1 /* 2 * drivers/usb/core/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/string.h> 27 #include <linux/bitops.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> /* for in_interrupt() */ 30 #include <linux/kmod.h> 31 #include <linux/init.h> 32 #include <linux/spinlock.h> 33 #include <linux/errno.h> 34 #include <linux/usb.h> 35 #include <linux/mutex.h> 36 #include <linux/workqueue.h> 37 #include <linux/debugfs.h> 38 39 #include <asm/io.h> 40 #include <linux/scatterlist.h> 41 #include <linux/mm.h> 42 #include <linux/dma-mapping.h> 43 44 #include "hcd.h" 45 #include "usb.h" 46 47 48 const char *usbcore_name = "usbcore"; 49 50 static int nousb; /* Disable USB when built into kernel image */ 51 52 /* Workqueue for autosuspend and for remote wakeup of root hubs */ 53 struct workqueue_struct *ksuspend_usb_wq; 54 55 #ifdef CONFIG_USB_SUSPEND 56 static int usb_autosuspend_delay = 2; /* Default delay value, 57 * in seconds */ 58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 60 61 #else 62 #define usb_autosuspend_delay 0 63 #endif 64 65 66 /** 67 * usb_find_alt_setting() - Given a configuration, find the alternate setting 68 * for the given interface. 69 * @config: the configuration to search (not necessarily the current config). 70 * @iface_num: interface number to search in 71 * @alt_num: alternate interface setting number to search for. 72 * 73 * Search the configuration's interface cache for the given alt setting. 74 */ 75 struct usb_host_interface *usb_find_alt_setting( 76 struct usb_host_config *config, 77 unsigned int iface_num, 78 unsigned int alt_num) 79 { 80 struct usb_interface_cache *intf_cache = NULL; 81 int i; 82 83 for (i = 0; i < config->desc.bNumInterfaces; i++) { 84 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 85 == iface_num) { 86 intf_cache = config->intf_cache[i]; 87 break; 88 } 89 } 90 if (!intf_cache) 91 return NULL; 92 for (i = 0; i < intf_cache->num_altsetting; i++) 93 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 94 return &intf_cache->altsetting[i]; 95 96 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 97 "config %u\n", alt_num, iface_num, 98 config->desc.bConfigurationValue); 99 return NULL; 100 } 101 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 102 103 /** 104 * usb_ifnum_to_if - get the interface object with a given interface number 105 * @dev: the device whose current configuration is considered 106 * @ifnum: the desired interface 107 * 108 * This walks the device descriptor for the currently active configuration 109 * and returns a pointer to the interface with that particular interface 110 * number, or null. 111 * 112 * Note that configuration descriptors are not required to assign interface 113 * numbers sequentially, so that it would be incorrect to assume that 114 * the first interface in that descriptor corresponds to interface zero. 115 * This routine helps device drivers avoid such mistakes. 116 * However, you should make sure that you do the right thing with any 117 * alternate settings available for this interfaces. 118 * 119 * Don't call this function unless you are bound to one of the interfaces 120 * on this device or you have locked the device! 121 */ 122 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 123 unsigned ifnum) 124 { 125 struct usb_host_config *config = dev->actconfig; 126 int i; 127 128 if (!config) 129 return NULL; 130 for (i = 0; i < config->desc.bNumInterfaces; i++) 131 if (config->interface[i]->altsetting[0] 132 .desc.bInterfaceNumber == ifnum) 133 return config->interface[i]; 134 135 return NULL; 136 } 137 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 138 139 /** 140 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 141 * @intf: the interface containing the altsetting in question 142 * @altnum: the desired alternate setting number 143 * 144 * This searches the altsetting array of the specified interface for 145 * an entry with the correct bAlternateSetting value and returns a pointer 146 * to that entry, or null. 147 * 148 * Note that altsettings need not be stored sequentially by number, so 149 * it would be incorrect to assume that the first altsetting entry in 150 * the array corresponds to altsetting zero. This routine helps device 151 * drivers avoid such mistakes. 152 * 153 * Don't call this function unless you are bound to the intf interface 154 * or you have locked the device! 