xref: /openbmc/linux/drivers/usb/core/usb.c (revision 9cfc5c90)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static bool nousb;	/* Disable USB when built into kernel image */
51 
52 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
53 #ifdef MODULE
54 module_param(nousb, bool, 0444);
55 #else
56 core_param(nousb, nousb, bool, 0444);
57 #endif
58 
59 /*
60  * for external read access to <nousb>
61  */
62 int usb_disabled(void)
63 {
64 	return nousb;
65 }
66 EXPORT_SYMBOL_GPL(usb_disabled);
67 
68 #ifdef	CONFIG_PM
69 static int usb_autosuspend_delay = 2;		/* Default delay value,
70 						 * in seconds */
71 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
72 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
73 
74 #else
75 #define usb_autosuspend_delay		0
76 #endif
77 
78 
79 /**
80  * usb_find_alt_setting() - Given a configuration, find the alternate setting
81  * for the given interface.
82  * @config: the configuration to search (not necessarily the current config).
83  * @iface_num: interface number to search in
84  * @alt_num: alternate interface setting number to search for.
85  *
86  * Search the configuration's interface cache for the given alt setting.
87  *
88  * Return: The alternate setting, if found. %NULL otherwise.
89  */
90 struct usb_host_interface *usb_find_alt_setting(
91 		struct usb_host_config *config,
92 		unsigned int iface_num,
93 		unsigned int alt_num)
94 {
95 	struct usb_interface_cache *intf_cache = NULL;
96 	int i;
97 
98 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
99 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
100 				== iface_num) {
101 			intf_cache = config->intf_cache[i];
102 			break;
103 		}
104 	}
105 	if (!intf_cache)
106 		return NULL;
107 	for (i = 0; i < intf_cache->num_altsetting; i++)
108 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
109 			return &intf_cache->altsetting[i];
110 
111 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
112 			"config %u\n", alt_num, iface_num,
113 			config->desc.bConfigurationValue);
114 	return NULL;
115 }
116 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
117 
118 /**
119  * usb_ifnum_to_if - get the interface object with a given interface number
120  * @dev: the device whose current configuration is considered
121  * @ifnum: the desired interface
122  *
123  * This walks the device descriptor for the currently active configuration
124  * to find the interface object with the particular interface number.
125  *
126  * Note that configuration descriptors are not required to assign interface
127  * numbers sequentially, so that it would be incorrect to assume that
128  * the first interface in that descriptor corresponds to interface zero.
129  * This routine helps device drivers avoid such mistakes.
130  * However, you should make sure that you do the right thing with any
131  * alternate settings available for this interfaces.
132  *
133  * Don't call this function unless you are bound to one of the interfaces
134  * on this device or you have locked the device!
135  *
136  * Return: A pointer to the interface that has @ifnum as interface number,
137  * if found. %NULL otherwise.
138  */
139 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
140 				      unsigned ifnum)
141 {
142 	struct usb_host_config *config = dev->actconfig;
143 	int i;
144 
145 	if (!config)
146 		return NULL;
147 	for (i = 0; i < config->desc.bNumInterfaces; i++)
148 		if (config->interface[i]->altsetting[0]
149 				.desc.bInterfaceNumber == ifnum)
150 			return config->interface[i];
151 
152 	return NULL;
153 }
154 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
155 
156 /**
157  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
158  * @intf: the interface containing the altsetting in question
159  * @altnum: the desired alternate setting number
160  *
161  * This searches the altsetting array of the specified interface for
162  * an entry with the correct bAlternateSetting value.
163  *
164  * Note that altsettings need not be stored sequentially by number, so
165  * it would be incorrect to assume that the first altsetting entry in
166  * the array corresponds to altsetting zero.  This routine helps device
167  * drivers avoid such mistakes.
168  *
169  * Don't call this function unless you are bound to the intf interface
170  * or you have locked the device!
171  *
172  * Return: A pointer to the entry of the altsetting array of @intf that
173  * has @altnum as the alternate setting number. %NULL if not found.
