xref: /openbmc/linux/drivers/usb/core/usb.c (revision 8497f696)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static bool nousb;	/* Disable USB when built into kernel image */
51 
52 #ifdef	CONFIG_USB_SUSPEND
53 static int usb_autosuspend_delay = 2;		/* Default delay value,
54 						 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57 
58 #else
59 #define usb_autosuspend_delay		0
60 #endif
61 
62 
63 /**
64  * usb_find_alt_setting() - Given a configuration, find the alternate setting
65  * for the given interface.
66  * @config: the configuration to search (not necessarily the current config).
67  * @iface_num: interface number to search in
68  * @alt_num: alternate interface setting number to search for.
69  *
70  * Search the configuration's interface cache for the given alt setting.
71  */
72 struct usb_host_interface *usb_find_alt_setting(
73 		struct usb_host_config *config,
74 		unsigned int iface_num,
75 		unsigned int alt_num)
76 {
77 	struct usb_interface_cache *intf_cache = NULL;
78 	int i;
79 
80 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 				== iface_num) {
83 			intf_cache = config->intf_cache[i];
84 			break;
85 		}
86 	}
87 	if (!intf_cache)
88 		return NULL;
89 	for (i = 0; i < intf_cache->num_altsetting; i++)
90 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 			return &intf_cache->altsetting[i];
92 
93 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 			"config %u\n", alt_num, iface_num,
95 			config->desc.bConfigurationValue);
96 	return NULL;
97 }
98 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99 
100 /**
101  * usb_ifnum_to_if - get the interface object with a given interface number
102  * @dev: the device whose current configuration is considered
103  * @ifnum: the desired interface
104  *
105  * This walks the device descriptor for the currently active configuration
106  * and returns a pointer to the interface with that particular interface
107  * number, or null.
108  *
109  * Note that configuration descriptors are not required to assign interface
110  * numbers sequentially, so that it would be incorrect to assume that
111  * the first interface in that descriptor corresponds to interface zero.
112  * This routine helps device drivers avoid such mistakes.
113  * However, you should make sure that you do the right thing with any
114  * alternate settings available for this interfaces.
115  *
116  * Don't call this function unless you are bound to one of the interfaces
117  * on this device or you have locked the device!
118  */
119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 				      unsigned ifnum)
121 {
122 	struct usb_host_config *config = dev->actconfig;
123 	int i;
124 
125 	if (!config)
126 		return NULL;
127 	for (i = 0; i < config->desc.bNumInterfaces; i++)
128 		if (config->interface[i]->altsetting[0]
129 				.desc.bInterfaceNumber == ifnum)
130 			return config->interface[i];
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135 
136 /**
137  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138  * @intf: the interface containing the altsetting in question
139  * @altnum: the desired alternate setting number
140  *
141  * This searches the altsetting array of the specified interface for
142  * an entry with the correct bAlternateSetting value and returns a pointer
143  * to that entry, or null.
144  *
145  * Note that altsettings need not be stored sequentially by number, so
146  * it would be incorrect to assume that the first altsetting entry in
147  * the array corresponds to altsetting zero.  This routine helps device
148  * drivers avoid such mistakes.
149  *
150  * Don't call this function unless you are bound to the intf interface
151  * or you have locked the device!
152  */
153 struct usb_host_interface *usb_altnum_to_altsetting(
154 					const struct usb_interface *intf,
155 					unsigned int altnum)
156 {
157 	int i;
158 
159 	for (i = 0; i < intf->num_altsetting; i++) {
160 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 			return &intf->altsetting[i];
162 	}
163 	return NULL;
164 }
165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166 
167 struct find_interface_arg {
168 	int minor;
169 	struct device_driver *drv;
170 };
171 
172 static int __find_interface(struct device *dev, void *data)
173 {
174 	struct find_interface_arg *arg = data;
175 	struct usb_interface *intf;
176 
177 	if (!is_usb_interface(dev))
178 		return 0;
179 
180 	if (dev->driver != arg->drv)
181 		return 0;
182 	intf = to_usb_interface(dev);
183 	return intf->minor == arg->minor;
184 }
185 
186 /**
187  * usb_find_interface - find usb_interface pointer for driver and device
188  * @drv: the driver whose current configuration is considered
189  * @minor: the minor number of the desired device
190  *
191  * This walks the bus device list and returns a pointer to the interface
192  * with the matching minor and driver.  Note, this only works for devices
193  * that share the USB major number.