155 */ 156 struct usb_host_interface *usb_altnum_to_altsetting( 157 const struct usb_interface *intf, 158 unsigned int altnum) 159 { 160 int i; 161 162 for (i = 0; i < intf->num_altsetting; i++) { 163 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 164 return &intf->altsetting[i]; 165 } 166 return NULL; 167 } 168 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 169 170 struct find_interface_arg { 171 int minor; 172 struct device_driver *drv; 173 }; 174 175 static int __find_interface(struct device *dev, void *data) 176 { 177 struct find_interface_arg *arg = data; 178 struct usb_interface *intf; 179 180 if (!is_usb_interface(dev)) 181 return 0; 182 183 if (dev->driver != arg->drv) 184 return 0; 185 intf = to_usb_interface(dev); 186 return intf->minor == arg->minor; 187 } 188 189 /** 190 * usb_find_interface - find usb_interface pointer for driver and device 191 * @drv: the driver whose current configuration is considered 192 * @minor: the minor number of the desired device 193 * 194 * This walks the bus device list and returns a pointer to the interface 195 * with the matching minor and driver. Note, this only works for devices 196 * that share the USB major number. 197 */ 198 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 199 { 200 struct find_interface_arg argb; 201 struct device *dev; 202 203 argb.minor = minor; 204 argb.drv = &drv->drvwrap.driver; 205 206 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); 207 208 /* Drop reference count from bus_find_device */ 209 put_device(dev); 210 211 return dev ? to_usb_interface(dev) : NULL; 212 } 213 EXPORT_SYMBOL_GPL(usb_find_interface); 214 215 /** 216 * usb_release_dev - free a usb device structure when all users of it are finished. 217 * @dev: device that's been disconnected 218 * 219 * Will be called only by the device core when all users of this usb device are 220 * done. 221 */ 222 static void usb_release_dev(struct device *dev) 223 { 224 struct usb_device *udev; 225 struct usb_hcd *hcd; 226 227 udev = to_usb_device(dev); 228 hcd = bus_to_hcd(udev->bus); 229 230 usb_destroy_configuration(udev); 231 /* Root hubs aren't real devices, so don't free HCD resources */ 232 if (hcd->driver->free_dev && udev->parent) 233 hcd->driver->free_dev(hcd, udev); 234 usb_put_hcd(hcd); 235 kfree(udev->product); 236 kfree(udev->manufacturer); 237 kfree(udev->serial); 238 kfree(udev); 239 } 240 241 #ifdef CONFIG_HOTPLUG 242 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 243 { 244 struct usb_device *usb_dev; 245 246 usb_dev = to_usb_device(dev); 247 248 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 249 return -ENOMEM; 250 251 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 252 return -ENOMEM; 253 254 return 0; 255 } 256 257 #else 258 259 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 260 { 261 return -ENODEV; 262 } 263 #endif /* CONFIG_HOTPLUG */ 264 265 #ifdef CONFIG_PM 266 267 static int ksuspend_usb_init(void) 268 { 269 /* This workqueue is supposed to be both freezable and 270 * singlethreaded. Its job doesn't justify running on more 271 * than one CPU. 272 */ 273 ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd"); 274 if (!ksuspend_usb_wq) 275 return -ENOMEM; 276 return 0; 277 } 278 279 static void ksuspend_usb_cleanup(void) 280 { 281 destroy_workqueue(ksuspend_usb_wq); 282 } 283 284 /* USB device Power-Management thunks. 285 * There's no need to distinguish here between quiescing a USB device 286 * and powering it down; the generic_suspend() routine takes care of 287 * it by skipping the usb_port_suspend() call for a quiesce. And for 288 * USB interfaces there's no difference at all. 289 */ 290 291 static int usb_dev_prepare(struct device *dev) 292 { 293 return 0; /* Implement eventually? */ 294 } 295 296 static void usb_dev_complete(struct device *dev) 297 { 298 /* Currently used only for rebinding interfaces */ 299 usb_resume(dev, PMSG_RESUME); /* Message event is meaningless */ 300 } 301 302 static int usb_dev_suspend(struct device *dev) 303 { 304 return usb_suspend(dev, PMSG_SUSPEND); 305 } 306 307 static int usb_dev_resume(struct device *dev) 308 { 309 return usb_resume(dev, PMSG_RESUME); 310 } 311 312 static int usb_dev_freeze(struct device *dev) 313 { 314 return usb_suspend(dev, PMSG_FREEZE); 315 } 316 317 static int usb_dev_thaw(struct device *dev) 318 { 319 return usb_resume(dev, PMSG_THAW); 320 } 321 322 static int usb_dev_poweroff(struct device *dev) 323 { 324 return usb_suspend(dev, PMSG_HIBERNATE); 325 } 326 327 static int usb_dev_restore(struct device *dev) 328 { 329 return usb_resume(dev, PMSG_RESTORE); 330 } 331 332 static const struct dev_pm_ops usb_device_pm_ops = { 333 .prepare = usb_dev_prepare, 334 .complete = usb_dev_complete, 335 .suspend = usb_dev_suspend, 336 .resume = usb_dev_resume, 337 .freeze = usb_dev_freeze, 338 .thaw = usb_dev_thaw, 339 .poweroff = usb_dev_poweroff, 340 .restore = usb_dev_restore, 341 }; 342 343 #else 344 345 #define ksuspend_usb_init() 0 346 #define ksuspend_usb_cleanup() do {} while (0) 347 #define usb_device_pm_ops (*(struct dev_pm_ops *)0) 348 349 #endif /* CONFIG_PM */ 350 351 352 static char *usb_devnode(struct device *dev, mode_t *mode) 353 { 354 struct usb_device *usb_dev; 355 356 usb_dev = to_usb_device(dev); 357 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 358 usb_dev->bus->busnum, usb_dev->devnum); 359 } 360 361 struct device_type usb_device_type = { 362 .name = "usb_device", 363 .release = usb_release_dev, 364 .uevent = usb_dev_uevent, 365 .devnode = usb_devnode, 366 .pm = &usb_device_pm_ops, 367 }; 368 369 370 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 371 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 372 { 373 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self); 374 return hcd->wireless; 375 } 376 377 378 /** 379 * usb_alloc_dev - usb device constructor (usbcore-internal) 380 * @parent: hub to which device is connected; null to allocate a root hub 381 * @bus: bus used to access the device 382 * @port1: one-based index of port; ignored for root hubs 383 * Context: !in_interrupt() 384 * 385 * Only hub drivers (including virtual root hub drivers for host 386 * controllers) should ever call this. 387 * 388 * This call may not be used in a non-sleeping context. 389 */ 390 struct usb_device *usb_alloc_dev(struct usb_device *parent, 391 struct usb_bus *bus, unsigned port1) 392 { 393 struct usb_device *dev; 394 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self); 395 unsigned root_hub = 0; 396 397 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 398 if (!dev) 399 return NULL; 400 401 if (!usb_get_hcd(bus_to_hcd(bus))) { 402 kfree(dev); 403 return NULL; 404 } 405 /* Root hubs aren't true devices, so don't allocate HCD resources */ 406 if (usb_hcd->driver->alloc_dev && parent && 407 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 408 usb_put_hcd(bus_to_hcd(bus)); 409 kfree(dev); 410 return NULL; 411 } 412 413 device_initialize(&dev->dev); 414 dev->dev.bus = &usb_bus_type; 415 dev->dev.type = &usb_device_type; 416 dev->dev.groups = usb_device_groups; 417 dev->dev.dma_mask = bus->controller->dma_mask; 418 set_dev_node(&dev->dev, dev_to_node(bus->controller)); 419 dev->state = USB_STATE_ATTACHED; 420 atomic_set(&dev->urbnum, 0); 421 422 INIT_LIST_HEAD(&dev->ep0.urb_list); 423 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 424 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 425 /* ep0 maxpacket comes later, from device descriptor */ 426 usb_enable_endpoint(dev, &dev->ep0, false); 427 dev->can_submit = 1; 428 429 /* Save readable and stable topology id, distinguishing devices 430 * by location for diagnostics, tools, driver model, etc. The 431 * string is a path along hub ports, from the root. Each device's 432 * dev->devpath will be stable until USB is re-cabled, and hubs 433 * are often labeled with these port numbers. The name isn't 434 * as stable: bus->busnum changes easily from modprobe order, 435 * cardbus or pci hotplugging, and so on. 436 */ 437 if (unlikely(!parent)) { 438 dev->devpath[0] = '0'; 439 dev->route = 0; 440 441 dev->dev.parent = bus->controller; 442 dev_set_name(&dev->dev, "usb%d", bus->busnum); 443 root_hub = 1; 444 } else { 445 /* match any labeling on the hubs; it's one-based */ 446 if (parent->devpath[0] == '0') { 447 snprintf(dev->devpath, sizeof dev->devpath, 448 "%d", port1); 449 /* Root ports are not counted in route string */ 450 dev->route = 0; 451 } else { 452 snprintf(dev->devpath, sizeof dev->devpath, 453 "%s.%d", parent->devpath, port1); 454 /* Route string assumes hubs have less than 16 ports */ 455 if (port1 < 15) 456 dev->route = parent->route + 457 (port1 << ((parent->level - 1)*4)); 458 else 459 dev->route = parent->route + 460 (15 << ((parent->level - 1)*4)); 461 } 462 463 dev->dev.parent = &parent->dev; 464 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 465 466 /* hub driver sets up TT records */ 467 } 468 469 dev->portnum = port1; 470 dev->bus = bus; 471 dev->parent = parent; 472 INIT_LIST_HEAD(&dev->filelist); 473 474 #ifdef CONFIG_PM 475 mutex_init(&dev->pm_mutex); 476 INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work); 477 INIT_WORK(&dev->autoresume, usb_autoresume_work); 478 dev->autosuspend_delay = usb_autosuspend_delay * HZ; 479 dev->connect_time = jiffies; 480 dev->active_duration = -jiffies; 481 #endif 482 if (root_hub) /* Root hub always ok [and always wired] */ 483 dev->authorized = 1; 484 else { 485 dev->authorized = usb_hcd->authorized_default; 486 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0; 487 } 488 return dev; 489 } 490 491 /** 492 * usb_get_dev - increments the reference count of the usb device structure 493 * @dev: the device being referenced 494 * 495 * Each live reference to a device should be refcounted. 