174  */
175 struct usb_host_interface *usb_altnum_to_altsetting(
176 					const struct usb_interface *intf,
177 					unsigned int altnum)
178 {
179 	int i;
180 
181 	for (i = 0; i < intf->num_altsetting; i++) {
182 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
183 			return &intf->altsetting[i];
184 	}
185 	return NULL;
186 }
187 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
188 
189 struct find_interface_arg {
190 	int minor;
191 	struct device_driver *drv;
192 };
193 
194 static int __find_interface(struct device *dev, void *data)
195 {
196 	struct find_interface_arg *arg = data;
197 	struct usb_interface *intf;
198 
199 	if (!is_usb_interface(dev))
200 		return 0;
201 
202 	if (dev->driver != arg->drv)
203 		return 0;
204 	intf = to_usb_interface(dev);
205 	return intf->minor == arg->minor;
206 }
207 
208 /**
209  * usb_find_interface - find usb_interface pointer for driver and device
210  * @drv: the driver whose current configuration is considered
211  * @minor: the minor number of the desired device
212  *
213  * This walks the bus device list and returns a pointer to the interface
214  * with the matching minor and driver.  Note, this only works for devices
215  * that share the USB major number.
216  *
217  * Return: A pointer to the interface with the matching major and @minor.
218  */
219 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
220 {
221 	struct find_interface_arg argb;
222 	struct device *dev;
223 
224 	argb.minor = minor;
225 	argb.drv = &drv->drvwrap.driver;
226 
227 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
228 
229 	/* Drop reference count from bus_find_device */
230 	put_device(dev);
231 
232 	return dev ? to_usb_interface(dev) : NULL;
233 }
234 EXPORT_SYMBOL_GPL(usb_find_interface);
235 
236 struct each_dev_arg {
237 	void *data;
238 	int (*fn)(struct usb_device *, void *);
239 };
240 
241 static int __each_dev(struct device *dev, void *data)
242 {
243 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
244 
245 	/* There are struct usb_interface on the same bus, filter them out */
246 	if (!is_usb_device(dev))
247 		return 0;
248 
249 	return arg->fn(container_of(dev, struct usb_device, dev), arg->data);
250 }
251 
252 /**
253  * usb_for_each_dev - iterate over all USB devices in the system
254  * @data: data pointer that will be handed to the callback function
255  * @fn: callback function to be called for each USB device
256  *
257  * Iterate over all USB devices and call @fn for each, passing it @data. If it
258  * returns anything other than 0, we break the iteration prematurely and return
259  * that value.
260  */
261 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
262 {
263 	struct each_dev_arg arg = {data, fn};
264 
265 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
266 }
267 EXPORT_SYMBOL_GPL(usb_for_each_dev);
268 
269 /**
270  * usb_release_dev - free a usb device structure when all users of it are finished.
271  * @dev: device that's been disconnected
272  *
273  * Will be called only by the device core when all users of this usb device are
274  * done.
275  */
276 static void usb_release_dev(struct device *dev)
277 {
278 	struct usb_device *udev;
279 	struct usb_hcd *hcd;
280 
281 	udev = to_usb_device(dev);
282 	hcd = bus_to_hcd(udev->bus);
283 
284 	usb_destroy_configuration(udev);
285 	usb_release_bos_descriptor(udev);
286 	usb_put_hcd(hcd);
287 	kfree(udev->product);
288 	kfree(udev->manufacturer);
289 	kfree(udev->serial);
290 	kfree(udev);
291 }
292 
293 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
294 {
295 	struct usb_device *usb_dev;
296 
297 	usb_dev = to_usb_device(dev);
298 
299 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
300 		return -ENOMEM;
301 
302 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
303 		return -ENOMEM;
304 
305 	return 0;
306 }
307 
308 #ifdef	CONFIG_PM
309 
310 /* USB device Power-Management thunks.
311  * There's no need to distinguish here between quiescing a USB device
312  * and powering it down; the generic_suspend() routine takes care of
313  * it by skipping the usb_port_suspend() call for a quiesce.  And for
314  * USB interfaces there's no difference at all.