194  */
195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196 {
197 	struct find_interface_arg argb;
198 	struct device *dev;
199 
200 	argb.minor = minor;
201 	argb.drv = &drv->drvwrap.driver;
202 
203 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204 
205 	/* Drop reference count from bus_find_device */
206 	put_device(dev);
207 
208 	return dev ? to_usb_interface(dev) : NULL;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_interface);
211 
212 /**
213  * usb_release_dev - free a usb device structure when all users of it are finished.
214  * @dev: device that's been disconnected
215  *
216  * Will be called only by the device core when all users of this usb device are
217  * done.
218  */
219 static void usb_release_dev(struct device *dev)
220 {
221 	struct usb_device *udev;
222 	struct usb_hcd *hcd;
223 
224 	udev = to_usb_device(dev);
225 	hcd = bus_to_hcd(udev->bus);
226 
227 	usb_destroy_configuration(udev);
228 	usb_release_bos_descriptor(udev);
229 	usb_put_hcd(hcd);
230 	kfree(udev->product);
231 	kfree(udev->manufacturer);
232 	kfree(udev->serial);
233 	kfree(udev);
234 }
235 
236 #ifdef	CONFIG_HOTPLUG
237 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
238 {
239 	struct usb_device *usb_dev;
240 
241 	usb_dev = to_usb_device(dev);
242 
243 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
244 		return -ENOMEM;
245 
246 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
247 		return -ENOMEM;
248 
249 	return 0;
250 }
251 
252 #else
253 
254 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
255 {
256 	return -ENODEV;
257 }
258 #endif	/* CONFIG_HOTPLUG */
259 
260 #ifdef	CONFIG_PM
261 
262 /* USB device Power-Management thunks.
263  * There's no need to distinguish here between quiescing a USB device
264  * and powering it down; the generic_suspend() routine takes care of
265  * it by skipping the usb_port_suspend() call for a quiesce.  And for
266  * USB interfaces there's no difference at all.
267  */
268 
269 static int usb_dev_prepare(struct device *dev)
270 {
271 	return 0;		/* Implement eventually? */
272 }
273 
274 static void usb_dev_complete(struct device *dev)
275 {
276 	/* Currently used only for rebinding interfaces */
277 	usb_resume_complete(dev);
278 }
279 
280 static int usb_dev_suspend(struct device *dev)
281 {
282 	return usb_suspend(dev, PMSG_SUSPEND);
283 }
284 
285 static int usb_dev_resume(struct device *dev)
286 {
287 	return usb_resume(dev, PMSG_RESUME);
288 }
289 
290 static int usb_dev_freeze(struct device *dev)
291 {
292 	return usb_suspend(dev, PMSG_FREEZE);
293 }
294 
295 static int usb_dev_thaw(struct device *dev)
296 {
297 	return usb_resume(dev, PMSG_THAW);
298 }
299 
300 static int usb_dev_poweroff(struct device *dev)
301 {
302 	return usb_suspend(dev, PMSG_HIBERNATE);
303 }
304 
305 static int usb_dev_restore(struct device *dev)
306 {
307 	return usb_resume(dev, PMSG_RESTORE);
308 }
309 
310 static const struct dev_pm_ops usb_device_pm_ops = {
311 	.prepare =	usb_dev_prepare,
312 	.complete =	usb_dev_complete,
313 	.suspend =	usb_dev_suspend,
314 	.resume =	usb_dev_resume,
315 	.freeze =	usb_dev_freeze,
316 	.thaw =		usb_dev_thaw,
317 	.poweroff =	usb_dev_poweroff,
318 	.restore =	usb_dev_restore,