496 * 497 * Drivers for USB interfaces should normally record such references in 498 * their probe() methods, when they bind to an interface, and release 499 * them by calling usb_put_dev(), in their disconnect() methods. 500 * 501 * A pointer to the device with the incremented reference counter is returned. 502 */ 503 struct usb_device *usb_get_dev(struct usb_device *dev) 504 { 505 if (dev) 506 get_device(&dev->dev); 507 return dev; 508 } 509 EXPORT_SYMBOL_GPL(usb_get_dev); 510 511 /** 512 * usb_put_dev - release a use of the usb device structure 513 * @dev: device that's been disconnected 514 * 515 * Must be called when a user of a device is finished with it. When the last 516 * user of the device calls this function, the memory of the device is freed. 517 */ 518 void usb_put_dev(struct usb_device *dev) 519 { 520 if (dev) 521 put_device(&dev->dev); 522 } 523 EXPORT_SYMBOL_GPL(usb_put_dev); 524 525 /** 526 * usb_get_intf - increments the reference count of the usb interface structure 527 * @intf: the interface being referenced 528 * 529 * Each live reference to a interface must be refcounted. 530 * 531 * Drivers for USB interfaces should normally record such references in 532 * their probe() methods, when they bind to an interface, and release 533 * them by calling usb_put_intf(), in their disconnect() methods. 534 * 535 * A pointer to the interface with the incremented reference counter is 536 * returned. 537 */ 538 struct usb_interface *usb_get_intf(struct usb_interface *intf) 539 { 540 if (intf) 541 get_device(&intf->dev); 542 return intf; 543 } 544 EXPORT_SYMBOL_GPL(usb_get_intf); 545 546 /** 547 * usb_put_intf - release a use of the usb interface structure 548 * @intf: interface that's been decremented 549 * 550 * Must be called when a user of an interface is finished with it. When the 551 * last user of the interface calls this function, the memory of the interface 552 * is freed. 553 */ 554 void usb_put_intf(struct usb_interface *intf) 555 { 556 if (intf) 557 put_device(&intf->dev); 558 } 559 EXPORT_SYMBOL_GPL(usb_put_intf); 560 561 /* USB device locking 562 * 563 * USB devices and interfaces are locked using the semaphore in their 564 * embedded struct device. The hub driver guarantees that whenever a 565 * device is connected or disconnected, drivers are called with the 566 * USB device locked as well as their particular interface. 567 * 568 * Complications arise when several devices are to be locked at the same 569 * time. Only hub-aware drivers that are part of usbcore ever have to 570 * do this; nobody else needs to worry about it. The rule for locking 571 * is simple: 572 * 573 * When locking both a device and its parent, always lock the 574 * the parent first. 575 */ 576 577 /** 578 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 579 * @udev: device that's being locked 580 * @iface: interface bound to the driver making the request (optional) 581 * 582 * Attempts to acquire the device lock, but fails if the device is 583 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 584 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 585 * lock, the routine polls repeatedly. This is to prevent deadlock with 586 * disconnect; in some drivers (such as usb-storage) the disconnect() 587 * or suspend() method will block waiting for a device reset to complete. 588 * 589 * Returns a negative error code for failure, otherwise 0. 