315  */
316 
317 static int usb_dev_prepare(struct device *dev)
318 {
319 	return 0;		/* Implement eventually? */
320 }
321 
322 static void usb_dev_complete(struct device *dev)
323 {
324 	/* Currently used only for rebinding interfaces */
325 	usb_resume_complete(dev);
326 }
327 
328 static int usb_dev_suspend(struct device *dev)
329 {
330 	return usb_suspend(dev, PMSG_SUSPEND);
331 }
332 
333 static int usb_dev_resume(struct device *dev)
334 {
335 	return usb_resume(dev, PMSG_RESUME);
336 }
337 
338 static int usb_dev_freeze(struct device *dev)
339 {
340 	return usb_suspend(dev, PMSG_FREEZE);
341 }
342 
343 static int usb_dev_thaw(struct device *dev)
344 {
345 	return usb_resume(dev, PMSG_THAW);
346 }
347 
348 static int usb_dev_poweroff(struct device *dev)
349 {
350 	return usb_suspend(dev, PMSG_HIBERNATE);
351 }
352 
353 static int usb_dev_restore(struct device *dev)
354 {
355 	return usb_resume(dev, PMSG_RESTORE);
356 }
357 
358 static const struct dev_pm_ops usb_device_pm_ops = {
359 	.prepare =	usb_dev_prepare,
360 	.complete =	usb_dev_complete,
361 	.suspend =	usb_dev_suspend,
362 	.resume =	usb_dev_resume,
363 	.freeze =	usb_dev_freeze,
364 	.thaw =		usb_dev_thaw,
365 	.poweroff =	usb_dev_poweroff,
366 	.restore =	usb_dev_restore,
367 	.runtime_suspend =	usb_runtime_suspend,
368 	.runtime_resume =	usb_runtime_resume,
369 	.runtime_idle =		usb_runtime_idle,
370 };
371 
372 #endif	/* CONFIG_PM */
373 
374 
375 static char *usb_devnode(struct device *dev,
376 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
377 {
378 	struct usb_device *usb_dev;
379 
380 	usb_dev = to_usb_device(dev);
381 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
382 			 usb_dev->bus->busnum, usb_dev->devnum);
383 }
384 
385 struct device_type usb_device_type = {
386 	.name =		"usb_device",
387 	.release =	usb_release_dev,
388 	.uevent =	usb_dev_uevent,
389 	.devnode = 	usb_devnode,
390 #ifdef CONFIG_PM
391 	.pm =		&usb_device_pm_ops,
392 #endif
393 };
394 
395 
396 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
397 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
398 {
399 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
400 	return hcd->wireless;
401 }
402 
403 
404 /**
405  * usb_alloc_dev - usb device constructor (usbcore-internal)
406  * @parent: hub to which device is connected; null to allocate a root hub
407  * @bus: bus used to access the device
408  * @port1: one-based index of port; ignored for root hubs
409  * Context: !in_interrupt()
410  *
411  * Only hub drivers (including virtual root hub drivers for host
412  * controllers) should ever call this.
413  *
414  * This call may not be used in a non-sleeping context.
415  *
416  * Return: On success, a pointer to the allocated usb device. %NULL on
417  * failure.
418  */
419 struct usb_device *usb_alloc_dev(struct usb_device *parent,
420 				 struct usb_bus *bus, unsigned port1)
421 {
422 	struct usb_device *dev;
423 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
424 	unsigned root_hub = 0;
425 
426 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
427 	if (!dev)
428 		return NULL;
429 
430 	if (!usb_get_hcd(usb_hcd)) {
431 		kfree(dev);
432 		return NULL;
433 	}
434 	/* Root hubs aren't true devices, so don't allocate HCD resources */
435 	if (usb_hcd->driver->alloc_dev && parent &&
436 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
437 		usb_put_hcd(bus_to_hcd(bus));
438 		kfree(dev);
439 		return NULL;
440 	}
441 
442 	device_initialize(&dev->dev);
443 	dev->dev.bus = &usb_bus_type;
444 	dev->dev.type = &usb_device_type;
445 	dev->dev.groups = usb_device_groups;
446 	dev->dev.dma_mask = bus->controller->dma_mask;
447 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
448 	dev->state = USB_STATE_ATTACHED;
449 	dev->lpm_disable_count = 1;
450 	atomic_set(&dev->urbnum, 0);
451 
452 	INIT_LIST_HEAD(&dev->ep0.urb_list);
453 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
454 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
455 	/* ep0 maxpacket comes later, from device descriptor */
456 	usb_enable_endpoint(dev, &dev->ep0, false);
457 	dev->can_submit = 1;
458 
459 	/* Save readable and stable topology id, distinguishing devices
460 	 * by location for diagnostics, tools, driver model, etc.  The
461 	 * string is a path along hub ports, from the root.  Each device's
462 	 * dev->devpath will be stable until USB is re-cabled, and hubs
463 	 * are often labeled with these port numbers.  The name isn't
464 	 * as stable:  bus->busnum changes easily from modprobe order,
465 	 * cardbus or pci hotplugging, and so on.
