: USB support disabled\n", usbcore_name);
1211 		return 0;
1212 	}
1213 	usb_init_pool_max();
1214 
1215 	usb_debugfs_init();
1216 
1217 	usb_acpi_register();
1218 	retval = bus_register(&usb_bus_type);
1219 	if (retval)
1220 		goto bus_register_failed;
1221 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1222 	if (retval)
1223 		goto bus_notifier_failed;
1224 	retval = usb_major_init();
1225 	if (retval)
1226 		goto major_init_failed;
1227 	retval = usb_register(&usbfs_driver);
1228 	if (retval)
1229 		goto driver_register_failed;
1230 	retval = usb_devio_init();
1231 	if (retval)
1232 		goto usb_devio_init_failed;
1233 	retval = usb_hub_init();
1234 	if (retval)
1235 		goto hub_init_failed;
1236 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1237 	if (!retval)
1238 		goto out;
1239 
1240 	usb_hub_cleanup();
1241 hub_init_failed:
1242 	usb_devio_cleanup();
1243 usb_devio_init_failed:
1244 	usb_deregister(&usbfs_driver);
1245 driver_register_failed:
1246 	usb_major_cleanup();
1247 major_init_failed:
1248 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1249 bus_notifier_failed:
1250 	bus_unregister(&usb_bus_type);
1251 bus_register_failed:
1252 	usb_acpi_unregister();
1253 	usb_debugfs_cleanup();
1254 out:
1255 	return retval;
1256 }
1257 
1258 /*
1259  * Cleanup
1260  */
1261 static void __exit usb_exit(void)
1262 {
1263 	/* This will matter if shutdown/reboot does exitcalls. */
1264 	if (usb_disabled())
1265 		return;
1266 
1267 	usb_release_quirk_list();
1268 	usb_deregister_device_driver(&usb_generic_driver);
1269 	usb_major_cleanup();
1270 	usb_deregister(&usbfs_driver);
1271 	usb_devio_cleanup();
1272 	usb_hub_cleanup();
1273 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1274 	bus_unregister(&usb_bus_type);
1275 	usb_acpi_unregister();
1276 	usb_debugfs_cleanup();
1277 	idr_destroy(&usb_bus_idr);
1278 }
1279 
1280 subsys_initcall(usb_init);
1281 module_exit(usb_exit);
1282 MODULE_LICENSE("GPL");
1283