319 #ifdef CONFIG_USB_SUSPEND
320 	.runtime_suspend =	usb_runtime_suspend,
321 	.runtime_resume =	usb_runtime_resume,
322 	.runtime_idle =		usb_runtime_idle,
323 #endif
324 };
325 
326 #endif	/* CONFIG_PM */
327 
328 
329 static char *usb_devnode(struct device *dev, umode_t *mode)
330 {
331 	struct usb_device *usb_dev;
332 
333 	usb_dev = to_usb_device(dev);
334 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
335 			 usb_dev->bus->busnum, usb_dev->devnum);
336 }
337 
338 struct device_type usb_device_type = {
339 	.name =		"usb_device",
340 	.release =	usb_release_dev,
341 	.uevent =	usb_dev_uevent,
342 	.devnode = 	usb_devnode,
343 #ifdef CONFIG_PM
344 	.pm =		&usb_device_pm_ops,
345 #endif
346 };
347 
348 
349 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
350 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
351 {
352 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
353 	return hcd->wireless;
354 }
355 
356 
357 /**
358  * usb_alloc_dev - usb device constructor (usbcore-internal)
359  * @parent: hub to which device is connected; null to allocate a root hub
360  * @bus: bus used to access the device
361  * @port1: one-based index of port; ignored for root hubs
362  * Context: !in_interrupt()
363  *
364  * Only hub drivers (including virtual root hub drivers for host
365  * controllers) should ever call this.
366  *
367  * This call may not be used in a non-sleeping context.
368  */
369 struct usb_device *usb_alloc_dev(struct usb_device *parent,
370 				 struct usb_bus *bus, unsigned port1)
371 {
372 	struct usb_device *dev;
373 	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
374 	unsigned root_hub = 0;
375 
376 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
377 	if (!dev)
378 		return NULL;
379 
380 	if (!usb_get_hcd(bus_to_hcd(bus))) {
381 		kfree(dev);
382 		return NULL;
383 	}
384 	/* Root hubs aren't true devices, so don't allocate HCD resources */
385 	if (usb_hcd->driver->alloc_dev && parent &&
386 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
387 		usb_put_hcd(bus_to_hcd(bus));
388 		kfree(dev);
389 		return NULL;
390 	}
391 
392 	device_initialize(&dev->dev);
393 	dev->dev.bus = &usb_bus_type;
394 	dev->dev.type = &usb_device_type;
395 	dev->dev.groups = usb_device_groups;
396 	dev->dev.dma_mask = bus->controller->dma_mask;
397 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
398 	dev->state = USB_STATE_ATTACHED;
399 	atomic_set(&dev->urbnum, 0);
400 
401 	INIT_LIST_HEAD(&dev->ep0.urb_list);
402 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
403 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
404 	/* ep0 maxpacket comes later, from device descriptor */
405 	usb_enable_endpoint(dev, &dev->ep0, false);
406 	dev->can_submit = 1;
407 
408 	/* Save readable and stable topology id, distinguishing devices
409 	 * by location for diagnostics, tools, driver model, etc.  The
410 	 * string is a path along hub ports, from the root.  Each device's
411 	 * dev->devpath will be stable until USB is re-cabled, and hubs
412 	 * are often labeled with these port numbers.  The name isn't
413 	 * as stable:  bus->busnum changes easily from modprobe order,
414 	 * cardbus or pci hotplugging, and so on.