590 */ 591 int usb_lock_device_for_reset(struct usb_device *udev, 592 const struct usb_interface *iface) 593 { 594 unsigned long jiffies_expire = jiffies + HZ; 595 596 if (udev->state == USB_STATE_NOTATTACHED) 597 return -ENODEV; 598 if (udev->state == USB_STATE_SUSPENDED) 599 return -EHOSTUNREACH; 600 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 601 iface->condition == USB_INTERFACE_UNBOUND)) 602 return -EINTR; 603 604 while (usb_trylock_device(udev) != 0) { 605 606 /* If we can't acquire the lock after waiting one second, 607 * we're probably deadlocked */ 608 if (time_after(jiffies, jiffies_expire)) 609 return -EBUSY; 610 611 msleep(15); 612 if (udev->state == USB_STATE_NOTATTACHED) 613 return -ENODEV; 614 if (udev->state == USB_STATE_SUSPENDED) 615 return -EHOSTUNREACH; 616 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 617 iface->condition == USB_INTERFACE_UNBOUND)) 618 return -EINTR; 619 } 620 return 0; 621 } 622 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 623 624 static struct usb_device *match_device(struct usb_device *dev, 625 u16 vendor_id, u16 product_id) 626 { 627 struct usb_device *ret_dev = NULL; 628 int child; 629 630 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n", 631 le16_to_cpu(dev->descriptor.idVendor), 632 le16_to_cpu(dev->descriptor.idProduct)); 633 634 /* see if this device matches */ 635 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) && 636 (product_id == le16_to_cpu(dev->descriptor.idProduct))) { 637 dev_dbg(&dev->dev, "matched this device!\n"); 638 ret_dev = usb_get_dev(dev); 639 goto exit; 640 } 641 642 /* look through all of the children of this device */ 643 for (child = 0; child < dev->maxchild; ++child) { 644 if (dev->children[child]) { 645 usb_lock_device(dev->children[child]); 646 ret_dev = match_device(dev->children[child], 647 vendor_id, product_id); 648 usb_unlock_device(dev->children[child]); 649 if (ret_dev) 650 goto exit; 651 } 652 } 653 exit: 654 return ret_dev; 655 } 656 657 /** 658 * usb_find_device - find a specific usb device in the system 659 * @vendor_id: the vendor id of the device to find 660 * @product_id: the product id of the device to find 661 * 662 * Returns a pointer to a struct usb_device if such a specified usb 663 * device is present in the system currently. The usage count of the 664 * device will be incremented if a device is found. Make sure to call 665 * usb_put_dev() when the caller is finished with the device. 666 * 667 * If a device with the specified vendor and product id is not found, 668 * NULL is returned. 669 */ 670 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id) 671 { 672 struct list_head *buslist; 673 struct usb_bus *bus; 674 struct usb_device *dev = NULL; 675 676 mutex_lock(&usb_bus_list_lock); 677 for (buslist = usb_bus_list.next; 678 buslist != &usb_bus_list; 679 buslist = buslist->next) { 680 bus = container_of(buslist, struct usb_bus, bus_list); 681 if (!bus->root_hub) 682 continue; 683 usb_lock_device(bus->root_hub); 684 dev = match_device(bus->root_hub, vendor_id, product_id); 685 usb_unlock_device(bus->root_hub); 686 if (dev) 687 goto exit; 688 } 689 exit: 690 mutex_unlock(&usb_bus_list_lock); 691 return dev; 692 } 693 694 /** 695 * usb_get_current_frame_number - return current bus frame number 696 * @dev: the device whose bus is being queried 697 * 698 * Returns the current frame number for the USB host controller 699 * used with the given USB device. This can be used when scheduling 700 * isochronous requests. 701 * 702 * Note that different kinds of host controller have different 703 * "scheduling horizons". While one type might support scheduling only 704 * 32 frames into the future, others could support scheduling up to 705 * 1024 frames into the future. 706 */ 707 int usb_get_current_frame_number(struct usb_device *dev) 708 { 709 return usb_hcd_get_frame_number(dev); 710 } 711 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 712 713 /*-------------------------------------------------------------------*/ 714 /* 715 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 716 * extra field of the interface and endpoint descriptor structs. 717 */ 718 719 int __usb_get_extra_descriptor(char *buffer, unsigned size, 720 unsigned char type, void **ptr) 721 { 722 struct usb_descriptor_header *header; 723 724 while (size >= sizeof(struct usb_descriptor_header)) { 725 header = (struct usb_descriptor_header *)buffer; 726 727 if (header->bLength < 2) { 728 printk(KERN_ERR 729 "%s: bogus descriptor, type %d length %d\n", 730 usbcore_name, 731 header->bDescriptorType, 732 header->bLength); 733 return -1; 734 } 735 736 if (header->bDescriptorType == type) { 737 *ptr = header; 738 return 0; 739 } 740 741 buffer += header->bLength; 742 size -= header->bLength; 743 } 744 return -1; 745 } 746 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 747 748 /** 749 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 750 * @dev: device the buffer will be used with 751 * @size: requested buffer size 752 * @mem_flags: affect whether allocation may block 753 * @dma: used to return DMA address of buffer 754 * 755 * Return value is either null (indicating no buffer could be allocated), or 756 * the cpu-space pointer to a buffer that may be used to perform DMA to the 757 * specified device. Such cpu-space buffers are returned along with the DMA 758 * address (through the pointer provided). 