466 	 */
467 	if (unlikely(!parent)) {
468 		dev->devpath[0] = '0';
469 		dev->route = 0;
470 
471 		dev->dev.parent = bus->controller;
472 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
473 		root_hub = 1;
474 	} else {
475 		/* match any labeling on the hubs; it's one-based */
476 		if (parent->devpath[0] == '0') {
477 			snprintf(dev->devpath, sizeof dev->devpath,
478 				"%d", port1);
479 			/* Root ports are not counted in route string */
480 			dev->route = 0;
481 		} else {
482 			snprintf(dev->devpath, sizeof dev->devpath,
483 				"%s.%d", parent->devpath, port1);
484 			/* Route string assumes hubs have less than 16 ports */
485 			if (port1 < 15)
486 				dev->route = parent->route +
487 					(port1 << ((parent->level - 1)*4));
488 			else
489 				dev->route = parent->route +
490 					(15 << ((parent->level - 1)*4));
491 		}
492 
493 		dev->dev.parent = &parent->dev;
494 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
495 
496 		/* hub driver sets up TT records */
497 	}
498 
499 	dev->portnum = port1;
500 	dev->bus = bus;
501 	dev->parent = parent;
502 	INIT_LIST_HEAD(&dev->filelist);
503 
504 #ifdef	CONFIG_PM
505 	pm_runtime_set_autosuspend_delay(&dev->dev,
506 			usb_autosuspend_delay * 1000);
507 	dev->connect_time = jiffies;
508 	dev->active_duration = -jiffies;
509 #endif
510 	if (root_hub)	/* Root hub always ok [and always wired] */
511 		dev->authorized = 1;
512 	else {
513 		dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
514 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
515 	}
516 	return dev;
517 }
518 EXPORT_SYMBOL_GPL(usb_alloc_dev);
519 
520 /**
521  * usb_get_dev - increments the reference count of the usb device structure
522  * @dev: the device being referenced
523  *
524  * Each live reference to a device should be refcounted.
525  *
526  * Drivers for USB interfaces should normally record such references in
527  * their probe() methods, when they bind to an interface, and release
528  * them by calling usb_put_dev(), in their disconnect() methods.
529  *
530  * Return: A pointer to the device with the incremented reference counter.
531  */
532 struct usb_device *usb_get_dev(struct usb_device *dev)
533 {
534 	if (dev)
535 		get_device(&dev->dev);
536 	return dev;
537 }
538 EXPORT_SYMBOL_GPL(usb_get_dev);
539 
540 /**
541  * usb_put_dev - release a use of the usb device structure
542  * @dev: device that's been disconnected
543  *
544  * Must be called when a user of a device is finished with it.  When the last
545  * user of the device calls this function, the memory of the device is freed.
546  */
547 void usb_put_dev(struct usb_device *dev)
548 {
549 	if (dev)
550 		put_device(&dev->dev);
551 }
552 EXPORT_SYMBOL_GPL(usb_put_dev);
553 
554 /**
555  * usb_get_intf - increments the reference count of the usb interface structure
556  * @intf: the interface being referenced
557  *
558  * Each live reference to a interface must be refcounted.
559  *
560  * Drivers for USB interfaces should normally record such references in
561  * their probe() methods, when they bind to an interface, and release
562  * them by calling usb_put_intf(), in their disconnect() methods.
563  *
564  * Return: A pointer to the interface with the incremented reference counter.
565  */
566 struct usb_interface *usb_get_intf(struct usb_interface *intf)
567 {
568 	if (intf)
569 		get_device(&intf->dev);
570 	return intf;
571 }
572 EXPORT_SYMBOL_GPL(usb_get_intf);
573 
574 /**
575  * usb_put_intf - release a use of the usb interface structure
576  * @intf: interface that's been decremented
577  *
578  * Must be called when a user of an interface is finished with it.  When the
579  * last user of the interface calls this function, the memory of the interface
580  * is freed.