415 	 */
416 	if (unlikely(!parent)) {
417 		dev->devpath[0] = '0';
418 		dev->route = 0;
419 
420 		dev->dev.parent = bus->controller;
421 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
422 		root_hub = 1;
423 	} else {
424 		/* match any labeling on the hubs; it's one-based */
425 		if (parent->devpath[0] == '0') {
426 			snprintf(dev->devpath, sizeof dev->devpath,
427 				"%d", port1);
428 			/* Root ports are not counted in route string */
429 			dev->route = 0;
430 		} else {
431 			snprintf(dev->devpath, sizeof dev->devpath,
432 				"%s.%d", parent->devpath, port1);
433 			/* Route string assumes hubs have less than 16 ports */
434 			if (port1 < 15)
435 				dev->route = parent->route +
436 					(port1 << ((parent->level - 1)*4));
437 			else
438 				dev->route = parent->route +
439 					(15 << ((parent->level - 1)*4));
440 		}
441 
442 		dev->dev.parent = &parent->dev;
443 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
444 
445 		/* hub driver sets up TT records */
446 	}
447 
448 	dev->portnum = port1;
449 	dev->bus = bus;
450 	dev->parent = parent;
451 	INIT_LIST_HEAD(&dev->filelist);
452 
453 #ifdef	CONFIG_PM
454 	pm_runtime_set_autosuspend_delay(&dev->dev,
455 			usb_autosuspend_delay * 1000);
456 	dev->connect_time = jiffies;
457 	dev->active_duration = -jiffies;
458 #endif
459 	if (root_hub)	/* Root hub always ok [and always wired] */
460 		dev->authorized = 1;
461 	else {
462 		dev->authorized = usb_hcd->authorized_default;
463 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
464 	}
465 	return dev;
466 }
467 
468 /**
469  * usb_get_dev - increments the reference count of the usb device structure
470  * @dev: the device being referenced
471  *
472  * Each live reference to a device should be refcounted.
473  *
474  * Drivers for USB interfaces should normally record such references in
475  * their probe() methods, when they bind to an interface, and release
476  * them by calling usb_put_dev(), in their disconnect() methods.
477  *
478  * A pointer to the device with the incremented reference counter is returned.
479  */
480 struct usb_device *usb_get_dev(struct usb_device *dev)
481 {
482 	if (dev)
483 		get_device(&dev->dev);
484 	return dev;
485 }
486 EXPORT_SYMBOL_GPL(usb_get_dev);
487 
488 /**
489  * usb_put_dev - release a use of the usb device structure
490  * @dev: device that's been disconnected
491  *
492  * Must be called when a user of a device is finished with it.  When the last
493  * user of the device calls this function, the memory of the device is freed.
494  */
495 void usb_put_dev(struct usb_device *dev)
496 {
497 	if (dev)
498 		put_device(&dev->dev);
499 }
500 EXPORT_SYMBOL_GPL(usb_put_dev);
501 
502 /**
503  * usb_get_intf - increments the reference count of the usb interface structure
504  * @intf: the interface being referenced
505  *
506  * Each live reference to a interface must be refcounted.
507  *
508  * Drivers for USB interfaces should normally record such references in
509  * their probe() methods, when they bind to an interface, and release
510  * them by calling usb_put_intf(), in their disconnect() methods.
511  *
512  * A pointer to the interface with the incremented reference counter is
513  * returned.
514  */
515 struct usb_interface *usb_get_intf(struct usb_interface *intf)
516 {
517 	if (intf)
518 		get_device(&intf->dev);
519 	return intf;
520 }
521 EXPORT_SYMBOL_GPL(usb_get_intf);
522 
523 /**
524  * usb_put_intf - release a use of the usb interface structure
525  * @intf: interface that's been decremented
526  *
527  * Must be called when a user of an interface is finished with it.  When the
528  * last user of the interface calls this function, the memory of the interface
529  * is freed.
530  */
531 void usb_put_intf(struct usb_interface *intf)
532 {
533 	if (intf)
534 		put_device(&intf->dev);
535 }
536 EXPORT_SYMBOL_GPL(usb_put_intf);
537 
538 /*			USB device locking
539  *
540  * USB devices and interfaces are locked using the semaphore in their
541  * embedded struct device.  The hub driver guarantees that whenever a
542  * device is connected or disconnected, drivers are called with the
543  * USB device locked as well as their particular interface.
544  *
545  * Complications arise when several devices are to be locked at the same
546  * time.  Only hub-aware drivers that are part of usbcore ever have to
547  * do this; nobody else needs to worry about it.  The rule for locking
548  * is simple:
549  *
550  *	When locking both a device and its parent, always lock the
551  *	the parent first.
552  */
553 
554 /**
555  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
556  * @udev: device that's being locked
557  * @iface: interface bound to the driver making the request (optional)
558  *
559  * Attempts to acquire the device lock, but fails if the device is
560  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
561  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
562  * lock, the routine polls repeatedly.  This is to prevent deadlock with
563  * disconnect; in some drivers (such as usb-storage) the disconnect()
564  * or suspend() method will block waiting for a device reset to complete.