759 * 760 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 761 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 762 * hardware during URB completion/resubmit. The implementation varies between 763 * platforms, depending on details of how DMA will work to this device. 764 * Using these buffers also eliminates cacheline sharing problems on 765 * architectures where CPU caches are not DMA-coherent. On systems without 766 * bus-snooping caches, these buffers are uncached. 767 * 768 * When the buffer is no longer used, free it with usb_buffer_free(). 769 */ 770 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags, 771 dma_addr_t *dma) 772 { 773 if (!dev || !dev->bus) 774 return NULL; 775 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 776 } 777 EXPORT_SYMBOL_GPL(usb_buffer_alloc); 778 779 /** 780 * usb_buffer_free - free memory allocated with usb_buffer_alloc() 781 * @dev: device the buffer was used with 782 * @size: requested buffer size 783 * @addr: CPU address of buffer 784 * @dma: DMA address of buffer 785 * 786 * This reclaims an I/O buffer, letting it be reused. The memory must have 787 * been allocated using usb_buffer_alloc(), and the parameters must match 788 * those provided in that allocation request. 789 */ 790 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr, 791 dma_addr_t dma) 792 { 793 if (!dev || !dev->bus) 794 return; 795 if (!addr) 796 return; 797 hcd_buffer_free(dev->bus, size, addr, dma); 798 } 799 EXPORT_SYMBOL_GPL(usb_buffer_free); 800 801 /** 802 * usb_buffer_map - create DMA mapping(s) for an urb 803 * @urb: urb whose transfer_buffer/setup_packet will be mapped 804 * 805 * Return value is either null (indicating no buffer could be mapped), or 806 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are 807 * added to urb->transfer_flags if the operation succeeds. If the device 808 * is connected to this system through a non-DMA controller, this operation 809 * always succeeds. 810 * 811 * This call would normally be used for an urb which is reused, perhaps 812 * as the target of a large periodic transfer, with usb_buffer_dmasync() 813 * calls to synchronize memory and dma state. 814 * 815 * Reverse the effect of this call with usb_buffer_unmap(). 816 */ 817 #if 0 818 struct urb *usb_buffer_map(struct urb *urb) 819 { 820 struct usb_bus *bus; 821 struct device *controller; 822 823 if (!urb 824 || !urb->dev 825 || !(bus = urb->dev->bus) 826 || !(controller = bus->controller)) 827 return NULL; 828 829 if (controller->dma_mask) { 830 urb->transfer_dma = dma_map_single(controller, 831 urb->transfer_buffer, urb->transfer_buffer_length, 832 usb_pipein(urb->pipe) 833 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 834 if (usb_pipecontrol(urb->pipe)) 835 urb->setup_dma = dma_map_single(controller, 836 urb->setup_packet, 837 sizeof(struct usb_ctrlrequest), 838 DMA_TO_DEVICE); 839 /* FIXME generic api broken like pci, can't report errors */ 840 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 841 } else 842 urb->transfer_dma = ~0; 843 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP 844 | URB_NO_SETUP_DMA_MAP); 845 return urb; 846 } 847 EXPORT_SYMBOL_GPL(usb_buffer_map); 848 #endif /* 0 */ 849 850 /* XXX DISABLED, no users currently. If you wish to re-enable this 851 * XXX please determine whether the sync is to transfer ownership of 852 * XXX the buffer from device to cpu or vice verse, and thusly use the 853 * XXX appropriate _for_{cpu,device}() method. -DaveM 854 */ 855 #if 0 856 857 /** 858 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 859 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 860 */ 861 void usb_buffer_dmasync(struct urb *urb) 862 { 863 struct usb_bus *bus; 864 struct device *controller; 865 866 if (!urb 867 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 868 || !urb->dev 869 || !(bus = urb->dev->bus) 870 || !