581  */
582 void usb_put_intf(struct usb_interface *intf)
583 {
584 	if (intf)
585 		put_device(&intf->dev);
586 }
587 EXPORT_SYMBOL_GPL(usb_put_intf);
588 
589 /*			USB device locking
590  *
591  * USB devices and interfaces are locked using the semaphore in their
592  * embedded struct device.  The hub driver guarantees that whenever a
593  * device is connected or disconnected, drivers are called with the
594  * USB device locked as well as their particular interface.
595  *
596  * Complications arise when several devices are to be locked at the same
597  * time.  Only hub-aware drivers that are part of usbcore ever have to
598  * do this; nobody else needs to worry about it.  The rule for locking
599  * is simple:
600  *
601  *	When locking both a device and its parent, always lock the
602  *	the parent first.
603  */
604 
605 /**
606  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
607  * @udev: device that's being locked
608  * @iface: interface bound to the driver making the request (optional)
609  *
610  * Attempts to acquire the device lock, but fails if the device is
611  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
612  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
613  * lock, the routine polls repeatedly.  This is to prevent deadlock with
614  * disconnect; in some drivers (such as usb-storage) the disconnect()
615  * or suspend() method will block waiting for a device reset to complete.
616  *
617  * Return: A negative error code for failure, otherwise 0.
618  */
619 int usb_lock_device_for_reset(struct usb_device *udev,
620 			      const struct usb_interface *iface)
621 {
622 	unsigned long jiffies_expire = jiffies + HZ;
623 
624 	if (udev->state == USB_STATE_NOTATTACHED)
625 		return -ENODEV;
626 	if (udev->state == USB_STATE_SUSPENDED)
627 		return -EHOSTUNREACH;
628 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
629 			iface->condition == USB_INTERFACE_UNBOUND))
630 		return -EINTR;
631 
632 	while (!usb_trylock_device(udev)) {
633 
634 		/* If we can't acquire the lock after waiting one second,
635 		 * we're probably deadlocked */
636 		if (time_after(jiffies, jiffies_expire))
637 			return -EBUSY;
638 
639 		msleep(15);
640 		if (udev->state == USB_STATE_NOTATTACHED)
641 			return -ENODEV;
642 		if (udev->state == USB_STATE_SUSPENDED)
643 			return -EHOSTUNREACH;
644 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
645 				iface->condition == USB_INTERFACE_UNBOUND))
646 			return -EINTR;
647 	}
648 	return 0;
649 }
650 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
651 
652 /**
653  * usb_get_current_frame_number - return current bus frame number
654  * @dev: the device whose bus is being queried
655  *
656  * Return: The current frame number for the USB host controller used
657  * with the given USB device. This can be used when scheduling
658  * isochronous requests.
659  *
660  * Note: Different kinds of host controller have different "scheduling
661  * horizons". While one type might support scheduling only 32 frames
662  * into the future, others could support scheduling up to 1024 frames
663  * into the future.
664  *
665  */
666 int usb_get_current_frame_number(struct usb_device *dev)
667 {
668 	return usb_hcd_get_frame_number(dev);
669 }
670 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
671 
672 /*-------------------------------------------------------------------*/
673 /*
674  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
675  * extra field of the interface and endpoint descriptor structs.
676  */
677 
678 int __usb_get_extra_descriptor(char *buffer, unsigned size,
679 			       unsigned char type, void **ptr)
680 {
681 	struct usb_descriptor_header *header;
682 
683 	while (size >= sizeof(struct usb_descriptor_header)) {
684 		header = (struct usb_descriptor_header *)buffer;
685 
686 		if (header->bLength < 2) {
687 			printk(KERN_ERR
688 				"%s: bogus descriptor, type %d length %d\n",
689 				usbcore_name,
690 				header->bDescriptorType,
691 				header->bLength);
692 			return -1;
693 		}
694 
695 		if (header->bDescriptorType == type) {
696 			*ptr = header;
697 			return 0;
698 		}
699 
700 		buffer += header->bLength;
701 		size -= header->bLength;
702 	}
703 	return -1;
704 }
705 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
706 
707 /**
708  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
709  * @dev: device the buffer will be used with
710  * @size: requested buffer size
711  * @mem_flags: affect whether allocation may block
712  * @dma: used to return DMA address of buffer
713  *
714  * Return: Either null (indicating no buffer could be allocated), or the
715  * cpu-space pointer to a buffer that may be used to perform DMA to the
716  * specified device.  Such cpu-space buffers are returned along with the DMA
717  * address (through the pointer provided).