565  *
566  * Returns a negative error code for failure, otherwise 0.
567  */
568 int usb_lock_device_for_reset(struct usb_device *udev,
569 			      const struct usb_interface *iface)
570 {
571 	unsigned long jiffies_expire = jiffies + HZ;
572 
573 	if (udev->state == USB_STATE_NOTATTACHED)
574 		return -ENODEV;
575 	if (udev->state == USB_STATE_SUSPENDED)
576 		return -EHOSTUNREACH;
577 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
578 			iface->condition == USB_INTERFACE_UNBOUND))
579 		return -EINTR;
580 
581 	while (!usb_trylock_device(udev)) {
582 
583 		/* If we can't acquire the lock after waiting one second,
584 		 * we're probably deadlocked */
585 		if (time_after(jiffies, jiffies_expire))
586 			return -EBUSY;
587 
588 		msleep(15);
589 		if (udev->state == USB_STATE_NOTATTACHED)
590 			return -ENODEV;
591 		if (udev->state == USB_STATE_SUSPENDED)
592 			return -EHOSTUNREACH;
593 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
594 				iface->condition == USB_INTERFACE_UNBOUND))
595 			return -EINTR;
596 	}
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
600 
601 /**
602  * usb_get_current_frame_number - return current bus frame number
603  * @dev: the device whose bus is being queried
604  *
605  * Returns the current frame number for the USB host controller
606  * used with the given USB device.  This can be used when scheduling
607  * isochronous requests.
608  *
609  * Note that different kinds of host controller have different
610  * "scheduling horizons".  While one type might support scheduling only
611  * 32 frames into the future, others could support scheduling up to
612  * 1024 frames into the future.
613  */
614 int usb_get_current_frame_number(struct usb_device *dev)
615 {
616 	return usb_hcd_get_frame_number(dev);
617 }
618 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
619 
620 /*-------------------------------------------------------------------*/
621 /*
622  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
623  * extra field of the interface and endpoint descriptor structs.
624  */
625 
626 int __usb_get_extra_descriptor(char *buffer, unsigned size,
627 			       unsigned char type, void **ptr)
628 {
629 	struct usb_descriptor_header *header;
630 
631 	while (size >= sizeof(struct usb_descriptor_header)) {
632 		header = (struct usb_descriptor_header *)buffer;
633 
634 		if (header->bLength < 2) {
635 			printk(KERN_ERR
636 				"%s: bogus descriptor, type %d length %d\n",
637 				usbcore_name,
638 				header->bDescriptorType,
639 				header->bLength);
640 			return -1;
641 		}
642 
643 		if (header->bDescriptorType == type) {
644 			*ptr = header;
645 			return 0;
646 		}
647 
648 		buffer += header->bLength;
649 		size -= header->bLength;
650 	}
651 	return -1;
652 }
653 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
654 
655 /**
656  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
657  * @dev: device the buffer will be used with
658  * @size: requested buffer size
659  * @mem_flags: affect whether allocation may block
660  * @dma: used to return DMA address of buffer
661  *
662  * Return value is either null (indicating no buffer could be allocated), or
663  * the cpu-space pointer to a buffer that may be used to perform DMA to the
664  * specified device.  Such cpu-space buffers are returned along with the DMA
665  * address (through the pointer provided).
666  *
667  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
668  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
669  * hardware during URB completion/resubmit.  The implementation varies between
670  * platforms, depending on details of how DMA will work to this device.
671  * Using these buffers also eliminates cacheline sharing problems on
672  * architectures where CPU caches are not DMA-coherent.  On systems without
673  * bus-snooping caches, these buffers are uncached.
674  *
675  * When the buffer is no longer used, free it with usb_free_coherent().
676  */
677 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
678 			 dma_addr_t *dma)
679 {
680 	if (!dev || !dev->bus)
681 		return NULL;
682 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
683 }
684 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
685 
686 /**
687  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
688  * @dev: device the buffer was used with
689  * @size: requested buffer size
690  * @addr: CPU address of buffer
691  * @dma: DMA address of buffer
692  *
693  * This reclaims an I/O buffer, letting it be reused.  The memory must have
694  * been allocated using usb_alloc_coherent(), and the parameters must match
695  * those provided in that allocation request.