(controller = bus->controller)) 871 return; 872 873 if (controller->dma_mask) { 874 dma_sync_single_for_cpu(controller, 875 urb->transfer_dma, urb->transfer_buffer_length, 876 usb_pipein(urb->pipe) 877 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 878 if (usb_pipecontrol(urb->pipe)) 879 dma_sync_single_for_cpu(controller, 880 urb->setup_dma, 881 sizeof(struct usb_ctrlrequest), 882 DMA_TO_DEVICE); 883 } 884 } 885 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 886 #endif 887 888 /** 889 * usb_buffer_unmap - free DMA mapping(s) for an urb 890 * @urb: urb whose transfer_buffer will be unmapped 891 * 892 * Reverses the effect of usb_buffer_map(). 893 */ 894 #if 0 895 void usb_buffer_unmap(struct urb *urb) 896 { 897 struct usb_bus *bus; 898 struct device *controller; 899 900 if (!urb 901 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 902 || !urb->dev 903 || !(bus = urb->dev->bus) 904 || !(controller = bus->controller)) 905 return; 906 907 if (controller->dma_mask) { 908 dma_unmap_single(controller, 909 urb->transfer_dma, urb->transfer_buffer_length, 910 usb_pipein(urb->pipe) 911 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 912 if (usb_pipecontrol(urb->pipe)) 913 dma_unmap_single(controller, 914 urb->setup_dma, 915 sizeof(struct usb_ctrlrequest), 916 DMA_TO_DEVICE); 917 } 918 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP 919 | URB_NO_SETUP_DMA_MAP); 920 } 921 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 922 #endif /* 0 */ 923 924 /** 925 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 926 * @dev: device to which the scatterlist will be mapped 927 * @is_in: mapping transfer direction 928 * @sg: the scatterlist to map 929 * @nents: the number of entries in the scatterlist 930 * 931 * Return value is either < 0 (indicating no buffers could be mapped), or 932 * the number of DMA mapping array entries in the scatterlist. 933 * 934 * The caller is responsible for placing the resulting DMA addresses from 935 * the scatterlist into URB transfer buffer pointers, and for setting the 936 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 937 * 938 * Top I/O rates come from queuing URBs, instead of waiting for each one 939 * to complete before starting the next I/O. This is particularly easy 940 * to do with scatterlists. Just allocate and submit one URB for each DMA 941 * mapping entry returned, stopping on the first error or when all succeed. 942 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 943 * 944 * This call would normally be used when translating scatterlist requests, 945 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 946 * may be able to coalesce mappings for improved I/O efficiency. 947 * 948 * Reverse the effect of this call with usb_buffer_unmap_sg(). 949 */ 950 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 951 struct scatterlist *sg, int nents) 952 { 953 struct usb_bus *bus; 954 struct device *controller; 955 956 if (!dev 957 || !(bus = dev->bus) 958 || !(controller = bus->controller) 959 || !controller->dma_mask) 960 return -EINVAL; 961 962 /* FIXME generic api broken like pci, can't report errors */ 963 return dma_map_sg(controller, sg, nents, 964 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM; 965 } 966 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 967 968 /* XXX DISABLED, no users currently. If you wish to re-enable this 969 * XXX please determine whether the sync is to transfer ownership of 970 * XXX the buffer from device to cpu or vice verse, and thusly use the 971 * XXX appropriate _for_{cpu,device}() method. -DaveM 972 */ 973 #if 0 974 975 /** 976 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 977 * @dev: device to which the scatterlist will be mapped 978 * @is_in: mapping transfer direction 979 * @sg: the scatterlist to synchronize 980 * @n_hw_ents: the positive return value from usb_buffer_map_sg 981 * 982 * Use this when you are re-using a scatterlist's data buffers for 983 * another USB request. 984 */ 985 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 986 struct scatterlist *sg, int n_hw_ents) 987 { 988 struct usb_bus *bus; 989 struct device *controller; 990 991 if (!dev 992 || !(bus = dev->bus) 993 || !(controller = bus->controller) 994 || !controller->dma_mask) 995 return; 996 997 dma_sync_sg_for_cpu(controller, sg, n_hw_ents, 998 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 999 } 1000 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 1001 #endif 1002 1003 /** 1004 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 1005 * @dev: device to which the scatterlist will be mapped 1006 * @is_in: mapping transfer direction 1007 * @sg: the scatterlist to unmap 1008 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1009 * 1010 * Reverses the effect of usb_buffer_map_sg(). 