718  *
719  * Note:
720  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
721  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
722  * hardware during URB completion/resubmit.  The implementation varies between
723  * platforms, depending on details of how DMA will work to this device.
724  * Using these buffers also eliminates cacheline sharing problems on
725  * architectures where CPU caches are not DMA-coherent.  On systems without
726  * bus-snooping caches, these buffers are uncached.
727  *
728  * When the buffer is no longer used, free it with usb_free_coherent().
729  */
730 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
731 			 dma_addr_t *dma)
732 {
733 	if (!dev || !dev->bus)
734 		return NULL;
735 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
736 }
737 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
738 
739 /**
740  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
741  * @dev: device the buffer was used with
742  * @size: requested buffer size
743  * @addr: CPU address of buffer
744  * @dma: DMA address of buffer
745  *
746  * This reclaims an I/O buffer, letting it be reused.  The memory must have
747  * been allocated using usb_alloc_coherent(), and the parameters must match
748  * those provided in that allocation request.
749  */
750 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
751 		       dma_addr_t dma)
752 {
753 	if (!dev || !dev->bus)
754 		return;
755 	if (!addr)
756 		return;
757 	hcd_buffer_free(dev->bus, size, addr, dma);
758 }
759 EXPORT_SYMBOL_GPL(usb_free_coherent);
760 
761 /**
762  * usb_buffer_map - create DMA mapping(s) for an urb
763  * @urb: urb whose transfer_buffer/setup_packet will be mapped
764  *
765  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
766  * succeeds. If the device is connected to this system through a non-DMA
767  * controller, this operation always succeeds.
768  *
769  * This call would normally be used for an urb which is reused, perhaps
770  * as the target of a large periodic transfer, with usb_buffer_dmasync()
771  * calls to synchronize memory and dma state.
772  *
773  * Reverse the effect of this call with usb_buffer_unmap().
774  *
775  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
776  *
777  */
778 #if 0
779 struct urb *usb_buffer_map(struct urb *urb)
780 {
781 	struct usb_bus		*bus;
782 	struct device		*controller;
783 
784 	if (!urb
785 			|| !urb->dev
786 			|| !(bus = urb->dev->bus)
787 			|| !(controller = bus->controller))
788 		return NULL;
789 
790 	if (controller->dma_mask) {
791 		urb->transfer_dma = dma_map_single(controller,
792 			urb->transfer_buffer, urb->transfer_buffer_length,
793 			usb_pipein(urb->pipe)
794 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
795 	/* FIXME generic api broken like pci, can't report errors */
796 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
797 	} else
798 		urb->transfer_dma = ~0;
799 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
800 	return urb;
801 }
802 EXPORT_SYMBOL_GPL(usb_buffer_map);
803 #endif  /*  0  */
804 
805 /* XXX DISABLED, no users currently.  If you wish to re-enable this
806  * XXX please determine whether the sync is to transfer ownership of
807  * XXX the buffer from device to cpu or vice verse, and thusly use the
808  * XXX appropriate _for_{cpu,device}() method.  -DaveM
809  */
810 #if 0
811 
812 /**
813  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
814  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
815  */
816 void usb_buffer_dmasync(struct urb *urb)
817 {
818 	struct usb_bus		*bus;
819 	struct device		*controller;
820 
821 	if (!urb
822 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
823 			|| !urb->dev
824 			|| !(bus = urb->dev->bus)
825 			|| !(controller = bus->controller))
826 		return;
827 
828 	if (controller->dma_mask) {
829 		dma_sync_single_for_cpu(controller,
830 			urb->transfer_dma, urb->transfer_buffer_length,
831 			usb_pipein(urb->pipe)
832 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
833 		if (usb_pipecontrol(urb->pipe))
834 			dma_sync_single_for_cpu(controller,
835 					urb->setup_dma,
836 					sizeof(struct usb_ctrlrequest),
837 					DMA_TO_DEVICE);
838 	}
839 }
840 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
841 #endif
842 
843 /**
844  * usb_buffer_unmap - free DMA mapping(s) for an urb
845  * @urb: urb whose transfer_buffer will be unmapped
846  *
847  * Reverses the effect of usb_buffer_map().