696  */
697 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
698 		       dma_addr_t dma)
699 {
700 	if (!dev || !dev->bus)
701 		return;
702 	if (!addr)
703 		return;
704 	hcd_buffer_free(dev->bus, size, addr, dma);
705 }
706 EXPORT_SYMBOL_GPL(usb_free_coherent);
707 
708 /**
709  * usb_buffer_map - create DMA mapping(s) for an urb
710  * @urb: urb whose transfer_buffer/setup_packet will be mapped
711  *
712  * Return value is either null (indicating no buffer could be mapped), or
713  * the parameter.  URB_NO_TRANSFER_DMA_MAP is
714  * added to urb->transfer_flags if the operation succeeds.  If the device
715  * is connected to this system through a non-DMA controller, this operation
716  * always succeeds.
717  *
718  * This call would normally be used for an urb which is reused, perhaps
719  * as the target of a large periodic transfer, with usb_buffer_dmasync()
720  * calls to synchronize memory and dma state.
721  *
722  * Reverse the effect of this call with usb_buffer_unmap().
723  */
724 #if 0
725 struct urb *usb_buffer_map(struct urb *urb)
726 {
727 	struct usb_bus		*bus;
728 	struct device		*controller;
729 
730 	if (!urb
731 			|| !urb->dev
732 			|| !(bus = urb->dev->bus)
733 			|| !(controller = bus->controller))
734 		return NULL;
735 
736 	if (controller->dma_mask) {
737 		urb->transfer_dma = dma_map_single(controller,
738 			urb->transfer_buffer, urb->transfer_buffer_length,
739 			usb_pipein(urb->pipe)
740 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
741 	/* FIXME generic api broken like pci, can't report errors */
742 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
743 	} else
744 		urb->transfer_dma = ~0;
745 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
746 	return urb;
747 }
748 EXPORT_SYMBOL_GPL(usb_buffer_map);
749 #endif  /*  0  */
750 
751 /* XXX DISABLED, no users currently.  If you wish to re-enable this
752  * XXX please determine whether the sync is to transfer ownership of
753  * XXX the buffer from device to cpu or vice verse, and thusly use the
754  * XXX appropriate _for_{cpu,device}() method.  -DaveM
755  */
756 #if 0
757 
758 /**
759  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
760  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
761  */
762 void usb_buffer_dmasync(struct urb *urb)
763 {
764 	struct usb_bus		*bus;
765 	struct device		*controller;
766 
767 	if (!urb
768 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
769 			|| !urb->dev
770 			|| !(bus = urb->dev->bus)
771 			|| !(controller = bus->controller))
772 		return;
773 
774 	if (controller->dma_mask) {
775 		dma_sync_single_for_cpu(controller,
776 			urb->transfer_dma, urb->transfer_buffer_length,
777 			usb_pipein(urb->pipe)
778 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
779 		if (usb_pipecontrol(urb->pipe))
780 			dma_sync_single_for_cpu(controller,
781 					urb->setup_dma,
782 					sizeof(struct usb_ctrlrequest),
783 					DMA_TO_DEVICE);
784 	}
785 }
786 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
787 #endif
788 
789 /**
790  * usb_buffer_unmap - free DMA mapping(s) for an urb
791  * @urb: urb whose transfer_buffer will be unmapped
792  *
793  * Reverses the effect of usb_buffer_map().
794  */
795 #if 0
796 void usb_buffer_unmap(struct urb *urb)
797 {
798 	struct usb_bus		*bus;
799 	struct device		*controller;
800 
801 	if (!urb
802 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
803 			|| !urb->dev
804 			|| !(bus = urb->dev->bus)
805 			|| !(controller = bus->controller))
806 		return;
807 
808 	if (controller->dma_mask) {
809 		dma_unmap_single(controller,
810 			urb->transfer_dma, urb->transfer_buffer_length,
811 			usb_pipein(urb->pipe)
812 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
813 	}
814 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
815 }
816 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
817 #endif  /*  0  */
818 
819 #if 0
820 /**
821  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
822  * @dev: device to which the scatterlist will be mapped
823  * @is_in: mapping transfer direction
824  * @sg: the scatterlist to map
825  * @nents: the number of entries in the scatterlist
826  *
827  * Return value is either < 0 (indicating no buffers could be mapped), or
828  * the number of DMA mapping array entries in the scatterlist.