1011 */ 1012 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1013 struct scatterlist *sg, int n_hw_ents) 1014 { 1015 struct usb_bus *bus; 1016 struct device *controller; 1017 1018 if (!dev 1019 || !(bus = dev->bus) 1020 || !(controller = bus->controller) 1021 || !controller->dma_mask) 1022 return; 1023 1024 dma_unmap_sg(controller, sg, n_hw_ents, 1025 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1026 } 1027 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 1028 1029 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */ 1030 #ifdef MODULE 1031 module_param(nousb, bool, 0444); 1032 #else 1033 core_param(nousb, nousb, bool, 0444); 1034 #endif 1035 1036 /* 1037 * for external read access to <nousb> 1038 */ 1039 int usb_disabled(void) 1040 { 1041 return nousb; 1042 } 1043 EXPORT_SYMBOL_GPL(usb_disabled); 1044 1045 /* 1046 * Notifications of device and interface registration 1047 */ 1048 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1049 void *data) 1050 { 1051 struct device *dev = data; 1052 1053 switch (action) { 1054 case BUS_NOTIFY_ADD_DEVICE: 1055 if (dev->type == &usb_device_type) 1056 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1057 else if (dev->type == &usb_if_device_type) 1058 (void) usb_create_sysfs_intf_files( 1059 to_usb_interface(dev)); 1060 break; 1061 1062 case BUS_NOTIFY_DEL_DEVICE: 1063 if (dev->type == &usb_device_type) 1064 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1065 else if (dev->type == &usb_if_device_type) 1066 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1067 break; 1068 } 1069 return 0; 1070 } 1071 1072 static struct notifier_block usb_bus_nb = { 1073 .notifier_call = usb_bus_notify, 1074 }; 1075 1076 struct dentry *usb_debug_root; 1077 EXPORT_SYMBOL_GPL(usb_debug_root); 1078 1079 static struct dentry *usb_debug_devices; 1080 1081 static int usb_debugfs_init(void) 1082 { 1083 usb_debug_root = debugfs_create_dir("usb", NULL); 1084 if (!usb_debug_root) 1085 return -ENOENT; 1086 1087 usb_debug_devices = debugfs_create_file("devices", 0444, 1088 usb_debug_root, NULL, 1089 &usbfs_devices_fops); 1090 if (!usb_debug_devices) { 1091 debugfs_remove(usb_debug_root); 1092 usb_debug_root = NULL; 1093 return -ENOENT; 1094 } 1095 1096 return 0; 1097 } 1098 1099 static void usb_debugfs_cleanup(void) 1100 { 1101 debugfs_remove(usb_debug_devices); 1102 debugfs_remove(usb_debug_root); 1103 } 1104 1105 /* 1106 * Init 1107 */ 1108 static int __init usb_init(void) 1109 { 1110 int retval; 1111 if (nousb) { 1112 pr_info("%s: USB support disabled\n", usbcore_name); 1113 return 0; 1114 } 1115 1116 retval = usb_debugfs_init(); 1117 if (retval) 1118 goto out; 1119 1120 retval = ksuspend_usb_init(); 1121 if (retval) 1122 goto out; 1123 retval = bus_register(&usb_bus_type); 1124 if (retval) 1125 goto bus_register_failed; 1126 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1127 if (retval) 1128 goto bus_notifier_failed; 1129 retval = usb_major_init(); 1130 if (retval) 1131 goto major_init_failed; 1132 retval = usb_register(&usbfs_driver); 1133 if (retval) 1134 goto driver_register_failed; 1135 retval = usb_devio_init(); 1136 if (retval) 1137 goto usb_devio_init_failed; 1138 retval = usbfs_init(); 1139 if (retval) 1140 goto fs_init_failed; 1141 retval = usb_hub_init(); 1142 if (retval) 1143 goto hub_init_failed; 1144 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1145 if (!retval) 1146 goto out; 1147 1148 usb_hub_cleanup(); 1149 hub_init_failed: 1150 usbfs_cleanup(); 1151 fs_init_failed: 1152 usb_devio_cleanup(); 1153 usb_devio_init_failed: 1154 usb_deregister(&usbfs_driver); 1155 driver_register_failed: 1156 usb_major_cleanup(); 1157 major_init_failed: 1158 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1159 bus_notifier_failed: 1160 bus_unregister(&usb_bus_type); 1161 bus_register_failed: 1162 ksuspend_usb_cleanup(); 1163 out: 1164 return retval; 1165 } 1166 1167 /* 1168 * Cleanup 1169 */ 1170 static void __exit usb_exit(void) 1171 { 1172 /* This will matter if shutdown/reboot does exitcalls. */ 1173 if (nousb) 1174 return; 1175 1176 usb_deregister_device_driver(&usb_generic_driver); 1177 usb_major_cleanup(); 1178 usbfs_cleanup(); 1179 usb_deregister(&usbfs_driver); 1180 usb_devio_cleanup(); 1181 usb_hub_cleanup(); 1182 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1183 bus_unregister(&usb_bus_type); 1184 ksuspend_usb_cleanup(); 1185 usb_debugfs_cleanup(); 1186 } 1187 1188 subsys_initcall(usb_init); 1189 module_exit(usb_exit); 1190 MODULE_LICENSE("GPL"); 1191