848  */
849 #if 0
850 void usb_buffer_unmap(struct urb *urb)
851 {
852 	struct usb_bus		*bus;
853 	struct device		*controller;
854 
855 	if (!urb
856 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
857 			|| !urb->dev
858 			|| !(bus = urb->dev->bus)
859 			|| !(controller = bus->controller))
860 		return;
861 
862 	if (controller->dma_mask) {
863 		dma_unmap_single(controller,
864 			urb->transfer_dma, urb->transfer_buffer_length,
865 			usb_pipein(urb->pipe)
866 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
867 	}
868 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
869 }
870 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
871 #endif  /*  0  */
872 
873 #if 0
874 /**
875  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
876  * @dev: device to which the scatterlist will be mapped
877  * @is_in: mapping transfer direction
878  * @sg: the scatterlist to map
879  * @nents: the number of entries in the scatterlist
880  *
881  * Return: Either < 0 (indicating no buffers could be mapped), or the
882  * number of DMA mapping array entries in the scatterlist.
883  *
884  * Note:
885  * The caller is responsible for placing the resulting DMA addresses from
886  * the scatterlist into URB transfer buffer pointers, and for setting the
887  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
888  *
889  * Top I/O rates come from queuing URBs, instead of waiting for each one
890  * to complete before starting the next I/O.   This is particularly easy
891  * to do with scatterlists.  Just allocate and submit one URB for each DMA
892  * mapping entry returned, stopping on the first error or when all succeed.
893  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
894  *
895  * This call would normally be used when translating scatterlist requests,
896  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
897  * may be able to coalesce mappings for improved I/O efficiency.
898  *
899  * Reverse the effect of this call with usb_buffer_unmap_sg().
900  */
901 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
902 		      struct scatterlist *sg, int nents)
903 {
904 	struct usb_bus		*bus;
905 	struct device		*controller;
906 
907 	if (!dev
908 			|| !(bus = dev->bus)
909 			|| !(controller = bus->controller)
910 			|| !controller->dma_mask)
911 		return -EINVAL;
912 
913 	/* FIXME generic api broken like pci, can't report errors */
914 	return dma_map_sg(controller, sg, nents,
915 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
916 }
917 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
918 #endif
919 
920 /* XXX DISABLED, no users currently.  If you wish to re-enable this
921  * XXX please determine whether the sync is to transfer ownership of
922  * XXX the buffer from device to cpu or vice verse, and thusly use the
923  * XXX appropriate _for_{cpu,device}() method.  -DaveM
924  */
925 #if 0
926 
927 /**
928  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
929  * @dev: device to which the scatterlist will be mapped
930  * @is_in: mapping transfer direction
931  * @sg: the scatterlist to synchronize
932  * @n_hw_ents: the positive return value from usb_buffer_map_sg
933  *
934  * Use this when you are re-using a scatterlist's data buffers for
935  * another USB request.
936  */
937 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
938 			   struct scatterlist *sg, int n_hw_ents)
939 {
940 	struct usb_bus		*bus;
941 	struct device		*controller;
942 
943 	if (!dev
944 			|| !(bus = dev->bus)
945 			|| !(controller = bus->controller)
946 			|| !controller->dma_mask)
947 		return;
948 
949 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
950 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
951 }
952 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
953 #endif
954 
955 #if 0
956 /**
957  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
958  * @dev: device to which the scatterlist will be mapped
959  * @is_in: mapping transfer direction
960  * @sg: the scatterlist to unmap
961  * @n_hw_ents: the positive return value from usb_buffer_map_sg
962  *
963  * Reverses the effect of usb_buffer_map_sg().