829  *
830  * The caller is responsible for placing the resulting DMA addresses from
831  * the scatterlist into URB transfer buffer pointers, and for setting the
832  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
833  *
834  * Top I/O rates come from queuing URBs, instead of waiting for each one
835  * to complete before starting the next I/O.   This is particularly easy
836  * to do with scatterlists.  Just allocate and submit one URB for each DMA
837  * mapping entry returned, stopping on the first error or when all succeed.
838  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
839  *
840  * This call would normally be used when translating scatterlist requests,
841  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
842  * may be able to coalesce mappings for improved I/O efficiency.
843  *
844  * Reverse the effect of this call with usb_buffer_unmap_sg().
845  */
846 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
847 		      struct scatterlist *sg, int nents)
848 {
849 	struct usb_bus		*bus;
850 	struct device		*controller;
851 
852 	if (!dev
853 			|| !(bus = dev->bus)
854 			|| !(controller = bus->controller)
855 			|| !controller->dma_mask)
856 		return -EINVAL;
857 
858 	/* FIXME generic api broken like pci, can't report errors */
859 	return dma_map_sg(controller, sg, nents,
860 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
861 }
862 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
863 #endif
864 
865 /* XXX DISABLED, no users currently.  If you wish to re-enable this
866  * XXX please determine whether the sync is to transfer ownership of
867  * XXX the buffer from device to cpu or vice verse, and thusly use the
868  * XXX appropriate _for_{cpu,device}() method.  -DaveM
869  */
870 #if 0
871 
872 /**
873  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
874  * @dev: device to which the scatterlist will be mapped
875  * @is_in: mapping transfer direction
876  * @sg: the scatterlist to synchronize
877  * @n_hw_ents: the positive return value from usb_buffer_map_sg
878  *
879  * Use this when you are re-using a scatterlist's data buffers for
880  * another USB request.
881  */
882 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
883 			   struct scatterlist *sg, int n_hw_ents)
884 {
885 	struct usb_bus		*bus;
886 	struct device		*controller;
887 
888 	if (!dev
889 			|| !(bus = dev->bus)
890 			|| !(controller = bus->controller)
891 			|| !controller->dma_mask)
892 		return;
893 
894 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
895 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
896 }
897 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
898 #endif
899 
900 #if 0
901 /**
902  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
903  * @dev: device to which the scatterlist will be mapped
904  * @is_in: mapping transfer direction
905  * @sg: the scatterlist to unmap
906  * @n_hw_ents: the positive return value from usb_buffer_map_sg
907  *
908  * Reverses the effect of usb_buffer_map_sg().