964  */
965 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
966 			 struct scatterlist *sg, int n_hw_ents)
967 {
968 	struct usb_bus		*bus;
969 	struct device		*controller;
970 
971 	if (!dev
972 			|| !(bus = dev->bus)
973 			|| !(controller = bus->controller)
974 			|| !controller->dma_mask)
975 		return;
976 
977 	dma_unmap_sg(controller, sg, n_hw_ents,
978 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
979 }
980 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
981 #endif
982 
983 /*
984  * Notifications of device and interface registration
985  */
986 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
987 		void *data)
988 {
989 	struct device *dev = data;
990 
991 	switch (action) {
992 	case BUS_NOTIFY_ADD_DEVICE:
993 		if (dev->type == &usb_device_type)
994 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
995 		else if (dev->type == &usb_if_device_type)
996 			usb_create_sysfs_intf_files(to_usb_interface(dev));
997 		break;
998 
999 	case BUS_NOTIFY_DEL_DEVICE:
1000 		if (dev->type == &usb_device_type)
1001 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1002 		else if (dev->type == &usb_if_device_type)
1003 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1004 		break;
1005 	}
1006 	return 0;
1007 }
1008 
1009 static struct notifier_block usb_bus_nb = {
1010 	.notifier_call = usb_bus_notify,
1011 };
1012 
1013 struct dentry *usb_debug_root;
1014 EXPORT_SYMBOL_GPL(usb_debug_root);
1015 
1016 static struct dentry *usb_debug_devices;
1017 
1018 static int usb_debugfs_init(void)
1019 {
1020 	usb_debug_root = debugfs_create_dir("usb", NULL);
1021 	if (!usb_debug_root)
1022 		return -ENOENT;
1023 
1024 	usb_debug_devices = debugfs_create_file("devices", 0444,
1025 						usb_debug_root, NULL,
1026 						&usbfs_devices_fops);
1027 	if (!usb_debug_devices) {
1028 		debugfs_remove(usb_debug_root);
1029 		usb_debug_root = NULL;
1030 		return -ENOENT;
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static void usb_debugfs_cleanup(void)
1037 {
1038 	debugfs_remove(usb_debug_devices);
1039 	debugfs_remove(usb_debug_root);
1040 }
1041 
1042 /*
1043  * Init
1044  */
1045 static int __init usb_init(void)
1046 {
1047 	int retval;
1048 	if (usb_disabled()) {
1049 		pr_info("%s: USB support disabled\n", usbcore_name);
1050 		return 0;
1051 	}
1052 	usb_init_pool_max();
1053 
1054 	retval = usb_debugfs_init();
1055 	if (retval)
1056 		goto out;
1057 
1058 	usb_acpi_register();
1059 	retval = bus_register(&usb_bus_type);
1060 	if (retval)
1061 		goto bus_register_failed;
1062 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1063 	if (retval)
1064 		goto bus_notifier_failed;
1065 	retval = usb_major_init();
1066 	if (retval)
1067 		goto major_init_failed;
1068 	retval = usb_register(&usbfs_driver);
1069 	if (retval)
1070 		goto driver_register_failed;
1071 	retval = usb_devio_init();
1072 	if (retval)
1073 		goto usb_devio_init_failed;
1074 	retval = usb_hub_init();
1075 	if (retval)
1076 		goto hub_init_failed;
1077 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1078 	if (!retval)
1079 		goto out;
1080 
1081 	usb_hub_cleanup();
1082 hub_init_failed:
1083 	usb_devio_cleanup();
1084 usb_devio_init_failed:
1085 	usb_deregister(&usbfs_driver);
1086 driver_register_failed:
1087 	usb_major_cleanup();
1088 major_init_failed:
1089 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1090 bus_notifier_failed:
1091 	bus_unregister(&usb_bus_type);
1092 bus_register_failed:
1093 	usb_acpi_unregister();
1094 	usb_debugfs_cleanup();
1095 out:
1096 	return retval;
1097 }
1098 
1099 /*
1100  * Cleanup
1101  */
1102 static void __exit usb_exit(void)
1103 {
1104 	/* This will matter if shutdown/reboot does exitcalls. */
1105 	if (usb_disabled())
1106 		return;
1107 
1108 	usb_deregister_device_driver(&usb_generic_driver);
1109 	usb_major_cleanup();
1110 	usb_deregister(&usbfs_driver);
1111 	usb_devio_cleanup();
1112 	usb_hub_cleanup();
1113 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1114 	bus_unregister(&usb_bus_type);
1115 	usb_acpi_unregister();
1116 	usb_debugfs_cleanup();
1117 }
1118 
1119 subsys_initcall(usb_init);
1120 module_exit(usb_exit);
1121 MODULE_LICENSE("GPL");
1122