909  */
910 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
911 			 struct scatterlist *sg, int n_hw_ents)
912 {
913 	struct usb_bus		*bus;
914 	struct device		*controller;
915 
916 	if (!dev
917 			|| !(bus = dev->bus)
918 			|| !(controller = bus->controller)
919 			|| !controller->dma_mask)
920 		return;
921 
922 	dma_unmap_sg(controller, sg, n_hw_ents,
923 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
924 }
925 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
926 #endif
927 
928 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
929 #ifdef MODULE
930 module_param(nousb, bool, 0444);
931 #else
932 core_param(nousb, nousb, bool, 0444);
933 #endif
934 
935 /*
936  * for external read access to <nousb>
937  */
938 int usb_disabled(void)
939 {
940 	return nousb;
941 }
942 EXPORT_SYMBOL_GPL(usb_disabled);
943 
944 /*
945  * Notifications of device and interface registration
946  */
947 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
948 		void *data)
949 {
950 	struct device *dev = data;
951 
952 	switch (action) {
953 	case BUS_NOTIFY_ADD_DEVICE:
954 		if (dev->type == &usb_device_type)
955 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
956 		else if (dev->type == &usb_if_device_type)
957 			usb_create_sysfs_intf_files(to_usb_interface(dev));
958 		break;
959 
960 	case BUS_NOTIFY_DEL_DEVICE:
961 		if (dev->type == &usb_device_type)
962 			usb_remove_sysfs_dev_files(to_usb_device(dev));
963 		else if (dev->type == &usb_if_device_type)
964 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
965 		break;
966 	}
967 	return 0;
968 }
969 
970 static struct notifier_block usb_bus_nb = {
971 	.notifier_call = usb_bus_notify,
972 };
973 
974 struct dentry *usb_debug_root;
975 EXPORT_SYMBOL_GPL(usb_debug_root);
976 
977 static struct dentry *usb_debug_devices;
978 
979 static int usb_debugfs_init(void)
980 {
981 	usb_debug_root = debugfs_create_dir("usb", NULL);
982 	if (!usb_debug_root)
983 		return -ENOENT;
984 
985 	usb_debug_devices = debugfs_create_file("devices", 0444,
986 						usb_debug_root, NULL,
987 						&usbfs_devices_fops);
988 	if (!usb_debug_devices) {
989 		debugfs_remove(usb_debug_root);
990 		usb_debug_root = NULL;
991 		return -ENOENT;
992 	}
993 
994 	return 0;
995 }
996 
997 static void usb_debugfs_cleanup(void)
998 {
999 	debugfs_remove(usb_debug_devices);
1000 	debugfs_remove(usb_debug_root);
1001 }
1002 
1003 /*
1004  * Init
1005  */
1006 static int __init usb_init(void)
1007 {
1008 	int retval;
1009 	if (nousb) {
1010 		pr_info("%s: USB support disabled\n", usbcore_name);
1011 		return 0;
1012 	}
1013 
1014 	retval = usb_debugfs_init();
1015 	if (retval)
1016 		goto out;
1017 
1018 	usb_acpi_register();
1019 	retval = bus_register(&usb_bus_type);
1020 	if (retval)
1021 		goto bus_register_failed;
1022 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1023 	if (retval)
1024 		goto bus_notifier_failed;
1025 	retval = usb_major_init();
1026 	if (retval)
1027 		goto major_init_failed;
1028 	retval = usb_register(&usbfs_driver);
1029 	if (retval)
1030 		goto driver_register_failed;
1031 	retval = usb_devio_init();
1032 	if (retval)
1033 		goto usb_devio_init_failed;
1034 	retval = usb_hub_init();
1035 	if (retval)
1036 		goto hub_init_failed;
1037 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1038 	if (!retval)
1039 		goto out;
1040 
1041 	usb_hub_cleanup();
1042 hub_init_failed:
1043 	usb_devio_cleanup();
1044 usb_devio_init_failed:
1045 	usb_deregister(&usbfs_driver);
1046 driver_register_failed:
1047 	usb_major_cleanup();
1048 major_init_failed:
1049 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1050 bus_notifier_failed:
1051 	bus_unregister(&usb_bus_type);
1052 bus_register_failed:
1053 	usb_acpi_unregister();
1054 	usb_debugfs_cleanup();
1055 out:
1056 	return retval;
1057 }
1058 
1059 /*
1060  * Cleanup
1061  */
1062 static void __exit usb_exit(void)
1063 {
1064 	/* This will matter if shutdown/reboot does exitcalls. */
1065 	if (nousb)
1066 		return;
1067 
1068 	usb_deregister_device_driver(&usb_generic_driver);
1069 	usb_major_cleanup();
1070 	usb_deregister(&usbfs_driver);
1071 	usb_devio_cleanup();
1072 	usb_hub_cleanup();
1073 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1074 	bus_unregister(&usb_bus_type);
1075 	usb_acpi_unregister();
1076 	usb_debugfs_cleanup();
1077 }
1078 
1079 subsys_initcall(usb_init);
1080 module_exit(usb_exit);
1081 MODULE_LICENSE("GPL");
1082